Science.gov

Sample records for doped bismuth oxides

  1. The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Wu, L.; Ren, C.; Luo, Q. Z.; Xie, Z. H.; Jiang, X.; Zhu, S. P.; Xia, Y. K.; Luo, Y. R.

    Flooded automotive and motorcycle lead-acid batteries were manufactured from three kinds of lead oxides including electrolyzed pure lead (99.99 wt.% Pb) oxide, electrolyzed pure lead oxide doped with Bi 2O 3 (0.02 wt.% Bi 2O 3) and bismuth-bearing refined lead (0.02 wt.% Bi) oxide. The first cranking and cold cranking curves of the automotive batteries show that there is no obvious difference among the above lead oxides. Bismuth in lead oxide does not affect the water loss of flooded batteries. However, bismuth results in the improvement of capacity and charge-acceptance capability. In discharge, the positive voltage versus cadmium of plates with bismuth decreases more slowly than that of plates without bismuth. In order to investigate the mechanism of the function of bismuth, three other kinds of test electrodes were prepared from electrolyzed pure lead (99.99 wt.% Pb) oxide, electrolyzed pure lead oxide doped 0.02 wt.% Bi 2O 3 and electrolyzed pure lead oxide doped 0.06 wt.% Bi 2O 3. The cyclic voltammetry curve shows that bismuth has no significant influence on the electrochemical behavior of the positive active-material. There is an opposite result concerning the cathodic polarization curves between bismuth doped in the electrode and Bi 3+ ion doped in the electrolyte. Bismuth doped in the electrode results in a decrease of the hydrogen overpotential. Conversely, Bi 3+ ion doped in the electrolyte results is an increase. The chemical analysis confirms that a trace of Bi 3+ ion exists in sulfuric acid solution (e.g. plates soaking, after formation, after cycling). A higher porosity is observed in the positive active-material containing bismuth by SEM technique. SEM morphology shows that needle-like crystals begin to occur after a few cycles. X-ray diffraction phase analysis proves that the amount of α-PbO 2 is increased by doping bismuth in to lead oxide. The existing forms, chemical characteristics and electrochemical reactions of bismuth during manufacture

  2. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.

    PubMed

    Li, Mei; Wang, Yao; Wang, Yunlong; Chen, Fanglin; Xia, Changrong

    2014-07-23

    Bismuth is doped to lanthanum strontium ferrite to produce ferrite-based perovskites with a composition of La(0.8-x)Bi(x)Sr0.2FeO(3-δ) (0 ≤ x ≤ 0.8) as novel cathode material for intermediate-temperature solid oxide fuel cells. The perovskite properties including oxygen nonstoichiometry coefficient (δ), average valence of Fe, sinterability, thermal expansion coefficient, electrical conductivity (σ), oxygen chemical surface exchange coefficient (K(chem)), and chemical diffusion coefficient (D(chem)) are explored as a function of bismuth content. While σ decreases with x due to the reduced Fe(4+) content, D(chem) and K(chem) increase since the oxygen vacancy concentration is increased by Bi doping. Consequently, the electrochemical performance is substantially improved and the interfacial polarization resistance is reduced from 1.0 to 0.10 Ω cm(2) at 700 °C with Bi doping. The perovskite with x = 0.4 is suggested as the most promising composition as solid oxide fuel cell cathode material since it has demonstrated high electrical conductivity and low interfacial polarization resistance. PMID:24971668

  3. Boron-Doped Strontium-Stabilized Bismuth Cobalt Oxide Thermoelectric Nanocrystalline Ceramic Powders Synthesized via Electrospinning

    NASA Astrophysics Data System (ADS)

    Koçyiğit, Serhat; Aytimur, Arda; Çınar, Emre; Uslu, İbrahim; Akdemir, Ahmet

    2014-01-01

    Boron-doped strontium-stabilized bismuth cobalt oxide thermoelectric nanocrystalline ceramic powders were produced by using a polymeric precursor technique. The powders were characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM), and physical properties measurement system (PPMS) techniques. The XRD results showed that these patterns have a two-phase mixture. The phases are face-centered cubic (fcc) and body-centered cubic (bcc). Values of the crystallite size, dislocation density, and microstrain were calculated by using the Scherrer equation. The lattice parameters were calculated for fcc and bcc phases. The SEM results showed that needle-like grains are formed in boron-undoped composite materials, but the needle-like grains changed to the plate-like grains with the addition of boron. The distribution of the nanofiber diameters was calculated and the average diameter of the boron-doped sample is smaller than the boron-undoped one. PPMS values showed that the electrical resistivity values decreased, but the thermal conductivity values, the Seebeck coefficients, and figure of merit ( ZT) increased with increasing temperature for the two samples.

  4. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    SciTech Connect

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  5. Bismuth-ring-doped fibres

    SciTech Connect

    Zlenko, Aleksandr S; Dvoirin, Vladislav V; Bogatyrev, Vladimir A; Firstov, Sergei V; Akhmetshin, Ural G

    2009-11-30

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO{sub 2} content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications. (optical fibres and fibreoptic sensors)

  6. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    PubMed

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content. PMID:27192231

  7. Optical properties of Lead bismuth borate glasses doped with neodymium oxide.

    PubMed

    Farouk, M; Abd El-Maboud, A; Ibrahim, M; Ratep, A; Kashif, I

    2015-10-01

    Neodymium doped Lead bismuth borate glasses with the composition of 25PbO-25Bi2O3-50B2O3:xNd2O3, where x=0.5, 1, 1.5 and 2 mol%, have been prepared by melt quenching technique. The behavior of the density and molar volume allows concluding that, addition of Nd2O3 leads to the formation of non-bridging oxygen. Rare earth ion parameters have been calculated and studied. The optical band gap (Eg), and band tails (Ee) were determined. Judd-Ofelt theory for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Ω2, Ω4 and Ω6 for glass. It was observed that the deviation parameters, rms, was found to be 0.56:0.58(×10(-6)). The estimated Judd-Ofelt parameters were found to be Nd2O3concentration dependent. The hypersensitive transition, (4)I9/2→(4)G5/2+(2)G7/2, is closely related to Ω2 parameter. PMID:25965518

  8. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  9. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  10. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers.

    PubMed

    Zhao, Yanqi; Wondraczek, Lothar; Mermet, Alain; Peng, Mingying; Zhang, Qinyuan; Qiu, Jianrong

    2015-05-01

    Compared to rare-earth doped glasses, bismuth-doped glasses hold promise for super-broadband near-infrared (NIR) photoemission and potential applications in optical amplification. However, optically active bismuth centers are extremely sensitive to the properties of the surrounding matrix, and also to processing conditions. This is strongly complicating the exploitation of this class of materials, because functional devices require a very delicate adjustment of the redox state of the bismuth species, and its distribution throughout the bulk of the material. It also largely limits some of the conventional processing routes for glass fiber, which start from gas phase deposition and may require very high processing temperature. Here, we investigate the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from melt-derived germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, however, alkali addition also leads to increasing mean-field basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity. PMID:25969328

  11. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  12. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    NASA Astrophysics Data System (ADS)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  13. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Bismuth-ring-doped fibres

    NASA Astrophysics Data System (ADS)

    Zlenko, Aleksandr S.; Akhmetshin, Ural G.; Dvoirin, Vladislav V.; Bogatyrev, Vladimir A.; Firstov, Sergei V.

    2009-11-01

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO2 content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications.

  14. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  15. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    SciTech Connect

    Molli, Muralikrishna; Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  16. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    He, Shaofei; Le, Shiru; Guan, Lili; Liu, Tao; Sun, Kening

    2015-11-01

    Perovskite oxides BaBi0.05Co0.95-yNbyO3-δ (BBCNy, 0 ≤ y ≤ 0.2) are synthesized and evaluated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Highly charged Nb5+ successfully stabilizes the cubic perovskite structure to room temperature with Nb substituting content y ≥ 0.1. The phase structure, thermal expansion behavior, electrical conductivity and electrochemical performance of BBCNy with cubic phase are systematically studied. The samples exhibit excellent chemical compatibility with GDC and have sufficiently high electrical conductivities. However, the thermal expansion coefficients of BBCNy samples are nearly twice those of the most commonly used electrolyte materials YSZ and GDC, which is a major drawback for application in IT-SOFCs. The polarization resistances of BBCNy with y = 0.10, 0.15 and 0.20 on GDC electrolyte are 0.086, 0.079 and 0.107 Ω cm2 at 700 °C, respectively. Even though the YSZ electrolyte membrane and GDC barrier layer are approximately 50 μm and 10 μm in thickness, the highest maximum power density (1.23 W cm-2) of the single cell Ni-YSZ|YSZ|GDC|BBCN0.15 is obtained at 750 °C. Good long-term stability of the single cell with BBCN0.15 cathode is also demonstrated. These results demonstrate that BBCNy perovskite oxides with cubic structure are very promising cathode materials for IT-SOFCs.

  17. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  18. Electrical properties of niobium doped barium bismuth-titanate ceramics

    SciTech Connect

    Bobić, J.D.; Vijatović Petrović, M.M.; Banys, J.; Stojanović, B.D.

    2012-08-15

    Highlights: ► Pure and doped BaBi{sub 4}Ti{sub 4}O{sub 15} were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi{sub 4}Ti{sub 4–5/4x}Nb{sub x}O{sub 15} (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences T{sub c} decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi{sub 4}Ti{sub 4}O{sub 15} exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σ{sub DC} was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  19. Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm

    SciTech Connect

    Firstov, Sergei V; Shubin, Aleksei V; Khopin, V F; Mel'kumov, Mikhail A; Bufetov, Igor' A; Medvedkov, O I; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-07-31

    We report the first cw bismuth - germanium codoped silica fibre laser with an output power above 20 W at 1460 nm and 50% optical efficiency. The laser operates on a transition between energy levels of bismuth-related active centres associated with silicon. The incorporation of a small amount ({approx}5 mol %) of germanium into the core of bismuth-doped silica fibre has little effect on its luminescence spectrum but reduces optical losses, which limit the laser efficiency. (letters)

  20. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    SciTech Connect

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi{sub 2}O{sub 3}-(100-x)B{sub 2}O{sub 3} (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi{sub 2}O{sub 3}-1Tv{sub 2}O{sub 3}-59B{sub 2}O{sub 3}(where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi{sub 3}B{sub 5}O{sub 12} was found to be the predominant phase in all crystallized samples containing Bi{sub 2}O{sub 3} concentration of {<=}40 mol %, at higher Bi{sub 2}O{sub 3} concentration, we observed the formation of Bi{sub 4}B{sub 2}O{sub 9} phase. Glasses with Bi{sub 2}O{sub 3} concentration of {<=}37.5 mol % produced Bi{sub 2}B{sub 8}O{sub 15} phase on crystallization. The metastable BiBO{sub 3}-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu{sup 3+} and Nd{sup 3+} promotes the formation of BiBO{sub 3}-II phase while Al{sup 3+} doping suppresses it.

  1. Ferroelectric properties of niobium-doped strontium bismuth tantalate films

    NASA Astrophysics Data System (ADS)

    Golosov, D. A.; Zavadski, S. M.; Kolos, V. V.; Turtsevich, A. S.

    2016-01-01

    The characteristics of ferroelectric thin films of strontium bismuth tantalate (SBT) and niobium-doped strontium bismuth tantalate (SBTN) deposited by radio-frequency (RF) magnetron sputtering on Pt/TiO2/SiO2/Si substrates were investigated. For the formation of the structure of the ferroelectric material, the deposited films were subjected to a subsequent annealing at temperatures of 970-1070 K in an O2 atmosphere. The results of the X-ray diffraction analysis demonstrated that, in contrast to SBT films, in which the Aurivillius phase is formed only at annealing temperatures of 1050-1070 K, the formation of this phase in SBTN films is observed already at a temperature of 970 K. The dependences of the dielectric permittivity, remanent polarization, and coercive force of the SBT and SBTN films on the subsequent annealing conditions were determined. It was found that, upon doping of the SBT films with niobium, the remanent polarization increases by a factor of approximately three, the Curie temperature increases by 50 K, and the dielectric permittivity also increases. It was revealed that, in contrast to the SBT films, the polarization of the SBTN films is observed already at an annealing temperature of approximately 970 K. It was shown that the replacement of SBT films by SBTN films in the manufacture of high-density nonvolatile ferroelectric randomaccess memory (FeRAM) capacitor modules makes it possible to decrease the synthesis temperature from 1070 to 990-1000 K, which improves the compatibility with the planar technology of semiconductor devices. However, it turned out that an increase in the coercive field makes niobium-doped SBT films less attractive for the use in FeRAM.

  2. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  3. Influence of cooling on a bismuth-doped fiber laser and amplifier performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta K

    2009-11-01

    We characterize bismuth-doped fibers under different excitation wavelengths. The fiber laser performance at 1179 nm was investigated, incorporating different cooling arrangements. Effective heat extraction can reduce the temperature-dependent unsaturable loss in fiber, resulting in increased laser performance. The operation of a bismuth-doped fiber amplifier at 1179 nm, at both low and high input signals, is also examined. The amplifier efficiency and the saturation power both depend on effective fiber cooling. PMID:19881653

  4. Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped lead bismuth gallate oxide glasses

    SciTech Connect

    Zhou Bo; Pun, Edwin Yue-Bun; Yang Dianlai; Huang Lihui; Lin Hai

    2009-11-15

    Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped lead bismuth gallate (PBG) oxide glasses were prepared and their spectroscopic properties were investigated. The derived Judd-Ofelt intensity parameters (OMEGA{sub 2}=6.81x10{sup -20} cm{sup 2}, OMEGA{sub 4}=2.31x10{sup -20} cm{sup 2}, and OMEGA{sub 6}=0.67x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment for Ho{sup 3+} sites in PBG glass compared with those in tellurite, fluoride (ZBLAN), and some other lead-contained glasses. Intense frequency upconversion emissions peaking at 547, 662, and 756 nm as well as infrared emissions at 1.20 and 2.05 mum in Ho{sup 3+}/Yb{sup 3+}-codoped PBG glass were observed, confirming that energy transfer between Yb{sup 3+} and Ho{sup 3+} takes place, and a two-phonon-assisted energy transfer from Yb{sup 3+} to Ho{sup 3+} ions was determined by the calculation using phonon sideband theory. The 1.20 mum emission observed was primarily due to the weak multiphonon deexcitation originated from the small phonon energy of PBG glass (approx535 cm{sup -1}). A large product of emission cross-section and measured lifetime (9.93x10{sup -25} cm{sup 2} s) was obtained for the 1.20 mum emission and the gain coefficient dependence on wavelength with population inversion rate (P) was performed. The peak emission cross-section for 2.05 mum emission was calculated to be 4.75x10{sup -21} cm{sup 2}. The relative mechanism of Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped PBG glasses on their spectroscopic properties was also discussed. Our results suggest that Ho{sup 3+}/Yb{sup 3+}-doped PBG glasses are a good potential candidate for the frequency upconversion devices and infrared amplifiers/lasers.

  5. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia

    PubMed Central

    Liu, Liwei; Zhou, Zheng; Tian, He; Li, Jixue

    2016-01-01

    Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250 °C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures. PMID:26985895

  6. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia.

    PubMed

    Liu, Liwei; Zhou, Zheng; Tian, He; Li, Jixue

    2016-01-01

    Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temperature by approximately 250°C. Moreover, electrical impedance analyses show that adding Bi2O3 enhances the conductivity of zirconia, improving its capability as a solid electrolyte for intermediate or even lower temperatures. PMID:26985895

  7. Structural investigation of Zn doped sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  8. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  9. Anti-Stokes luminescence in bismuth-doped silica and germania-based fibers.

    PubMed

    Firstov, Sergei V; Khopin, Vladimir F; Velmiskin, Vladimir V; Firstova, Elena G; Bufetov, Igor A; Guryanov, Alexei N; Dianov, Evgeny M

    2013-07-29

    Luminescence excitation spectra of active centers in bismuth-doped vitreous SiO(2) and vitreous GeO(2) optical fibers under the two-step excitation have been obtained for the first time. The results revealed only one bismuth-related IR active center formed in each of these fibers. The observed IR luminescence bands at 1430 nm (1650 nm) and 830 nm (950 nm), yellow-orange (red) band at 580 nm (655 nm), violet (blue) band at 420 nm (480 nm) belong to this bismuth-related active center in the vitreous SiO(2) (vitreous GeO(2)), correspondingly. PMID:23938712

  10. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800  nm.

    PubMed

    Firstov, Sergei; Alyshev, Sergey; Melkumov, Mikhail; Riumkin, Konstantin; Shubin, Alexey; Dianov, Evgeny

    2014-12-15

    Bismuth-doped optical fibers and fiber lasers operating in 1625-1775 nm range have been developed for the first time to the best of our knowledge. Now the existing bismuth-doped lasers, including the result presented in this Letter, can cover O, E, S, C, L, and U telecommunication bands. In addition, new data on the nature of the bismuth-related active center were obtained and discussed. PMID:25503032

  11. Spectroscopic properties of bismuth-germanate glasses co-doped with erbium and holmium ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Kochanowicz, Marcin; Żmojda, Jacek; Dorosz, Dominik

    2014-05-01

    In the article an analysis of thermal and spectroscopic properties of heavy metal oxide glasses from the Bi2O3-Ga2O3- Na2O-Ge2O3 system doped with rare earth elements were presented. It has been focused on the elaboration of the glass composition in terms of low phonon energy, high transparency in the range of infrared region and high thermal stability (ΔT=160 °C) required in optical fiber technology. Fabricated glasses co-doped with Er3+/Ho3+ions under 980 nm laser diode excitation exhibit emission at 1.55 μm (Er3+: 4I 13/2 → 4I15/2) and 2.0 μm (Ho3+: 4I7 → 5I8). The emission at 2.0 μm results from the Er3+ → Ho3+energy transfer. Taking into account great thermal stability and good optical properties such as high transparency (up to 80%) or high refractive index (2.23), the fabricated bismuth-germanate glass co-doped with Er3+/Ho3+ is promising material for construction of active optical fibers operating in the range of mid-infrared.

  12. [Efficient oxidative degradation of tetrabromobisphenol A by silver bismuth oxide].

    PubMed

    Chen, Man-tang; Song, Zhou; Wang, Nan; Ding, Yao-bin; Liao, Hai-xing; Zhu, Li-hua

    2015-01-01

    Silver bismuth oxide(BSO) was prepared by a simple ion exchange-coprecipitation method with AgNO3 and NaBiO, .2H2O as raw materials, and then used to oxidatively degrade tetrabromobisphenol A(TBBPA). Effects of the molar ratio of Ag/Bi during BSO preparation and the BSO dosage on the degradation of TBBPA were investigated. The results showed that under the optimized conditions (i.e., the Ag/Bi molar ratio of 1:1, BSO dosage of 1 g x L(-1), 40 mg x L(-1) of TBBPA was completely degraded and the removal of total organic carbon achieved more than 80% within 7 min. The degradation intermediates of TBBPA were identified by ion chromatography, gas chromatograph-mass spectrometer and X-ray photoelectron spectroscopy. The degradation pathway of TBBPA included the debromination, the cleavage of tert-butyl group and the open epoxidation of benzene ring. Based on a quenching study of NaN3, singlet oxygen was proved to play a dominant role in the TBBPA degradation. PMID:25898666

  13. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  14. Oxide layer stability in lead-bismuth at high temperature

    NASA Astrophysics Data System (ADS)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  15. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  16. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  17. Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region

    SciTech Connect

    Dvoirin, V V; Mashinskii, V M; Medvedkov, O I; Dianov, Evgenii M; Umnikov, A A; Gur'yanov, Aleksei N

    2009-06-30

    Bismuth-doped optical fibres fully compatible with standard telecommunication fibres are developed. Lasers based on such fibres emitting in the spectral range 1430-1500 nm with an efficiency of up to 7.6% at room temperature and up to 10.5% at a temperature of -65{sup 0}C are fabricated. (waveguides. optical fibres)

  18. Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers.

    PubMed

    Dvoyrin, V V; Mashinsky, V M; Bulatov, L I; Bufetov, I A; Shubin, A V; Melkumov, M A; Kustov, E F; Dianov, E M; Umnikov, A A; Khopin, V F; Yashkov, M V; Guryanov, A N

    2006-10-15

    Optical fibers with bismuth-doped silicate and germanate glass cores were fabricated by the modified chemical vapor deposition technique (solution and vapor-phase Bi incorporation). The fibers revealed an efficient luminescence with a maximum in the 1050-1200 nm spectral range, FWHM up to 200 nm, and a lifetime of the order of 1 ms. PMID:17001368

  19. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    NASA Astrophysics Data System (ADS)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  20. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  1. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  2. Barium potassium bismuth oxide: A review

    SciTech Connect

    Baumert, B.A.

    1995-02-01

    Ba{sub 1-x}K{sub x}BiO{sub 3} (BKBO) has a {Tc} (onset) of 34 K. It is the highest-temperature oxide superconductor which is cubic, with a coherence length of 30-60{angstrom}. The basic properties of this compound are reviewed.

  3. Molecular orbital model of optical centers in bismuth-doped glasses.

    PubMed

    Kustov, E F; Bulatov, L I; Dvoyrin, V V; Mashinsky, V M

    2009-05-15

    Spectroscopic properties of optical fibers with a bismuth-doped silicate glass core are explained on the basis of molecular orbital theory and a solution of the Schrödinger equation, which takes into account the exchange, the spin-orbital, and the glass field potential interactions of s, p, and d electron shells of bismuth with s(sigma), p(sigma), and p(pi) orbits of oxygen atoms. The approach can explain the IR luminescence properties of other optical centers formed by other atoms with the same structure of electron shells as the bismuth atom. The model of transitions based on intramolecular charge transfer between molecular orbital and metallic states is proposed. PMID:19448817

  4. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  5. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  6. Bismuth Oxide Nanoparticles in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    Platey grains of cubic Bi2O3, alpha-Bi2O3, and Bi2O(2.75), nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p/cu m) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere.

  7. Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Firstova, E. G.; Alyshev, S. V.; Khopin, V. F.; Riumkin, K. E.; Melkumov, M. A.; Guryanov, A. N.; Dianov, E. M.

    2016-08-01

    The effect of annealing temperature on the luminescent properties of bismuth-doped fibers bleached by 532 nm laser radiation was investigated. The photoluminescence (PL) measurements were performed in pristine and photobleached samples which were thermally annealed at various temperatures ranging from 100 to 900 °C and slowly cooled. We observed that the intensity of the PL band at 1700 nm in the photobleached fibers recovered its pre-bleached level. Moreover, it was shown that a significant increase of the PL level could be achieved using the special annealing regime. Thereby, we obtained the experimental evidence of a thermally activated recovery process of the PL intensity showing that photoinduced changes of PL in bismuth-doped fibers are completely reversible. The mechanism of the thermal recovery of the PL is discussed.

  8. Battery performance enhancement with additions of bismuth

    NASA Astrophysics Data System (ADS)

    Manders, J. E.; Lam, L. T.; de Marco, R.; Douglas, J. D.; Pillig, R.; Rand, D. A. J.

    1994-02-01

    Automotive and valve-regulated batteries (VRBs) of typical commercial design have been constructed using positive and negative plates produced from leady oxide that is doped with 0.06 wt.% bismuth. The doping is performed by adding bismuth (III) oxide powder during the paste-mixing stage. Both battery designs have been subjected to endurance tests (automotive batteries: JIS cycle-life test; VRBs: repetitive 3-h discharge) in parallel with batteries that are similar in all respects but do not contain bismuth. A strategy and necessary hardware have been developed to measure the gassing properties of the VRBs during both charge and discharge. The procedure involves monitoring the internal pressure with high-precision pressure transducers. For automotive batteries, doping with bismuth produces no significant differences in JIS cycle life. By contrast, both the endurance and the capacity of VRBs are found to be enhanced by the presence of bismuth. Furthermore, bismuth reduces the build-up in gas pressure (mainly oxygen) in VRBs during constant-current charging. These results suggest that future specifications for leady oxide should include a minimum - rather than a maximum - bismuth content. In this respect, although studies performed to date show that significant advantages can be achieved with 0.06 wt.% bismuth in the active material, the optimum bismuth level has yet to be established.

  9. Bismuth-doped fibre amplifier for the range 1300 - 1340 nm

    SciTech Connect

    Dianov, Evgenii M; Mel'kumov, Mikhail A; Shubin, Aleksei V; Firstov, Sergei V; Bufetov, Igor' A; Khopin, V F; Gur'yanov, Aleksei N

    2009-12-31

    We demonstrate the first bismuth-doped fibre amplifier operating in the second transmission window of silica-based fibres. At a pump power of 460 mW and pump wavelength of 1230 nm, its gain reaches 24.5 dB at 1320 nm, with a gain bandwidth of 37 nm, saturation power near 10 mW, and noise figure of 5 dB. (letters)

  10. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  11. Effects of diamagnetic Ga dilution on the Faraday response of bismuth-doped iron garnet films

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Shinn, M. A.; Wu, Dong Ho

    2016-06-01

    In bismuth-doped iron garnets, diamagnetic dilution of Fe with Ga is a well-known method to increase the Faraday rotation response under externally applied magnetic fields. It is found, however, that while this method improves responsivity at larger field strengths, the responsivity under smaller fields (which are more typical in sensing applications) is generally unaffected by Ga doping. The data indicate that the low-field responsivity is limited by anomalous pinning effects in the rotational magnetization process of the ferromagnetic domains. To overcome this, a magnetic biasing technique was developed, which enhances responsivity by activating Barkhausen steps in the films to free the domains from their pinning sites.

  12. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, J. H.; Shin, W.

    2016-03-01

    We experimentally demonstrate a passively mode-locked thulium doped fiber laser using a bismuth telluride deposited multimode interference (MMI) fiber at a wavelength of 1958 nm. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The center wavelength and insertion loss of MMI fiber were measured to be ~ 1958 nm and 3.4 dB. We observed a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm. The temporal pulse width of output pulses is 4.2 ps with repetition rate of 22.7 MHz.

  13. Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials.

    PubMed

    Huang, Dazhen; Wang, Chao; Zou, Ye; Shen, Xingxing; Zang, Yaping; Shen, Hongguang; Gao, Xike; Yi, Yuanping; Xu, Wei; Di, Chong-An; Zhu, Daoben

    2016-08-26

    Development of chemically doped high performance n-type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n-type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene-diketopyrrolopyrrole-based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm(-1) and a Seebeck coefficient of 585 μV K(-1) . The newly developed TE material possesses a maximum power factor of 113 μW m(-1)  K(-2) , which is at the forefront for organic small molecule-based n-type TE materials. These studies reveal that fine-tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. PMID:27496293

  14. Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides

    SciTech Connect

    Leitner, J.; Jakes, V.; Sofer, Z.; Sedmidubsky, D.; Ruzicka, K.; Svoboda, P.

    2011-02-15

    Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi{sub 4}Ta{sub 2}O{sub 11}, Bi{sub 7}Ta{sub 3}O{sub 18} and Bi{sub 3}TaO{sub 7} were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form C{sub pm}=445.8+0.005451T-7.489x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1}, C{sub pm}=699.0+0.05276T-9.956x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1} and C{sub pm}=251.6+0.06705T-3.237x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1} for Bi{sub 3}TaO{sub 7}, Bi{sub 4}Ta{sub 2}O{sub 11} and for Bi{sub 7}Ta{sub 3}O{sub 18}, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S{sup o}{sub m}(298.15 K)=449.6{+-}2.3 J K{sup -1} mol{sup -1} for Bi{sub 4}Ta{sub 2}O{sub 11}, S{sup o}{sub m}(298.15 K)=743.0{+-}3.8 J K{sup -1} mol{sup -1} for Bi{sub 7}Ta{sub 3}O{sub 18} and S{sup o}{sub m}(298.15 K)=304.3{+-}1.6 J K{sup -1} mol{sup -1} for Bi{sub 3}TaO{sub 7}, were evaluated from the low-temperature heat capacity measurements. -- Graphical Abstract: Temperature dependence of {Delta}{sub ox}C{sub pm} for bismuth tantalum mixed oxides. Display Omitted Research highlights: > Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides Bi{sub 4}Ta{sub 2}O{sub 11}, Bi{sub 7}Ta{sub 3}O{sub 18} and Bi{sub 3}TaO{sub 7}. > Heat capacity by DSC calorimetry and heat-pulsed calorimetry. > Enthalpy increments by drop calorimetry. > Einstein-Debye model for low-temperature dependence of the heat capacity. > Application of Neumann-Kopp rule.

  15. Tributylphosphate Extraction Behavior of Bismuthate-Oxidized Americium

    SciTech Connect

    Mincher; Leigh R. Martin; Nicholas C. Schmitt

    2008-08-01

    Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am3+ in acidic solution. Room-temperature oxidation produced AmO2 2+ quantitatively, whereas oxidation at 80 °C produced AmO2+ quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am3+ at 503 nm, AmO2+ at 514 nm, and AmO2 2+ at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO2 2+ over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.

  16. Effect of ferromagnetic dopants on laser induced optical parameters of bismuth doped CaS phosphors

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Jeon, H. C.; Kang, T. W.; Devraj; Sekhon, Jaskanwal; Verma, N. K.; Bhatti, H. S.; Choubey, Ravi Kant

    2015-12-01

    The effect of ferromagnetic impurities (Fe, Co, and Ni) on the laser induced optical parameters of CaS:Bi phosphors has been studied. The studies were done for the Bismuth concentration of 0.4% in CaS phosphors due to the highest value of oscillator strength as reported earlier. The studies were conducted using nitrogen laser as a excitation source in a pulse excitation mode at room temperature. Appreciable changes in the optical properties have been detected after the addition of ferromagnetic impurities in the CaS phosphor doped with bismuth. The nature of the multiple exponential decays remains the same even after the addition of ferromagnetic impurities in the present case of bismuth-doped phosphors which is in agreement with the earlier work reported on other dopants in sulfide type phosphors. As ferromagnetic impurities enhanced the optical parameters of CaS phosphors appreciably, these studies shows that they can be used to control the transition probability and the corresponding optical parameters.

  17. Photoelastic constants of germanate glasses containing lead and bismuth oxides

    SciTech Connect

    Rabukhin, A.I.

    1995-07-01

    Regression equations which accurately approximate the concentration curves of the photoelastic constants of lead bismuth germanate glasses were obtained and the isolines of the photoelastic constants were plotted and graphically illustrate the change in the properties of the glasses in almost the entire glass-formation region of the PbO-Bi{sub 2}O{sub 3}-GeO{sub 2} system. The partial values of the photoelastic constants of the oxides, components of these glasses, were determined and are in agreement with the values established for glasses of other systems. The data obtained can be used in planning the compositions of effective optical media for fabrication of light and acoustic lines for acousto-optic instruments and glasses with a zero optical stress coefficient.

  18. Optical gain and laser generation in bismuth-doped silica fibers free of other dopants.

    PubMed

    Bufetov, Igor A; Melkumov, Mikhail A; Firstov, Sergey V; Shubin, Alexey V; Semenov, Sergey L; Vel'miskin, Vladimir V; Levchenko, Andrey E; Firstova, Elena G; Dianov, Evgeny M

    2011-01-15

    Luminescence emission and excitation spectra of bismuth-doped silica optical fibers free of other dopants have been obtained to construct an emission-excitation map in a wide wavelength range of 400-1600 nm. The main low-lying energy levels of the bismuth active centers in such fibers have been determined. For the first time (to our knowledge), optical gain and lasing have been obtained in such fibers. A gain of 8 dB has been achieved with a pump power of 340 mW, and a cw fiber laser emitting at 1460 nm with an output power of 40 mW and an efficiency of ≈3% has been created. PMID:21263488

  19. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation. PMID:25179434

  20. Effect of bismuth doping on the physical properties of La-Li-Mn-O manganite

    NASA Astrophysics Data System (ADS)

    Yanapu, Kalyana Lakshmi; Samatham, S. Shanmukharao; Kumar, Devendra; Ganesan, V.; Reddy, P. Venugopal

    2016-03-01

    The effects of bismuth doping at La site on magnetic, electrical and thermopower properties of LaLiMnO3 manganites have been investigated. The substitution of Bi ion leads to the weakening of ferromagnetic ordering at low temperature, and Curie temperature ( T C) decreases with increase in Bi content. Interestingly, a dramatic increase in the magnitude of Seebeck coefficient at low temperature is observed in Bi-doped samples which might find potential application as thermoelectric. The results are attributed to the combined effect of the disorder and antiferromagnetic interaction induced by Bi doping. Both ρ( T) and S( T) data in the high-temperature region are discussed using small polaron hopping model.

  1. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  2. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Varma, K. B. R.

    2009-04-01

    Barium lanthanum bismuth titanate (Ba1-(3/2)xLaxBi4Ti4O15, x = 0-0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x <= 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (ɛm) with an increase in the lanthanum content (0.1 < x <= 0.4). The dielectric relaxation was modelled using the Vogel-Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x >= 0.3, Tm was frequency independent. Well-developed P(polarization)-E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm-2 for pure BBT to 13.4 µC cm-2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

  3. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    NASA Astrophysics Data System (ADS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Chen, Xiaomei; Salleh, Muhamad Mat; Oyama, Munetaka

    2016-02-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  4. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  5. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Alyshev, S. V.; Riumkin, K. E.; Khopin, V. F.; Mel'kumov, M. A.; Gurjanov, A. N.; Dianov, E. M.

    2015-12-01

    We report the first bismuth-doped fibre amplifier operating between 1600 and 1800 nm, which utilises bidirectional pumping (co-propagating and counter-propagating pump beams) by laser diodes at a wavelength of 1550 nm. The largest gain coefficient of the amplifier is 23 dB, at a wavelength of 1710 nm. It has a noise figure of 7 dB, 3-dB gain bandwidth of 40 nm and gain efficiency of 0.1 dB mW-1.

  6. Optical properties of Dy3+ doped bismuth zinc borate glass and glass ceramics

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Kanth Kumar, V. V. Ravi

    2012-06-01

    Dy3+ doped bismuth zinc borate transparent glasses were prepared by melt quenching technique and these glasses were used precursor to obtain transparent glass ceramics by heat treatment method. XRD pattern of the glass ceramic shows the formation of the β-BiB3O6 and Bi2ZnOB2O6 phases. The visible emission intensity of the glass ceramics is stronger than the glass. This can be due to the formation of nano nonlinear optical crystallites in glass matrix.

  7. Narrowband random lasing in a Bismuth-doped active fiber.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Skvortsov, Mikhail I; Podivilov, Evgeniy V; Melkumov, Mikhail A; Babin, Sergey A; Dianov, Evgeny M

    2016-01-01

    Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15-1.78 μm. PMID:27435232

  8. Narrowband random lasing in a Bismuth-doped active fiber

    PubMed Central

    Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.

    2016-01-01

    Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm. PMID:27435232

  9. Ethanol Gas Sensor Based on Pure and La-Doped Bismuth Vanadate

    NASA Astrophysics Data System (ADS)

    Golmojdeh, Hosein; Zanjanchi, Mohamad Ali

    2014-02-01

    Bismuth vanadate (BiVO4) and lanthanum-doped bismuth vanadate (La-doped BiVO4) were prepared via the precipitation method. Their films were produced by simple drop-coating of the initial solutions over gold electrodes, which were coated over a glass substrate. The structural properties of BiVO4 and La-doped BiVO4 samples were studied using x-ray diffractometer, diffuse reflectance spectroscopy, scanning electron microscopy, atomic force microscopy, and compositional analysis. A chamber was designed to install the sensing device and also controllable tools for gas flow rate and temperature. Changes in the resistance of the prepared layers were recorded during exposure to various amounts of ethanol vapor at different temperatures. Both BiVO4 and La-doped BiVO4 layers showed measurable responses in the form of resistance drop (increased conductivity). The higher temperatures up to 450 °C led to stronger signals. The layer containing lanthanum showed signals with shorter recovery times. Introduction of lanthanum caused smaller crystallite sizes in addition to the formation of tetragonal phase of BiVO4. Presence of lanthanum increased the amounts of grain boundaries, magnitude of the response, and sensitivity. Sensitivity of La-doped BiVO4 was almost twice that of the BiVO4 at concentrations of 150-500 ppm of ethanol. Also, the correlation of the response as a function of concentration of ethanol in gas phase was exploited, and two different linear ranges were observed for the lower and higher concentrations.

  10. A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Jin, Cang; Yuan, Jinhui; Yu, Chongxiu

    2010-11-01

    The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.

  11. Morphology modulated growth of bismuth tungsten oxide nanocrystals

    SciTech Connect

    Yao Shushan; Wei, Jiyong; Huang Baibiao Feng Shengyu; Zhang Xiaoyang; Qin Xiaoyan; Wang Peng; Wang Zeyan; Zhang Qi; Jing Xiangyang; Zhan Jie

    2009-02-15

    Two kinds of bismuth tungsten oxide nanocrystals were prepared by microwave hydrothermal method. The morphology modulation of nanocrystals synthesized with precursor suspension's pH varied from 0.25 (strong acid) to 10.05 (base) was studied. The 3D flower like aggregation of Bi{sub 2}WO{sub 6} nanoflakes was synthesized in acid precursor suspension and the nanooctahedron crystals of Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were synthesized in alkalescent precursor. The dominant crystal is changed from Bi{sub 2}WO{sub 6} to Bi{sub 3.84}W{sub 0.16}O{sub 6.24} when the precursor suspension changes from acid to alkalescence. The growth mechanisms of Bi{sub 2}WO{sub 6} and Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were attributed to the different solubility of WO{sub 4}{sup 2-} and [Bi{sub 2}O{sub 2}]{sup 2+} in precursor suspensions with various pH. For the decomposition of Rhodamine B (RhB) under visible light irradiation ({lambda}>400 nm), different morphology of Bi{sub 2}WO{sub 6} crystal samples obtained by microwavesolvothermal process showed different photocatalytic activity. - Graphical abstract: The morphology modulation of bismuth tungsten oxide nanocrystals synthesized by microwave hydrothermal method with precursor suspension's pH varied from 0.25 (strong acid) to 10.05 (base) was studied. The 3D flower like aggregation of Bi{sub 2}WO{sub 6} nanoflakes and nanooctahedron crystals of Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were prepared. The growth mechanisms of Bi{sub 2}WO{sub 6} and Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were attributed to the different precipitation ability and solubility of H{sub 2}WO{sub 4} and Bi(OH){sub 3} in precursor suspensions with various pH. The photocatalytic evaluation, via the decomposition of Rhodamine B (RhB) under visible light irradiation ({lambda}>420 nm), reveals that nanocrystalline Bi{sub 2}WO{sub 6} samples obtained in different condition exhibit different photocatalytic activities which depend on pH value of the precursor suspensions.

  12. C-band single-longitudinal mode lanthanum co-doped bismuth based erbium doped fiber ring laser.

    PubMed

    Qureshi, Khurram Karim; Feng, X H; Zhao, L M; Tam, H Y; Lu, C; Wai, P K A

    2009-08-31

    We propose and demonstrate a stable, tunable and narrow linewidth C-band lanthanum co-doped bismuth based erbium doped fiber (EDF) ring laser with single longitudinal mode (SLM) operation. A free space thin film filter acts as a wavelength discriminative component selecting a few oscillating modes while a Lyot filter formed by a polarization maintaining (PM) fiber and a linear polarizer further discriminates and selects SLM efficiently. A power stability of < or = 0.05 dB, central wavelength variation of < or = 0.02 nm, a side-mode suppression ratio (SMSR) of at least > 43 dB, and a linewidth of about 1.3 kHz have been experimentally demonstrated. PMID:19724634

  13. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally. PMID:25188779

  14. Multiferroic properties of nanostructured barium doped bismuth ferrite

    NASA Astrophysics Data System (ADS)

    El-Desoky, M. M.; Ayoua, M. S.; Mostafa, M. M.; Ahmed, M. A.

    2016-04-01

    Multiferroic nanoparticles of Bi1-xBaxFeO3 (x=0.10, 0.15, 0.20, 0.25 mol%) samples were prepared using conventional solid-state method. The nanostructural, multiferroic properties of the prepared samples was investigated. X-ray diffraction (XRD) patterns show the formation of BiBaFeO3 with single-phase rhombohedral-hexagonal structure. Spin canting or impurity phase could be a probable reason for the origin of ferromagnetism. At room temperature, remnant magnetization increased 18 times more than its initial value. A change in the magnetization is observed around 742-833 K. Néel temperature (TN) registers an increase of 30 times of Ba-doped BiFeO3 in comparison with undoped BiFeO3. The dielectric properties were affected by the properties of the substitutional ions as well as the crystalline structure of the present samples. Substitution with Ba2+ ions also improved the ferroelectric polarization with remanent polarization of 89 μC/cm2. The simultaneous occurrence of ferromagnetism and ferroelectric hysteresis loops in BiBaFeO3 multiferroic nanoparticles system at room temperature makes it a potential candidate for information storage and spintronics.

  15. Resonant doped bismuth telluride for reliable, efficient cryocooling. Final report

    SciTech Connect

    Volckmann, E.H.

    1992-10-16

    Today's cryogenic coolers that operate down to 77 K suffer from several problems. Their most serious difficulties are significant noise levels, excessive vibration and poor reliability. Thermoelectric coolers do not suffer any of these concerns. However, thermoelectric coolers are not presently capable of cooling to temperatures as low as 77 K. Development of thermoelectric materials capable of extending cooler performance to these temperatures would open up potential applications such as cryogenic cooling of infrared detectors and CCDs as well as removing heat from Joule-Thomson refrigerators. Presently, the best thermoelectric materials over the temperature range 200 K to 450 K and the most practical below 200 K, are solid solutions of Bi2Te3, Sb2Te3 and/or Bi2Se3. These alloys yield a peak dimensionless figure of merit, ZT, of approximately one near 300 K. These materials often require doping in order to optimize the carrier concentration and figure of merit, Z. As reported by Ravich and Vedernikov, certain impurities can also be added to improve thermoelectric properties through a selective scattering mechanism.

  16. Enhancement of ferromagnetic and dielectric properties of lanthanum doped bismuth ferrite nanostructures

    SciTech Connect

    Chaudhuri, A.; Mandal, K.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Rod shaped lanthanum doped bismuth ferrite was obtained. Black-Right-Pointing-Pointer The diameter of the particles were found to be decreasing on doping with lanthanum. Black-Right-Pointing-Pointer Both ferromagnetic and dielectric properties enhanced. Black-Right-Pointing-Pointer A transition due to spin canting is observed near 550 Degree-Sign C. Black-Right-Pointing-Pointer Electron spin resonance study shows the breakage of spin cycloid due to doping. -- Abstract: Cylindrical-shaped multiferroic Bi{sub 1-x}La{sub x}FeO{sub 3} (x = 0.0, 0.05, 0.1 and 0.15) were synthesized successfully by hydrothermal method. All samples were found to be rhombohedrally distorted perovskite structure. Diameter of the cylindrical particles reduces from {approx}450 nm for x = 0.0 to {approx}100 nm for x = 0.1 prepared under the same conditions. The Neel temperature as well as the dielectric constant was also found to increase with the increase in lanthanum content. Lanthanum doping also enhanced the magnetic properties. Magnetization measurements above room temperature show a significant increase in magnetization at around 400 Degree-Sign C. Enhanced magnetic properties due to lanthanum doping are caused by the breakage of spin cycloid as observed by electron spin resonance study.

  17. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  18. Bismuth Oxide: A New Lithium-Ion Battery Anode

    PubMed Central

    Li, Yuling; Trujillo, Matthias A.; Fu, Engang; Patterson, Brian; Fei, Ling; Xu, Yun; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei

    2013-01-01

    Bismuth oxide directly grown on nickel foam (p-Bi2O3/Ni) was prepared by a facile polymer-assisted solution approach and was used directly as a lithium-ion battery anode for the first time. The Bi2O3 particles were covered with thin carbon layers, forming network-like sheets on the surface of the Ni foam. The binder-free p-Bi2O3/Ni shows superior electrochemical properties with a capacity of 668 mAh/g at a current density of 800 mA/g, which is much higher than that of commercial Bi2O3 powder (c-Bi2O3) and Bi2O3 powder prepared by the polymer-assisted solution method (p-Bi2O3). The good performance of p-Bi2O3/Ni can be attributed to higher volumetric utilization efficiency, better connection of active materials to the current collector, and shorter lithium ion diffusion path. PMID:24416506

  19. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  20. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    PubMed Central

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  1. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    NASA Astrophysics Data System (ADS)

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-06-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique.

  2. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band.

    PubMed

    Firstov, Sergei V; Alyshev, Sergey V; Riumkin, Konstantin E; Khopin, Vladimir F; Guryanov, Alexey N; Melkumov, Mikhail A; Dianov, Evgeny M

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems ("capacity crunch") because the operation of the EDFA is limited to a spectral region of 1530-1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150-1530 nm) and longer wavelength (1600-1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640-1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  3. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. PMID:24530709

  4. Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Swapna, K.; Mahamuda, Sk.; Srinivasa Rao, A.; Shakya, S.; Sasikala, T.; Haranath, D.; Vijaya Prakash, G.

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm3+) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm3+ ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm3+ ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the 4G5/2 level of Sm3+ ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm3+ ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  5. Influence of electron irradiation on optical properties of Bismuth doped silica fibers.

    PubMed

    Kir'yanov, Alexander V; Dvoyrin, Vladislav V; Mashinsky, Valery M; Il'ichev, Nikolai N; Kozlova, Nina S; Dianov, Evgueny M

    2011-03-28

    We report a study of the attenuation spectra transformations for a series of Bismuth (Bi) doped silica fibers with various contents of emission-active Bi centers, which arise as the result of irradiation by a beam of high-energy electrons. The experimental data reveal a substantial decrease of concentration of the Bi centers, associated with the presence of Germanium in silica glass, at increasing the irradiation dose (the resonant-absorption bleaching effect in germano-silicate fiber). In contrast, the spectral changes that appear in Bi doped alumino-silicate fiber have through irradiation a completely different character, viz., weak growth of the resonant-absorption peaks ascribed to the Bi centers, associated with the presence of Aluminum in silica glass. These results demonstrating high susceptibility of Bi centers to electron irradiation while opposite routes of the irradiation-induced spectral changes in Bi doped germanate and aluminate fibers seem to be of worth notice for understanding the nature of these centers. PMID:21451687

  6. Anomalous thermopower in bismuth doped La-Li-Mn-O manganite

    NASA Astrophysics Data System (ADS)

    Kalyana Lakshmi, Yanapu; Gunadhor Singh, Okram; Venugopal Reddy, Paduru

    2015-01-01

    Two polycrystalline samples, La5/6Li1/6MnO3 and La2/3Bi1/6Li1/6MnO3 having the same Mn3+/Mn4+ ratio were synthesized by the wet chemical method. After characterizing the samples by X-ray powder diffraction studies, dc magnetization, electrical resistivity and thermopower measurements were also carried out. It has been found that bismuth doped sample exhibits huge thermopower of 0.9 V/K in the low temperature region. The observed anomalous behavior is explained on the basis of the coexistence of antiferromagnetic phase in ferromagnetic matrix. The huge thermopower exhibited by these samples might find applications in thermoelectric devices.

  7. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  8. Activating Nonreducible Oxides via Doping.

    PubMed

    Nilius, Niklas; Freund, Hans-Joachim

    2015-05-19

    Nonreducible oxides are characterized by large band gaps and are therefore unable to exchange electrons or to form bonds with surface species, explaining their chemical inertness. The insertion of aliovalent dopants alters this situation, as new electronic states become available in the gap that may be involved in charge-transfer processes. Consequently, the adsorption and reactivity pattern of doped oxides changes with respect to their nondoped counterparts. This Account describes scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS) experiments that demonstrate the impact of dopants on the physical and chemical properties of well-defined crystalline oxide films. For this purpose, MgO and CaO as archetypical rocksalt oxides have been loaded either with high-valence (Mo, Cr) or low-valence dopants (Li). While the former generate filled states in the oxide band gap and serve as electron donors, the latter produce valence-band holes and give rise to an acceptor response. The dopant-related electronic states and their polarization effect on the surrounding host material are explored with XPS and STM spectroscopy on nonlocal and local scales. Moreover, charge-compensating defects were found to develop in the oxide lattice, such as Ca and O vacancies in Mo- and Li-doped CaO films, respectively. These native defects are able to trap the excess charges of the impurities and therefore diminish the desired doping effect. If noncompensated dopants reside in the host lattice, electron exchange with surface species is observed. Mo ions in CaO, for example, were found to donate electrons to surface Au atoms. The anionic Au strongly binds to the CaO surface and nucleates in the form of monolayer islands, in contrast to the 3D growth prevailing on pristine oxides. Charge transfer is also revealed for surface O2 that traps one Mo electron by forming a superoxo-species. The activated oxygen is characterized by a reinforced binding to the surface, an elongated O

  9. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  10. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging

    PubMed Central

    Naha, Pratap C.; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M.; Witschey, Walter R. T.; Litt, Harold I.; Tsourkas, Andrew; Cormode, David P.

    2014-01-01

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents. PMID:25485115

  11. Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate

    NASA Astrophysics Data System (ADS)

    Prusty, Rajesh K.; Kuruva, Praveena; Ramamurty, U.; Thomas, Tiju

    2013-11-01

    Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results.

  12. Catalytic oxidation of propylene--7. Use of temperature programmed reoxidation to characterize. gamma. -bismuth molybdate

    SciTech Connect

    Uda, T.; Lin, T.T.; Keulks, G.W.

    1980-03-01

    Temperature-programed reoxidation of propylene-reduced ..gamma..-Bi/sub 2/MoO/sub 6/ revealed a low-temperature peak (LTP) at 158/sup 0/C and a high-temperature peak (HTP) at 340/sup 0/C. Auger spectroscopy and X-ray diffraction of reduced and partially or completely reoxidized bismuth molybdate showed that at the LTP, molybdenum(IV) is oxidized to molybdenum(VI) and bismuth, from the metallic state to an oxidation state between zero and three, and that the HTP is associated with the complete oxidation of bismuth to bismuth(III). Activity tests for propylene oxidation showed lower acrolein formation on the catalyst, on which only the LTP was reoxidized than on catalysts on which both peaks were reoxidized. The reoxidation kinetics of the catalyst under conditions corresponding to the LTP showed an activation energy of 22.9 kcal/mole below 170/sup 0/C and near zero above 170/sup 0/C; the break in the Arrhenius plot of reoxidation of the catalyst under conditions corresponding to the HTP was at 400/sup 0/C, with activation energies of 46 kcal/mole at lower and near zero at higher temperatures. Propylene oxidation was apparently rate-limited by the HTP reoxidation process below 400/sup 0/C and by allylic hydrogen abstraction above 400/sup 0/C.

  13. Reddish-orange emission from Pr3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Sasikala, T.; Rama Moorthy, L.

    2013-11-01

    Praseodymium doped Zinc Alumino Bismuth Borate (ZnAlBiB) glasses were prepared by melt quenching technique and characterized by optical absorption and emission studies. The glassy nature of these glasses has been confirmed through XRD spectral measurements. From the absorption spectra, the Judd-Ofelt intensity parameters Ωλ (λ=2, 4 and 6) and other radiative properties like transition probability (AR), radiative lifetimes (τR) and branching ratios (βR) have been evaluated. Emission spectra were measured for different concentrations of Pr3+ ions doped glasses by exciting the glasses at 445 nm. The intensity of Pr3+ emission spectra increases from 0.1 to 1 mol% and beyond 1 mol% concentration quenching is observed. The suitable concentration of Pr3+ ions in ZnAlBiB glasses to act as a good lasing material at reddish-orange wavelength (604 nm) region has been discussed by measuring the emission cross-sections for the intense emission transition 1D2→3H4. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for reddish-orange emission. From the measured emission cross-sections and CIE chromaticity co-ordinates, it was found that 1 mol% of Pr3+ is aptly suitable for the development of visible reddish-orange lasers.

  14. Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses.

    PubMed

    Tan, Linling; Wang, Liping; Peng, Mingying; Xu, Shanhui; Zhang, Qinyuan

    2016-08-01

    For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability. PMID:27505827

  15. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Jayasimhadri, M.; Sasikala, T.; Pavani, K.; Rama Moorthy, L.

    2013-09-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of neodymium are prepared by using the melt quenching technique to study their physical, absorption and luminescence properties to understand the lasing potentialities of these glasses. From the absorption spectra various spectroscopic parameters and Judd-Ofelt (JO) parameters are evaluated. These JO parameters are used to calculate the transition probability (A), radiative lifetime (τR), and branching ratios (βR) for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses gives three prominent transitions 4F3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 for which effective band widths (ΔλP) and stimulated emission cross-sections (σse) are evaluated. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the 4F3/2→4I11/2 transition under investigation has the potential for laser applications. The intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1 mol% and beyond 1 mol% the concentration quenching is observed. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infrared lasers. From the absorption and emission spectral studies it was found that, 1 mol% of Nd3+ ion concentration is optimum for Zinc Alumino Bismuth Borate glasses to generate a strong laser emission at 1060 nm.

  16. Study of vanadium doped strontium bismuth niobate tantalate ferroelectric ceramics and thin films

    NASA Astrophysics Data System (ADS)

    Wu, Yun

    First part of the dissertation is the research on the material system strontium bismuth niobate vanadates, SrBi2(Nb,V)2O 9, (SBNV) ferroelectrics. Present research includes two parts: (1) enhancement of ferroelectric and dielectric properties through partial vanadium substitution and (2) thin films of SBNV ferroelectrics by sol-gel processing. The experimental results demonstrated that the partial incorporation of vanadium into the crystal structure resulted in a significantly enhanced ferroelectric and dielectric properties, which include approximately 300% increase in remanent polarization and 100% reduction in coercive field. Such a significant property enhancement was attributed to the fact that the incorporation of V 5+ with smaller radius (58 pm), in comparison with that of Nb 5+ (69 pm), resulted in an increased "rattling space" for spontaneous polarization. It was also found that the incorporation of vanadium improved other properties of the ferroelectrics including reduced DC conductivity and tangent loss. In addition, some preliminary work has been done on the sol-gel processing and film deposition of SBNV ferroelectrics. A sol-gel process has been successfully developed and single phase SBNV ferroelectrics have been obtained after heat treatment at 600--800°C. Smooth dense thin films of SBNV ferroelectrics with an average grain size of ˜100 nm were obtained through sol-gel coating. Second part of the dissertation is the study on the influence of the vanadium doping on the strontium bismuth tantalate, SrBi2Ta2O9, (SBT) system. Partial substitution (10 at%) of pentavalent tantalum ions by pentavalent vanadium ions with a relatively smaller ionic radius in the SBT layered perovskite ferroelectrics leads to an enhanced dielectric constants, a broadened peak, and a reduced stability of layered tetragonal perovskite structure, as evidenced by an increased para-ferroelectric transition temperature. It was found that the frequency dependence of para

  17. High quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber.

    PubMed

    Quimby, R S; Shubochkin, R L; Morse, T F

    2009-10-15

    A self-calibrating method is described for measuring the radiative quantum efficiency (QE) in doped optical fibers. The method uses an integrating sphere to collect the fluorescence from the fiber, with pump light transmitted through the fiber end serving as a reference. QE measurements for a 780 or 808 nm pump were made on bismuth-doped AlGeP-silica fibers prepared by aerosol deposition. For both wavelengths, a value of QE=1.0+/-0.05 was obtained. Fluorescence was observed in two bands centered around 800 and 1300 nm, and the relative strength of these bands was found to vary with the pump wavelength. PMID:19838266

  18. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, M.; Blencowe, A.; Yeo, U. J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M.

    2013-06-01

    The aim of this study is to present the first experimental validation and quantification of the dose enhancement capability of bismuth oxide nanoparticles (Bi2O3-Nps). A recently introduced multi-compartment 3D radiochromic dosimeter for measuring radiation dose enhancement produced from the interaction of X-rays with metal nanoparticles was employed to investigate the 3D spatial distribution of ionizing radiation dose deposition. Dose-enhancement factor for the dosimeters doped with Bi2O3-NPs was ~1.9 for both spectrophotometry and optical CT analyses. Our results suggest that bismuth-based nanomaterials are efficient dose enhancing agents and have great potential for application in clinical radiotherapy.

  19. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    Du, W.; Su, D.; Wang, Q.; Frenkel, A.I.; Teng, X.

    2011-01-11

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  20. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    X Teng; W Du; D Su; Q Wang; A Frenkel

    2011-12-31

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  1. Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1991-01-01

    It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.

  2. Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1990-01-01

    It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.

  3. Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering

    NASA Astrophysics Data System (ADS)

    Mahapatra, A.; Parida, S.; Sarangi, S.; Badapanda, T.

    2015-08-01

    Bismuth-doped barium titanate ceramics with the general formula Ba1- x Bi2 x/3TiO3 ( x = 0.0, 0.01, 0.025, 0.05) have been prepared by the solid state reaction technique. The phase formation and structural property of all compositions have been studied by x-ray diffraction (XRD) pattern and Rietveld refinement. XRD pattern reports the single phase tetragonal crystal system with space group of P4mm. All compositions have been sintered at 1100°C in a microwave furnace for 30 min. The variation of dielectric constant with respect to temperature and frequency was studied and it was found that the dielectric constant decreases whereas transition temperature increased with the increase in Bi content. The diffusivity parameter was calculated by the modified Curie-Weiss law and the diffusivity increased with the increase in Bi content. The ferroelectric property was studied by the P-E hysteresis loop and it was observed that the saturation polarization decreased, but the coercive field increased with Bi content. The optical band gap was calculated from UV-Visible spectroscopy and found to decrease with Bi content.

  4. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  5. Optical properties of Dy3+ doped bismuth boro-tellurite glasses for WLED applications

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Marimuthu, K.

    2016-05-01

    The Dy3+ doped bismuth boro-tellurite glasses with the chemical composition (79.5-x) B2O3+xTeO2+10Bi2O3+10PbF2+0.5Dy2O3 (where x = 10, 20, 30 and 40 in wt%) have been prepared by melt quenching technique. The optical properties of the prepared glasses have been studied through absorption and emission spectral measurements. The bonding parameters, optical band gap energy, Urbach's energy and Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the absorption spectra. The radiative properties like transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) were calculated from the emission spectra using JO theory. The strong emissions in the visible region, large stimulated emission cross-section and higher branching ratio values observed for the title glasses are found to be suitable for lasers and WLED applications.

  6. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. PMID:24519914

  7. Relaxor properties of lanthanum-doped bismuth layer-structured ferroelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Bing; Hui, Rong; Zhu, Jun; Lu, Wang-Ping; Mao, Xiang-Yu

    2004-11-01

    Several polycrystalline samples of bismuth layer-structured ferroelectrics (BLSF) family doped by lanthanum, Bi4-xLaxTi3O12, SrBi4-xLaxTi4O15, Sr2Bi4-xLaxTi5O18, and (Bi,La)4Ti3O12-Sr(Bi,La)4Ti4O15, were prepared by the traditional solid-state reaction method. Their ferroelectric and dielectric properties were investigated. The dielectric measurement data showed that the content of lanthanum determined the ferroelectric characteristics of the compounds. In each series samples, they behaved as normal ferroelectrics for small x, but all of them tended to become relaxors when x was increased. The critical value of the La content causing relaxor characteristics is different for the different BLSFs due to the difference of the number of strontium atoms in their crystal structures. The appearance of the relaxor behavior was attributed to a ferroelectric microdomain state induced by random fields.

  8. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device.

    PubMed

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 V(rms). This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  9. Effect of B-site isovalent doping on electrical and ferroelectric properties of lead free bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2016-06-01

    In the present work, zirconium modified bismuth titanate ceramics have been studied as potential lead-free ferroelectric materials over a broad temperature range (RT - 800 °C). Polycrystalline samples of Bi4Ti3-xZrxO12 (x=0.2, 0.4, 0.6) (BZrT) with high electrical resistivity were prepared using the solution combustion technique. The effect of Zr doping on the crystalline structure, ferroelectric properties and electrical conduction characteristics of BZrT ceramics were explored. Addition of zirconium to bismuth titanate enhances its dielectric constant and reduces the loss factor as it introduces orthorhombic distortion in bismuth titanate lattice which is exhibited by the growth along (00_10) lattice plane. Activation energy due to relaxation is found to be greater than that due to conduction thus confirming that electrical conduction in these ceramics is not due to relaxation of dipoles. Remanent polarization of the doped samples increases as the Zirconium content increases.

  10. Oxidative dehydrogenation dimerization of propylene over bismuth oxide: kinetic and mechanistic studies

    SciTech Connect

    White, M.G.; Hightower, J.W.

    1983-07-01

    Classical kinetic experiments together with pulse microreactor studies involving deuterium and carbon-13-labeled isotopic tracers were used to investigate the oxidative dehydrogenation dimerization (OXDD) of propylene to 1,5-hexadiene and benzene over bismuth oxide between 748 and 898/sup 0/K. The kinetic data, which indicated that the OXDD reaction is of variable order with respect to oxygen and propylene concentrations, could be fit to rate equations based on either the Langmuir-Hinshelwood model or the Mars-van Krevelen model, although the former gave more linear Arrhenius plots. A significant kinetic isotope effect (k/sub H//k/sub D/ = 1.7 at 873/sup 0/K) shows that the rate-limiting step for the OXDD reaction involves C-H cleavage, and there is only a small amount of H/D scrambling among reactant and product molecules. Analysis of liquid products by infrared spectroscopy indicated that both 1,5-hexadiene and 1,3-cyclohexadiene are stable reaction intermediates; microreactor results involving unlabeled propylene, 1,5-hexadiene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene as reactants confirmed the infrared findings. Pulse microreactor experiments with /sup 13/C-labeled propylene clearly showed that deep oxidation (complete combustion) occurs via a consecutive-parallel network involving the partially oxidized intermediates as well as the starting propylene. Changes in the particle size do not alter the overall activity, although larger particles have lower selectivities for C/sub 6/ products than do smaller particles.

  11. Separation of Americium in High Oxidation States from Curium Utilizing Sodium Bismuthate.

    PubMed

    Richards, Jason M; Sudowe, Ralf

    2016-05-01

    A simple separation of americium from curium would support closure of the nuclear fuel cycle, assist in nuclear forensic analysis, and allow for more accurate measurement of neutron capture properties of (241)Am. Methods for the separation of americium from curium are however complicated and time-consuming due to the similar chemical properties of these elements. In this work a novel method for the separation of americium from curium in nitric acid media was developed using sodium bismuthate to perform both the oxidation and separation. Sodium bismuthate is shown to be a promising material for performing a simple and rapid separation. Curium is more strongly retained than americium on the undissolved sodium bismuthate at nitric acid concentrations below 1.0 M. A separation factor of ∼90 was obtained in 0.1 M nitric acid. This separation factor is achieved within the first minute of contact and is maintained for at least 2 h of contact. Separations using sodium bismuthate were performed using solid-liquid extraction as well as column chromatography. PMID:27079565

  12. Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A. D.; Andianingrum, R.; Hakim, A. R.; Bhaduri, G.

    2016-02-01

    The monoclinic bismuth oxide was prepared by the solution combustion method using bismuthyl nitrate as the raw material and citric acid as fuel. The synthesis process consisted of the formation of a clear transparent solution and the formation of white powder after heating the mixture at 250 °C for 2 hours. The yellow pale crystalline materials were obtained after calcination of the white powder at 600 °C for 80 minutes. Furthermore, the photocatalytic activity of the product was also studied using methyl orange as a model pollutant. The result showed that the coral reef-like bismuth oxide was able to degrade 50 mL methyl orange (5 ppm) by 37.8% within 12 hours irradiation using 75-watt tungsten lamp.

  13. Ion-exchange chromatographic separation of anions on hydrated bismuth oxide impregnated papers

    SciTech Connect

    Dabral, S.K.; Muktawat, K.P.S.; Rawat, J.P.

    1988-04-01

    A comparative study of the chromatographic behavior of anions, iodide, sulfide, phosphate, arsenate, arsenite, vanadate, chromate, dichromate, thiosulfate, thiocyanate, ferricyanide and ferrocyanide on papers impregnated with hydrated bismuth oxide and untreated Whatman no.1 paper has been made by employing identical aqueous, non-aqueous and mixed solvent system. Sharp and compact spots were obtained with impregnated papers whereas the opposite applied to plain papers. Various analytically important binary and ternary separations are reported.

  14. Nanofabrication of Doped, Complex Oxides

    SciTech Connect

    Stein, A.; Waller, G.H.; Abiade, J.T.

    2012-01-01

    Complex oxides have many promising attributes, including wide band gaps for high temperature semiconductors, ion conducting electrolytes in fuel cells, ferroelectricity and ferromagnetism. Bulk and thin film oxides can be readily manufactured and tested however these physically hard and chemically inert materials cannot be nanofabricated by direct application of conventional methods. In order to study these materials at the nanoscale there must first be a simple and effective means to achieve the desired structures. Here we discuss the use of pulsed laser deposition at room temperature onto electron beam lithography defined templates of poly methyl methacrylate photoresist. Following a resist liftoff in organic solvents, a heat treatment was used to crystallize the nanostructures. The morphology of these structures was studied using scanning electron microscopy and atomic force microscopy. Crystallinity and composition as determined by x ray diffraction and photo-electron spectroscopy respectively is reported for thin film analogues of the nanostructured oxide. The oxide studied in this report is Nb doped SrTiO{sub 3}, which has been investigated for use as a high temperature thermoelectric material; however the approach used is not materials-dependent.

  15. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-01

    Water oxidation is the key step for both photocatalytic water splitting and CO2 reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO4) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO4-based materials for water oxidation.

  16. High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Joh, Dong Woo; Park, Jeong Hwa; Kim, Do Yeub; Yun, Byung-Hyun; Lee, Kang Taek

    2016-07-01

    We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (>97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures.

  17. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    ElBatal, F. H.; Abdelghany, A. M.; ElBatal, H. A.

    2014-03-01

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe3+) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi3+) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi3+ ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  18. Synthesis, Characterization and Studies on Optical, Dielectric and Magnetic Properties of undoped and Cobalt doped Nanocrystalline Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Sarkar, K.; Mukherjee, Soumya; Mukherjee, S.; Mitra, M. K.

    2014-10-01

    Multiferroic perovskite nanocrystalline Bismuth ferrite (BFO) and Co doped Bismuth ferrite are synthesized by chemical route annealed at 500, 550 and 600 °C. XRD studies revealed the phases formed during synthesis while crystallite size is calculated in the range of 15.4-55 nm by Scherrer's formula from the identified XRD major peaks. The FTIR spectra of undoped BFO sample synthesized at 500, 550 and 600 °C exhibits clear presence of peaks at 554 cm-1 confirms the existence of Bi-O, Fe-O stretching and bending behavior of two different M-O co-ordination using Shimadzu-8400S Spectroscopy. The microstructure, lattice image and interplanar spacing are obtained by HRTEM analysis. The particle sizes are also measured from HRTEM while the chemistry is verified by energy dispersive x-ray analysis (EDX) (Oxford Instruments, INCA). Dielectric properties are observed for both undoped and Co doped samples. The band gap energy is measured by UV-VIS characterization using Tauc equation. Magnetic measurements are carried out using Physical Properties Measurement systems.

  19. Synthesis, Characterization and Studies on Optical, Dielectric and Magnetic Properties of undoped and Cobalt doped Nanocrystalline Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Sarkar, K.; Mukherjee, Soumya; Mukherjee, S.; Mitra, M. K.

    2014-09-01

    Multiferroic perovskite nanocrystalline Bismuth ferrite (BFO) and Co doped Bismuth ferrite are synthesized by chemical route annealed at 500, 550 and 600 °C. XRD studies revealed the phases formed during synthesis while crystallite size is calculated in the range of 15.4-55 nm by Scherrer's formula from the identified XRD major peaks. The FTIR spectra of undoped BFO sample synthesized at 500, 550 and 600 °C exhibits clear presence of peaks at 554 cm-1 confirms the existence of Bi-O, Fe-O stretching and bending behavior of two different M-O co-ordination using Shimadzu-8400S Spectroscopy. The microstructure, lattice image and interplanar spacing are obtained by HRTEM analysis. The particle sizes are also measured from HRTEM while the chemistry is verified by energy dispersive x-ray analysis (EDX) (Oxford Instruments, INCA). Dielectric properties are observed for both undoped and Co doped samples. The band gap energy is measured by UV-VIS characterization using Tauc equation. Magnetic measurements are carried out using Physical Properties Measurement systems.

  20. Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM).

    PubMed

    Nogueira, André E; Longo, Elson; Leite, Edson R; Camargo, Emerson R

    2014-02-01

    Bismuth titanate (Bi4Ti3O12 and Bi12TiO20) powders were synthesized by the Oxidant Peroxide Method (OPM), and the effect of temperatures on physical and chemical properties of particles was investigated. The results showed that the morphology and average particle size of materials can be successfully controlled by adjusting the temperature. The samples after calcination were characterized by X-ray diffractometry, transmission electron microscopy, diffuse reflectance spectroscopy, Raman spectroscopy, and BET isotherms. The photocatalytic activity of materials was also evaluated by studying the degradation of 10ppm aqueous rhodamine B dye under ultraviolet radiation. PMID:24267334

  1. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  2. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    SciTech Connect

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O'Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  3. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3.

    PubMed

    Ho, Ching-Hwa; Chan, Ching-Hsiang; Huang, Ying-Sheng; Tien, Li-Chia; Chao, Liang-Chiun

    2013-05-20

    The α-phase Bi(2)O(3) (α-Bi(2)O(3)) is a crucial and potential visiblelight photocatalyst material needless of intentional doping on accommodating band gap. The understanding on fundamental optical property of α-Bi(2)O(3) is important for its extended applications. In this study, bismuth oxide nanowires with diameters from tens to hundreds nm have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si substrate. High-resolution transmission electron microscopy and Raman measurement confirm α phase of monoclinic structure for the as-grown nanowires. The axial direction for the as-grown nanowires was along < 122 >. The band-edge structure of α-Bi(2)O(3) has been probed experimentally by thermoreflectance (TR) spectroscopy. The direct band gap was determined accurately to be 2.91 eV at 300 K. Temperaturedependent TR measurements of 30-300 K were carried out to evaluate temperature-energy shift and line-width broadening effect for the band edge of α-Bi(2)O(3) thin-film nanowires. Photoluminescence (PL) experiments at 30 and 300 K were carried out to identify band-edge emission as well as defect luminescence for the α-Bi(2)O(3) nanowires. On the basis of experimental analyses of TR and PL, optical characteristics of direct band edge of α-Bi(2)O(3) nanowires have thus been realized. PMID:23736418

  4. Laser induced oxidation and optical properties of bismuth telluride nanoplates

    NASA Astrophysics Data System (ADS)

    Ye, Zhipeng; Sucharitakul, Sukrit; Keiser, Courtney; Kidd, Tim E.; Gao, Xuan P. A.; He, Rui

    2015-03-01

    Bi-Te nanoplates (NPs) grown by low pressure vapor transport method were studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry. Controlling the stoichiometry in the Bi-Te NP growth is thus very important for their thermoelectric, electronic, and optical device applications. Supported by American Chemical Society Petroleum Research Fund (Grant 53401-UNI10), NSF (No. DMR-1206530, No. DMR-1410496, DMR-1151534), UNI Faculty Summer Fellowship and a UNI capacity building grant.

  5. Near-infrared luminescence of bismuth in fluorine-doped-core silica fibres.

    PubMed

    Bazakutsa, A P; Golant, K M

    2015-02-01

    Photoluminescence spectra and decay kinetics of bismuth inclusions in silica optical fibres containing fluorine additive in the core glass are studied in the vicinity of a wavelength of 1420 nm at temperatures of 80-900 K under a continuous wave (CW) and a pulsed diode laser pump at a wavelength of 808 nm. At high fluorine concentration and low temperatures, luminescence decay kinetics becomes essentially bi-exponential, typical lifetimes being 720 and 1200 µs. Hydrogen and deuterium loading at pressures of up to 125 bar leads to a decrease of the steady-state luminescence intensity and lifetime. We attribute this to the appearance of an energy transfer bridge from bismuth clusters to vibrational degrees of freedom of diatomic molecules. It is found that in the presence of H(2) or D(2) molecules experiencing random walking in silica, luminescence decay kinetics stop following a single exponential function even in fluorine-free silica-core fibre, deviation from the single exponent being greater at higher temperatures. The induced quenching rate increases with the increase of temperature as well and is greater for H(2) molecules. All conditions being equal, the equilibrium concentration of hydrogen molecules is greater in heavily fluorinated silica. At temperatures below ~250 K, the presence of dissolved molecules has no effect, which speaks for the primary importance of having rotational degrees of freedom of migrating interstitial diatomic molecules in an excited state for effective quenching of bismuth electronic excitations. It is found that the influence of dissolved deuterium is weaker than that of hydrogen. We attribute this feature to a greater angular momentum of the D(2) molecule and correspondingly smaller energy of the molecule's rotational quantum. The results of the experiments show that bismuth clusters mainly located in voids of the silica network, rather than bismuth point defects, are responsible for near-infrared luminescence. PMID:25836233

  6. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  7. 2.7 μm emission in heavy metal oxide glasses doped with erbium ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-12-01

    In this paper, heavy metal oxide glasses based on bismuth, germanate and gallium elements doped with Er3+ have been synthesized. Composition of glass matrix has been developed in terms of low phonon energy (724 cm-1), low absorption coefficient in the infrared region (1.2 cm-1), good mechanical and chemical properties. Synthesis of glasses has been performed under a low vacuum condition, which has reduced the OH- ions to 50 ppm. Glasses were doped with (0.25 - 1 mol%) Er2O3 to obtain emission at the wavelength of 2.7 μm (4I11/2 → 4I13/2) under 980 nm laser diode excitation. Obtained results demonstrate that developed heavy metal oxide glass is an attractive material for mid-infrared applications.

  8. Phase evolution of magnetite nanocrystals on oxide supports via template-free bismuth ferrite precursor approach

    NASA Astrophysics Data System (ADS)

    Cheung, Jeffrey; Bogle, Kashinath; Cheng, Xuan; Sullaphen, Jivika; Kuo, Chang-Yang; Chen, Ying-Jiun; Lin, Hong-Ji; Chen, Chien-Te; Yang, Jan-Chi; Chu, Ying-Hao; Valanoor, Nagarajan

    2012-11-01

    This report investigates the phase evolution pathway of magnetite nanocrystal synthesis on oxide-supported substrates. A template-free phase separation approach, which exploits the thermodynamic instability of ternary perovskite BiFeO3 and inherent volatility of bismuth oxide in low oxygen pressure and high temperature is presented. The formation of an intermediate hematite nanocrystal phase is found as a key step that controls the eventual size and morphology of the magnetite nanocrystals. X-ray absorption spectra measurements and X-ray magnetic circular dichroism confirm that the spectral fingerprints of the magnetite nanocrystals match with that of bulk crystals. Magnetic measurements show that magnetic anisotropy is directly attributed to the nanocrystal morphology.

  9. Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication.

    PubMed

    Gonzalez-Rodriguez, Pablo; van den Nieuwenhuijzen, Karin J H; Lette, Walter; Schipper, Dik J; Ten Elshof, Johan E

    2016-03-23

    One of the main trends in the past decades is the reduction of wastage and the replacement of toxic compounds in industrial processes. Some soft metallic particles can be used as nontoxic solid lubricants in high-temperature processes. The behavior of bismuth metal particles, bismuth sulfide (Bi2S3), bismuth sulfate (Bi2(SO4)3), and bismuth oxide (Bi2O3) as powder lubricants was studied in a range of temperatures up to 580 °C. The mechanical behavior was examined using a high-temperature pin-on-disc setup, with which the friction force between two flat-contact surfaces was recorded. The bismuth-lubricated surfaces showed low coefficients of friction (μ ≈ 0.08) below 200 °C. Above the melting temperature of the metal powder at 271 °C, a layer of bismuth oxide developed and the friction coefficient increased. Bismuth oxide showed higher friction coefficients at all temperatures. Bismuth sulfide exhibited partial oxidation upon heating but the friction coefficient decreased to μ ≈ 0.15 above 500 °C, with the formation of bismuth oxide-sulfate, while some bismuth sulfate remained. All surfaces were studied by X-ray diffraction (XRD), confocal microscopy, high-resolution scanning electron microscopy (HR-SEM), and energy-dispersive X-ray spectroscopy (EDS). This study reveals how the partial oxidation of bismuth compounds at high temperatures affects their lubrication properties, depending on the nature of the bismuth compound. PMID:26936490

  10. Incorporation of thiosemicarbazide in Amberlite IRC-50 for separation of astatine from alpha-irradiated bismuth oxide.

    PubMed

    Roy, Kamalika; Basu, S; Ramaswami, A; Nayak, Dalia; Lahiri, Susanta

    2004-06-01

    A chelating resin was synthesized by incorporating thiosemicarbazide into Amberlite IRC-50, a weakly acidic polymer. Astatine radionuclides produced by alpha-irradiating bismuth oxide were separated using the newly synthesized chelating resin. The resin showed high selectivity for astatine. The adsorbed astatine was recovered using 0.1M EDTA at pH approximately 10. PMID:15110342

  11. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres.

    PubMed

    Sporea, D; Mihai, L; Neguţ, D; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  12. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    NASA Astrophysics Data System (ADS)

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-07-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres.

  13. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    PubMed Central

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  14. Characterization of oxide layers grown on D9 austenitic stainless steel in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, P.; Hawley, M.; Koury, D.; Swadener, J. G.; Welch, J.; Johnson, A. L.; Mori, G.; Li, N.

    2008-04-01

    Lead bismuth eutectic (LBE) is a possible coolant for fast reactors and targets in spallation neutron sources. Its low melting point, high evaporation point, good thermal conductivity, low reactivity, and good neutron yield make it a safe and high performance coolant in radiation environments. The disadvantage is that it is a corrosive medium for most steels and container materials. This study was performed to evaluate the corrosion behavior of the austenitic stainless steel D9 in oxygen controlled LBE. In order to predict the corrosion behavior of steel in this environment detailed analyses have to be performed on the oxide layers formed on these materials and various other relevant materials upon exposure to LBE. In this study the corrosion/oxidation of D9 stainless steel in LBE was investigated in great detail. The oxide layers formed were characterized using atomic force microscopy, magnetic force microscopy, nanoindentation, and scanning electron microscopy with wavelength-dispersive spectroscopy (WDS) to understand the corrosion and oxidation mechanisms of D9 stainless steel in contact with the LBE. What was previously believed to be a simple double oxide layer was identified here to consist of at least 4 different oxide layers. It was found that the inner most oxide layer takes over the grain structure of what used to be the bulk steel material while the outer oxide layer consists of freshly grown oxides with a columnar structure. These results lead to a descriptive model of how these oxide layers grow on this steel under the harsh environments encountered in these applications.

  15. Spectroscopic and dielectric investigations of tungsten ions doped zinc bismuth phosphate glass-ceramics

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, P.; Bala Murali Krishna, S.; Yusub, S.; Ramesh Babu, P.; Tirupataiah, Ch.; Krishna Rao, D.

    2013-03-01

    Pure and tungsten oxide doped ZnF2sbnd Bi2O3sbnd P2O5 glass-ceramics are prepared by the melt quenching and heat treatment techniques. These samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and differential thermal analysis (DTA) techniques. The X-ray diffraction and the scanning electron microscopic studies have revealed the presence of BiPO4, α-Zn3(PO4)2, α-Zn(PO3)2, Zn3(PO4)2, WOF4, WOPO4, γ-Bi2WO6, Bi2W2O9, microcrystalline phases in these samples. FTIR and Raman studies exhibit bands due WO4 and WO6 units along with conventional phosphate groups. The optical absorption and electron spin resonance (ESR) spectra of present glass-ceramics indicate the co-existence of both W5+ and W6+ ions. The analysis of dielectric properties (dielectric constant, loss tan δ, a.c. conductivity) over a range of frequency and temperature suggests a gradual increase in semi conducting character with increase in the concentration of WO3. The studies on dielectric breakdown strength indicated the lowest insulating strength for 5.0 mol% of WO3 in the present samples.

  16. Doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  17. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  18. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light

    SciTech Connect

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.

    2013-10-15

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.

  19. Raman Spectroscopic Characterization of Rare Earth Ions Doped Bismuth-Based Glasses

    SciTech Connect

    Pop, L.; Culea, E.; Bosca, M.; Culea, M.

    2007-04-23

    The xReO(1-x)[3Bi2O3{center_dot}PbO] glass systems with diferent rare earth ions (ReO = CeO2, Tb4O7) have been prepared and examined with the aim of determining their structural characteristics. Raman sprectroscopy and density measurements were used to characterize the samples. Raman spectroscopy data permitted to identify some of the structural units that built up the lead bismuthate vitreous network. Density data were used to calculate the Poisson's ratio in terms of the Makishima-Mackenzie model.

  20. Bismuth Subsalicylate

    MedlinePlus

    Pink Bismuth® ... Bismuth subsalicylate is used to treat diarrhea, heartburn, and upset stomach in adults and children 12 years of age and older. Bismuth subsalicylate is in a class of medications called ...

  1. Synthesis and structural characterization of new bismuth (III) nano coordination polymer: A precursor to produce pure phase nano-sized bismuth (III) oxide

    NASA Astrophysics Data System (ADS)

    Hanifehpour, Younes; Mirtamizdoust, Babak; Hatami, Masoud; Khomami, Bamin; Joo, Sang Woo

    2015-07-01

    A novel bismuth (III) nano coordination polymer, {[Bi (pcih)(NO3)2]ṡMeOH}n (1), ("pcih" is the abbreviations of 2-pyridinecarbaldehyde isonicotinoylhydrazoneate) were synthesized by a sonochemical method. The new nano-structure was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction, elemental analyses and IR spectroscopy. Single crystalline material was obtained using a heat gradient applied to a solution of the reagents. Compound 1 was structurally characterized by single crystal X-ray diffraction. The determination of the structure by single crystal X-ray crystallography shows that the complex forms a zig-zag one dimensional polymer in the solid state and the coordination number of BiIII ions is seven, (BiN3O4), with three N-donor and one O-donor atoms from two "pcih" and three O-donors from nitrate anions. It has a hemidirected coordination sphere. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The chains interact with each other through π-π stacking interactions creating a 3D framework. After thermolysis of 1 at 230 °C with oleic acid, pure phase nano-sized bismuth (III) oxide was produced. The morphology and size of the prepared Bi2O3 samples were further observed using SEM.

  2. Electroconductive properties in doped spinel oxides

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shalini; Sharma, Ramesh; Sharma, Yamini

    2014-11-01

    The application of spinel oxides as transparent conducting oxides (TCOs) in optoelectronic devices as a substitute for ZnO is attracting attention in the recent years. Despite attractive photo-luminescence properties of zinc aluminate and zinc gallate, relatively little work has been done to interpret the optical response of spinel oxides on the basis of energy band structures. We present the electronic properties of ZnX2O4 (X = Al, Ga, In) calculated by the full potential linearized augmented plane wave method. Optical properties such as absorption coefficient and reflectivity are calculated and interpreted in terms of energy bands and density of states. Enhancement in optical properties was studied for Li and Mn ions doped in the ZnGa2O4 matrix. The main features in the experimentally observed photoluminescence spectra for doped and undoped ZnGa2O4 have been verified through the optical parameters. The transparence of spinel oxides to UV radiations is also clearly illustrated in the reflectivity vs. energy curves. At very small wavelengths the oxides may be used as reflective coating materials. Transport properties of the zinc spinel oxides have been investigated for the first time, and are found to have high Seebeck coefficients, high electrical conductivity and low thermal conductivity, with high value of figure of merit ZT ∼ 0.8. The study of vibrational and thermodynamic properties by the projector augmented wave method confirms the dynamic stability of the doped and undoped spinel oxides. Zinc spinel oxides are found to be p-type semiconductors with an optimum value of band gap ∼2-3 eV and appear to meet the conditions of low resistivity and high transparency (>80%) for state-of-art TCOs.

  3. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  4. A new bismuth-doped fibre laser, emitting in the range 1625 – 1775 nm

    SciTech Connect

    Dianov, E M; Firstov, S V; Alyshev, S V; Riumkin, K E; Shubin, A V; Medvedkov, O I; Mel'kumov, M A; Khopin, V F; Gur'yanov, A N

    2014-06-30

    CW lasing of a Bi-doped germanosilicate fibre in a wavelength range that covers the spectral region between the emission bands of Er and Tm fibre lasers has been demonstrated for the first time. (letters)

  5. Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta

    2008-12-01

    A short Bi doped fiber laser operating in the wavelength region of 1160-1179 nm has been demonstrated. The influence of unsaturable loss on laser performance is investigated. Excited state absorption in Bi doped germano-alumino silicate fiber is reported in the 900-1300 nm wavelength range under 800 and 1047 nm pumping. Bi luminescence and fluorescence decay properties under different pumping wavelengths are also investigated. PMID:19065243

  6. The effects of the sputtering conditions on bismuth doped gadolinium iron garnet films

    SciTech Connect

    Eppler, W.; Kryder, M.H. )

    1989-09-01

    The effects of the sputtering conditions on the magnetic and magneto-optic properties of bismuth substituted gadolinium iron garnet (GdIG) films are studied. GdIG films with uniaxial perpendicular anisotropy and room temperature coercivities greater than 1 kOe have been deposited on glass substrates by rf magnetron sputtering. These films have Faraday rotations between 0.6 */{mu}m and 1.3 */{mu}/m and temperature dependent coercivities similar to rare earth-transition metal alloys. Increasing the rf power or argon bleeding pressure results in an increase in the compensation temperature (T/sub comp/) with little change in the Curie temperature (T/sub c/).

  7. Concentration dependence of spectroscopic properties and energy transfer analysis in Nd3+ doped bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Tian, Cong; Chen, Xi; Shuibao, Yu

    2015-10-01

    A detailed investigation on 1.06 μm spectroscopic properties as a function of Nd3+ ions concentration in bismuth silicate glasses is reported. Judd-Ofelt analysis indicated that Nd2O3 has no substantial influence on glass structure. Based on the Judd-Ofelt intensity parameters, several radiative properties such as radiative transition probability, radiative lifetime, branching ratio and emission cross-section of Nd3+ ions have been derived. The 1.06 μm emission intensity increases firstly and then attains maximum at 0.5 mol% Nd2O3 and decreases with further increase of dopant concentration. The luminescence quenching behavior at higher Nd3+ concentration has been ascribed to the hopping migration assisted cross relaxation mechanism. The high emission cross section (2.33 × 10-20 cm2) and large quantum efficiency (90.7%) suggests their potential for compact 1.06 μm lasers applications.

  8. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; O’Neal, S P; Seeley, Zachary; Drury, Owen; Haselhorst, L K; Rupert, B. L.; Sanner, Robert; Thelin, P; Fisher, S E; Hawrami, Rastgo; Shah, Kanai; Burger, Arnold; Ramey, Joanne Oxendine; Boatner, Lynn A

    2011-01-01

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of ~75,000 Ph/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  9. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect

    Cherepy, N J; Payne, S A; Sturm, B W; O'Neal, S P; Seeley, Z M; Drury, O B; Haselhorst, L K; Rupert, B L; Sanner, R D; Thelin, P A; Fisher, S E; Hawrami, R; Shah, K S; Burger, A; Ramey, J O; Boatner, L A

    2011-08-30

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  10. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.

    2011-09-01

    Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  11. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics

    NASA Astrophysics Data System (ADS)

    Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu

    2013-03-01

    Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.

  12. Intense 1.6 μm fluorescence of Nd{sup 3+} doped cadmium bismuth silicate glasses

    SciTech Connect

    Pal, I. Agarwal, A. Sanghi, S.; Bhardwaj, S.; Sanjay

    2014-04-24

    In this work, Judd-Ofelt analysis is applied to rare-earth (RE = Nd{sup 3+}) doped cadmium bismuth silicate (20CdO⋅xSiO{sub 2}⋅(79.5−x)Bi{sub 2}O{sub 3}⋅0.5Nd{sub 2}O{sub 3} (CSBN)) glasses in order to evaluate their potential as well as both glass laser systems and optical materials. The phenomenological Judd-Ofelt parameters (Ω{sub 2}, Ω{sub 4}, Ω{sub 6}) are determined for RE ions with their quality factors and compared with the equivalent parameters for several other hosts. The calculated value of stimulated emission cross-section for {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} has high and varies 14.72×10{sup −20} to 9.66×10{sup −20} cm{sup 2} with Bi{sub 2}O{sub 3} content in the host glass. The results point out that the glass system is good candidate for the development of photonics devices which are operating near infrared spectral range. Further, the FTIR results reveal that the glasses have BiO{sub 6}, SiO{sub 4} and non-bridging oxygen as local structure.

  13. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    PubMed

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis. PMID:27406933

  14. influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer

    NASA Astrophysics Data System (ADS)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jinsong

    As the demand for ultrahigh density information storage continues to grow, recording mark size of several tens nanometer which is smaller than the optical diffraction limit is required in optical memory. Functional film super-resolution technique is one of practical approaches to overcome the optical diffraction limit. Optical constants are important parameters to optical films as super-resolution masks. In this paper, the influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer is investigated. The structure of the samples with different thickness was studied by X-ray diffraction. The transmission spectrum was measured by spectrophotometry. The optical constants of the films in the range of 300-800 nm were measured by spectroscopic ellipsometry. The results show that the structure of the film transforms from amorphous state to crystal state when the thickness increases from 7 nm to 300 nm. In the range of 300-800 nm, the refractive index and extinction coefficient increase with increasing wavelength. The transmission decreases rapidly when the thickness increases from 7 nm to 30 nm. The influences of film thickness on optical constants are more significant in the thickness range of 7-50 nm than that in the thickness above 50 nm.

  15. Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite

    SciTech Connect

    Nayek, C.; Thirmal, Ch.; Murugavel, P.; Tamilselvan, A.; Balakumar, S.

    2014-02-21

    We report structural and magnetic properties of rare earth doped Bi{sub 0.95}R{sub 0.05} FeO{sub 3} (R = Y, Ho, and Er) submicron particles. Rare earth doping enhances the magnetization and the magnetization shows an increasing trend with decreasing dopant ionic radii. In contrast to the x-ray diffraction pattern, we have seen a strong evidence for the presence of rare earth iron garnets R{sub 3}Fe{sub 5}O{sub 12} in magnetization measured as a function of temperature, in selected area electron diffraction, and in Raman measurements. Our results emphasised the role of secondary phases in the magnetic property of rare earth doped BiFeO{sub 3} compounds along with the structural distortion favoring spin canting by increase in Dzyaloshinskii-Moriya exchange energy.

  16. Highly effective dynamic holographic gratings in doped bismuth titanate crystals and applications to metrology

    NASA Astrophysics Data System (ADS)

    Dovgalenko, George E.; Wu, Ying

    2009-05-01

    Highly efficient volume reflective, dynamical holographic gratings in doped Ti12TiO20 crystals have been observed. We demonstrated doped Ti12TiO20 single, electro-optical crystal and experimental set up, which combines high reversibility, small response time, high diffraction efficiency and practically unlimited number of cycles hologram recording, readout and erasing. It allows using doped Ti12TiO20 crystal as an attractive diffractive optical element in Dynamical Holographic Sensor -DHS for metrology applications. The high image contrast of the real time dynamical holographic interferograms without application of external electric field has been obtained for non transparent diffuse reflective objects using commercial available CW He-Ne laser. DHS applications for nondestructive test of the most vital parts engineering constructions to prevent premature failure have has been demonstrated. DHS application for visualization of cryogenic fields in the near zone of cryoultrasonic cancer tissue destructor has been presented.

  17. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.

    PubMed

    Saha, Sudip K; Bera, Abhijit; Pal, Amlan J

    2015-04-29

    We introduce dopants in lead sulfide (PbS) quantum dots (QDs) in forming hybrid bulk-heterojunction (BHJ) solar cells. Because an increase in the content of bismuth as dopants in PbS QDs transforms the intrinsic p-type semiconductor into an n-type one, the band alignment between a conjugated polymer and the doped QDs changes upon doping affecting performance of BHJ solar cells. From scanning tunneling spectroscopy (STS) of the doped QDs, we observe a shift in their Fermi energy leading to formation of a type II band alignment in the polymer:doped-QD interface. We also show that the dopants improve electron-conduction process through the QDs. With the dopants controlling both band alignments at the interface and the conduction process, we show that the dopant concentration in QDs influences open-circuit voltage unfavorably and short-circuit current in a beneficial manner. The device performance of hybrid BHJ solar cells is hence maximized at an optimum concentration of bismuth in PbS QDs. PMID:25853277

  18. Optical properties of bismuth-doped KCl and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Zhao, M.; Su, L.; Yang, Q.; Iskhakova, L. D.; Firstova, E. G.; Alyshev, S. V.; Riumkin, K. E.; Dianov, E. M.

    2016-09-01

    Structural and spectroscopic properties of the pristine and γ-irradiated Bi-doped KCl and SrF2 crystals grown by the Bridgman technique were studied. New emission bands in the visible and near IR regions from the irradiated crystals were observed. An origin of optical centers responsible for near IR luminescence is discussed.

  19. Sensitized broadband near-infrared luminescence from bismuth-doped silicon-rich silica films.

    PubMed

    Miwa, Yuji; Sun, Hong-Tao; Imakita, Kenji; Fujii, Minoru; Teng, Yu; Qiu, Jianrong; Sakka, Yoshio; Hayashi, Shinji

    2011-11-01

    Developing Si compatible optical sources has attracted a great deal of attention owing to the potential for forming inexpensive, monolithic Si-based integrated devices. In this Letter, we show that ultra broadband near-IR (NIR) luminescence in the optical telecommunication window of silica optical fibers was obtained for Bi-doped silicon-rich silica films prepared by a co-sputtering method. Without excess Si, i.e., Bi-doped pure silica films, no luminescence was observed in the NIR range. A broad Bi-related NIR photoluminescence appears when excess Si was doped in the Bi-doped silica. The luminescence properties depended strongly on the amount of excess Si and the annealing temperature. Photoluminescence results suggest that excess Si acts as an agent to activate Bi NIR luminescence centers and also as an energy donor to transfer excitation energy to the centers. It is believed that this peculiar structure might find some important applications in Si photonics. PMID:22048371

  20. Evaluation of radiation dose reduction during CT scans by using bismuth oxide and nano-barium sulfate shields

    NASA Astrophysics Data System (ADS)

    Seoung, Youl-Hun

    2015-07-01

    The purpose of the present study was to evaluate the radiation dose reduction and the image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS, were composed of nano-barium sulfate (BaSO4) filling the gaps left by the large bismuth oxide (Bi2O3) particles. The radiation dose was measured five times at a direction of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom by using a CT ionization chamber to calculate an average value. The image quality of measured CT transverse images of the PMMA head phantom depended on the X-ray tube voltage and the type of shielding. Two regions of interest in the CT transverse images were chosen, one from the right area and the other from the left area under the surface of the PMMA head phantom and at a distance of ion chamber holes located in a direction of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce the dosages by 15.61%, 23.05%, and 22.71% at 90 kVp, 120 kVp, and 140 kVp, respectively, than with these of a conventional bismuth shield of the same thickness while maintaining image quality. In addition, the DRFSs produced were about 25% thinness than conventional bismuth. We conclude, therefore, that a DRFS can replace conventional bismuth as a new shield.

  1. Probing structural variation and multifunctionality in niobium doped bismuth vanadate materials.

    PubMed

    Saithathul Fathimah, Sameera; Prabhakar Rao, Padala; James, Vineetha; Raj, Athira K V; Chitradevi, G R; Leela, Sandhyakumari

    2014-11-14

    Multifunctional materials are developed in BiV1-xNbxO4 solid solutions via structural variations. A citrate gel route has been employed to synthesize these materials followed by calcination at various temperatures leading to fine particles. The effects of niobium doping over the structural variation and its influence on the optical properties are assessed by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis-NIR spectroscopy. These solid solutions exhibit superior coloristic properties which are comparable to commercially available yellow pigments. These materials also show remarkable reflectance in the NIR region which makes them potential candidates for cool roof applications. A notable methylene blue dye degradation property is observed in Nb(5+) doped BiVO4 under sunlight irradiation. PMID:25223954

  2. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  3. Easy synthesis of bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water

    NASA Astrophysics Data System (ADS)

    Deng, Jinyi

    In this study, high purity bismuth iron oxide (BiFeO3/BFO) nanoparticles of size 50-80 nm have been successfully synthesized by a simple sol-gel method using urea and polyvinyl alcohol at low temperature. X-ray diffraction (XRD) measurement is used to optimize the synthetic process to get highly crystalline and pure phase material. Diffuse reflectance ultraviolet-visible (DRUV-Vis) spectrum indicates that the absorption cut-off wavelength of the nanoparticles is about 620 nm, corresponding to an energy band gap of 2.1 eV. Compared to BaTiO3, BFO has a better degradation of methyl orange under light radiation. Also, photocatalytic tests prove this material to be efficient towards water splitting under simulated solar light to generate hydrogen. The simple synthetic methodology adopted in this paper will be useful in developing low-cost semiconductor materials as effective photocatalysts for hydrogen generation. Photocatalytic tests followed by gas chromatography (GC) analyses show that BiFeO3 generates three times more hydrogen than commercial titania P25 catalyst under the same experimental conditions.

  4. Transparent conducting oxides: A -doped superlattice approach

    SciTech Connect

    Cooper, Valentino R; Seo, Sung Seok A.; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-01-01

    Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

  5. Thermal, structural and spectroscopic properties of heavy metal oxide glass and glass-ceramics doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-09-01

    In this paper, bismuth-germanate oxide glass doped with erbium ions has been synthesized. Composition of the glass has been chosen in terms of the low phonon energy and good transparency in the infrared region. Transparent glass-ceramics sample has been prepared by controlled crystallization process. Fourier transform infrared spectroscopy (FTIR) has been used to determinate structural properties of samples. The absorption coefficient, the luminescence intensity in visible and infrared region and the differential scanning calorimetry have been examined. Difference in the emission intensity and shape of the luminescence bands indicates the presence of crystalline phases in obtained glass-ceramics sample.

  6. Structural and optical properties of melt quenched barium doped bismuth vanadate

    NASA Astrophysics Data System (ADS)

    Gupta, Sakshi; Singh, K.

    2013-12-01

    Bi4BaxV2-xO11-δ (0.0 ≤ x ≤ 0.15) is synthesized by melt quench technique followed by sintering. The structural and optical properties of these samples are investigated using X-ray diffraction, Fourier transform infra-red (FTIR) spectroscopy and UV/vis spectroscopy. The γ-phase stabilization occurs at lower dopant concentration than as reported earlier for similar systems. The optical band gap is observed in the range of 1.5-2.0 eV. It shows decreasing trend with increasing dopant amount. FTIR bands become broader with respect to Ba2+ doping concentration.

  7. Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Packiyaraj, P.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2013-12-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of Holmium were prepared by conventional melt quenching technique. The glassy nature of these glasses has been confirmed through the XRD spectral measurements. The FTIR spectra recorded for undoped glass revealed the information related to the functional groups involved in the host glass. Optical absorption, excitation and photoluminescence spectra of these glasses have been recorded at room temperature. The Judd-Ofelt theory has been applied successfully to characterize the absorption spectra of the ZnAlBiB glasses. From this theory various radiative properties such as radiative transition probability (AR), radiative lifetimes (τR), branching ratios (βR) and spectroscopic quality factor (χ) for the prominent emission levels 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 have been evaluated. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration in ZnAlBiB glasses. To investigate the lasing potentiality of 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 transitions, the effective band width (Δλp) and the stimulated emission cross-section (σse) were determined. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for visible red laser emission in principle.

  8. Structural, electrical and magnetic measurements on oxide layers grown on 316L exposed to liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter; Hofer, Christian; Hlawacek, Gregor; Li, Ning; Maloy, Stuart A.; Teichert, Christian

    2012-02-01

    Fast reactors and spallation neutron sources may use lead-bismuth eutectic (LBE) as a coolant. Its physical, chemical, and irradiation properties make it a safe coolant compared to Na cooled designs. However, LBE is a corrosive medium for most steels and container materials. The present study was performed to evaluate the corrosion behavior of the austenitic steel 316L (in two different delivery states). Detailed atomic force microscopy, magnetic force microscopy, conductive atomic force microscopy, and scanning transmission electron microscopy analyses have been performed on the oxide layers to get a better understanding of the corrosion and oxidation mechanisms of austenitic and ferritic/martensitic stainless steel exposed to LBE. The oxide scale formed on the annealed 316L material consisted of multiple layers with different compositions, structures, and properties. The innermost oxide layer maintained the grain structure of what used to be the bulk steel material and shows two phases, while the outermost oxide layer possessed a columnar grain structure.

  9. Free energy dependence of pure phase iron doped bismuth titanate from first principles calculations.

    PubMed

    Mayfield, Cedric L; Subramanian, Vaidyanathan Ravi; Huda, Muhammad N

    2015-08-12

    A density functional theory study of Fe substitutions in Bi2Ti2O7 photocatalyst (Fe-BTO) is presented. It models an experiment where H2 production of Fe-BTO peaked for samples loaded with 1% Fe concentration then decreased for samples with heavier loadings. The total energy calculations were used to determine defect formation energies and the chemical potential landscape that suggests the observed formation of Fe2O3 (in samples at 2% Fe concentration) was detrimental to H2 production. Doping configurations as a function of oxygen chemical potential are discussed, and the chemical potential ranges that avoid formation of the Fe2O3 phase in Fe-BTO are predicted. PMID:26199200

  10. Free energy dependence of pure phase iron doped bismuth titanate from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric L.; (Ravi Subramanian, Vaidyanathan; Huda, Muhammad N.

    2015-08-01

    A density functional theory study of Fe substitutions in Bi2Ti2O7 photocatalyst (Fe-BTO) is presented. It models an experiment where H2 production of Fe-BTO peaked for samples loaded with 1% Fe concentration then decreased for samples with heavier loadings. The total energy calculations were used to determine defect formation energies and the chemical potential landscape that suggests the observed formation of Fe2O3 (in samples at 2% Fe concentration) was detrimental to H2 production. Doping configurations as a function of oxygen chemical potential are discussed, and the chemical potential ranges that avoid formation of the Fe2O3 phase in Fe-BTO are predicted.

  11. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  12. Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles.

    PubMed

    Feng, Ann; Cheng, Wei; Holter, Jennifer; Young, Neil; Compton, Richard G

    2016-05-10

    The charging and controlled oxidative doping of single organometallic ferrocene nanoparticles is reported in aqueous sodium tetrafluoroborate using the nano-impacts method. It is shown that ferrocene nanoparticles of approximately 105 nm diameter are essentially quantitatively oxidatively doped with the uptake of one tetrafluoroborate anion per ferrocene molecule at suitably high overpotentials. By using lower potentials, it is possible to achieve low doping levels of single nanoparticles in a controlled manner. PMID:27038252

  13. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  14. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  15. The effect of aluminium on the post-anneal concentration of ion implanted bismuth in silica thin films

    NASA Astrophysics Data System (ADS)

    Southern-Holland, R.; Halsall, M. P.; Crowe, I. F.; Yang, P.; Gwilliam, R. M.

    2015-12-01

    We present a study of bismuth and aluminium co-implanted silica thin films and the effectiveness of post implantation annealing at activating Bismuth related photoluminescence. The only emission seen in photoluminescence from any of the samples was centred at 1160 nm and is of the kind generally reported as due to silicon dislocation loops. In particular, the layers did not exhibit the broad NIR emission in photoluminescence as reported by other authors in Bismuth doped silica fibres. In order to study the retention of the Bismuth in the layers after annealing Rutherford Backscattering measurements were conducted on the samples, these found that the concentration of bismuth in the samples was greatly reduced following the annealing process when compared to the concentration implanted and explains why we measured no emission from bismuth. The concentration of bismuth remaining in the sample post anneal depended on the initial implant doses of bismuth and aluminium. We propose that aluminium plays the role of increasing the solubility of bismuth in oxide but that this was not sufficient in our samples to observe the photoemission reported for fibre materials.

  16. Structural and dielectric properties of Gd doped bismuth ferrite-lead titanate

    SciTech Connect

    Mohanty, N. K. Behera, A. K. Satpathy, S. K. Behera, B. Nayak, P.

    2014-04-24

    0.5BiGd{sub x}Fe{sub 1−x}O{sub 3}−0.5PbTiO{sub 3} with x=0.05, 0.10, 0.15, 0.20 composite was prepared by mixed oxide method. Structural characterization was performed by X-ray diffraction and studied that the materials show tetragonal structure at room temperature for all concentration of Gd. Studies of dielectric properties (ε{sub r} and tanδ) of the above compound at different frequencies in a wide range of temperature (25°-500°C) with an impedance analyser revealed that the dielectric constant increases with increase in Gd concentration as well temperature and the compound do not have any dielectric anomaly in the studied frequency and temperature range.

  17. Optical properties of bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The optical properties of oxide glasses of formula xNa2O-15ZnO-20Bi2O3-(64-x) B2O3-1EuO (ZNB) prepared by melt quenching method have been investigated by means of optical absorption, transmittance, reflectance spectra. The direct band gap values of ZNB changed from 2.709 eV to 2.894 eV with the changed concentration of Na2O. From UV-Vis spectra, the optical band gap, absorption edge (cut-off wavelength), Urbach energy were evaluated due to the varied contents of Na2O. The absorption edge is increasing, band gap (for r=1/2, 2, 1/3, 3) decreasing, Urbach energy is decreasing with the increasing content of Na2O.

  18. Influence of doping with third group oxides on properties of zinc oxide thin films

    SciTech Connect

    Palimar, Sowmya Bangera, Kasturi V.; Shivakumar, G. K.

    2013-03-15

    The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 10{sup 3} {Omega}{sup -1} cm{sup -1}. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.

  19. Structural and physical properties of vanadium doped copper bismuth borate glasses

    SciTech Connect

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-02-05

    The structural and physical properties of xCuO(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x= 0, 5, 10, 15, 20 and 25 mol % with 2 mol %V{sub 2}O{sub 5} glasses prepared by normal melt quench technique have been investigated by means of FT-IR and physical measurement techniques. With the addition of copper oxide (x{<=} 10 mol%), the frequency bands in the higher region shift towards lower wave number, suggest the conversion of BO{sub 3} to BO{sub 4} structural units, which in turn give rise to the formation of Non Bridging Oxygen's (NBOs). For further increase in CuO (i.e. for x{>=} 10 mol %), the frequency bands shift towards higher wave number, indicate the formation of Bridging Oxygen's (BOs). The FTIR analysis reveals that the present glass system is based on the BiO{sub 3} pyramidal, BiO{sub 6} octahedral units and also on BO{sub 3} and BO{sub 4} structural units. The systematic variation in density and molar volume in these glasses indicates the effect of CuO substitution.

  20. Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals.

    PubMed

    Sokolov, V O; Plotnichenko, V G; Dianov, E M

    2013-04-22

    A comparative first-principles study of possible bismuth-related centers in TlCl and CsI crystals is performed and the results of computer modeling are compared with the experimental data. The calculated spectral properties of the bismuth centers suggest that the IR luminescence in TlCl:Bi is most likely caused by Bi(+)···V(Cl)(-) centers (Bi(+) ion in thallium site and a negatively charged chlorine vacancy in the nearest anion site). On the contrary, Bi(+) substitutional ions and Bi(2)(+) dimers are most likely responsible for the IR luminescence in CsI:Bi. PMID:23609643

  1. Laser-induced oxidation kinetics of bismuth surface microdroplets on GaAsBi studied in situ by Raman microprobe analysis.

    PubMed

    Steele, J A; Lewis, R A

    2014-12-29

    We report the cw-laser-induced oxidation of molecular-beam-epitaxy grown GaAsBi bismuth surface microdroplets investigated in situ by micro-Raman spectroscopy under ambient conditions as a function of irradiation power and time. Our results reveal the surface droplets are high-purity crystalline bismuth and the resultant Bi2O3 transformation to be β-phase and stable at room temperature. A detailed Raman study of Bi microdroplet oxidation kinetics yields insights into the laser-induced oxidation process and offers useful real-time diagnostics. The temporal evolution of new β-Bi2O3 Raman modes is shown to be well described by Johnson-Mehl-Avrami-Kolmogorov kinetic transformation theory and while this study limits itself to the laser-induced oxidation of GaAsBi bismuth surface droplets, the results will find application within the wider context of bismuth laser-induced oxidation and direct Raman laser processing. PMID:25607191

  2. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  3. Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment.

    PubMed

    Miller, D G; Brayton, S V; Boyles, W T

    2001-01-01

    Current chemical oxygen demand (COD) analyses generate wastes containing hexavalent and trivalent chromium, mercury, and silver. Waste disposal is difficult, expensive, and poses environmental hazards. A new COD test is proposed that eliminates these metals and shortens analysis time, where trivalent manganese oxidant replaces hexavalent chromium (dichromate). A silver catalyst is not required. Optional pretreatment removes chloride via oxidation to chlorine using sodium bismuthate, eliminating the need for mercury. Sample aqueous and solid components are separated for chloride removal, then recombined for total COD measurement. Soluble and nonsoluble COD can be determined separately. Digestion at 150 degrees C is complete in 1 hour. Results are determined by titration or by spectrophotometric reading. Test wastes contain none of the metals regulated for disposal under the Resource Conservation and Recovery Act. Results are shown for selected organic compounds and various wastewaters. Statistical comparisons are made with dichromate COD and biochemical oxygen demand (BOD5) test values. PMID:11558305

  4. Fluorine compounds for doping conductive oxide thin films

    SciTech Connect

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  5. Ferroelectric and pyroelectric properties of solution derived bismuth titanium oxide thin films

    NASA Astrophysics Data System (ADS)

    Tran, Khang Duy

    Ferroelectric, pyroelectric, and photovoltaic effects in the bismuth titanate (Bi4Ti3O12, BIT) and the lanthanum bismuth titanate (LaxBi4-xTi3O 12, LBIT) solid solution thin films were studied. Films were successfully prepared using the metalorganic spin-casting technique. The development of texture orientation in different directions in the bismuth titanate films was examined in relation to solution characteristics such as solution viscosity, Bi-content, and the heat-treatment conditions, including the sintering temperature/time. X-ray diffraction, Raman spectroscopy and electron microscopy techniques were used to structurally characterize orientation formation in the films. Experimental results indicate that Bi-excess and sintering temperature/time are the critical factors governing controlled growth of films with preferred orientation. The bismuth excess is to compensate for the Bi loss during the fabrication process. Films with high degree of c-orientation, as high as 0.95--0.97, were obtained with the heterostructure layer deposition technique. Measurements of pyroelectric and photoelectric properties of BIT films with preferred orientation in both a- and c-directions showed significantly high responses. Indications are that these oriented films can be materials suitable for the integrated pyroelectric detector applications. The high pyroelectric response in the films was attributed to the comparatively high value of pyroelectric coefficient, relatively low dielectric constant, and low thermal time constant. The use of lanthanum in substitution of Bi ions in the BIT lattice to form the LBIT solid solution, led to the alteration of the lattice strain, as revealed by the corresponding Raman shift spectra. Result was a lower switching field and higher spontaneous polarization in comparison with BIT and many other ferroelectric film materials. This effect was attributed to, in part, a high domain wall mobility. These results suggest that LBIT films are materials

  6. Synthesis and characterization of barium iron oxide and bismuth iron oxide epitaxial films

    NASA Astrophysics Data System (ADS)

    Callender Bennett, Charlee J.

    Much interest exists in perovskite oxide materials and the potential they have in possessing two or more functional properties. In recent years, research on developing new materials with simultaneous ferromagnetic and ferroelectric behavior is the key to addressing possible challenges of new storage information applications. This work examines the fundamental properties of a perovskite oxide, namely BaFeO3, and the investigation of properties of a solid solution between BaFeO3 and BiFeO3. The growth and properties of epitaxial BaFeO3 thin films in the metastable cubic perovskite phase are examined. BaFeO3 films were grown on (012) LaAlO3 and (001) SrTiO3 single crystal substrates by pulsed-laser deposition. X-ray diffraction shows that in situ growth at temperatures between 650-850°C yields an oxygen-deficient BaFeO 2.5+x pseudo-cubic perovskite phase that is insulating and paramagnetic. Magnetization measurements on the asdeposited BaFeO3 films indicate non-ferromagnetic behavior. Annealing these films in 1 atm oxygen ambient converts the films into a pseudo-cubic BaFeO3-x phase that is ferromagnetic with a Curie temperature of 235 K. The observation of ferromagnetism with increasing oxygen content is consistent with superexchange coupling of Fe +4-O-Fe+4. The effects of anneal conditions on BaFeO3 are studied. X-ray characterization, such as reciprocal space maps, show more complex structure for as-grown BaFeO3-x epitaxial films. Epitaxial films grown at low laser energies are highly crystalline. However, they decompose after annealing. When grown at high laser energies, films exhibit complex structure which "cleans up" to a single pseudocubic or tetragonal structure upon ex situ anneal in oxygen ambient environment. Superlattices of BaFeO 3/SrTiO3 were synthesized to explore the nature of "cracking" in annealed BaFeO3, which occurs due to large change in lattice parameter. Magnetization of ex situ annealed BaFeO3-x epitaxial films were examined as a function of

  7. Surface and catalytic properties of doped tin oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Tsung; Lai, De-Lun; Chen, Miao-Ting

    2010-10-01

    Mixed oxides composed of Zn-Sn, Ti-Sn and V-Sn were prepared by a co-precipitation method and evaluated as catalysts for methanol oxidation in an ambient fixed-bed reactor. Surface analysis by X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between dopant and Sn atoms in the oxide structure and showed the formation of surface states associated with the dopants. Oxygen vacancies were present on the Zn-doped oxide, and the oxidation of methanol to carbon oxides was favored. The Ti-doped oxide exhibited a favorable selectivity to dimethyl ether, related to the oxygen anions near Ti centers. Vanadium dopants not only dramatically increased the catalytic activity but also promoted the partial oxidation of methanol to formaldehyde. Results demonstrate that the bridging dopant-O-Sn bond acts as active sites and influences product distribution.

  8. I. Electroluminescence from Hydrogen Uranyl Phosphate. I. Indium-Substituted Bismuth Copper Oxide Superconductors

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gunnar Rudolph

    1990-01-01

    Chapter 1. A review of the general aspects of solid electrolytes is presented along with a summary of the electrical and optical properties of hydrogen uranyl phosphate (HUO_2PO_4 bullet4H_2O, HUP). A review of impedance spectroscopy, as it relates to the determination of ionic conductivities and dielectric constants of solid electrolytes is presented. The final section covers some aspects of gas plasma display devices. Chapter 2. Electroluminescence (EL) cells have been constructed with the ionically conducting solid HUP as the emissive medium. With ac excitation, both uranyl emission and molecular nitrogen plasma emission are observed, with the latter appearing to excite the former. Similar results were obtained with fully-substituted sodium (NaUP), magnesium (Mg_{0.5}UP), and pyridinium (pyHUP) derivatives of HUP. For all of these solids, the dependence of the EL intensity on sample thickness, ac frequency, and applied voltage has been determined. Impedance measurements permitted acquisition of dielectric constants and ionic conductivities for these solids, both of which decrease in the order HUP > NaUP > Mg_{0.5}UP > pyHUP. A model describing the dependence of EL intensity on cell parameters is presented. Chapter 3. The copper oxide superconductors can be structurally classified into five major families, represented by the compositions, (La,Sr)_2CuO _4, YBa_2Cu_3O_7, Pb_2Sr_2(Y,Ca)Cu_3O_8, (TIO)_{m}Ca_{n-1}Ba_2Cu _{n}O_{2n+2}, and Bi_2Sr_2(Ln_{1-x}Ce _{x})_2Cu_2O_{10+y }. All families are linked by a CuO _2 layer, which is crucial for superconductivity. The structural and chemical aspects of each family is covered with emphasis on the bismuth and thallium systems. The effects of substitution and oxygen annealing are also briefly considered. Chapter 4. The attempted substitution of indium into the rm Bi_2(Ca,Sr)_2CuO _6 and Bi_2(Ca,Sr) _3Cu_2O _8 systems is reported. Previously unreported side products, (Ca,Sr)In_2O _4 and Bi-Ca-Sr-O, viz., produced in the

  9. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein.

    PubMed

    Schuh, K; Kleist, W; Høj, M; Trouillet, V; Jensen, A D; Grunwaldt, J-D

    2014-12-18

    Flame spray pyrolysis (FSP) of Bi(III)- and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides α-Bi2Mo3O12 and γ-Bi2MoO6, FSP gave direct access to the metastable β-Bi2Mo2O9 phase with high surface area (19 m(2) g(-1)). This phase is normally only obtained at high calcination temperatures (>560 °C) resulting in lower surface areas. The β-phase was stable up to 400 °C and showed superior catalytic performance compared to α- and γ-phases in selective oxidation of propylene to acrolein at temperatures relevant for industrial applications (360 °C). PMID:25350295

  10. Preparation and Evaluation of Nitrogen Doped Tungsten Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Nakagawa, Koichi; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Nitrogen doped tungsten oxide thin films were prepared by RF reactive sputtering in a gas mixture of argon, oxygen and nitrogen at room temperature. As a result of X-ray photoelectron spectroscopy, it was thought that the doped nitrogen in the films is bonding to tungsten of WO3 bonding states as anion and exits in substitution sites in WO3. The optical absorption edge was shifted to lower energy region with nitrogen doping. The nitrogen doped thin films exhibit a coloration to black from transparent yellow by electrochromism. Additionally, a new peak at 2.3 eV related to nitrogen doping is observed in the spectra of color center at bleaching process.

  11. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  12. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  13. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells.

    PubMed

    Min, Kyung-San; Chang, Hoon-Sang; Bae, Ji-Myung; Park, Sang-Hyuk; Hong, Chan-Ui; Kim, Eun-Cheol

    2007-11-01

    The aim of this study was to investigate the cytotoxic and nitric oxide (NO)-inducing effects of bismuth oxide (Bi(2)O(3))-containing Portland cement (BPC) on human dental pulp cells. We also assessed whether heme oxygenase-1 (HO-1) is involved in BPC-induced cytotoxicity in dental pulp cells. Cytotoxicity and NO production induced by BPC were higher than those induced by Portland cement at 12 and 24 hours, and the former gradually decreased to the level observed for PC. HO-1 and inducible nitric oxide synthase messenger RNA expressions in the BPC group showed maximal increase at 24 hours, and it gradually decreased with increasing cultivation time. Hemin treatment reversed the BPC-induced cytotoxicity, whereas zinc protoporphyrin IX treatment increased the cytotoxicity. These results suggested that NO production by BPC correlates with HO-1 expression in dental pulp cells. Moreover, BPC-induced HO-1 expression in dental pulp cells plays a protective role against the cytotoxic effects of BPC. PMID:17963960

  14. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.

    PubMed

    Zhang, Yuchao; Ji, Hongwei; Ma, Wanhong; Chen, Chuncheng; Song, Wenjing; Zhao, Jincai

    2016-01-01

    As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed. PMID:27376262

  15. Synthesis, conductivity, and X-ray photoelectron spectrum of Bi 2Sr 2CuO 7+X. A new ternary bismuth-oxide system exhibiting metallic conductivity

    NASA Astrophysics Data System (ADS)

    Porter, Leigh Christopher; Appelman, Evan; Beno, Mark A.; Cariss, Carolyn S.; Carlson, K. Douglas; Cohen, Harry; Geiser, Urs; Thorn, R. J.; Williams, Jack M.

    1988-06-01

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxide, Bi 2Sr 2Cu 2O 7+x, are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe AC resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An X-ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed-valent species. The XPS spectrum of the Bi 4 f orbital electrons in the oxide was nearly identical to that observed in Bi 2O 3, with no evidence of any Bi 5+.

  16. Synthesis conductivity, and x ray photoelectron spectrum of Bi2Sr2Cu(sub 7+x). A new ternary bismuth-oxide system exhibiting metallic conductivity

    NASA Astrophysics Data System (ADS)

    Porter, Leigh Christopher; Appleman, Evan; Beno, Mark A.; Cariss, Carolyn S.; Carlson, K. Douglas; Cohen, Harry; Geiser, Urs; Thorn, R. J.; Williams, John M.

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxides, Bi2Sr2Cu2O(7+x), are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe ac resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An x ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed valent species. The XPS spectrum of the Bi 4f orbital electrons in the oxides was nearly identical to that observed in Bi2O3, with no evidence of any Bi5(+).

  17. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  18. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    SciTech Connect

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  19. Growth mechanism and photocatalytic activity of self-organized N-doped (BiO)₂CO₃ hierarchical nanosheet microspheres from bismuth citrate and urea.

    PubMed

    Dong, Fan; Xiong, Ting; Wang, Rui; Sun, Yanjuan; Jiang, Yanke

    2014-05-14

    Synthesis of nano-/microstructured functional materials with 3D hierarchical microspheres structure has provided new opportunities for optimizing their physical and chemical properties. This work revealed a new growth mechanism of self-organized N-doped (BiO)2CO3 hierarchical microspheres which were fabricated by hydrothermal treatment of bismuth citrate and urea without an additive. Based on time-dependent observation, several evolution processes were believed to account for the formation of the self-organized N-doped (BiO)2CO3 hierarchical microspheres. Initially, crystallized (BiO)4CO3(OH)2 particles were formed during the nucleation and crystallization processes. Subsequently, the intermediate (BiO)4CO3(OH)2 reacted with CO3(2-) to generate (BiO)2CO3 growth nuclei on the surface of the CO2 bubbles which can act as heterogeneous nucleation centers. Next, the (BiO)2CO3 growth nuclei aggregated together after the consumption of CO2 bubbles with the increased concentration of OH(-) and further grew to be nanosheets. The microspheres constructed by small nanosheets further grew with the consumption of small particles. Finally, all (BiO)4CO3(OH)2 transformed to the (BiO)2CO3 phase, accompanied by the doping of N element into the lattice of (BiO)2CO3, and thereby, the well-defined N-doped (BiO)2CO3 hierarchical microspheres were shaped. Depending on the distance between neighboring CO2 bubbles, the resulting microspheres can be linked or dispersed. Besides, the gradual release of CO2 bubbles and CO3(2-) played a crucial role in controlling the nucleation and growth process, resulting in different sizes of microspheres. The fabricated N-doped (BiO)2CO3 hierarchical microspheres displayed admirably efficient and durable photocatalytic activity under both UV and visible light towards removal of NO, which is mainly attributed to the introduction of N element and the special hierarchical structure. This work provides new insights into the controlled synthesis of

  20. CSA doped polypyrrole-zinc oxide thin film sensor

    NASA Astrophysics Data System (ADS)

    Chougule, M. A.; Jundale, D. M.; Raut, B. T.; Sen, Shashwati; Patil, V. B.

    2013-02-01

    The polypyrrole-zinc oxide (PPy-ZnO) hybrid sensor doped with different weight ratios of camphor sulphonic acid (CSA) were prepared by spin coating technique. These CSA doped PPy-ZnO hybrids were characterized by field emission scanning electron microscope (FESEM) and fourier transform infrared (FTIR) which proved the formation of polypyrrole, PPy-ZnO and the interaction between polypyrrole - ZnO (PPy-ZnO) hybrid with CSA doping. The gas sensing properties of the PPy-ZnO hybrid films doped with CSA have been studied for oxidizing (NO2) as well as reducing (H2S, NH3, CH4OH and CH3OH) gases at room temperature. We demonstrate that CSA doped PPy-ZnO hybrid films are highly selective to NO2 along with high-sensitivity at low concentration (80% to 100 ppm) and better stability, which suggested that the CSA doped PPy-ZnO hybrid films are potential candidate for NO2 detection at room temperature.

  1. Carbon dioxide sensing mechanisms of an electrocatalytic sensor/cell based on a tungsten stabilized bismuth oxide solid electrolyte

    NASA Astrophysics Data System (ADS)

    Shoemaker, Erika Leigh

    This work describes the specific O2/CO2 sensing mechanisms of a solid-state, thick-film, electrocatalytic cermet (ceramic/metallic) gas sensor based on a tungsten stabilized bismuth oxide (WBO) solid electrolyte. The sensors embody the same configuration of classical planar oxygen sensors with two catalytic electrodes sandwiching an oxygen ion conducting solid electrolyte and a buried metal oxide reference. The technique of cyclic voltammetry is used where a cyclic voltage is ramped across the electrodes to promote electrochemical reactions on the surface of the sensor. These reactions alter the ionic current flow through the solid electrolyte, generating voltage-current related responses (voltammograms) which are gas specific. The WBO sensors have the identical configuration of previously investigated sensors of this type based on a yttria stabilized zirconia (YSZ) solid electrolyte which show good response to O 2 but do not respond to CO2 to any degree. This dissertation examines the specific function of each solid electrolyte layer and relates them to both the WBO sensors ability to respond uniquely to CO2 and the YSZ sensors incapability to respond to CO2. The research suggests that the tungsten component of the WBO electrolyte along with the porosity of the WBO layer together are responsible for the unique CO 2 response of this sensor.

  2. Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol.

    PubMed

    Hu, Yin; Li, Danzhen; Sun, Fuqian; Weng, Yaqing; You, Shengyong; Shao, Yu

    2016-01-15

    A novel, simple and efficient approach for photodegrading phenol and p-chlorophenol, based on BixOy, was reported for the first time. Monoclinic Bi2O4 was prepared by the hydrothermal treatment of NaBiO3·2H2O. A series of interesting phase transitions happened and various bismuth oxides (Bi4O7, β-Bi2O3 and α-Bi2O3) were obtained by sintering Bi2O4 at different temperatures. The results demonstrated that the Bi2O4 and Bi4O7 phase had strong abilities towards the oxidative decomposition of phenol and p-chlorophenol and very high rates of TOC removal were observed. The characterization by XRD and XPS revealed that Bi(4+) in Bi2O4 and Bi(3.5+) in Bi4O7 were reduced to Bi(3+) during the reaction process. Singlet oxygen ((1)O2) was identified as the major reactive species generated by Bi2O4 and Bi4O7 for the photodegradation of p-chlorophenol and phenol. This novel approach could be used as a highly efficient and green technology for treating wastewaters contaminated by high concentrations of phenol and chlorophenols. PMID:26384997

  3. Visible-light-induced water oxidation by a hybrid photocatalyst consisting of bismuth vanadate and copper(II) meso-tetra(4-carboxyphenyl)porphyrin.

    PubMed

    Nakashima, Shu; Negishi, Ryo; Tada, Hiroaki

    2016-03-01

    Copper(II) meso-tetra(4-carboxyphenyl)porphyrin surface-modified monoclinic scheelite bismuth vanadate (CuTCPP/BiVO4) has been synthesized via a two-step route involving chemisorption of TCPP on BiVO4 and successive Cu(II) ion incorporation into the TCPP, and the surface modification drastically enhances the water oxidation to oxygen (O2) under visible-light irradiation (λ > 430 nm). PMID:26853997

  4. Harnessing Topological Band Effects in Bismuth Telluride Selenide for Large Enhancements in Thermoelectric Properties through Isovalent Doping.

    PubMed

    Devender; Gehring, Pascal; Gaul, Andrew; Hoyer, Alexander; Vaklinova, Kristina; Mehta, Rutvik J; Burghard, Marko; Borca-Tasciuc, Theodorian; Singh, David J; Kern, Klaus; Ramanath, Ganpati

    2016-08-01

    Dilute isovalent sulfur doping simultaneously increases electrical conductivity and Seebeck coefficient in Bi2 Te2 Se nanoplates, and bulk pellets made from them. This unusual trend at high electron concentrations is underpinned by multifold increases in electron effective mass attributable to sulfur-induced band topology effects, providing a new way for accessing a high thermoelectric figure-of-merit in topological-insulator-based nanomaterials through doping. PMID:27167512

  5. Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength.

    PubMed

    Guo, Yanyan; Tian, Ying; Zhang, Liyan; Hu, Lili; Chen, Nan-Kuang; Zhang, Junjie

    2012-08-15

    With a 980 nm laser diode pumping, the 2.7 µm emission and energy transfer processes of Er3+/Pr3+ codoped germanium-gallium-bismuthate glasses have been investigated. For Er3+ (1 mol. %) and Pr3+ (1 mol. %) molar concentrations, an intense 2.7 µm emission was obtained based on the high excited-state absorption of Er3+ ions and energy transfer (ET) between Er3+ and Pr3+ ions codopant (ET). The intrinsic lifetime of Er3+:4I(13/2) level is quenched effectively (from 6.85 ms down to 0.24 ms) and the population inversions between Er3+:4I(11/2) and 4I(13/2) levels are enhanced to achieve a four-level energy system at 2.7 µm. PMID:23381266

  6. Self-limited kinetics of electron doping in correlated oxides

    SciTech Connect

    Chen, Jikun Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  7. Investigation of tungsten doped tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Meng, Ting; Yang, Zhao; Cui, Can; Zhang, Qun

    2015-11-01

    Tungsten doped tin oxide thin film transistors (TWO-TFTs) were fabricated by radio frequency magnetron sputtering. With TWO thin films as the channel layers, the TFTs show lower off-current and positive shift turn-on voltage than the intrinsic tin oxide TFTs, which can be explained by the reason that W doping is conducive to suppress the carrier concentration of the TWO channel layer. It is important to elect an appropriate channel thickness for improving the TFT performance. The optimum TFT performance in enhancement mode is achieved at W doping content of 2.7 at% and channel thickness of 12 nm, with the saturation mobility, turn-on voltage, subthreshold swing value and on-off current ratio of 5 cm2 V-1 s-1, 0.4 V, 0.4 V/decade and 2.4  ×  106, respectively.

  8. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  9. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  10. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1991-11-05

    Disclosed are a new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  11. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  12. Combustion Synthesis of Doped Thermoelectric Oxides

    SciTech Connect

    Selig, Jiri; Lin, Sidney; Lin, Hua-Tay; Johnson, D Ray

    2012-01-01

    Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

  13. Surface plasmon resonance-enhanced 2 μm emission of bismuth germanate glasses doped with Ho3+/Tm3+ ions

    NASA Astrophysics Data System (ADS)

    Tang, Junzhou; Lu, Kelun; Zhang, Shaoqian; Zhang, Peiqing; Chen, Feifei; Dai, Shixun; Xu, Yinsheng

    2016-04-01

    In this paper, we report 2 μm emission in bismuth germanate glasses doped with Ho3+/Tm3+ ions enhanced by surface plasmon resonance of Ag nanoparticles (NPs) under 800 nm laser excitation. We perform broadband mid-infrared emissions from 1700 nm to 2200 nm corresponding to Tm3+: 3F4 → 3H6 and Ho3+: 5I7 → 5I8 transitions. The energy transfer from Tm3+ to Ho3+ ions results in a strong 2030 nm emission. Results demonstrate that the emission intensity of the sample containing Ag NPs is much higher than that of the sample without Ag addition. For the best AgTH6 sample, the absorption and emission cross sections of Ho3+ transition (5I8 → 5I7) reach 0.5 × 10-20 cm2 at 1945 nm and 0.78 × 10-20 cm2 at 2030 nm, respectively. The comparative performances, i.e., σe × full width at half maximum and σe × τ, are approximately 129 × 10-20 cm2 nm and 24.8 × 10-24 cm2 s, respectively. Therefore, the glass has a potential application as 2.0 μm laser active media.

  14. Q-switched 2 μm thulium bismuth co-doped fiber laser with multi-walled carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Saidin, N.; Zen, D. I. M.; Ahmad, F.; Haris, H.; Ahmad, H.; Dimyati, K.; Harun, S. W.; Halder, A.; Paul, M. C.; Pal, M.; Bhadra, S. K.

    2016-09-01

    We report a passively Q-switched fiber laser operating at 1900 nm region using the newly developed thulium bismuth co-doped lithium-alumino-germano-silicate fiber (TBF) as a gain medium in conjunction with a multiwall carbon nanotubes (MWCNTs) based saturable absorber (SA). The TBF and MWCNTs are fabricated and prepared in-house. By increasing the 802 nm pump power from 106.6 to 160 mW, stable generation of Q-switched TBFL has been obtained at 1857.8 nm wavelength. The pulse repetition rate varies from 12.84 to 29.48 kHz while pulse width is increased from 9.6 to 6.1 μs. The performance of the laser is also compared with the Q-switched TDFL, which was obtained using a similar MWCNTs SA and pump wavelength. The Q-switched TDFL generates an optical pulse train with a repetition rate increasing from 3.8 to 4.6 kHz and pulse width reducing from 22.1 to 18.3 μs when the pump power is tuned from 187.3 to 194.2 mW. This shows that the TBFL performs better than the TDFL in terms of threshold pump power, repetition rate and pulse width.

  15. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    SciTech Connect

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta}) and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.

  16. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  17. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-03-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state.

  18. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  19. High-relative-dielectric-constant bismuth-niobium-oxide films prepared using Nb-rich precursor solution

    NASA Astrophysics Data System (ADS)

    Ariga, Tomoki; Inoue, Satoshi; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2015-09-01

    Various ceramic materials have been developed for electronic devices. Bismuth-niobium-oxide (BNO) films prepared by a chemical solution deposition (CSD) method have the cubic pyrochlore phase, high relative dielectric constant, and low tangent loss (tan δ). We found that a BNO cubic pyrochlore crystal was Nb-rich, even though its pyrochlore formula is A2B2O7. The crystallization temperature of BNO increased with increasing Nb ratio. The relative dielectric constants of BNO films were related to the Nb ratio in the precursor solution. The dielectric constant of the BNO films was 250 when the Bi and Nb ratios in BNO precursor solutions were 4 and 6, respectively, and the sintering temperature was 600 °C. In addition, the tan δ was less than 0.01 at 1 kHz, which is higher than the reported values of BNO systems despite using the CSD method. These results show that the properties of BNO films prepared by the CSD method were associated with the Nb ratio in the precursor solution. Furthermore, the dielectric characteristics indicated that the Nb-rich BNO films have potential applications in electronic devices.

  20. Spectroscopic and microscopic investigation of the corrosion of D-9 stainless steel by lead bismuth eutectic (LBE) at elevated temperatures. Initiation of thick oxide formation

    NASA Astrophysics Data System (ADS)

    Johnson, Allen L.; Koury, Dan; Welch, Jenny; Ho, Thao; Sidle, Stacy; Harland, Chris; Hosterman, Brian; Younas, Umar; Ma, Longzhou; Farley, John W.

    2008-06-01

    Corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperature was investigated by examination of samples after 1000, 2000, and 3000 h of exposure at 550 °C, using SEM, XPS with sputter depth profiling, and TEM. The process by which localized oxide failure becomes extensive thick oxide formation was investigated. Under our experimental conditions, iron was observed to migrate outward while chromium did not migrate above the original metal surface. The thin oxide layer on the D-9 sample resembled 316L cold-rolled samples, while the thick oxide on D-9 resembled annealed 316L oxide. With continued exposure, thick oxide grew to cover the entire surface.

  1. Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

    PubMed

    Štengla, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2011-09-15

    Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites. PMID:21775058

  2. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun; Narro-García, R.; Sekino, Tohru; Lee, Soo Wohn

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} and Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.

  3. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  4. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  5. Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes

    NASA Astrophysics Data System (ADS)

    Schulze, Kerstin; Maennig, Bert; Leo, Karl; Tomita, Yuto; May, Christian; Hüpkes, Jürgen; Brier, Eduard; Reinold, Egon; Bäuerle, Peter

    2007-08-01

    The authors compare organic solar cells using two different transparent conductive oxides as anode: indium tin oxide (ITO) and three kinds of aluminum doped zinc oxide (ZAO). These anodes with different work functions are used for small molecule photovoltaic devices based on an oligothiophene derivative as donor and fullerene C60 as acceptor molecule. It turns out that cells on ITO and ZAO have virtually identical properties. In particular, the authors demonstrate that the work function of the anode does not influence the Voc of the photovoltaic device due to the use of doped transport layers.

  6. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode.

    PubMed

    Arsenault, Eric; Soheilnia, Navid; Ozin, Geoffrey A

    2011-04-26

    Optically transparent and electrically conductive electrodes are ubiquitous in the myriad world of devices. They are an indispensable component of solar and photoelectrochemical cells, organic and polymer light emitting diodes, lasers, displays, electrochromic windows, photodetectors, and chemical sensors. The majority of the electrodes in such devices are made of large electronic band-gap doped metal oxides fashioned as a dense low-surface-area film deposited on a glass substrate. Typical transparent conducting oxide materials include indium-, fluorine-, or antimony-doped tin oxides. Herein we introduce for the first time a transparent conductive periodic macroporous electrode that has been self-assembled from 6 nm nanocrystalline antimony-doped tin oxide with high thermal stability, optimized electrical conductivity, and high quality photonic crystal properties, and present an electrochemically actuated optical light switch built from this electrode, whose operation is predicated on its unique combination of electrical, optical, and photonic properties. The ability of this macroporous electrode to host active functional materials like dyes, polymers, nanocrystals, and nanowires provides new opportunities to create devices with improved performance enabled by the large area, spatially accessible and electroactive internal surface. PMID:21391718

  7. Boron-doped bismuth oxybromide microspheres with enhanced surface hydroxyl groups: Synthesis, characterization and dramatic photocatalytic activity.

    PubMed

    Liu, ZhangSheng; Liu, JinLong; Wang, HaiYang; Cao, Gang; Niu, JiNan

    2016-02-01

    B-doped BiOBr photocatalysts were successfully synthesized via a facile solvothermal method with boric acid used as boron source. As-obtained products consist of novel hierarchical microspheres, whose nanosheet building units were formed by nanoparticles splicing. They showed dramatic photocatalytic efficiency toward the degradation of Rhodamine B (RhB) and phenol under the visible-light irradiation and the highest activity was achieved by 0.075B-BiOBr. The enhanced photocatalytic activity could be attributed to the enriched surface hydroxyl groups on B-doped BiOBr samples, which not only improved the adsorption of pollutant on the photocatalyst but also promoted the separation of photogenerated electron-hole pairs. In addition, it was found that the main reactive species responsible for the degradation of organic pollutant were h(+) and O2(-) radicals, instead of OH radicals. PMID:26590875

  8. Selection Rule of Preferred Doping Site for n-Type Oxides

    SciTech Connect

    Li, C.; Li, J.; Li, S. S.; Xia, J. B.; Wei, S. H.

    2012-06-25

    Using first-principles calculations and analysis, we show that to create shallow n-type dopants in oxides, anion site doping is preferred for more covalent oxides such as SnO{sub 2} and cation site doping is preferred for more ionic oxides such as ZnO. This is because for more ionic oxides, the conduction band minimum (CBM) state actually contains a considerable amount of O 3s orbitals, thus anion site doping can cause large perturbation on the CBM and consequently produces deeper donor levels. We also show that whether it is cation site doping or anion site doping, the oxygen-poor condition should always be used.

  9. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  10. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  11. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications. PMID:24418938

  12. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    NASA Astrophysics Data System (ADS)

    León-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J.; Santiago-Aviles, Jorge J.

    2007-03-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600°C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature.

  13. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation.

    PubMed

    Selvakumar, M; Srivastava, Priyanka; Pawar, Harpreet Singh; Francis, Nimmy K; Das, Bodhisatwa; Sathishkumar, G; Subramanian, Bhuvaneshwaran; Jaganathan, Saravana Kumar; George, Gibin; Anandhan, S; Dhara, Santanu; Nando, Golok B; Chattopadhyay, Santanu

    2016-02-17

    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi

  14. Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Fuchi; Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei

    2013-09-01

    Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH3 atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

  15. Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement

    SciTech Connect

    Liu, Fuchi; Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei

    2013-09-16

    Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH{sub 3} atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

  16. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungsten-doped Bismuth Vanadate Photoanodes.

    PubMed

    Zhang, Bingqing; Shi, Jingying; Ding, Chunmei; Chong, Ruifeng; Zhang, Bao; Wang, Zhiliang; Li, Ailong; Liang, Zhenxing; Liao, Shijun; Li, Can

    2015-12-01

    The photo fuel cell (PFC) is a promising technology for simultaneously converting solar energy and bioenergy into electricity. Here, we present a miniature air-breathing PFC that uses either BiVO4 or W-doped BiVO4 as the photoanode and a Pt/C catalyst as the air-breathing cathode. The PFC exhibited excellent performance under solar illumination and when fed with several types of biomaterial. We found the PFC performance could be significantly enhanced using W-doping into the BiVO4 photoanode. With glucose as the fuel and simulated sunlight (AM 1.5 G) as the light source, the open-circuit voltage increased from 0.74 to 0.92 V, the short-circuit current density rose from 0.46 to 1.62 mA cm(-2) , and the maximum power density was boosted from 0.05 to 0.38 mW cm(-2) , compared to a PFC using undoped BiVO4 as the anode. PMID:26609790

  17. Preparation of superconducting thin films of calcium strontium bismuth copper oxides by coevaporation

    SciTech Connect

    Rice, C.E.; Levi, A.F.J.; Fleming, R.M.; Marsh, P.; Baldwin, K.W.; Anzlowar, M.; White, A.E.; Short, K.T.; Nakahara, S.; Stormer, H.L.; and others

    1988-05-23

    Superconducting films of Ca-Sr-Bi-Cu oxides have been prepared by coevaporation of CaF/sub 2/, SrF/sub 2/, Bi, and Cu, followed by post-oxidation in wet O/sub 2/. The films were characterized by four-probe resistivity measurements, Rutherford backscattering, transmission electron microscopy, x-ray diffraction, and Hall measurements. Zero resistance was achieved at approx.80 K, although evidence of traces of superconductivity at higher temperatures was seen in resistivity and Hall data. The critical current at 4.2 K was 1.0 x 10/sup 6/ A cm/sup -2/. The films were epitaxial on <100> and <110> SrTiO/sub 3/ substrates. The electrical and structural properties of the films were insensitive to film composition over a wide range of stoichiometries.

  18. Macro- and microscopic properties of strontium doped indium oxide

    SciTech Connect

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10{sup −13} cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  19. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  20. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  1. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  2. Electrochromism Properties of Palladium Doped Tungsten-Oxide Thin Films Prepared with RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Yabumoto, Taihei; Iwai, Yuki; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Palladium doped tungsten oxide thin films were prepared by RF reactive sputtering in a mixture of argon and oxygen at room temperature. XRD patterns indicated that these films were amorphous. SEM imaging indicated a smaller grain size of palladium doped thin film compared with that of undoped tungsten oxide thin film. With electrochromism, palladium doped tungsten oxide exhibited a reverse optical modulation with respect to the applied potential.

  3. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103 Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  4. Effect of WO 3 on the spectroscopic properties in Er 3+/Yb 3+ co-doped bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhou, Yaxun; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2007-11-01

    The spectroscopic properties of Er 3+/Yb 3+ co-doped Bi 2O 3-B 2O 3-WO 3 (BBW) glasses were analyzed and discussed. The effect of WO 3 content on the absorption spectra, the Judd-Ofelt parameters Ω t ( t=2, 4, 6), emission spectra and the lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition were also investigated. With the substitution of WO 3 for B 2O 3, the measured lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition increase from 0.98 to 1.31 ms and from 38.2% to 49.2%, respectively. The effective width of emission band and the emission cross-section both decrease slightly. And the emission spectra is analyzed via the different curve ( σe- σa) of BBW glasses, the influence of OH - is also discussed.

  5. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  6. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  7. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    SciTech Connect

    Scarangella, Adriana; Reitano, Riccardo; Franzò, Giorgia; Miritello, Maria; Priolo, Francesco

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by the observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.

  8. FETs Based on Doped Polyaniline/Polyethylene Oxide Fibers

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Noulie; Robinson, Daryl; Miranda, Felix; Pinto, Nicholas; Johnson, Alan, Jr.; MacDiarmid, Alan; Mueller, Carl

    2006-01-01

    A family of experimental highly miniaturized field-effect transistors (FETs) is based on exploitation of the electrical properties of nanofibers of polyaniline/ polyethylene oxide (PANi/PEO) doped with camphorsulfonic acid. These polymer-based FETs have the potential for becoming building blocks of relatively inexpensive, low-voltage, highspeed logic circuits that could supplant complementary metal oxide/semiconductor (CMOS) logic circuits. The development of these polymerbased FETs offers advantages over the competing development of FETs based on carbon nanotubes. Whereas it is difficult to control the molecular structures and, hence, the electrical properties of carbon nanotubes, it is easy to tailor the electrical properties of these polymerbased FETs, throughout the range from insulating through semiconducting to metallic, through choices of doping levels and chemical manipulation of polymer side chains. A further advantage of doped PANi/PEO nanofibers is that they can be made to draw very small currents and operate at low voltage levels, and thus are promising for applications in which there are requirements to use many FETs to obtain large computational capabilities while minimizing power demands. Fabrication of an experimental FET in this family begins with the preparation of a substrate as follows: A layer of silicon dioxide between 50 and 200 nm thick is deposited on a highly doped (resistivity 0.01 W.cm) silicon substrate, then gold electrodes/contact stripes are deposited on the oxide. Next, one or more fibers of camphorsulphonic acid-doped PANi/PEO having diameters of the order of 100 nm are electrospun onto the substrate so as to span the gap between the gold electrodes (see Figure 1). Figure 2 depicts measured current-versus-voltage characteristics of the device of Figure 1, showing that saturation channel currents occur at source-todrain potentials that are surprisingly low, relative to those of CMOS FETs. The hole mobility in the depletion regime in

  9. Thermoelectric property studies on carbon-60 doped P-type Bismuth(0.5)Antimony(1.5)Tellurium(3)

    NASA Astrophysics Data System (ADS)

    Vemishetti, Aravindkumar

    Solid state cooling and power generation based on thermoelectric principles are regarded as one of the technologies with the potential of solving the current energy crisis. Thermoelectric devices could be widely used in waste heat recovery, small scale power generation and refrigeration. It has no moving parts and is environmental friendly. The limitation to its application is due to its low efficiency. Most of the current commercialized thermoelectric materials have a figure of merit (ZT) around 1. The performance of these materials depends on the dimensionless figure-of-merit ZT (= S2sigma T/ kappa), where S is the Seebeck coefficient; sigma is the electrical conductivity; kappa is the thermal conductivity; S2sigma is the power factor and T is the absolute temperature. In recent years, many studies have shown a significant enhancement of figure of merit by utilizing a nanostructuring approach to reduce the thermal conductivity by scattering ph onons more effectively than electrons. The research shows how using a low-cost and mass-production ball milling and hot press compaction nanocomposite process, can improve the power factor by 50% using a temperature range of 60 °C to 80 °C in p-type nanostructured Bi.5Sb1.5Te3 bulk alloys. Further research was developed by using the aforementioned novel approach for cost and time effectiveness by doping C60 to nanocomposite Bi.5Sb1.5Te 3 alloy to improve the figure of merit of thermoelectric materials. The improvement is mainly because of fullerene molecules that provide thermal phonon blocking and particular charge transfer in the nanocomposite. The molecules act as electron traps, and thus decrease the density of free electrons in n-type semiconductors and generate holes in p-type materials. These high performance materials have been investigated to get high efficiency from thermoelectric devices for waste heat recovery, power generation, and cooling applications.

  10. Transparent conducting oxides: A δ-doped superlattice approach

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino; Lee, Suyoun; Seo, Sung Seok; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-03-01

    Interfaces between dissimilar insulating oxides have been shown to exhibit intriguing phenomena such as metallic states, superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using first principles simulations we examine the effect of SrTiO3 (STO) spacer layer thickness on the physical and chemical properties of La δ-doped STO superlattices. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of the quantum mechanical wavefunctions between neighboring δ-doped layers. Experimentally these superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2 p and Ti d states. These results highlight the potential for using superlattice thickness as a means for tuning the properties of oxide heterostructures with demonstrated importance for optoelectronic devices; providing a unique route for creating transparent conducting oxides. Supported by: U.S. D.O.E, Basic Energy Sciences, Materials Sciences and Engineering Division (V.R.C., W.S.C., H.N.L., S.O., S.S.A.S), the Office of Science Early Career Research Program (V.R.C) and the Korea Insitute of Technology (SL).