Science.gov

Sample records for dopamine transporters molecular

  1. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study

    PubMed Central

    Kurian, Manju A; Li, Yan; Zhen, Juan; Meyer, Esther; Hai, Nebula; Christen, Hans-Jürgen; Hoffmann, Georg F; Jardine, Philip; von Moers, Arpad; Mordekar, Santosh R; O'Callaghan, Finbar; Wassmer, Evangeline; Wraige, Elizabeth; Dietrich, Christa; Lewis, Timothy; Hyland, Keith; Heales, Simon JR; Sanger, Terence; Gissen, Paul; Assmann, Birgit E; Reith, Maarten EA; Maher, Eamonn R

    2010-01-01

    Summary Background Dopamine transporter deficiency syndrome is the first identified parkinsonian disorder caused by genetic alterations of the dopamine transporter. We describe a cohort of children with mutations in the gene encoding the dopamine transporter (SLC6A3) with the aim to improve clinical and molecular characterisation, reduce diagnostic delay and misdiagnosis, and provide insights into the pathophysiological mechanisms. Methods 11 children with a biochemical profile suggestive of dopamine transporter deficiency syndrome were enrolled from seven paediatric neurology centres in the UK, Germany, and the USA from February, 2009, and studied until June, 2010. The syndrome was characterised by detailed clinical phenotyping, biochemical and neuroradiological studies, and SLC6A3 mutation analysis. Mutant constructs of human dopamine transporter were used for in-vitro functional analysis of dopamine uptake and cocaine-analogue binding. Findings Children presented in infancy (median age 2·5 months, range 0·5–7) with either hyperkinesia (n=5), parkinsonism (n=4), or a mixed hyperkinetic and hypokinetic movement disorder (n=2). Seven children had been initially misdiagnosed with cerebral palsy. During childhood, patients developed severe parkinsonism-dystonia associated with an eye movement disorder and pyramidal tract features. All children had raised ratios of homovanillic acid to 5-hydroxyindoleacetic acid in cerebrospinal fluid, of range 5·0–13·2 (normal range 1·3–4·0). Homozygous or compound heterozygous SLC6A3 mutations were detected in all cases. Loss of function in all missense variants was recorded from in-vitro functional studies, and was supported by the findings of single photon emission CT DaTSCAN imaging in one patient, which showed complete loss of dopamine transporter activity in the basal nuclei. Interpretation Dopamine transporter deficiency syndrome is a newly recognised, autosomal recessive disorder related to impaired dopamine

  2. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons

    PubMed Central

    Hwang, Dong-Youn; Hong, Sunghoi; Jeong, Joo-Won; Choi, Sangdun; Kim, Hansoo; Kim, Jangwoo; Kim, Kwang-Soo

    2016-01-01

    Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson’s disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson’s disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway. PMID:19780901

  3. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

    PubMed Central

    Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  4. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake.

    PubMed

    Yuan, Yaxia; Quizon, Pamela M; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  5. Insights from molecular dynamics: the binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters

    PubMed Central

    Merchant, Bonnie A.; Madura, Jeffry D.

    2012-01-01

    The dopamine transporter (DAT) facilitates the regulation of synaptic neurotransmitter levels. As a target for therapeutic and illicit psycho-stimulant drugs like antidepressants and cocaine, DAT has been studied intensively. Despite a wealth of mutational and physiological data regarding DAT, the structure remains unsolved and details of the transport mechanism, binding sites and conformational changes remain debated. A bacterial homologue of DAT, the leucine transporter (LeuTAa) has been used as a template and framework for modeling and understanding DAT. Free energy profiles obtained from Multi-Configuration Thermodynamic Integration allowed us to correctly identify the primary and secondary binding pockets of LeuTAa. A comparison of free energy profiles for dopamine and cocaine in DAT suggests that the binding site of cocaine is located in a secondary pocket, not the primary substrate site. Two recurring primary pathways for intracellular substrate release from the primary pocket are identified in both transporters using the Random Acceleration Molecular Dynamics method. One pathway appears to follow transmembranes (TMs) 1a and 6b while the other pathway follows along TMs 6b and 8. Interestingly, we observe that a single sodium ion is co-transported with leucine during both simulations types. PMID:23079638

  6. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    PubMed Central

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A; Weinstein, Harel; Gether, Ulrik; Loland, Claus J

    2009-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine. PMID:18568020

  7. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.

    PubMed

    Peeters, Marloes M; van Grinsven, Bart; Foster, Christopher W; Cleij, Thomas J; Banks, Craig E

    2016-01-01

    A novel procedure is developed for producing bulk modified Molecularly Imprinted Polymer (MIP) screen-printed electrodes (SPEs), which involves the direct mixing of the polymer particles within the screen-printed ink. This allowed reduction of the sample preparation time from 45 min to 1 min, and resulted in higher reproducibility of the electrodes. The samples are measured with a novel detection method, namely, thermal wave transport analysis (TWTA), relying on the analysis of thermal waves through a functional interface. As a first proof-of-principle, MIPs for dopamine are developed and successfully incorporated within a bulk modified MIP SPE. The detection limits of dopamine within buffer solutions for the MIP SPEs are determined via three independent techniques. With cyclic voltammetry this was determined to be 4.7 × 10(-6) M, whereas by using the heat-transfer method (HTM) 0.35 × 10(-6) M was obtained, and with the novel TWTA concept 0.26 × 10(-6) M is possible. This TWTA technique is measured simultaneously with HTM and has the benefits of reducing measurement time to less than 5 min and increasing effect size by nearly a factor of two. The two thermal methods are able to enhance dopamine detection by one order of magnitude compared to the electrochemical method. In previous research, it was not possible to measure neurotransmitters in complex samples with HTM, but with the improved signal-to-noise of TWTA for the first time, spiked dopamine concentrations were determined in a relevant food sample. In summary, novel concepts are presented for both the sensor functionalization side by employing screen-printing technology, and on the sensing side, the novel TWTA thermal technique is reported. The developed bio-sensing platform is cost-effective and suitable for mass-production due to the nature of screen-printing technology, which makes it very interesting for neurotransmitter detection in clinical diagnostic applications. PMID:27128891

  8. Metaphit inhibits dopamine transport and binding of ( sup 3 H)methylphenidate, a proposed marker for the dopamine transport complex

    SciTech Connect

    Schweri, M.M. ); Jacobson, A.E.; Rice, K.C. ); Lessor, R.A.

    1989-01-01

    Metaphit, an acylating derivative of phencyclidine, was shown to interact with components of the dopamine nerve terminal in rat striatal tissue. This compound, previously demonstrated to be an irreversible inhibitor at the phencyclidine receptor, was shown in these experiments to irreversibly inhibit synaptosomal ({sup 3}H)dopamine uptake. It also inhibited binding of ({sup 3}H)methylphenidate to its recognition site, which is thought to be a subunit of the dopamine transporter. Although the inhibition was due primarily to a reduction in the binding and transport capacity of the systems studied, increases in the apparent K{sub D} of ({sup 3}H)methylphenidate and the K{sub m} of ({sup 3}H)dopamine were also observed. Differences in the behavior of Metaphit and phencylidine in these dopaminergic systems compared to their effects on the NMDA receptor-linked phencyclidine receptor suggest that Metaphit may be interacting with two distinct molecular sites in the rat striatum.

  9. Thermal Stability of Dopamine Transporters.

    PubMed

    Kukk, Siim; Stepanov, Vladimir; Järv, Jaak

    2015-08-01

    The thermal stabilities of the rat and mouse dopamine transporter (DAT) proteins were studied within the temperature range of 0-37°C. The inactivation of the protein was followed by monitoring changes in radioligand-specific binding. We found that the process followed a rate equation with first-order kinetics and was characterized by having a single rate constant k inact. The activation energies (E a) that were calculated from the Arrhenius plots (ln k inact vs. 1/T) were 43 ± 5 and 45 ± 6 kJ/mol for the rat (rDAT) and mouse (mDAT) transporters, respectively, and 44 ± 7 kJ/mol for rDAT from PC-6.3 cell line. These E a values were similar to the E a values of thermal inactivation of the muscarinic receptor from rat brain cortex and to the thermal inactivation of other transmembrane proteins. However, all of these activation energy values were significantly lower than the E a values for soluble single-subunit proteins of similar size. These results therefore suggest that the thermal stability of transmembrane proteins may be governed to a significant extent by cell membrane properties and by interactions between the membrane components and the protein. In contrast, the stability of soluble proteins seems to be mostly governed by protein structure and size, which determine the sum of the stabilizing intramolecular interactions within the protein molecule. It is therefore not surprising that cell membrane properties and composition may have significant effects on the functional properties of transmembrane proteins. PMID:25812533

  10. INTERACTION OF COCAINE-, BENZTROPINE-, AND GBR12909-LIKE COMPOUNDS WITH WILDTYPE AND MUTANT HUMAN DOPAMINE TRANSPORTERS: MOLECULAR FEATURES THAT DIFFERENTIALLY DETERMINE ANTAGONIST BINDING PROPERTIES

    PubMed Central

    Schmitt, Kyle C.; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K.; Reith, Maarten E.A.

    2009-01-01

    The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine’s behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [3H]CFT binding to wildtype, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3α stereochemistry tended to exhibit benztropine-like binding, whereas those with 3β stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features—most notably the presence of a diphenylmethoxy moiety—in determining a compound’s binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility. PMID:18786172

  11. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties.

    PubMed

    Schmitt, Kyle C; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K; Reith, Maarten E A

    2008-11-01

    The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility. PMID:18786172

  12. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  13. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  14. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter.

    PubMed

    Verma, Vivek

    2015-12-31

    The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies. PMID:26598579

  15. Neurotransmitter and psychostimulant recognition by the dopamine transporter

    PubMed Central

    Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric

    2015-01-01

    Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245

  16. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  17. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  18. Substrates dissociate dopamine transporter oligomers

    PubMed Central

    Chen, Nianhang; Reith, Maarten E. A.

    2016-01-01

    Substrate-induced endocytic trafficking of DAT has been observed, but little is known about the regulation of DAT oligomerization by substrate. The present study investigates the effect on substrates on DAT oligomerization and explores a potential link with the presence of DAT at the cell surface in HEK-293 cells transiently or stably expressing N-terminal tagged DAT constructs. DA (100 μM) or amphetamine (2–10 μM) reduced Myc-DAT coimmunoprecipitated along with Flag-DAT (oligomeric DAT) in tandem with a reduction in surface DAT determined by biotinylation. DA (10–1000 μM) and amphetamine (0.2–200 μM) reduced DAT oligomerization as assessed by cross-linking with copper sulfate phenanthroline (CuP) or Cu2+. Inhibition of endocytosis by 10 μM phenylarsine oxide (PAO) or 450 mM sucrose counteracted the effect of 10 μM DA or 2 μM amphetamine in reducing DAT cross-linking. In addition to overall similarities between the results with the two cross-linking agents and between the results with the two different endocytosis inhibitors, some differences were noted as well, likely related to the efficiency of the cross-linking process and the sulfhydryl-reactive properties of PAO, respectively. The present results are the first to indicate regulation of oligomerization of an SLC6 transporter, the DAT, by substrates that act at DAT. In addition, the present study opens up the possibility of an important linkage between between oligomerization of DAT and endocytic or other modulatory mechanisms impacting surface DAT. PMID:18088380

  19. Ethics of Preclinical Dopamine Transporter Imaging.

    PubMed

    Cochrane, Thomas I

    2016-08-01

    While dopamine transporter single-photon emission computed tomography (DAT-SPECT) imaging is sensitive and specific when performed in patients with signs or symptoms of parkinsonism, its predictive value is uncertain in healthy subjects, even with patients who have first-degree relatives affected by Parkinson disease. In deciding whether to honor a patient's request for a DAT-SPECT, neurologists must balance a patient's autonomy rights with beneficence and nonmaleficence and also consider the distributive justice implications of ordering the test. Generally speaking, the benefits of a DAT-SPECT will be too small to justify its use in an asymptomatic patient concerned about developing Parkinson disease. PMID:27495208

  20. Ceramide-induced alterations in dopamine transporter function.

    PubMed

    Riddle, Evan L; Rau, Kristi S; Topham, Matthew K; Hanson, Glen R; Fleckenstein, Annette E

    2003-01-01

    The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate. PMID:12498904

  1. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  2. Dopamine Transporters, D2 Receptors, and Dopamine Release in Generalized Social Anxiety Disorder

    PubMed Central

    Schneier, Franklin R.; Abi-Dargham, Anissa; Martinez, Diana; Slifstein, Mark; Hwang, Dah-Ren; Liebowitz, Michael R.; Laruelle, Marc

    2009-01-01

    Background Dopamine D2 receptor and dopamine transporter availability in the striatum have each been reported abnormal in generalized social anxiety disorder (GSAD) in studies using single photon computerized tomography (SPECT). D2 receptors and dopamine transporters have not previously been studied within the same GSAD subjects, however, and prior GSAD studies have not assessed dopamine release or subdivided striatum into functional subregions. Methods Unmedicated adults with GSAD (N=17) and matched healthy comparison subjects (HC, N=13) participated in this study. Of these, 15 GSAD and 13 HC subjects completed baseline assessment of D2 receptor availability using positron emission tomography (PET) with the radiotracer [11C] raclopride. Twelve GSAD and 13 HC subjects completed a repeat scan after intravenous administration of D-amphetamine, to study dopamine release. Twelve of the GSAD subjects and 10 of the HC subjects also completed SPECT with the radiotracer [123I] methyl 3ß-(4-iodophenyl) tropane-2ß-carboxylate ([123I] ß-CIT) to assess dopamine transporter availability. Results GSAD and HC groups did not differ significantly in striatal dopamine transporter availability, overall striatal or striatal subregion D2 receptor availability at baseline, or change in D2 receptor availability after D-amphetamine. Receptor availability and change after D-amphetamine were not significantly associated with severity of social anxiety or trait detachment. Conclusions These findings do not replicate previous findings of altered striatal dopamine transporter and D2 receptor availability in GSAD subjects assessed with SPECT. The differences from results of prior studies may be due to differences in imaging methods or characteristics of samples. PMID:19180583

  3. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter

    PubMed Central

    Verma, Vivek

    2015-01-01

    The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today’s ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today’s work and tomorrow’s therapies. PMID:26598579

  4. Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    PubMed Central

    Zhang, Xiaowei; Bearer, Elaine L.; Boulat, Benoit; Hall, F. Scott; Uhl, George R.; Jacobs, Russell E.

    2010-01-01

    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn2+ transport into more posterior midbrain nuclei and contralateral mesolimbic structures at

  5. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  6. Differential regional effects of methamphetamine on dopamine transport.

    PubMed

    Chu, Pei-Wen; Seferian, Kristi S; Birdsall, Elisabeth; Truong, Jannine G; Riordan, James A; Metcalf, Cameron S; Hanson, Glen R; Fleckenstein, Annette E

    2008-08-20

    Multiple high-dose methamphetamine administrations cause long-lasting (>1 week) deficits in striatal dopaminergic neuronal function. This stimulant likewise causes rapid (within 1 h) and persistent (at least 48 h) decreases in activities of striatal: 1) dopamine transporters, as assessed in synaptosomes; and 2) vesicular monoamine transporter -2 (VMAT-2), as assessed in a non-membrane-associated (referred to herein as cytoplasmic) vesicular subcellular fraction. Importantly, not all brain areas are vulnerable to methamphetamine-induced long-lasting deficits. Similarly, the present study indicates that methamphetamine exerts differential acute effects on monoaminergic transporters according to brain region. In particular, results revealed that in the nucleus accumbens, methamphetamine rapidly, but reversibly (within 24 h), decreased plasmalemmal dopamine transporter function, without effect on plasmalemmal dopamine transporter immunoreactivity. Methamphetamine also rapidly and reversibly (within 48 h) decreased cytoplasmic VMAT-2 function in this region, with relatively little effect on cytoplasmic VMAT-2 immunoreactivity. In contrast, methamphetamine did not alter either dopamine transporter or VMAT-2 activity in the hypothalamus. Noteworthy, the nucleus accumbens and hypothalamus did not display the persistent long-lasting striatal dopamine depletions caused by the stimulant. Taken together, these data suggest that deficits in plasmalemmal and vesicular monoamine transporter activity lasting greater than 24-48 h may be linked to the long-lasting dopaminergic deficits caused by methamphetamine and appear to be region specific. PMID:18599036

  7. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. PMID

  8. Dopamine transport sites selectively labeled by a novel photoaffinity probe: 125I-DEEP

    SciTech Connect

    Grigoriadis, D.E.; Wilson, A.A.; Lew, R.; Sharkey, J.S.; Kuhar, M.J. )

    1989-08-01

    The dopamine transporter was labeled using a photosensitive compound related to GBR-12909, {sup 125}I-1-(2-(diphenylmethoxy)ethyl)-4-(2- (4-azido-3-iodophenyl)ethyl)piperazine ({sup 125}I-DEEP). {sup 125}I-DEEP bound reversibly and with high affinity to the dopamine transport protein in the absence of light and could be covalently attached to the protein following exposure to UV light. In rat striatal homogenates, {sup 125}I-DEEP was found to incorporate covalently into a protein with apparent molecular weight of 58,000 Da. The properties of this binding protein were characteristic of the dopamine transporter since covalent attachment could be inhibited by dopamine-uptake blockers with the proper pharmacological rank order of potencies. Covalent binding was also inhibited in a stereospecific manner by (+) and (-) cocaine, as well as other cocaine analogs. The protein was not found in the cerebellum. The dopamine transporter appears to exist in a glycosylated form since photoaffinity-labeled transport sites could adsorb to wheat germ-agglutinin and could be specifically eluted from the column by beta-N-acetylglucosamine.

  9. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney

    PubMed Central

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-01-01

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H+/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [3H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na+ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [3H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [3H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na+ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity. PMID:27483254

  10. Oxygen radicals diminish dopamine transporter function in rat striatum.

    PubMed

    Fleckenstein, A E; Metzger, R R; Beyeler, M L; Gibb, J W; Hanson, G R

    1997-09-01

    Incubation of striatal synaptosomes with the oxygen radical generating enzyme, xanthine oxidase, decreased [3H]dopamine uptake: an effect attributable to a decreased Vmax. Concurrent incubation with the superoxide radical scavenger, superoxide dismutase, abolished the xanthine oxidase-induced decrease. These results indicate that, like methamphetamine administration in vivo, reactive oxygen species diminish dopamine transporter function in vitro. The significance of these findings to mechanisms responsible for effects of methamphetamine is discussed. PMID:9346337

  11. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters.

    PubMed

    Gatley, S J; Pan, D; Chen, R; Chaturvedi, G; Ding, Y S

    1996-01-01

    We have synthesized several derivative of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET > 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of o-bromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2=0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes. PMID:8786705

  12. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  13. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  14. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    SciTech Connect

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of

  15. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGESBeta

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  16. Dopamine Transporter Genotype Predicts Attentional Asymmetry in Healthy Adults

    ERIC Educational Resources Information Center

    Newman, Daniel P.; O'Connell, Redmond G.; Nathan, Pradeep J.; Bellgrove, Mark A.

    2012-01-01

    A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here…

  17. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  18. Association of attention-deficit disorder and the dopamine transporter gene

    SciTech Connect

    Cook, E.H. Jr.; Stein, M.A.; Krasowski, M.D.; Cox, N.J.; Olkon, D.M.; Kieffer, J.E.; Leventhal, B.L.

    1995-04-01

    Attention-deficit hyperactivity disorder (ADHD) has been shown to be familial and heritable, in previous studies. As with most psychiatric disorders, examination of pedigrees has not revealed a consistent Mendelian mode of transmission. The response of ADHD patients to medications that inhibit the dopamine transporter, including methylphenidate, amphetamine, pemoline, and bupropion, led us to consider the dopamine transporter as a primary candidate gene for ADHD. To avoid effects of population stratification and to avoid the problem of classification of relatives with other psychiatric disorders as affected or unaffected, we used the haplotype-based haplotype relative risk (HHRR) method to test for association between a VNTR polymorphism at the dopamine transporter locus (DAT1) and DSM-III-R-diagnosed ADHD (N = 49) and undifferentiated attention-deficit disorder (UADD) (N = 8) in trios composed of father, mother, and affected offspring. HHRR analysis revealed significant association between ADHS/UADD and the 480-bp DAT1 allele (X{sup 2} 7.51, 1 df, P = .006). When cases of UADD were dropped from the analysis, similar results were found (X{sup 2} 7.29, 1 df, P = .007). If these findings are replicated, molecular analysis of the dopamine transporter gene may identify mutations that increase susceptibility to ADHD/UADD. Biochemical analysis of such mutations may lead to development of more effective therapeutic interventions. 36 refs., 4 tabs.

  19. Tuberoinfundibular transport of intrahypothalamic-administered dopamine in normo- and hypertensive rats

    SciTech Connect

    Sim, M.K.

    1988-01-01

    The dopamine transport system in the tuberoinfundibular tract of the spontaneously hypertensive (SHR), Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats was investigated. The results show that the rate of dopamine transport in this tract is strain-specific. SD rats transported twice as much dopamine (in 30 minutes) as WKY and SHR. The dopamine transport system in the SHR, being at par with that of the WKY, remained intact. These findings suggest that hypertension and the alleged reduced central dopaminergic activity in the SHR is not related to the transport of dopamine in the tuberoinfundibular tract.

  20. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  1. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  2. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease. PMID:25447236

  3. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney.

    PubMed

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-01-01

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H⁺/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [³H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na⁺ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [³H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [³H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na⁺ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity. PMID:27483254

  4. N-8-Substituted benztropinamine analogs as selective dopamine transporter ligands.

    PubMed

    Grundt, Peter; Kopajtic, Theresa A; Katz, Jonathan L; Newman, Amy Hauck

    2005-12-15

    A series of N-8-substituted benztropinamines was synthesized and evaluated for binding at the dopamine (DAT), serotonin (SERT), norepinephrine (NET) transporters, and muscarinic M1 receptors. In general, the isosteric replacement of the C-3 benzhydrol ether of benztropine by a benzhydryl amino group was well tolerated at the DAT. However, for certain N-8 substituted derivatives, selectivity over muscarinic M1 receptor affinity was reduced. PMID:16213721

  5. Cocaine induction of dopamine transporter trafficking to the plasma membrane.

    PubMed

    Little, Karley Y; Elmer, Lawrence W; Zhong, Huailing; Scheys, Joshua O; Zhang, Lian

    2002-02-01

    Several previous human postmortem experiments have detected an increase in striatal [(3)H]WIN 35428 binding to the dopamine transporter (DAT) in chronic cocaine users. However, animal experiments have found considerable variability in DAT radioligand binding levels in brain after cocaine administration, perhaps caused by length and dose of treatment and type of radioligand used. The present experiments tested the hypothesis that [(3)H]WIN 35428 binding and [(3)H]dopamine uptake would be increased by exposure to cocaine through alterations in DAT cellular trafficking, rather than increased protein synthesis. Experiments were conducted in stably hDAT-transfected N2A cells and assessed the dose response and time course of cocaine effects on [(3)H]WIN 35428 binding to the DAT, [(3)H]dopamine uptake, measures of DAT protein and mRNA, as well as DAT subcellular location. Cocaine doses of 10(-6) M caused statistically significant increases in [(3)H]WIN 35428 binding and [(3)H]dopamine uptake after 12 and 3 h, respectively. Despite these increases in DAT function, there was no change in DAT total protein or mRNA. Immunofluorescence and biotinylation experiments indicated that cocaine treatment induced increases in plasma membrane DAT immunoreactivity and intracellular decreases. The present model system may further our understanding of regulatory alterations in DAT radioligand binding and function caused by cocaine exposure. PMID:11809869

  6. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    PubMed Central

    Hansen, Freja H.; Skjørringe, Tina; Yasmeen, Saiqa; Arends, Natascha V.; Sahai, Michelle A.; Erreger, Kevin; Andreassen, Thorvald F.; Holy, Marion; Hamilton, Peter J.; Neergheen, Viruna; Karlsborg, Merete; Newman, Amy H.; Pope, Simon; Heales, Simon J.R.; Friberg, Lars; Law, Ian; Pinborg, Lars H.; Sitte, Harald H.; Loland, Claus; Shi, Lei; Weinstein, Harel; Galli, Aurelio; Hjermind, Lena E.; Møller, Lisbeth B.; Gether, Ulrik

    2014-01-01

    Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies. PMID:24911152

  7. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-01

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains. PMID:26442590

  8. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  9. Relationship between cocaine-induced subjective effects and dopamine transporter occupancy

    SciTech Connect

    Volkow, N.D.; Fischman, M.; Wang, G.J.

    1997-05-01

    The ability of cocaine to occupy the dopamine transporter has been linked to its reinforcing properties. However, such a relationship has not been demonstrated in humans. Methods: Positron Emission Tomography and [C-11]cocaine were used to estimate dopamine transporter occupancies after different doses of cocaine in 18 active cocaine abusers. The ratio of the distribution volume of [C-11]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd +1 and is insensitive to changes in cerebral blood flow, was our measure of dopamine transporter availability. In parallel subjective effects were measured to assess the relationship between dopamine transporter occupancy and cocaines behavioral effects. Intravenous cocaine produced a significant dose,-dependent blockade of dopamine transporters: 73 % for 0.6 mg/kg; 601/6 for 0.3 mg/kg; 48 % for 0.1 mg/kg iv and 40 % for 0.05 mg/kg. In addition, dopamine transporter occupancies were significantly correlated with cocaine plasma concentration (r = 0.55 p < 0.001). Cocaine also produced dose-dependent increases in self-reported ratings of {open_quotes}high{close_quotes} which were significantly correlated with the levels of dopamine transporter blockade. Discussion: These results provide the first documentation in humans that dopamine transporter occupancy is associated with cocaine induced subjective effects. They also suggest that dopamine transporter occupancies equal to or greater than 60% are required to produce significant effects on ratings of {open_quotes}high{close_quotes}.

  10. Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers.

    PubMed

    Chai, Dongliang; Xie, Zhimin; Wang, Youshan; Liu, Li; Yum, Young-Jin

    2014-10-22

    Dopamine, as a universal material for surface treatment, can effectively improve the surface performance of aramid fibers. However, directly processing the surface of aramid fibers using dopamine currently incurs a high cost. To seek dopamine substitutes, one must first explore the adhesion mechanism responsible for binding the dopamine to the surface of the fiber. In this study, we construct an all-atomic molecular dynamics model of an aramid fiber before and after surface modification using dopamine. A force field based on condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) is used. Using it, we analyze the surface adhesion mechanism of polydopamines aggregated by 21 kinds of molecular structures typically found on the surface of aramid fibers. The results show that a clear and smooth interface is formed between the polydopamine nanofilm layer and the surface of the aramid fiber. The high atomic density of the polydopamine in the small interface region is found to be conducive to noncovalent bonds of polydopamines with the surface of the aramid fiber. In addition, we investigate the works of adhesion of the 21 molecular structures typically found on the surface of aramid fibers. The results suggest that the work of adhesion of 5,6-indolequinone is the highest, followed by annular eumelanin molecules with annular planar structure. Straight-chain shaped dimers proved to be the molecules with the highest adhesion ability of the dihydroxyindole chain oligomers. Therefore, there is reason to suppose that more molecular structures (as above) can be formed by processing the surface of aramid fibers using dopamine by controlling the processing conditions. These molecular structures help improve the adhesion ability of the dopamine on the surface of the aramid fiber. Additionally, if these polydopamine molecules with high adhesion ability can be synthesized on a large scale, then new surface-processing materials are possible. PMID

  11. Nicotine increases dopamine transporter function in rat striatum through a trafficking-independent mechanism

    PubMed Central

    Middleton, Lisa S.; Apparsundaram, Subbu; King-Pospisil, Kelley A.; Dwoskin, Linda P.

    2007-01-01

    In previous in vivo voltammetry studies, acute nicotine administration increased striatal dopamine clearance. The current study aimed to determine whether nicotine also increases [3H]dopamine uptake across the time course of the previous voltammetry studies and whether dopamine transporter trafficking to the cell surface mediates the nicotine-induced augmentation of dopamine clearance in striatum. Rats were administered nicotine (0.32 mg/kg, s.c.); striatal synaptosomes were obtained 5, 10, 40 or 60 min later. Nicotine increased (25%) the Vmax of [3H]dopamine uptake at 10 and 40 min. To determine whether the increase in Vmax was due to an increase in dopamine transporter density, [3H]GBR 12935 (1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) binding was performed using rat striatal membranes; no differences were found between nicotine and saline control groups at 5, 10 or 40 min post-injection, indicating that nicotine did not increase striatal dopamine transporter density; however, [3H]GBR 12935 binding assays determine both cell surface and intracellular dopamine transporter. Changes in cellular dopamine transporter localization in striatum were determined using biotinylation and subfractionation approaches; no differences between nicotine and saline control groups were observed at 10 and 40 min post-injection. These results suggest that the nicotine-induced increase in dopamine uptake and clearance in striatum may occur via a trafficking-independent mechanism. PMID:17141211

  12. SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter.

    PubMed

    Stouffer, Melissa A; Ali, Solav; Reith, Maarten E A; Patel, Jyoti C; Sarti, Federica; Carr, Kenneth D; Rice, Margaret E

    2011-09-01

    Dopamine (DA) is an important transmitter in both motor and limbic pathways. We sought to investigate the role of D(1)-receptor activation in axonal DA release regulation in dorsal striatum using a D(1)-receptor antagonist, SKF-83566. Evoked DA release was monitored in rat striatal slices using fast-scan cyclic voltammetry. SKF-83566 caused a concentration-dependent increase in peak single-pulse evoked extracellular DA concentration, with a maximum increase of ∼ 65% in 5 μM SKF-83566. This was accompanied by a concentration-dependent increase in extracellular DA concentration clearance time. Both effects were occluded by nomifensine (1 μM), a dopamine transporter (DAT) inhibitor, suggesting that SKF-83566 acted via the DAT. We tested this by examining [(3)H]DA uptake into LLc-PK cells expressing rat DAT, and confirmed that SKF-83566 is a competitive DAT inhibitor with an IC(50) of 5.7 μM. Binding studies with [(3)H]CFT, a cocaine analog, showed even more potent action of SKF-83566 at the DAT cocaine binding site (IC(50) = 0.51 μM). Thus, data obtained using SKF-83566 as a D(1) DA-receptor antagonist may be confounded by concurrent DAT inhibition. More positively, however, SKF-83566 might be a candidate to attenuate cocaine effects in vivo because of the greater potency of this drug at the cocaine versus DA binding site of the DAT. PMID:21689106

  13. Restoration of the Dopamine Transporter through Cell Therapy Improves Dyskinesia in a Rat Model of Parkinson’s Disease

    PubMed Central

    Tomas, D.; Stanic, D.; Chua, H. K.; White, K.; Boon, W. C.; Horne, M.

    2016-01-01

    The dyskinesia of Parkinson's Disease is most likely due to excess levels of dopamine in the striatum. The mechanism may be due to aberrant synthesis but also, a deficiency or absence of the Dopamine Transporter. In this study we have examined the proposition that reinstating Dopamine Transporter expression in the striatum would reduce dyskinesia. We transplanted c17.2 cells that stably expressed the Dopamine Transporter into dyskinetic rats. There was a reduction in dyskinesia in rats that received grafts expressing the Dopamine Transporter. Strategies designed to increase Dopamine Transporter in the striatum may be useful in treating the dyskinesia associated with human Parkinson's Disease. PMID:27077649

  14. Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection

    PubMed Central

    Yorgason, Jordan T.; Jones, Sara R.; España, Rodrigo A.

    2011-01-01

    Extensive evidence suggests that the reinforcing effects of cocaine involve inhibition of dopamine transporters (DAT) and subsequent increases in dopamine (DA) levels in the striatum. We have previously reported that cocaine inhibits the DAT within 4–5 sec of intravenous injection, matching the temporal profile of the behavioral and subjective effects of cocaine. Intravenous injection of GBR-12909, a high affinity, long-acting DAT inhibitor, also inhibits DA uptake within 5 sec. Given that high affinity, long-acting drugs are considered to have relatively low abuse potential, we found it intriguing that GBR-12909 had an onset profile similar to that of cocaine. To further explore the onset kinetics of both low and high affinity DAT inhibitors, we examined the effects of intravenous cocaine (1.5 mg/kg), methylphenidate (1.5 mg/kg), nomifensine (1.5 mg/kg), GBR-12909 (1.5 mg/kg), PTT (0.5 mg/kg), and WF23 (0.5 mg/kg) on electrically-evoked DA release and uptake in the nucleus accumbens core. Results indicate that all of the DAT inhibitors significantly inhibited DA uptake within 5 sec of injection. However, the timing of peak uptake inhibition varied greatly between the low and high affinity uptake inhibitors. Uptake inhibition following cocaine, methylphenidate, and nomifensine peaked 30 sec following injection. In contrast, peak effects for GBR-12909, PTT, and WF23 occurred between 20 and 60 min following injection. These observations suggest that the initial onset for intravenous DAT inhibitors is extremely rapid and does not appear to be dictated by a drug’s affinity. PMID:21402130

  15. Molecular Umbrella Transport

    PubMed Central

    Mehiri, Mohamed; Chen, Wen-Hua; Janout, Vaclav; Regen, Steven L.

    2009-01-01

    The ability of a series of molecular umbrellas, derived from cholic acid, L-lysine, spermidine and Cascade Blue, to cross fluid liposomal membranes made from 1-palmitoyl-2-oleyol-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) (95/5, mol/mol) has been determined. In sharp contrast to the clasic “size/lipophilicity” rule of membrane transport, those molecular umbrellas that were larger in size and less lipophilic crossed these liposomal membranes more readily. The likely origin for this unusual behavior is briefly discussed. PMID:19140686

  16. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from

  17. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  18. An Artificial Molecular Transporter

    PubMed Central

    Schäfer, Christian; Ragazzon, Giulio; Colasson, Benoit; La Rosa, Marcello; Silvi, Serena

    2015-01-01

    Abstract The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small‐molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid–base controlled molecular shuttle, whose ring component bears a tether ending with a nitrile group. The latter can be coordinated to a ruthenium complex that acts as the load, and dissociated upon irradiation with visible light. The cargo loading/unloading and ring transfer/return processes are reversible and can be controlled independently. The robust coordination bond ensures that the cargo remains attached to the device while the transport takes place. PMID:27308223

  19. A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes.

    PubMed

    Sase, Ajinkya; Aher, Yogesh D; Saroja, Sivaprakasam R; Ganesan, Minu Karthika; Sase, Sunetra; Holy, Marion; Höger, Harald; Bakulev, Vasiliy; Ecker, Gerhard F; Langer, Thierry; Sitte, Harald H; Leban, Johann; Lubec, Gert

    2016-03-01

    A series of compounds have been reported to enhance memory via the DA system and herein a heterocyclic compound was tested for working memory (WM) enhancement. 2-((benzhydrylsulfinyl)methyl)thiazole (CE-103) was synthesized in a six-step synthesis. Binding of CE-103 to the dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters and dopamine reuptake inhibition was tested as well as blood brain permeation and a screen for GPCR targets. 60 male Sprague Dawley rats were divided into six groups: CE-103 treated 1-10 mg/kg body weight, trained (TDI) and yoked (YDI) and vehicle treated, trained (TVI) and yoked (YVI) rats. Daily single intraperitoneal injections for a period of 10 days were administered and rats were tested in a radial arm maze (RAM). Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT) and complexes containing the D1-3 dopamine receptor subunits were determined. CE-103 was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 14.73 μM). From day eight the compound was decreasing WM errors in the RAM significantly at both doses tested as compared to the vehicle controls. In the trained CE-103-treated group levels of the complex containing the phosphorylated dopamine transporter (pDAT) as well as D1R were decreased while levels of complexes containing D2R and D3R were significantly increased. CE-103 was shown to enhance spatial WM and DA reuptake inhibition with subsequent modulation of D1-3 receptors is proposed as a possible mechanism of action. PMID:26407764

  20. Living without DAT: Loss and compensation of the dopamine transporter gene in sauropsids (birds and reptiles)

    PubMed Central

    Lovell, P. V.; Kasimi, B.; Carleton, J.; Velho, T. A.; Mello, C. V.

    2015-01-01

    The dopamine transporter (DAT) is a major regulator of synaptic dopamine (DA) availability. It plays key roles in motor control and motor learning, memory formation, and reward-seeking behavior, is a major target of cocaine and methamphetamines, and has been assumed to be conserved among vertebrates. We have found, however, that birds, crocodiles, and lizards lack the DAT gene. We also found that the unprecedented loss of this important gene is compensated for by the expression of the noradrenaline transporter (NAT) gene, and not the serotonin transporter genes, in dopaminergic cells, which explains the peculiar pharmacology of the DA reuptake activity previously noted in bird striatum. This unexpected pattern contrasts with that of ancestral vertebrates (e.g. fish) and mammals, where the NAT gene is selectively expressed in noradrenergic cells. DA circuits in birds/reptiles and mammals thus operate with an analogous reuptake mechanism exerted by different genes, bringing new insights into gene expression regulation in dopaminergic cells and the evolution of a key molecular player in reward and addiction pathways. PMID:26364979

  1. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  2. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.

    PubMed

    Castro-Hernández, Javier; Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; Moratalla, Rosario; Millan, Mark J; González-Hernández, Tomás

    2015-02-01

    The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists. PMID:25511804

  3. Neurotensin effect on dopamine release and calcium transport in rat striatum: interactions with diphenylalkylamine calcium antagonists.

    PubMed

    Battaini, F; Govoni, S; Di Giovine, S; Trabucchi, M

    1986-03-01

    The release of dopamine was investigated in rat striatal slices exposed in vitro to neurotensin. This peptide increased basal and K+-evoked dopamine release. Moreover neurotensin antagonized the flunarizine-induced inhibition of K+-stimulated dopamine release. The K+-evoked 45Ca2+ accumulation was also inhibited by flunarizine. This effect was antagonized by neurotensin. The results suggest that dopamine release in rat striatum is regulated by different molecular events also of peptidergic nature having as possible mechanism of action an influence on calcium ion movements. PMID:3713871

  4. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  5. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila.

    PubMed

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  6. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  7. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters.

    PubMed

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S S; Wainer, Irving W; Cheer, Joseph F; Frost, Douglas O; Huang, Xi-Ping; Gould, Todd D

    2016-10-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513

  8. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  9. 5-Hydroxytryptamine and dopamine transport by rat and human blood platelets

    PubMed Central

    Gordon, J.L.; Olverman, H.J.

    1978-01-01

    1 Uptake of 5-hydroxytryptamine (5-HT) by rat platelets in plasma was very rapid and diffusion did not contribute significantly at substrate concentrations that did not saturate the active transport. 2 Under conditions which allowed measurement of initial rates of uptake, kinetic analysis revealed a high affinity uptake mechanism for 5-HT (Km = 0.7 μM). 3 Uptake of dopamine was relatively slow and involved a lower affinity (Km = 70 μM) active transport process. Diffusion contributed significantly at concentrations that did not saturate the active transport. 4 5-HT competitively inhibited uptake of dopamine, and vice versa; Ki values for both amines were similar to their respective Km values for uptake. 5 Chlorimipramine, desmethylimipramine and benztropine were tested as uptake inhibitors. Each was equipotent against 5-HT and dopamine, although the absolute potency of the drugs varied greatly. Chlorimipramine was the most potent (Ki## 100 nM), and kinetic analysis revealed that the inhibition was competitive against both 5-HT and dopamine. 6 Similar results were obtained in studies with human platelets: Km values for 5-HT and dopamine were about 1 μM and 100 μM respectively. Activity profiles of inhibitors were also similar: each compound tested was equipotent against 5-HT and dopamine, and the two amines each competitively inhibited uptake of the other. 7 We conclude that dopamine is actively transported by platelets via the 5-HT uptake mechanism, but with a much lower affinity. There is no high-affinity dopamine-specific mechanism corresponding to that in the corpus striatum. Consequently although platelets may be valid models of transport in 5-hydroxytryptaminergic neurones, they should not be regarded as models for the dopamine transport mechanism found in dopaminergic neurones. PMID:623937

  10. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    ERIC Educational Resources Information Center

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman

    2008-01-01

    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  11. Estrogen mediated inhibition of dopamine transport in the striatum: regulation by G alpha i/o.

    PubMed

    Thompson, Tina L; Certain, Matthew E

    2005-03-28

    In the current study, the interaction between estrogen priming and dopamine D2 receptor activation on dopamine uptake in the striatum of ovariectomized female rats was investigated. Basal ADP-[(32)P(i)]ribosylation of G(i/o) was examined in synaptosomal membranes prepared from ovariectomized, estrogen primed or N-p-(isothiocyanatophenethyl) spiperone (NIPS) treated rats. [(32)P(i)]-incorporation was significantly increased (141%) in tissue from NIPS treated animals but attenuated (57%) in tissue from estrogen primed animals. Dopamine uptake kinetics were measured in vivo following manipulation of the heterotrimeric G-protein by pertussis toxin (0.5 microg, 48 h). Pertussis toxin significantly inhibited dopamine uptake at all concentrations of dopamine examined. Co-treatment with estrogen and pertussis toxin resulted in a further attenuation of dopamine transport at high but not low dopamine concentrations. These data are consistent with an estrogen mediated alteration of G-protein activity and support the hypothesis that estrogen may alter transporter activity through a modulation of dopamine D2 autoreceptor/G alpha(i/o) protein coupling. PMID:15792779

  12. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporterɸ

    PubMed Central

    Reith, Maarten E.A.; Blough, Bruce E.; Hong, Weimin C.; Jones, Kymry T.; Schmitt, Kyle C.; Baumann, Michael H.; Partilla, John S.; Rothman, Richard B.; Katz, Jonathan L.

    2014-01-01

    Background Treatment of Stimulant-Use Disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. Methods This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. Results Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. Conclusions Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse. PMID:25548026

  13. Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine.

    PubMed

    Izenwasser, S; Coy, A E; Ladenheim, B; Loeloff, R J; Cadet, J L; French, D

    1999-06-01

    Continuous infusion of cocaine produces partial behavioral tolerance to its locomotor activating effects, while daily injections produce sensitization. Methylphenidate binds with a similar affinity to cocaine at the dopamine transporter, but has a much lower affinity for the serotonin transporter than does cocaine. This study was done to compare the effects of chronic methylphenidate with chronic cocaine. The pattern of locomotor activity over a 7 day treatment period was significantly different from cocaine. Methylphenidate elevated activity on each day, compared to saline, yet neither tolerance to a continuous infusion of the drug, nor sensitization to repeated daily injections was produced. We have previously shown that neither of these treatments with cocaine produces significant alterations in dopamine transporter density 1 day after the end of treatment. In contrast, methylphenidate injections significantly decreased dopamine transporters in rostral caudate putamen, with no change in nucleus accumbens. Continuous infusion of methylphenidate had no effect on dopamine transporters in either brain region. These findings provide further evidence that different classes of dopamine uptake inhibitors may interact with the dopamine transporter in qualitatively different manners. Furthermore, it is possible that the inhibition of serotonin uptake by cocaine may contribute to the adaptations in behavioral activity that are seen during chronic treatment. PMID:10414438

  14. Association between amygdala reactivity and a dopamine transporter gene polymorphism.

    PubMed

    Bergman, O; Åhs, F; Furmark, T; Appel, L; Linnman, C; Faria, V; Bani, M; Pich, E M; Bettica, P; Henningsson, S; Manuck, S B; Ferrell, R E; Nikolova, Y S; Hariri, A R; Fredrikson, M; Westberg, L; Eriksson, E

    2014-01-01

    Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3' untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [(15)O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity. PMID:25093598

  15. Dopamine transporter ligands: recent developments and therapeutic potential.

    PubMed

    Runyon, Scott P; Carroll, F Ivy

    2006-01-01

    The dopamine transporter (DAT) is a target for the development of pharmacotherapies for a number of central disorders including Parkinson's disease, Alzheimer's disease, schizophrenia, Tourette's syndrome, Lesch-Nyhan disease, attention deficit hyperactivity disorder (ADHD), obesity, depression, and stimulant abuse as well as normal aging. Considerable effort continues to be devoted to the development of new ligands for the DAT. In this review, we present some of the more interesting ligands developed during the last few years from the 3-phenytropane, 1,4-dialkylpiperazine, phenylpiperidine, and benztropine classes of DAT uptake inhibitors as well as a few less studied miscellaneous DAT uptake inhibitors. Studies related to the therapeutic potential of some of the more studied compounds are presented. A few of the compounds have been studied as pharmacotherapies for Parkinson's disease, ADHD, and obesity. However, most of the drug discovery studies have been directed toward pharmacotherapies for stimulant abuse (mainly cocaine). A number of the compounds showed decreased cocaine maintained responding in rhesus monkeys trained to self-administer cocaine. One compound, GBR 12,909, was evaluated in a Phase 1 clinical trial. PMID:17017960

  16. Association between amygdala reactivity and a dopamine transporter gene polymorphism

    PubMed Central

    Bergman, O; Åhs, F; Furmark, T; Appel, L; Linnman, C; Faria, V; Bani, M; Pich, E M; Bettica, P; Henningsson, S; Manuck, S B; Ferrell, R E; Nikolova, Y S; Hariri, A R; Fredrikson, M; Westberg, L; Eriksson, E

    2014-01-01

    Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3′ untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [15O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity. PMID:25093598

  17. Photoinduced diffusion molecular transport

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Dekhtyar, Marina L.; Lin, Sheng Hsien; Trakhtenberg, Leonid I.

    2016-08-01

    We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

  18. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

    PubMed Central

    Lohr, Kelly M.; Bernstein, Alison I.; Stout, Kristen A.; Dunn, Amy R.; Lazo, Carlos R.; Alter, Shawn P.; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J.; Yi, Hong; Vecchio, Laura M.; Goldstein, David S.; Guillot, Thomas S.; Salahpour, Ali; Miller, Gary W.

    2014-01-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  19. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo.

    PubMed

    Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A; Dunn, Amy R; Lazo, Carlos R; Alter, Shawn P; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J; Yi, Hong; Vecchio, Laura M; Goldstein, David S; Guillot, Thomas S; Salahpour, Ali; Miller, Gary W

    2014-07-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  20. Dual Action of Zn2+ on the Transport Cycle of the Dopamine Transporter*

    PubMed Central

    Li, Yang; Hasenhuetl, Peter S.; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2015-01-01

    The dopamine transporter shapes dopaminergic neurotransmission by clearing extracellular dopamine and by replenishing vesicular stores. The dopamine transporter carries an endogenous binding site for Zn2+, but the nature of the Zn2+-dependent modulation has remained elusive: both, inhibition and stimulation of DAT have been reported. Here, we exploited the high time resolution of patch-clamp recordings to examine the effects of Zn2+ on the transport cycle of DAT: we recorded peak currents associated with substrate translocation and steady-state currents reflecting the forward transport mode of DAT. Zn2+ depressed the peak current but enhanced the steady-state current through DAT. The parsimonious explanation is preferential binding of Zn2+ to the outward facing conformation of DAT, which allows for an allosteric activation of DAT, in both, the forward transport mode and substrate exchange mode. We directly confirmed that Zn2+ dissociated more rapidly from the inward- than from the outward-facing state of DAT. Finally, we formulated a kinetic model for the action of Zn2+ on DAT that emulated all current experimental observations and accounted for all previous (in part contradictory) findings. Importantly, the model predicts that the intracellular Na+ concentration determines whether substrate uptake by DAT is stimulated or inhibited by Zn2+. This prediction was directly verified. The mechanistic framework provided by the current model is of relevance for the rational design of allosteric activators of DAT. These are of interest for treating de novo loss-of-function mutations of DAT associated with neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD). PMID:26504078

  1. Dopamine transporter availability in clinically normal aging is associated with individual differences in white matter integrity

    PubMed Central

    Rieckmann, Anna; Hedden, Trey; Younger, Alayna P.; Sperling, Reisa A.; Johnson, Keith A.; Buckner, Randy L.

    2016-01-01

    Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65–87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer’s disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. PMID:26542307

  2. Sensitized Nucleus Accumbens Dopamine Terminal Responses to Methylphenidate and Dopamine Transporter Releasers after Intermittent-Access Self-Administration

    PubMed Central

    Calipari, Erin S.; Jones, Sara R.

    2014-01-01

    Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5min access/30min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine’s effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration. PMID:24632529

  3. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration.

    PubMed

    Calipari, Erin S; Jones, Sara R

    2014-07-01

    Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration. PMID:24632529

  4. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic--A focus on analogues of benztropine and rimcazole.

    PubMed

    Newman, Amy Hauck; Kulkarni, Santosh

    2002-09-01

    In an attempt to discover a cocaine-abuse pharmacotherapeutic, extensive investigation has been directed toward elucidating the molecular mechanisms underlying the reinforcing effects of this psychostimulant drug. The results of these studies have been consistent with the inhibition of dopamine uptake, at the dopamine transporter (DAT), which results in a rapid and excessive accumulation of extracellular dopamine in the synapse as being the mechanism primarily responsible for the locomotor stimulant actions of cocaine. Nevertheless, investigation of the serotonin (SERT) and norepinephrine (NET) transporters, as well as other receptor systems, with which cocaine either directly or indirectly interacts, has suggested that the DAT is not solely responsible for the reinforcing effects of cocaine. In an attempt to further elucidate the roles of these systems in the reinforcing effects of cocaine, selective molecular probes, in the form of drug molecules, have been designed, synthesized, and characterized. Many of these compounds bind potently and selectively to the DAT, block dopamine reuptake, and are behaviorally cocaine-like in animal models of psychostimulant abuse. However, there have been exceptions noted in several classes of dopamine uptake inhibitors that demonstrate behavioral profiles that are distinctive from cocaine. Structure-activity relationships between chemically diverse dopamine uptake inhibitors have suggested that different binding interactions, at the molecular level on the DAT, as well as divergent actions at the other monoamine transporters may be related to the differing pharmacological actions of these compounds, in vivo. These studies suggest that novel dopamine uptake inhibitors, which are structurally and pharmacologically distinct from cocaine, may be developed as potential cocaine-abuse therapeutics. PMID:12210554

  5. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts.

    PubMed

    Kraemmer, Julia; Kovacs, Gabor G; Perju-Dumbrava, Laura; Pirker, Susanne; Traub-Weidinger, Tatiana; Pirker, Walter

    2014-12-01

    Dopamine transporter imaging is widely used for the differential diagnosis of parkinsonism. Only limited data are available on the relationship between striatal dopamine transporter binding and dopaminergic cell loss in the substantia nigra (SN). We analyzed postmortem SN cell counts in patients who had previously undergone dopamine transporter single-photon emission computed tomography (SPECT). Pathological diagnoses included Parkinson's disease (n = 1), dementia with Lewy bodies (n = 2), multiple system atrophy (n = 1), corticobasal degeneration (n = 2), atypical parkinsonism with multiple pathological conditions (n = 1), Alzheimer's disease (n = 1), and Creutzfeldt-Jakob disease (n = 1). [(12) (3) I]β-CIT SPECT had been performed in all subjects using a standardized protocol on the same triple-head gamma camera. The density of neuromelanin-containing and tyrosine hydroxylase-positive substantia nigra neurons/mm(2) was evaluated in paraffin-embedded tissue sections by morphometric methods. Mean disease duration at the time of dopamine transporter imaging was 2.3 years, and the mean interval from imaging to death was 29.3 months (range, 4-68 months). Visual analysis of dopamine transporter images showed reduced striatal uptake in all seven patients with neurodegenerative parkinsonism, but not in Alzheimer's and Creutzfeldt-Jakob disease cases. Averaged [(right+left)/2] striatal uptake was highly correlated with averaged SN cell counts (rs  = 0.98, P < 0.0005 for neuromelanin- and rs  = 0.96, P < 0.0005 for tyrosine hydroxylase-positive cells). Similar strong correlations were found in separate analyses for the right and left sides. Striatal dopamine transporter binding highly correlated with postmortem SN cell counts, confirming the validity of dopamine transporter imaging as an excellent in vivo marker of nigrostriatal dopaminergic degeneration. PMID:25048738

  6. Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo

    PubMed Central

    Hnasko, Thomas S.; Chuhma, Nao; Zhang, Hui; Goh, Germaine Y.; Sulzer, David; Palmiter, Richard D.; Rayport, Stephen; Edwards, Robert H.

    2010-01-01

    SUMMARY Dopamine neurons in the ventral tegmental area (VTA) play an important role in the motivational systems underlying drug addiction, and recent work has suggested that they also release the excitatory neurotransmitter glutamate. To assess a physiological role for glutamate corelease, we disrupted the expression of vesicular glutamate transporter 2 selectively in dopamine neurons. The conditional knockout abolishes glutamate release from midbrain dopamine neurons in culture and severely reduces their excitatory synaptic output in mesoaccumbens slices. Baseline motor behavior is not affected, but stimulation of locomotor activity by cocaine is impaired, apparently through a selective reduction of dopamine stores in the projection of VTA neurons to ventral striatum. Glutamate co-entry promotes monoamine storage by increasing the pH gradient that drives vesicular monoamine transport. Remarkably, low concentrations of glutamate acidify synaptic vesicles more slowly but to a greater extent than equimolar Cl−, indicating a distinct, presynaptic mechanism to regulate quantal size. PMID:20223200

  7. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  8. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  9. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter.

    PubMed

    Clarke, P B; Reuben, M

    1995-01-01

    release evoked by amphetamine 0.3 microM and MPP+ 10 flM, attenuated responses to MPTP 50 AM and did not affect responses to 12 mM K+. MK-801 100 microM evinced a similar profile but was less effective.7. MK-801 inhibited [3H]-dopamine uptake in striatal synaptosomes with an IC5o of 115 M.8. It is concluded that high concentrations of MK-801 inhibit the acute dopamine release evoked by MPTP and MPP+ in synaptosomes. This antagonism may occur, at least in part, through inhibition of the cell membrane dopamine transporter. MPTP and MPP+ also appear to interact with brain nicotinic cholinoceptors but the functional consequences of this interaction are not yet clear. PMID:7881731

  10. Electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.; Pederson, Mark R.

    2011-12-01

    At present, metal-molecular tunnel junctions are recognized as important active elements in molecular electronics. This gives a strong motivation to explore physical mechanisms controlling electron transport through molecules. In the last two decades, an unceasing progress in both experimental and theoretical studies of molecular conductance has been demonstrated. In the present work we give an overview of theoretical methods used to analyze the transport properties of metal-molecular junctions as well as some relevant experiments and applications. After a brief general description of the electron transport through molecules we introduce a Hamiltonian which can be used to analyze electron-electron, electron-phonon and spin-orbit interactions. Then we turn to description of the commonly used transport theory formalisms including the nonequilibrium Green’s functions based approach and the approach based on the “master” equations. We discuss the most important effects which could be manifested through molecules in electron transport phenomena such as Coulomb, spin and Frank-Condon blockades, Kondo peak in the molecular conductance, negative differential resistance and some others. Bearing in mind that first principles electronic structure calculations are recognized as the indispensable basis of the theory of electron transport through molecules, we briefly discuss the main equations and some relevant applications of the density functional theory which presently is often used to analyze important characteristics of molecules and molecular clusters. Finally, we discuss some kinds of nanoelectronic devices built using molecules and similar systems such as carbon nanotubes, various nanowires and quantum dots.

  11. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  12. The Roles of Dopamine Transport Inhibition and Dopamine Release Facilitation in Wake Enhancement and Rebound Hypersomnolence Induced by Dopaminergic Agents

    PubMed Central

    Gruner, John A.; Marcy, Val R.; Lin, Yin-Guo; Bozyczko-Coyne, Donna; Marino, Michael J.; Gasior, Maciej

    2009-01-01

    Study Objective: Rebound hypersomnolence (RHS: increased sleep following increased wake) is a limiting side-effect of many wake-promoting agents. In particular, RHS in the first few hours following wake appears to be associated with dopamine (DA)-releasing agents, e.g., amphetamine, but whether it can also be produced by DA transporter (DAT) inhibition alone is unknown. In these studies, DA-releasing and DAT-inhibiting agents and their interaction were systematically examined for their ability to increase wake and induce RHS. Design: Chronically implanted rats were evaluated in a blinded, pseudo-randomized design. Participants: 237 rats were used in these studies with 1 week between repeat tests. Interventions: Animals were habituated overnight and dosed the next day, 5 h after lights on, with test agents. Measurements and Results: Sleep/wake activity and RHS were evaluated using EEG/EMG recording up to 22 h post dosing. In vitro dopamine release was evaluated in rat synaptosomes. At doses that produced equal increases in wake, DA-releasing (amphetamine, methamphetamine, phentermine) and several DAT-inhibiting agents (cocaine, bupropion, and methylphenidate) produced RHS during the first few hours after the onset of sleep recovery. However, other DAT-inhibiting agents (mazindol, nomifensine, GBR-12909, and GBR-12935) did not produce RHS. Combination treatment with amphetamine and nomifensine produced waking activity greater than the sum of their individual activities alone while ameliorating the amphetamine-like RHS. In rat synaptosomes, nomifensine reduced the potency of amphetamine to induce DA release ∼270-fold, potentially explaining its action in ameliorating amphetamine-induced RHS. Conclusions: All DA releasing agents tested, and some DAT-inhibiting agents, produced RHS at equal wake-promoting doses. Thus amphetamine-like DA release appears sufficient for inducing RHS, but additional properties (pharmacologic and/or pharmacokinetic) evidently underlie RHS

  13. Axonal transport of muscarinic receptors in vesicles containing noradrenaline and dopamine-beta-hydroxylase.

    PubMed

    Laduron, P M

    1984-01-01

    Presynaptic muscarinic receptors labeled with [3H]dexetimide and noradrenaline in dog splenic nerves accumulated proximally to a ligature at the same rate of axonal transport. After fractionation by differential centrifugation, specific [3H]quinuclidinyl benzilate or [3H]dexetimide binding revealed a distribution profile similar to that of dopamine-beta-hydroxylase and noradrenaline. Subfractionation by density gradient centrifugation showed two peaks of muscarinic receptors; the peak of density 1.17 contained noradrenaline and dopamine-beta-hydroxylase whereas that of density 1.14 was devoid of noradrenaline. Therefore the foregoing experiments provide evidence that presynaptic muscarinic receptors are transported in sympathetic nerves in synaptic vesicles which are similar to those containing noradrenaline and dopamine-beta-hydroxylase. This suggests a possible coexistence of receptor and neurotransmitter in the same vesicle. PMID:6198205

  14. A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3.

    PubMed

    Saroja, Sivaprakasam R; Aher, Yogesh D; Kalaba, Predrag; Aher, Nilima Y; Zehl, Martin; Korz, Volker; Subramaniyan, Saraswathi; Miklosi, Andras G; Zanon, Lisa; Neuhaus, Winfried; Höger, Harald; Langer, Thierry; Urban, Ernst; Leban, Johann; Lubec, Gert

    2016-10-01

    A series of compounds targeting the dopamine transporter (DAT) haS been shown to improve memory performance most probably by re-uptake inhibition. Although specific DAT inhibitors are available, there is limited information about specificity, mechanism and in particular the effect on dopamine receptors. It was therefore the aim of the study to test the DAT inhibitor 4-(diphenyl-methanesulfinylmethyl)-2-methyl-thiazole (code: CE-111), synthetized in our laboratory for the specificity to target DAT, for the effects upon spatial memory and for induced dopamine receptor modulation. Re-uptake inhibition was tested for DAT (IC50=3.2μM), serotonin transporter, SERT (IC50=272291μM) and noradrenaline transporter, NET (IC50=174μM). Spatial memory was studied in the radial arm maze (RAM) in male Sprague-Dawley rats that were intraperitoneally injected with CE-111 (1 or 10mg/kg body weight). Performance in the RAM was improved using 1 and 10mg/kg body weight of CE-111. Training and treatment effects on presynaptic, postsynaptic and extrasynaptic D1 and D2- receptors and dopamine receptor containing complexes as well as on activated DAT were observed. CE-111 was crossing the blood-brain barrier comparable to modafinil and was identified as effective to improve memory performance in the RAM. Dopamine re-uptake inhibition along with modulations in dopamine receptors are proposed as potential underlying mechanisms. PMID:27288589

  15. A Conserved Salt Bridge between Transmembrane Segments 1 and 10 Constitutes an Extracellular Gate in the Dopamine Transporter*

    PubMed Central

    Pedersen, Anders V.; Andreassen, Thorvald F.; Loland, Claus J.

    2014-01-01

    Neurotransmitter transporters play an important role in termination of synaptic transmission by mediating reuptake of neurotransmitter, but the molecular processes behind translocation are still unclear. The crystal structures of the bacterial homologue, LeuT, provided valuable insight into the structural and dynamic requirements for substrate transport. These structures support the existence of gating domains controlling access to a central binding site. On the extracellular side, access is controlled by the “thin gate” formed by an interaction between Arg-30 and Asp-404. In the human dopamine transporter (DAT), the corresponding residues are Arg-85 and Asp-476. Here, we present results supporting the existence of a similar interaction in DAT. The DAT R85D mutant has a complete loss of function, but the additional insertion of an arginine in opposite position (R85D/D476R), causing a charge reversal, results in a rescue of binding sites for the cocaine analogue [3H]CFT. Also, the coordination of Zn2+ between introduced histidines (R85H/D476H) caused a ∼2.5-fold increase in [3H]CFT binding (Bmax). Importantly, Zn2+ also inhibited [3H]dopamine transport in R85H/D476H, suggesting that a dynamic interaction is required for the transport process. Furthermore, cysteine-reactive chemistry shows that mutation of the gating residues causes a higher proportion of transporters to reside in the outward facing conformation. Finally, we show that charge reversal of the corresponding residues (R104E/E493R) in the serotonin transporter also rescues [3H](S)-citalopram binding, suggesting a conserved feature. Taken together, these data suggest that the extracellular thin gate is present in monoamine transporters and that a dynamic interaction is required for substrate transport. PMID:25339174

  16. A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots

    SciTech Connect

    Kovtun, Oleg; Ross, Emily; Tomlinson, Ian; Rosenthal, Sandra

    2012-01-01

    Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs).We anticipate that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.

  17. Phase I Report: Technetium Radiotracers for the Dopamine Transporter. [September 1998 - March 1999

    SciTech Connect

    Baldwin, R.N.

    1999-03-17

    This project (a) demonstrated specific dopamine transporter (DAT) uptake in vivo and metabolic stability of a radiolabelled cycloplentadieny rhenium compound in rats and baboons, (b) showed that cyclopentadieny tricarbonyl rhenium and technetium compounds conjugated tropanel could be made by metal transfer with ferrocenes; and (c) explored new methods of synthesizing these compounds under mild conditions.

  18. Interaction of Dopamine Transporter (DAT1) Genotype and Maltreatment for ADHD: A Latent Class Analysis

    ERIC Educational Resources Information Center

    Li, James J.; Lee, Steve S.

    2012-01-01

    Background: Although the association of the dopamine transporter (DAT1) gene and attention-deficit/hyperactivity disorder (ADHD) has been widely studied, far less is known about its potential interaction with environmental risk factors. Given that maltreatment is a replicated risk factor for ADHD, we explored the interaction between DAT1 and…

  19. Molecular size of the canine and human brain D2 dopamine receptor as determined by radiation inactivation

    SciTech Connect

    Lilly, L.; Fraser, C.M.; Jung, C.Y.; Seeman, P.; Venter, J.C.

    1983-07-01

    Target-size analysis (radiation inactivation) has been utilized for determination of the molecular size of the striatal D2 dopamine receptor of both canine and human membranes. The dog and human receptors were found to have a molecular size of 123,000 daltons. The identity of molecular size values is consistent with available pharmacological and biochemical evidence supporting D2 dopamine receptor identity in canine and human tissues. These data suggest that the canine receptor may be a valid model for molecular and structural investigation of the human D2 dopamine receptor.

  20. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth.

    PubMed

    Gallant, Pamela; Malutan, Tabita; McLean, Heather; Verellen, LouAnn; Caveney, Stanley; Donly, Cam

    2003-02-01

    A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found. PMID:12581206

  1. Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes.

    PubMed

    Vaughan, R A; Huff, R A; Uhl, G R; Kuhar, M J

    1997-06-13

    Dopamine transporters (DATs) are members of a family of Na+- and Cl--dependent neurotransmitter transporters responsible for the rapid clearance of dopamine from synaptic clefts. The predicted primary sequence of DAT contains numerous consensus phosphorylation sites. In this report we demonstrate that DATs undergo endogenous phosphorylation in striatal synaptosomes that is regulated by activators of protein kinase C. Rat striatal synaptosomes were metabolically labeled with [32P]orthophosphate, and solubilized homogenates were subjected to immunoprecipitation with an antiserum specific for DAT. Basal phosphorylation occurred in the absence of exogenous treatments, and the phosphorylation level was rapidly increased when synaptosomes were treated with the phosphatase inhibitors okadaic acid or calyculin. Treatment of synaptosomes with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also increased the level of phosphate incorporation. This occurred within 10 min and was dosedependent between 0.1 and 1 microM PMA. DAT phosphorylation was also significantly increased by two other protein kinase C activators, (-)-indolactam V and 1-oleoyl-2-acetyl-sn-glycerol. The inactive phorbol ester 4alpha-phorbol 12,13-didecanoate at 10 microM was without effect, and PMA-induced phosphorylation was blocked by treatment of synaptosomes with the protein kinase C inhibitors staurosporine and bisindoylmaleimide. These results indicate that DATs undergo rapid in vivo phosphorylation in response to protein kinase C activation and that a robust mechanism exists in synaptosomes for DAT dephosphorylation. Dopamine transport activity in synaptosomes was reduced by all treatments that promoted DAT phosphorylation, with comparable dose, time, and inhibitor characteristics. The change in transport activity was produced by a reduction in Vmax with no significant effect on the Km for dopamine. These results suggest that synaptosomal dopamine transport activity is regulated by

  2. Intranasal Dopamine Reduces In Vivo [123I]FP-CIT Binding to Striatal Dopamine Transporter: Correlation with Behavioral Changes and Evidence for Pavlovian Conditioned Dopamine Response

    PubMed Central

    de Souza Silva, Maria A.; Mattern, Claudia; Decheva, Cvetana; Huston, Joseph P.; Sadile, Adolfo G.; Beu, Markus; Müller, H.-W.; Nikolaus, Susanne

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [123I]FP-CIT to the DAT should be decreased due to competition at the receptor. Methods: Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. Results: (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. Conclusions: The results: (a

  3. Synthesis, Pharmacological Evaluation and Molecular Modeling Studies of Triazole Containing Dopamine D3 Receptor Ligands

    PubMed Central

    Peng, Xin; Wang, Qi; Mishra, Yogesh; Xu, Jinbin; Reichert, David E.; Malik, Maninder; Taylor, Michelle; Luedtke, Robert R.; Mach, Robert H.

    2015-01-01

    A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay. Affinity at dopamine D4 and serotonin 5-HT1A receptors was also determined. In addition, information from previous molecular modeling studies of the binding of a panel of 163 structurally-related benzamide analogues at dopamine D2 and D3 receptors was applied to this series of compounds. The results of the modeling studies were consistent with our previous experimental data. More importantly, the modeling study results explained why the replacement of the amide linkage with the hetero-aromatic ring leads to a reduction in the affinity of these compounds at D3 receptors. PMID:25556097

  4. Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.

    PubMed

    Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T

    2015-09-15

    Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. PMID:26005123

  5. Assessment of the in vitro binding of JHW 007, a dopamine transport inhibitor that blocks the effects of cocaine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benztropine (BZT) and its analogues, like cocaine, bind to the dopamine transporter and block dopamine uptake. However, while BZT analogues bind the DAT with high affinity, they generally do not have cocaine-like behavioral effects. JHW 007 is a BZT analogue that displaces [3H]WIN 35,428 from the D...

  6. Altered dopamine transporter function and phosphorylation following chronic cocaine self-administration and extinction in rats.

    PubMed

    Ramamoorthy, Sammanda; Samuvel, Devadoss J; Balasubramaniam, Annamalai; See, Ronald E; Jayanthi, Lankupalle D

    2010-01-15

    Cocaine binds with the dopamine transporter (DAT), an effect that has been extensively implicated in its reinforcing effects. However, persisting adaptations in DAT regulation after cocaine self-administration have not been extensively investigated. Here, we determined the changes in molecular mechanisms of DAT regulation in the caudate-putamen (CPu) and nucleus accumbens (NAcc) of rats with a history of cocaine self-administration, followed by 3weeks of withdrawal under extinction conditions (i.e., no cocaine available). DA uptake was significantly higher in the CPu of cocaine-experienced animals as compared to saline-yoked controls. DAT V(max) was elevated in the CPu without changes in apparent affinity for DA. In spite of elevated CPu DAT activity, total and surface DAT density and DAT-PP2Ac (protein phosphatase 2A catalytic subunit) interaction remained unaltered, although p-Ser- DAT phosphorylation was elevated. In contrast to the CPu, there were no differences between cocaine and saline rats in the levels of DA uptake, DAT V(max) and K(m) values, total and surface DAT, p-Ser-DAT phosphorylation, or DAT-PP2Ac interactions in the NAcc. These results show that chronic cocaine self-administration leads to lasting, regionally specific alterations in striatal DA uptake and DAT-Ser phosphorylation. Such changes may be related to habitual patterns of cocaine-seeking observed during relapse. PMID:20035724

  7. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. PMID

  8. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation.

    PubMed

    Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio

    2012-01-01

    Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D(3) (hD(3)) receptor has been recently solved. Based on the hD(3) receptor crystal structure we generated dopamine D(2) and D(3) receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD(3) and hD(2L) receptors was differentiated by means of MD simulations and D(3) selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental K(i) was obtained for hD(3) and hD(2L) receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199

  9. Homology Modeling of Dopamine D2 and D3 Receptors: Molecular Dynamics Refinement and Docking Evaluation

    PubMed Central

    Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio

    2012-01-01

    Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199

  10. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  11. Development of the dopamine transporter selective RTI-336 as a pharmacotherapy for cocaine abuse.

    PubMed

    Carroll, F Ivy; Howard, James L; Howell, Leonard L; Fox, Barbara S; Kuhar, Michael J

    2006-01-01

    The discovery and preclinical development of selective dopamine reuptake inhibitors as potential pharmacotherapies for treating cocaine addiction are presented. The studies are based on the hypothesis that a dopamine reuptake inhibitor is expected to partially substitute for cocaine, thus decreasing cocaine self-administration and minimizing the craving for cocaine. This type of indirect agonist therapy has been highly effective for treating smoking addiction (nicotine replacement therapy) and heroin addiction (methadone). To be an effective pharmacotherapy for cocaine addiction, the potential drug must be safe, long-acting, and have minimal abuse potential. We have developed several 3-phenyltropane analogs that are potent dopamine uptake inhibitors, and some are selective for the dopamine transporter relative to the serotonin and norepinephrine transporters. In animal studies, these compounds substitute for cocaine, reduce the intake of cocaine in rats and rhesus monkeys trained to self-administer cocaine, and have demonstrated a slow onset and long duration of action and lack of sensitization. The 3-phenyltropane analogs were also tested in a rhesus monkey self-administration model to define their abuse potential relative to cocaine. Based on these studies, 3beta-(4-chlorophenyl)-2beta-[3-(4'-methylphenyl)isoxazol-5-yl]tropane (RTI-336) has been selected for preclinical development. PMID:16584128

  12. Nonclassical Pharmacology of the Dopamine Transporter: Atypical Inhibitors, Allosteric Modulators, and Partial Substrates

    PubMed Central

    Rothman, Richard B.; Reith, Maarten E. A.

    2013-01-01

    The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein–coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders. PMID:23568856

  13. Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated Dynamics of the N-Terminus

    PubMed Central

    2015-01-01

    We present the dynamic mechanism of concerted motions in a full-length molecular model of the human dopamine transporter (hDAT), a member of the neurotransmitter/sodium symporter (NSS) family, involved in state-to-state transitions underlying function. The findings result from an analysis of unbiased atomistic molecular dynamics simulation trajectories (totaling >14 μs) of the hDAT molecule immersed in lipid membrane environments with or without phosphatidylinositol 4,5-biphosphate (PIP2) lipids. The N-terminal region of hDAT (N-term) is shown to have an essential mechanistic role in correlated rearrangements of specific structural motifs relevant to state-to-state transitions in the hDAT. The mechanism involves PIP2-mediated electrostatic interactions between the N-term and the intracellular loops of the transporter molecule. Quantitative analyses of collective motions in the trajectories reveal that these interactions correlate with the inward-opening dynamics of hDAT and are allosterically coupled to the known functional sites of the transporter. The observed large-scale motions are enabled by specific reconfiguration of the network of ionic interactions at the intracellular end of the protein. The isomerization to the inward-facing state in hDAT is accompanied by concomitant movements in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate dopamine in the primary substrate binding S1 site. The dynamic mechanism emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular loop 4 in the functionally relevant conformational transitions that are also similar to those found to underlie state-to-state transitions in the leucine transporter (LeuT), a prototypical bacterial homologue of the NSS. PMID:26255829

  14. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine.

    PubMed

    Wheeler, David S; Underhill, Suzanne M; Stolz, Donna B; Murdoch, Geoffrey H; Thiels, Edda; Romero, Guillermo; Amara, Susan G

    2015-12-22

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH's effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  15. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  16. Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples.

    PubMed

    Curran, S; Mill, J; Tahir, E; Kent, L; Richards, S; Gould, A; Huckett, L; Sharp, J; Batten, C; Fernando, S; Ozbay, F; Yazgan, Y; Simonoff, E; Thompson, M; Taylor, E; Asherson, P

    2001-07-01

    Molecular genetic studies in attention deficit hyperactivity disorder (ADHD) have focussed on candidate genes within the dopamine system, which is thought to be the main site of action of stimulant drugs, the primary pharmacological treatment of the disorder. Of particular interest are findings with the dopamine transporter gene (DAT1), since stimulant drugs interact directly with the transporter protein. To date, there have been eight published association studies of ADHD with a 480 base-pair allele of a variable number tandem repeat (VNTR) polymorphism in the 3'-untranslated region of the gene, five that support an association and three against. We have analysed the same VNTR marker in a dataset of UK Caucasian children and an independent dataset of Turkish Caucasian children with DSM-IV ADHD, using the transmission disequilibrium test (TDT). Results from the UK (chi(2) = 8.97, P = 0.001, OR = 1.95), but not the Turkish sample (chi(2) = 0.93, P = 0.34) support association and linkage between genetic variation at the DAT1 locus and ADHD. When considered alongside evidence from other published reports, there is only modest evidence for the association, consistent with a very small main effect for the 480-bp allele (chi(2) = 3.45, P = 0.06, OR = 1.15), however we find significant evidence of heterogeneity between the combined dataset (chi(2) = 22.64, df = 8, P = 0.004). PMID:11443527

  17. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine

    PubMed Central

    Stehouwer, Jeffrey S.; Goodman, Mark M.

    2009-01-01

    Synopsis This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary. PMID:20216936

  18. Population genetic study of the human dopamine transporter gene (DAT1).

    PubMed

    Doucette-Stamm, L A; Blakely, D J; Tian, J; Mockus, S; Mao, J I

    1995-01-01

    The human dopamine transporter gene, DAT1, acts to transport released dopamine into presynaptic terminals of the brain. The possibility that the DAT1 gene plays a role in genetic diseases of the brain has led to studies of DAT1 in several psychiatric and neurological disorders. Previous sequence analysis of DAT1 revealed a 40-bp repeat in the 3' end of the gene. In order to identify all potential alleles for this VNTR marker a population database was established. One thousand seventy-four unrelated individuals were screened by PCR for the region containing the 40 bp repeat. Allele frequency differences were found between black Americans and Caucasians or Hispanics but no differences were observed between Caucasians and Hispanics. A previously unreported allele was detected in all three populations. Thus, we have shown that screening a large population identifies new alleles and generates more accurate allele frequencies. PMID:7557351

  19. Reduced striatal dopamine transporter density associated with working memory deficits in opioid-dependent male subjects: a SPECT study.

    PubMed

    Liang, Chih-Sung; Ho, Pei-Shen; Yen, Che-Hung; Yeh, Yi-Wei; Kuo, Shin-Chang; Huang, Chang-Chih; Chen, Chun-Yen; Shih, Mei-Chen; Ma, Kuo-Hsing; Huang, San-Yuan

    2016-01-01

    Research on the effects of repeated opioid use on striatal dopamine transporters has yielded inconsistent results, possibly confounded by a history of methamphetamine or methadone exposure in opioid-dependent individuals. Previous studies have shown that striatal dopamine transporter density is positively correlated with the cognitive performance of healthy volunteers. This study aimed to investigate changes in striatal dopamine transporter density and their functional significance in opioid-dependent individuals. Single-photon emission computed tomography with [(99m) Tc]TRODAT-1 as a ligand was used to measure striatal dopamine transporter levels in 20 opioid-dependent individuals and 20 age- and sex-matched healthy controls. Opioid-dependent individuals had no history of methamphetamine or methadone use. The Wisconsin Card Sorting Test (WCST) was performed to assess neurocognitive function. We found that compared with healthy controls, opioid-dependent individuals showed a significant reduction in striatal dopamine transporter density. They also showed poorer performance on the WCST in terms of the trials administered, total errors, perseverative responses, perseverative errors, and non-perseverative errors. Striatal dopamine transporter levels negatively correlated with non-perseverative errors not only in opioid-dependent individuals but also in healthy controls. These findings suggest that in human, repeated opioid exposure reduces striatal dopamine transporter density, which can be associated with non-perseverative errors. Non-perseverative errors may be one of the more sensitive parameters in WCST to identify working memory deficits associated with striatal dopamine transporter reduction. Moreover, we suggest that whether opioid-associated neurotoxicity is reversible depends on the brain region. PMID:25439653

  20. Serotonin and Dopamine Transporter Binding in Children with Autism Determined by SPECT

    ERIC Educational Resources Information Center

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M.; Kuikka, Jyrki T.

    2008-01-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8y 8mo [SD 3y 10mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9y 10mo [SD 2y 8mo]) using…

  1. Preserved serotonin transporter binding in de novo Parkinson's disease: negative correlation with the dopamine transporter.

    PubMed

    Strecker, Karl; Wegner, Florian; Hesse, Swen; Becker, Georg-Alexander; Patt, Marianne; Meyer, Philipp M; Lobsien, Donald; Schwarz, Johannes; Sabri, Osama

    2011-01-01

    Recent imaging and neuropathological studies indicate reduced serotonin transporter (SERT) in advanced Parkinson's disease (PD). However, data on SERT in early PD patients are sparse. Following the hypothesis that the serotonergic system is damaged early in PD, the aim of our study was to investigate SERT availability by means of PET imaging. Since the loss of dopaminergic neurons is the pathologic hallmark of PD and SERT might be associated with psychiatric co-morbidity, we further sought to correlate SERT availability with the availability of dopamine transporter (DAT) and depressive or motor symptoms in early PD. We prospectively recruited nine early PD patients (4 female, 5 male; 42-76 years) and nine age matched healthy volunteers (5 female, 4 male; 42-72 years). Diagnosis of PD was confirmed by the UK brain bank criteria and DAT imaging. SERT availability was measured by means of [11C]DASB PET. For neuropsychiatric assessment done on the day of PET we applied UPDRS parts I, II and III, Beck's Depression Inventory, Hamilton Rating Scale for Depression, Mini-Mental State Examination and Demtect. SERT was not reduced in any of 14 investigated regions of interest in the nine PD patients compared to healthy controls (p>0.13). SERT was negatively associated with DAT in the striatum (r=-0.69; p=0.04) but not within the midbrain. There was no correlation of SERT availability with depressive symptoms. No alteration of SERT binding in our patients suggests that the serotonergic system is remarkably preserved in early PD. Correlation with DAT might point to a compensatory regulation of the serotonergic system in early stages of PD. PMID:20644949

  2. Nicotine-dopamine-transporter interactions during reward-based decision making.

    PubMed

    Kambeitz, Joseph; la Fougère, Christian; Werner, Natalie; Pogarell, Oliver; Riedel, Michael; Falkai, Peter; Ettinger, Ulrich

    2016-06-01

    Our everyday-life comprises a multitude of decisions that we take whilst trying to maximize advantageous outcomes, limit risks and update current needs. The cognitive processes that guide decision making as well as the brain circuits they are based on are only poorly understood. Numerous studies point to a potential role of dopamine and nicotine in decision making but less is known about their interactions. Here, 26 healthy male subjects performed the Iowa Gambling Task (IGT) in two sessions following the administration of either nicotine or placebo. Striatal dopamine transporter (DAT) binding was measured by single-photon emission computed tomography (SPECT). Results indicate that lower DAT levels were associated with better performance in the IGT (p=0.0004). Cognitive modelling analysis using the prospect valence learning (PVL) model indicated that low DAT subjects' performance deteriorated following nicotine administration as indicated by an increased learning rate and a decreased response consistency. Our results shed light on the neurochemistry underlying reward-based decision making in humans by demonstrating a significant interaction between nicotine and the DAT. The observed interaction is consistent with the hypothesized associations between DAT expression and extracellular dopamine levels, suggestive of an inverted U-shape relationship between baseline dopamine and magnitude in response to a pro-dopaminergic compound. Our findings are of particular interest in the context of psychiatric disorders where aberrant decision making represents a part of the core symptomatology, such as addiction, schizophrenia or depression. PMID:27112968

  3. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    PubMed

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals. PMID:26497564

  4. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    PubMed

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  5. Dissociable effects of the prodrug phendimetrazine and its metabolite phenmetrazine at dopamine transporters

    PubMed Central

    Solis, Ernesto; Suyama, Julie A.; Lazenka, Matthew F.; DeFelice, Louis J.; Negus, S. Stevens; Blough, Bruce E.; Banks, Matthew L.

    2016-01-01

    Phendimetrazine (PDM) is a clinically available anorectic and a candidate pharmacotherapy for cocaine addiction. PDM has been hypothesized to function as a prodrug that requires metabolism to the amphetamine-like monoamine transporter substrate phenmetrazine (PM) to produce its pharmacological effects; however, whether PDM functions as an inactive prodrug or has pharmacological activity on its own remains unclear. The study aim was to determine PDM pharmacological mechanisms using electrophysiological, neurochemical, and behavioral procedures. PDM blocked the endogenous basal hDAT (human dopamine transporter) current in voltage-clamped (−60 mV) oocytes consistent with a DAT inhibitor profile, whereas its metabolite PM induced an inward hDAT current consistent with a DAT substrate profile. PDM also attenuated the PM-induced inward current during co-application, providing further evidence that PDM functions as a DAT inhibitor. PDM increased nucleus accumbens dopamine levels and facilitated electrical brain stimulation reinforcement within 10 min in rats, providing in vivo evidence supporting PDM pharmacological activity. These results demonstrate that PDM functions as a DAT inhibitor that may also interact with the pharmacological effects of its metabolite PM. Overall, these results suggest a novel mechanism for PDM therapeutic effects via initial PDM DAT inhibition followed by PM DAT substrate-induced dopamine release. PMID:27514281

  6. Dissociable effects of the prodrug phendimetrazine and its metabolite phenmetrazine at dopamine transporters.

    PubMed

    Solis, Ernesto; Suyama, Julie A; Lazenka, Matthew F; DeFelice, Louis J; Negus, S Stevens; Blough, Bruce E; Banks, Matthew L

    2016-01-01

    Phendimetrazine (PDM) is a clinically available anorectic and a candidate pharmacotherapy for cocaine addiction. PDM has been hypothesized to function as a prodrug that requires metabolism to the amphetamine-like monoamine transporter substrate phenmetrazine (PM) to produce its pharmacological effects; however, whether PDM functions as an inactive prodrug or has pharmacological activity on its own remains unclear. The study aim was to determine PDM pharmacological mechanisms using electrophysiological, neurochemical, and behavioral procedures. PDM blocked the endogenous basal hDAT (human dopamine transporter) current in voltage-clamped (-60 mV) oocytes consistent with a DAT inhibitor profile, whereas its metabolite PM induced an inward hDAT current consistent with a DAT substrate profile. PDM also attenuated the PM-induced inward current during co-application, providing further evidence that PDM functions as a DAT inhibitor. PDM increased nucleus accumbens dopamine levels and facilitated electrical brain stimulation reinforcement within 10 min in rats, providing in vivo evidence supporting PDM pharmacological activity. These results demonstrate that PDM functions as a DAT inhibitor that may also interact with the pharmacological effects of its metabolite PM. Overall, these results suggest a novel mechanism for PDM therapeutic effects via initial PDM DAT inhibition followed by PM DAT substrate-induced dopamine release. PMID:27514281

  7. Mice expressing markedly reduced striatal dopamine transporters exhibit increased locomotor activity, dopamine uptake turnover rate, and cocaine responsiveness.

    PubMed

    Rao, Anjali; Sorkin, Alexander; Zahniser, Nancy R

    2013-10-01

    Variations in the expression levels of the dopamine transporter (DAT) can influence responsiveness to psychostimulant drugs like cocaine. To better understand this relationship, we studied a new DAT-low expresser (DAT-LE) mouse model and performed behavioral and biochemical studies with it. Immunoblotting and [(3) H]WIN 35,428 binding analyses revealed that these mice express ∼35% of wildtype (WT) mouse striatal DAT levels. Compared to WT mice, DAT-LE mice were hyperactive in a novel open-field environment. Despite their higher basal locomotor activity, cocaine (10 or 20 mg/kg, i.p.) induced greater locomotor activation in DAT-LE mice than in WT mice. The maximal velocity (Vmax ) of DAT-mediated [(3) H]DA uptake into striatal synaptosomes was reduced by 46% in DAT-LE mice, as compared to WT. Overall, considering the reduced number of DAT binding sites (Bmax ) along with the reduced Vmax in DAT-LE mice, a 2-fold increase in DA uptake turnover rate (Vmax /Bmax ) was found, relative to WT mice. This suggests that neuroadaptive changes have occurred in the DAT-LE mice that would help to compensate for their low DAT numbers. Interestingly, these changes do not include a reduction in tyrosine hydroxylase levels, as was previously reported in DAT knockout homozygous and heterozygous animals. Further, these changes are not sufficient to prevent elevated novelty- and cocaine-induced locomotor activity. Hence, these mice represent a unique model for studying changes of in vivo DAT function and regulation that result from markedly reduced levels of DAT expression. PMID:23564231

  8. A behavioral defect of temporal association memory in mice that partly lack dopamine reuptake transporter

    PubMed Central

    Deng, Shining; Zhang, Lingli; Zhu, Tailin; Liu, Yan-Mei; Zhang, Hailong; Shen, Yiping; Li, Wei-Guang; Li, Fei

    2015-01-01

    Temporal association memory, like working memory, is a type of episodic memory in which temporally discontinuous elements are associated. However, the mechanisms that govern this association remain incompletely understood. Here, we identify a crucial role of dopaminergic action in temporal association memory. We used hemizygote hyperdopaminergic mutant mice with reduced dopamine transporter (DAT) expression, referred to as DAT+/− mice. We found that mice with this modest dopamine imbalance exhibited significantly impaired trace fear conditioning, which necessitates the association of temporally discontinuous elements, and intact delay auditory fear conditioning, which does not. Moreover, the DAT+/− mice displayed substantial impairments in non-matching-to-place spatial working-memory tasks. Interestingly, these temporal association and working memory deficits could be mimicked by a low dose of the dopamine D2 receptor antagonist haloperidol. The shared phenotypes resulting from either the genetic reduction of DAT or the pharmacological inhibition of the D2 receptor collectively indicate that temporal association memory necessitates precise regulation of dopaminergic signaling. The particular defect in temporal association memory due to partial lack of DAT provides mechanistic insights on the understanding of cognitive impairments in multiple neurodevelopmental disorders. PMID:26658842

  9. Dopamine transporter binding in social anxiety disorder: the effect of treatment with escitalopram.

    PubMed

    Warwick, J M; Carey, P D; Cassimjee, N; Lochner, C; Hemmings, S; Moolman-Smook, H; Beetge, E; Dupont, P; Stein, D J

    2012-06-01

    Social anxiety disorder (SAD) is characterised by fear of social or performance situations where the individual is exposed to unfamiliar people or to possible scrutiny by others. The literature on dopamine ligands and dopamine genotypes in SAD is however inconsistent. In this study we measured the effects of SSRI pharmacotherapy on dopamine transporter (DAT) binding in patients with SAD, also addressing variability in DAT genotype. Adult subjects meeting DSM-IV criteria for generalised SAD were studied before and after 12 weeks of pharmacotherapy with the selective serotonin reuptake inhibitor (SSRI) escitalopram. DAT single photon emission computed tomography (SPECT) using (123)I-FP-CIT was performed at baseline, and repeated at 12 weeks. Striatal DAT binding was analysed for changes following therapy, and for correlations with clinical efficacy, in the whole group as well as for a subgroup with the A10/A10 DAT genotype. The study included 14 subjects (9 male, 5 female) with a mean (SD) age of 41 (±13) years. The subjects' Liebowitz Social Anxiety Scale (LSAS) score was significantly decreased following pharmacotherapy. In the combined group the left caudate and left putamen showed clusters of increased DAT binding after therapy. The left caudate changes were also observed in the subgroup of 9 A10/A10 homozygotes. However no correlation was found between improved symptoms and DAT binding. The changes found in DAT binding in the caudate and putamen may be due to serotonergic activation of dopamine function by SSRI therapy. This is consistent with previous work indicating decreased DAT binding in SAD, and increased DAT binding after SSRI administration. PMID:22350963

  10. Essential Oils from the Medicinal Herbs Upregulate Dopamine Transporter in Rat Pheochromocytoma Cells.

    PubMed

    Choi, Min Sun; Choi, Bang-sub; Kim, Sang Heon; Pak, Sok Cheon; Jang, Chul Ho; Chin, Young-Won; Kim, Young-Mi; Kim, Dong-il; Jeon, Songhee; Koo, Byung-Soo

    2015-10-01

    The dopamine transporter (DAT) protein, a component of the dopamine system, undergoes adaptive neurobiological changes from drug abuse. Prevention of relapse and reduction of withdrawal symptoms are still the major limitations in the current pharmacological treatments of drug addiction. The present study aimed to investigate the effects of essential oils extracted from Elsholtzia ciliata, Shinchim, Angelicae gigantis Radix, and Eugenia caryophyllata, well-known traditional Korean medicines for addiction, on the modulation of dopamine system in amphetamine-treated cells and to explore the possible mechanism underlying its therapeutic effect. The potential cytotoxic effect of essential oils was evaluated in PC12 rat pheochromocytoma cells using cell viability assays. Quantification of DAT, p-CREB, p-MAPK, and p-Akt was done by immunoblotting. DAT was significantly reduced in cells treated with 50 μM of amphetamine in a time-dependent manner. No significant toxicity of essential oils from Elsholtzia ciliata and Shinchim was observed at doses of 10, 25, and 50 μg/mL. However, essential oils from A. gigantis Radix at a dose of 100 μg/mL and E. caryophyllata at doses of 50 and 100 μg/mL showed cytotoxicity. Treatment with GBR 12909, a highly selective DAT inhibitor, significantly increased DAT expression compared with that of amphetamine only by enhancing phosphorylation of mitogen-activated protein kinases (MAPK) and Akt. In addition, essential oils effectively induced hyperphosphorylation of cyclic-AMP response element-binding protein (CREB), MAPK, and Akt, which resulted in DAT upregulation. Our study implies that the essential oils may rehabilitate brain dopamine function through increased DAT availability in abstinent former drug users. PMID:26295793

  11. N-terminal tagging of the dopamine transporter impairs protein expression and trafficking in vivo

    PubMed Central

    Vecchio, Laura M.; Bermejo, M. Kristel; Beerepoot, Pieter; Ramsey, Amy J.

    2014-01-01

    The dopamine transporter (DAT) is the primary protein responsible for the uptake of dopamine from the extracellular space back into presynaptic neurons. As such, it plays an important role in the cessation of dopaminergic neurotransmission and in the maintenance of extracellular dopamine homeostasis. Here, we report the development of a new BAC transgenic mouse line that expresses DAT with an N-terminal HA-epitope (HAD-Tg). In this line, two copies of the HA-DAT BAC are incorporated into the genome, increasing DAT mRNA levels by 47%. Despite the increase in mRNA levels, HAD-Tg mice show no significant increase in the level of DAT protein in the striatum, indicating a defect in protein trafficking or stability. By crossing HAD-Tg mice with DAT knockout mice (DAT-KO), we engineered mice that exclusively express HA-tagged DAT in the absence of endogenous DAT (DAT-KO/HAD-Tg). We show that DAT-KO/HAD-Tg mice express only 8.5% of WT DAT levels in the striatum. Importantly, the HA-tagged DAT that is present in DAT-KO/HAD-Tg mice is functional, as it is able to partially rescue the DAT-KO hyperactive phenotype. Finally, we provide evidence that the HA-tagged DAT is retained in the cell body based on a reduction in the striatum:midbrain protein ratio. These results demonstrate that the presence of the N-terminal tag leads to impaired DAT protein expression in vivo due in part to improper trafficking of the tagged transporter, and highlight the importance of the N-terminus in the transport of DAT to striatal terminals. PMID:24886986

  12. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  13. A novel photoaffinity ligand for the dopamine transporter based on pyrovalerone

    PubMed Central

    Lapinsky, David J.; Aggarwal, Shaili; Huang, Yurong; Surratt, Christopher K.; Lever, John R.; Foster, James D.; Vaughan, Roxanne A.

    2009-01-01

    Non-tropane-based photoaffinity ligands for the dopamine transporter (DAT) are relatively unexplored in contrast to tropane-based compounds such as cocaine. In order to fill this knowledge gap, a ligand was synthesized in which the aromatic ring of pyrovalerone was substituted with a photoreactive azido group. The analog 1-(4-azido-3-iodophenyl)-2-pyrrolidin-1-yl-pentan-1-one demonstrated appreciable binding affinity for the DAT (Ki = 78 ± 18 nM), suggesting the potential utility of a radioiodinated version in structure-function studies of this protein. PMID:19442525

  14. Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT

    SciTech Connect

    Keil, R.; Hoffman, J.M.; Eschima, D.

    1996-05-01

    Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCA K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.

  15. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson's disease.

    PubMed

    Moreau, Caroline; Meguig, Sayah; Corvol, Jean-Christophe; Labreuche, Julien; Vasseur, Francis; Duhamel, Alain; Delval, Arnaud; Bardyn, Thomas; Devedjian, Jean-Christophe; Rouaix, Nathalie; Petyt, Gregory; Brefel-Courbon, Christine; Ory-Magne, Fabienne; Guehl, Dominique; Eusebio, Alexandre; Fraix, Valérie; Saulnier, Pierre-Jean; Lagha-Boukbiza, Ouhaid; Durif, Frank; Faighel, Mirela; Giordana, Caroline; Drapier, Sophie; Maltête, David; Tranchant, Christine; Houeto, Jean-Luc; Debû, Bettina; Azulay, Jean-Philippe; Tison, François; Destée, Alain; Vidailhet, Marie; Rascol, Olivier; Dujardin, Kathy; Defebvre, Luc; Bordet, Régis; Sablonnière, Bernard; Devos, David

    2015-05-01

    After more than 50 years of treating Parkinson's disease with l-DOPA, there are still no guidelines on setting the optimal dose for a given patient. The dopamine transporter type 1, now known as solute carrier family 6 (neurotransmitter transporter), member 3 (SLC6A3) is the most powerful determinant of dopamine neurotransmission and might therefore influence the treatment response. We recently demonstrated that methylphenidate (a dopamine transporter inhibitor) is effective in patients with Parkinson's disease with motor and gait disorders. The objective of the present study was to determine whether genetic variants of the dopamine transporter type 1-encoding gene (SLC6A3) are associated with differences in the response to treatment of motor symptoms and gait disorders with l-DOPA and methylphenidate (with respect to the demographic, the disease and the treatment parameters and the other genes involved in the dopaminergic neurotransmission). This analysis was part of a multicentre, parallel-group, double-blind, placebo-controlled, randomized clinical trial of methylphenidate in Parkinson's disease (Protocol ID:2008-005801-20; ClinicalTrials.gov:NCT00914095). We scored the motor Unified Parkinson's Disease Rating Scale and the Stand-Walk-Sit Test before and after a standardized acute l-DOPA challenge before randomization and then after 3 months of methylphenidate treatment. Patients were screened for variants of genes involved in dopamine metabolism: rs28363170 and rs3836790 polymorphisms in the SLC6A3 gene, rs921451 and rs3837091 in the DDC gene (encoding the aromatic L-amino acid decarboxylase involved in the synthesis of dopamine from l-DOPA), rs1799836 in the MAOB gene (coding for monoamine oxidase B) and rs4680 in the COMT gene (coding for catechol-O-methyltransferase). Investigators and patients were blinded to the genotyping data throughout the study. Eighty-one subjects were genotyped and 61 were analysed for their acute motor response to l-DOPA. The SLC6A3

  16. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1–D3 paralleling cognitive enhancement in the radial arm maze

    PubMed Central

    Karabacak, Yasemin; Sase, Sunetra; Aher, Yogesh D.; Sase, Ajinkya; Saroja, Sivaprakasam R.; Cicvaric, Ana; Höger, Harald; Berger, Michael; Bakulev, Vasiliy; Sitte, Harald H.; Leban, Johann; Monje, Francisco J.; Lubec, Gert

    2015-01-01

    A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague–Dawley rats were divided into six groups (modafinil-treated 1–5–10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1–3 dopamine receptor subunits (D1–D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1–D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1–3-CC is proposed as a possible mechanism of action. PMID:26347626

  17. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1-D3 paralleling cognitive enhancement in the radial arm maze.

    PubMed

    Karabacak, Yasemin; Sase, Sunetra; Aher, Yogesh D; Sase, Ajinkya; Saroja, Sivaprakasam R; Cicvaric, Ana; Höger, Harald; Berger, Michael; Bakulev, Vasiliy; Sitte, Harald H; Leban, Johann; Monje, Francisco J; Lubec, Gert

    2015-01-01

    A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague-Dawley rats were divided into six groups (modafinil-treated 1-5-10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1-3 dopamine receptor subunits (D1-D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1-D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1-3-CC is proposed as a possible mechanism of action. PMID:26347626

  18. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.

    PubMed

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-05-25

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652

  19. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

  20. Recognition Properties and Competitive Assays of a Dual Dopamine/Serotonin Selective Molecularly Imprinted Polymer

    PubMed Central

    Suedee, Roongnapa; Seechamnanturakit, Vatcharee; Suksuwan, Acharee; Canyuk, Bhutorn

    2008-01-01

    A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the

  1. Antagonist-Induced Conformational Changes in Dopamine Transporter Extracellular Loop Two Involve Residues in a Potential Salt Bridge

    PubMed Central

    Gaffaney, Jon D.; Shetty, Madhur; Felts, Bruce; Pramod, Akula-Bala; Foster, James D.; Henry, L. Keith; Vaughan, Roxanne A.

    2014-01-01

    Ligand-induced changes in the conformation of extracellular loop (EL) 2 in the rat (r) dopamine transporter (DAT) were examined using limited proteolysis with endoproteinase Asp-N and detection of cleavage products by epitope-specific immunoblotting. The principle N-terminal fragment produced by Asp-N was a 19 kDa peptide likely derived by proteolysis of EL2 residue D174, which is present just past the extracellular end of TM3. Production of this fragment was significantly decreased by binding of cocaine and other uptake blockers, but was not affected by substrates or Zn2+, indicating the presence of a conformational change at D174 that may be related to the mechanism of transport inhibition. DA transport activity and cocaine analog binding were decreased by Asp-N treatment, suggesting a requirement for EL2 integrity in these DAT functions. In a previous study we demonstrated that ligand-induced protease resistance also occurred at R218 on the C-terminal side of rDAT EL2. Here using substituted cysteine accessibility analysis of human (h) DAT we confirm cocaine-induced alterations in reactivity of the homologous R219 and identify conformational sensitivity of V221. Focused molecular modeling of D174 and R218 based on currently available Aquifex aeolicus leucine transporter crystal structures places these residues within 2.9 Å of one another, suggesting their proximity as a structural basis for their similar conformational sensitivities and indicating their potential to form a salt bridge. These findings extend our understanding of DAT EL2 and its role in transport and binding functions. PMID:24269640

  2. Antagonist-induced conformational changes in dopamine transporter extracellular loop two involve residues in a potential salt bridge.

    PubMed

    Gaffaney, Jon D; Shetty, Madhur; Felts, Bruce; Pramod, Akula-Bala; Foster, James D; Henry, L Keith; Vaughan, Roxanne A

    2014-07-01

    Ligand-induced changes in the conformation of extracellular loop (EL) 2 in the rat (r) dopamine transporter (DAT) were examined using limited proteolysis with endoproteinase Asp-N and detection of cleavage products by epitope-specific immunoblotting. The principle N-terminal fragment produced by Asp-N was a 19kDa peptide likely derived by proteolysis of EL2 residue D174, which is present just past the extracellular end of TM3. Production of this fragment was significantly decreased by binding of cocaine and other uptake blockers, but was not affected by substrates or Zn(2+), indicating the presence of a conformational change at D174 that may be related to the mechanism of transport inhibition. DA transport activity and cocaine analog binding were decreased by Asp-N treatment, suggesting a requirement for EL2 integrity in these DAT functions. In a previous study we demonstrated that ligand-induced protease resistance also occurred at R218 on the C-terminal side of rDAT EL2. Here using substituted cysteine accessibility analysis of human (h) DAT we confirm cocaine-induced alterations in reactivity of the homologous R219 and identify conformational sensitivity of V221. Focused molecular modeling of D174 and R218 based on currently available Aquifex aeolicus leucine transporter crystal structures places these residues within 2.9Å of one another, suggesting their proximity as a structural basis for their similar conformational sensitivities and indicating their potential to form a salt bridge. These findings extend our understanding of DAT EL2 and its role in transport and binding functions. PMID:24269640

  3. Dopamine-transporter levels drive striatal responses to apomorphine in Parkinson's disease

    PubMed Central

    Passamonti, Luca; Salsone, Maria; Toschi, Nicola; Cerasa, Antonio; Giannelli, Marco; Chiriaco, Carmelina; Cascini, Giuseppe Lucio; Fera, Francesco; Quattrone, Aldo

    2013-01-01

    Dopaminergic therapy in Parkinson's disease (PD) can improve some cognitive functions while worsening others. These opposite effects might reflect different levels of residual dopamine in distinct parts of the striatum, although the underlying mechanisms remain poorly understood. We used functional magnetic resonance imaging (fMRI) to address how apomorphine, a potent dopamine agonist, influences brain activity associated with working memory in PD patients with variable levels of nigrostriatal degeneration, as assessed via dopamine-transporter (DAT) scan. Twelve PD patients underwent two fMRI sessions (Off-, On-apomorphine) and one DAT-scan session. Twelve sex-, age-, and education-matched healthy controls underwent one fMRI session. The core fMRI analyses explored: (1) the main effect of group; (2) the main effect of treatment; and (3) linear and nonlinear interactions between treatment and DAT levels. Relative to controls, PD-Off patients showed greater activations within posterior attentional regions (e.g., precuneus). PD-On versus PD-Off patients displayed reduced left superior frontal gyrus activation and enhanced striatal activation during working-memory task. The relation between DAT levels and striatal responses to apomorphine followed an inverted-U-shaped model (i.e., the apomorphine effect on striatal activity in PD patients with intermediate DAT levels was opposite to that observed in PD patients with higher and lower DAT levels). Previous research in PD demonstrated that the nigrostriatal degeneration (tracked via DAT scan) is associated with inverted-U-shaped rearrangements of postsynaptic D2-receptors sensitivity. Hence, it can be hypothesized that individual differences in DAT levels drove striatal responses to apomorphine via D2-receptor-mediated mechanisms. PMID:23785657

  4. Cognitive and olfactory deficits in Machado-Joseph disease: a dopamine transporter study.

    PubMed

    Braga-Neto, Pedro; Felicio, Andre C; Hoexter, Marcelo Q; Pedroso, José Luiz; Dutra, Lívia Almeida; Alessi, Helena; Minett, Thaís; Santos-Galduroz, Ruth F; da Rocha, Antônio José; Garcia, Lucas A L; Bertolucci, Paulo Henrique F; Bressan, Rodrigo A; Barsottini, Orlando Graziani Povoas

    2012-08-01

    Cognitive and olfactory impairments have been demonstrated in patients with Machado-Joseph disease (MJD), and a possible relationship with dopaminergic dysfunction is implicated. However, there is still controversy regarding the pattern of striatal dopaminergic dysfunction in patients with MJD. In this study, we investigated whether these patients had different dopamine transporter (DAT) densities as compared to healthy subjects, and correlated these data with cognitive performance and sense of smell. Twenty-two MJD patients and 20 control subjects were enrolled. The neuropsychological assessment comprised the spatial span, symbol search, picture completion, stroop color word test, trail making test and phonemic verbal fluency test. The 16-item Sniffin' Sticks was used to evaluate odor identification. DAT imaging was performed using the SPECT radioligand [(99m)Tc]-TRODAT-1, alongside with Magnetic Resonance imaging. Patients with MJD showed significantly lower DAT density in the caudate (1.34 ± 0.27 versus 2.02 ± 0.50, p < 0.001), posterior putamen (0.81 ± 0.32 versus 1.32 ± 0.34, p < 0.001) and anterior putamen (1.10 ± 0.31 versus 1.85 ± 0.45, p < 0.001) compared with healthy controls. The putamen/caudate ratio was also significantly lower in patients compared with controls (0.73 ± 0.038 versus 0.85 ± 0.032, p = 0.027). Even though we had only two patients with parkinsonism, we detected striatal dopaminergic deficits in those patients. No significant correlations were detected between DAT density and cognitive performance or Sniffin' Sticks scores. The data suggests that striatal dopamine deficit is not involved in cognitive or sense of smell deficits. This finding raises the possibility of extra-striatal dopamine and other neurotransmitter system involvement or of cerebellum neurodegeneration exerting a direct influence on cognitive and sensorial information processing in MJD. PMID:22575233

  5. Differential influence of dopamine transport rate on the potencies of cocaine, amphetamine, and methylphenidate.

    PubMed

    Calipari, Erin S; Ferris, Mark J; Siciliano, Cody A; Jones, Sara R

    2015-01-21

    Dopamine transporter (DAT) levels vary across brain regions and individuals, and are altered by drug history and disease states; however, the impact of altered DAT expression on psychostimulant effects in brain has not been systematically explored. Using fast scan cyclic voltammetry, we measured the effects of elevated DAT levels on presynaptic dopamine parameters as well as the uptake inhibition potency of the blockers cocaine and methylphenidate (MPH) and the releaser amphetamine (AMPH) in the nucleus accumbens core. Here we found that increases in DAT levels, resulting from either genetic overexpression or MPH self-administration, caused markedly increased maximal rates of uptake (Vmax) that were positively correlated with the uptake inhibition potency of AMPH and MPH, but not cocaine. AMPH and MPH were particularly sensitive to DAT changes, with a 100% increase in Vmax resulting in a 200% increase in potency. The relationship between Vmax and MPH potency was the same as that for AMPH, but was different from that for cocaine, indicating that MPH more closely resembles a releaser with regard to uptake inhibition. Conversely, the effects of MPH on stimulated dopamine release were similar to those of cocaine, with inverted U-shaped increases in release over a concentration-response curve. This was strikingly different from the release profile of AMPH, which showed only reductions at high concentrations, indicating that MPH is not a pure releaser. These data indicate that although MPH is a DAT blocker, its uptake-inhibitory actions are affected by DAT changes in a similar manner to releasers. Together, these data show that fluctuations in DAT levels alter the potency of releasers and MPH but not blockers and suggest an integral role of the DAT in the addictive potential of AMPH and related compounds. PMID:25474655

  6. Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate.

    PubMed

    Ferris, Mark J; Calipari, Erin S; Mateo, Yolanda; Melchior, James R; Roberts, David C S; Jones, Sara R

    2012-06-01

    The dopamine transporter (DAT) is the primary site of action for psychostimulant drugs such as cocaine, methylphenidate, and amphetamine. Our previous work demonstrated a reduced ability of cocaine to inhibit the DAT following high-dose cocaine self-administration (SA), corresponding to a reduced ability of cocaine to increase extracellular dopamine. However, this effect had only been demonstrated for cocaine. Thus, the current investigations sought to understand the extent to which cocaine SA (1.5 mg/kg/inf × 40 inf/day × 5 days) altered the ability of different dopamine uptake blockers and releasers to inhibit dopamine uptake, measured using fast-scan cyclic voltammetry in rat brain slices. We demonstrated that, similar to cocaine, the DAT blockers nomifensine and bupropion were less effective at inhibiting dopamine uptake following cocaine SA. The potencies of amphetamine-like dopamine releasers such as 3,4-methylenedioxymethamphetamine, methamphetamine, amphetamine, and phentermine, as well as a non-amphetamine releaser, 4-benzylpiperidine, were all unaffected. Finally, methylphenidate, which blocks dopamine uptake like cocaine while being structurally similar to amphetamine, shared characteristics of both, resembling an uptake blocker at low concentrations and a releaser at high concentrations. Combined, these experiments demonstrate that after high-dose cocaine SA, there is cross-tolerance of the DAT to other uptake blockers, but not releasers. The reduced ability of psychostimulants to inhibit dopamine uptake following cocaine SA appears to be contingent upon their functional interaction with the DAT as a pure blocker or releaser rather than their structural similarity to cocaine. Further, methylphenidate's interaction with the DAT is unique and concentration-dependent. PMID:22395730

  7. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2-containing membranes

    PubMed Central

    Khelashvili, George; Doktorova, Milka; Sahai, Michelle A.; Johner, Niklaus; Shi, Lei; Weinstein, Harel

    2015-01-01

    The dopamine transporter (DAT) is a transmembrane protein belonging to the family of Neurotransmitter:Sodium Symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains that are strongly implicated in the transporter function. The N-terminus (N-term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N-terminal segment. Here we report a computational model of the N-term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N-term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 µs). Combining MD simulations with continuum mean-field modeling we found that the N-term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5-Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N-term implicated in such interactions and show that differential modes of N-term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure-based studies that will elucidate the mechanistic role of the N-term in DAT function. PMID:25739722

  8. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2 -containing membranes.

    PubMed

    Khelashvili, George; Doktorova, Milka; Sahai, Michelle A; Johner, Niklaus; Shi, Lei; Weinstein, Harel

    2015-05-01

    The dopamine transporter (DAT) is a transmembrane protein belonging to the family of neurotransmitter:sodium symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains that are strongly implicated in the transporter function. The N-terminus (N-term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N-terminal segment. Here we report a computational model of the N-term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N-term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 μs). Combining MD simulations with continuum mean-field modeling we found that the N-term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5-Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N-term implicated in such interactions and show that differential modes of N-term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure-based studies that will elucidate the mechanistic role of the N-term in DAT function. PMID:25739722

  9. Dopamine transporter gene susceptibility to methylation is associated with impulsivity in nonhuman primates

    PubMed Central

    Rajala, Abigail Z.; Zaitoun, Ismail; Henriques, Jeffrey B.; Converse, Alexander K.; Murali, Dhanabalan; Epstein, Miles L.

    2014-01-01

    Impulsivity, the predisposition to act without regard for negative consequences, is a characteristic of several psychiatric disorders and is thought to result in part from genetic variation in the untranslated region of the dopamine transporter (DAT) gene. As the exact link between genetic mutations and impulsivity has not been established, we used oculomotor behavior to characterize rhesus monkeys as impulsive or calm and genetic/epigenetic analysis and positron emission tomography (PET) to correlate phenotype to DAT genotype, DAT gene methylation, and DAT availability. We found three single nucleotide polymorphisms (SNPs) in the 3′-UTR of the DAT gene, one of which provided a potential site for methylation in the impulsive group. Bisulfite analysis showed that the DNA of the impulsive but not the calm subjects was methylated at one SNP. Because genetic/epigenetic modifications could lead to differences in protein expression, we measured DAT availability using [18F]2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)-nortropane ([18F]FECNT) PET and found higher DAT availability in the internal globus pallidus, an output nucleus of the basal ganglia, of the impulsive group. Higher DAT availability lowers dopamine levels, potentially altering neuronal circuits involved in the initiation of action, thus contributing to the impulsive phenotype. The association between increased methylation in the DAT gene and greater DAT availability suggests that mutations to the regulatory portion of the DAT gene lead to a susceptibility to epigenetic modification resulting in a discrete behavioral phenotype. PMID:25122707

  10. Predicting childhood effortful control from interactions between early parenting quality and children's dopamine transporter gene haplotypes.

    PubMed

    Li, Yi; Sulik, Michael J; Eisenberg, Nancy; Spinrad, Tracy L; Lemery-Chalfant, Kathryn; Stover, Daryn A; Verrelli, Brian C

    2016-02-01

    Children's observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers' observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3'-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects were found. Children without the intron8-A/intron13-G, intron8-A/3'-UTR VNTR-10, or intron13-G/3'-UTR VNTR-10 haplotypes (i.e., haplotypes associated with the reduced SLC6A3 gene expression and thus lower dopamine functioning) appeared to demonstrate altered levels of EC as a function of maternal parenting quality, whereas children with these haplotypes demonstrated a similar EC level regardless of the parenting quality. Children with these haplotypes demonstrated a trade-off, such that they showed higher EC, relative to their counterparts without these haplotypes, when exposed to less supportive maternal parenting. The findings revealed a diathesis-stress pattern and suggested that different SLC6A3 haplotypes, but not single variants, might represent different levels of young children's sensitivity/responsivity to early parenting. PMID:25924976

  11. Interaction of Dopamine Transporter Gene and Observed Parenting Behaviors on Attention-Deficit/Hyperactivity Disorder: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Li, James J.; Lee, Steve S.

    2013-01-01

    Emerging evidence suggests that some individuals may be simultaneously more responsive to the effects from environmental adversity "and" enrichment (i.e., differential susceptibility). Given that parenting behavior and a variable number tandem repeat polymorphism in the 3'untranslated region of the dopamine transporter (DAT1) gene…

  12. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  13. Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration.

    PubMed

    Klaffke, Stefanie; Kuhn, Andrea A; Plotkin, Michail; Amthauer, Holger; Harnack, Daniel; Felix, Roland; Kupsch, Andreas

    2006-10-01

    Alterations in presynaptic and postsynaptic dopaminergic system and cerebral glucose metabolism in corticobasal degeneration (CBD) were assessed to evaluate the potential usefulness of different imaging methods for CBD. (123)I-FP-CIT/(123)I-beta-CIT SPECT and (123)I-IBZM SPECT as well as (18)F-FDG PET were performed in eight CBD patients. Decreased presynaptic dopamine transporter binding was found in all CBD patients while D2 receptor binding was reduced in only one patient. (18)F-FDG PET displayed a contralateral hypometabolism in cortical and subcortical areas in seven out of eight patients. Our results demonstrate that glucose metabolism and DAT are reduced, while D2 receptors may be frequently preserved in CBD. PMID:16773621

  14. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter

    PubMed Central

    Qiao, Hongwen; Zhu, Lin; Lieberman, Brian P.; Zha, Zhihao; Plössl, Karl; Kung, Hank F.

    2012-01-01

    A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (T1/2 = 109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (Ki < 10 nM). Biodistribution studies of [18F]6b and [18F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents. PMID:22658558

  15. Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode

    SciTech Connect

    Inada, Toshiya; Sugita, Tetsuyoshi; Dobashi, Izumi

    1996-07-26

    To investigate the possible role of the dopamine transporter (DAT) gene in determining the phenotype in human subjects, allele frequencies for the 40-bp variable number of tandem repeats (VNTR) polymorphism at this site were compared between 117 Japanese normal controls and 118 schizophrenic patients, including six subgroups: early-onset, those with a family history, and those suffering from one of the following psychiatric symptoms at their first episode: delusion and hallucination; disorganization; bizarre behavior; and negative symptoms. No significant differences were observed between the group as a whole or any subgroup of schizophrenic patients and controls. The results indicate that VNTR polymorphism in the DAT gene is unlikely to be a major contributor to any of the psychiatric parameters examined in the present population of schizophrenic subjects. 12 refs., 1 fig., 2 tabs.

  16. Polymer brushes for molecular transport

    NASA Astrophysics Data System (ADS)

    Tu, Huilin

    Polymer brushes and self-assembled monolayers (SAMs) are used as solid-state, 2-dimensional transport media to confine molecular diffusion. Microcontact printing and photolithography combined with surface-initiated atom transfer radical polymerization (ATRP) are the major techniques to construct patterned polymer brushes. Fluorescence recovery after photobleaching (FRAP) is used to determine diffusion coefficients of fluorescent dye, Prodan, in the polymer brushes and SAMs. Similar diffusion coefficients of Prodan are found for the SAMs formed by chlorotrimethyl silane (CTS) and silanated poly(ethylene glycol) (PEG). No fluorescence recovery is observed on the octadecyltrichlorosilane (OTS) SAM or on the clean silica surface. Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on silica substrates by surface-initiated ATRP of N-isopropylacrylamide from a micropatterned initiator. Variable temperature ellipsometry indicated that the lower critical solution temperature (LCST) of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35°C. FRAP results of Prodan in PNIPAAm layers indicate that bulk translational diffusion is very slow relative to other diffusion mechanisms. Poly(oligoethylene glycol acrylate) (POEGA) chains are grafted onto silica substrates by surface-initiated ATRP. The diffusion of Prodan in dry POEGA is very fast, which is attributable to the low glass transition temperature of POEGA. The diffusion of Prodan in POEGA under variable humidity can be described reasonably well using WLF equation. Patterned POEGA brushes are not able to confine Prodan to diffuse exclusively inside the polymer regions, and possible explanations are rotational diffusion and a combination of fast surface diffusion and slow bulk diffusion. PNIPAAm chains are tethered onto silica particles via surface-initiated polymerization. Thermal annealing slightly improved the crystallinity of the colloidal assembly. Video microscopy of the two

  17. Altering behavioral responses and dopamine transporter protein with antisense peptide nucleic acids.

    PubMed

    Tyler-McMahon, B M; Stewart, J A; Jackson, J; Bitner, M D; Fauq, A; McCormick, D J; Richelson, E

    2001-10-01

    The dopamine transporter (DAT) plays a role in locomotion and is an obligatory target for amphetamines. We designed and synthesized an antisense peptide nucleic acid (PNA) to rat DAT to examine the effect of this antisense molecule on locomotion and on responsiveness to amphetamines. Rats were injected intraperitoneally daily for 9 days with either saline, an antisense DAT PNA, a scrambled DAT PNA, or a mismatch DAT PNA. On days 7 and 9 after initial motility measurements were taken, the animals were challenged with 10 mg/kg of amphetamine and scored for motility. On day 7, there was no significant difference between the baseline levels of activity of any of the groups or their responses to amphetamine. On day 9, the antisense PNA-treated rats showed a statistically significant increase in their resting motility (P < 0.01). When these rats were challenged with amphetamine, motility of the saline-, scrambled PNA-, and mismatch PNA-treated animals showed increases of 31-, 36-, and 20-fold, respectively, while the antisense PNA-treated animals showed increases of only 3.4-fold (P < 0.01). ELISA results revealed a 32% decrease in striatal DAT in antisense PNA-treated rats compared with the saline, scrambled PNA, and mismatch PNA controls (P < 0.001). These results extend our previous findings that brain proteins can be knocked down in a specific manner by antisense molecules administered extracranially. Additionally, these results suggest some novel approaches for the treatment of diseases dependent upon the function of the dopamine transporter. PMID:11543728

  18. The association between heroin expenditure and dopamine transporter availability--a single-photon emission computed tomography study.

    PubMed

    Lin, Shih-Hsien; Chen, Kao Chin; Lee, Sheng-Yu; Chiu, Nan Tsing; Lee, I Hui; Chen, Po See; Yeh, Tzung Lieh; Lu, Ru-Band; Chen, Chia-Chieh; Liao, Mei-Hsiu; Yang, Yen Kuang

    2015-03-30

    One of the consequences of heroin dependency is a huge expenditure on drugs. This underlying economic expense may be a grave burden for heroin users and may lead to criminal behavior, which is a huge cost to society. The neuropsychological mechanism related to heroin purchase remains unclear. Based on recent findings and the established dopamine hypothesis of addiction, we speculated that expenditure on heroin and central dopamine activity may be associated. A total of 21 heroin users were enrolled in this study. The annual expenditure on heroin was assessed, and the availability of the dopamine transporter (DAT) was assessed by single-photon emission computed tomography (SPECT) using [(99m)TC]TRODAT-1. Parametric and nonparametric correlation analyses indicated that annual expenditure on heroin was significantly and negatively correlated with the availability of striatal DAT. After adjustment for potential confounders, the predictive power of DAT availability was significant. Striatal dopamine function may be associated with opioid purchasing behavior among heroin users, and the cycle of spiraling dysfunction in the dopamine reward system could play a role in this association. PMID:25659472

  19. Putamen–midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases

    PubMed Central

    Rieckmann, A.; Gomperts, S.N.; Johnson, K.A.; Growdon, J.H.; Van Dijk, K.R.A.

    2015-01-01

    Prior work has shown that functional connectivity between the midbrain and putamen is altered in patients with impairments in the dopamine system. This study examines whether individual differences in midbrain–striatal connectivity are proportional to the integrity of the dopamine system in patients with nigrostriatal dopamine loss (Parkinson's disease and dementia with Lewy bodies). We assessed functional connectivity of the putamen during resting state fMRI and dopamine transporter (DAT) availability in the striatum using 11C-Altropane PET in twenty patients. In line with the hypothesis that functional connectivity between the midbrain and the putamen reflects the integrity of the dopaminergic neurotransmitter system, putamen–midbrain functional connectivity was significantly correlated with striatal DAT availability even after stringent control for effects of head motion. DAT availability did not relate to functional connectivity between the caudate and thalamus/prefrontal areas. As such, resting state functional connectivity in the midbrain–striatal pathway may provide a useful indicator of underlying pathology in patients with nigrostriatal dopamine loss. PMID:26137443

  20. Putamen-midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases.

    PubMed

    Rieckmann, A; Gomperts, S N; Johnson, K A; Growdon, J H; Van Dijk, K R A

    2015-01-01

    Prior work has shown that functional connectivity between the midbrain and putamen is altered in patients with impairments in the dopamine system. This study examines whether individual differences in midbrain-striatal connectivity are proportional to the integrity of the dopamine system in patients with nigrostriatal dopamine loss (Parkinson's disease and dementia with Lewy bodies). We assessed functional connectivity of the putamen during resting state fMRI and dopamine transporter (DAT) availability in the striatum using 11C-Altropane PET in twenty patients. In line with the hypothesis that functional connectivity between the midbrain and the putamen reflects the integrity of the dopaminergic neurotransmitter system, putamen-midbrain functional connectivity was significantly correlated with striatal DAT availability even after stringent control for effects of head motion. DAT availability did not relate to functional connectivity between the caudate and thalamus/prefrontal areas. As such, resting state functional connectivity in the midbrain-striatal pathway may provide a useful indicator of underlying pathology in patients with nigrostriatal dopamine loss. PMID:26137443

  1. A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles

    PubMed Central

    Cartier, Etienne A.; Parra, Leonardo A.; Baust, Tracy B.; Quiroz, Marisol; Salazar, Gloria; Faundez, Victor; Egaña, Loreto; Torres, Gonzalo E.

    2010-01-01

    Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles. PMID:19903816

  2. Rare Autism-Associated Variants Implicate Syntaxin 1 (STX1 R26Q) Phosphorylation and the Dopamine Transporter (hDAT R51W) in Dopamine Neurotransmission and Behaviors

    PubMed Central

    Cartier, Etienne; Hamilton, Peter J.; Belovich, Andrea N.; Shekar, Aparna; Campbell, Nicholas G.; Saunders, Christine; Andreassen, Thorvald F.; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S.; Ulery-Reynolds, Paula G.; Erreger, Kevin; Matthies, Heinrich J.G.; Galli, Aurelio

    2015-01-01

    Background Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Outcomes Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. Interpretation We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. PMID:25774383

  3. Molecular transport: Catch the carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirchner, Barbara; Intemann, Barbara

    2016-05-01

    Understanding the minute details of CO2 transport is key to finding new technologies that reduce the hazardous levels of CO2 in our atmosphere. Now, the observation that the transport of CO2 in molten calcium carbonate occurs faster than standard molecular diffusion brings us one step closer.

  4. Regulation of ethanol intake under chronic mild stress: roles of dopamine receptors and transporters

    PubMed Central

    Delis, Foteini; Rombola, Christina; Bellezza, Robert; Rosko, Lauren; Grandy, David K.; Volkow, Nora D.; Thanos, Panayotis K.

    2015-01-01

    Studies have shown that exposure to chronic mild stress decreases ethanol intake and preference in dopamine D2 receptor wild-type mice (Drd2+/+), while it increases intake in heterozygous (Drd2+/−) and knockout (Drd2−/−) mice. Dopaminergic neurotransmission in the basal forebrain plays a major role in the reinforcing actions of ethanol as well as in brain responses to stress. In order to identify neurochemical changes associated with the regulation of ethanol intake, we used in vitro receptor autoradiography to measure the levels and distribution of dopamine D1 and D2 receptors and dopamine transporters (DAT). Receptor levels were measured in the basal forebrain of Drd2+/+, Drd2+/−, and Drd2−/− mice belonging to one of four groups: control (C), ethanol intake (E), chronic mild stress exposure (S), and ethanol intake under chronic mild stress (ES). D2 receptor levels were higher in the lateral and medial striatum of Drd2+/+ ES mice, compared with Drd2+/+ E mice. Ethanol intake in Drd2+/+ mice was negatively correlated with striatal D2 receptor levels. D2 receptor levels in Drd2+/− mice were the same among the four treatment groups. DAT levels were lower in Drd2+/− C and Drd2−/− C mice, compared with Drd2+/+ C mice. Among Drd2+/− mice, S and ES groups had higher DAT levels compared with C and E groups in most regions examined. In Drd2−/− mice, ethanol intake was positively correlated with DAT levels in all regions studied. D1 receptor levels were lower in Drd2+/− and Drd2−/− mice, compared with Drd2+/+, in all regions examined and remained unaffected by all treatments. The results suggest that in normal mice, ethanol intake is associated with D2 receptor-mediated neurotransmission, which exerts a protective effect against ethanol overconsumption under stress. In mice with low Drd2 expression, where DRD2 levels are not further modulated, ethanol intake is associated with DAT function which is upregulated under stress leading to ethanol

  5. Understanding charge transport in molecular electronics.

    PubMed

    Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R

    2003-12-01

    For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction. PMID:14976024

  6. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice.

    PubMed

    Salvatore, Michael F; Calipari, Erin S; Jones, Sara R

    2016-07-20

    Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways. PMID:27124386

  7. Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter.

    PubMed

    Calipari, Erin S; Ferris, Mark J; Zimmer, Benjamin A; Roberts, David C S; Jones, Sara R

    2013-11-01

    The dopamine transporter (DAT) is responsible for terminating dopamine (DA) signaling and is the primary site of cocaine's reinforcing actions. Cocaine self-administration has been shown previously to result in changes in cocaine potency at the DAT. To determine whether the DAT changes associated with self-administration are due to differences in intake levels or temporal patterns of cocaine-induced DAT inhibition, we manipulated cocaine access to produce either continuous or intermittent elevations in cocaine brain levels. Long-access (LgA, 6 h) and short-access (ShA, 2 h) continuous self-administration produced similar temporal profiles of cocaine intake that were sustained throughout the session; however, LgA had greater intake. ShA and intermittent-access (IntA, 6 h) produced the same intake, but different temporal profiles, with 'spiking' brain levels in IntA compared with constant levels in ShA. IntA consisted of 5-min access periods alternating with 25-min timeouts, which resulted in bursts of high responding followed by periods of no responding. DA release and uptake, as well as the potency of cocaine for DAT inhibition, were assessed by voltammetry in the nucleus accumbens slices following control, IntA, ShA, and LgA self-administration. Continuous-access protocols (LgA and ShA) did not change DA parameters, but the 'spiking' protocol (IntA) increased both release and uptake of DA. In addition, high continuous intake (LgA) produced tolerance to cocaine, while 'spiking' (IntA) produced sensitization, relative to ShA and naive controls. Thus, intake and pattern can both influence cocaine potency, and tolerance seems to be produced by high intake, while sensitization is produced by intermittent temporal patterns of intake. PMID:23719505

  8. Membrane Cholesterol Modulates the Outward Facing Conformation of the Dopamine Transporter and Alters Cocaine Binding*

    PubMed Central

    Hong, Weimin C.; Amara, Susan G.

    2010-01-01

    Clearance of synaptically released dopamine is regulated by the plasmalemmal dopamine transporter (DAT), an integral membrane protein that resides within a complex lipid milieu. Here we demonstrate that cholesterol, a major component of the lipid bilayer, can modulate the conformation of DAT and alter cocaine binding to DAT. In striatal synaptosomes and transfected cells, DAT was in cholesterol-rich membrane fractions after mild detergent extraction. After increasing the membrane cholesterol content by treatment of water-soluble cholesterol (cholesterol mixed with methyl-β-cyclodextrin), we observed an increase in DAT binding Bmax values for cocaine analogs [3H]WIN35428 and [125I]RTI-55, but similar levels of DAT proteins on the cell surface were shown by surface biotinylation assays. Membrane cholesterol addition also markedly enhanced the accessibility of cysteine sulfhydryl moieties in DAT as probed by a membrane-impermeable maleimide-biotin conjugate. We identified cysteine 306, a juxtamembrane residue on transmembrane domain 6 (TM6) of DAT, as the intrinsic residue exhibiting enhanced reactivity. Similar effects on DAT cysteine accessibility and radioligand binding were observed with addition of zinc, a reagent known to promote the outward facing conformation of DAT. Using substituted cysteine mutants on various positions likely to be extracellular, we identified additional residues located on TM1, TM6, TM7, and TM12 of DAT that are sensitive to alterations in the membrane cholesterol content. Our findings in transfected cells and native tissues support the hypothesis that DAT adopts an outward facing conformation in a cholesterol-rich membrane environment, suggesting a novel modulatory role of the surrounding membrane lipid milieu on DAT function. PMID:20688912

  9. Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury.

    PubMed

    Wagner, Amy K; Chen, Xiangbai; Kline, Anthony E; Li, Youming; Zafonte, Ross D; Dixon, C Edward

    2005-10-01

    Dopamine (DA) systems are implicated in cognitive deficits following traumatic brain injury (TBI). Rodent studies have demonstrated that both environmental enrichment (EE) and sex hormones can influence DA systems. The dopamine transporter (DAT) plays a crucial role in regulating DA transmission, and previous work shows that DAT is decreased after TBI in males. Therefore, the purpose of this study was to examine the effects of gender and EE on frontal cortex and striatal DAT expression after TBI. Sprague-Dawley male (n = 24) and cycling female rats (n = 24) were placed into EE or standard housing after controlled cortical impact (2.7 mm, 4.0 m/s) injury or sham surgery (eight groups, n = 6/group). Four weeks post-surgery, bilateral frontal cortex and striatal DAT expression was examined via Western blot. Results demonstrated that there was a significant effect of injury, EE, and region on DAT expression (P < 0.05 all comparisons) on female groups. There were no significant DAT decreases in any region as a result of injury, however, EE did promote significant post-injury DAT decreases in the striatum and ipsilateral frontal cortex (P < 0.05 all comparisons) compared to female shams housed in the standard environment. For males, there was a significant effect of injury, EE, and region for male groups (P < 0.05 all comparisons). There were decreases in DAT expression in three regions studied for injured males housed in the standard environment compared to sham males in the standard environment (P < 0.05 all comparisons), however, EE did not add significantly to post-injury DAT decreases in these regions. These results suggest that CCI causes larger relative decreases in DAT expression for males compared to females and that treatment with EE has larger effects on post-injury DAT expression for females than males. These findings may have some relevance to treatment paradigms using dopaminergic neurostimulants after TBI. PMID:16023635

  10. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding.

    PubMed

    Hong, Weimin C; Amara, Susan G

    2010-10-15

    Clearance of synaptically released dopamine is regulated by the plasmalemmal dopamine transporter (DAT), an integral membrane protein that resides within a complex lipid milieu. Here we demonstrate that cholesterol, a major component of the lipid bilayer, can modulate the conformation of DAT and alter cocaine binding to DAT. In striatal synaptosomes and transfected cells, DAT was in cholesterol-rich membrane fractions after mild detergent extraction. After increasing the membrane cholesterol content by treatment of water-soluble cholesterol (cholesterol mixed with methyl-β-cyclodextrin), we observed an increase in DAT binding B(max) values for cocaine analogs [(3)H]WIN35428 and [(125)I]RTI-55, but similar levels of DAT proteins on the cell surface were shown by surface biotinylation assays. Membrane cholesterol addition also markedly enhanced the accessibility of cysteine sulfhydryl moieties in DAT as probed by a membrane-impermeable maleimide-biotin conjugate. We identified cysteine 306, a juxtamembrane residue on transmembrane domain 6 (TM6) of DAT, as the intrinsic residue exhibiting enhanced reactivity. Similar effects on DAT cysteine accessibility and radioligand binding were observed with addition of zinc, a reagent known to promote the outward facing conformation of DAT. Using substituted cysteine mutants on various positions likely to be extracellular, we identified additional residues located on TM1, TM6, TM7, and TM12 of DAT that are sensitive to alterations in the membrane cholesterol content. Our findings in transfected cells and native tissues support the hypothesis that DAT adopts an outward facing conformation in a cholesterol-rich membrane environment, suggesting a novel modulatory role of the surrounding membrane lipid milieu on DAT function. PMID:20688912

  11. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    PubMed

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-01

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. PMID:24012617

  12. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  13. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.

    PubMed

    Mao, Yan; Bao, Yu; Gan, Shiyu; Li, Fenghua; Niu, Li

    2011-10-15

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA. PMID:21824760

  14. Brominated and radioiodinated derivatives of methylphenidate (MP): Potential imaging agents for the dopamine (DA) transporter

    SciTech Connect

    Pan, D.; Gatley, S.J.; Dewey, S.L.

    1994-05-01

    MP (Ritalin) is a psychomotor stimulant used in the treatment of attention-deficit hyperactivity disorder. The therapeutic properties of MP are thought to be mediated by its binding to a site on the DA transporter, resulting in inhibition of DA reuptake and enhanced levels of synaptic dopamine. MP also inhibits reuptake of norepinephrine (NE) in vitro. MP has two chiral centers, but its pharmacological activity is believed due solely to the d-threo isomer. We have found that d,l-threo-C-11 MP has favorable properties for PET studies, and therefore examined the effects of incorporating halogen atoms into the phenyl ring of MP, with a view to preparing C-11 and I-123 MP analogs as potential PET/SPECT tracers. We synthesized the 2-, 3- and 4-bromo MP analogs from the corresponding bromophenylacetonitriles by modification of the original synthesis of MP. In in vitro binding assays all three d,l-threo bromo compounds had higher affinities than MP for DA transporter sites labeled with tritiated WIN 35,428 (3->4-, 2->MP). They also showed high activity with NE reuptake sites labeled with tritiated nisoxetine. They were active in vivo as demonstrated by inhibition of heart uptake of tritiated NE in the mouse, and elevation of striatal extracellular DA (microdialysis) and stimulation of locomotor activity in the rat.

  15. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  16. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    PubMed

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior. PMID:18485605

  17. 2-Substituted 3β-Aryltropane Cocaine Analogs Produce Atypical Effects without Inducing Inward-Facing Dopamine Transporter Conformations

    PubMed Central

    Hong, Weimin C.; Kopajtic, Theresa A.; Xu, Lifen; Lomenzo, Stacey A.; Jean, Bernandie; Madura, Jeffry D.; Surratt, Christopher K.; Trudell, Mark L.

    2016-01-01

    Previous structure-activity relationship studies indicate that a series of cocaine analogs, 3β-aryltropanes with 2β-diarylmethoxy substituents, selectively bind to the dopamine transporter (DAT) with nanomolar affinities that are 10-fold greater than the affinities of their corresponding 2α-enantiomers. The present study compared these compounds to cocaine with respect to locomotor effects in mice, and assessed their ability to substitute for cocaine (10 mg/kg, i.p.) in rats trained to discriminate cocaine from saline. Despite nanomolar DAT affinity, only the 2β-Ph2COCH2-3β-4-Cl-Ph analog fully substituted for cocaine-like discriminative effects. Whereas all of the 2β compounds increased locomotion, only the 2β-(4-ClPh)PhCOCH2-3β-4-Cl-Ph analog had cocaine-like efficacy. None of the 2α-substituted compounds produced either of these cocaine-like effects. To explore the molecular mechanisms of these drugs, their effects on DAT conformation were probed using a cysteine-accessibility assay. Previous reports indicate that cocaine binds with substantially higher affinity to the DAT in its outward (extracellular)- compared with inward-facing conformation, whereas atypical DAT inhibitors, such as benztropine, have greater similarity in affinity to these conformations, and this is postulated to explain their divergent behavioral effects. All of the 2β- and 2α-substituted compounds tested altered cysteine accessibility of DAT in a manner similar to cocaine. Furthermore, molecular dynamics of in silico inhibitor-DAT complexes suggested that the 2-substituted compounds reach equilibrium in the binding pocket in a cocaine-like fashion. These behavioral, biochemical, and computational results show that aryltropane analogs can bind to the DAT and stabilize outward-facing DAT conformations like cocaine, yet produce effects that differ from those of cocaine. PMID:26769919

  18. Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells.

    PubMed

    Lim, Juhee; Kim, Hyo-In; Bang, Yeojin; Seol, Wongi; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-04-15

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor relevant to the development of many mammalian organs including the brain. However, the molecular mechanisms by which signaling events mediate neuronal differentiation have not been fully elucidated. In the present study, we show for the first time that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated by HIF-1α and plays essential roles in HIF-1α-induced upregulation of dopaminergic marker molecules such as tyrosine hydroxylase and dopamine transporter. We found that deferoxamine upregulated HIF-1α and enhanced the dopaminergic phenotype and neurite outgrowth of SH-SY5Y cells. Deferoxamine activated transcription and protein expression of ERRγ, and deferoxamine-induced upregulation of tyrosine hydroxylase and dopamine transporter was attenuated by using the ERRγ inverse agonist or silencing ERRγ. Altogether, these results suggest that HIF-1α can positively regulate the dopaminergic phenotype through ERRγ. This study could provide new perspectives for understanding the mechanisms underlying the promotion of dopaminergic neuronal differentiation by hypoxia. PMID:25807177

  19. Methamphetamine-Induced Dopamine Transporter Complex Formation and Dopaminergic Deficits: The Role of D2 Receptor Activation

    PubMed Central

    Hadlock, Gregory C.; Chu, Pei-Wen; Walters, Elliot T.; Hanson, Glen R.

    2010-01-01

    Methamphetamine (METH) abuse is a serious public health issue. Of particular concern are findings that repeated high-dose administrations of METH cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. Previous studies have also revealed that METH treatment causes alterations in the dopamine transporter (DAT), including the formation of higher molecular mass DAT-associated complexes. The current study extends these findings by examining mechanisms underlying DAT complex formation. The association among DAT complex formation and other METH-induced phenomena, including alterations in vesicular monoamine transporter 2 (VMAT2) immunoreactivity, astrocytic activation [as assessed by increased glial fibrillary acidic protein (GFAP) immunoreactivity], and persistent dopaminergic deficits was also explored. Results revealed that METH-induced DAT complex formation and reductions in VMAT2 immunoreactivity precede increases in GFAP immunoreactivity. Furthermore, and as reported previously for DAT complexes, pretreatment with the D2 receptor antagonist eticlopride [S-(−)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride] attenuated the decrease in VMAT2 immunoreactivity as assessed 24 h after METH treatment. DAT complexes distinct from those present 24 h after METH treatment, decreases in VMAT2 immunoreactivity, and increased GFAP immunoreactivity were present 48 to 72 h after METH treatment. Pretreatment with eticlopride attenuated each of these phenomena. Finally, DAT complexes were present 7 days after METH treatment, a time point at which VMAT2 and DAT monomer immunoreactivity were also reduced. Eticlopride pretreatment attenuated each of these phenomena. These findings provide novel insight into not only receptor-mediated mechanisms underlying the effects of METH but also the interaction among factors that probably are associated with the persistent dopaminergic deficits caused by the stimulant. PMID

  20. Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant

    PubMed Central

    Wu, Sijia; Bellve, Karl D.; Fogarty, Kevin E.; Melikian, Haley E.

    2015-01-01

    The dopamine (DA) transporter (DAT) facilitates high-affinity presynaptic DA reuptake that temporally and spatially constrains DA neurotransmission. Aberrant DAT function is implicated in attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is a major psychostimulant target, and psychostimulant reward strictly requires binding to DAT. DAT function is acutely modulated by dynamic membrane trafficking at the presynaptic terminal and a PKC-sensitive negative endocytic mechanism, or “endocytic brake,” controls DAT plasma membrane stability. However, the molecular basis for the DAT endocytic brake is unknown, and it is unknown whether this braking mechanism is unique to DAT or common to monoamine transporters. Here, we report that the cdc42-activated, nonreceptor tyrosine kinase, Ack1, is a DAT endocytic brake that stabilizes DAT at the plasma membrane and is released in response to PKC activation. Pharmacologic and shRNA-mediated Ack1 silencing enhanced basal DAT internalization and blocked PKC-stimulated DAT internalization, but had no effects on SERT endocytosis. Both cdc42 activation and PKC stimulation converge on Ack1 to control Ack1 activity and DAT endocytic capacity, and Ack1 inactivation is required for stimulated DAT internalization downstream of PKC activation. Moreover, constitutive Ack1 activation is sufficient to rescue the gain-of-function endocytic phenotype exhibited by the ADHD DAT coding variant, R615C. These findings reveal a unique endocytic control switch that is highly specific for DAT. Moreover, the ability to rescue the DAT(R615C) coding variant suggests that manipulating DAT trafficking mechanisms may be a potential therapeutic approach to correct DAT coding variants that exhibit trafficking dysregulation. PMID:26621748

  1. Dosimetry of an iodine-123-labeled tropane to image dopamine transporters

    SciTech Connect

    Mozley, P.D.; Stubbs, J.B.; Kim, H.J.

    1996-01-01

    N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)tropane (IPT) is an analog of cocaine that selectively binds the presynaptic dopamine transporter. The present study sought to measure the radiation dosimetry of IPT in seven healthy human volunteers. Dynamic renal scans were acquired immediately after the intravenous administration of 165 {+-} 16 MBq (4.45 {+-} 0.42 mCi) of [{sup 123}I]IPT. Between 7 and 12 sets of whole-body scans were acquired over the next 24 hr. The 24-hr renal excretion fractions were measured from conjugate emission scans of 7-11 discreet voided urine specimens. The fraction of the administered dose in 11 organs and each urine specimen was quantified from the attenuation-corrected geometric mean counts in opposing views. Subject-specific residence times were evaluated for each subject independently by fitting the time-activity curves to a multicompartmental model. The radiation doses were estimated with the MIRD technique from the residence times for each subject individually before any results were averaged. The findings showed that IPT was excreted rapidly by the renal system. There were no reservoirs of retained activity outside the basal ganglia, where SPECT images in these subjects showed that the mean ratio of caudate to calcarine cortex averaged 25:1 at 3 hr after injection (range 19.6-32 hr). The basal ganglia received a radiation dose of 0.028 mGy/MBq (0.10 rad/mCi). The dose-limiting organ in men was the stomach, which received an estimated 0.11 mGy/MBq (0.37 rad/mCi). In women, the critical organ was the urinary bladder at 0.14 mGy/MBq (0.51 rad/mCi). Relatively high-contrast images of the presynaptic dopamine transporters in the basal ganglia can be acquired with 185 MBq (5 mCi) of [{sup 123}I]IPT. The radiation exposure that results is significantly less than the maximum allowed by current safety guidelines for research volunteers. 33 refs., 4 figs., 3 tabs.

  2. Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae.

    PubMed

    Stednitz, Sarah J; Freshner, Briana; Shelton, Samantha; Shen, Tori; Black, Donovan; Gahtan, Ethan

    2015-01-01

    Dopamine signaling is conserved across all animal species and has been implicated in the disease process of many neurological disorders, including Parkinson's disease (PD). The primary neuropathology in PD involves the death of dopaminergic cells in the substantia nigra (SN), an anatomical region of the brain implicated in dopamine production and voluntary motor control. Increasing evidence suggests that the neurotransmitter dopamine may have a neurotoxic metabolic product (DOPAL) that selectively damages dopaminergic cells. This study was designed to test this theory of oxidative damage in an animal model of Parkinson's disease, using a transgenic strain of zebrafish with fluorescent labeling of cells that express the dopamine transporter. The pretectum and ventral diencephalon exhibited reductions in cell numbers due to L-DOPA treatment while reticulospinal neurons that do not express the DAT were unaffected, and this was partially rescued by monoamine oxidase inhibition. Consistent with the MPTP model of PD in zebrafish larvae, spontaneous locomotor behavior in L-DOPA treated animals was depressed following a 24-h recovery period, while visually-evoked startle response rates and latencies were unaffected. PMID:26546233

  3. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  4. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. PMID:27215814

  5. Nitric oxide inhibits uptake of dopamine and N-methyl-4-phenylpyridinium (MPP+) but not release of MPP+ in rat C6 glioma cells expressing human dopamine transporter

    PubMed Central

    Cao, Bo-Jin; Reith, Maarten E A

    2002-01-01

    Conflicting results have been reported regarding the influence of nitric oxide (NO) and peroxynitrite on dopamine (DA) uptake and release. In the present study, effects of NO donors were studied in rat C6 glioma cells expressing human DA transporter. [3H]-DA uptake was inhibited by S-nitroso-thiol S-nitroso-N-acetylpenicillamine, spermine/NO, diethylamine/NO (DEA/NO), (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)-amino]/NO (PAPA/NO), and 3-morphosynodiomine (SIN-1) in a rank order correlating with their half lives as NO donors, whereas no effect was observed for diethylenetriamine/NO and dipropylenetriamine/NO, which release NO very slowly. Hydroxycobalamin, a NO scavenger, but not superoxide dismutase and catalase, enzymes that metabolize superoxide and hydrogen peroxide, respectively, abolished the inhibitory effect of DEA/NO and SIN-1, indicating that they inhibit DA uptake through a mechanism related to the production of NO but unrelated to the formation of peroxynitrite. In consonance, peroxynitrite did not alter DA uptake in the present system. DEA/NO and PAPA/NO reduced [3H]-MPP+ uptake, whereas the release of [3H]-MPP+ was not modified, demonstrating that NO can inhibit uptake of DA transporter substrate without accelerating DA transporter-mediated reverse transport of substrate under the same conditions. PMID:12466224

  6. Molecular Mechanism of Biological Proton Transport

    SciTech Connect

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  7. Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress.

    PubMed

    Novick, Andrew M; Forster, Gina L; Hassell, James E; Davies, Daniel R; Scholl, Jamie L; Renner, Kenneth J; Watt, Michael J

    2015-10-01

    Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction. PMID:26056032

  8. Intermittent cocaine self-administration produces sensitization of stimulant effects at the dopamine transporter.

    PubMed

    Calipari, Erin S; Ferris, Mark J; Siciliano, Cody A; Zimmer, Benjamin A; Jones, Sara R

    2014-05-01

    Previous literature investigating neurobiological adaptations following cocaine self-administration has shown that high, continuous levels of cocaine intake (long access; LgA) results in reduced potency of cocaine at the dopamine transporter (DAT), whereas an intermittent pattern of cocaine administration (intermittent access; IntA) results in sensitization of cocaine potency at the DAT. Here, we aimed to determine whether these changes are specific to cocaine or translate to other psychostimulants. Psychostimulant potency was assessed by fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens following IntA, short access, and LgA cocaine self-administration, as well as in brain slices from naive animals. We assessed the potency of amphetamine (a releaser), and methylphenidate (a DAT blocker, MPH). MPH was selected because it is functionally similar to cocaine and structurally related to amphetamine. We found that MPH and amphetamine potencies were increased following IntA, whereas neither was changed following LgA or short access cocaine self-administration. Therefore, whereas LgA-induced tolerance at the DAT is specific to cocaine as shown in previous work, the sensitizing effects of IntA apply to cocaine, MPH, and amphetamine. This demonstrates that the pattern with which cocaine is administered is important in determining the neurochemical consequences of not only cocaine effects but potential cross-sensitization/cross-tolerance effects of other psychostimulants as well. PMID:24566123

  9. Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson's disease.

    PubMed

    Moccia, Marcello; Pappatà, Sabina; Picillo, Marina; Erro, Roberto; Coda, Anna Rita Daniela; Longo, Katia; Vitale, Carmine; Amboni, Marianna; Brunetti, Arturo; Capo, Giuseppe; Salvatore, Marco; Barone, Paolo; Pellecchia, Maria Teresa

    2014-11-01

    Tremor dominant (TD) and akinetic-rigid type (ART) are two motor subtypes of Parkinson's disease associated with different disease progression and neurochemical/neuropathological features. The role of presynaptic nigrostriatal dopaminergic damage is still controversial, poorly explored, and only assessed in medicated patients. In this study, we investigated with FP-CIT SPECT the striatal dopamine transporter (DAT) availability in drug-naïve PD patients with ART and TD phenotypes. Fifty-one de novo, drug-naïve patients with PD underwent FP-CIT SPECT studies. Patients were evaluated with Unified Parkinson's Disease Rating Scale (UPDRS) part III and Hoehn and Yahr scale (H&Y) and divided into ART (24/51) and TD (27/51) according to UPDRS part III. ART and TD patients were not different with regard to age, gender, and disease duration. However, compared to TD, ART patients presented higher UPDRS part III (p = 0.01) and H&Y (p = 0.02) and lower DAT availability in affected and unaffected putamen (p = 0.008 and p = 0.007, respectively), whereas no differences were found in caudate. Moreover, in the whole group of patients, rigidity and bradykinesia, but not tremor scores of UPDRS part III were significantly related to FP-CIT binding in the putamen. These results suggest that in newly diagnosed drug-naïve PD patients DAT availability might be different between ART and TD in relation to different disease severity. PMID:25119838

  10. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons

    PubMed Central

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson’s disease. PMID:26886559

  11. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells.

    PubMed

    Green, Ashley L; Hossain, Muhammad M; Tee, Siew C; Zarbl, Helmut; Guo, Grace L; Richardson, Jason R

    2015-07-01

    The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5-2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states. PMID:25963949

  12. Visualization of the Cocaine-Sensitive Dopamine Transporter with Ligand-Conjugated Quantum Dots

    PubMed Central

    2011-01-01

    The presynaptic dopamine (DA) transporter is responsible for DA inactivation following release and is a major target for the psychostimulants cocaine and amphetamine. Dysfunction and/or polymorphisms in human DAT (SLC6A3) have been associated with schizophrenia, bipolar disorder, Parkinson’s disease, and attention-deficit hyperactivity disorder (ADHD). Despite the clinical importance of DAT, many uncertainties remain regarding the transporter’s regulation, in part due to the poor spatiotemporal resolution of conventional methodologies and the relative lack of efficient DAT-specific fluorescent probes. We developed a quantum dot-based labeling approach that uses a DAT-specific, biotinylated ligand, 2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane (IDT444), that can be bound by streptavidin-conjugated quantum dots. Flow cytometry and confocal microscopy were used to detect DAT in stably and transiently transfected mammalian cells. IDT444 is useful for quantum-dot-based fluorescent assays to monitor DAT expression, function, and plasma membrane trafficking in living cells as evidenced by the visualization of acute, protein-kinase-C (PKC)-dependent DAT internalization. PMID:22816024

  13. Persistent Drug-Induced Parkinsonism in Patients with Normal Dopamine Transporter Imaging

    PubMed Central

    Sunwoo, Mun Kyung; Oh, Jungsu S.; Kim, Jae Seung; Sohn, Young H.; Lee, Phil Hyu

    2016-01-01

    Functional neuroimaging for the dopamine transporter (DAT) is used to distinguish drug-induced parkinsonism (DIP) from subclinical Parkinson’s disease (PD). Although DIP patients who show a normal DAT image are expected to recover completely, some do not. We investigated whether these patients showed changes in striatal DAT activity using semi-quantitative analysis of 18F-FP-CIT PET data. DIP patients with visually normal DAT images were selected from medical records. The subjects were classified as patients who recovered partially (PR) or completely within 12 months (CR). The 18F-FP-CIT uptake in each striatal subregion was compared between the CR and the PR groups. In total, 41 and 9 patients of the CR and PR groups were assessed, respectively. The two patient groups were comparable in terms of clinical characteristics including age, sex, and severity of parkinsonism. From semi-quantitative analysis of the PET image, the PR patients showed a relatively lower ligand uptake in the ventral striatum, the anterior putamen and the posterior putamen compared with the CR patients. This result suggests that persistent DIP in patients with visually normal DAT imaging may be associated with subtle decrement of DAT activity. PMID:27294367

  14. Dopamine Transporter Genotype and Stimulant Dose-Response in Youth with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Waldman, Irwin; Newcorn, Jeffrey; Bishop, Jeffrey; Kittles, Rick; Cook, Edwin H.

    2014-01-01

    Abstract Objectives: This study seeks to determine if variation in the dopamine transporter gene (SLC6A3/DAT1) moderates the dose-response effects of long-acting dexmethylphenidate (D-MPH) and mixed amphetamine salts (MAS) in children with attention-deficit/hyperactivity disorder (ADHD). Methods: Fifty-six children and adolescents (mean age=11.7±2.2) participated in a double-blind, two period crossover, dose-response study with a randomized placebo week in each 4 week drug period. Each period consisted of sequential week-long exposures to three dose levels (10, 20, 25–30 mg, depending upon weight) of D-MPH or MAS. Results: Doses of 10–20 mg of either D-MPH or MAS had little to no effect on hyperactivity-impulsivity and total ADHD symptom scores in subjects with the 9/9 genotype; this was in contrast to the dose-response curves of subjects with either the 10/10 or 10/9 genotype. Conclusions: ADHD youth with the 9/9 genotype may require higher stimulant doses to achieve adequate symptom control. PMID:24813374

  15. Longitudinal changes in the dopamine transporter and cognition in suicide attempters with charcoal burning.

    PubMed

    Yang, Kai-Chun; Wang, Shyh-Jen; Hsieh, Wen-Chi; Lirng, Jiing-Feng; Yang, Chen-Chang; Deng, Jou-Fang; Lin, Chun-Lung; Chou, Yuan-Hwa

    2015-02-28

    Suicide with charcoal burning, which results in carbon monoxide (CO) poisoning, is common in Asia. This study was designed to elucidate associations between changes in the dopamine transporter (DAT) and cognitive function in patients following CO poisoning during a follow-up period of 6 months. Participants comprised 31 healthy controls (HCs) and 21 CO poisoning patients. Each subject underwent single photon emission computed tomography with [(99m)Tc] TRODAT-1 to measure DAT availability and completed a cognitive battery assessing attention, memory, and executive function. For CO poisoning patients, a second DAT measurement and repeated cognitive evaluations were performed 6 months later. At baseline, DAT availability over bilateral striatum in CO poisoning subjects was significantly lower than in HCs. After 6 months, there was no significant change of DAT availability in CO poisoning patients. CO poisoning patients also had worse cognitive performance in all domains compared with HCs at baseline. After 6 months, most cognitive functions were significantly improved, except for the Wisconsin Card Sorting Test (WCST), a measure of executive function. Interestingly, changes in the WCST were significantly correlated with changes in DAT availability during the 6-month follow-up period. The persistence of reduced DAT availability and its association with impaired performance on the WCST indicate a crucial role of DAT in the recovery of executive function following CO poisoning. PMID:25572798

  16. Individual differences in impulsive action and dopamine transporter function in rat orbitofrontal cortex.

    PubMed

    Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T

    2016-01-28

    Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. PMID:26608122

  17. The influence of genetic variants on striatal dopamine transporter and D2 receptor binding after TBI.

    PubMed

    Wagner, Amy K; Scanlon, Joelle M; Becker, Carl R; Ritter, Anne C; Niyonkuru, Christian; Dixon, Clifton E; Conley, Yvette P; Price, Julie C

    2014-08-01

    Dopamine (DA) neurotransmission influences cognition and recovery after traumatic brain injury (TBI). We explored whether functional genetic variants affecting the DA transporter (DAT) and D2 receptor (DRD2) impacted in vivo dopaminergic binding with positron emission tomography (PET) using [(11)C]βCFT and [(11)C]raclopride. We examined subjects with moderate/severe TBI (N=12) ∼1 year post injury and similarly matched healthy controls (N=13). The variable number of tandem repeat polymorphism within the DAT gene and the TaqI restriction fragment length polymorphism near the DRD2 gene were assessed. TBI subjects had age-adjusted DAT-binding reductions in the caudate, putamen, and ventral striatum, and modestly increased D2 binding in ventral striatum versus controls. Despite small sample sizes, multivariate analysis showed lower caudate and putamen DAT binding among DAT 9-allele carriers and DRD2 A2/A2 homozygotes with TBI versus controls with the same genotype. Among TBI subjects, 9-allele carriers had lower caudate and putamen binding than 10/10 homozygotes. This PET study suggests a hypodopaminergic environment and altered DRD2 autoreceptor DAT interactions that may influence DA transmission after TBI. Future work will relate these findings to cognitive performance; future studies are required to determine how DRD2/DAT1 genotype and DA-ligand binding are associated with neurostimulant response and TBI recovery. PMID:24849661

  18. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    PubMed

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease. PMID:26886559

  19. Molecular pharmacology of renal organic anion transporters.

    PubMed

    Van Aubel, R A; Masereeuw, R; Russel, F G

    2000-08-01

    Renal organic anion transport systems play an important role in the elimination of drugs, toxic compounds, and their metabolites, many of which are potentially harmful to the body. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine of a wide variety of anionic substrates. Recent studies have shown that organic anion secretion in renal proximal tubule is mediated by distinct sodium-dependent and sodium-independent transport systems. Knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past few years by cloning of various carrier proteins. However, a number of fundamental questions still have to be answered to elucidate the participation of the cloned transporters in the overall tubular secretion of anionic xenobiotics. This review summarizes the latest knowledge on molecular and pharmacological properties of renal organic anion transporters and homologs, with special reference to their nephron and plasma membrane localization, transport characteristics, and substrate and inhibitor specificity. A number of the recently cloned transporters, such as the p-aminohippurate/dicarboxylate exchanger OAT1, the anion/sulfate exchanger SAT1, the peptide transporters PEPT1 and PEPT2, and the nucleoside transporters CNT1 and CNT2, are key proteins in organic anion handling that possess the same characteristics as has been predicted from previous physiological studies. The role of other cloned transporters, such as MRP1, MRP2, OATP1, OAT-K1, and OAT-K2, is still poorly characterized, whereas the only information that is available on the homologs OAT2, OAT3, OATP3, and MRP3-6 is that they are expressed in the kidney, but their localization, not to mention their function, remains to be elucidated. PMID:10919840

  20. Charge Redistribution and Transport in Molecular Contacts

    NASA Astrophysics Data System (ADS)

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J.; Jelínek, Pavel; Pascual, J. Ignacio

    2015-09-01

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C2 H2 ) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C2 H2 molecule attributed to a weak overlap of their respective frontier orbitals.

  1. Charge transport network dynamics in molecular aggregates.

    PubMed

    Jackson, Nicholas E; Chen, Lin X; Ratner, Mark A

    2016-08-01

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871

  2. Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo.

    PubMed Central

    Wong, D F; Harris, J C; Naidu, S; Yokoi, F; Marenco, S; Dannals, R F; Ravert, H T; Yaster, M; Evans, A; Rousset, O; Bryan, R N; Gjedde, A; Kuhar, M J; Breese, G R

    1996-01-01

    Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron

  3. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  4. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  5. Controlling molecular transport in minimal emulsions.

    PubMed

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of 'minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  6. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter.

    PubMed

    Castelli, Maura; Federici, Mauro; Rossi, Silvia; De Chiara, Valentina; Napolitano, Francesco; Studer, Valeria; Motta, Caterina; Sacchetti, Lucia; Romano, Rosaria; Musella, Alessandra; Bernardi, Giorgio; Siracusano, Alberto; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro; Centonze, Diego

    2011-11-01

    Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder. PMID:22034972

  7. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration

    PubMed Central

    Kanaan, N. M.; Kordower, J. H.; Collier, T. J.

    2012-01-01

    Aging is the strongest risk factor for developing Parkinson’s disease (PD). There is a preferential loss of dopamine (DA) neurons in the ventral tier of the substantia nigra (vtSN) compared to the dorsal tier and ventral tegmental area (VTA) in PD. Examining age-related and region-specific differences in DA neurons represents a means of identifying factors potentially involved in vulnerability or resistance to degeneration. Nitrative stress is among the factors potentially underlying DA neuron degeneration. We studied the relationship between 3-nitrotyrosine (3NT; a marker of nitrative damage) and DA transporters [DA transporter (DAT) and vesicular monoamine transporter-2 (VMAT)] during aging in DA subregions of rhesus monkeys. The percentage of DA neurons containing 3NT increased significantly only in the vtSN with advancing age, and the vtSN had a greater percentage of 3NT-positive neurons when compared to the VTA. The relationship between 3NT and DA transporters was determined by measuring fluorescence intensity of 3NT, DAT and VMAT staining. 3NT intensity increased with advancing age in the vtSN. Increased DAT, VMAT and DAT/VMAT ratios were associated with increased 3NT in individual DA neurons. These results suggest nitrative damage accumulates in midbrain DA neurons with advancing age, an effect exacerbated in the vulnerable vtSN. The capacity of a DA neuron to accumulate more cytosolic DA, as inferred from DA transporter expression, is related to accumulation of nitrative damage. These findings are consistent with a role for aging-related accrual of nitrative damage in the selective vulnerability of vtSN neurons to degeneration in PD. PMID:18598263

  8. Pharmacological and Behavioral Characterization of D-473, an Orally Active Triple Reuptake Inhibitor Targeting Dopamine, Serotonin and Norepinephrine Transporters

    PubMed Central

    Dutta, Aloke K.; Santra, Soumava; Sharma, Horrick; Voshavar, Chandrashekhar; Xu, Liping; Mabrouk, Omar; Antonio, Tamara; Reith, Maarten E. A.

    2014-01-01

    Major depressive disorder (MDD) is a debilitating disease affecting a wide cross section of people around the world. The current therapy for depression is less than adequate and there is a considerable unmet need for more efficacious treatment. Dopamine has been shown to play a significant role in depression including production of anhedonia which has been one of the untreated symptoms in MDD. It has been hypothesized that drugs acting at all three monoamine transporters including dopamine transporter should provide more efficacious antidepressants activity. This has led to the development of triple reuptake inhibitor D-473 which is a novel pyran based molecule and interacts with all three monoamine transporters. The monoamine uptake inhibition activity in the cloned human transporters expressed in HEK-293 cells (70.4, 9.18 and 39.7 for DAT, SERT and NET, respectively) indicates a serotonin preferring triple reuptake inhibition profile for this drug. The drug D-473 exhibited good brain penetration and produced efficacious activity in rat forced swim test under oral administration. The optimal efficacy dose did not produce any locomotor activation. Microdialysis experiment demonstrated that systemic administration of D-473 elevated extracellular level of the three monoamines DA, 5-HT, and NE efficaciously in the dorsal lateral striatum (DLS) and the medial prefrontal cortex (mPFC) area, indicating in vivo blockade of all three monoamine transporters by D-473. Thus, the current biological data from D-473 indicate potent antidepressant activity of the molecule. PMID:25427177

  9. Methylone-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters.

    PubMed

    Piao, Ying-Shan; Hall, Frank Scott; Moriya, Yuki; Ito, Miki; Ohara, Arihisa; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Lesch, Klaus-Peter; Murphy, Dennis L; Uhl, George R; Sora, Ichiro

    2015-06-01

    Methylone (2-methylamino-1-[3,4-methylenedioxy-phenyl]propan-1-one), an amphetamine analog, has emerged as a popular drug of abuse worldwide. Methylone induces hyperthermia, which is thought to contribute toward the lethal consequences of methylone overdose. Methylone has been assumed to induce hyperthermic effects through inhibition of serotonin and/or dopamine transporters (SERT and DAT, respectively). To examine the roles of each of these proteins in methylone-induced toxic effects, we used SERT and DAT knockout (KO) mice and assessed the hyperthermic and lethal effects caused by a single administration of methylone. Methylone produced higher rates of lethal toxicity compared with other amphetamine analogs in wild-type mice. Compared with wild-type mice, lethality was significantly lower in DAT KO mice, but not in SERT KO mice. By contrast, only a slight diminution in the hyperthermic effects of methylone was observed in DAT KO mice, whereas a slight enhancement of these effects was observed in SERT KO mice. Administration of the selective D1 receptor antagonist SCH 23390 and the D2 receptor antagonist raclopride reduced methylone-induced hyperthermia, but these drugs also had hypothermic effects in saline-treated mice, albeit to a smaller extent than the effects observed in methylone-treated mice. In contradistinction to 3,4-methylenedioxymethamphetamine, which induces its toxicity through SERT and DAT, these data indicate that DAT, but not SERT, is strongly associated with the lethal toxicity produced by methylone, which did not seem to be dependent on the hyperthermic effects of methylone. DAT is therefore a strong candidate molecule for interventions aimed at preventing acute neurotoxic and lethal effects of methylone. PMID:25794333

  10. Differential effects of dopamine transporter inhibitors in the rodent Iowa Gambling Task: Relevance to mania

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Young, Jared W.

    2012-01-01

    Rationale The Iowa Gambling Task (IGT) can be used to quantify impulsive and risky choice behaviors in psychiatric patients, e.g. Bipolar Disorder (BD) sufferers. Although developing treatments for these behaviors is important, few predictive animal models exist. Inhibition of the dopamine transporter (DAT) can model profiles of altered motor activity and exploration seen in patients with BD. The effect of DAT inhibition on impulsive choices related to BD has received limited study however. We used a rodent IGT to elucidate the effects of similarly acting drugs on risky choice behavior. Objectives We hypothesized that 1) C57BL/6 mice could adopt the ‘safe’ choice options in the IGT and 2) DAT inhibition would alter risk preference. Methods Mice were trained in the IGT to a stable risk-preference and then administered the norepinephrine/DAT inhibitor amphetamine, or the more selective DAT inhibitors modafinil or GBR12909. Results Mice developed a preference for the ‘safe’ option, which was potentiated by amphetamine administration. GBR12909 or modafinil administration increased motor impulsivity, motivation significantly, and risk preference subtly. Conclusions The rodent IGT can measure different impulse-related behaviors and differentiate similarly acting BD-related drugs. The contrasting effects of amphetamine and modafinil in mice are similar to effects in rats and humans in corresponding IGT tasks, supporting the translational validity of the task. GBR12909 and modafinil elicited similar behaviors in the IGT, likely through a shared mechanism. Future studies using a within-session IGT are warranted to confirm the suitability of DAT inhibitors to model risk-preference in BD. PMID:22945515

  11. Absence of age-related dopamine transporter loss in current cocaine abusers

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Fischman, M.

    1997-05-01

    The brain dopamine (DA) system appears to play a crucial role in the reinforcing properties of cocaine. Using PET we had previously shown significant decreases in DA D2 receptors but no changes in DA transporters (DAT) in detoxified cocaine abusers (>1 month after last cocaine use). This study evaluates DAT availability in current cocaine abusers (15 male and 5 female; age = 36.2{+-}5.3 years old) using PET and [C-11]cocaine, as a DAT ligand, and compares it to that in 18 male and 2 female age matched normal controls. Cocaine abusers had a history of abusing 4.2{+-}2.8 gm /week of cocaine for an average of 11.0{+-}4.9 years and their last use of cocaine was 5.4{+-}8 days prior to PET study. DAT availability was obtained using the ratio of the distribution volume in the region of interest (caudate, pulamen) to that in cerebellum which is a function of Bmax./Kd.+1. DAT availability in cocaine abusers did not differ to that in normals (N) (C= 1.78{+-}0.14, N= 1.77{+-}0.13). In addition, there were no differences between the groups in the distribution volume or the Kl (plasma to brain transfer constant) measures for [C-11]cocaine. However, in the normals but not in the abusers striatal DAT availability decreased with age (C: r = -0.07, p = 0.76; N: r = -0.55, p < 0.01). Though this study fails to show group differences in DAT availability between normals and current cocaine abusers it indicates a blunting of the age-related decline in DAT availability in the cocaine abusers. Future studies in older cocaine abusers at different time after detoxification arc required in order to assess if cocaine slows the loss of DAT with age or whether these changes reflect compensation to increased DAT blockade and recover with detoxification.

  12. Ex vivo identification of protein-protein interactions involving the dopamine transporter.

    PubMed

    Hadlock, Gregory C; Nelson, Chad C; Baucum, Anthony J; Hanson, Glen R; Fleckenstein, Annette E

    2011-03-30

    The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT. PMID:21291912

  13. In vivo comparison of the reinforcing and dopamine transporter effects of local anesthetics in rhesus monkeys.

    PubMed

    Wilcox, Kristin M; Kimmel, Heather L; Lindsey, Kimberly P; Votaw, John R; Goodman, Mark M; Howell, Leonard L

    2005-12-15

    Dopaminergic mechanisms are thought to play a central role in the reinforcing effects of cocaine. Similar to cocaine, other local anesthetics bind to the dopamine transporter (DAT) and inhibit DA uptake in rodent and monkey brain. Additionally, local anesthetics are self-administered in rhesus monkeys, indicative of abuse liability. The present study examined the reinforcing and DAT effects of the local anesthetics dimethocaine, procaine and cocaine using in vivo techniques. Monkeys were trained to respond under a second-order schedule for i.v. cocaine administration (0.10 or 0.30 mg/kg/infusion). When responding was stable, dimethocaine (0.030-1.7 mg/kg/ infusion) or procaine (0.10-10 mg/kg/ infusion) was substituted for the cocaine training dose. Dimethocaine administration produced higher response rates compared with that of procaine, and was a more potent reinforcer. Drug effects on behavior were related to DAT occupancy in monkey striatum during neuroimaging with positron emission tomography (PET). DAT occupancy was determined by displacement of 8-(2-[(18)F]fluroethyl)2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane (FECNT). DAT occupancy was between 66 and 82% and <10-41% for doses of dimethocaine and procaine that maintained maximum response rates, respectively. Finally, in vivo microdialysis in awake subjects determined drug-induced changes in extracellular DA in the caudate nucleus. There was close correspondence between peak increases in DA and DAT occupancy. Overall, reinforcing effects were consistent with DAT effects determined with in vivo techniques. The results further support a role for the DAT in the abuse liability of local anesthetics. PMID:16206183

  14. Cocaine occupancy of sigma1 receptors and dopamine transporters in mice.

    PubMed

    Lever, John R; Fergason-Cantrell, Emily A; Watkinson, Lisa D; Carmack, Terry L; Lord, Sarah A; Xu, Rong; Miller, Dennis K; Lever, Susan Z

    2016-03-01

    Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (-)-cocaine. We studied a key step, the ability of (-)-cocaine to occupy σ1 receptors in vivo, using CD-1(®) mice and the novel radioligand [(125) I]E-N-1-(3'-iodoallyl)-N'-4-(3",4"-dimethoxyphenethyl)-piperazine ([(125) I]E-IA-DM-PE-PIPZE). (-)-Cocaine displayed an ED50 of 68 μmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 μmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 μmol/kg for (-)-cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [(125) I]3β-(4-iodophenyl)tropan-2β-carboxylic acid isopropyl ester ([(125) I]RTI-121) binding. A chief finding is the relatively small potency difference between (-)-cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (-)-cocaine with σ1 receptors were assessed further using [(125) I]E-IA-DM-PE-PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (-)-Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E-IA-DM-PE-PIPZE gave an ED50 of 0.23 μmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 μmol/kg (i.p.) dose attenuated (-)-cocaine-induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E-IA-DM-PE-PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD-1(®) mouse brain. PMID:26618331

  15. Neural correlates of attentional bias for smoking cues: modulation by variance in the dopamine transporter gene

    PubMed Central

    Wetherill, Reagan R.; Jagannathan, Kanchana; Lohoff, Falk W.; Ehrman, Ronald; O’Brien, Charles P.; Childress, Anna Rose; Franklin, Teresa R.

    2014-01-01

    Cigarette-dependent smokers automatically and involuntarily orient attention towards smoking cues (SCs). This attentional bias is clinically significant, as it may contribute to relapse. Thus, identifying neural and genetic correlates of attentional bias is critical for improving interventions. Our previous studies show that the dopamine transporter (DAT) SLC6A3 genotype exerts profound effects on limbic responses to SCs. One potential mechanism underlying these effects is greater attentional bias for SCs. Here, we explored associations between attentional bias for SCs and neural responses to SCs among ‘sated’ smokers genotyped for the SLC6A3 polymorphism. Pseudo-Continuous arterial spin-labeled (pCASL) perfusion fMR images were acquired during SC exposure in 35 smokers genotyped for the SLC6A3 variable number of tandem repeats (VNTR) polymorphism (n=16, 9-repeats; n=19,10/10-repeats). Participants completed a visual dot-probe attentional bias task, which contained pictures of smoking and non-smoking pictures, to examine whether genetic variation in DAT influences attentional bias and to investigate relationships between attentional bias and neural responses to SCs. Although attentional bias to smoking pictures was not significantly different between 9-repeats and 10/10-repeats, 9-repeats showed a positive correlation between attentional bias and increased SC-induced brain activity in the amygdala; whereas, 10/10-repeats showed an inverse correlation in the medial orbitofrontal cortex (mOFC). In group comparisons, 9-repeats exhibited positive correlations between attentional bias and SCs in the mOFC and amygdala, relative to 10/10-repeats. Findings suggest that genetic variation in the DAT gene influences brain responses associated with attentional bias; thus, providing additional support for a SC-vulnerable endophenotype. PMID:23061530

  16. Locomotor hyperactivity in 14-3-3ζ KO mice is associated with dopamine transporter dysfunction

    PubMed Central

    Ramshaw, H; Xu, X; Jaehne, E J; McCarthy, P; Greenberg, Z; Saleh, E; McClure, B; Woodcock, J; Kabbara, S; Wiszniak, S; Wang, Ting-Yi; Parish, C; van den Buuse, M; Baune, B T; Lopez, A; Schwarz, Q

    2013-01-01

    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders. PMID:24301645

  17. Reduced Dopamine Transporter Functioning Induces High-Reward Risk-Preference Consistent with Bipolar Disorder

    PubMed Central

    van Enkhuizen, Jordy; Henry, Brook L; Minassian, Arpi; Perry, William; Milienne-Petiot, Morgane; Higa, Kerin K; Geyer, Mark A; Young, Jared W

    2014-01-01

    Individuals with bipolar disorder (BD) exhibit deleterious decision making, negatively impacting their lives. Such aberrant decision making can be quantified using the Iowa Gambling Task (IGT), which requires choosing between advantageous and disadvantageous options based on different reward/punishment schedules. The mechanisms underlying this behavioral deficit are unknown, but may include the reduced dopamine transporter (DAT) functioning reported in BD patients. Using both human and mouse IGTs, we tested whether reduced DAT functioning would recreate patterns of deficient decision making of BD patients. We assessed the IGT performance of 16 BD subjects (7 female) and 17 healthy control (HC) subjects (12 female). We recorded standard IGT performance measures and novel post-reward and post-punishment decision-making strategies. We characterized a novel single-session mouse IGT using C57BL/6J mice (n=44). The BD and HC IGT performances were compared with the effects of chronic (genetic knockdown (KD; n=31) and wild-type (n=28) mice) and acute (C57BL/6J mice (n=89) treated with the DAT inhibitor GBR12909) reductions of DAT functioning in mice performing this novel IGT. BD patients exhibited impaired decision making compared with HC subjects. Both the good-performing DAT KD and GBR12909-treated mice exhibited poor decision making in the mouse IGT. The deficit of each population was driven by high-reward sensitivity. The single-session mouse IGT measures dynamic risk-based decision making similar to humans. Chronic and acute reductions of DAT functioning in mice impaired decision-making consistent with poor IGT performance of BD patients. Hyperdopaminergia caused by reduced DAT may impact poor decision making in BD patients, which should be confirmed in future studies. PMID:25005251

  18. Altered corticostriatal neurotransmission and modulation in dopamine transporter knock-down mice.

    PubMed

    Wu, Nanping; Cepeda, Carlos; Zhuang, Xiaoxi; Levine, Michael S

    2007-07-01

    Dopamine (DA) modulates glutamate neurotransmission in the striatum. Abnormal DA modulation has been implicated in neurological and psychiatric disorders. The development of DA transporter knock-down (DAT-KD) mice has permitted modeling of these disorders and has shed new light on DA modulation. DAT-KD mice exhibit increased extracellular DA, hyperactivity, and alterations in habituation. We used whole cell patch-clamp recordings from visually identified striatal neurons in slices to examine the effects of DAT-KD on corticostriatal transmission. Electrophysiological recordings from medium-sized spiny neurons in the dorsal striatum revealed alterations in both amplitude and frequency, of spontaneous glutamate receptor-mediated synaptic currents in cells from DAT-KD mice. Furthermore, kinetic analyses revealed that these currents had shorter half-amplitude durations and faster decay times. In contrast, GABA-receptor-mediated synaptic currents were not altered. Striatal neurons from DAT-KD mice also responded differently to amphetamine, cocaine, and DA D2-receptor agonists or antagonists compared with wildtype (WT) littermate controls. In WTs amphetamine and cocaine reduced the frequency of spontaneous glutamate currents and these effects appeared to be mediated by activation of D2 receptors. In contrast, in DAT-KD mice either no changes or only small increases in frequency occurred. D2-receptor agonists or antagonists also had opposing effects in WT and DAT-KD mice. Together, these results indicate that chronically increased extracellular DA produces long-lasting changes in corticostriatal communication that may be mediated by changes in D2-receptor function. These findings have implications for understanding mechanisms underlying attention deficit hyperactivity disorder and Tourette's syndrome and may provide insights into novel therapeutic approaches. PMID:17522168

  19. GM1 Ganglioside in Parkinson’s Disease: Pilot Study of Effects on Dopamine Transporter Binding

    PubMed Central

    Schneider, Jay S.; Cambi, Franca; Gollomp, Stephen M.; Kuwabara, Hiroto; Brašić, James R.; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F.

    2015-01-01

    Objective GM1 ganglioside has been suggested as a treatment for Parkinson’s disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Methods Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD1: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 minutes following injection of [11C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Results Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Interpretation Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. PMID:26099170

  20. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter

    PubMed Central

    Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880

  1. Effects of combined dopamine and serotonin transporter inhibitors on cocaine self-administration in rhesus monkeys.

    PubMed

    Howell, Leonard L; Carroll, F Ivy; Votaw, John R; Goodman, Mark M; Kimmel, Heather L

    2007-02-01

    Dopamine transporter (DAT) inhibitors may represent a promising class of drugs in the development of cocaine pharmacotherapies. In the present study, the effects of pretreatments with the selective DAT inhibitor 3beta-(4-chlorophenyl)tropane-2beta-[3-(4'-methylphenyl)isoxazol-5-yl] hydrochloride (RTI-336) (0.3-1.7 mg/kg) were characterized in rhesus monkeys trained to self-administer cocaine (0.1 and 0.3 mg/kg/injection) under a multiple second-order schedule of i.v. drug or food delivery. In addition, RTI-336 (0.01-1.0 mg/kg/injection) was substituted for cocaine to characterize its reinforcing effects. Last, the dose of RTI-336 that reduced cocaine-maintained behavior by 50% (ED(50)) was coadministered with the selective serotonin transporter (SERT) inhibitors fluoxetine (3.0 mg/kg) and citalopram (3.0 mg/kg) to characterize their combined effects on cocaine self-administration. PET neuroimaging with the selective DAT ligand [(18)F]8-(2-[(18)F]fluoroethyl)-2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane quantified DAT occupancy at behaviorally relevant doses of RTI-336. Pretreatments of RTI-336 produced dose-related reductions in cocaine self-administration, and the ED(50) dose resulted in approximately 90% DAT occupancy. RTI-336 was reliably self-administered, but responding maintained by RTI-336 was lower than responding maintained by cocaine. Doses of RTI-336 that maintained peak rates of responding resulted in approximately 62% DAT occupancy. Co-administration of the ED(50) dose of RTI-336 in combination with either SERT inhibitor completely suppressed cocaine self-administration without affecting DAT occupancy. Hence, at comparable levels of DAT occupancy, coadministration of SERT inhibitors with RTI-336 produced more robust reductions in cocaine self-administration compared with RTI-336 alone. Collectively, the results indicate that combined inhibition of DAT and SERT warrants consideration as a viable approach in the development of cocaine medications

  2. Methylphenidate Treatment in Adolescent Rats with an Attention Deficit/Hyperactivity Disorder Phenotype: Cocaine Addiction Vulnerability and Dopamine Transporter Function

    PubMed Central

    Harvey, Roxann C; Sen, Sucharita; Deaciuc, Agripina; Dwoskin, Linda P; Kantak, Kathleen M

    2011-01-01

    Appropriate animal models of attention deficit/hyperactivity disorder (ADHD) and drug reinforcement allow investigation of possible underlying biological bases of ADHD and its comorbidity with cocaine addiction. Toward this end, spontaneously hypertensive rats (SHRs) exhibiting an ADHD phenotype were compared with Wistar-Kyoto (WKY) and Wistar (WIS) rats. Initially, 1.5 mg/kg oral methylphenidate or vehicle was administered between postnatal days 28 and 55, and acquisition of visual discrimination learning was examined. After discontinuing adolescent treatments, adult rats were evaluated for cocaine self-administration and dopamine transporter (DAT) function in the prefrontal cortex (PFC) and striatum. During adolescence, SHRs showed deficits in visual discrimination relative to WKY and WIS rats when non-medicated. Methylphenidate improved visual discrimination only in SHRs. Compared with WKY and WIS rats, SHRs with previous methylphenidate treatment acquired cocaine self-administration faster, identified cocaine as a highly efficacious reinforcer by displaying an upward shift in the cocaine dose–response function, and showed the greatest motivation to self-administer cocaine by exhibiting the highest progressive ratio breakpoints. In the PFC, the maximal dopamine uptake (Vmax) at DAT was decreased in SHRs and increased in WKY and WIS rats by previous methylphenidate treatment. The affinity (Km) for dopamine at DAT in the PFC was not different between strains, nor was Vmax or Km altered in the striatum by previous methylphenidate treatment in any strain. Methylphenidate-induced decreases in dopamine clearance by DAT in the PFC may underlie increased cocaine self-administration in SHRs. These preclinical findings suggest that caution should be exercised when methylphenidate is prescribed for first-time treatment of ADHD in adolescent patients, as cocaine addiction vulnerability may be augmented. PMID:21150910

  3. Charge Redistribution and Transport in Molecular Contacts.

    PubMed

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J; Jelínek, Pavel; Pascual, J Ignacio

    2015-09-25

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C_{2}H_{2}) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C_{2}H_{2} molecule attributed to a weak overlap of their respective frontier orbitals. PMID:26451568

  4. Quantitation of dopamine transporter mRNA in the rat brain: mapping, effects of "binge" cocaine administration and withdrawal.

    PubMed

    Maggos, C E; Spangler, R; Zhou, Y; Schlussman, S D; Ho, A; Kreek, M J

    1997-05-01

    Dopamine transporter (DAT) mRNA from selected brain regions of individual male Fischer rats was quantitated utilizing a sensitive solution hybridization assay in which the levels of RNase-protected 32P-labeled mRNA:cRNA hybrids were measured. DAT mRNA was detected in whole brain regions known to contain abundant DAT mRNA (mean picogram of DAT mRNA/microgram of total RNA +/- SEM): substantia nigra, 7.17 +/- 0.47; ventral tegmentum, 4.71 +/- 0.38. In regions known to contain low levels of DAT mRNA, these levels were detected: central grey, 0.39 +/- 0.06; hypothalamus, 0.14 +/- 0.03. In addition, DAT mRNA was detected in areas where it had not previously been identified: amygdala, 0.19 +/- 0.03; caudate-putamen, 0.15 +/- 0.03; nucleus accumbens, 0.13 +/- 0.01; pons/medulla, 0.12 +/- 0.02; globus pallidus, 0.09 +/- 0.04; pituitary 0.07 +/- 0.01; frontal cortex, 0.05 +/- 0.01. No DAT mRNA was detected in 150 micrograms of rat liver RNA. As cocaine binds to and inhibits the activity of the dopamine transporter, we sought to determine if there were differences in dopamine transporter mRNA levels between saline- and cocaine-injected rats or rats withdrawn from a chronic "binge" pattern (15 mg/kg per dose i.p.; three doses at 1 h intervals each day) cocaine injection. Using trichloroacetic acid precipitation of mRNA:cRNA hybrids from RNA extracted from whole brain regions, we found no significant differences in the substantia nigra or the ventral tegmentum following subacute (3 days) binge, chronic (14 days) binge or 10 days withdrawal from a chronic binge pattern cocaine or saline administration. PMID:9097405

  5. Relationship between dopamine transporter occupancy and methylphenidate induced high in humans

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. |

    1996-05-01

    The inhibition of the dopamine transporter (DAT) by cocaine has been shown to be indispensable for its reinforcing properties. The development of drugs that inibit the DAT has become a major target to prevent cocaine`s effects. However prevention of the {open_quotes}high{close_quotes} by DAT inhibitors has never been demonstrated. This study evaluates the ability to block methylphenidate (MP), a DAT inhibitor drug with similar reinforcing properties to cocaine, induced {open_quotes}high{close_quotes} by prior DAT inhibition. It uses PET and [{sup 11}C]d-threo-methylphenidate to measure the relationship between DAT occupancy prior to administration of MP and the intensity of the subjective perception of the {open_quotes}high{close_quotes} in 8 controls. MP (0.375 mg/kg iv) which was administered as a single injection and also as two sequential doses given 60 minutes apart significantly reduced the ratio of the distribution volume for [{sup 11}C]d-threo-methylphenidate in striatum to that in cerebellum from a baseline of 2.83 {plus_minus} 0.2 to 1.29 {plus_minus} 0.1 at 7 minutes and to 1.37 {plus_minus} 0.2 at 60 minutes after a single injection of MP and to 1.14 {plus_minus} 0.1 at 7 minutes after the second of two sequential MP doses. This corresponds to a DAT occupancy by MP of 84% {plus_minus} 7 at 7 minutes and of 77% {plus_minus} 6 at 60 minutes after a single injection of MP and of 93% {plus_minus} 7 at 7 after the second of two sequential MP doses. The subjective perception of {open_quotes}high{close_quotes} experienced after the second injection of MP was of a similar magnitude to that experienced after the first injection of MP was of a similar magnitude to that experienced after the first injection, in spite of the very different starting DAT occupancies (0 and 77%, respectively). DAT occupancy was not correlated with the {open_quotes}high{close_quotes}; and one subject with 100% DAT occupancy did not perceive the {open_quotes}high{close_quotes}.

  6. Quantification of dopamine transporter density with [18F]FECNT PET in healthy humans

    PubMed Central

    Nye, Jonathon A.; Votaw, John R.; Bremner, J. Douglas; Davis, Margaret R.; Voll, Ronald J.; Camp, Vernon M.; Goodman, Mark M.

    2015-01-01

    Introduction Fluorine-18 labeled 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane ([18 F]FECNT) binds reversibly to the dopamine transporter (DAT) with high selectivity. [18 F]FECNT has been used extensively in the quantification of DAT occupancy in non-human primate brain and can distinguish between Parkinson's and healthy controls in humans. The purpose of this work was to develop a compartment model to characterize the kinetics of [18 F]FECNT for quantification of DAT density in healthy human brain. Methods Twelve healthy volunteers underwent 180 min dynamic [18 F]FECNT PET imaging including sampling of arterial blood. Regional time-activity curves were extracted from the caudate, putamen and midbrain including a reference region placed in the cerebellum. Binding potential, BPND, was calculated for all regions using kinetic parameters estimated from compartmental and Logan graphical model fits to the time-activity data. Simulations were performed to determine whether the compartment model could reliably fit time-activity data over a range of BPND values. Results The kinetics of [18 F]FECNT were well-described by the reversible 2-tissue arterial input and full reference tissue compartment models. Calculated binding potentials in the caudate, putamen and midbrain were in good agreement between the arterial input model, reference tissue model and the Logan graphical model. The distribution volume in the cerebellum did not reach a plateau over the duration of the study, which may be a result of non-specific binding in the cerebellum. Simulations that included non-specific binding show that the reference and arterial input models are able to estimate BPND for DAT densities well below that observed in normal volunteers. Conclusion The kinetics of [18 F]FECNT in human brain are well-described by arterial input and reference tissue compartment models. Measured and simulated data show that BPND calculated with reference tissue model is proportional to

  7. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of μ-opioid receptor knockout mice.

    PubMed

    Park, Sang Won; He, Zhi; Shen, Xine; Roman, Richard J; Ma, Tangeng

    2012-06-01

    Extensive anatomical and functional interactions exist between central dopaminergic and opioidergic systems and both systems are proposed to be targets for amphetamine-like drugs. We have previously reported that μ-opioid receptor (μ-OR) knockout mice are resistant to the loss of dopamine in the striatum and the development of behavioral sensitization induced by repeated methamphetamine (METH) treatment. The present study assessed whether METH-treated μ-OR knockout mice exhibit a differential response of the expression of dopamine transporter and tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis and maintaining dopamine levels. Mice daily received intraperitoneal injection of METH (0, 0.6, 2.5, or 10 mg/kg) for 7 days and sacrificed on day 11 (4 days after the last injection). The expression of TH protein in the striatum and the levels of TH mRNA and number of TH positive neurons in the substantia nigra were reduced in wild-type mice treated with METH (2.5 and 10 mg/kg), but not in the μ-OR knockout mice. In contrast, METH exposure at the highest dose (10 mg/kg) reduced dopamine transporter levels in both strains of mice. These results suggest that the μ-OR contributes to METH-induced loss of dopamine and behavioral sensitization by decreasing the expression of TH. PMID:22329540

  8. Ascorbic acid and striatal transport of (/sup 3/H)1-methyl-4-phenylpyridine (MPP/sup +/) and (/sup 3/H)dopamine

    SciTech Connect

    Debler, E.A.; Hashim, A.; Lajtha, A.; Sershen, H.

    1988-01-01

    The inhibition of uptake of (/sup 3/H)dopamine and (/sup 3/H)1-methyl-4-phenylpyridine (MPP/sup +/) was examined in mouse striatal synaptosomal preparations. Kinetic analysis indicated that ascorbic acid is a noncompetitive inhibitor of (/sup 3/H)MPP/sup +/ uptake. No inhibition of (/sup 3/H)dopamine uptake is observed. The dopamine uptake blockers, GBR-12909, cocaine, and mazindol strongly inhibit (IC/sub 50/ < 1 ..mu..M) both (/sup 3/H)dopamine and (/sup 3/H)MPP/sup +/ transport. Nicotine, its metabolites, and other tobacco alkaloids are weak inhibitors except 4-phenylpyridine and lobeline, which are moderate inhibitors of both (/sup 3/H)dopamine and (/sup 3/H)MPP/sup +/ uptake. These similarities in potencies are in agreement with the suggestion that (/sup 3/H)MPP/sup +/ and (/sup 3/H) are transported by the same carrier. The differences observed in the alteration of dopaminergic transport and mazindol binding by ascorbic acid suggest that ascorbic acid's effects on (/sup 3/H)MPP/sup +/ transport are related to translocation and/or dissociation processes occurring subsequent to the initial binding event.

  9. Single Cell Measurement of Dopamine Release with Simultaneous Voltage-clamp and Amperometry

    PubMed Central

    Saha, Kaustuv; Swant, Jarod; Khoshbouei, Habibeh

    2012-01-01

    After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution. PMID:23207721

  10. Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine.

    PubMed

    Zhang, Rongli; Xu, Sheng; Zhu, Ye; Zhao, Wei; Luo, Jing; Liu, Xiaoya; Tang, Dingxing

    2016-11-15

    A voltammetric sensor for melamine (MEL) was prepared from molecularly imprinted nanohybrids (MINBs). A dopamine modified poly-γ-glutamic acid copolymer (γ-PGA-DA) and MEL were self-assembled into MEL/γ-PGA-DA nanoparticles (NPs) in aqueous solution via weak interactions, followed by adding an aqueous AgNO3 solution into the mixture. The Ag(+) was adsorbed in the MEL/γ-PGA-DA NPs and spontaneously reduced to Ag NPs by the dopamine moieties of γ-PGA-DA, forming Ag/MEL/γ-PGA-DA MINBs, which were then cast on a gold electrode to form a MINBs film. The MEL was removed by electrolysis via catalysis of Ag NPs at a constant potential of 1.4V in phosphate buffer saline solution, to obtain a voltammetric sensor for MEL. The sensor responded linearly to MEL in the concentration range of 5×10(-18) to 5×10(-7)molL(-1). Compared to other published molecularly imprinted polymer sensors for sensing MEL, the prepared MINBs sensor had much wider detection range with lower detection limit. PMID:27196255

  11. Molecular modeling of auxin transport inhibitors

    SciTech Connect

    Gardner, G.; Black-Schaefer, C.; Bures, M.G. )

    1990-05-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for ({sup 3}H)NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections.

  12. Molecular motor driven transportation on microtubule loops

    NASA Astrophysics Data System (ADS)

    Sikora, Aurelien; Federici, Filippo; Kim, Kyongwan; Nakazawa, Hikaru; Umetsu, Mitsuo; Hwang, Wonmuk; Teizer, Winfried

    2015-03-01

    Molecular motors such as kinesin are naturally fitted for the transport of cargo. By offering an unlimited path, microtubule loops allow the study of kinesin motility on distances exceeding that offered by a single microtubule. Moreover, the periodicity of the path allows the comparisons of trajectories between laps. Here we study the motility of quantum dot labeled kinesin on microtubule loops. Motility of kinesins over multiple laps is observed and their trajectories are extracted from kymograph using a custom algorithm. Distribution of velocities at given locations do not vary randomly but show a correlation with the presence of obstacles. Possible mechanisms responsible for the long range transport are discussed in the context of available theories.

  13. Vibrationally mediated transport in molecular transistors

    NASA Astrophysics Data System (ADS)

    Santamore, D. H.; Lambert, Neill; Nori, Franco

    2013-02-01

    We investigate the steady-state electronic transport through a suspended dimer molecule coupled to leads. When strongly coupled to a vibrational mode, the electron transport is enhanced at the phonon resonant frequency and higher order resonances. The temperature and bias determine the nature of the phonon-assisted resonances, with clear absorption and emission peaks. The strong coupling also induces a Frank-Condon-like blockade, suppressing the current between the resonances. We compare an analytical polaron transformation method to two exact numerical methods: the Hierarchy equations of motion and an exact diagonalization in the Fock basis. In the steady state, our two numerical results are an exact match and qualitatively reflect the main features of the polaron treatment. Our results indicate the possibility of a new type of molecular transistor or sensor where the current can be extremely sensitive to small changes in the energies of the electronic states in the dimer.

  14. Synthesis and evaluation of novel N-fluoropyridyl derivatives of tropane as potential PET imaging agents for the dopamine transporter

    PubMed Central

    Liu, Jingying; Zhu, Lin; Plössl, Karl; Lieberman, Brian P.; Kung, Hank F.

    2011-01-01

    A series of novel N-fluoropyridyl-containing tropane derivatives were synthesized and their binding affinities for the dopamine transporter (DAT), serotonin transporter (SERT) and norepinephrine (NET) were determined via competitive radioligand binding assays. Among these derivatives, compound 6d showed the highest binding affinity to DAT (Ki = 4.1 nM), and selectivity for DAT over SERT (5 fold) and NET (16 fold). Compound 6d was radiolabeled with Fluorine-18 in two steps. Regional brain distribution and ex vivo autoradiography studies of [18F]6d demonstrated that the ligand was selectively localized in the striatum region, where DAT binding sites are highly expressed. [18F]6d may be useful as a potential radioligand for imaging DATs with PET. PMID:21458259

  15. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter.

    PubMed

    Anneken, John H; Angoa-Pérez, Mariana; Kuhn, Donald M

    2015-04-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of 'bath salts' and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. METH (a) enters DA nerve endings via the DAT, causes leakage of DA into the cytoplasm and then into the synapse via DAT-mediated reverse transport. Methylone (METHY) and mephedrone (MEPH; b), like METH, are substrates for the DAT but release

  16. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations.

    PubMed

    Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy; Childers, Steven R; Hemby, Scott E

    2014-10-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. PMID:24916769

  17. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics

    NASA Astrophysics Data System (ADS)

    Sokoloff, Pierre; Giros, Bruno; Martres, Marie-Pascale; Bouthenet, Marie-Louise; Schwartz, Jean-Charles

    1990-09-01

    A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor. The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions. It seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease, that were previously thought to interact only with D2 receptors.

  18. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine.

    PubMed

    Cathala, Adeline; Devroye, Céline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-05-01

    In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity. PMID:24661380

  19. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    SciTech Connect

    Daniels, J.; Williams, J.; Asherson, P.; McGuffin, P.; Owen, M.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype in CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.

  20. Molecular approach to intracellular cargo transport

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2010-03-01

    Landmark discoveries in the study of cytoplasmic motors have been made through advances in single molecule biophysics and detailed mechanistic models exist for kinesin and dynein. However, the function of motors in physiological conditions has not been carefully tested. In cells, more than few dyneins can attach to the same cargo and interact with the opposite polarity motors of kinesin. To study the molecular crosstalk between the motors, we have used intraflagellar transport (IFT) in Chlamydomonas reinhardtii as a model system. Ultrahigh spatio-temporal tracking of single cargo movement showed that IFT particles move for long distances unidirectionally with 8 nm increments, agreeing with measured step sizes of kinesin and dynein. To measure how many motors transport each cargo, we have linked large polystyrene beads to internal IFT particles through a transmembrane protein. Force measurements indicated that, on average, 3-4 motors transport cargoes in each direction. The results showed that IFT motors are tightly coordinated and might be involved in recycling each other to the appropriate end of the flagellum.

  1. Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knock out mice

    PubMed Central

    Li, BingJin; Arime, Yosefu; Hall, F. Scott; Uhl, George R.; Sora, Ichiro

    2010-01-01

    Brain-derived neurotrophic factor (BDNF), one of the key brain neurotrophins, has been implicated in neuronal plasticity and memory. Recent studies document the importance of BDNF for normal long-term memory functions. However, there are few studies of the roles of BDNF in short term memory. Dopamine is likely to play important roles in BDNF gene expression in specific brain regions, including frontal cortical regions that are implicated in short term working memory processes that include spontaneous alternation. We have thus tested spatial working memory in dopamine transporter knockout (DAT KO) and wild-type mice. Spontaneous alternation in the Y-maze, an index of short-term spatial working memory in mice, was significantly decreased in DAT KO mice compared to wildtype mice. BDNF protein was significantly decreased in frontal cortex, though not in striatum or hippocampus, of the DAT KO mice. The data support the hypothesis that impaired spatial working memory in DAT KO mice may be related to decreased frontal cortical BDNF in these animals, and document apparent roles for BDNF in a short term memory process. PMID:19932884

  2. Influence of chronic dopamine transporter inhibition by RTI-336 on motor behavior, sleep, and hormone levels in rhesus monkeys.

    PubMed

    Andersen, Monica L; Sawyer, Eileen K; Carroll, F Ivy; Howell, Leonard L

    2012-04-01

    Dopamine transporter (DAT) inhibitors have been developed as a promising treatment approach for cocaine dependence. However, the stimulant effects of DAT inhibitors have the potential to disrupt sleep patterns, and the influence of long-term treatment on dopamine neurochemistry is still unknown. The objectives of this study were to (1) explore the stimulant-related effects of chronic DAT inhibitor (RTI-336) treatment on motor activity and sleep-like measures in male rhesus monkeys (Macaca mulatta; n = 4) and (2) to determine the effect of drug treatment on prolactin and cortisol levels. Subjects were fitted with a collar-mounted activity monitor to evaluate their motor activity, with 4 days of baseline recording preceding 21 days of daily saline or RTI-336 (1 mg/kg/day; intramuscular) injections. Blood samples were collected immediately prior to and following chronic treatment to assess hormone levels. RTI-336 produced a significant increase in locomotor activity at the end of the daytime period compared to saline administration. During the 3-week treatment period, sleep efficiency was decreased and the fragmentation index and latency to sleep onset were significantly increased. Hormone levels were not changed throughout the study. Chronic treatment with RTI-336 has a mild but significant stimulant effect, as evidenced by the significant increase in activity during the evening period which may cause minor disruptions in sleep measures. PMID:22023668

  3. Predicting childhood effortful control from interactions between early parenting quality and children’s dopamine transporter gene haplotypes

    PubMed Central

    LI, YI; SULIK, MICHAEL J.; EISENBERG, NANCY; SPINRAD, TRACY L.; LEMERY-CHALFANT, KATHRYN; STOVER, DARYN A.; VERRELLI, BRIAN C.

    2015-01-01

    Children’s observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers’ observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3′-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects were found. Children without the intron8-A/intron13-G, intron8-A/3′-UTR VNTR-10, or intron13-G/3′-UTR VNTR-10 haplotypes (i.e., haplotypes associated with the reduced SLC6A3 gene expression and thus lower dopamine functioning) appeared to demonstrate altered levels of EC as a function of maternal parenting quality, whereas children with these haplotypes demonstrated a similar EC level regardless of the parenting quality. Children with these haplotypes demonstrated a trade-off, such that they showed higher EC, relative to their counterparts without these haplotypes, when exposed to less supportive maternal parenting. The findings revealed a diathesis–stress pattern and suggested that different SLC6A3 haplotypes, but not single variants, might represent different levels of young children’s sensitivity/responsivity to early parenting. PMID:25924976

  4. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys.

    PubMed

    Letchworth, S R; Nader, M A; Smith, H R; Friedman, D P; Porrino, L J

    2001-04-15

    The present study examined the time course of alterations in levels of dopamine transporter (DAT) binding sites that accompany cocaine self-administration using quantitative in vitro receptor autoradiography with [(3)H]WIN 35,428. The density of dopamine transporter binding sites in the striatum of rhesus monkeys with 5 d, 3.3 months, or 1.5 years of cocaine self-administration experience was compared with DAT levels in cocaine-naive control monkeys. Animals in the long-term (1.5 years) exposure group self-administered cocaine at 0.03 mg/kg per injection, whereas the initial (5 d) and chronic (3.3 months) treatment groups were each divided into lower dose (0.03 mg/kg per injection) and higher dose (0.3 mg/kg per injection) groups. Initial cocaine exposure led to moderate decreases in [(3)H]WIN 35,428 binding sites, with significant changes in the dorsolateral caudate (-25%) and central putamen (-19%) at the lower dose. Longer exposure, in contrast, resulted in elevated levels of striatal binding sites. The increases were most pronounced in the ventral striatum at the level of the nucleus accumbens shell. At the lower dose of the chronic phase, for example, significant increases of 21-42% were measured at the caudal level of the ventral caudate, ventral putamen, olfactory tubercle, and accumbens core and shell. Systematic variation of cocaine dose and drug exposure time demonstrated the importance of these factors in determining the intensity of increased DAT levels. With self-administration of higher doses especially, increases were more intense and included dorsal portions of the striatum so that every region at the caudal level exhibited a significant increase in DAT binding sites (20-54%). The similarity of these findings to previous studies in human cocaine addicts strongly suggest that the increased density of dopamine transporters observed in studies of human drug abusers are the result of the neurobiological effects of cocaine, ruling out confounds such as

  5. Transport of toxic metals by molecular mimicry.

    PubMed Central

    Ballatori, Nazzareno

    2002-01-01

    Intracellular concentrations of essential metals are normally maintained within a narrow range, whereas the nonessential metals generally lack homeostatic controls. Some of the factors that contribute to metal homeostasis have recently been identified at the molecular level and include proteins that mediate import of essential metals from the extracellular environment, those that regulate delivery to specific intracellular proteins or compartments, and those that mediate metal export from the cell. Some of these proteins appear highly selective for a given essential metal; however, others are less specific and interact with multiple metals, including toxic metals. For example, DCT1 (divalent cation transporter-1; also known as NRAMP2 or DMT1) is considered to be a major cellular uptake mechanism for Fe(2+) and other essential divalent metals, but this protein also mediates uptake of Cd(2+), Pb(2+), and possibly of other toxic divalent metals. The ability of nonessential metals to interact with binding sites for essential metals is critical for their ability to gain access to specific cellular compartments and for their ability to disrupt normal biochemical or physiological functions. Another major mechanism by which metals traverse cell membranes and produce cell injury is by forming complexes whose overall structures mimic those of endogenous molecules. For example, it has long been known that arsenate and vanadate can compete with phosphate for transport and metabolism, thereby disrupting normal cellular functions. Similarly, cromate and molybdate can mimic sulfate in biological systems. Studies in our laboratory have focused on the transport and toxicity of methylmercury (MeHg) and inorganic mercury. Mercury has a high affinity for reduced sulfhydryl groups, including those of cysteine and glutathione (GSH). MeHg-l-cysteine is structurally similar to the amino acid methionine, and this complex is a substrate for transport systems that carry methionine across

  6. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    ERIC Educational Resources Information Center

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT GAT GGG…

  7. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benztropine analog JHW 007 displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks effects of cocaine,including its self-administration. To determine sites responsible for the cocaine-antagonist effects of JHW 007, ...

  8. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  9. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  10. Cooperative cargo transport by several molecular motors

    PubMed Central

    Klumpp, Stefan; Lipowsky, Reinhard

    2005-01-01

    The transport of cargo particles that are pulled by several molecular motors in a cooperative manner is studied theoretically in this article. The transport properties depend primarily on the maximal number N of motor molecules that may pull simultaneously on the cargo particle. Because each motor must unbind from the filament after a finite number of steps but can also rebind to it again, the actual number of pulling motors is not constant but varies with time between zero and N. An increase in the maximal number N leads to a strong increase of the average walking distance (or run length) of the cargo particle. If the cargo is pulled by up to N kinesin motors, for example, the walking distance is estimated to be 5N–1/N micrometers, which implies that seven or eight kinesin molecules are sufficient to attain an average walking distance in the centimeter range. If the cargo particle is pulled against an external load force, this force is shared between the motors, which provides a nontrivial motor–motor coupling and a generic mechanism for nonlinear force–velocity relationships. With increasing load force, the probability distribution of the instantaneous velocity is shifted toward smaller values, becomes broader, and develops several peaks. Our theory is consistent with available experimental data and makes quantitative predictions that are accessible to systematic in vitro experiments. PMID:16287974

  11. Dopamine transporter scanning in the evaluation of patients with suspected Parkinsonism: a case-based user's guide.

    PubMed

    Rodriguez-Porcel, Federico; Jamali, Sheheryar; Duker, Andrew P; Espay, Alberto J

    2016-01-01

    Given the wide range of manifestations of parkinsonism and its mimics, the diagnosis may remain elusive or be misattributed in some patients. Dopamine transporter (DAT) single photon emission computed tomography (SPECT) (DaTscan), an imaging technique that probes the integrity of the presynaptic nigrostriatal system, can be useful in the evaluation of clinically complex parkinsonian disorders in the appropriate context and when adequately interpreted. Pearls and pitfalls in the use of DaTscan for the differential diagnosis of parkinsonisms are reviewed using a case-based format. While the DaTscan is no replacement for a careful neurological examination in ascertaining the likelihood of Parkinson disease or other parkinsonisms in most clinical scenarios, it can be useful in the assessment of disorders where an abducting resting tremor, a prominent postural tremor, or incongruent features are not sufficiently clear on exam to distinguish neurodegenerative parkinsonism from dystonia, drug-induced parkinsonism and functional (psychogenic) parkinsonism, respectively. PMID:26564057

  12. The dopamine transporter protein gene (SLC6A3): Primary linage mapping and linkage studies in Tourette syndrome

    SciTech Connect

    Gelernter, J.; Kruger, S.D.; Pakstis, A.J. |

    1995-12-10

    The dopamine transporter, the molecule responsible for presynaptic reuptake of dopamine and a major site of action of psychostimulant drugs, including cocaine, is encoded by locus SLC6A3 (alias DAT1). The protein`s actions and DAT`s specific localization to dopaminergic neurons make it a candidate gene for several psychiatric illnesses. SLC6A3 has been mapped to distal chromosome 5p, using physical methods. Genetic linkage methods were used to place SLC6A3 in the genetic linkage map. Four extended pedigrees (one of which overlaps with CEPH) were typed. Linkage with Tourette syndrome (TS) was also examined. SLC6A3 showed close linkage with several markers previously mapped to distal chromosome 5p, including D5S11 (Z{sub max} = 16.0, {theta}{sub M} = {theta}{sub F} = 0.03, results from four families) and D5S678 (Z{sub max} = 7.84, {theta}{sub M} = {theta}{sub F} = 0, results from two families). Observed crossovers established that SLC6A3 is a distal marker close to D5S10 and D5S678, but these three distal markers could not be ordered. Linkage between TS and SLC6A3 could be excluded independently in two branches of a large kindred segregating TS; the lod score in a third family was also negative, but not significant. Cumulative results show a lod score of -6.2 at {theta} = 0 and of -3.9 at {theta} = 0.05 (dominant model, narrow disease definition). SLC6A3 thus maps to distal chromosome 5p by linkage analysis, in agreement with previous physical mapping data. A mutation at SLC6A3 is not causative for TS in the two large families that generated significant negative lod scores (if the parameters of our analyses were correct) and is unlikely to be causative in the family that generated a negative lod score that did not reach significance. These results do not exclude a role for the dopamine transporter in influencing risk for TS in combination with other loci. 23 refs., 1 fig., 2 tabs.

  13. Differences in Behavior and Activity Associated with a Poly(A) Expansion in the Dopamine Transporter in Belgian Malinois

    PubMed Central

    Lit, Lisa; Belanger, Janelle M.; Boehm, Debby; Lybarger, Nathan; Oberbauer, Anita M.

    2013-01-01

    In Belgian Malinois dogs, a 38-base pair variable number tandem repeat in the dopamine transporter gene (SLC6A3) is associated with behavior changes in Malinois. By additional sequencing in SLC6A3, we identified an intronic 12-nucleotide poly(A) insertion (“PolyA(22)”) before the terminal exon that was associated with seizure, “glazing over” behaviors, and episodic biting behaviors in a sample of 138 Malinois. We next investigated whether PolyA(22) was associated with 1) increased locomotor activity and 2) response to novelty. Using a sample of 22 Malinois and 25 dogs of other breeds, dogs’ activity was monitored in a novel and non-novel environment while wearing activity monitoring collars. All dogs were more active in novel compared with non-novel environments, and Malinois were more active overall than other breeds. There was an effect of PolyA(22) genotype on activity levels, and this effect appeared to underlie the difference detected between Malinois and other breeds. There was no effect of PolyA(22) genotype on the relative decrease in activity between novel and non-novel environments for either group or all dogs considered together. In addition to an association between PolyA(22) and owner reports of seizure, “glazing over” behaviors, and episodic biting behaviors, these findings support an effect of PolyA(22) on dopamine transporter function related to activity. Further investigation is required to confirm mechanistic effects of PolyA(22) on SLC6A3. The complex polygenic nature of behavior and the range of behaviors associated with this insertion predict that effects are likely also modified by additional genetic and environmental factors. PMID:24376613

  14. Differences in behavior and activity associated with a poly(a) expansion in the dopamine transporter in Belgian Malinois.

    PubMed

    Lit, Lisa; Belanger, Janelle M; Boehm, Debby; Lybarger, Nathan; Oberbauer, Anita M

    2013-01-01

    In Belgian Malinois dogs, a 38-base pair variable number tandem repeat in the dopamine transporter gene (SLC6A3) is associated with behavior changes in Malinois. By additional sequencing in SLC6A3, we identified an intronic 12-nucleotide poly(A) insertion ("PolyA(22)") before the terminal exon that was associated with seizure, "glazing over" behaviors, and episodic biting behaviors in a sample of 138 Malinois. We next investigated whether PolyA(22) was associated with 1) increased locomotor activity and 2) response to novelty. Using a sample of 22 Malinois and 25 dogs of other breeds, dogs' activity was monitored in a novel and non-novel environment while wearing activity monitoring collars. All dogs were more active in novel compared with non-novel environments, and Malinois were more active overall than other breeds. There was an effect of PolyA(22) genotype on activity levels, and this effect appeared to underlie the difference detected between Malinois and other breeds. There was no effect of PolyA(22) genotype on the relative decrease in activity between novel and non-novel environments for either group or all dogs considered together. In addition to an association between PolyA(22) and owner reports of seizure, "glazing over" behaviors, and episodic biting behaviors, these findings support an effect of PolyA(22) on dopamine transporter function related to activity. Further investigation is required to confirm mechanistic effects of PolyA(22) on SLC6A3. The complex polygenic nature of behavior and the range of behaviors associated with this insertion predict that effects are likely also modified by additional genetic and environmental factors. PMID:24376613

  15. In vitro binding assays using (3)H nisoxetine and (3)H WIN 35,428 reveal selective effects of gonadectomy and hormone replacement in adult male rats on norepinephrine but not dopamine transporter sites in the cerebral cortex.

    PubMed

    Meyers, B; Kritzer, M F

    2009-03-01

    The prefrontal cortices mediate cognitive functions that critically depend on local dopamine levels. In male rats, many prefrontal tasks where performance is disrupted by changes in dopamine signaling are also impaired by gonadectomy, a manipulation that increases cortical dopamine concentration, prefrontal dopamine axon density and possibly extracellular prefrontal dopamine levels as well. Because these actions could be responsible for the impairing effects of gonadectomy on prefrontal function, the question of how they might arise comes to the fore. Accordingly, the present studies asked whether dopamine levels might be increased via a hormone sensitivity of transporter-mediated dopamine uptake. Specifically, (3)H WIN 35,428 and (3)H nisoxetine, ligands selective for the dopamine (DAT)- and norepinephrine transporter (NET) respectively, were used in in vitro binding assays to ask whether gonadectomy altered transporter affinity (Kd) and/or binding site number (Bmax) in prefrontal cortex, sensorimotor cortex and/or caudate. Assays performed on tissues dissected from sham-operated, gonadectomized and gonadectomized rats supplemented with testosterone propionate or estradiol for 4 or 28 days revealed no significant group differences or obvious trends in Kd or Bmax for DAT binding or in measures of Bmax for NET binding. However, affinity constants for (3)H nisoxetine were found to be significantly higher in sensorimotor and/or prefrontal cortex of rats gonadectomized and gonadectomized and supplemented with estradiol for 4 or 28 days but similar to control in gonadectomized rats given testosterone. Because the NET contributes substantially to extracellular prefrontal dopamine clearance, these androgen-mediated effects could influence prefrontal dopamine levels and might thus be relevant for observed effects of gonadectomy on dopamine-dependent prefrontal behaviors. A hormone sensitivity of the NET could also have bearing on the prefrontal dopamine dysfunction seen in

  16. A Genetic Polymorphism of the Human Dopamine Transporter Determines the Impact of Sleep Deprivation on Brain Responses to Rewards and Punishments.

    PubMed

    Greer, Stephanie M; Goldstein, Andrea N; Knutson, Brian; Walker, Matthew P

    2016-06-01

    Despite an emerging link between alterations in motivated behavior and a lack of sleep, the impact of sleep deprivation on human brain mechanisms of reward and punishment remain largely unknown, as does the role of trait dopamine activity in modulating such effects in the mesolimbic system. Combining fMRI with an established incentive paradigm and individual genotyping, here, we test the hypothesis that trait differences in the human dopamine transporter (DAT) gene-associated with altered synaptic dopamine signalling-govern the impact of sleep deprivation on neural sensitivity to impending monetary gains and losses. Consistent with this framework, markedly different striatal reward responses were observed following sleep loss depending on the DAT functional polymorphisms. Only participants carrying a copy of the nine-repeat DAT allele-linked to higher phasic dopamine activity-expressed amplified striatal response during anticipation of monetary gain following sleep deprivation. Moreover, participants homozygous for the ten-repeat DAT allele-linked to lower phasic dopamine activity-selectively demonstrated an increase in sensitivity to monetary loss within anterior insula following sleep loss. Together, these data reveal a mechanistic dependency on human of trait dopaminergic function in determining the interaction between sleep deprivation and neural processing of rewards and punishments. Such findings have clinical implications in disorders where the DAT genetic polymorphism presents a known risk factor with comorbid sleep disruption, including attention hyperactive deficit disorder and substance abuse. PMID:26918589

  17. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini.

    PubMed

    Vuorenpää, Anne; Jørgensen, Trine N; Newman, Amy H; Madsen, Kenneth L; Scheinin, Mika; Gether, Ulrik

    2016-03-11

    The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the "long loop" recycling marker Rab11, whereas less overlap was seen with the "short loop" recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function. PMID:26786096

  18. Genetic targeting of the amphetamine and methylphenidate-sensitive dopamine transporter: On the path to an animal model of attention-deficit hyperactivity disorder

    PubMed Central

    Mergy, Marc A.; Gowrishankar, Raajaram; Davis, Gwynne L.; Jessen, Tammy N.; Wright, Jane; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.

    2014-01-01

    Alterations in dopamine (DA) signaling underlie the most widely held theories of molecular and circuit level perturbations that lead to risk for attention-deficit hyperactivity disorder (ADHD). The DA transporter (DAT), a presynaptic reuptake protein whose activity provides critical support for DA signaling by limiting DA action at pre- and postsynaptic receptors, has been consistently associated with ADHD through pharmacological, behavioral, brain imaging and genetic studies. Currently, the animal models of ADHD exhibit significant limitations, stemming in large part from their lack of construct validity. To remedy this situation, we have pursued the creation of a mouse model derived from a functional nonsynonymous variant in the DAT gene (SLC6A3) of ADHD probands. We trace our path from the identification of these variants to in vitro biochemical and physiological studies to the production of the DAT Val559 mouse model. We discuss our initial findings with these animals and their promise in the context of existing rodent models of ADHD. PMID:24332984

  19. Structural probing of a microdomain in the dopamine transporter by engineering of artificial Zn2+ binding sites.

    PubMed

    Norregaard, L; Visiers, I; Loland, C J; Ballesteros, J; Weinstein, H; Gether, U

    2000-12-26

    Previously, we have identified three Zn(2+) binding residues in an endogenous Zn(2+) binding site in the human dopamine transporter (hDAT): (193)His in extracellular loop 2 (ECL 2), (375)His at the external end of transmembrane segment (TM) 7, and (396)Glu at the external end of TM 8. Here we have generated a series of artificial Zn(2+) binding sites in a domain situated around the external ends of TMs 7 and 8 by taking advantage of the well-defined structural constraints for binding of the zinc(II) ion. Initially, we found that the Zn(2+)-coordinating (193)His in ECL 2 could be substituted with a histidine inserted at the i - 4 position relative to (375)His in TM 7. In this mutant (H193K/M371H), Zn(2+) potently inhibited [(3)H]dopamine uptake with an IC(50) value of 7 microM as compared to a value of 300 microM for the control (H193K). These data are consistent with the presence of an alpha-helical configuration of TM 7. This inference was further corroborated by the observation that no increase in the apparent Zn(2+) affinity was observed following introduction of histidines at the i - 2, i - 3, and i - 5 positions. In contrast, introduction of histidines at positions i + 2, i + 3, and i + 4 all resulted in potent inhibition of [(3)H]dopamine uptake by Zn(2+) (IC(50) = 3-32 microM). These observations are inconsistent with continuation of the helix beyond position 375 and indicate an approximate boundary between the end of the helix and the succeeding loop. In summary, the data presented here provide new insight into the structure of a functionally important domain in the hDAT and illustrate how engineering of Zn(2+) binding sites can be a useful approach for probing both secondary and tertiary structure relationships in membrane proteins of unknown structure. PMID:11123909

  20. Quantum transport through a deformable molecular transistor

    NASA Astrophysics Data System (ADS)

    Cornaglia, P. S.; Grempel, D. R.; Ness, H.

    2005-02-01

    The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.

  1. Molecular Transport Studies Through Unsupported Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  2. Molecular Mechanisms of Renal Ammonia Transport

    PubMed Central

    Weiner, I. David; Hamm, L. Lee

    2015-01-01

    Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH3 diffusion and NH4+ trapping has given way to a model postulating that a variety of proteins specifically transport NH3 and NH4+ and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H+ or K+ but also transport NH4+. Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport. PMID:17002591

  3. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-01

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory.

  4. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

    PubMed

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-15

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. PMID:25574658

  5. An N-Terminal Threonine Mutation Produces an Efflux-Favorable, Sodium-Primed Conformation of the Human Dopamine Transporter

    PubMed Central

    Fraser, Rheaclare; Chen, Yongyue; Guptaroy, Bipasha; Luderman, Kathryn D.; Stokes, Stephanie L.; Beg, Asim; DeFelice, Louis J.

    2014-01-01

    The dopamine transporter (DAT) reversibly transports dopamine (DA) through a series of conformational transitions. Alanine (T62A) or aspartate (T62D) mutagenesis of Thr62 revealed T62D-human (h)DAT partitions in a predominately efflux-preferring conformation. Compared with wild-type (WT), T62D-hDAT exhibits reduced [3H]DA uptake and enhanced baseline DA efflux, whereas T62A-hDAT and WT-hDAT function in an influx-preferring conformation. We now interrogate the basis of the mutants’ altered function with respect to membrane conductance and Na+ sensitivity. The hDAT constructs were expressed in Xenopus oocytes to investigate if heightened membrane potential would explain the efflux characteristics of T62D-hDAT. In the absence of substrate, all constructs displayed identical resting membrane potentials. Substrate-induced inward currents were present in oocytes expressing WT- and T62A-hDAT but not T62D-hDAT, suggesting equal bidirectional ion flow through T62D-hDAT. Utilization of the fluorescent DAT substrate ASP+ [4-(4-(dimethylamino)styryl)-N-methylpyridinium] revealed that T62D-hDAT accumulates substrate in human embryonic kidney (HEK)-293 cells when the substrate is not subject to efflux. Extracellular sodium (Na+e) replacement was used to evaluate sodium gradient requirements for DAT transport functions. The EC50 for Na+e stimulation of [3H]DA uptake was identical in all constructs expressed in HEK-293 cells. As expected, decreasing [Na+]e stimulated [3H]DA efflux in WT- and T62A-hDAT cells. Conversely, the elevated [3H]DA efflux in T62D-hDAT cells was independent of Na+e and commensurate with [3H]DA efflux attained in WT-hDAT cells, either by removal of Na+e or by application of amphetamine. We conclude that T62D-hDAT represents an efflux-willing, Na+-primed orientation—possibly representing an experimental model of the conformational impact of amphetamine exposure to hDAT. PMID:24753048

  6. Molecular Transport Junctions Created By Self-Contacting Gapped Nanowires.

    PubMed

    Lim, Jong Kuk; Lee, One-Sun; Jang, Jae-Won; Petrosko, Sarah Hurst; Schatz, George C; Mirkin, Chad A

    2016-08-01

    Molecular transport junctions (MTJs) are important components in molecular electronic devices. However, the synthesis of MTJs remains a significant challenge, as the dimensions of the junction must be tailored for each experiment, based on the molecular lengths. A novel methodology is reported for forming MTJs, taking advantage of capillary and van der Waals forces. PMID:27364594

  7. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    PubMed

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  8. No association of dopamine D2 receptor molecular variant Cys311 and schizophrenia in Chinese patients

    SciTech Connect

    Chia-Hsiang Chen; Shih-Hsiang Chien; Hai-Gwo Hwu

    1996-07-26

    A serine-to-cysteine mutation of dopamine D2 receptor at codon 311 (Cys311) was found to have higher frequency in schizophrenic patients than in normal controls in Japanese by Arinami et al. The Cys311 allele was found to be associated with patients with younger age-of-onset, positive family history, and more positive symptoms. To investigate the possible involvement of Cys311 in schizophrenia in the Chinese population, 114 unrelated Taiwanese Chinese schizophrenic patients with positive family history and 88 normal controls were genotyped for Cys311. Four patients and 5 normal controls were heterozygotes of Ser311/Cys311; no homozygotes of Cys311 were identified in either group. The allele frequencies of Cys311 in Chinese schizophrenic patients and normal controls were 2% and 3%, respectively. No significant difference was detected between the two groups. Our results do not support the argument that the Cys311 allele of DRD2 poses a genetic risk for certain types of schizophrenia in Chinese populations. 18 refs.

  9. The Atypical Stimulant and Nootropic Modafinil Interacts with the Dopamine Transporter in a Different Manner than Classical Cocaine-Like Inhibitors

    PubMed Central

    Schmitt, Kyle C.; Reith, Maarten E. A.

    2011-01-01

    Modafinil is a mild psychostimulant with pro-cognitive and antidepressant effects. Unlike many conventional stimulants, modafinil has little appreciable potential for abuse, making it a promising therapeutic agent for cocaine addiction. The chief molecular target of modafinil is the dopamine transporter (DAT); however, the mechanistic details underlying modafinil's unique effects remain unknown. Recent studies suggest that the conformational effects of a given DAT ligand influence the magnitude of the ligand's reinforcing properties. For example, the atypical DAT inhibitors benztropine and GBR12909 do not share cocaine's notorious addictive liability, despite having greater binding affinity. Here, we show that the binding mechanism of modafinil is different than cocaine and similar to other atypical inhibitors. We previously established two mutations (W84L and D313N) that increase the likelihood that the DAT will adopt an outward-facing conformational state—these mutations increase the affinity of cocaine-like inhibitors considerably, but have little or opposite effect on atypical inhibitor binding. Thus, a compound's WT/mutant affinity ratio can indicate whether the compound preferentially interacts with a more outward- or inward-facing conformational state. Modafinil displayed affinity ratios similar to those of benztropine, GBR12909 and bupropion (which lack cocaine-like effects in humans), but far different than those of cocaine, β-CFT or methylphenidate. Whereas treatment with zinc (known to stabilize an outward-facing transporter state) increased the affinity of cocaine and methylphenidate two-fold, it had little or no effect on the binding of modafinil, benztropine, bupropion or GBR12909. Additionally, computational modeling of inhibitor binding indicated that while β-CFT and methylphenidate stabilize an “open-to-out” conformation, binding of either modafinil or bupropion gives rise to a more closed conformation. Our findings highlight a mechanistic

  10. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.

    PubMed

    Daberkow, D P; Brown, H D; Bunner, K D; Kraniotis, S A; Doellman, M A; Ragozzino, M E; Garris, P A; Roitman, M F

    2013-01-01

    Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  11. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane*

    PubMed Central

    De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M.; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno

    2015-01-01

    Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. PMID:26048990

  12. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry.

    PubMed

    Gold, Mark S; Badgaiyan, Rajendra D; Blum, Kenneth

    2015-09-01

    This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors. PMID:26300032

  13. Pharmacological treatment with L-DOPA may reduce striatal dopamine transporter binding in in vivo imaging studies.

    PubMed

    Nikolaus, S; Antke, C; Hautzel, H; Mueller, H-W

    2016-01-01

    Numerous neurologic and psychiatric conditions are treated with pharmacological compounds, which lead to an increase of synaptic dopamine (DA) levels. One example is the DA precursor L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted to DA in the presynaptic terminal. If the increase of DA concentrations in the synaptic cleft leads to competition with exogenous radioligands for presynaptic binding sites, this may have implications for DA transporter (DAT) imaging studies in patients under DAergic medication. This paper gives an overview on those findings, which, so far, have been obtained on DAT binding in human Parkinson's disease after treatment with L-DOPA. Findings, moreover, are related to results obtained on rats, mice or non-human primates. Results indicate that DAT imaging may be reduced in the striata of healthy animals, in the unlesioned striata of animal models of unilateral Parkinson's disease and in less severly impaired striata of Parkinsonian patients, if animal or human subjects are under acute or subchronic treatment with L-DOPA. If also striatal DAT binding is susceptible to alterations of synaptic DA levels, this may allow to quantify DA reuptake in analogy to DA release by assessing the competition between endogenous DA and the administered exogenous DAT radioligand. PMID:26642370

  14. Dopaminergic Control of Attentional Flexibility: Inhibition of Return is Associated with the Dopamine Transporter Gene (DAT1)

    PubMed Central

    Colzato, Lorenza S.; Pratt, Jay; Hommel, Bernhard

    2010-01-01

    Genetic variability related to the dopamine (DA) transporter gene (DAT1) has received increasing attention as a possible modulator of human cognition. The 9-repeat allele of the DAT1 gene is presumably associated with higher striatal DA levels than the 10-repeat allele, which might support inhibitory control functions. We investigated the impact of the DAT1 gene on the inhibition of return (IOR) effect, which refers to the fact that people are slower to detect a target if it appears in a previously attended location. 140 healthy adults, genotyped for the DAT1 gene, performed an IOR task with stimulus-onset asynchronies (SOAs) between attention cue and target of 150–1200 ms. Nine-repeat carriers showed more pronounced IOR effect than 10/10 homozygous at short SOAs but both groups of subjects eventually reached the same magnitude of IOR. Our findings support the idea that striatal DA levels promote IOR, presumably by biasing the interplay between prefrontal and striatal networks towards greater cognitive flexibility. PMID:20661460

  15. Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain

    SciTech Connect

    Volkow, N.D. |; Wang, G.J.; Fowler, J.S.

    1999-05-28

    The reinforcing effects of cocaine and methylphenidate have been linked to their ability to block dopamine transporters (DAT). Though cocaine and methylphenidate have similar in vitro affinities for DAT the abuse of methylphenidate in humans is substantially lower than of cocaine. To test if differences in in vivo potency at the DAT between these two drugs could account for the differences in their abuse liability the authors compared the levels of DAT occupancies that they had previously reported separately for intravenous methylphenidate in controls and for intravenous cocaine in cocaine abusers. DAT occupancies were measured with Positron Emission Tomography using [{sup 11}C]cocaine, as a DAT ligand, in 8 normal controls for the methylphenidate study and in 17 active cocaine abusers for the cocaine study. The ratio of the distribution volume of [{sup 11}C]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd+1, was used as measure of DAT availability. Parallel measures were obtained to assess the cardiovascular effects of these two drugs. Methylphenidate and cocaine produced comparable dose-dependent blockage of DAT with an estimated ED{sub 50} for methylphenidate of 0.07 mg/kg and for cocaine of 0.13 mg/kg. Both drugs induced similar increases in heart rate and blood pressure but the duration of the effects were significantly longer for methylphenidate than for cocaine.

  16. Synthesis of 8-thiabicyclo[3.2.1]octanes and their binding affinity for the dopamine and serotonin transporters.

    PubMed

    Pham-Huu, Duy-Phong; Deschamps, Jeffrey R; Liu, Shanghao; Madras, Bertha K; Meltzer, Peter C

    2007-01-15

    Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers. PMID:17070057

  17. Adenovirus capsid-based anti-cocaine vaccine prevents cocaine from binding to the nonhuman primate CNS dopamine transporter.

    PubMed

    Maoz, Anat; Hicks, Martin J; Vallabhjosula, Shankar; Synan, Michael; Kothari, Paresh J; Dyke, Jonathan P; Ballon, Douglas J; Kaminsky, Stephen M; De, Bishnu P; Rosenberg, Jonathan B; Martinez, Diana; Koob, George F; Janda, Kim D; Crystal, Ronald G

    2013-10-01

    Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [(11)C]PE2I were used to measure cocaine occupancy of the dopamine transporter (DAT) in nonhuman primates. Repeat administration of dAd5GNE induced high anti-cocaine titers. Before vaccination, cocaine displaced PE2I from DAT in the caudate and putamen, resulting in 62±4% cocaine occupancy. In contrast, dAd5GNE-vaccinated animals showed reduced cocaine occupancy such that when anti-cocaine titers were >4 × 10(5), the cocaine occupancy was reduced to levels of <20%, significantly below the 47% threshold required to evoke the subjective 'high' reported in humans. PMID:23660705

  18. “Deconstruction” of the Abused Synthetic Cathinone Methylenedioxypyrovalerone (MDPV) and an Examination of Effects at the Human Dopamine Transporter

    PubMed Central

    2013-01-01

    Synthetic cathinones, β-keto analogues of amphetamine (or, more correctly, of phenylalkylamines), represent a new and growing class of abused substances. Several such analogues have been demonstrated to act as dopamine (DA) releasing agents. Methylenedioxypyrovalerone (MDPV) was the first synthetic cathinone shown to act as a cocaine-like DA reuptake inhibitor. MDPV and seven deconstructed analogues were examined to determine which of MDPV’s structural features account(s) for uptake inhibition. In voltage-clamped (−60 mV) Xenopus oocytes transfected with the human DA transporter (hDAT), all analogues elicited inhibitor-like behavior shown as hDAT-mediated outward currents. Using hDAT-expressing mammalian cells we determined the affinities of MDPV and its analogues to inhibit uptake of [3H]DA by hDAT that varied over a broad range (IC50 values ca. 135 to >25 000 nM). The methylenedioxy group of MDPV made a minimal contribution to affinity, the carbonyl group and a tertiary amine are more important, and the extended α-alkyl group seems most important. Either a tertiary amine, or the extended α-alkyl group (but not both), are required for the potent nature of MDPV as an hDAT inhibitor. PMID:24116392

  19. Genomic Features of the Human Dopamine Transporter Gene and Its Potential Epigenetic States: Implications for Phenotypic Diversity

    SciTech Connect

    Shumay, E.; Shumay, E.; Fowler, J.S.; Volkow, N.D.

    2010-06-01

    Human dopamine transporter gene (DAT1 or SLC6A3) has been associated with various brain-related diseases and behavioral traits and, as such, has been investigated intensely in experimental- and clinical-settings. However, the abundance of research data has not clarified the biological mechanism of DAT regulation; similarly, studies of DAT genotype-phenotype associations yielded inconsistent results. Hence, our understanding of the control of the DAT protein product is incomplete; having this knowledge is critical, since DAT plays the major role in the brain's dopaminergic circuitry. Accordingly, we reevaluated the genomic attributes of the SLC6A3 gene that might confer sensitivity to regulation, hypothesizing that its unique genomic characteristics might facilitate highly dynamic, region-specific DAT expression, so enabling multiple regulatory modes. Our comprehensive bioinformatic analyzes revealed very distinctive genomic characteristics of the SLC6A3, including high inter-individual variability of its sequence (897 SNPs, about 90 repeats and several CNVs spell out all abbreviations in abstract) and pronounced sensitivity to regulation by epigenetic mechanisms, as evident from the GC-bias composition (0.55) of the SLC6A3, and numerous intragenic CpG islands (27 CGIs). We propose that this unique combination of the genomic features and the regulatory attributes enables the differential expression of the DAT1 gene and fulfills seemingly contradictory demands to its regulation; that is, robustness of region-specific expression and functional dynamics.

  20. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS

    SciTech Connect

    Swanson, Jessica

    2011-08-31

    This is the final progress report for Award DE-SC0004920, entitled 'Characterizing coupled charge transport with multi scale molecular dynamics'. The technical abstract will be provided in the uploaded report.

  1. A reduced rate of in vivo dopamine transporter binding is associated with lower relative reinforcing efficacy of stimulants.

    PubMed

    Wee, Sunmee; Carroll, F Ivy; Woolverton, William L

    2006-02-01

    A slow onset of action has been hypothesized to weaken the reinforcing effects of drugs. The present study evaluated this hypothesis with slow-onset cocaine analogs, WIN 35428, RTI 31, and RTI 51. When cocaine or a cocaine analog was made available to rhesus monkeys (n = 4 or 5) for self-administration under a progressive-ratio (PR) schedule with a 1-h time-out between injections, all the drugs functioned as positive reinforcers. The maximum number of injections was in the order of cocaine > WIN 35428 > RTI 31 > RTI 51. In in vivo binding in rat striatum, equipotent doses of cocaine, WIN 35428, RTI 31, and RTI 51 were estimated to displace 25% of [(3)H]WIN 35428 binding at the dopamine transporters (DAT), respectively, 5.8, 22.4, 30.8, and 44.1 min after the intravenous injection. Further, relative reinforcing efficacy was correlated with rate of DAT binding such that slower displacement of [(3)H]WIN 35428 was associated with a weaker reinforcing effect. In in vitro binding in monkey brain tissue, the cocaine analogs had higher affinity for monoamine transporter sites, but similar affinity ratios of 5-HTT/DAT, compared to cocaine. Lastly, RTI 31 was shown to function as a positive reinforcer in drug-naïve rhesus monkeys under a fixed-ratio 1 schedule. Collectively, the data support the hypothesis that a slow onset at the DAT is associated with reduced reinforcing efficacy of DAT ligands. The data under both the PR and FR schedules, however, suggest that a slow onset at the DAT influence reinforcing effect only to a limited extent. PMID:15957006

  2. Genetic and Functional Analysis of Polymorphisms in the Human Dopamine Receptor and Transporter Genes in Small Cell Lung Cancer.

    PubMed

    Cherubini, Emanuela; Di Napoli, Arianna; Noto, Alessia; Osman, Giorgia Amira; Esposito, Maria Cristina; Mariotta, Salvatore; Sellitri, Rossella; Ruco, Luigi; Cardillo, Giuseppe; Ciliberto, Gennaro; Mancini, Rita; Ricci, Alberto

    2016-02-01

    The regulatory role of dopamine (DA) in endocrine, cardiovascular and renal functions has been extensively studied and used for clinical purposes. More recently DA has been indicated as a regulatory molecule for immune cells and malignant cell proliferation. We assessed the expression and the functional role DA, DA receptors, and transporters in primary small cell lung cancer (SCLC). By HPLC DA plasma levels were more elevated in SCLC patients in comparison with NSCLC patients and healthy controls. SCLC cell expressed DA D1- and D2-like receptors and membrane and vesicular transporters at protein and mRNA levels. We also investigated the effects of independent D1- or D2-like receptor stimulation on SCLC cell cultures. DA D1 receptor agonist SKF38393 induced the increase of cAMP levels and DARPP-32 protein expression without affecting SCLC growth rate. Cell treatment with the DA D1 receptor antagonist SCH23390 inhibited SKF38393 effects. In contrast, the DA D2 receptor agonist quinpirole (10 μM) counteracted, in a dose and time dependent way, SCLC cell proliferation, it did not affect cAMP levels and decreased phosphorylated AKT that was induced by DA D2 receptor antagonist sulpiride. However, in only one SCLC line, stimulation of DA D2 receptor failed to inhibit cell proliferation in vitro. This effect was associated to the existence of rs6275 and rs6277 polymorphisms in the D2 gene. These results gave more insight into DA control of lung cancer cell behavior and suggested the existence of different SCLC phenotypes. PMID:26081799

  3. A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span.

    PubMed

    Sambataro, Fabio; Podell, Jamie E; Murty, Vishnu P; Das, Saumitra; Kolachana, Bhaskar; Goldberg, Terry E; Weinberger, Daniel R; Mattay, Venkata S

    2015-08-01

    Dopamine modulation of striatal function is critical for executive functions such as working memory (WM) updating. The dopamine transporter (DAT) regulates striatal dopamine signaling via synaptic reuptake. A variable number of tandem repeats in the 3'-untranslated region of SLC6A3 (DAT1-3'-UTR-VNTR) is associated with DAT expression, such that 9-repeat allele carriers tend to express lower levels (associated with higher extracellular dopamine concentrations) than 10-repeat homozygotes. Aging is also associated with decline of the dopamine system. The goal of the present study was to investigate the effects of aging and DAT1-3'-UTR-VNTR on the neural activity and functional connectivity of the striatum during WM updating. Our results showed both an age-related decrease in striatal activity and an effect of DAT1-3'-UTR-VNTR. Ten-repeat homozygotes showed reduced striatal activity and increased striatal-hippocampal connectivity during WM updating relative to the 9-repeat carriers. There was no age by DAT1-3'-UTR-VNTR interaction. These results suggest that, whereas striatal function during WM updating is modulated by both age and genetically determined DAT levels, the rate of the age-related decline in striatal function is similar across both DAT1-3'-UTR-VNTR genotype groups. They further suggest that, because of the baseline difference in striatal function based on DAT1-3'-UTR-VNTR polymorphism, 10-repeat homozygotes, who have lower levels of striatal function throughout the adult life span, may reach a threshold of decreased striatal function and manifest impairments in cognitive processes mediated by the striatum earlier in life than the 9-repeat carriers. Our data suggest that age and DAT1-3'-UTR-VNTR polymorphism independently modulate striatal function. PMID:25997640

  4. Dopamine and binge eating behaviors

    PubMed Central

    Bello, Nicholas T.; Hajnal, Andras

    2010-01-01

    Central dopaminergic mechanisms are involved in the motivational aspects of eating and food choices. This review focuses on human and animal data examining the importance of dopamine on binge eating behaviors. Early works examining dopamine metabolites in the cerebrospinal fluid and plasma of bulimic individuals suggested decreased dopamine turnover during the active phase of the illness. While neuroimaging studies of dopamine mechanisms in bulimia nervosa (BN) and binge eating disorder (BED) are limited, genetic studies in humans have implicated an increased frequency of dopamine transporter and associated D2 receptor polymorphisms with binge pathology. Recent examinations of rodent models of dietary-induced binge eating (DIBE) have investigated plausible dopamine mechanisms involved in sustaining binge eating behaviors. In DIBE models, highly palatable foods (fats, sugars and their combination), as well as restricted access conditions appear to promote ingestive responses and result in sustained dopamine stimulation within the nucleus accumbens. Taken together with studies examining the comorbidity of illicit drug use and eating disorders, the data reviewed here support a role for dopamine in perpetuating the compulsive feeding patterns of BN and BED. As such, we propose that sustained stimulation of the dopamine systems by bingeing promoted by preexisting conditions (e.g., genetic traits, dietary restraint, stress, etc.) results in progressive impairments of dopamine signaling. To disrupt this vicious cycle, novel research-based treatment options aiming at the neural substrates of compulsive eating patterns are necessary. PMID:20417658

  5. Organic cation transporter 3 is densely expressed in the intercalated cell groups of the amygdala: anatomical evidence for a stress hormone-sensitive dopamine clearance system.

    PubMed

    Hill, Jonathan E; Gasser, Paul J

    2013-09-01

    The intercalated cell groups of the amygdala (ITCs) are clusters of GABAergic neurons which exert powerful modulatory control of amygdala output, and are thought to play key roles in the extinction of conditioned fear responses. Dopamine, acting through D1 receptors, inhibits ITC neuronal activity, an action that has the potential to disinhibit amygdala activity, leading to changes in behavioral responses. Dopaminergic neurotransmission in the ITC occurs through a combination of synaptic and volume transmission. Thus, mechanisms, including transport mechanisms, that regulate extracellular dopamine concentrations in the ITC, are likely to be important determinants of amygdala function. We have recently demonstrated the expression of organic cation transporter 3 (OCT3), a high-capacity transporter for dopamine and other monoamines, throughout the rat brain. In this study, we used immunohistochemical and immunofluorescence techniques to examine the distribution of OCT3 in the ITC, to identify the phenotype of OCT3-expressing cells, and to describe the spatial relationships of OCT3 to dopaminergic terminals and dopamine D1 receptors in these areas. We observed high densities of OCT3-immunoreactive perikarya and punctae throughout the D1 receptor-rich main, anterior and paracapsular ITCs, in contrast with the basolateral amygdala, where OCT3 immunoreactive perikarya and puncta were observed at much lower density. OCT3-immunoreactive perikarya in the ITC were identified as neurons. Tyrosine hydroxylase-immunoreactive fibers in the ITC were immunonegative for OCT3, though OCT3-immunoreactive punctae were observed in close proximity to TH+ terminals. Punctate OCT3-immunoreactivity in the ITCs was observed in very close proximity (<1 μm) to D1 receptor immunoreactivity. These anatomical data are consistent with the hypothesis that OCT3 plays a central role in regulating dopaminergic neurotransmission in the ITC, and that it represents a post- or peri-synaptic dopamine

  6. The conservative view: is it necessary to implant a stent into the dopamine transporter?

    PubMed Central

    Schmid, D; Koenig, X; Bulusu, S; Schicker, K; Freissmuth, M; Sitte, H H; Sandtner, W

    2015-01-01

    Linked Articles This article is a reply to De Felice LJ and Cameron KN (2015). Comments on ‘A quantitative model of amphetamine action on the serotonin transporter’, by Sandtner et al., Br J Pharmacol 171: 1007–1018. Br J Pharmacol 172: this issue, doi: 10.1111/bph.12767, commenting on Sandtner W, Schmid D, Schicker K, Gerstbrein K, Koenig X, Mayer FP, Boehm S, Freissmuth M and Sitte HH (2014). A quantitative model of amphetamine action on the 5-HT transporter. Br J Pharmacol 171: 1007–1018. doi: 10.1111/bph.12520 PMID:24824446

  7. Molecular and pharmacological characterization of two D(1)-like dopamine receptors in the Lyme disease vector, Ixodes scapularis.

    PubMed

    Meyer, Jason M; Ejendal, Karin F K; Watts, Val J; Hill, Catherine A

    2011-08-01

    Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D(1)-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D(1)-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D(1)-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro. PMID:21457782

  8. Molecular and ionic mimicry and the transport of toxic metals

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2008-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419

  9. Comparison of two I-123 labeled SPECT probes, for the dopamine transporter in non-human primate brain

    SciTech Connect

    Gandelman, M.S.; Scanley, B.E.; Al-Tikrite, M.S.

    1994-05-01

    A comparative SPECT evaluation of the regional uptake of 28-carboisopropoxy-3{beta}-(4-iodophenyl)tropane (IP-CIT) and 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) was performed to assess the improved specificity of IP-CIT over {beta}-CIT for the dopamine (DE) transporter, as shown previously by in vitro studies (n=10), ranging from 7 to 10 hours with 6.9 to 15 mCi injected dose, were completed in 3 baboons. Peripheral metabolism of the two ligands were similar The SPECT images utilized ROIs over striatum (which reflect DA transporters), midbrain (previously shown for {beta}-CIT to reflect primarily serotonin transporters), and the occipital lobe (a region of non-specific uptake). The time to peak specific striatal uptake (striatal minus occipital activity) was similar for IP-CIT and {beta}-CIT (377{plus_minus}60 and 410{plus_minus}60 min, respectively); whereas midbrain peak activity occurred at a significantly earlier time for IP-CIT (21{plus_minus}4 min) as compared to {beta}-CIT (60{plus_minus}17 min). At time of peak specific striatal activity, striatal to occipital ratios were 2.7+0.6 for IP-CIT and 7.6{plus_minus}0.7 for {beta}-CIT, and at time of peak midbrain activity, midbrain to occipital ratios were 1.1{plus_minus}0.1 for IP-CIT, and 1.7{plus_minus}0.2 for {beta}-CIT. At peak specific striatal time, normalized regional uptake values ({mu}Ci/cc per {mu}Ci injected dose per g body mass) for the striatum were 4.9{plus_minus}1.1 IP-CIT and 5.2{plus_minus}0.7 {beta}-CIT, whereas for the occipital lobe normalized regional uptake values were 1.9{plus_minus}0.4 IP-CIT and 0.7{plus_minus}0.2 for {beta}-CIT. Similar regional kinetics in the striatum were observed, as both ligands demonstrate comparable peak striatal uptake and time to peak.

  10. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    PubMed

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-01-01

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  11. Contactless electronic transport in a bio-molecular junction

    SciTech Connect

    Hossain, Faruque M. Al-Dirini, Feras; Skafidas, Efstratios

    2014-07-28

    Molecular electronics hold promise for next generation ultra-low power, nano-scale integrated electronics. The main challenge in molecular electronics is to make a reliable interface between molecules and metal electrodes. Interfacing metals and molecules detrimentally affects the characteristics of nano-scale molecular electronic devices. It is therefore essential to investigate alternative arrangements such as contact-less tunneling gaps wherever such configurations are feasible. We conduct ab initio density functional theory and non-equilibrium Green's functions calculations to investigate the transport properties of a biocompatible glycine molecular junction. By analyzing the localized molecular orbital energy distributions and transmission probabilities in the transport-gap, we find a glycine molecule confined between two gold electrodes, without making a contact, is energetically stable and possesses high tunneling current resembling an excellent ohmic-like interface.

  12. PET imaging of dopamine D2 receptor and transporter availability during acquisition of cocaine self-administration in rhesus monkeys.

    PubMed

    Czoty, Paul W; Gage, H Donald; Nader, Susan H; Reboussin, Beth A; Bounds, Michael; Nader, Michael A

    2007-03-01

    Previous studies have demonstrated that cocaine use alters availability of brain dopamine D2 receptors (D2R) and transporters (DAT). The present study examined the effects of low doses of cocaine on this neuroadaptation. Using positron emission tomography (PET), D2R and DAT availability in the caudate nucleus (Cd), putamen (Pt), anterior cingulate cortex (ACC), and amygdala (AMY) were assessed before and after monkeys acquired cocaine self-administration. Twelve rhesus monkeys were trained to self-administer intravenous cocaine (0.03 mg/kg per injection) under conditions that resulted in low drug intakes. PET scans using radiotracers targeting D2R ([F]fluoroclebopride, FCP) or DAT ([F]-(+)-N-(4-fluorobenzyl)-2β-propanoyl-3β-(4-chlorophenyl)tropane, FCT) were performed when monkeys were cocaine naive and after 9 weeks of self-administration. Before self-administration, D2R availability was significantly higher only in left vs. right Cd, whereas DAT availability was higher in left vs. right Cd, Pt, and ACC. Nonetheless, after cocaine exposure, left-right differences in D2R were apparent in 3 of 4 regions, but only in the ACC for DAT availability. Self-administration of this dose of cocaine did not significantly affect DAT availability in any region and only decreased D2R availability in the ACC. These results demonstrate lateralization of D2R and DAT availability in brain areas that mediate cocaine self-administration, even under conditions in which cocaine does not affect overall receptor availability. PMID:21768930

  13. Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1.

    PubMed

    Onnink, A Marten H; Franke, Barbara; van Hulzen, Kimm; Zwiers, Marcel P; Mostert, Jeanette C; Schene, Aart H; Heslenfeld, Dirk J; Oosterlaan, Jaap; Hoekstra, Pieter J; Hartman, Catharina A; Vasquez, Alejandro Arias; Kan, Cornelis C; Buitelaar, Jan; Hoogman, Martine

    2016-08-01

    The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD. PMID:26935821

  14. Methylphenidate Effects on Brain Activity as a Function of SLC6A3 Genotype and Striatal Dopamine Transporter Availability

    PubMed Central

    Kasparbauer, Anna-Maria; Rujescu, Dan; Riedel, Michael; Pogarell, Oliver; Costa, Anna; Meindl, Thomas; la Fougère, Christian; Ettinger, Ulrich

    2015-01-01

    We pharmacologically challenged catecholamine reuptake, using methylphenidate, to investigate its effects on brain activity during a motor response inhibition task as a function of the 3′-UTR variable number of tandem repeats (VNTR) polymorphism of the dopamine transporter (DAT) gene (SLC6A3) and the availability of DATs in the striatum. We measured the cerebral hemodynamic response of 50 healthy males during a Go/No-Go task, a measure of cognitive control, under the influence of 40 mg methylphenidate and placebo using 3T functional magnetic resonance imaging. Subjects were grouped into 9-repeat (9R) carriers and 10/10 homozygotes on the basis of the SLC6A3 VNTR. During successful no-go trials compared with oddball trials, methylphenidate induced an increase of blood oxygen level-dependent (BOLD) signal for carriers of the SLC6A3 9R allele but a decrease in 10/10 homozygotes in a thalamocortical network. The same pattern was observed in caudate and inferior frontal gyrus when successful no-go trials were compared with successful go trials. We additionally investigated in a subset of 35 participants whether baseline striatal DAT availability, ascertained with 123I-FP-CIT single photon emission computed tomography, predicted the amount of methylphenidate-induced change in hemodynamic response or behavior. Striatal DAT availability was nominally greater in 9R carriers compared with 10/10 homozygotes (d=0.40), in line with meta-analyses, but did not predict BOLD or behavioral changes following MPH administration. We conclude that the effects of acute MPH administration on brain activation are dependent on DAT genotype, with 9R carriers showing enhanced BOLD following administration of a prodopaminergic compound. PMID:25220215

  15. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    PubMed Central

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-01-01

    Background: The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Methods: Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of <15%. Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging. Results: Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD, while the remained 5 with a normal DAT-PET scan were SWEDDs. As for UPRDS, the dressing and hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P < 0.05 and P < 0.01, respectively). Bilateral tremor was more frequent in the SWEDDs group (P < 0.05). The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs. PMID:26112718

  16. Corticosterone administration upregulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions

    PubMed Central

    Fan, Yan; Chen, Ping; Li, Ying; Cui, Kui; Noel, Daniel M.; Cummins, Elizabeth D.; Brown, Russell W.; Zhu, Meng-Yang

    2013-01-01

    Stress has been reported to activate the locus coeruleus (LC)–noradrenergic system. In the present study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase of DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, the present study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task-dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of

  17. Dopamine D2 receptors and transporters in type 1 and 2 alcoholics measured with human whole hemisphere autoradiography.

    PubMed

    Tupala, Erkki; Hall, Håkan; Bergström, Kim; Mantere, Tuija; Räsänen, Pirkko; Särkioja, Terttu; Tiihonen, Jari

    2003-10-01

    Increasing evidence implies the involvement of the dopamine (DA) system in the pathogenesis of alcoholism. We measured striatal DA D(2) receptors in Cloninger type 1 and 2 alcoholics by using [(125)I]epidepride in human postmortem whole hemispheric autoradiography (WHA), which provides high-resolution images corresponding to positron emission tomographic (PET) studies. We also evaluated the correlation between transporter and receptor DA binding site densities and putative correlation of [(125)I]epidepride binding between the dorsal striatum and nucleus accumbens. In the type 1 alcoholics, the DA D(2) receptor density was 21.4-32.6% lower in all dorsal striatal structures (caudate, putamen, globus pallidus) when compared with the controls. Type 2 alcoholics had 19.6-21.4% lower binding in other dorsal striatal structures, except medial globus pallidus, where they were not significantly different from controls. The density of DA D(2) receptors and DAT had a significant positive correlation only in the putamen of type 1 alcoholics. The binding of [(125)I]epidepride showed also consistent and statistically significant positive correlation between nucleus accumbens and all dorsal striatal areas in type 1 alcoholics but not in the controls. In the type 2 alcoholics, the correlation was weaker than that observed in the type 1 alcoholics, and no correlation was observed between nucleus accumbens and globus pallidus. Our results show that these two subgroups of alcoholics have stark differences in their DA D(2) receptor binding characteristics. Type 2 alcoholics may have selective deficiency in the dorsal striatum, whereas in limbic structures they may not differ significantly from controls. Moreover, WHA provides a useful tool for detailed mapping of neuronal receptors in healthy as well as diseased brain, and can also be used in radioligand development for PET. PMID:14505335

  18. Rescue of dopamine transporter function in hypoinsulinemic rats by a D2 receptor-ERK dependent mechanism

    PubMed Central

    Owens, W. Anthony; Williams, Jason M.; Saunders, Christine; Avison, Malcolm J.; Galli, Aurelio; Daws, Lynette C.

    2012-01-01

    The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We previously showed that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent, streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level dependent (BOLD) signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 days). AMPH stimulates DA D2 receptors indirectly by increasing extracellular DA. Supporting a role for D2 receptors in mediating this “rescue”, the effect was completely blocked by pre-treatment of STZ-treated rats with the D2 receptor antagonist, raclopride, prior to systemic AMPH. D2 receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 in STZ-treated, but not in control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D2 receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function. PMID:22357848

  19. Shared Molecular Mechanisms of Membrane Transporters.

    PubMed

    Drew, David; Boudker, Olga

    2016-06-01

    The determination of the crystal structures of small-molecule transporters has shed light on the conformational changes that take place during structural isomerization from outward- to inward-facing states. Rather than using a simple rocking movement of two bundles around a central substrate-binding site, it has become clear that even the most simplistic transporters utilize rearrangements of nonrigid bodies. In the most dramatic cases, one bundle is fixed while the other, structurally divergent, bundle carries the substrate some 18 Å across the membrane, which in this review is termed an elevator alternating-access mechanism. Here, we compare and contrast rocker-switch, rocking-bundle, and elevator alternating-access mechanisms to highlight shared features and novel refinements to the basic alternating-access model. PMID:27023848

  20. Lobelane analogues containing 4-hydroxy and 4-(2-fluoroethoxy) aromatic substituents: Potent and selective inhibitors of [(3)H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Joolakanti, Shyamsunder R; Nickell, Justin R; Janganati, Venumadhav; Zheng, Guangrong; Dwoskin, Linda P; Crooks, Peter A

    2016-05-15

    A series of lobelane and GZ-793A analogues that incorporate aromatic 4-hydroxy and 4-(2-fluoroethoxy) substituents were synthesized and evaluated for inhibition of [(3)H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and the dopamine transporter (DAT), and [(3)H]serotonin uptake at the serotonin transporter (SERT). Most of these compounds exhibited potent inhibition of DA uptake at VMAT2 in the nanomolar range (Ki=30-70nM). The two most potent analogues, 7 and 14, both exhibited a Ki value of 31nM for inhibition of VMAT2. The lobelane analogue 14, incorporating 4-(2-fluoroethoxy) and 4-hydroxy aromatic substituents, exhibited 96- and 335-fold greater selectivity for VMAT2 versus DAT and SERT, respectively, in comparison to lobelane. Thus, lobelane analogues bearing hydroxyl and fluoroethoxy moieties retain the high affinity for VMAT2 of the parent compound, while enhancing selectivity for VMAT2 versus the plasmalemma transporters. PMID:27080180

  1. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  2. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site.

    PubMed

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R; Vaughan, Roxanne A; Henry, L Keith

    2014-10-24

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  3. Delivery of dopamine transporter tracer (PE2I) through blood brain barrier with ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Serrière, Sophie; Escoffre, Jean-Michel; Bodard, Sylvie; Novell, Anthony; Vergote, Jackie; Vercouillie, Johnny; Thiéry, Jean-Claude; Chalon, Sylvie; Bouakaz, Ayache

    2012-10-01

    The blood-brain barrier plays a major role in controlling the delivery of therapeutic and imaging agents to the brain. The aim of this study was to investigate the use of ultrasound and microbubbles to increase its delivery through the BBB and by determining the optimal experimental conditions that achieve a transient and safe BBB disruption. First, we established the ultrasound conditions that achieved a transient BBB disruption in rats using a non-permeant marker, Evans blue. Hence SonoVue® (450 μL/kg) and Evans blue (100 mg/kg) were intravenously administered. BBB leakage was obtained using ultrasound insonation through the rat skull at 1.6 MPa, PRF 1 Hz, duty cycle 12%, burst 10 ms during 120 sec. BBB disruption was observed in all treated animals (N=4) by histological analysis. The same experimental conditions were applied to enhance brain uptake of PE2I. Biological samples were analyzed using a scintillation counter apparatus. The results showed 50% and 20% increase of 125I-PE2I uptake in the striatum and cerebral cortex, respectively, in the treated rats (N=5) versus control (N=4). Similar enhancements were observed using SonoVue® at half concentration. This innovative method provides a great potential for intracerebral delivery of molecular ligands that could be used for the therapy of brain diseases.

  4. Molecular basis of ligand recognition and transport by glucose transporters.

    PubMed

    Deng, Dong; Sun, Pengcheng; Yan, Chuangye; Ke, Meng; Jiang, Xin; Xiong, Lei; Ren, Wenlin; Hirata, Kunio; Yamamoto, Masaki; Fan, Shilong; Yan, Nieng

    2015-10-15

    The major facilitator superfamily glucose transporters, exemplified by human GLUT1-4, have been central to the study of solute transport. Using lipidic cubic phase crystallization and microfocus X-ray diffraction, we determined the structure of human GLUT3 in complex with D-glucose at 1.5 Å resolution in an outward-occluded conformation. The high-resolution structure allows discrimination of both α- and β-anomers of D-glucose. Two additional structures of GLUT3 bound to the exofacial inhibitor maltose were obtained at 2.6 Å in the outward-open and 2.4 Å in the outward-occluded states. In all three structures, the ligands are predominantly coordinated by polar residues from the carboxy terminal domain. Conformational transition from outward-open to outward-occluded entails a prominent local rearrangement of the extracellular part of transmembrane segment TM7. Comparison of the outward-facing GLUT3 structures with the inward-open GLUT1 provides insights into the alternating access cycle for GLUTs, whereby the C-terminal domain provides the primary substrate-binding site and the amino-terminal domain undergoes rigid-body rotation with respect to the C-terminal domain. Our studies provide an important framework for the mechanistic and kinetic understanding of GLUTs and shed light on structure-guided ligand design. PMID:26176916

  5. [{sup 11}C]d-threo-Methylphenidate, a new radiotracer for the dopamine transporter. Characterization in baboon and human brain

    SciTech Connect

    Ding, Y.S.; Volkow, N.D.; Fowler, J.S.

    1995-05-01

    dl-threo Methylphenidate (MP, Ritalin) is a psychostimulant drug which binds to the dopamine transporter (DAT). We evaluated [{sup 11}C]d-threo-methylphenidate ([{sup 11}C]d-MP), the more active enantiomer, as a radiotracer for the DAT in baboons and human brain. Stereoselectivity, saturability and pharmacological specificity and reproducibility were examined. Stereoselectivity was examined in baboons by comparing [{sup 11C}]d-MP,[{sup 11}C]l-MP and [{sup 11}C]dl-MP. Unlabeled MP was used to assess the reversibility and saturability of the binding. GBR 12909,{beta}-(4-iodophenyl)tropane-2-carboxylic acid methyl ester ({beta}-CIT), tomoxetine and citalopram were used to assess the specificity of the binding. The ratios between the radioactivity in the striatum to that in cerebellum (ST/CB) were 3.3,2.2 and 1.1 for [{sup 11}C]d-MP,[{sup 11}C]dl-MP and [{sup 11}C]l-MP respectively. Most of the striatal binding of [{sup 11}C]d-threo-MP was displaced by injection of nonradioactive MP demonstrating reversibility. Pretreatment with MP (0.5 mg/kg), GBR12909 (1.5 mg/kg) or {beta}-CIT (0.3 mg/kg) reduced ST/CB by about 60% and the ratios of distribution volumes at the steady-state for the triatum to cerebellum (DV{sub st/}DV{sub cb}) by about 50%. Pretreatment with tomoxetine (3.0 mg/kg) or citalopram (2.0 mg/kg), inhibitors of the norepinephrine and serotonin transporter, had no effect. Studies of [{sup 11}C]d-MP in the human brain showed highest uptake in basal ganglia with a half clearance time of about 60 minutes. Repeated studies in 6 normal human subjects showed differences in DV{sub st/}DV{sub cb} between -7% and 8%. MP pretreatment decreased BG but no cortical or cerebellar binding and reduced Bmax/Kd by 91%.

  6. Striatal and extrastriatal dopamine transporter levels relate to cognition in Lewy body diseases: an 11C altropane positron emission tomography study

    PubMed Central

    2014-01-01

    Introduction The biological basis of cognitive impairment in parkinsonian diseases is believed to be multifactorial. We investigated the contribution of dopamine deficiency to cognition in Parkinson disease (PD) and dementia with Lewy bodies (DLB) with dopamine transporter (DAT) imaging. Methods We acquired 11C altropane PET, magnetic resonance imaging and cognitive testing in 19 nondemented subjects with PD, 10 DLB and 17 healthy control subjects (HCS). We analyzed DAT concentration in putamen, caudate, anterior cingulate (AC), orbitofrontal and prefrontal regions, using the Standardized Uptake Volume Ratio with partial volume correction, and we related DAT concentration and global cortical thickness to neuropsychological performance. Results DAT concentration in putamen and in caudate were similar in PD and DLB groups and significantly lower than in HCS. Reduced caudate DAT concentration was associated with worse Clinical Dementia Rating Scale–sum of boxes (CDR-SB) scores and visuospatial skills in DLB but not in PD or HCS groups. Adjusting for putamen DAT concentration, as a measure of severity of motor disease, caudate DAT concentration was lower in DLB than in PD. Higher AC DAT concentration was associated with lower putamen DAT concentration in DLB and with higher putamen DAT concentration in PD. Higher AC DAT concentration in DLB correlated with greater impairment in semantic memory and language. Conclusions Caudate and AC dopamine dysfunction contribute in opposing directions to cognitive impairment in DLB. PMID:25429309

  7. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  8. Break-junctions for investigating transport at the molecular scale

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Lörtscher, Emanuel

    2014-11-01

    Break-junctions (BJs) enable a pair of atomic-sized electrodes to be created and the relative position between them to be controlled with sub-nanometer accuracy by mechanical means—a level of microscopic control that is not yet achievable by top-down fabrication. Locally, a BJ consists of a single-atom contact, an arrangement that is ideal not only to study various types of quantum point contacts, but also to investigate transport through an individual molecule that can bridge such a junction. In this topical review, we will provide a broad overview on the field of single-molecule electronics, in which BJs serve as the main tool of investigation. To correlate the molecular structure and transport properties to gain a fundamental understanding of the underlying transport mechanisms at the molecular scale, basic experiments that systematically cover all aspects of transport by rational chemical design and tailored experiments are needed. The variety of fascinating transport mechanisms and intrinsic molecular functionalities discovered in the past range from nonlinear transport over conductance switching to quantum interference effects observable even at room temperature. Beside discussing these results, we also look at novel directions and the most recent advances in molecular electronics investigating simultaneously electronic transport and also the mechanical and thermal properties of single-molecule junctions as well as the interaction between molecules and light. Finally, we will describe the requirements for a stepwise transition from fundamental BJ experiments towards technology-relevant architectures for future nanoelectronics applications based on ultimately-scaled molecular building blocks.

  9. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  10. Communication: Finding destructive interference features in molecular transport junctions

    SciTech Connect

    Reuter, Matthew G.; Hansen, Thorsten

    2014-11-14

    Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule–electrode couplings, and we demonstrate its utility with several examples.

  11. Communication: Finding destructive interference features in molecular transport junctions.

    PubMed

    Reuter, Matthew G; Hansen, Thorsten

    2014-11-14

    Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples. PMID:25399124

  12. Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity.

    PubMed

    Huang, Xu-Feng; Zavitsanou, Katerina; Huang, Xin; Yu, Yinghua; Wang, HongQin; Chen, Feng; Lawrence, Andrew J; Deng, Chao

    2006-12-15

    This study examined the density of dopamine transporter (DAT) and D2 receptors in the brains of chronic high-fat diet-induced obese (cDIO), obese-resistant (cDR) and low-fat-fed (LF) control mice. Significantly decreased DAT densities were observed in cDR mice compared to cDIO and LF mice, primarily in the nucleus accumbens, striatal and hypothalamic regions. D2 receptor density was significantly lower in the rostral part of caudate putamen in cDIO mice compared to cDR and LF mice. PMID:17000016

  13. Molecular electronics: Some views on transport junctions and beyond

    PubMed Central

    Joachim, Christian; Ratner, Mark A.

    2005-01-01

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192

  14. Molecular physiology of the Rh ammonia transport proteins

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2013-01-01

    Purpose of review Recent studies have identified a new family of ammonia-specific transporters, Rh glycoproteins, which enable NH3-specific transport. The purpose of this review is to summarize recent evidence regarding the role of Rh glycoproteins in renal ammonia transport. Recent findings The Rh glycoproteins, RhAG/Rhag, RhBG/Rhbg and RhCG/Rhcg, transport ammonia in the form of molecular NH3, although there is some evidence suggesting the possibility of NH4+ transport. RhAG/Rhag is expressed only in erythrocytes, and not in the kidney. Rhbg and Rhcg are expressed in distal nephron sites, from the distal convoluted tubule through the inner medullary collecting duct, with basolateral Rhbg expression and both apical and basolateral Rhcg expression. Whether Rhbg contributes to renal ammonia transport remains controversial. Rhcg expression parallels ammonia excretion in multiple experimental models and genetic deletion studies, both global and collecting duct-specific, demonstrate a critical role for Rhcg in both basal and acidosis-stimulated renal ammonia excretion. X-ray crystallography has defined critical structural elements in Rh glycoprotein-mediated ammonia transport. Finally, Rh glycoproteins may also function as CO2 transporters. Summary No longer can NH3 transport be considered to occur only through diffusive NH3 movement. Transporter-mediated NH3 movement is fundamental to ammonia metabolism. PMID:20539225

  15. Studies of New Fused Benzazepine as Selective Dopamine D3 Receptor Antagonists Using 3D-QSAR, Molecular Docking and Molecular Dynamics

    PubMed Central

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-01-01

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q2 = 0.603, R2ncv = 0.829, R2pre = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q2 = 0.506, R2ncv =0.838, R2pre = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R3 substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R1 substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists. PMID:21541053

  16. Sex-Dependent Changes in Striatal Dopamine Transport in Preadolescent Rats Exposed Prenatally and/or Postnatally to Methamphetamine.

    PubMed

    Sirova, Jana; Kristofikova, Zdenka; Vrajova, Monika; Fujakova-Lipski, Michaela; Ripova, Daniela; Klaschka, Jan; Slamberova, Romana

    2016-08-01

    Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31-35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to

  17. Dopamine transporter occupancy by RTI-55 determined using labeled cocaine, and displacement of RTI-55 with unlabeled cocaine

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.; Fowler, J.S.

    1995-05-01

    We have previously visualized dopamine transporters (DAT) in human and baboon striatum using PET and C-11 cocaine. Cocaine analogs such as 3{beta}-(4-iodophenyl) tropane-2{beta}-carboxylic acid methyl ester (RTI-55 or {beta}CIT) with a higher affinity for the DAT may be potentially useful in interfering with cocaine`s actions in brain. We evaluated the time course of the effects of RTI-55 on C-11 cocaine binding in baboon brain prior to and 90 minutes, 24 hours, 4-5 days and 11-13 days after RTI-55(0.3 mg/kg iv). RTI-55 significantly inhibited C-11 cocaine binding at 90 minutes and 24 hours after administration. The half life for the clearance of RTI-55 from the DAT was estimated to be 2 to 3 days in the baboon brain. Parallel studies with H-3 cocaine and RTI-55 (0.5 mg/kg iv or 2 mg/kg ip) were performed in mice, where RTI-55 significantly inhibited 5 minute striatum-to-cerebellium ratios (S/C) at 60 and 180 minutes after administration, and recovery was obtained at 12 hours. However, unlabeled cocaine (20 mg/Kg, i/p) given 60 minutes after RTI-55 led to a greater recovery of H-3 cocaine uptake measured at 180 minutes (S/C = 1.23 {plus_minus} 0.07, n= 5), than in control animals given saline after RTI-55 (S/C = 9.5{plus_minus}0.08). Animals given saline instead of RTI-55 had S/C = 1.45{plus_minus}0.04. These results document long lasting inhibition of cocaine binding by RTI-55 and corroborate the assumption that the binding kinetics of RTI-55 in striatum observed in SPECT imaging studies with I-123 RTI-55 represents binding to DAT`s. However, a pharmacological dose of cocaine is able to displace a fraction of the previously bound RTI-55 from the DAT. These findings have implications for drug development strategies for cocaine abuse.

  18. Evaluation of Iterative Reconstruction Method and Attenuation Correction in Brain Dopamine Transporter SPECT Using an Anthropomorphic Striatal Phantom

    PubMed Central

    Maebatake, Akira; Imamura, Ayaka; Kodera, Yui; Yamashita, Yasuo; Himuro, Kazuhiko; Baba, Shingo; Miwa, Kenta; Sasaki, Masayuki

    2016-01-01

    Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods. Methods: An anthropomorphic striatal phantom was filled with 123I solutions at different striatum-to-background radioactivity ratios. Data were acquired using two SPECT/CT devices, equipped with a low-to-medium-energy general-purpose collimator (cameras A-1 and B-1) and a low-energy high-resolution (LEHR) collimator (cameras A-2 and B-2). The SPECT images were once reconstructed by FBP using Chang’s AC and once by ordered subset expectation maximization (OSEM) using both CTAC and Chang’s AC; moreover, scatter correction was performed. OSEM on cameras A-1 and A-2 included resolution recovery (RR). The images were analyzed, using the specific binding ratio (SBR). Regions of interest for the background were placed on both frontal and occipital regions. Results: The optimal number of iterations and subsets was 10i10s on camera A-1, 10i5s on camera A-2, and 7i6s on cameras B-1 and B-2. The optimal full width at half maximum of the Gaussian filter was 2.5 times the pixel size. In the comparison between FBP and OSEM, the quality was superior on OSEM-reconstructed images, although edge artifacts were observed in cameras A-1 and A-2. The SBR recovery of OSEM was higher than that of FBP on cameras A-1 and A-2, while no significant difference was detected on cameras B-1 and B-2. Good linearity of SBR was observed in all cameras. In the comparison between Chang’s AC and CTAC, a significant correlation was observed on all cameras. The difference in the background region influenced SBR differently in Chang’s AC and CTAC on cameras A-1 and B-1. Conclusion: Iterative reconstruction improved image quality on all cameras

  19. No Differential Regulation of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2) Binding in a Primate Model of Parkinson Disease

    PubMed Central

    Loftin, Susan K.; Brown, Chris A.; Xia, HuChuan; Xu, JinBin; Mach, Robert H.; Perlmutter, Joel S.

    2012-01-01

    Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14 monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (rs = 0.83, rs = 0.80, respectively, both with n = 14, p<0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less (r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites strongly correlated with each other (r = 0.93, n = 14, p<0.0005). These similar changes in DAT and VMAT2 binding sites in the striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two sites at 2 months after MPTP infusion. PMID:22359591

  20. Stochastic Molecular Transport on Microtubule Bundles with Structural Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, M. W.; Tabei, S. M. Ali

    Intracellular transport involves complex coordination of multiple components such as: the cytoskeletal network and molecular motors. Perturbations in this process can amplify over time and space, thereby affecting transport. One little studied component of transport are structural defects in the cytoskeletal network. In this talk we will present a stochastic model of the interaction of the molecular motor, kinesin-1, and a bundled cystoskeletal network of microtubules, and explicitly explore the role of microtubule ends (a type of defect) on long-range transport. We will show how different types of end distributions can ultimately result in the same observed transport behavior for bundles. We compare transport on completely uniform bundles, found in the axon, to completely random bundles, found in dendrites. Because of the un-biased random bundle nature, defects affect transport on dendrite bundles more than on uniform bundles in the axon. Further, defects act as large spatial-scale traps that result in random wait-times which have been assumed in previous models.

  1. Direct evidence of the molecular basis for biological silicon transport

    PubMed Central

    Knight, Michael J.; Senior, Laura; Nancolas, Bethany; Ratcliffe, Sarah; Curnow, Paul

    2016-01-01

    Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na+/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials. PMID:27305972

  2. Direct evidence of the molecular basis for biological silicon transport.

    PubMed

    Knight, Michael J; Senior, Laura; Nancolas, Bethany; Ratcliffe, Sarah; Curnow, Paul

    2016-01-01

    Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na(+)/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials. PMID:27305972

  3. Molecular identification of ancient and modern mammalian magnesium transporters.

    PubMed

    Quamme, Gary A

    2010-03-01

    A large number of mammalian Mg(2+) transporters have been hypothesized on the basis of physiological data, but few have been investigated at the molecular level. The recent identification of a number of novel proteins that mediate Mg(2+) transport has enhanced our understanding of how Mg(2+) is translocated across mammalian membranes. Some of these transporters have some similarity to those found in prokaryocytes and yeast cells. Human Mrs2, a mitochondrial Mg(2+) channel, shares many of the properties of the bacterial CorA and yeast Alr1 proteins. The SLC41 family of mammalian Mg(2+) transporters has a similarity with some regions of the bacterial MgtE transporters. The mammalian ancient conserved domain protein (ACDP) Mg(2+) transporters are found in prokaryotes, suggesting an ancient origin. However, other newly identified mammalian transporters, including TRPM6/7, MagT, NIPA, MMgT, and HIP14 families, are not represented in prokaryotic genomes, suggesting more recent development. MagT, NIPA, MMgT, and HIP14 transporters were identified by differential gene expression using microarray analysis. These proteins, which are found in many different tissues and subcellular organelles, demonstrate a diversity of structural properties and biophysical functions. The mammalian Mg(2+) transporters have no obvious amino acid similarities, indicating that there are many ways to transport Mg(2+) across membranes. Most of these proteins transport a number of divalent cations across membranes. Only MagT1 and NIPA2 are selective for Mg(2+). Many of the identified mammalian Mg(2+) transporters are associated with a number of congenital disorders encompassing a wide range of tissues, including intestine, kidney, brain, nervous system, and skin. It is anticipated that future research will identify other novel Mg(2+) transporters and reveal other diseases. PMID:19940067

  4. Effect of Gingerol on Cisplatin-Induced Pica Analogous to Emesis Via Modulating Expressions of Dopamine 2 Receptor, Dopamine Transporter and Tyrosine Hydroxylase in the Vomiting Model of Rats

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Wang, Yingying; Zhang, Xinying; Zhao, Hongmin; Qian, Qiuhai; Yang, Zhihong; Liu, Zhantao; Hasegawa, Junichi

    2016-01-01

    Background Gingerol, the generic term for pungent constituents in ginger, has been used for treating vomiting in China. We are going to investigate the mechanisms of inhibitive effect of gingerol on cisplatin-induced pica behaviour by studying on both peripheral and central levels, and the effects of gingerol on homeostasis of dopamine (DA) transmission: dopamine D2 receptor (D2R), dopamine transporter (DAT) and tyrosine hydroxylase (TH). Methods The antiemetic effect of gingerol was investigated on a vomiting model in rats induced by cisplatin 3 mg·kg−1 intraperitoneal injection (i.p.). Rats were randomly divided into the normal control group (C), simple gingerol control group (CG), cisplatin control group (V), cisplatin + metoclopramide group (M), cisplatin + low-dose gingerol group (GL), cisplatin + middle-dose gingerol group (GM) and cisplatin + high-dose gingerol group (GH). In observation period, rats in Groups C and V were pretreated with sterile saline 3 mL i.g.; rats in Group CG were pretreated with gingerol 40 mg·kg−1 i.g.; rats in Group M were pretreated with metoclopramide 2.5 mg·kg−1 i.g.; rats in Groups GL, GM and GH were pretreated with gingerol 10, 20 and 40 mg·kg−1 i.g. for 3 days, respectively. Cisplatin (3 mg·kg−1, i.p.) was administered one time after each treatment with the antiemetic agent or its vehicle except the Groups C and CG. The distribution of D2R, DAT and TH in the area postrema and ileum were measured by immunohistochemistry and quantitated based on the image analysis, and the expression of DAT and TH in the area postrema and ileum were measured by RT-PCR. The weights of kaolin eaten of the remaining rats were observed in every 6 h continuously for 72 h. Results The weight of kaolin eaten in rats induced by cisplatin was significantly reduced by pretreatment with gingerol in a dose-dependent manner during the 0–24 h and 24–72 h periods (P < 0.05). Gingerol markedly improved gastric emptying induced by cisplatin in

  5. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  6. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  7. Self-esteem in remitted patients with mood disorders is not associated with the dopamine receptor D4 and the serotonin transporter genes.

    PubMed

    Serretti, A; Macciardi, F; Di Bella, D; Catalano, M; Smeraldi, E

    1998-08-17

    Disturbances of the dopaminergic and serotoninergic neurotransmitter systems have been implicated in the pathogenesis of depressive symptoms. Associations have been reported between markers of the two neurotransmitter systems and the presence of illness or severity of depressive episodes, but no attention has been focused on the periods of remission. The present report focuses on a possible association of self-esteem in remitted mood disorder patients with the functional polymorphism located in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) and the dopamine receptor D4 (DRD4). Inpatients (N=162) affected by bipolar (n=103) and unipolar (n=59) disorder (DSM III-R) were assessed by the Self-Esteem Scale (SES, Rosenberg, 1965) and were typed for DRD4 and 5-HTTLPR (n=58 subjects) variants at the third exon using polymerase chain reaction (PCR) techniques. Neither DRD4 nor 5-HTTLPR variants were associated with SES scores, and consideration of possible stratification effects such as sex and psychiatric diagnosis did not reveal any association either. The serotonin transporter and dopamine receptor D4 genes do not, therefore, influence self-esteem in remitted mood disorder subjects. PMID:9754692

  8. Characterisation of [11C]PR04.MZ in Papio anubis baboon: A selective high-affinity radioligand for quantitative imaging of the dopamine transporter

    SciTech Connect

    Riss P. J.; Fowler J.; Riss, P.J.; Hooker, J.M.; Shea, C.; Xu, Y.; Carter, P.; Warner, D.; Ferrari V.; Kim, S.W.; Aigbirhio, F.I.; Fowler, J.S.; Roesch, F.

    2011-10-25

    N-(4-fluorobut-2-yn-1-yl)-2{beta}-carbomethoxy-3{beta}-(4{prime}-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [{sup 11}C]PR04.MZ ([{sup 11}C]-1) has been developed using GMP compliant equipment. An adult female Papioanubis baboon was studied using a test-retest protocol with [{sup 11}C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (fP), plasma input functions and metabolic degradation of the radiotracer [{sup 11}C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (VT) and non-displaceable binding potentials (BPND) for various brain regions and the blood were obtained from kinetic modelling. [{sup 11}C]-1 shows promising results as aselective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.

  9. Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine.

    PubMed

    Del Bello, Fabio; Sakloth, Farhana; Partilla, John S; Baumann, Michael H; Glennon, Richard A

    2015-09-01

    N-Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; 'Ecstasy'; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(-) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET. PMID:26233799

  10. Ethylenedioxy Homologs of N-Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its Corresponding Cathinone Analog Methylenedioxymethcathinone: Interactions with Transporters for Serotonin, Dopamine, and Norepinephrine

    PubMed Central

    Del Bello, Fabio; Sakloth, Farhana; Partilla, John S.; Baumann, Michael H.; Glennon, Richard A.

    2015-01-01

    N -Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; ‘Ecstasy’; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(−) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET. PMID:26233799

  11. Orthogonally modulated molecular transport junctions for resettable electronic logic gates

    PubMed Central

    Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong

    2014-01-01

    Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design. PMID:24394717

  12. Orthogonally modulated molecular transport junctions for resettable electronic logic gates

    NASA Astrophysics Data System (ADS)

    Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong

    2014-01-01

    Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design.

  13. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.

    PubMed

    Kovtun, Oleg; Sakrikar, Dhananjay; Tomlinson, Ian D; Chang, Jerry C; Arzeta-Ferrer, Xochitl; Blakely, Randy D; Rosenthal, Sandra J

    2015-04-15

    The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders. PMID:25747272

  14. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration of cocaine:heroin combinations

    PubMed Central

    Pattison, Lindsey P.; McIntosh, Scot; Sexton, Tammy; Childers, Steven R.; Hemby, Scott E.

    2014-01-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate (Vmax) of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [125I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([125I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd) and binding density (Bmax) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. PMID:24916769

  15. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established. PMID:25058032

  16. Transport properties of water at functionalized molecular interfaces

    PubMed Central

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-01-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface. PMID:19791920

  17. Transport properties of water at functionalized molecular interfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-09-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface.

  18. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    NASA Astrophysics Data System (ADS)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  19. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    PubMed

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles. PMID:27363369

  20. Nanostructured silicon membranes for control of molecular transport.

    PubMed

    Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J

    2010-11-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. PMID:24932436

  1. Molecular motors in neuronal development, intracellular transport and diseases.

    PubMed

    Hirokawa, Nobutaka; Takemura, Reiko

    2004-10-01

    Molecular motors such as kinesin superfamily proteins (KIFs), dynein superfamily proteins and myosin superfamily proteins have diverse and fundamental roles in many cellular processes, including neuronal development and the pathogenesis of neuronal diseases. During neuronal development, KIFs take significant roles in the regulation of axon-collateral branch extension, which is essential for brain wiring. Cytoplasmic dynein together with LIS1 takes pivotal roles in neocortical layer formation. In axons, anterograde transport is mediated by KIFs, whereas retrograde transport is mediated mainly by cytoplasmic dynein, and dysfunction of motors results in neurodegenerative diseases. In dendrites, the transport of NMDA and AMPA receptors is mediated by KIFs, and the motor has been shown to play a significant part in establishing learning and memory. PMID:15464889

  2. Theoretical characterization of charge transport in organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Sanchez-Carrera, Roel S.

    The rapid growth in the interest to explore new synthetic crystalline organic semiconductors and their subsequent device characterization has revived the debate on the development of theoretical models to better understand the intrinsic charge transport mechanisms in organic materials. At the moment, several charge-transport theories for organic molecular crystals have been proposed and have observed a comparable agreement with experimental results. However, these models are limited in scope and restricted to specific ranges of microscopic parameters and temperatures. A general description that is applicable in all parameter regimes is still unavailable. The first step towards a complete understanding of the problem associated with the charge transport in organic molecular crystals includes the development of a first-principles theoretical methodology to evaluate with high accuracy the main microscopic charge-transport parameters and their respective couplings with intra- and intermolecular vibrational degrees of freedom. In this thesis, we have developed a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. To predict the charge-transport phenomena in organic materials, we rely on the Marcus theory of electron-transfer reactions. Within this context, the nature of the intramolecular vibronic coupling in oligoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. This further led to investigation of the electron interactions with optical phonons in oligoacene single crystals. The lattice phonon modes were computed at both density functional theory (DFT) and empirical force field levels. The low-frequency optical modes are found to play a significant

  3. Radiolabeled2{beta}-carbo-2{prime}(S)-fluoroisopropoxy-3{beta}-(4-iodophenyl)-tropane (FIPIT): Synthesis, characterization and primate imaging of a radioligand for mapping dopamine transporter sites by both PET and SPECT

    SciTech Connect

    Keil, R.; Shi, B.; Hoffman, J.M.

    1996-05-01

    Highly potent and selective dopamine transporter ligands containing both iodine and fluorine are versatile probes for in vivo mapping of dopamine transporter sites in the striatum by PET and SPECT when labeled with fluorine-18 and iodine-123, respectively. Dual labeled biochemical probes are attractive agents since only one set of toxicity and pharmacokinetic analysis may be required for ligand validation for both imaging modalities. Recently, we reported that replacement of the methyl ester of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)tropane with a 2{prime}(R,S)-[F-18]fluoroisopropyl ester affords a highly potent and selective dopamine transporter ligand, 2{beta}-carbo-2{prime}(R,S)- fluoroisopropoxy-3{beta}-(4-chlorophenyl)tropane (FIPCT). FIPCT showed high uptake and retention in the striatum (S) resulting in good S/cerebellum = 3.5 at 125 min post injection in a rhesus monkey. These findings prompted us to synthesize and evaluate the 4-iodo analog, 2{beta}-carbo-2{prime}-(S)-fluoroisopropoxy-3{beta}-(4-iodophenyl)tropane (1) with 1-fluoropropan-2-ol (2) and POC13. These results suggest that [F-18]S-FIPIT is an excellent candidate for mapping of dopamine transporter sites.

  4. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics.

    PubMed

    Kaczor, Agnieszka A; Jörg, Manuela; Capuano, Ben

    2016-09-01

    In order to apply structure-based drug design techniques to G protein-coupled receptor complexes, it is essential to model their 3D structure and to identify regions that are suitable for selective drug binding. For this purpose, we have developed and tested a multi-component protocol to model the inactive conformation of the dopamine D2 receptor dimer, suitable for interaction with homobivalent antagonists. Our approach was based on protein-protein docking, applying the Rosetta software to obtain populations of dimers as present in membranes with all the main possible interfaces. Consensus scoring based on the values and frequencies of best interfaces regarding four scoring parameters, Rosetta interface score, interface area, free energy of binding and energy of hydrogen bond interactions indicated that the best scored dimer model possesses a TM4-TM5-TM7-TM1 interface, which is in agreement with experimental data. This model was used to study interactions of the previously published dopamine D2 receptor homobivalent antagonists based on clozapine,1,4-disubstituted aromatic piperidines/piperazines and arylamidoalkyl substituted phenylpiperazine pharmacophores. It was found that the homobivalent antagonists stabilize the receptor-inactive conformation by maintaining the ionic lock interaction, and change the dimer interface by disrupting a set of hydrogen bonds and maintaining water- and ligand-mediated hydrogen bonds in the extracellular and intracellular part of the interface. Graphical Abstract Structure of the final model of the dopamine D2 receptor homodimer, indicating the distancebetween Tyr37 and Tyr 5.42 in the apo form (left) and in the complex with the ligand (right). PMID:27491852

  5. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees.

    PubMed

    Haeffel, Gerald J; Getchell, Marya; Koposov, Roman A; Yrigollen, Carolyn M; Deyoung, Colin G; Klinteberg, Britt Af; Oreland, Lars; Ruchkin, Vladislav V; Grigorenko, Elena L

    2008-01-01

    Previous research has generated examples of how genetic and environmental factors can interact to create risk for psychopathology. Using a gene-by-environment (G x E) interaction design, we tested whether three polymorphisms in the dopamine transporter gene (DAT1, also referred to as SLC6A3, located at 5p15.33) interacted with maternal parenting style to predict first-onset episodes of depression. Participants were male adolescents (N= 176) recruited from a juvenile detention center in northern Russia. As hypothesized, one of the polymorphisms (rs40184) moderated the effect of perceived maternal rejection on the onset of major depressive disorder, as well as on suicidal ideation. Further, this G x E interaction was specific to depression; it did not predict clinically significant anxiety. These results highlight the need for further research investigating the moderating effects of dopaminergic genes on depression. PMID:18181793

  6. Association of a polymorphism of the dopamine transporter gene with externalizing behavior problems and associated temperament traits: a longitudinal study from infancy to the mid-teens.

    PubMed

    Jorm, A F; Prior, M; Sanson, A; Smart, D; Zhang, Y; Easteal, S

    2001-05-01

    There have been reports that a variable number of tandem repeats (VNTR) polymorphism situated in the 3' untranslated region of the dopamine transporter gene is associated with attention-deficit hyperactivity disorder. On the basis of these findings, we predicted an association of this polymorphism with hyperactivity, other externalizing behavior problems, and related temperament traits in a general population sample. The association was investigated using children participating in a longitudinal study of childhood temperament and development. DNA was taken from 660 children who had been assessed for temperament from 4-8 months to 15-16 years, and for behavior problems from 3-4 to 15-16 years. No significant associations were found at any age. There are a number of methodological differences from earlier studies that might explain the lack of associations with hyperactivity. It is also possible that the earlier findings are not replicable. PMID:11378848

  7. Kinesin molecular motors: Transport pathways, receptors, and human disease

    NASA Astrophysics Data System (ADS)

    Goldstein, Lawrence S. B.

    2001-06-01

    Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

  8. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  9. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Zhu Dana Beitner-Johnson, Wylie H.; Millhorn, David E.

    2006-01-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/oα immunoreactivity, but did not alter Gβ levels. Furthermore, dialysis of recombinant Goα protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor–G protein coupling, due to reduced levels of Goα protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  10. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells.

    PubMed

    Kobayashi, S; Conforti, L; Zhu, W H; Beitner-Johnson, D; Millhorn, D E

    1999-11-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/o alpha immunoreactivity, but did not alter G beta levels. Furthermore, dialysis of recombinant G(o) alpha protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor-G protein coupling, due to reduced levels of G(o) alpha protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  11. I-123 - FP-CIT pharmacokinetics and dosimetry show great potential for the evaluation of dopamine transporter system in clinical routine

    SciTech Connect

    Costa, D.C.; Walker, S.; Waddington, W. |

    1996-05-01

    FP-CIT is a N-fluoropropyl analogue of the [2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane] which has been labelled with I-123 and developed as a new marker of the pre-synaptic dopamine transporter system. Its selective uptake in the striatum of non-human primates and human volunteers has been reported with advantageous faster brain kinetics than {beta}-CIT. In this pilot work we studied the whole body imaging kinetics of FP-CIT in one normal volunteer - NV (5, 60, 100, 360 minutes and 24 hours post-injection for 20 minutes each) and a drug-free patient with well established Parkinson`s disease - PD (100 minutes) after intravenous injection of 111 MBq. Both subjects had high resolution brain SPECT at 35 minutes and 3.5 hours post-injection. Percent of whole body uptake (geometric mean of anterior and posterior projections) in different organs, including total brain and basal ganglia shows rapid clearance from blood during the first hour with no significant change from 100 minutes to 24 hours. The basal ganglia uptake is approximately 0.4% of total body from 100 minutes onwards. Striatal uptake (ratio to frontal cortex) is different between subjects, mainly at 3.5 hours and more marked in the putamen: Calculated dosimetry (mSv/MBq) showed E.D.E.-0.034, and total doses to whole body - 0.01, total brain - 0.017, basal ganglia - 0.155, small intestine - 0.06, urinary bladder - 0.05 and liver - 0.03. These data confirm that FP-CIT has acceptable dosimetry with good pharmacokinetics enabling the study of pre-synaptic dopamine transport system in nigrostriatal degeneration with clinical SPECT at 3-4 hrs p.i.

  12. Characterization of Nanostructured Silicon Membranes for Control of Molecular Transport

    NASA Astrophysics Data System (ADS)

    Srijanto, Bernadeta; Retterer, Scott; Fowlkes, Jason; Doktycz, Mitchel

    2011-03-01

    Fabrication of nanoporous membranes for selective transport of molecular species requires precise engineering at the nanoscale. The membrane permeability can be tuned by controlling the physical structure and the surface chemistry of the pores. We use a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, to fabricate silicon membranes that are physically robust and have uniform pore sizes. Pore sizes are further reduced using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide onto the membrane surfaces. Integrating nanoporous membranes within a microfluidic network provides a platform for tailoring molecular exchange between microchannels, independent of hydrodynamic effects. In enzymatic reactions, for example, tuning the pores size will allow smaller enzymatic substrates to traverse the membrane at controlled rates while larger enzymes remain spatially separated. Our results from membrane cross-sectioning using focused ion beam milling show that pore sizes can be controlled at dimensions below 10nm. Functional characterization was performed by quantitative fluorescence microscopy to observe the selective transport of molecular species of different sizes.

  13. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  14. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1

    PubMed Central

    Park, Min-Sun

    2015-01-01

    Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states. PMID:25919356

  15. Observation of quantum interference in molecular charge transport.

    PubMed

    Guédon, Constant M; Valkenier, Hennie; Markussen, Troels; Thygesen, Kristian S; Hummelen, Jan C; van der Molen, Sense Jan

    2012-05-01

    As the dimensions of a conductor approach the nanoscale, quantum effects begin to dominate, and it becomes possible to control the conductance through direct manipulation of the electron wavefunction. Such control has been demonstrated in various mesoscopic devices at cryogenic temperatures, but it has proved to be difficult to exert control over the wavefunction at higher temperatures. Molecules have typical energy level spacings (∼eV) that are much larger than the thermal energy at 300 K (∼25 meV), and are therefore natural candidates for such experiments. Previously, phenomena such as giant magnetoresistance, Kondo effects and conductance switching have been observed in single molecules, and theorists have predicted that it should also be possible to observe quantum interference in molecular conductors, but until now all the evidence for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid π-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire. PMID:22447160

  16. Modeling of Switching and Hysteresis in Molecular Transport

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj P.; Partridge, Harry (Technical Monitor)

    2002-01-01

    The conventional way of modeling current transport in two and three terminal molecular devices could be inadequate for certain cases involving switching and hysteresis. Here we present an alternate approach. Contrary to the regular way where applied bias directly modulates the conducting energy levels of the molecule, our method introduces a nonlinear potential energy surface varying with the applied bias as a control parameter. A time-dynamics is also introduced properly accounting for switching and hysteresis behavior. Although the model is phenomenological at this stage, we believe any detailed model would contain similar descriptions at its core.

  17. Electronic Transport of a Molecular Photoswitch with Graphene Nanoribbon Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Qiu-Hua; Zhao, Peng; Liu, De-Sheng

    2014-05-01

    Based on non-equilibrium Green's function formalism and density functional theory calculations, we investigate the electronic transport properties of 15,16-dinitrile dihydropyrene/cyclophanediene bridged between two zigzag graphene nanoribbon electrodes. Our results demonstrate that the system can exhibit good switching behavior with the maximum on-off ratio high up to 146 which is improved dramatically compared with the case of gold electrodes. Moreover, an obvious negative differential resistance behavior occurs at 0.3 V, making the system have more potential in near future molecular circuits.

  18. Molecular motor traffic: From biological nanomachines to macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  19. Molecular Dynamics Modeling of Heat Transport in Metals and Semiconductors

    SciTech Connect

    Narumanchi, S.; Kim, K.

    2010-01-01

    Interfacial thermal transport is of great importance in a number of practical applications where interfacial resistance between layers is frequently a major bottleneck to effective heat dissipation. For example, efficient heat transfer at silicon/aluminum and silicon/copper interfaces is very critical in power electronics packages used in hybrid electric vehicle applications. It is therefore important to understand the factors that govern and impact thermal transport at semiconductor/metal interfaces. Hence, in this study, we use classical molecular dynamics modeling to understand and study thermal transport in silicon and aluminum, and some preliminary modeling to study thermal transport at the interface between silicon and aluminum. A good match is shown between our modeling results for thermal conductivity in silicon and aluminum and the experimental data. The modeling results from this study also match well with relevant numerical studies in the literature for thermal conductivity. In addition, preliminary modeling results indicate that the interfacial thermal conductance for a perfect silicon/aluminum interface is of the same order as experimental data in the literature as well as diffuse mismatch model results accounting for realistic phonon dispersion curves.

  20. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  1. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  2. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  3. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  4. Dopamine transporter SLC6A3 genotype affects cortico-striatal activity of set-shifts in Parkinson's disease.

    PubMed

    Habak, Claudine; Noreau, Anne; Nagano-Saito, Atsuko; Mejía-Constaín, Beatriz; Degroot, Clotilde; Strafella, Antonio P; Chouinard, Sylvain; Lafontaine, Anne-Louise; Rouleau, Guy A; Monchi, Oury

    2014-11-01

    Parkinson's disease is a neurodegenerative condition that affects motor function along with a wide range of cognitive domains, including executive function. The hallmark of the pathology is its significant loss of nigrostriatal dopamine, which is necessary for the cortico-striatal interactions that underlie executive control. Striatal dopamine reuptake is mediated by the SLC6A3 gene (formerly named DAT1) and its polymorphisms, which have been largely overlooked in Parkinson's disease. Thirty patients (ages 53-68 years; 19 males, 11 females) at early stages of Parkinson's disease, were genotyped according to a 9-repeat (9R) or 10-repeat (10R) allele on the SLC6A3/DAT1 gene. They underwent neuropsychological assessment and functional magnetic resonance imaging while performing a set-shifting task (a computerized Wisconsin Card Sorting Task) that relies on fronto-striatal interactions. Patients homozygous on the 10R allele performed significantly better on working memory tasks than 9R-carrier patients. Most importantly, patients carrying a 9R allele exhibited less activation than their 10R homozygous counterparts in the prefrontal cortex, premotor cortex and caudate nucleus, when planning and executing a set-shift. This pattern was exacerbated for conditions that usually recruit the striatum compared to those that do not. This is the first study indicating that the SLC6A3/DAT1 genotype has a significant effect on fronto-striatal activation and performance in Parkinson's disease. This effect is stronger for conditions that engage the striatum. Longitudinal studies are warranted to assess this polymorphism's effect on the clinical evolution of patients with Parkinson's disease, especially with cognitive decline. PMID:25212851

  5. Development of potent dopamine-norepinephrine uptake inhibitors (DNRIs) based on a (2S,4R,5R)-2-benzhydryl-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol molecular template

    PubMed Central

    Santra, Soumava; Sharma, Horrick; Vedachalam, Seenuvasan; Antonio, Tamara; Reith, Maarten; Dutta, Aloke

    2014-01-01

    Current therapy of depression is less than ideal with remission rates of only 25–35% and response rates of 45–60%. It has been hypothesized that a dysfunctional dopaminergic system in the mesocorticolimbic pathway in depressive disorder may lead to development of anhedonia associated with loss of pleasure and interest along with loss of motivation. The current antidepressants do not address dopamine dysfunction which might explain their low efficacy. In this report, we have described an SAR study on our pyran-based triple reuptake inhibitors (TRIs) which are being investigated as the next-generation antidepressants. In the present work we demonstrate that our lead TRIs can be modified with appropriate aromatic substitutions to display a highly potent SSRI profile for compounds 2a and 4a (Ki (SERT); 0.71 and 2.68 nM, respectively) or a potent DNRI profile for compounds 6b and 6h (Ki (DAT/NET); 8.94/ 4.76 and 13/ 7.37 nM, respectively). Compounds 4g–4i exhibited potencies at all three monoamine transporters. The results provide insights into the structural requirements for developing selective dual- and triple-uptake inhibitors from a unique pyran molecular template for an effective management of depression and related disorders. PMID:25593099

  6. Development of potent dopamine-norepinephrine uptake inhibitors (DNRIs) based on a (2S,4R,5R)-2-benzhydryl-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol molecular template.

    PubMed

    Santra, Soumava; Sharma, Horrick; Vedachalam, Seenuvasan; Antonio, Tamara; Reith, Maarten; Dutta, Aloke

    2015-02-15

    Current therapy of depression is less than ideal with remission rates of only 25-35% and response rates of 45-60%. It has been hypothesized that a dysfunctional dopaminergic system in the mesocorticolimbic pathway in depressive disorder may lead to development of anhedonia associated with loss of pleasure and interest along with loss of motivation. The current antidepressants do not address dopamine dysfunction which might explain their low efficacy. In this report, we have described an SAR study on our pyran-based triple reuptake inhibitors (TRIs) which are being investigated as the next-generation antidepressants. In the present work we demonstrate that our lead TRIs can be modified with appropriate aromatic substitutions to display a highly potent SSRI profile for compounds 2a and 4a (Ki (SERT); 0.71 and 2.68nM, respectively) or a potent DNRI profile for compounds 6b and 6h (Ki (DAT/NET); 8.94/4.76 and 13/7.37nM, respectively). Compounds 4g-4i exhibited potencies at all three monoamine transporters. The results provide insights into the structural requirements for developing selective dual- and triple-uptake inhibitors from a unique pyran molecular template for an effective management of depression and related disorders. PMID:25593099

  7. Adolescence methylphenidate treatment in a rodent model of attention deficit/hyperactivity disorder: dopamine transporter function and cellular distribution in adulthood.

    PubMed

    Somkuwar, Sucharita S; Darna, Mahesh; Kantak, Kathleen M; Dwoskin, Linda P

    2013-07-15

    Attention deficit/hyperactivity disorder (ADHD) is attributed to dysfunction of the prefrontal cortex. Methylphenidate, an inhibitor of dopamine and norepinephrine transporters (DAT and NET, respectively), is a standard treatment for ADHD. The Spontaneously Hypertensive Rat (SHR) is a well-established animal model of ADHD. Our previous results showed that methylphenidate treatment in adolescent SHR enhanced cocaine self-administration during adulthood, and alterations in DAT function in prefrontal cortex play a role in this response. Importantly, prefrontal cortex subregions, orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC), have been shown to have distinct roles in ADHD and cocaine self-administration. In the current study, SHR, Wistar-Kyoto (WKY) and Wistar (WIS) rats received a therapeutically relevant dose of methylphenidate (1.5mg/kg, p.o.) or vehicle during adolescence and then OFC and mPFC DAT function and cellular expression were assessed during adulthood. In both OFC and mPFC, no strain differences in Vmax or Km for dopamine uptake into synaptosomes were found between vehicle-treated SHR, WKY and WIS. Methylphenidate increased DAT Vmax in SHR mPFC and decreased DAT Vmax in WKY OFC. Also, methylphenidate decreased DAT Km in WIS OFC. Further, methylphenidate did not alter DAT cellular localization, indicating that methylphenidate treatment during adolescence regulated DAT function in SHR mPFC in a trafficking-independent manner. Thus, the increase in mPFC DAT function was an SHR-specific long term consequence of methylphenidate treatment during adolescence, which may be responsible for the treatment-induced alterations in behavior including the observed increases in cocaine self-administration. PMID:23623751

  8. Molecular simulation of adsorption and transport in hierarchical porous materials.

    PubMed

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity. PMID:23718554

  9. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  10. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  11. Fluctuating-bias controlled electron transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; MacKinnon, Angus; Kantorovich, Lev

    2016-05-01

    We consider the problem of transport through a multiterminal molecular junction in the presence of a stochastic bias, which can also be used to describe transport through fluctuating molecular energy levels. To describe these effects, we first make a simple extension of our previous work [Phys. Rev. B 91, 125433 (2015), 10.1103/PhysRevB.91.125433] to show that the problem of tunneling through noisy energy levels can be mapped onto the problem of a noisy driving bias, which appears in the Kadanoff-Baym equations for this system in an analogous manner to the driving term in the Langevin equation for a classical circuit. This formalism uses the nonequilibrium Green's function method to obtain analytically closed formulas for transport quantities within the wide-band limit approximation for an arbitrary time-dependent bias and it is automatically partition free. We obtain exact closed formulas for both the colored and white noise-averaged current at all times. In the long-time limit, these formulas possess a Landauer-Büttiker-type structure which enables the extraction of an effective transmission coefficient for the transport. Expanding the Fermi function into a series of simple poles, we find an exact formal relation between the parameters which characterize the bias fluctuations and the poles of the Fermi function. This enables us to describe the effect of the temperature and the strength of the fluctuations on the averaged current which we interpret as a quantum analog to the classical fluctuation-dissipation theorem. We use these results to convincingly refute some recent results on the multistability of the current through a fluctuating level, simultaneously verifying that our formalism satisfies some well-known theorems on the asymptotic current. Finally, we present numerical results for the current through a molecular chain which demonstrate a transition from nonlinear to linear I -V characteristics as the strength of fluctuations is increased, as well as a

  12. Transport diffusion in one dimensional molecular systems: Power law and validity of Fick's law

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Hu, Bambi; Zhong, Wei-rong

    2015-10-01

    The transport diffusion in one-dimensional molecular systems is investigated through non-equilibrium molecular dynamics and Monte Carlo methods. We have proposed the power law relationship of the transport diffusion coefficient with the temperature, the mass and the transport length, D* ∝ T*m*-1L*β, where β equals to 0.8 for small systems and zero for large systems. It is found that Fick's law is valid in long transport length but invalid in short transport length. Our results can provide a new perspective for understanding the microscopic mechanism of the molecular transport phenomena in low-dimensional systems.

  13. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion.

    PubMed

    Schwendt, Marek; Rocha, Angelica; See, Ronald E; Pacchioni, Alejandra M; McGinty, Jacqueline F; Kalivas, Peter W

    2009-11-01

    Chronic abuse of methamphetamine leads to cognitive dysfunction and high rates of relapse, paralleled by significant changes of brain dopamine and serotonin neurotransmission. Previously, we found that rats with extended access to methamphetamine self-administration displayed enhanced methamphetamine-primed reinstatement of drug-seeking and cognitive deficits relative to limited access animals. The present study investigated whether extended access to methamphetamine self-administration produced abnormalities in dopamine and serotonin systems in rat forebrain. Rats self-administered methamphetamine (0.02-mg/i.v. infusion) during daily 1-h sessions for 7 to 10 days, followed by either short- (1-h) or long-access (6-h) self-administration for 12 to 14 days. Lever responding was extinguished for 2 weeks before either reinstatement testing or rapid decapitation and tissue dissection. Tissue levels of monoamine transporters and markers of methamphetamine-induced toxicity were analyzed in several forebrain areas. Long-access methamphetamine self-administration resulted in escalation of daily drug intake ( approximately 7 mg/kg/day) and enhanced drug-primed reinstatement compared with the short-access group. Furthermore, long-, but not short-access to self-administered methamphetamine resulted in persistent decreases in dopamine transporter (DAT) protein levels in the prefrontal cortex and dorsal striatum. In contrast, only minor alterations in the tissue levels of dopamine or its metabolites were found, and no changes in markers specific for dopamine terminals or glial cell activation were detected. Our findings suggest that persistent methamphetamine seeking is associated with region-selective changes in DAT levels without accompanying monoaminergic neurotoxicity. Greater understanding of the neuroadaptations underlying persistent methamphetamine seeking and cognitive deficits could yield targets suitable for future therapeutic interventions. PMID:19648469

  14. Molecular physiology of vesicular glutamate transporters in the digestive system

    PubMed Central

    Li, Tao; Ghishan, Fayez K.; Bai, Liqun

    2005-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs. PMID:15793854

  15. Synthesis of 3beta-(4-[18F]fluoromethylphenyl)- and 3beta-(2-[18F] fluoromethylphenyl)tropane-2beta-carboxylic acid methyl esters: new ligands for mapping brain dopamine transporter with positron emission tomography.

    PubMed

    Petric, A; Barrio, J R; Namavari, M; Huang, S C; Satyamurthy, N

    1999-07-01

    The synthesis of two new dopamine transporter ligands, 3beta-(4-fluoromethylphenyl)tropane-2beta-carboxylic acid methyl ester and 3beta-(2-fluoromethylphenyl)tropane-2beta-carboxylic acid methyl ester, and their spectral characterization are described. The precursors for these ligands were prepared by TiCl4 catalyzed chloromethylation of 3beta-phenyltropane-2beta-carboxylic acid methyl ester followed by separation of the isomeric product mixture of 2- and 4-chloromethylphenyltropane derivatives. Reaction of the chloromethyl analogs with no-carrier-added [18F]fluoride ion followed by high performance liquid chromatography purification provided the corresponding [18F]fluoromethyltropanes, in good radiochemical yields, useful for imaging the brain dopamine transporter system in vivo with positron emission tomography. PMID:10473191

  16. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  17. Electron transport in molecular junctions with graphene as protecting layer

    SciTech Connect

    Hüser, Falco; Solomon, Gemma C.

    2015-12-07

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  18. Electron transport in molecular junctions with graphene as protecting layer

    NASA Astrophysics Data System (ADS)

    Hüser, Falco; Solomon, Gemma C.

    2015-12-01

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  19. Electron transport in molecular junctions with graphene as protecting layer.

    PubMed

    Hüser, Falco; Solomon, Gemma C

    2015-12-01

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar. PMID:26646877

  20. Counterintuitive issues in the charge transport through molecular junctions.

    PubMed

    Bâldea, Ioan

    2015-12-14

    Whether at phenomenological or microscopic levels, most theoretical approaches to charge transport through molecular junctions postulate or attempt to justify microscopically the existence of a dominant molecular orbital (MO). Within such single level descriptions, experimental current-voltage I-V curves are sometimes/often analyzed by using analytical formulas expressing the current as a cubic expansion in terms of the applied voltage V, and the possible V-driven shifts of the level energy offset relative to the metallic Fermi energy ε0 are related to the asymmetry of molecule-electrode couplings or an asymmetric location of the "center of gravity" of the MO with respect to electrodes. In this paper, we present results demonstrating the failure of these intuitive expectations. For example, we show how typical data processing based on cubic expansions yields a value of ε0 underestimated by a typical factor of about two. When compared to theoretical results of DFT approaches, which typically underestimate the HOMO-LUMO gap by a similar factor, this may create the false impression of "agreement" with experiments in situations where this is actually not the case. Furthermore, such cubic expansions yield model parameter values dependent on the bias range width employed for fitting, which is unacceptable physically. Finally, we present an example demonstrating that, counter-intuitively, the bias-induced change in the energy of an MO located much closer to an electrode can occur in a direction that is opposite to the change in the Fermi energy of that electrode. This is contrary to what one expects based on a "lever rule" argument, according to which the MO "feels" the local value of the electric potential, which is assumed to vary linearly across the junction and is closer to the potential of the closer electrode. This example emphasizes the fact that screening effects in molecular junctions can have a subtle character, contradicting common intuition. PMID:26549325

  1. Molecular Aspects of Transport in Thin Films of Controlled Architecture

    SciTech Connect

    Paul W. Bohn

    2009-04-16

    Our laboratory focuses on developing spatially localized chemistries which can produce structures of controlled architecture on the supermolecular length scale -- structures which allow us to control the motion of molecular species with high spatial resolution, ultimately on nanometer length scales. Specifically, nanocapillary array membranes (NCAMs) contain an array of nanometer diameter pores connecting vertically separated microfluidic channels. NCAMs can manipulate samples with sub-femtoliter characteristic volumes and attomole sample amounts and are opening the field of chemical analysis of mass-limited samples, because they are capable of digital control of fluid switching down to sub-attoliter volumes; extension of analytical “unit operations” down to sub-femtomole sample sizes; and exerting spatiotemporal control over fluid mixing to enable studies of reaction dynamics. Digital flow switching mediated by nanocapillary array membranes can be controlled by bias, ionic strength, or pore diameter and is being studied by observing the temporal characteristics of transport across a single nanopore in thin PMMA membranes. The control of flow via nanopore surface characteristics, charge density and functional group presentation, is being studied by coupled conductivity and laser-induced fluorescence (LIF) measurements. Reactive mixing experiments previously established low millisecond mixing times for NCAM-mediated fluid transfer, and this has been exploited to demonstrate capture of mass-limited target species by Au colloids. Voltage and thermally-activated polymer switches have been developed for active control of transport in NCAMs. Thermally-switchable and size-selective transport was achieved by grafting poly(N-isopropylacrylamide) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane, while the voltage-gated properties of poly(hydroxyethylmethacrylate) were characterized dynamically. Electrophoretic separations have been

  2. A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts.

    PubMed

    Dibenedetto, Domenica; Rossetti, Giulia; Caliandro, Rocco; Carloni, Paolo

    2013-09-24

    Multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy provides valuable structural information about adducts between naturally unfolded proteins and their ligands. These are often highly pharmacologically relevant. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is complicated. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret two-dimensional (2D) NMR data. We apply this tool to the naturally unfolded protein human α-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solutions. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms with experimental data that the ligands bind preferentially to (125)YEMPS(129) residues in the C-terminal region and to a few residues of the so-called NAC region consistently. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminus. Hence, the performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes in the protein. PMID:23964651

  3. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    PubMed Central

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  4. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    PubMed Central

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  5. Rats classified as low or high cocaine locomotor responders: a unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors.

    PubMed

    Yamamoto, Dorothy J; Nelson, Anna M; Mandt, Bruce H; Larson, Gaynor A; Rorabaugh, Jacki M; Ng, Christopher M C; Barcomb, Kelsey M; Richards, Toni L; Allen, Richard M; Zahniser, Nancy R

    2013-09-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine's discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  6. Chinese Medicine Formula “Jian-Pi-Zhi-Dong Decoction” Attenuates Tourette Syndrome via Downregulating the Expression of Dopamine Transporter in Mice

    PubMed Central

    Wang, Dao-han; Li, Wei; Liu, Xiao-fang; Zhang, Jin-ming; Wang, Su-mei

    2013-01-01

    Jian-Pi-Zhi-Dong Decoction (JPZDD) is dedicated to the treatment for Tourette syndrome (TS) with the guidance of the theories of Traditional Chinese Medicine (TCM). This study aims to investigate the expression of dopamine transporter (DAT) in the striatum and stereotyped behavior of TS mice model by intervention of JPZDD. Mice were induced by 3,3′-iminodipropionitrile (IDPN, 350 mg kg−1 day−1, i.p.) for 7 days and divided into 4 groups (n = 20, each): control and IDPN groups were gavaged with saline and the remaining 2 groups with Tiapride (Tia, 50 mg kg−1 day−1) and JPZDD (20 g kg−1 day−1), respectively. The results showed that the scores of stereotyped behavior in IDPN+JPZDD group were significantly reduced. A noticeably increased 11C-β-CFT binding at bilateral striatum was observed after administration of JPZDD versus that of IDPN or Tia. Immunohistochemistry and in situ hybridization studies manifested higher levels of DAT protein and mRNA in IDPN+JPZDD group. These findings not only demonstrated that JPZDD could effectively inhibit the abnormal behaviors of TS mice model, but also increase the level of DAT in striatum. Therefore, JPZDD could be one of potential treatments of patients with TS. PMID:23431337

  7. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice.

    PubMed

    Di Liberto, Valentina; Mäkelä, Johanna; Korhonen, Laura; Olivieri, Melania; Tselykh, Timofey; Mälkiä, Annika; Do Thi, Hai; Belluardo, Natale; Lindholm, Dan; Mudò, Giuseppa

    2012-02-01

    Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERβ antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. PMID:22041555

  8. The effects of child maltreatment and polymorphisms of the serotonin transporter and dopamine D4 receptor genes on infant attachment and intervention efficacy.

    PubMed

    Cicchetti, Dante; Rogosch, Fred A; Toth, Sheree L

    2011-05-01

    This investigation examined the extent to which polymorphisms of the serotonin transporter linked promoter region (5-HTTLPR) and the dopamine receptor D4 (DRD4) genes differentially influenced the development of attachment security and disorganization in maltreated and nonmaltreated infants at age 13 months, and the extent to which the efficacy of preventive interventions to promote attachment security were influenced by genetic variation. The sample consisted of 106 infants from maltreating families, participating in a randomized control trial evaluating the efficacy of two interventions, child-parent psychotherapy and psychoeducational parenting intervention, and 47 infants from nonmaltreating families. DNA samples were genotyped for polymorphisms of 5-HTTLPR, DRD4 exon III variable number tandem repeat, and DRD4-521. Attachment organization at age 1 and at age 2 was assessed with the Strange Situation for all participants, prior to and following the completion of the interventions. High rates of disorganized attachment were observed in the maltreatment compared to the nonmaltreatment group, and both interventions resulted in increased rates of attachment security at age 2. Genetic variation did not influence improvement in attachment organization among maltreated infants. Among maltreated infants, genetic variation had minimal effect on attachment organization. In contrast, among nonmaltreated infants, 5-HTTLPR and DRD4 polymorphisms influenced attachment security and disorganization at age 2 and the stability of attachment disorganization over time. PMID:23786683

  9. Interactions between Early Parenting and a Polymorphism of the Child’s Dopamine Transporter Gene in Predicting Future Child Conduct Disorder Symptoms

    PubMed Central

    Lahey, Benjamin B.; Rathouz, Paul J.; Lee, Steve S.; Chronis-Tuscano, Andrea; Pelham, William E.; Waldman, Irwin D.; Cook, Edwin H.

    2010-01-01

    Mounting evidence suggests that genetic risks for mental disorders often interact with the social environment, but most studies still ignore environmental moderation of genetic influences. We tested interactions between maternal parenting and the variable number tandem repeat (VNTR) polymorphism in the 3′ untranslated region (UTR) of the dopamine transporter gene in the child to increase understanding of gene-environment interactions involving early parenting. Participants were part of a 9-year longitudinal study of 4–6-year-old children who met criteria for attention-deficit/hyperactivity disorder (ADHD) and demographically matched controls. Maternal parenting was observed during standard mother-child interactions in wave 1. The child’s conduct disorder (CD) symptoms 5–8 years later were measured using separate structured diagnostic interviews of the mother and youth. Controlling for ADHD symptoms and child disruptive behavior during the mother-child interaction, there was a significant inverse relation between levels of both positive and negative parenting at 4–6 years and the number of later CD symptoms, but primarily among children with two copies of the 9-repeat allele of the VNTR. The significant interaction with negative parenting was replicated in parent and youth reports of CD symptoms separately. PMID:21171728

  10. Increased Sensitivity to Cocaine Self-Administration in HIV-1 Transgenic Rats is Associated with Changes in Striatal Dopamine Transporter Binding.

    PubMed

    McIntosh, Scot; Sexton, Tammy; Pattison, Lindsey P; Childers, Steven R; Hemby, Scott E

    2015-09-01

    Cocaine abuse in HIV patients accelerates the progression and severity of neuropathology, motor impairment and cognitive dysfunction compared to non-drug using HIV patients. Cocaine and HIV interact with the dopamine transporter (DAT); however, the effect of their interaction on DAT binding remains understudied. The present study compared the dose-response functions for intravenous self-administration of cocaine and heroin between male HIV-1 transgenic (HIV-1 Tg) and Fischer 344 rats. The cocaine and heroin dose-response functions exhibit an inverted U-shape for both HIV-1 Tg and F344 rats. For cocaine, the number of infusions for each dose on the ascending limb was greater for HIV-1 Tg versus F344 rats. No significant changes in the heroin dose-response function were observed in HIV-1 Tg animals. Following the conclusion of self-administration experiments, DAT binding was assessed in striatal membranes. Saturation binding of the cocaine analog [(125)I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125)I]RTI-55) in rat striatal membranes resulted in binding curves that were best fit to a two-site binding model, allowing for calculation of dissociation constant (Kd) and binding density (Bmax) values that correspond to high- and low-affinity DAT binding sites. Control HIV-1 Tg rats exhibited a significantly greater affinity (i.e., decrease in Kd value) in the low-affinity DAT binding site compared to control F344 rats. Furthermore, cocaine self-administration in HIV-1 Tg rats increased low-affinity Kd (i.e., decreased affinity) compared to levels observed in control F344 rats. Cocaine also increased low-affinity Bmax in HIV-1 Tg rats as compared to controls, indicating an increase in the number of low-affinity DAT binding sites. F344 rats did not exhibit any change in high- or low-affinity Kd or Bmax values following cocaine or heroin self-administration. The increase in DAT affinity in cocaine HIV-1 Tg rats is consistent with the leftward shift of the

  11. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies

    PubMed Central

    Gluskin, B S; Mickey, B J

    2016-01-01

    The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called ‘Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was −0.57 under the fixed-effect model (95% confidence interval=(−0.87, −0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response. PMID:26926883

  12. The molecular basis of chloride transport in shark rectal gland.

    PubMed

    Riordan, J R; Forbush, B; Hanrahan, J W

    1994-11-01

    Transepithelial Cl- secretion in vertebrates is accomplished by a secondary active transport process brought about by the coordinated activity of apical and basolateral transport proteins. The principal basolateral components are the Na+/K(+)-ATPase pump, the Na+/K+/2Cl- cotransporter (symporter) and a K+ channel. The rate-limiting apical component is a cyclic-AMP-stimulated Cl- channel. As postulated nearly two decades ago, the net Cl- movement from the blood to the lumen involves entry into the epithelial cells with Na+ and K+, followed by active Na+ extrusion via the pump and passive K+ exit via a channel. Intracellular [Cl-] is raised above electrochemical equilibrium and exits into the lumen when the apical Cl- channel opens. Cl- secretion is accompanied by a passive paracellular flow of Na+. The tubules of the rectal glands of elasmobranchs are highly specialized for secreting concentrated NaCl by this mechanism and hence have served as an excellent experimental model in which to characterize the individual steps by electrophysiological and ion flux measurements. The recent molecular cloning and heterologous expression of the apical Cl- channel and basolateral cotransporter have enabled more detailed analyses of the mechanisms and their regulation. Not surprisingly, since hormones acting through kinases control secretion, both the Cl- channel, which is the shark counterpart of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), and the cotransporter are regulated by phosphorylation and dephosphorylation. The primary stimulation of secretion by hormones employing cyclic AMP as second messenger activates CFTR via the direct action of protein kinase A (PKA), which phosphorylates multiple sites on the R domain. In contrast, phosphorylation of the cotransporter by as yet unidentified kinases is apparently secondary to the decrease in intracellular chloride concentration caused by anion exit through CFTR. PMID:7529818

  13. Organic Semiconductors: A Molecular Picture of the Charge-Transport and Energy-Transport Processes.

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc

    2007-03-01

    Conjugated organic oligomer and polymer materials are being increasingly considered for their incorporation as the active semiconductor elements in devices such as photo-voltaic cells, light-emitting diodes, or field-effects transistors. In the operation of these devices, electron-transfer and energy-transfer processes play a key role, for instance in the form of charge transport (in the bulk or across interfaces), energy transport, charge separation, or charge recombination [1]. Here, we provide a theoretical description of electron-transfer phenomena based on electron-transfer theory, which allows us to provide a molecular, chemically-oriented understanding. In this presentation, we focus on the parameters that impact the mobility of charge carriers [2], that is the electronic coupling within chains and between adjacent chains and the reorganization energy of the chains upon ionization. Materials under study include conjugated oligomers such as oligoacenes, oligothiophene-acenes, oligothiophenes, and oligothienacenes. [1] J.L. Br'edas, D. Beljonne, V. Coropceanu, and J. Cornil, ``Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers'', Chemical Reviews, 104, 4971-5004 (2004). [2] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Br'edas, ``Charge Transport in Organic Semiconductors'', Chemical Reviews, 107, xxx (2007).

  14. Structure-activity relationships at monoamine transporters for a series of N-substituted 3alpha-(bis[4-fluorophenyl]methoxy)tropanes: comparative molecular field analysis, synthesis, and pharmacological evaluation.

    PubMed

    Kulkarni, Santosh S; Grundt, Peter; Kopajtic, Theresa; Katz, Jonathan L; Newman, Amy Hauck

    2004-06-17

    The development of structure-activity relationships (SAR) with divergent classes of monoamine transporter ligands and comparison of their effects in animal models of cocaine abuse have provided insight into the complex relationship among structure, binding profiles, and behavioral activity. Many 3alpha-(diphenylmethoxy)tropane (benztropine) analogues are potent dopamine uptake inhibitors but exhibit behavioral profiles that differ from those of cocaine and other compounds in this class. One of the most potent and dopamine transporter (DAT) selective N-substituted benztropine analogues (N-(4-phenyl-n-butyl)-3alpha-(bis[4-fluorophenyl]methoxy)tropane, 1c) is devoid of cocaine-like behaviors in rodent models but is also highly lipophilic (cLogD = 5.01), which compromises its water solubility and may adversely affect its pharmacokinetic properties. To further explore the SAR in this series and ultimately to design dopamine uptake inhibitors with favorable lipophilicities for drug development, a comparative molecular field analysis (CoMFA) was performed on a set of benztropine analogues previously synthesized in our laboratory. The CoMFA field analysis on the statistically significant (r2(cv) = 0.632; r2(ncv) = 0.917) models provided valuable insight into the structural features required for optimal binding to the DAT, which was used to design a series of novel benztropine analogues with heteroatom substitutions at the tropane N-8. These compounds were evaluated for binding at DAT, serotonin (SERT) and norepinephrine (NET) transporters, and muscarinic M1 receptors in rat brain. Inhibition of [3H]DA uptake in synaptosomes was also evaluated. Most of the analogues showed high DAT affinity (12-50 nM), selectivity (10- to 120-fold), potent inhibition of dopamine uptake, and lower lipophilicities as predicted by cLogD values. PMID:15189035

  15. Ferric Enterochelin Transport in Yersinia enterocolitica: Molecular and Evolutionary Aspects

    PubMed Central

    Schubert, S.; Fischer, D.; Heesemann, J.

    1999-01-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  16. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects.

    PubMed

    Schubert, S; Fischer, D; Heesemann, J

    1999-10-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  17. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    SciTech Connect

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically pure {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.

  18. Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system.

    PubMed

    Barroso-Chinea, Pedro; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Castro-Hernández, Javier; Salas-Hernández, Josmar; Chtarto, Abdelwahed; Luis-Ravelo, Diego; Humbert-Claude, Marie; Tenenbaum, Liliane; González-Hernández, Tomás

    2016-04-01

    The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. PMID:26777664

  19. Imaging of the dopamine transporter predicts pattern of disease progression and response to levodopa in patients with schizophrenia and parkinsonism: a 2-year follow-up multicenter study.

    PubMed

    Tinazzi, Michele; Morgante, Francesca; Matinella, Angela; Bovi, Tommaso; Cannas, Antonino; Solla, Paolo; Marrosu, Francesco; Nicoletti, Alessandra; Zappia, Mario; Luca, Antonina; Di Stefano, Angela; Morgante, Letterio; Pacchetti, Claudio; Minafra, Brigida; Sciarretta, Massimo; Dallocchio, Carlo; Rossi, Simone; Ulivelli, Monica; Ceravolo, Roberto; Frosini, Daniela; Cipriani, Andrea; Barbui, Corrado

    2014-02-01

    Similarly to subjects with degenerative parkinsonism, (123)I-FP-CIT SPECT has been reported either normal or abnormal in patients with drug-induced parkinsonism (DIP), challenging the notion that parkinsonism might be entirely due to post-synaptic D2-receptors blockade by antipsychotic drugs. In a previous multicenter cross-sectional study conducted on a large sample of patients with schizophrenia, we identified 97 patients who developed parkinsonism with a similar bi-modal distribution of DAT-SPECT. In this longitudinal study, we reported clinical and imaging features associated with progression of motor disability over 2-year follow-up in 60 out of those 97 patients with schizophrenia and parkinsonism who underwent (123)I-FP-CIT SPECT at baseline evaluation (normal SPECT=33; abnormal SPECT=27). As second end-point, chronic response to levodopa over a 3-month period was tested in a subgroup of subjects. Motor Unified Parkinson's Disease Rating Scale (UPDRS) at follow-up significantly increased in patients with abnormal SPECT. Specifically, a 6-point worsening was demonstrated in 18.5% of the subjects with abnormal SPECT and in none of the subjects with normal SPECT. Levodopa treatment improved motor UPDRS only in the group with abnormal SPECT. After adjustment for possible confounders, linear regression analysis demonstrated that abnormal SPECT findings at baseline were the only predictor of motor disability progression and of better outcome of levodopa treatment. Our results support the notion that a degenerative disease might underlie parkinsonism in a minority of schizophrenic patients chronically exposed to antipsychotics. Functional imaging of the dopamine transporter can be helpful to select this patient sub-group that might benefit from levodopa therapy. PMID:24369987

  20. Adolescent atomoxetine treatment in a rodent model of ADHD: effects on cocaine self-administration and dopamine transporters in frontostriatal regions.

    PubMed

    Somkuwar, Sucharita S; Jordan, Chloe J; Kantak, Kathleen M; Dwoskin, Linda P

    2013-12-01

    Cocaine abuse and attention deficit/hyperactivity disorder (ADHD) are often comorbid. Preclinical research indicates that medial prefrontal (mPFC) and orbitofrontal (OFC) cortices are important neural substrates for both disorders. Using the spontaneously hypertensive rat (SHR) model of ADHD, we reported that adolescent treatment with the stimulant methylphenidate, a dopamine (DAT) and norepinephrine (NET) transporter inhibitor, enhanced cocaine self-administration during adulthood, and was associated with increased DAT function in mPFC. This study investigates the effects of atomoxetine ((R)-N-methyl-γ-(2-methylphenoxy)-benzenepropanamine hydrochloride) treatment, a selective NET inhibitor, during adolescence on cocaine self-administration and on DAT function and cell-surface expression in mPFC and OFC during adulthood. SHR acquired cocaine self-administration faster than Wistar-Kyoto and Wistar. Across cocaine doses, SHR earned more cocaine infusions and had higher progressive-ratio breakpoints than Wistar-Kyoto and Wistar, demonstrating that the SHR phenotype models comorbid ADHD and cocaine abuse. Prior atomoxetine treatment did not augment cocaine self-administration in SHR, but acquisition was enhanced in Wistar-Kyoto. No strain differences were found for DAT kinetic parameters or cellular localization in the vehicle controls. Atomoxetine did not alter DAT kinetic parameters or localization in SHR mPFC. Rather, atomoxetine decreased V(max) and DAT cell surface expression in SHR OFC, indicating that inhibition of NET by atomoxetine treatment during adolescence indirectly reduced DAT function and trafficking to the cell surface in OFC, specifically in the ADHD model. Thus, atomoxetine, unlike methylphenidate, does not enhance vulnerability to cocaine abuse in SHR and may represent an important alternative for teens with ADHD when drug addiction is a concern. PMID:23822950

  1. The HIV-1 associated protein, Tat1–86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study

    PubMed Central

    Ferris, Mark J.; Frederick-Duus, Danielle; Fadel, Jim; Mactutus, Charles F.; Booze, Rosemarie M.

    2009-01-01

    Injection drug use accounts for approximately one-third of HIV-infections in the United States. HIV associated proteins have been shown to interact with various drugs of abuse to incite concerted neurotoxicity. One common area for their interaction is the nerve terminal, including dopamine transporter (DAT) systems. However, results regarding DAT function and regulation in HIV-infection, regardless of drug use, are mixed. Thus, the present experiments were designed to explicitly control Tat and cocaine administration in an in vivo model in order to reconcile differences that exist in the literature to date. We examined Tat plus cocaine-induced alterations using no-net-flux microdialysis, which is sensitive to alterations in DAT function, in order to test the potential for DAT as an early mediator of HIV-induced oxidative stress and neurodegeneration in vivo. Within 5 hours of intra-accumbal administration of the HIV-associated protein, Tat, we noted a significant reduction in local DAT efficiency with little change in DA overflow/release dynamics. Further, at 48 hrs post-Tat administration, we demonstrated a concerted effect of the HIV-protein Tat with cocaine on both uptake and release function. Finally, we discuss the extent to which DAT dysfunction may be considered a predecessor to generalized nerve terminal dysfunction. Characterization of DAT dysfunction in vivo may provide an early pharamacotherapeutic target, which in turn may prevent or attenuate downstream mediators of neurotoxicity (i.e., reactive species) to DA systems occurring in NeuroAIDS. PMID:19344635

  2. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions.

    PubMed

    Fan, Yan; Chen, Ping; Li, Ying; Cui, Kui; Noel, Daniel M; Cummins, Elizabeth D; Peterson, Daniel J; Brown, Russell W; Zhu, Meng-Yang

    2014-02-01

    Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression. PMID

  3. Low and high cocaine locomotor responding male Sprague-Dawley rats differ in rapid cocaine-induced regulation of striatal dopamine transporter function.

    PubMed

    Mandt, Bruce H; Zahniser, Nancy R

    2010-03-01

    Adult outbred Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively). Importantly, LCRs and HCRs are distinguished by their differential responsiveness to acute cocaine-induced (but not baseline) locomotor activity, inhibition of the dopamine transporter (DAT) and resulting extracellular DA (HCR > LCR), as well as by repeated cocaine-induced locomotor sensitization and measures of cocaine's rewarding and reinforcing effects (LCR > HCR). Curiously, 30 min after acute cocaine HCRs exhibit greater DAT-mediated [(3)H]DA uptake into striatal synaptosomes than LCRs. To investigate this finding further, we measured locomotor activity, striatal [(3)H]DA uptake kinetics and DAT cell surface expression in LCRs and HCRs over an extended period (25-180 min) after a single relatively low-dose of cocaine (10 mg/kg, i.p.). HCRs exhibited the "predicted" locomotor response: a marked initial activation that returned to baseline by 120 min post-injection. While LCRs exhibited a >50% lower maximal locomotor response, this increase was sustained, lasting approximately 33% longer than in HCRs. At 25 min post-cocaine, maximal velocity (V(max)) of [(3)H]DA uptake was significantly higher by 25% in HCRs than LCRs, with no difference in affinity (K(m)). Despite the DAT V(max) difference, however, DAT surface expression did not differ between LCRs and HCRs. There was a similar trend (HCR > LCR) for DAT V(max) at 40 min, but not at 150 or 180 min. These findings suggest that, compared to LCRs, HCRs have an enhanced ability to rapidly up-regulate DAT function in response to acute cocaine, which may contribute to their more "normal" cocaine-induced locomotor activation. PMID:19951714

  4. Dopamine Transporter Correlates and Occupancy by Modafinil in Cocaine-Dependent Patients: A Controlled Study With High-Resolution PET and [(11)C]-PE2I.

    PubMed

    Karila, Laurent; Leroy, Claire; Dubol, Manon; Trichard, Christian; Mabondo, Audrey; Marill, Catherine; Dubois, Albertine; Bordas, Nadège; Martinot, Jean-Luc; Reynaud, Michel; Artiges, Eric

    2016-08-01

    Modafinil is a candidate compound for the treatment of cocaine addiction that binds to the dopamine transporter (DAT) in healthy humans, as observed by positron emission tomography (PET). This mechanism, analogous to that of cocaine, might mediate a putative therapeutic effect of modafinil on cocaine dependence, though the binding of modafinil to DAT has never been assessed in cocaine-dependent patients. We aimed at quantifying the DAT availability during a controlled treatment by modafinil, and its clinical and psychometric correlates in cocaine-dependent patients at the onset of abstinence initiation. Twenty-nine cocaine-dependent male patients were enrolled in a 3-month trial for cocaine abstinence. Modafinil was used in a randomized double-blind placebo-controlled design and was administered as follows: 400 mg/day for 26 days, then 300 mg/day for 30 days, and 200 mg/day for 31 days. Participants were examined twice during a 17-day hospitalization for their DAT availability using PET and [(11)C]-PE2I and for assessments of craving, depressive symptoms, working memory, and decision-making. Cocaine abstinence was further assessed during a 10-week outpatient follow-up period. Baseline [(11)C]-PE2I-binding potential covaried with risk taking and craving index in striatal and extrastriatal regions. A 65.6% decrease of binding potential was detected in patients receiving modafinil for 2 weeks, whereas placebo induced no significant change. During hospitalization, an equivalent improvement in clinical outcomes was observed in both treatment groups, and during the outpatient follow-up there were more therapeutic failures in the modafinil-treated group. Therefore, these results do not support the usefulness of modafinil to treat cocaine addiction. PMID:26892922

  5. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson's disease: analysis with [(123)I]IPT single photon emission computed tomography.

    PubMed

    Im, Joo-Hyuk; Chung, Sun J; Kim, Jae-Seung; Lee, Myoung C

    2006-05-15

    We evaluated the patterns of dopamine transporter loss in the striatum of ten controls, twenty patients with Parkinson's disease (PD), and nine with progressive supranuclear palsy (PSP) using (123)I-IPT single photon emission tomography (SPECT). Four ROIs in the striatum correspond to the head of caudate nucleus (ROI 1), a transitional region between head of caudate and putamen (ROI 2), anterior putamen (ROI 3), and posterior putamen (ROI 4). A striatal ratio of specific to nondisplaceable uptake (V3'') was calculated normalizing the activity of the ROIs to that of occipital cortex. V3'' values were significantly reduced in all ROIs of PD and PSP patients, compared with controls (p=0.001). V3'' value in ROI 2 was significantly lower in PSP group, compared with PD group (p=0.02). The percent reductions of striatal uptake in ROI 1, ROI 2, ROI 3 and ROI 4 were 56%, 53%, 64% and 78% in PD patients, whereas 75%, 72%, 75% and 77% in PSP patients, respectively. The reduction patterns of uptake were significantly different between PD and PSP groups (p=0.001). In PD patients, the percent reductions of (123)I-IPT uptake were significantly greater in ROI 3 and 4 compared with ROI 1 or 2, whereas those were similar in all ROIs of PSP patients. In addition, PD patients showed a significantly higher posterior putamen/caudate ratio of reduced (123)I-IPT uptake than the anterior putamen/caudate ratio (p=0.005). Our results implicate that (123)I-IPT SPECT is a relatively simple and reliable technique that may be useful in differentiating PD from PSP. PMID:16473371

  6. Functional Genomics of Attention-Deficit/ Hyperactivity Disorder (ADHD) Risk Alleles on Dopamine Transporter Binding in ADHD and Healthy Control Subjects

    PubMed Central

    Spencer, Thomas J.; Biederman, Joseph; Faraone, Stephen V.; Madras, Bertha K.; Bonab, Ali A.; Dougherty, Darin D.; Batchelder, Holly; Clarke, Allison; Fischman, Alan J.

    2013-01-01

    Background The main aim of this study was to examine the relationship between dopamine transporter (DAT) binding in the striatum in individuals with and without attention-deficit/hyperactivity disorder (ADHD), attending to the 3′-untranslated region of the gene (3′-UTR) and intron8 variable number of tandem repeats (VNTR) polymorphisms of the DAT (SLC6A3) gene. Methods Subjects consisted of 68 psychotropic (including stimulant)-naïve and smoking-naïve volunteers between 18 and 55 years of age (ADHD n = 34; control subjects n = 34). Striatal DAT binding was measured with positron emission tomography with 11C altropane. Genotyping of the two DAT (SLC6A3) 3′-UTR and intron8 VNTRs used standard protocols. Results The gene frequencies of each of the gene polymorphisms assessed did not differ between the ADHD and control groups. The ADHD status (t = 2.99; p < .004) and 3′-UTR of SLC6A3 9 repeat carrier status (t = 2.74; p < .008) were independently and additively associated with increased DAT binding in the caudate. The ADHD status was associated with increased striatal (caudate) DAT binding regardless of 3′-UTR genotype, and 3′-UTR genotype was associated with increased striatal (caudate) DAT binding regardless of ADHD status. In contrast, there were no significant associations between polymorphisms of DAT intron8 or the 3′-UTR-intron8 haplotype with DAT binding. Conclusions The 3′-UTR but not intron8 VNTR genotypes were associated with increased DAT binding in both ADHD patients and healthy control subjects. Both ADHD status and the 3′-UTR polymorphism status had an additive effect on DAT binding. Our findings suggest that an ADHD risk polymorphism (3′-UTR) of SLC6A3 has functional consequences on central nervous system DAT binding in humans. PMID:23273726

  7. Dopamine-melanin nanofilms for biomimetic structural coloration.

    PubMed

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-01

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials. PMID:25587771

  8. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  9. Neuropharmacology of dopamine receptors:

    PubMed Central

    Tarazi, Frank I.

    2001-01-01

    There has been an extraordinary recent accumulation of information concerning the neurobiology and neuropharmacology of dopamine (DA) receptors in the mammalian central nervous system. Many new DA molecular entities have been cloned, their gene, peptide sequences and structures have been identified, their anatomical distributions in the mammalian brain described, and their pharmacology characterized. Progress has been made toward developing selective ligands and drug-candidates for different DA receptors. The new discoveries have greatly stimulated preclinical and clinical studies to explore the neuropharmacology of DA receptors and their implications in the neuropathophysiology of different neuropsychiatric diseases including schizophrenia, Parkinson’s disease and attention-deficit hyperactivity disorder. Accordingly, it seems timely to review the salient aspects of this specialized area of preclinical neuropharmacology and its relevance to clinical neuropsychiatry. PMID:24019715

  10. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  11. Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection

    PubMed Central

    Lilly, Jacob L.; Romero, Gabriela; Xu, Weijie; Shin, Hainsworth Y.; Berron, Brad J.

    2015-01-01

    PEG hydrogels are routinely used in immunoprotection applications to hide foreign cells from a host immune system. Size dependent transport is typically exploited in these systems to prevent access by macromolecular elements of the immune system while allowing the transport of low molecular weight nutrients. This work studies a nanoscale hydrogel coating for improved transport of beneficial low molecular weight materials across thicker hydrogel coatings while completely blocking transport of undesired larger molecular weight materials. Coatings composed of PEG diacrylate of molecular weight 575 Da and 3500 Da were studied by tracking the transport of fluorescently-labeled dextrans across the coatings. The molecular weight of dextran at which the transport is blocked by these coatings are consistent with cutoff values in analogous bulk PEG materials. Additionally, the diffusion constants of 4 kDa dextrans across PEG 575 coatings (9.5×10−10 – 2.0×10−9 cm2/s) was lower than across PEG 3500 coatings (5.9 – 9.8×10−9 cm2/s), and these trends and magnitudes agree with bulk scale models. Overall, these nanoscale thin PEG diacrylate films offer the same size selective transport behavior of bulk PEG diacrylate materials, while the lower thickness translates directly to increased flux of beneficial low molecular weight materials. PMID:25592156

  12. Carbon nanotube–liposome supramolecular nanotrains for intelligent molecular-transport systems

    PubMed Central

    Miyako, Eijiro; Kono, Kenji; Yuba, Eiji; Hosokawa, Chie; Nagai, Hidenori; Hagihara, Yoshihisa

    2012-01-01

    Biological network systems, such as inter- and intra-cellular signalling systems, are handled in a sophisticated manner by the transport of molecular information. Over the past few decades, there has been a growing interest in the development of synthetic molecular-transport systems. However, several key technologies have not been sufficiently realized to achieve optimum performance of transportation methods. Here we show that a new type of supramolecular system comprising of carbon nanotubes and liposomes enables the directional transport and controlled release of carrier molecules, and allows an enzymatic reaction at a desired area. The study highlights important progress that has been made towards the development of biomimetic molecular-transport systems and various lab-on-a-chip applications, such as medical diagnosis, sensors, bionic computers and artificial biological networks. PMID:23187626

  13. Cooperative effects enhance the transport properties of molecular spider teams

    NASA Astrophysics Data System (ADS)

    Rank, Matthias; Reese, Louis; Frey, Erwin

    2013-03-01

    Molecular spiders are synthetic molecular motors based on DNA nanotechnology. While natural molecular motors have evolved towards very high efficiency, it remains a major challenge to develop efficient designs for man-made molecular motors. Inspired by biological motor proteins such as kinesin and myosin, molecular spiders comprise a body and several legs. The legs walk on a lattice that is coated with substrate which can be cleaved catalytically. We propose a molecular spider design in which n spiders form a team. Our theoretical considerations show that coupling several spiders together alters the dynamics of the resulting team significantly. Although spiders operate at a scale where diffusion is dominant, spider teams can be tuned to behave nearly ballistic, which results in fast and predictable motion. Based on the separation of time scales of substrate and product dwell times, we develop a theory which utilizes equivalence classes to coarse-grain the microstate space. In addition, we calculate diffusion coefficients of the spider teams, employing a mapping of an n-spider team to an n-dimensional random walker on a confined lattice. We validate these results with Monte Carlo simulations and predict optimal parameters of the molecular spider team architecture which makes their motion most directed and maximally predictable.

  14. Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density.

    PubMed

    Kawaguchi, Hiroshi; Shimada, Hitoshi; Kodaka, Fumitoshi; Suzuki, Masayuki; Shinotoh, Hitoshi; Hirano, Shigeki; Kershaw, Jeff; Inoue, Yuichi; Nakamura, Masaki; Sasai, Taeko; Kobayashi, Mina; Suhara, Tetsuya; Ito, Hiroshi

    2016-01-01

    The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major pathophysiological feature of patients with Parkinson's disease (PD). As nigral DA neurons contain both neuromelanin (NM) and dopamine transporter (DAT), decreased intensities in both NM-sensitive MRI and DAT PET reflect decreased DA neuronal density. This study demonstrates that a more specific metric for the nigral DA neuronal density can be derived with multimodal MRI and PET. Participants were 11 clinically diagnosed PD patients and 10 age and gender matched healthy controls (HCs). Two quantities, the NM-related index (RNM) and the binding potential of the radiotracer [18F]FE-PE2I to DAT (BPND) in SN, were measured for each subject using MRI and PET, respectively. Principal component analysis (PCA) was applied to the multimodal data set to estimate principal components. One of the components, PCP, corresponds to a basis vector oriented in a direction where both BPND and RNM increase. The ability of BPND, RNM and PCP to discriminate between HC and PD groups was compared. Correlation analyses between the motor score of the unified Parkinson's disease rating scale and each metric were also performed. PCP, BPND and RNM for PD patients were significantly lower than those for HCs (F = 16.26, P<0.001; F = 6.05, P = 0.008; F = 7.31, P = 0.034, respectively). The differential diagnostic performance between the HC and PD groups as assessed by the area under the receiver-operating characteristic curve was best for PCP (0.94, 95% CI: 0.66-1.00). A significant negative correlation was found between the motor severity score and PCp (R = -0.70, P<0.001) and RNM (R = -0.52, P = 0.015), but not for BPND (R = -0.36, P = 0.110). PCA of multimodal NM-sensitive MRI and DAT PET data provides a metric for nigral DA neuronal density that will help illuminate the pathophysiology of PD in SN. Further studies are required to explore whether PCA is useful for other parkinsonian syndromes. PMID:26954690

  15. Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density

    PubMed Central

    Kawaguchi, Hiroshi; Shimada, Hitoshi; Kodaka, Fumitoshi; Suzuki, Masayuki; Shinotoh, Hitoshi; Hirano, Shigeki; Kershaw, Jeff; Inoue, Yuichi; Nakamura, Masaki; Sasai, Taeko; Kobayashi, Mina; Suhara, Tetsuya; Ito, Hiroshi

    2016-01-01

    The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major pathophysiological feature of patients with Parkinson's disease (PD). As nigral DA neurons contain both neuromelanin (NM) and dopamine transporter (DAT), decreased intensities in both NM-sensitive MRI and DAT PET reflect decreased DA neuronal density. This study demonstrates that a more specific metric for the nigral DA neuronal density can be derived with multimodal MRI and PET. Participants were 11 clinically diagnosed PD patients and 10 age and gender matched healthy controls (HCs). Two quantities, the NM-related index (RNM) and the binding potential of the radiotracer [18F]FE-PE2I to DAT (BPND) in SN, were measured for each subject using MRI and PET, respectively. Principal component analysis (PCA) was applied to the multimodal data set to estimate principal components. One of the components, PCP, corresponds to a basis vector oriented in a direction where both BPND and RNM increase. The ability of BPND, RNM and PCP to discriminate between HC and PD groups was compared. Correlation analyses between the motor score of the unified Parkinson's disease rating scale and each metric were also performed. PCP, BPND and RNM for PD patients were significantly lower than those for HCs (F = 16.26, P<0.001; F = 6.05, P = 0.008; F = 7.31, P = 0.034, respectively). The differential diagnostic performance between the HC and PD groups as assessed by the area under the receiver-operating characteristic curve was best for PCP (0.94, 95% CI: 0.66–1.00). A significant negative correlation was found between the motor severity score and PCp (R = -0.70, P<0.001) and RNM (R = -0.52, P = 0.015), but not for BPND (R = -0.36, P = 0.110). PCA of multimodal NM-sensitive MRI and DAT PET data provides a metric for nigral DA neuronal density that will help illuminate the pathophysiology of PD in SN. Further studies are required to explore whether PCA is useful for other parkinsonian syndromes. PMID:26954690

  16. Dopamine: the rewarding years

    PubMed Central

    Marsden, Charles A

    2006-01-01

    Dopamine has moved from being an insignificant intermediary in the formation of noradrenaline in 1957 to its present-day position as a major neurotransmitter in the brain. This neurotransmitter is involved in the control of movement and Parkinson's disease, the neurobiology and symptoms of schizophrenia and attention deficit hyperactivity disorder. It is also considered an essential element in the brain reward system and in the action of many drugs of abuse. This evolution reflects the ability of several famous names in neuropharmacology, neurology and psychiatry to apply new techniques to ask and answer the right questions. There is now excellent knowledge about the metabolism of dopamine, dopamine receptor systems and the structural organisation of dopamine pathways in the brain. Less is known about the function of the different receptors and how the various dopamine pathways are organised to produce normal behaviour, which exhibits disruption in the disease states mentioned. In particular, we have very limited information as to why and how the dopamine system dies or becomes abnormal in Parkinson's disease or a neurodevelopmental disorder such as schizophrenia. Dopamine neurones account for less than 1% of the total neuronal population of the brain, but have a profound effect on function. The future challenge is to understand how dopamine is involved in the integration of information to produce a relevant response rather than to study dopamine in isolation from other transmission systems. This integrated approach should lead to greater understanding and improved treatment of diseases involving dopamine. PMID:16402097

  17. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux.

    PubMed

    Zestos, Alexander G; Mikelman, Sarah R; Kennedy, Robert T; Gnegy, Margaret E

    2016-06-15

    Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine. PMID:26996926

  18. Molecular Evolution of Plant AAP and LHT Amino Acid Transporters.

    PubMed

    Tegeder, Mechthild; Ward, John M

    2012-01-01

    Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the amino acid permeases (AAPs) and the lysine-histidine-like transporters (LHTs). We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellendorffii and Physcomitrella patens but not in Chlorophyte, Charophyte, or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue) loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both S. moellendorffii and P. patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots) and these studies provide clues to the functions of the newly identified homologs. PMID:22645574

  19. Molecular Evolution of Plant AAP and LHT Amino Acid Transporters

    PubMed Central

    Tegeder, Mechthild; Ward, John M.

    2012-01-01

    Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the amino acid permeases (AAPs) and the lysine–histidine-like transporters (LHTs). We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellendorffii and Physcomitrella patens but not in Chlorophyte, Charophyte, or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue) loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both S. moellendorffii and P. patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots) and these studies provide clues to the functions of the newly identified homologs. PMID:22645574

  20. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs.

    PubMed

    Shigeri, Yasushi; Seal, Rebecca P; Shimamoto, Keiko

    2004-07-01

    L-Glutamate serves as a major excitatory neurotransmitter in the mammalian central nervous system (CNS) and is stored in synaptic vesicles by an uptake system that is dependent on the proton electrochemical gradient (VGLUTs). Following its exocytotic release, glutamate activates fast-acting, excitatory ionotropic receptors and slower-acting metabotropic receptors to mediate neurotransmission. Na+-dependent glutamate transporters (EAATs) located on the plasma membrane of neurons and glial cells rapidly terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels. Thus far, five Na+-dependent glutamate transporters (EAATs 1-5) and three vesicular glutamate transporters (VGLUTs 1-3) have been identified. Examination of EAATs and VGLUTs in brain preparations and by heterologous expression of the various cloned subtypes shows these two transporter families differ in many of their functional properties including substrate specificity and ion requirements. Alterations in the function and/or expression of these carriers have been implicated in a range of psychiatric and neurological disorders. EAATs have been implicated in cerebral stroke, epilepsy, Alzheimer's disease, HIV-associated dementia, Huntington's disease, amyotrophic lateral sclerosis (ALS) and malignant glioma, while VGLUTs have been implicated in schizophrenia. To examine the physiological role of glutamate transporters in more detail, several classes of transportable and non-transportable inhibitors have been developed, many of which are derivatives of the natural amino acids, aspartate and glutamate. This review summarizes the development of these indispensable pharmacological tools, which have been critical to our understanding of normal and abnormal synaptic transmission. PMID:15210307

  1. Effects of partial hydrogenation on electronic transport properties in C60 molecular devices

    NASA Astrophysics Data System (ADS)

    Chen, L. N.; Cao, C.; Wu, X. Z.; Ma, S. S.; Huang, W. R.; Xu, H.

    2012-12-01

    By using nonequilibrium Green's functions in combination with the density-function theory, we investigate electronic transport properties of molecular devices with pristine and partial hydrogenation. The calculated results show that the electronic transport properties of molecular devices can be modulated by partial hydrogenation. Interestingly, our results exhibit negative differential resistance behavior in the case of the imbalance H-adsorption in C60 molecular devices under low bias. However, negative differential resistance behavior cannot be observed in the case of the balance H-adsorption. A mechanism is proposed for the hydrogenation and negative differential resistance behavior.

  2. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    PubMed

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  3. Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations

    PubMed Central

    Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  4. Optically induced transport through semiconductor-based molecular electronics

    SciTech Connect

    Li, Guangqi; Seideman, Tamar; Fainberg, Boris D.

    2015-04-21

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  5. Optically induced transport through semiconductor-based molecular electronics

    NASA Astrophysics Data System (ADS)

    Li, Guangqi; Fainberg, Boris D.; Seideman, Tamar

    2015-04-01

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  6. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice

    PubMed Central

    Zeng, Chunyu; Armando, Ines; Luo, Yingjin; Eisner, Gilbert M.; Felder, Robin A.; Jose, Pedro A.

    2014-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3, and D4) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure. PMID:18083900

  7. Tuning the electron transport of molecular junctions by chemically functionalizing anchoring groups: First-principles study

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shigeru; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan

    2012-06-01

    In this first-principles study, we present density-functional calculations of the electronic structures and electron transport properties of organic molecular junctions with several anchoring groups containing atoms with different electronegativities, i.e., benzenediboronate (BDB), benzenedicarboxylate (BDC), and dinitrobenzene (DNB) molecular junctions sandwiched between two Cu(110) electrodes. The electronic-structure calculations exhibit a significant difference in the density of states not only at the anchoring groups but also at the aromatic rings of the molecular junctions, suggesting that the electron transport is specific for each system. Our transport calculations show that the BDB and DNB molecular junctions have finite electron transmissions at the zero-bias limit while the BDC molecular junction has a negligible electron transmission. Moreover, for the BDB and DNB systems, the electron transmission channels around the Fermi energy reveal fingerprint features, which provide specific functionalities for the molecular junctions. Therefore, our theoretical results demonstrate the possibility to precisely tune the electron transport properties of molecular junctions by engineering the anchoring groups at the single-atom level.

  8. Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans.

    PubMed

    Nikolaus, Susanne; Antke, Christina; Kley, Konstantin; Poeppel, Thorsten D; Hautzel, Hubertus; Schmidt, Daniela; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. Investigations of humans in both clinical and experimental settings have yielded evidence that disturbances of dopaminergic function may be associated with numerous neurological and psychiatric conditions, among which are movement disorders, schizophrenia, attention-deficit hyperactivity disorder, depression and drug abuse. This article gives an overview of those studies, which so far have been performed on dopaminergic neurotransmission in humans using in vivo imaging methods. We focus on disease-related deficiencies within the functional entity of the dopaminergic synapse. Taken together, in vivo findings yield evidence of presynaptic dysfunctions in Parkinson's disease with decreases in striatal dopamine synthesis, dopamine storage, dopamine release and dopamine transporter binding. In contrast, 'Parkinson plus' syndromes (multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies) are characterized by both pre- and postsynaptic deficiencies with reductions in striatal dopamine synthesis, dopamine storage, dopamine release, and dopamine transporter, as well as D, and D, receptor binding. In patients with Huntington's disease, postsynaptic dysfunctions with reductions of striatal D1 and D2 receptor binding have become apparent, whereas attention-deficit/ hyperactivity disorder is mainly characterized by presynaptic deficits with increases in dopamine transporter binding. Interestingly, findings are also consistent with respect to drug abuse: cocaine, amphetamine

  9. Molecular complexes that direct rhodopsin transport to primary cilia

    PubMed Central

    Wang, Jing; Deretic, Dusanka

    2013-01-01

    Rhodopsin is a key molecular constituent of photoreceptor cells, yet understanding of how it regulates photoreceptor membrane trafficking and biogenesis of light-sensing organelles, the rod outer segments (ROS) is only beginning to emerge. Recently identified sequence of well-orchestrated molecular interactions of rhodopsin with the functional networks of Arf and Rab GTPases at multiple stages of intracellular targeting fits well into the complex framework of the biogenesis and maintenance of primary cilia, of which the ROS is one example. This review will discuss the latest progress in dissecting the molecular complexes that coordinate rhodopsin incorporation into ciliary-targeted carriers with the recruitment and activation of membrane tethering complexes and regulators of fusion with the periciliary plasma membrane. In addition to revealing the fundamental principals of ciliary membrane renewal, recent advances also provide molecular insight into the ways by which disruptions of the exquisitely orchestrated interactions lead to cilia dysfunction and result in human retinal dystrophies and syndromic diseases that affect multiple organs, including the eyes. PMID:24135424

  10. Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    PubMed Central

    Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan

    2009-01-01

    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. PMID:20087458

  11. Characterization of dopamine transporter and locomotor effects of cocaine, GBR 12909, epidepride, and SCH 23390 in C57BL and DBA mice.

    PubMed

    Womer, D E; Jones, B C; Erwin, V G

    1994-06-01

    C57BL/6 and DBA/2 mice were used to examine genetic differences in locomotor activating effects of acute cocaine administration and to determine whether differences were mediated by dopaminergic systems. C57BL/6 mice were less activated than DBA/2 mice at 5 and 10 min after 10 and 15 mg/kg cocaine. HPLC analysis showed equivalent brain cocaine concentrations in the two strains at 5 and 10 min after 10, 15, or 20 mg/kg doses. The selective dopamine uptake inhibitor, GBR 12909, at 5 and 7.5 mg/kg, produced greater locomotor activation in DBA/2 mice than in C57BL/6 mice. However, binding studies with the selective dopamine uptake ligand [3H]GBR 12935, revealed no between-strain difference in Kd or Bmax in caudate putamen (CP) or nucleus accumbens (NA) membranes. Competition assays using unlabeled dopamine to compete for [3H]GBR 12935 binding in CP or NA membranes showed no between-strain difference by brain region. The specific D1 or D2 antagonists, SCH 23390 or epidepride, respectively, produced dose-dependent decreases in locomotor activity but there were no between-strain differences. However, epidepride, at a dose of 0.003 mg/kg, completely reversed cocaine-induced (15 mg/kg) activation in both strains. These findings show that C57BL/6 and DBA/2 mice differ in dopamine-related behaviors and suggest that dopaminergic processes may mediate genetic differences in cocaine sensitivity. PMID:8090798

  12. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  13. Vibrational mode mediated electron transport in molecular transistors

    NASA Astrophysics Data System (ADS)

    Santamore, Deborah; Lambert, Neill; Nori, Franco

    2013-03-01

    We investigate the steady-state electronic transport through a suspended dimer molecule coupled to leads. When strongly coupled to a vibrational mode, the electron transport is enhanced at the phonon resonant frequency and higher-order resonances. The temperature and bias determines the nature of the phonon-assisted resonances, with clear absorption and emission peaks. The strong coupling also induces a Frank-Condon-like blockade, suppressing the current between the resonances. We compare an analytical polaron transformation method to two exact numerical methods: the Hierarchy equations of motion and an exact diagonalization in the Fock basis. In the steady-state, our two numerical results are an exact match and qualitatively reflect the main features of the polaron treatment. Our results also indicate the possibility of compensating the current decrease due to the thermal environment.

  14. Transverse charge transport through DNA oligomers in large-area molecular junctions

    NASA Astrophysics Data System (ADS)

    Katsouras, Ilias; Piliego, Claudia; Blom, Paul W. M.; de Leeuw, Dago M.

    2013-09-01

    We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result the charge transport is measured not along the DNA molecules but in the transverse direction, across their diameter. The electrical transport data are consistent with the derived morphology. We demonstrate that the charge transport mechanism through DNA is identical to non-resonant tunneling through alkanethiols with identical length, classifying DNA as a dielectric.

  15. Multicellularity and the functional interdependence of motility and molecular transport.

    PubMed

    Solari, Cristian A; Ganguly, Sujoy; Kessler, John O; Michod, Richard E; Goldstein, Raymond E

    2006-01-31

    Benefits, costs, and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. Here, we describe experiments that quantify the role of advective dynamics in enhancing productivity in germ soma-differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, particle imaging velocimetry of fluid motion around colonies immobilized by micropipette aspiration reveals flow fields with very large characteristic velocities U extending to length scales exceeding the colony radius R. For a typical metabolite diffusion constant D, the associated Peclet number Pe = 2UR/D > 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage. Near the colony surface, flows generated by flagella can be chaotic, exhibiting mixing due to stretching and folding. These results imply that hydrodynamic transport external to colonies provides a crucial boundary condition, a source for supplying internal diffusional dynamics. PMID:16421211

  16. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions

    PubMed Central

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-01-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5–22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8–22 nm. Transport in the 8–22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8–22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1–5 nm associated with quantum-mechanical tunneling. PMID:23509271

  17. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-04-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling. PMID:23509271

  18. Measuring dopamine release in the human brain with PET

    SciTech Connect

    Volkow, N.D. |; Fowler, J.S.; Logan, J.; Wang, G.J.

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  19. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters.

    PubMed

    LeVine, Michael V; Cuendet, Michel A; Khelashvili, George; Weinstein, Harel

    2016-06-01

    Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane. PMID:26892914

  20. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  1. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics.

    PubMed

    Daligault, Jérôme; Baalrud, Scott D; Starrett, Charles E; Saumon, Didier; Sjostrom, Travis

    2016-02-19

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments. PMID:26943540

  2. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme; Baalrud, Scott D.; Starrett, Charles E.; Saumon, Didier; Sjostrom, Travis

    2016-02-01

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments.

  3. Graphene nanoribbon molecular sensor based on inelastic transport

    SciTech Connect

    Ritter, C.; Muniz, R. B.; Latgé, A.

    2014-04-07

    Results of phonon-assisted inelastic quantum transport calculations are presented for graphene nanoribbons. We consider a single molecule attached to a carbon atom and describe the electronic structure by a tight-binding model, taking into account a local phonon mode associated with the attached molecule characteristic vibration. The calculated transmission spectra reveal a striking sensitivity for molecules attached to the edges of asymmetric zigzag graphene nanoribbons. Our results show that the differential conductance may be used to identify the presence as well as the characteristic vibration frequency of a target molecule at finite temperatures.

  4. Optogenetic control of striatal dopamine release in rats

    PubMed Central

    Bass, Caroline E; Grinevich, Valentina P; Vance, Zachary B; Sullivan, Ryan P; Bonin, Keith D; Budygin, Evgeny A

    2010-01-01

    Optogenetic control over neuronal firing has become an increasingly elegant method to dissect the microcircuitry of mammalian brains. To date, examination of these manipulations on neurotransmitter release has been minimal. Here we present the first in-depth analysis of optogenetic stimulation on dopamine neurotransmission in the dorsal striatum of urethane-anesthetized rats. By combining the tight spatial and temporal resolution of both optogenetics and fast-scan cyclic voltammetry we have determined the parameters necessary to control phasic dopamine release in the dorsal striatum of rats in vivo. The kinetics of optically induced dopamine release mirror established models of electrically evoked release, indicating that potential artifacts of electrical stimulation on ion channels and the dopamine transporter are negligible. Furthermore a lack of change in extracellular pH indicates that optical stimulation does not alter blood flow. Optical control over dopamine release is highly reproducible and flexible. We are able to repeatedly evoke concentrations of dopamine release as small as a single dopamine transient (50 nM). A U-shaped frequency response curve exists with maximal stimulation inducing dopamine effluxes exceeding 500 nM. Taken together, these results have obvious implications for understanding the neurobiological basis of dopaminergic-based disorders and provide the framework to effectively manipulate dopamine patterns. PMID:20534006

  5. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    SciTech Connect

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  6. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  7. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  8. Reaction -Diffusion Systems in Intracellular Molecular Transport and Control

    PubMed Central

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana

    2013-01-01

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. While most research to date has focused on the so-called active-transport mechanisms, “passive” diffusion is often equally rapid and is always energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions – from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. Despite their apparent diversity, these systems share many common features and are “wired” according to “generic” motifs involving non-linear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times describing constituent sub-processes. Therefore, in reviewing the manifestations of cellular RD, we also attempt to familiarize the reader with the basic theory of these processes. PMID:20518023

  9. Multicellularity and the Functional Interdependence of Motility and Molecular Transport

    NASA Astrophysics Data System (ADS)

    Solari, C.; Ganguly, S.; Kessler, J. O.; Michod, R.; Goldstein, R. E.

    2006-03-01

    Benefits, costs and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies, flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. We describe experiments that quantify the role of advective dynamics in enhancing productivity in germ-soma differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, Particle Imaging Velocimetry of fluid motion around colonies reveals flow fields with very large characteristic velocities U extending to length scales comparable to the colony radius R. For a typical metabolite diffusion constant D, the Peclet number Pe=2UR/D 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage.

  10. New molecular mechanisms of inter-organelle lipid transport.

    PubMed

    Drin, Guillaume; von Filseck, Joachim Moser; Čopič, Alenka

    2016-04-15

    Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated. PMID:27068959

  11. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    SciTech Connect

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.; Liu, Yuan

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL based RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.