Science.gov

Sample records for doped lanthanum chromites

  1. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  2. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  3. Bulk and surface structure characterization of nanoscopic silver doped lanthanum chromites

    NASA Astrophysics Data System (ADS)

    Desai, P. A.; Joshi, P. N.; Patil, K. R.; Athawale, Anjali A.

    2013-01-01

    Crystalline state of lanthanum chromites with silver as a dopant has been studied by X-ray diffraction and transmission electron microscopy reveals microscopic properties of grain boundaries. X-ray photoelectron spectroscopy has been used to analyze surface states with atomic ratio of La, Cr, O and Ag as a dopant. LaCrO3 shows mixed valence states of chromium while the silver doped samples exhibit differences in chromium concentration with the oxidation of Cr3+ to Cr6+ in presence of chromium nitrate as a precursor salt. Trivalent stable state of chromium is observed for samples synthesized by chromic acetate as a precursor salt.

  4. Nickel and titanium doubly doped lanthanum strontium chromite for high temperature electrochemical devices

    NASA Astrophysics Data System (ADS)

    Gupta, Sapna; Singh, Prabhakar

    2016-02-01

    Lanthanum chromite based materials are promising candidate for use as electrochemical components in high temperature electrochemical devices. In this study, nickel and titanium doubly doped lanthanum strontium chromites are developed and the effects of nickel and titanium co-doping of the chromite perovskite La0.85Sr0.15Cr1-2yNiyTiyO3-δ (0.05 ≤ y ≤ 0.3) on the electrical conductivity, chemical stability, microstructure, density, thermal expansion and electrochemical performance are measured. Density and the electrical conductivity increases with nickel concentration whereas Sr-segregation on the surface of La0.85Sr0.15Cr1-2yNiyTiyO3-δ has been observed for y ≥ 0.2 and is associated with reduction in the electrical conductivity. For y = 0.1, La0.85Sr0.15Cr1-2yNiyTiyO3-δ shows the highest electrical conductivity in air and reducing atmosphere (PO2 ∼10-24 atm). The conductivity of La0.85Sr0.15Cr1-2yNiyTiyO3-δ (y = 0.1) in reducing atmosphere (3.58 S cm-1 at 950 °C) also remains higher than the most widely investigated compositions such as (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ (2.81 S cm-1) and (La0.75Sr0.25)0.95Cr0.7Fe0.3O3-δ (1.41 S cm-1). Smaller deviation in the oxygen stoichiometry is similarly observed for La0.85Sr0.15Cr0.8Ni0.1Ti0.1O3-δ (δ = 0.011) when compared to La0.75Sr0.25CrO3-δ (δ = 0.091), La0.75Sr0.25Cr0.5Mn0.5O3-δ (δ = 0.175) and La0.75Sr0.25Cr0.5Fe0.5O3-δ (δ = 0.148) at 1000 °C and ∼10-24 atm. Highest electrochemical performance and structural/interfacial stability is obtained for new composition La0.85Sr0.15Cr0.8Ni0.1Ti0.1O3-δ (LSCNT0.1) when mixed with 8YSZ in both oxidizing and reducing atmosphere.

  5. Effects of calcination on microscopic and mesoscopic structures in Ca- and Sr-doped nano-crystalline lanthanum chromites

    SciTech Connect

    Bhatt, Himal; Bahadur, J.; Deo, M.N.; Ramanathan, S.; Pandey, K.K.; Sen, D.; Mazumder, S.; Sharma, Surinder M.

    2011-01-15

    Calcination behavior of nano-crystalline lanthanum chromites doped with calcium and strontium has been probed by Fourier transform infrared spectroscopy, X-ray diffraction and small-angle neutron scattering as a function of temperature. Infrared spectroscopic results imply that over a range of temperatures, some intermediate phase of dopant chromates evolve and then dissolve back, which has also been confirmed by the XRD. Neutron scattering data reveal a fractal type correlation of building blocks in virgin powders. Increase in fractal dimension and reduction in upper cutoff vis-a-vis the densification of agglomerates were found with increasing calcination temperature. Calcination, beyond 900 {sup o}C, results in breaking down of the fractal morphology almost completely. Such shrinkage event also results in a modification of the microscopic structure. These changes have been attributed to the compaction of agglomerates of both Ca- and Sr-doped lanthanum chromites, assisted via liquid state sintering by the melting of the intermediate phases at intermediate calcination stages. -- Graphical Abstract: Dopant chromates evolve as intermediate phases during calcination of Ca- and Sr-doped nano-crystalline lanthanum chromites at intermediate temperatures, around 900 {sup o}C, evident from infrared spectroscopy. Such an event results in a modification of the microscopic and mesoscopic structures. Display Omitted Research highlights: {yields} Meso/microscopic structures of La{sub 0.7}Ca{sub 0.3}CrO{sub 3} and La{sub 0.8}Sr{sub 0.2}CrO{sub 3} modify during calcination. {yields} Transient phases CaCrO{sub 4} and SrCrO{sub 4} appear at intermediate temperatures. {yields} Bond length, unit cell volume, etc. modify as intermediate phases evolve and extinct. {yields} Compaction of the agglomerates takes place due to liquid state assisted sintering.

  6. Cost Reduction of Lanthanum Chromite Materials

    SciTech Connect

    Simner, Steve P. ); Stevenson, Jeffry W. ); Hardy, John S. ); Chick, Lawrence A. )

    2000-01-01

    Acceptor doped lanthanum chromite (LaCrO3) has long been the interconnect material of choice for high temperature SOFCs, typically operating at 1000?C. However, lanthanum chromite is relatively expensive, and many developers are currently pursuing SOFCs operating at lower temperatures. As the operating temperature is lowered, metal interconnects (e.g., ferritic steels or chromium alloys) become increasingly viable, but they have their own unique problems (including Cr-oxide formation and Cr volatilization), and it is therefore likely that uncoated metals cannot be used at temperatures greater than 700?C. For intermediate operating temperatures (700-800?C), the application of protective oxide coatings may allow the use of metal interconnects (if such coatings can be applied cost-effectively), but lanthanum chromite may offer better long-term performance. While the electrical conductivity of lanthanum chromite does decrease as temperature decreases, the conductivity at 800?C is only about 10% less than the conductivity at 1000?C. In this study, the authors have investigated the viability of replacing pure La in the acceptor doped LaCrO3 with a less expensive mixed lanthanide (Ln) precursor containing La3+ as the principle cation, but also Ce4+, Nd3+ and Pr3+ in significant proportions. Typical compositions investigated were of the formula Ln0.85Sr0.15Cr1-yMyO3, where 0.02?y?0.1 and M= Co, Cu, Ni, and V. Samples were studied with respect to sinterability in air, thermal expansion, conductivity in air and at low pO2, phase stability, and dilation under reducing atmospheres.

  7. Fabrication of Sr- and Co-doped lanthanum chromite interconnectors for SOFC

    SciTech Connect

    Setz, L.F.G.; Colomer, M.T.; Mello-Castanho, S.R.H.

    2011-07-15

    Graphical abstract: FESEM micrographs of the fresh fracture surfaces for the La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} sintered specimens cast from optimised suspensions with 13.5, 15 and 17.5 vol.% solids loading. Aqueous suspensions were prepared using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h. Highlights: {yields} Optimum casting slips were achieved with 3 wt.% of ammonium polyacrylate and 1 wt.% of tetramethylammonium hydroxide. -- Abstract: Many studies have been performed dealing with the processing conditions of electrodes and electrolytes in solid oxide fuel cells (SOFCs). However, the processing of the interconnector material has received less attention. Lanthanum chromite (LaCrO{sub 3}) is probably the most studied material as SOFCs interconnector. This paper deals with the rheology and casting behaviour of lanthanum chromite based materials to produce interconnectors for SOFCs. A powder with the composition La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} was obtained by combustion synthesis. Aqueous suspensions were prepared to solids loading ranging from 8 to 17.5 vol.%, using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. The influence of the additives concentrations and suspension ball milling time were studied. Suspensions prepared with 24 h ball milling, with 3 wt.% and 1 wt.% of PAA and TMAH, respectively, yielded the best conditions for successful slip casting. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h leading to relatively dense materials.

  8. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation

    SciTech Connect

    Yasuda, Isamu; Hikita, Tomoji . Fundamental Technology Research Lab.)

    1994-05-01

    Chemical relaxation experiments were conducted on sintered samples of calcium-doped lanthanum chromites by abruptly changing the oxygen partial pressure in the atmosphere and following the time change of conductivity. The re-equilibration kinetics was analyzed by fitting the relaxation data to the solutions of Fick's second law for appropriate boundary conditions. The diffusion equation ignoring the effect of surface reaction failed to describe the transient behavior especially for the initial stage, while that taking the surface effect into account gave a satisfactory interpretation of the overall relaxation process and allowed a precise determination of the two kinetic parameters: oxygen chemical diffusion coefficient and surface reaction rate constant. The chemical diffusion coefficients increased with a decrease of the oxygen partial pressure due to the corresponding change in the concentration of the moving species. The activation energy was similar to that of oxygen vacancy diffusion coefficients in other monocrystalline perovskites, suggesting that the measured diffusion coefficients were attributable to lattice diffusion. The surface reaction rate constant increased with a decrease of the oxygen partial pressure similarly to the reported oxygen nonstoichiometry, which implies that the presence of oxygen vacancies plays an important role in the surface reaction kinetics.

  9. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  10. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  11. Mechanical properties of lanthanum and yttrium chromites

    SciTech Connect

    Paulik, S.W.; Armstrong, T.R.

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  12. Sintering aid for lanthanum chromite refractories

    DOEpatents

    Flandermeyer, Brian K.; Poeppel, Roger B.; Dusek, Joseph T.; Anderson, Harlan U.

    1988-01-01

    An electronically conductive interconnect layer for use in a fuel cell or other electrolytic device is formed with sintering additives to permit densification in a monolithic structure with the electrode materials. Additions including an oxide of boron and a eutectic forming composition of Group 2A metal fluorides with Group 3B metal fluorides and Group 2A metal oxides with Group 6B metal oxides lower the required firing temperature of lanthanum chromite to permit densification to in excess of 94% of theoretical density without degradation of electrode material lamina. The monolithic structure is formed by tape casting thin layers of electrode, interconnect and electrolyte materials and sintering the green lamina together under common densification conditions.

  13. Magnetic properties of nano-clusters lanthanum chromite powders doped with samarium and strontium ions synthesized via a novel combustion method

    SciTech Connect

    Rashad, M.M.; El-Sheikh, S.M.

    2011-03-15

    Graphical abstract: Nanocrystalline Sm{sup 3+} and Sr{sup 2+} doped LaCrO{sub 3} powders have been synthesized through a novel gel combustion synthesis using triethanol amine (TEA). The saturation magnetization of the LaCrO{sub 3} increased with an increase Sm{sup 3+} ion and it decreased with an increase in the Sr{sup 3+} ion to 0.3 at temperature 1000 {sup o}C for 2 h due to the formation of a monodispersed uniform octahedral structure as shown in the Fig. Research highlights: {yields} Single-phase orthorhombic lanthanum chromite LaCrO{sub 3} nanoclusters have been successfully synthesized through a novel gel combustion synthesis using triethanol amine (TEA). {yields} Sr{sup 2+} ions doped LaCrO{sub 3} increased the unit cell volume and the crystallite size whereas Sm{sup 3+} ions doped LaCrO{sub 3} decreased the unit cell volume and the crystallite size. {yields} The saturation magnetization of the LaCrO{sub 3} powders increased continuously with an increase in the Sm concentration and it decreased with an increase in the Sr ion up to 0.3 at annealing temperature of 1000 {sup o}C for 2 h. -- Abstract: A novel approach to synthesize a single-phase orthorhombic perovskite lanthanum chromite LaCrO{sub 3} clusters doped with Sm{sup 3+} and Sr{sup 2+} ions via gel combustion route was reported. The producing materials were synthesized using metal nitrates as oxidizers and triethanol amine (TEA), N-butyl amine (NBA) or ethylene diamine (EDA) as a fuel. The effect of the annealing temperature, type of organic fuel and the variation of the samarium and/or strontium substitution and its impact on crystal structure, crystallite size, microstructure and magnetic properties of the LaCrO{sub 3} powders formed was systematically studied. The results revealed that a well crystalline single phase of pure LaCrO{sub 3} can be achieved at annealing temperature from 800 to 1000 {sup o}C for 2 h. Moreover, each organic carrier materials exhibited a different degree of effectiveness

  14. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.; Pal, Uday B.

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  15. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, V.L.; Singhal, S.C.; Pal, U.B.

    1992-07-21

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro[sub 3] particles; (2) dispersing doped LaCrO[sub 3] particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then a dense skeletal LaCrO[sub 3] structure is electrochemically vapor deposited between and around the doped LaCrO[sub 3] particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell. 4 figs.

  16. Phase transformation, thermal expansion and electrical conductivity of lanthanum chromite

    SciTech Connect

    Gupta, Sapna; Mahapatra, Manoj K.; Singh, Prabhakar

    2013-09-01

    Graphical abstract: - Highlights: • Orthorhombic and rhombohedral phases co-exist at ≥260 °C and cubic above 1000 °C. • Polymorphic changes with temperature in air and Ar–3%H{sub 2} are observed. • Lattice volume change in Ar–3%H{sub 2} atmosphere corresponds to Cr{sup 4+} → Cr{sup 3+} transition. • Change in valence state of Cr{sup 4+} to Cr{sup 3+} results in lower electrical conductivity. • Experimental evidence is provided for poor densification of LaCrO{sub 3} in air. - Abstract: This paper addresses discrepancies pertaining to structural, thermal and electrical properties of lanthanum chromite. Experimental evidence is provided to support the hypothesis for poor densification in air as well as reduction in electrical conductivity in reducing atmosphere. Sintering condition for the synthesis of LaCrO{sub 3} was optimized to 1450 °C and 10 h. Thermo-analytical (differential scanning calorimetry – DSC) and high temperature X-ray diffraction (HT-XRD) studies show that orthorhombic lanthanum chromite transforms into rhombohedral structure at ∼260 °C and cubic structure above 1000 °C. Co-existence of the structural phases and the variation in each polymorph with temperature in both air and 3%H{sub 2}–Ar atmosphere is reported. Presence and absence of Cr-rich phase at inter-particle neck are observed in oxidizing and reducing atmospheres respectively. The linear thermal expansion co-efficient was calculated to be 10.8 ± 0.2 × 10{sup −6} °C{sup −1} in the temperature range of RT–1400 °C. Electrical conductivity of lanthanum chromite was found to be 0.11 S/cm in air. A decrease in electrical conductivity (0.02 S/cm at 800 °C) of LaCrO{sub 3}, as observed in reducing atmosphere (3%H{sub 2}–Ar), corresponds to lattice volume change as indicated by peak shift in HT-XRD results.

  17. Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: Structural and catalytic aspects

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Sik; Yu, Anthony S.; Adijanto, Lawrence; Gorte, Raymond J.; Vohs, John M.

    2014-09-01

    Infiltration is a widely used fabrication method for solid oxide fuel cell (SOFC) composite electrodes. Here we report a study of the structure and electrocatalytic properties of SOFC anodes composed of a layer of lanthanum, strontium chromite (La0.8Sr0.2CrO3, LSCr), both with and without added transition metal dopants, infiltrated into a porous yttria-stabilized zirconia (YSZ) matrix. The structural evolution of the electrode upon reduction and under typical SOFC operating conditions is compared to that reported previously for La0.8Sr0.2Cr0.5Mn0.5O3-YSZ composite anodes. For the transition metal doped materials, a portion of the metal dopants were found to be exsolved from the LSCr lattice upon reduction and to be effective in promoting electro-oxidation of hydrogen. Exsolved cobalt particles were also found to be relatively stable when exposed to hydrocarbon fuels with low activity for the formation of carbon deposits.

  18. Preparation and Charge Density in (Co, Fe)-Doped La-Ca-Based Chromite

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Thenmozhi, N.; Fu, Yen-Pei

    2016-05-01

    Transition metal-doped lanthanum chromites (La0.8Ca0.2)(Cr0.9-x Co0.1Fe x )O3 (x = 0.03, 0.06, 0.09, 0.12) have been synthesized by solid state reaction method. The synthesized samples were characterized for their structural properties using powder x-ray diffraction analysis, which shows that the grown samples are orthorhombic in structure with single phase. The nature of bonding and the charge distribution of the grown samples have been analyzed by maximum entropy method. Further, the samples were characterized for their optical and magnetic properties using ultraviolet-visible spectra and vibrating sample magnetometry. The microstructural studies were carried by scanning electron microscopy/electron dispersive x-ray spectroscopy techniques. From the optical absorption spectra, it was found that the energy band gap of the samples ranges from 2.135 eV to 2.405 eV. From vibrating sample magnetometer measurements, ferromagnetic like behaviour with large coercive field was observed for Fe doping concentration of x = 0.12. Since the doped lanthanum chromites have good mechanical properties and electrical conductivity at high temperature, these materials are used in solid oxide fuel cells.

  19. Preparation and Charge Density in (Co, Fe)-Doped La-Ca-Based Chromite

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Thenmozhi, N.; Fu, Yen-Pei

    2016-08-01

    Transition metal-doped lanthanum chromites (La0.8Ca0.2)(Cr0.9- x Co0.1Fe x )O3 ( x = 0.03, 0.06, 0.09, 0.12) have been synthesized by solid state reaction method. The synthesized samples were characterized for their structural properties using powder x-ray diffraction analysis, which shows that the grown samples are orthorhombic in structure with single phase. The nature of bonding and the charge distribution of the grown samples have been analyzed by maximum entropy method. Further, the samples were characterized for their optical and magnetic properties using ultraviolet-visible spectra and vibrating sample magnetometry. The microstructural studies were carried by scanning electron microscopy/electron dispersive x-ray spectroscopy techniques. From the optical absorption spectra, it was found that the energy band gap of the samples ranges from 2.135 eV to 2.405 eV. From vibrating sample magnetometer measurements, ferromagnetic like behaviour with large coercive field was observed for Fe doping concentration of x = 0.12. Since the doped lanthanum chromites have good mechanical properties and electrical conductivity at high temperature, these materials are used in solid oxide fuel cells.

  20. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  1. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, V.L.; Singhal, S.C.

    1992-09-01

    A highly sinterable powder consisting essentially of LaCrO[sub 3], containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590 C to 950 C in inert gas containing up to 50,000 ppm O[sub 2] to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m[sup 2]/g. 2 figs.

  2. High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung Joong; Stevenson, Jeffrey W.; Marina, Olga A.

    2011-10-01

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at.% Co, 4 at.% Ni, and 1 at.% Cu substitution on B-site of 20 at.% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 °C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 °C is 57 S cm-1 in air and 11 S cm-1 in fuel (pO2 = 5 × 10-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  3. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  4. Electrical properties of lanthanum doped barium titanate ceramics

    SciTech Connect

    Vijatovic Petrovic, M.M.; Bobic, J.D.; Ramoska, T.; Banys, J.; Stojanovic, B.D.

    2011-10-15

    Pure and lanthanum doped barium titanate (BT) ceramics were prepared by sintering pellets at 1300 deg. C for 8 h, obtained from nanopowders synthesized by the polymeric precursor method. XRD results showed formation of a tetragonal structure. The presence of dopants changed the tetragonal structure to pseudo-cubic. The polygonal grain size was reduced up to 300 nm with addition of lanthanum as a donor dopant. Determined dielectric properties revealed that lanthanum modified BT ceramics possessed a diffused ferroelectric character in comparison with pure BT that is a classical ferroelectric material. In doped BT phase transition temperatures were shifted to lower temperatures and dielectric constant values were much higher than in pure BT. A modified Currie Weiss law was used to explore the connection between the doping level and degree of diffuseness of phase transitions. Impedance spectroscopy measurements were carried out at different temperatures in order to investigate electrical resistivity of materials and appearance of a PTCR effect. - Highlights: {yields} Pure and lanthanum doped BaTiO{sub 3} were prepared by polymeric precursors method. {yields} Change of structure from tetragonal to pseudo-cubic. {yields} Lanthanum as a donor dopant influenced on change of ferro-para phase transition. {yields} The diffuseness factor indicated the formation of diffuse ferroelectric material. {yields} Lanthanum affected on PTCR effect appearance in BT ceramics.

  5. Stability of chromite interconnections in dual environments

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.W.; Raney, P.; Pederson, L.R.

    1994-11-01

    One of the most critical technical concerns in high-temperature SOFCs is the physical, chemical, and electrical stability of the interconnect (typically a doped lanthanum chromite) in the dual (oxidizing and reducing atmosphere) SOFC environment. The reducing or fuel side may experience oxygen partial pressures (P(O{sub 2})) from 10{sup {minus}18} to 10{sup {minus}6} atmospheres, while the oxidizing side may have P(O{sub 2}) from 10{sup {minus}6} to greater than 1 atm. These conditions limit the possible candidate materials to lanthanum or yttrium chromites. In the past decade, much work has centered on development of air-sinterable chromites and understanding their physical properties; little work, however, has focused on the stability of these chromites in dual environments. Chromite powders were synthesized using the glycine-nitrate process. The powders were calcined at 1,000 C for 1 hour and then uniaxially pressed into bars (46mm x 16mm x 3mm) at 55 MPa and isostatically pressed at 138 MPa. Samples were sintered in air. The dependence of the physical properties of sintered lanthanum chromites upon ambient P(O{sub 2}) and temperature (using dilatometry, thermogravimetric analysis, and oxygen permeation measurements) were studied. La{sub 1{minus}x}A{sub x}CrO{sub 3} and Y{sub 1{minus}x}Ca{sub x}CrO{sub 3}, where A is Ca or Sr and x was varied from 0.1 to 0.4 were evaluated in this study. The P(O{sub 2}) was varied using a buffered CO{sub 2}/Ar-4%H{sub 2} gas system, enabling expansion measurements to be made over a partial pressure range from 10{sup {minus}5} to 10{sup {minus}18} atmosphere at 800, 900, and 1,000 C.

  6. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sonia, Suman, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    La doped ZnO (Zn1-xLaxO, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV-Visiblespectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  7. Lanthanum

    MedlinePlus

    Lanthanum is used to reduce blood levels of phosphate in patients with kidney disease. High levels of phosphate in the blood can cause bone problems. Lanthanum is in a class of medications called phosphate ...

  8. Thermal conductivity analysis of lanthanum doped manganites

    SciTech Connect

    Mansuri, Irfan; Shaikh, M. W.; Khan, E.; Varshney, Dinesh

    2014-04-24

    The temperature-dependent thermal conductivity of the doped manganites La{sub 0.7}Ca{sub 0.3}MnO{sub 3} is theoretically analyzed within the framework of Kubo formulae. The Hamiltonian consists of phonon, electron and magnon thermal conductivity contribution term. In this process we took defects, carrier, grain boundary, scattering process term and then calculate phonon, electron and magnon thermal conductivity.

  9. Altering the equilibrium condition in Sr-doped lanthanum manganite.

    SciTech Connect

    Carter, J. D.; Krumpelt, M.; Vaughey, J.; Wang, X.

    1999-05-28

    The material of choice for a solid oxide fuel cell cathode based on a yttria-stabilized zirconia (YSZ) electrolyte is doped lanthanum manganite, (La, Sr)MnO{sub 3}. It excels at many of the attributes necessary for a system to work at the required operating temperature and is flexible enough to allow for materials optimization. Although strontium-doping increases the electronic conductivity of the material, the ionic conductivity of the material remains negligible under operating conditions. Studies have shown that the internal equilibrium of the material heavily favors oxidation of the manganese and rather than the loss of lattice oxygen as a charge compensation mechanism. This lack of oxygen vacancies in the structure retards the ability of the material to conduct oxygen ions; thus the optimized system requires a large number of engineered triple point boundary locations to work efficiently. We have successfully doped the host LSM lattice to alter the interred equilibrium of the material to increase its ionic conductivity and thus lower the cathodic overpotential of the system. Our presentation will discuss these new materials, the results of cell tests, and a number of characterization experiments performed.

  10. Europium doped lanthanum zirconate nanoparticles with high concentration quenching

    SciTech Connect

    Alaparthi, Suresh B.; Lu, Long; Tian, Yue; Mao, Yuanbing

    2014-01-01

    Graphical abstract: - Highlights: • Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles were prepared facilely by a kinetically modified molten salt method. • High color purity and concentration quenching were achieved in these La{sub 2}Zr{sub 2}O{sub 7}:Eu nanoparticles. • Concentration quenching mechanism was discussed for Eu{sup 3+} in these Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles. - Abstract: A series of Eu{sup 3+} doped lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}) nanoparticles (NPs, 20 ± 5 nm in diameter) with cubic fluorite structure were facilely synthesized by a kinetically modified molten salt synthetic (MSS) process and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence spectra (PL). Under the excitation of 405 nm, intense red emission with high color purity can be observed in the Eu{sup 3+} doped La{sub 2}Zr{sub 2}O{sub 7} NPs. Moreover, the as-prepared Eu:La{sub 2}Zr{sub 2}O{sub 7} NPs possess high concentration quenching, which is as high as ∼32.5 mol% of europium dopants in the La{sub 2}Zr{sub 2}O{sub 7} host. The corresponding concentration quenching mechanism was discussed as well. Our results confirm that the kinetically modified MSS process is a promising approach for preparing rare earth (RE) ions doped A{sub 2}B{sub 2}O{sub 7} nanoparticles with uniform RE doping and high concentration quenching.

  11. Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells

    SciTech Connect

    Yoon, Kyung J.; Cramer, Carolyn N.; Thomsen, Edwin C.; Coyle, Christopher A.; Coffey, Greg W.; Marina, Olga A.

    2010-04-23

    The structural, thermal and electrical characteristics of calcium- and cobalt-doped yttrium chromites were studied for a potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) as well as other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xCoxO3±δ (x=0, 0.1, 0.2, 0.3) compositions had single phase orthorhombic perovskite structures in the wide range of oxygen pressures. Sintering behavior was remarkably enhanced upon cobalt doping and densities 95% and 97% of theoretical density were obtained after sintering at 1300oC in air, when x was 0.2 and 0.3, respectively. The electrical conductivity in both oxidizing and reducing atmospheres was significantly improved with cobalt content, and values of 49 and 10 S/cm at 850oC and 55 and 14 S/cm at 950oC in air and forming gas, respectively, were reported for x=0.2. The conductivity increase was attributed to the charge carrier density increase upon cobalt substitution for chromium confirmed with Seebeck measurements. The thermal expansion coefficient (TEC) was increased with cobalt content and closely matched to that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.1 ≤ x ≤ 0.2. The chemical compatibility between Y0.8Ca0.2Cr1-xCoxO3±δ and YSZ was evaluated firing the two at 1400oC and no reaction products were found if x value was kept lower than 0.2.

  12. Improved chemical stability and conductivity of barium cerate nanopowders by Lanthanum doping.

    PubMed

    Lee, Hunhyeong; Park, Inyu; Shin, Dongwook

    2013-09-01

    Despite of the highest proton conductivity, barium cerate electrolytes are well known for the deficiency of chemical stability at elevated temperature under CO2 atmosphere. This work is focused on improving chemical stability of lanthanum doped barium cerate (BCL) powder for electrolyte. Although lanthanum doping causes distortion of perovskite structure lattice, immoderate doping could stabilize structure due to increasing symmetry of structure lattices. The thermogravimetric analysis and AC impedance measurements revealed that the lanthanum doping suppresses the reaction between barium and carbonate and this effect results in sufficient improvement in ionic conductivity in operating temperatures range. It was confirmed that BaCe0.7La0.3O3-delta (BCL30) was the most stable composition and the conductivity of BCL30 is high as 3.8 S x cm(-1) x K at 700 degrees C. PMID:24205607

  13. Crystal structure of Eu-doped magnetoplumbite-type lanthanum aluminum oxynitride with emission site splitting

    SciTech Connect

    Masubuchi, Yuji; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2011-09-15

    Eu-doped lanthanum aluminum oxynitride (LaAl{sub 12}(O,N){sub 19}) with magnetoplumbite structure was prepared by nitridation of the oxide precursor obtained from aluminum glycine gel and subsequent post-annealing. Eu-doped lanthanum aluminum oxynitride exhibited blue light emission at 440 nm with a shoulder at 464 nm under excitation at 254 nm. Isostructural Eu-doped calcium aluminum oxide (CaAl{sub 12}O{sub 19}) exhibited a single emission peak at 415 nm. Structural refinement using neutron powder diffraction indicated that the lanthanum site occupied partially by Eu{sup 2+} splits into 2d and 6h sites in the aluminum oxynitride. The longer emission and the shoulder peak in the former aluminum oxynitride were observed in relation to the increasing covalency as well as crystal field splitting around doped Eu{sup 2+} induced by site splitting involved with the two kinds of anions. - Graphical Abstract: Magnetoplumbite type Eu-doped lanthanum aluminum oxynitride has lanthanum site splitting induced by two kinds of anions, causing two emission peaks. Highlights: > Magnetoplumbite type LaAl{sub 12}(O,N){sub 19} doped with Eu shows emission peak splitting. > ND analysis is performed on La{sub 0.97}Eu{sub 0.03}Al{sub 12}(O,N){sub 19} and Ca{sub 0.97}Eu{sub 0.03}Al{sub 12}O{sub 19}. > La{sub 0.97}Eu{sub 0.03}Al{sub 12}(O,N){sub 19} has lanthanum site splitting. > The lanthanum site splitting is induced by coexisting of two kinds of anions.

  14. Transport properties of silver-calcium doped lanthanum manganite

    NASA Astrophysics Data System (ADS)

    Cherif, B.; Rahmouni, H.; Smari, M.; Dhahri, E.; Moutia, N.; Khirouni, K.

    2015-01-01

    Electrical properties of silver-calcium doped lanthanum manganite (La0.5Ca0.5-xAgxMnO3 with 0.0

  15. Enhancement of ferromagnetic and dielectric properties of lanthanum doped bismuth ferrite nanostructures

    SciTech Connect

    Chaudhuri, A.; Mandal, K.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Rod shaped lanthanum doped bismuth ferrite was obtained. Black-Right-Pointing-Pointer The diameter of the particles were found to be decreasing on doping with lanthanum. Black-Right-Pointing-Pointer Both ferromagnetic and dielectric properties enhanced. Black-Right-Pointing-Pointer A transition due to spin canting is observed near 550 Degree-Sign C. Black-Right-Pointing-Pointer Electron spin resonance study shows the breakage of spin cycloid due to doping. -- Abstract: Cylindrical-shaped multiferroic Bi{sub 1-x}La{sub x}FeO{sub 3} (x = 0.0, 0.05, 0.1 and 0.15) were synthesized successfully by hydrothermal method. All samples were found to be rhombohedrally distorted perovskite structure. Diameter of the cylindrical particles reduces from {approx}450 nm for x = 0.0 to {approx}100 nm for x = 0.1 prepared under the same conditions. The Neel temperature as well as the dielectric constant was also found to increase with the increase in lanthanum content. Lanthanum doping also enhanced the magnetic properties. Magnetization measurements above room temperature show a significant increase in magnetization at around 400 Degree-Sign C. Enhanced magnetic properties due to lanthanum doping are caused by the breakage of spin cycloid as observed by electron spin resonance study.

  16. Effect of Nickel Substitution on Defect Chemistry, Electrical Properties, and Dimensional Stability of Calcium-Doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-06-30

    The effect of nickel substitution on defect chemistry, electrical properties, and dimensional stability of calcium-doped yttrium chromite was studied for use as an interconnect material in high temperature solid oxide fuel cells (SOFCs). The compositions of Y0.8Ca0.2Cr1-xNixO3±δ (x=0-0.15), prepared using the glycine nitrate process, showed single phase orthorhombic perovskite structures over a wide range of oxygen partial pressures (10^-17 atm ≤ pO2 ≤ 0.21 atm). X-ray diffraction (XRD) analysis indicated that most of the nickel ions replacing chromium ions are divalent and act as acceptor dopants, leading to a substantial increase in conductivity. In particular, the conductivity at 900 degree C in air increased from 10 S/cm to 34 S/cm with 15% nickel substitution, and an increase in charge carrier density was confirmed by Seebeck measurements. A point defect model was derived, and the relationship between electrical conductivity and oxygen partial pressure was successfully fitted into the proposed model. The defect modeling results indicated that nickel substitution improves the stability of calcium-doped yttrium chromite toward reduction and suppresses the oxygen vacancy formation, which results in significantly increased electrical conductivity in reducing environment. The electrical conductivity of Y0.8Ca0.2Cr0.85Ni0.15O3±δ at 900 degree C in reducing atmosphere (pO2=10^-17 atm) was 5.8 S/cm, which was more than an order of magnitude higher than that of Y0.8Ca0.2CrO3±δ (0.2 S/cm). Improved stability in reducing atmosphere was further confirmed by dilatometry measurements showing reduced isothermal "chemical" expansion, and the isothermal expansion in reducing atmosphere (pO2=10^-17 atm) at 900 degree C decreased from 0.07% for Y0.8Ca0.2CrO3±δ to 0.03% for Y0.8Ca0.2Cr0.85Ni0.15O3±δ. Based on these results, enhanced electrical performance and mechanical integrity is expected with nickel substitution on calcium-doped yttrium chromite in SOFC

  17. Nanocrystalline brookite with enhanced stability and photocatalytic activity: influence of lanthanum(III) doping.

    PubMed

    Perego, Céline; Wang, Yu-Heng; Durupthy, Olivier; Cassaignon, Sophie; Revel, Renaud; Jolivet, Jean-Pierre

    2012-02-01

    Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment. PMID:22201282

  18. Processing and electrical properties of alkaline earth-doped lanthanum gallate

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Pederson, L.R.; Weber, W.J.

    1997-10-01

    Oxides exhibiting substantial oxygen ion conductivity are utilized in a number of high-temperature applications, including solid oxide fuel cells, oxygen separation membranes, membrane reactors, and oxygen sensors. Alkaline earth-doped lanthanum gallate powders were prepared by glycine/nitrate combustion synthesis. Compacts of powders synthesized under fuel-rich conditions were sintered to densities greater than 97% of theoretical. Appropriate doping with Sr or Ba on the A-site of the perovskite structure, and Mg on the B-site, resulted in oxygen ion conductivity higher than that of yttria-stabilized zirconia (YSZ), and high ionic transference numbers. Doping with Ca and Mg resulted in lower conductivity than YSZ. Thermal expansion coefficients of the doped gallates were higher than that of YSZ.

  19. Effect of a-site cation deficiency and YSZ additions on sintering and properties of doped lanthanum manganite

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Weber, W.J.

    1995-06-01

    The sintering behavior of Ca- and Sr-doped lanthanum manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. In general, A-site cation deficiency increases sintered density. The effect of additions of YSZ to lanthanum manganite (to expand the reactive region at the cathode/electrolyte interface and improve thermal expansion and sintering shrinkage matches) on sintering and other properties will also be reported.

  20. Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites

    NASA Astrophysics Data System (ADS)

    Cheng, Jihong; Navrotsky, Alexandra

    2004-01-01

    LaGaO 3 perovskites doped with Sr or Ba at the La site and Mg at the Ga site were prepared by solid-state reaction or sol-gel method and characterized. Enthalpies of formation from constituent oxides at 298 K were determined by high-temperature oxide melt solution calorimetry. Energetic trends are discussed in terms of defect chemistry. As oxygen deficiency increases, formation enthalpies define three trends, LaGa 1- yMg yO 3- δ (LGM), La 1- xSr xGa 1- yMg yO 3- δ (LSGM), and La 1- xBa xGa 1- yMg yO 3- δ (LBGM). They become less exothermic with increasing doping, suggesting a dominant destabilization effect from oxygen vacancies. The endothermic enthalpy of vacancy formation is 275±37, 166±18 and 138±12 kJ/mol of VO·· for LGM, LBGM and LSGM, respectively. Tolerance factor and ion size mismatch also affect enthalpies. In terms of energetics, Sr is the best dopant for the La site and Mg for the Ga site, supporting earlier studies, including oxygen ion conductivity and computer modeling.

  1. Thermopower studies of rare earth doped lanthanum barium manganites

    NASA Astrophysics Data System (ADS)

    Reddy, G. Lalitha; Lakshmi, Y. Kalyana; kumar, N. Pavan; Rao, S. Manjunath; Reddy, P. Venugopal

    2014-08-01

    Influence of rare earth doping on electrical, magnetic and thermopower studies of La0.34Re0.33Ba0.33MnO3 compound was investigated. Ferro to paramagnetic transition and metal to insulator transition temperatures decrease with decreasing ionic radius of the dopant ion. Electrical resistivity in the entire temperature range is explained by phase separation model. The magnitude of Seebeck coefficient increases with increasing dopant ionic radius. A cross over from negative to positive sign has also been observed in thermopower data with decreasing A site ionic radius (). The low temperature thermopower data has been explained using a qualitative model containing diffusion; magnon drag and phonon drag effects while the paramagnetic insulating part has been analyzed using small polaron hopping mechanism.

  2. Intrinsic Mobility Limiting Mechanisms in Lanthanum-Doped Strontium Titanate

    NASA Astrophysics Data System (ADS)

    Verma, Amit; Kajdos, Adam P.; Cain, Tyler A.; Stemmer, Susanne; Jena, Debdeep

    2014-05-01

    The temperature dependent Hall mobility data from La-doped SrTiO3 thin films are analyzed and modeled considering various electron scattering mechanisms. We find that a ˜6 meV transverse optical phonon deformation potential scattering mechanism is necessary to explain the dependence of transport on temperature between 10-200 K. Also, we find that the low temperature electron mobility in intrinsic (nominally undoped) SrTiO3 is limited by acoustic phonon scattering. Adding the above two scattering mechanisms to longitudinal optical phonon and ionized impurity scattering mechanisms, excellent quantitative agreement between mobility measurement and model is achieved in the whole temperature range (2-300 K) and carrier concentrations ranging over a few orders of magnitude (8×1017 -2×1020 cm-3).

  3. Advanced Ceramic Interconnect Material for Solid Oxide Fuel Cells: Electrical and Thermal Properties of Calcium- and Nickel-Doped Yttrium Chromites

    SciTech Connect

    Yoon, Kyung J.; Cramer, Carolyn N.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-11-15

    The structural, thermal and electrical characteristics of calcium- and nickel-doped yttrium chromites were studied for potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) and other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xNixO3±δ compositions with x=0-0.15 showed single phase orthorhombic perovskite structures between 25 and 1200 degrees C over a wide range of oxygen partial pressures. Nickel doping remarkably enhanced sintering behavior of otherwise refractory chromites, and densities 94% of theoretical density were obtained after sintering at 1400 degrees C in air with 15 at.% Ni. The thermal expansion coefficient (TEC) was increased with nickel content to closely match that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.05 ≤ x ≤ 0.15. Nickel doping significantly improved the electrical conductivity in both oxidizing and reducing atmospheres. Undesirable oxygen ion leakage current was insignificant in dual atmosphere conditions. No interfacial interactions with YSZ were detected after firing at 1400 degrees C.

  4. Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass.

    PubMed

    Frantz, J A; Shaw, L B; Sanghera, J S; Aggarwal, I D

    2006-03-01

    Waveguide amplifiers fabricated in Er3+-doped gallium lanthanum sulfide (GLS) glass are demonstrated. GLS is deposited onto fused silica substrates by RF magnetron sputtering, and waveguides are patterned by use of the lift-off technique. The waveguides exhibit a total internal gain of 6.7 dB (2.8 dB/cm) for a signal with a wavelength of 1.55 mum. This experiment is, to the best of our knowledge, the first demonstration of gain in an Er3+-doped chalcogenide glass waveguide. The fabrication methods we apply, if used with other rare earth dopants, could potentially be employed to produce sources operating in the mid-IR. PMID:19503508

  5. Optical, luminescent and laser properties of highly transparent ytterbium doped yttrium lanthanum oxide ceramics

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Kopylov, Yu.; Kravchenko, V.; Li, Jiang; Pan, Yubai; Kynast, U.; Leznina, M.; Strek, W.; Marciniak, Lukasz; Palashov, O.; Snetkov, I.; Mukhin, I.; Spassky, D.

    2015-12-01

    This paper describes the fabrication and investigation of highly transparent Yb-doped yttrium lanthanum oxide ceramics. For sintering of the ceramics we used a technology, which consists of several consecutive steps: (a) synthesis of weakly agglomerated nanopowder by laser ablation, (b) compacting of the green body with cold isostatic pressing (CIP), and (c) sintering in vacuum. After calcinations of the synthesized nanopowder at 1200 °C, a pure single-phase solid solution Yb3+:(LaxY1-x)2O3 was formed. The lanthanum ions proved to be a good aid to sinter yttria ceramics doped with Yb3+ at comparatively moderate temperatures of about 1650 °C. The ceramics have a relative density higher than 99.99% and grain sizes around 40 μm. The absorption coefficient of 3.2 mm thick Yb0.12La0.27Y1.61O3 ceramics is 0.01 cm-1 at 1150 nm. Laser oscillation at a wavelength of 1033 nm is demonstrated.

  6. Preparation, Characterization and Photocatalytic Activity of Lanthanum Doped Mesoporous Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Shi, Zhong-liang; Lai, Hong; Yao, Shu-hua; Wang, Shao-feng

    2012-02-01

    Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric differential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements indicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.

  7. C-band single-longitudinal mode lanthanum co-doped bismuth based erbium doped fiber ring laser.

    PubMed

    Qureshi, Khurram Karim; Feng, X H; Zhao, L M; Tam, H Y; Lu, C; Wai, P K A

    2009-08-31

    We propose and demonstrate a stable, tunable and narrow linewidth C-band lanthanum co-doped bismuth based erbium doped fiber (EDF) ring laser with single longitudinal mode (SLM) operation. A free space thin film filter acts as a wavelength discriminative component selecting a few oscillating modes while a Lyot filter formed by a polarization maintaining (PM) fiber and a linear polarizer further discriminates and selects SLM efficiently. A power stability of < or = 0.05 dB, central wavelength variation of < or = 0.02 nm, a side-mode suppression ratio (SMSR) of at least > 43 dB, and a linewidth of about 1.3 kHz have been experimentally demonstrated. PMID:19724634

  8. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Varma, K. B. R.

    2009-04-01

    Barium lanthanum bismuth titanate (Ba1-(3/2)xLaxBi4Ti4O15, x = 0-0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x <= 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (ɛm) with an increase in the lanthanum content (0.1 < x <= 0.4). The dielectric relaxation was modelled using the Vogel-Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x >= 0.3, Tm was frequency independent. Well-developed P(polarization)-E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm-2 for pure BBT to 13.4 µC cm-2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

  9. Relaxor properties of lanthanum-doped bismuth layer-structured ferroelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Bing; Hui, Rong; Zhu, Jun; Lu, Wang-Ping; Mao, Xiang-Yu

    2004-11-01

    Several polycrystalline samples of bismuth layer-structured ferroelectrics (BLSF) family doped by lanthanum, Bi4-xLaxTi3O12, SrBi4-xLaxTi4O15, Sr2Bi4-xLaxTi5O18, and (Bi,La)4Ti3O12-Sr(Bi,La)4Ti4O15, were prepared by the traditional solid-state reaction method. Their ferroelectric and dielectric properties were investigated. The dielectric measurement data showed that the content of lanthanum determined the ferroelectric characteristics of the compounds. In each series samples, they behaved as normal ferroelectrics for small x, but all of them tended to become relaxors when x was increased. The critical value of the La content causing relaxor characteristics is different for the different BLSFs due to the difference of the number of strontium atoms in their crystal structures. The appearance of the relaxor behavior was attributed to a ferroelectric microdomain state induced by random fields.

  10. Structures, Stabilities, and Electronic Properties for Rare-Earth Lanthanum Doped Gold Clusters

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Ru

    2015-02-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La2Aun (n = 1-9) and pure gold Aun (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La2Aun clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La2Au6 isomer possesses higher stability for small-sized La2Aun clusters (n = 1-9). The charges in the La2Aun clusters transfer from La atoms to the Aun host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La2Aun clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  11. Intrinsic inhomogeneities of low-doped lanthanum manganites in the paramagnetic temperature range

    SciTech Connect

    Solin, N. I.

    2012-01-15

    The nature of the electrical resistivity for low-doped lanthanum manganites is elucidated. The electrical resistivity is described by the Efros-Shklovskii law (ln{rho} {radical} (T{sub 0}/T){sup -1/2}, where T{sub 0} {radical} 1/R{sub ls}) in the temperature range from T* Almost-Equal-To 300 K Almost-Equal-To T{sub C} (T{sub C} is the Curie temperature for conducting manganites) to their T{sub C} and is explained by the tunneling of carriers between localized states. The magnetoresistance is explained by a change in the size of localized states R{sub ls} in a magnetic field. The patterns of change in R{sub ls} with temperature and magnetic field strength determined from magnetotransport properties are satisfactorily described in the model of phase separation into small-radius metallic droplets in a paramagnetic matrix. The sizes R{sub ls} and their temperature dependence have been estimated through magnetic measurements. The results confirm the existence of a Griffith phase. The intrinsic inhomogeneities produced by thermodynamic phase separation determine the electrical resistivity and magnetoresistance of lanthanum manganites.

  12. Effect of CO2 on the stability of strontium doped lanthanum manganite cathode

    NASA Astrophysics Data System (ADS)

    Hu, Boxun; Mahapatra, Manoj K.; Keane, Michael; Zhang, Heng; Singh, Prabhakar

    2014-12-01

    Strontium doped lanthanum manganite cathode stability in 0-10% carbon dioxide containing air has been studied in the temperature range of 1023-1123 K with cathodic biases of 0 V and 0.5 V. The current density of the LSM cathode remains stable after an initial decrease. Surface analyses of the pre-test and post-test LSM cathodes using Auger electron spectroscopy (AES) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) techniques suggest that the formation of SrCO3 at the LSM surface leads to initial performance degradation. Our observations also indicate that CO2 does not affect the current density after an initial LSM activation in air. Overall, the LSM performance degradation in CO2-containing air is less severe than in humidified air.

  13. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    SciTech Connect

    Naseem, Swaleha; Khan, Wasi Singh, B. R.; Naqvi, A. H.

    2015-06-24

    Strontium and nickel doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ε’) decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner’s two layer model in studied nanoparticles.

  14. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Wasi; Singh, B. R.; Naqvi, A. H.

    2015-06-01

    Strontium and nickel doped lanthanum ferrite (LaFeO3) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ɛ') decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop's theory based on Maxwell-Wagner's two layer model in studied nanoparticles.

  15. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.

    PubMed

    Li, Mei; Wang, Yao; Wang, Yunlong; Chen, Fanglin; Xia, Changrong

    2014-07-23

    Bismuth is doped to lanthanum strontium ferrite to produce ferrite-based perovskites with a composition of La(0.8-x)Bi(x)Sr0.2FeO(3-δ) (0 ≤ x ≤ 0.8) as novel cathode material for intermediate-temperature solid oxide fuel cells. The perovskite properties including oxygen nonstoichiometry coefficient (δ), average valence of Fe, sinterability, thermal expansion coefficient, electrical conductivity (σ), oxygen chemical surface exchange coefficient (K(chem)), and chemical diffusion coefficient (D(chem)) are explored as a function of bismuth content. While σ decreases with x due to the reduced Fe(4+) content, D(chem) and K(chem) increase since the oxygen vacancy concentration is increased by Bi doping. Consequently, the electrochemical performance is substantially improved and the interfacial polarization resistance is reduced from 1.0 to 0.10 Ω cm(2) at 700 °C with Bi doping. The perovskite with x = 0.4 is suggested as the most promising composition as solid oxide fuel cell cathode material since it has demonstrated high electrical conductivity and low interfacial polarization resistance. PMID:24971668

  16. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO3) ceramics

    NASA Astrophysics Data System (ADS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-07-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La2O3) doped Barium Titanate (BaTiO3) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO3 with 0.3, 0.5 and 0.7 mole% La2O3 under different sintering parameters. The raw materials used were La2O3 nano powder of ~80nm grain size and 99.995% purity and BaTiO3 nano powder of 100nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La2O3) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La2O3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La3+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO3 ceramics.

  17. Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime

    NASA Astrophysics Data System (ADS)

    Yun, Di; Oaks, Aaron J.; Chen, Wei-ying; Kirk, Marquis A.; Rest, Jeffrey; Insopov, Zinetula Z.; Yacout, Abdellatif M.; Stubbins, James F.

    2011-11-01

    In order to understand cavity and bubble formation and growth in oxide nuclear fuel materials, ion beam irradiation experiments were conducted with two common fission gas species: Kr and Xe. Ceria (CeO 2) was selected as a surrogate material for uranium dioxide (UO 2) due to its many similar properties to UO 2. Ion beam energies were chosen such that both cavities and gas bubbles structures were induced by ion irradiations. The ion irradiation experiments were carried out at 600 °C, at which temperature, cavity/gas bubble structures are believed to be immobile in this material. Lanthanum (La) was chosen as a dopant in CeO 2 to investigate the effect of impurities. The presence of La in the CeO 2 lattice also introduces a predictable initial concentration of oxygen vacancies, similar to the introduction of oxygen vacancies by the existence of Pu 3+ in MOX fuel [1]. The influence of two La concentrations, 5% and 25%, were examined. The study focused on the high dose regime where cavity/gas bubble structures were clearly identifiable with their sizes and number densities readily measurable. Cavity/gas bubble coarsening by coalescence was identified with TEM (Transmission Electron Microscopy) characterizations of as-irradiated La doped CeO 2 specimens. The results revealed that lanthanum trapping has significant influence on the cavity/bubble growth in the material lattice by comparing the cavity/gas bubble size distributions between 5% La doped ceria and 25% La doped ceria. Lattice and kinetic Monte Carlo calculations described in a previous work have provided insights to the interpretations of the experimental results [2]. Solid state Xe precipitates were observed in low energy Xe implantation in 5% La doped ceria to a very high fluence of 1 × 10 17 ions/cm 2 at 600 °C. The solid state Xe precipitate structures are represented by faceted morphology. Very similar observations of solid state/near solid state Xe bubbles were made by Nogita et al. in the outer region

  18. Photocatalytic conversion of gaseous ethylbenzene on lanthanum-doped titanium dioxide nanotubes.

    PubMed

    Cheng, Zhuo-Wei; Feng, Li; Chen, Jian-Meng; Yu, Jian-Ming; Jiang, Yi-Feng

    2013-06-15

    The photocatalytic properties of titanium dioxide (TiO₂) make it an attractive material for environmental remediation. In the present study, lanthanum (La(3+))-doped TiO2 nanotubes with excellent photocatalytic activity were fabricated by a combination of sol-gel method and hydrothermal technique. The optimal preparation parameters were determined by the structural characterization using a range of methods and the photocatalytic degradation of gaseous ethylbenzene (EB). Compared with pure TiO₂ nanoparticles, 1.2%-La(3+)-doped - titania nanotubes (1.2%-La(3+)-TNTs) exhibited higher activity under 254 nm UV for conversion of EB. The initial EB concentrations and relative humidity (RH) obviously influenced the photocatalytic activity of 1.2%-La(3+)-TNTs. Kinetic analysis showed that surface adsorption and surface reaction controlled the rate-determining step for RH of 40-50% and >80%, respectively. Gas chromatography and mass spectrometry were used to analyze the intermediates generated in the conversion of EB, allowing a tentative decomposition pathway to be proposed. The prepared photocatalyst exhibited enhanced EB conversion compared with undoped TiO₂, and showed a promise for the decomposition of recalcitrant compounds before subsequent biopurification. PMID:23643959

  19. Top electrode-dependent resistance switching behaviors of lanthanum-doped ZnO film memory devices

    NASA Astrophysics Data System (ADS)

    Xu, Dinglin; Xiong, Ying; Tang, Minghua; Zeng, Baiwen

    2014-03-01

    Lanthanum-doped ZnO (Zn0.99La0.01O) polycrystalline thin films were deposited on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. Metal/La-doped ZnO/Pt sandwich structures were constructed by depositing different top electrodes (Ag and Pt). Unipolar switching and bipolar switching characteristics were investigated in Pt/La-doped ZnO/Pt and Ag/La-doped ZnO/Pt structures, respectively. Compared with the undoped devices (Pt/ZnO/Pt and Ag/ZnO/Pt), the La-doped devices exhibits superior resistive switching performances, such as narrow distribution of the resistive switching properties ( R ON, R OFF, V Set, and V Reset), higher R OFF/ R ON ratio and sharp switching transition.

  20. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    NASA Astrophysics Data System (ADS)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  1. Influence of lanthanum doping on the morphotropic phase boundary of lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Hinterstein, Manuel; Schoenau, Kristin A.; Kling, Jens; Fuess, Hartmut; Knapp, Michael; Kungl, Hans; Hoffmann, Michael J.

    2010-07-01

    A phase diagram for morphotropic (Pb0.985La0.01)(Zr1-xTix)O3 is proposed based on a combination of X-ray and neutron powder diffraction experiments and complemented by transmission electron microscopy. Dependent on composition three regions are characterized. The stability range of tetragonal microdomains for high Ti contents, the stability range of rhombohedral microdomains for low Ti contents, and an intermediate stability range of nanodomains. All three regions exhibit a corresponding low temperature configuration. Temperature dependent diffraction revealed that lanthanum doping reduces the sensitivity of the structure to changes in temperature and composition. A continuous transition from pseudorhombohedral to tetragonal symmetry with an intermediate two-phase region at the morphotropic phase boundary is observed. A similar transition of low temperature superstructure phases from pseudorhombohedral to pseudotetragonal with an intermediate monoclinic phase governed by a continuous change in the oxygen octahedral tilt system from a-a-a- over a-a-c- to a0a0c- is identified.

  2. Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone

    NASA Astrophysics Data System (ADS)

    Ju, Jiangwei; Lin, Jie; Wang, Yusu; Zhang, Yanxiang; Xia, Changrong

    2016-01-01

    Strontium-doped lanthanum manganite (LSM) nanoparticles are deposited onto porous yttria-stabilized zirconia frameworks via an ion impregnation/infiltration process. The apparent conductivity of the impregnated LSM nanostructure is investigated regarding the fabricating parameters including LSM loading, heat treatment temperature, heating rate, and annealing at 750 °C for 400 h. Besides, the conductivity, the intrinsic conductivity as well as Bruggeman factor of the impregnated LSM is estimated from the apparent conductivity using the analytical model for the three-dimensional impregnate network. The conductivity increases with LSM loading while the interfacial polarization resistance exhibits the lowest value at an optimal loading of about 5 vol.%, which corresponds to the largest three-phase boundary as predicted using the numerical infiltration methodology. At the optimal loading, the area specific ohmic resistance of the impregnated LSM is about 0.032 Ω cm2 at 700 °C for a typical impregnated cathode of 30 μm thick. It is only 5.5% of the cathode interfacial polarization resistance and 3.3% of the total resistance for a single cell consisting of a Ni-YSZ support, a 10 μm thick electrolyte and a 30 μm thick cathode, demonstrating that the ohmic resistance is negligible in the LSM impregnated cathode for SOFCs.

  3. Dynamic Nuclear Polarization in Samarium Doped Lanthanum Magnesium Nitrate. Ph.D. Thesis - Va. Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.

    1971-01-01

    The dynamic nuclear polarization of hydrogen nuclei by the solid effect in single crystals of samarium doped lanthanum magnesium nitrate (Sm:LMN) was studied theoretically and experimentally. The equations of evolution governing the dynamic nuclear polarization by the solid effect were derived in detail using the spin temperature theory and the complete expression for the steady state enhancement of the nuclear polarization was calculated. Experimental enhancements of the proton polarization were obtained for eight crystals at 9.2 GHz and liquid helium temperatures. The samarium concentration ranged from 0.1 percent to 1.1 percent as determined by X-ray fluorescence. A peak enhancement of 181 was measured for a 1.1 percent Sm:LMN crystal at 3.0 K. The maximum enhancements extrapolated with the theory using the experimental data for peak enhancement versus microwave power and correcting for leakage, agree with the ideal enhancement (240 in this experiment) within experimental error for three of the crystals.

  4. Thermal and mechanical effects on large field dielectric loss in lanthanum-doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.; Jo, Hwan Ryul; Lynch, Christopher S.

    2013-04-01

    Ferroelectric material losses in devices ranging from sonar transducers to energy harvesters result in the conversion of energy to heat. Under small amplitude sinusoidal drive, either electrical or mechanical, the losses are expressed in terms of a loss tangent. This study addressed the effects of temperature and bias stress on large field dielectric loss in the presence of thermal and mechanical loading in lanthanum-doped lead zirconate titanate, Pb0.92La0.08(Zr0.65Ti0.35)0.98O3 (PLZT 8/65/35). This loss is associated with domain wall motion. Large field dielectric loss was experimentally measured using a technique that matches the area within a unipolar electric displacement - electric field hysteresis loop to an equivalent area ellipse-shaped hysteresis loop. The results indicate that the dependence of dielectric loss on bias stress changes with the onset of a thermally induced transition to slim loop behavior. Stress causes the dielectric loss to increase at low temperature and decrease at high temperature. This is consistent with changes in remnant polarization and saturation of the unipolar electric field - electric displacement hysteresis loops.

  5. Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles

    SciTech Connect

    Kumar, Pushpendra; Singh, Jai; Pandey, Mukesh Kumar; Jeyanthi, C.E.; Siddheswaran, R.; Paulraj, M.; Hui, K.N.; Hui, K.S.

    2014-01-01

    Graphical abstract: - Highlights: • Template-free synthesis of ZnSe and ZnSe:La nanoparticles was developed at low temperature 100 °C. • Cubic ZnSe and ZnSe:La nanoparticles were obtained by chemical route. • As-synthesized ZnSe:La nanoparticles showed higher emission intensity than ZnSe nanoparticles. • Band gap (E{sub g}) of ZnSe nanoparticles was bigger than ZnSe nanoparticles due to nanosized effect. - Abstract: In this work, a simple, effective and reproducible chemical synthetic route for the production of high-quality, pure ZnSe nanoparticles (NPs), and lanthanum-doped ZnSe (ZnSe:La) NPs is presented. The wide bandgap, luminescent pure ZnSe and ZnSe:La NPs has been synthesized at a low temperature (100 °C) in a single template-free step. The size and optical bandgap of the NPs was analyzed from powder X-ray diffraction (XRD), UV–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). A broad photoluminescence (PL) emission across the visible spectrum has been demonstrated by a systematic blue-shift in emission due to the formation of small nanoparticles. Here, contribution to emission intensity from surface states of NPs increases with La doping. TEM data revealed that the average size of ZnSe and ZnSe:La NPs is 14 and 8 nm, respectively. On the other hand, band gap energy E{sub g} of ZnSe and ZnSe:La NPs were found to be 3.59 eV and 3.65 eV, respectively. Results showed that hydrazine hydrate played multiple roles in the formation of ZnSe and ZnSe:La NPs. A possible reaction mechanism for the growth of NPs is also discussed.

  6. Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics

    SciTech Connect

    Wang, Xiangrong; Zhang, Yong; Baturin, Ivan; Liang, Tongxiang

    2013-10-15

    Graphical abstract: The blocking effect of the crystal–glass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glass–ceramics: preparation and characterization. - Highlights: • La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. • The Z″ and M″ peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. • The Z″ and M″ peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. • Crystallite impedance decreases while crystal–glass interface impedance increases. • La{sub 2}O{sub 3} addition increases blocking factor of the crystal–glass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glass–ceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z″ and M″ peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z″ and M″ peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystal–glass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystal–glass interface in the temperature range of 250–450 °C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystal–glass interface area.

  7. Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping

    NASA Astrophysics Data System (ADS)

    Ding, Xifeng; Hua, Guixiang; Ding, Dong; Zhu, Wenliang; Wang, Hongjin

    2016-02-01

    Apatite-type Lanthanum silicate (LSO) is among the most promising electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) owing to the high conductivity and low activation energy at lower temperature than traditional doped-zirconia electrolyte. The ionic conductivity as well as the sintering density of lanthanum silicate oxy-apatite, La10Si6-xCuxO27-δ (LSCO, 0 ≤ x ≤ 2), was effectively enhanced through a small amount of doped copper. The phase composition, relative density, ionic conductivity and thermal expansion behavior of La10Si6-xCuxO27-δ was systematically investigated by X-ray diffraction (XRD), Archimedes' drainage method, scanning electron microscope (SEM), electrochemical impedance spectra (EIS) and thermal dilatometer techniques. With increasing copper doping content, the ionic conductivity of La10Si6-xCuxO27-δincreased, reaching a maximum of 4.8 × 10-2 S cm-1 at 800 °C for x = 1.5. The improved ionic conductivity could be primarily associated with the enhanced grain conductivity. The power output performance of NiO-LSCO/LSCO/LSCF single cell was superior to that obtained on NiO-LSO/LSO/LSCF at different temperatures using hydrogen as fuel and oxygen as oxidant, which could be attributed to the enhanced oxygen ionic conductivity as well as the sintering density for the copped doped lanthanum silicate. In conclusion, the apatite La10Si4.5Cu1.5O25.5 is a promising candidate electrolyte for IT-SOFCs.

  8. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Jung, Jong-Hyuk; Im, Won Bin; Yoon, Sukeun; Shin, Kyung-Hee; Lee, Jong-Won

    2013-10-23

    Rechargeable metal-air batteries have attracted a great interest in recent years because of their high energy density. The critical challenges facing these technologies include the sluggish kinetics of the oxygen reduction-evolution reactions on a cathode (air electrode). Here, we report doped lanthanum nickelates (La2NiO4) with a layered perovskite structure that serve as efficient bifunctional electrocatalysts for oxygen reduction and evolution in an aqueous alkaline electrolyte. Rechargeable lithium-air and zinc-air batteries assembled with these catalysts exhibit remarkably reduced discharge-charge voltage gaps (improved round-trip efficiency) as well as high stability during cycling. PMID:24053465

  9. [Study on preparation of lanthanum-doped TiO2 nanometer thin film materials and its photocatalytic activity].

    PubMed

    Zheng, Huai-li; Tang, Ming-fang; Gong, Ying-kun; Deng, Xiao-jun; Wu, Bang-hua

    2003-04-01

    In this paper, lanthanum-doped TiO2 nanometer film materials coated on glass were prepared in Ti(OBu)4 precursor solutions by sol-gel processing. Transmittance and photocatalytic activity were respectively investigated and tested for these nanometer thin films prepared with different amount of lanthanum (La), different amount of polyethylene glycol (PEG), and different coating layer times. Some reactive mechanisms were also discussed. For one layer La-addition had little effect on the film transmissivity; but the photocatalytic activity was significantly improved due to La-addition. With increasing PEG, the transmittance of the film decreased for one layer film; but its photocatalytic activity did not rise. Increasing layer number did not affect the transmissivity of multilayer film. After coating two times, increasing layer number did not significantly improve the photocatalytic activity. The highest photocatalytic activity and best transmissivity were obtained for two layer TiO2 film when the dosage of lanthanum was 0.5 g and the dosage of polyethylene was 0.2 g in the precursor solutions. These materials will probably be used in the protection of environment, waste water treatment, and air purification. PMID:12961861

  10. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    SciTech Connect

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; Medlin, Douglas L.; Clem, Paul G.; Ihlefeld, Jon F.; Hopkins, Patrick E.

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr2-xLaxNb2O7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr2Nb2O7 parent structure. We also compare our experimental results with two variations of the minimum-limit model for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.

  11. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    DOE PAGESBeta

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; Medlin, Douglas L.; Clem, Paul G.; Ihlefeld, Jon F.; Hopkins, Patrick E.

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr2-xLaxNb2O7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr2Nb2O7 parent structure. We also compare our experimental results with two variations of the minimum-limit model for κ and discuss the nature of transportmore » in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less

  12. Phase Stability Analysis of Lanthanum-Doped Alumina During Synthesis and Sintering

    NASA Astrophysics Data System (ADS)

    Ngwa Nforbi, Lum-Ngwegia

    The aim of this research was to study the phase stability during synthesis and consolidation of nanocrystalline lanthanum-doped gamma-Al2O 3 powders. We used solution combustion synthesis by dissolving precursor nitrate compounds and an organic fuel in a pre-heated muffle furnace at 500°C. Several preliminary syntheses were carried out in order to obtain the correct fuel-to-oxidizer ratio necessary for the production of the desired lanthanum-doped gamma-Al 2O3. The as-synthesized powders were then heat-treated at 1000°C for 2 hours in order to remove impurities and improve the crystallinity of the powders. Sintered circular specimens were made by pressing the heat-treated powders and subsequently annealing them at 1800°C for 4 hours. The use of this material in optical windows requires that the material have high strength and optical transparency. Elimination of all the pores during sintering is therefore crucial. In addition, preparing specimens of the gamma-Al2O3 phase is optimal, since the crystal structure is cubic and transparency is more readily achievable. Several different samples with varying weight percents of La were attempted to determine how much of the La could effectively prevent the gamma-Al2O 3 phase from transforming into the more stable alpha-Al2O 3 phase. The different phases of compounds produced with increasing amounts of La were also identified. The as-synthesized and heat-treated powders as well as the annealed circular discs were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The average particle sizes of the powders were determined by dynamic light scattering (DLS). XRD experiments showed that the gamma-alumina phase was stabilized when the powders were calcined at 1000°C with 5 wt% La, 10 wt% La and 13 wt% La. Increasing the amount of La resulted in the formation of the La compounds LaAlO3 in the heat-treated powders containing 15 wt% La and above and LaAl11O18 in the sintered specimens. Crystallite

  13. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  14. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  15. Determination of the ionic conductivity of Sr-doped lanthanum manganite by modified Hebb-Wagner technique

    NASA Astrophysics Data System (ADS)

    Miruszewski, T.; Karczewski, J.; Bochentyn, B.; Jasinski, P.; Gazda, M.; Kusz, B.

    2016-04-01

    The Hebb-Wagner polarization method with the electron blocking electrode has been discussed in this paper in aim to determine a partial ionic conductivity of Sr-doped lanthanum manganite. The "limiting current" in the proposed system was measured using the two-point DC technique with additional Pt electrode between LSM and blocking electrode. The electrochemical model based on bulk diffusion processes and Boltzmann statistics has been also described. The ionic conductivity calculated with the use of proposed model for La0.7Sr0.3MnO3+δ was 5.3×10-4 S cm-1 at 800 °C and the activation energy of ionic conductivity was found to be (0.60±0.02) eV. This result is in agreement with previous literature reports and indicates the workability of the modified Hebb-Wagner system.

  16. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  17. On magnetic ordering in heavily sodium substituted hole doped lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Sethulakshmi, N.; Unnimaya, A. N.; Al-Omari, I. A.; Al-Harthi, Salim; Sagar, S.; Thomas, Senoy; Srinivasan, G.; Anantharaman, M. R.

    2015-10-01

    Mixed valence manganite system with monovalent sodium substituted lanthanum manganites form the basis of the present work. Lanthanum manganites belonging to the series La1-xNaxMnO3 with x=0.5-0.9 were synthesized using modified citrate gel method. Variation of lattice parameters and unit cell volume with Na concentration were analyzed and the magnetization measurements indicated ferromagnetic ordering in all samples at room temperature. Low temperature magnetization behavior indicated that all samples exhibit antiferromagnetism along with ferromagnetism and it has also been observed that antiferromagnetic ordering dominates ferromagnetic ordering as concentration is increased. Evidence for such a magnetic inhomogeneity in these samples has been confirmed from the variation in Mn3+/Mn4+ ion ratio from X-ray Photoelectron Spectroscopy and from the absorption peak studies using Ferromagnetic Resonance Spectroscopy.

  18. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi{sub 2}AlNbO{sub 7}

    SciTech Connect

    Li Yingxuan; Chen Gang Zhang Hongjie; Li Zhonghua

    2009-04-02

    Bi{sub 2-x}La{sub x}AlNbO{sub 7} (0 {<=} x {<=} 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi{sub 1.8}La{sub 0.2}AlNbO{sub 7} was about 2 times higher than that of nondoped Bi{sub 2}AlNbO{sub 7}. The increased photocatalytic activity of La-doped Bi{sub 2}AlNbO{sub 7} was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.

  19. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox.

    PubMed

    Korake, P V; Dhabbe, R S; Kadam, A N; Gaikwad, Y B; Garadkar, K M

    2014-01-01

    La-doped ZnO nanorods with different La contents were synthesized by microwave assisted method and characterized by various sophisticated techniques such as XRD, UV-Vis., EDS, XPS, SEM and TEM. The XRD patterns of the La-doped ZnO indicate hexagonal crystal structure with an average crystallite size of 30nm. It was found that the crystallite size of La-doped ZnO is much smaller as compared to pure ZnO and decreases with increasing La content. The photocatalytic activity of 0.5mol% La-doped ZnO in the degradation of metasystox was studied. It was observed that degradation efficiency of metasystox over La-doped ZnO increases up to 0.5mol% doping then decreases for higher doping levels. Among the catalyst studied, the 0.5mol% La-doped ZnO was the most active, showing high photocatalytic activity for the degradation of metasystox. The maximum reduction of concentration of metasystox was observed under static condition at pH 8. Reduction in the Chemical Oxygen Demand (COD) of metasystox was observed after 150min. The cytotoxicological studies of meristematic root tip cells of Allium cepa were studied. The results obtained indicate that photocatalytically degraded products of metasystox were less toxic as compared to metasystox. PMID:24231392

  20. Electrical properties and thermal expansion of cobalt doped apatite-type lanthanum silicates based electrolytes for IT-SOFC

    SciTech Connect

    Shi, Qingle; Lu, Lihua; Jin, Hongjian; Zhang, Hua; Zeng, Yanwei

    2012-03-15

    Graphical abstract: The figure shows the dependence of conductivity on the Co content. It can be seen that La{sub 10}Si{sub 5.2}Co{sub 0.8}O{sub 26.6} exhibits the highest ionic conductivity of 3.33 Multiplication-Sign 10{sup -2} S/cm at 800 Degree-Sign C. When x {<=} 0.8, as doping Co weakens the binding energy and aids the migration of the interstitial oxide ions, the ionic conductivity improves. On the other hand, excess dopant of Co (0.8 < x {<=} 1.5) can decrease the number of interstitial oxide ions and reduce the ionic conductivity. Highlights: Black-Right-Pointing-Pointer The unit volumes of La{sub 10}Si{sub 6-x}Co{sub x}O{sub 27-x/2} increase with increasing cobalt content. Black-Right-Pointing-Pointer Doping Co can increase the thermal expansion because of the larger radius of Co{sup 3+} ion. Black-Right-Pointing-Pointer Conductivities of La{sub 10}Si{sub 6-x}Co{sub x}O{sub 27-x/2} first increase and then decrease with cobalt content. Black-Right-Pointing-Pointer Above 550 Degree-Sign C, La{sub 10}Si{sub 6-x}Co{sub x}O{sub 27-x/2} shows low activation energies of around 0.7 eV. -- Abstract: The thermal expansion and conductivities have been investigated for Co{sup 3+} doped lanthanum silicates. The apatite-type lanthanum silicates with formula La{sub 10}Si{sub 6-x}Co{sub x}O{sub 27-x/2} (x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5) were synthesized by sol-gel process. The thermal expansion coefficient (TEC) of La{sub 10}Si{sub 6-x}Co{sub x}O{sub 27-x/2} was improved with increasing cobalt content because of the lower valence and larger radius of Co{sup 3+} ion compared to Si{sup 4+}. Analysis of AC impedance spectroscopy showed that conductivity increased first and then decreased with increasing cobalt content. There is an optimum doping amount of cobalt and La{sub 10}Si{sub 5.2}Co{sub 0.8}O{sub 26.6} exhibits the highest conductivity of 3.33 Multiplication-Sign 10{sup -2} S/cm at 800 Degree-Sign C. When x {<=} 0.8, the local distortion caused by doping with Co

  1. The effect of induced strains on the optical band gaps in lanthanum-doped zinc ferrite nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Hamed, Fathalla; Ramachandran, Tholkappiyan; Kurapati, Vishista

    2016-07-01

    ZnFe1.96La0.04O4 nanocrystalline powders were synthesized by auto-combustion with the aid of glycine as fuel. The synthesized powders were subjected to heat treatment in air at constant temperatures (600-970∘C) for a period of 2 h. The annealed powders were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and UV-Vis-NIR spectroscopy. The as-synthesized and annealed powders formed spongy porous network structure with voids and pores. All the powders were found to be single phase nanomaterial with cubic spinel crystal structure and the desired composition; however, they contained strains, dislocations and lattice distortions. Some of these strains and dislocations are relaxed as a function of annealing temperature. The powders displayed direct and indirect optical band gaps. The energies of these band gaps were found to vary as a function of the induced strains and dislocations. It is suggested that the energy of the optical band gap in lanthanum-doped zinc ferrite nanocrystalline powders can be varied as a function of induced strains if the initial preparation conditions and the following heat treatments are controlled.

  2. First-principles study of Ce3 +-doped lanthanum silicate nitride phosphors: Neutral excitation, Stokes shift, and luminescent center identification

    NASA Astrophysics Data System (ADS)

    Jia, Yongchao; Miglio, Anna; Poncé, Samuel; Gonze, Xavier; Mikami, Masayoshi

    2016-04-01

    We study from first principles two lanthanum silicate nitride compounds, LaSi3N5 and La3Si6N11 , pristine as well as doped with Ce3 + ion, in view of explaining their different emission color, and characterizing the luminescent center. The electronic structures of the two undoped hosts are similar, and do not give a hint to quantitatively describe such difference. The 4 f →5 d neutral excitation of the Ce3 + ions is simulated through a constrained density functional theory method coupled with a Δ SCF analysis of total energies, yielding absorption energies. Afterwards, atomic positions in the excited state are relaxed, yielding the emission energies and Stokes shifts. Based on these results, the luminescent centers in LaSi3N5 :Ce and La3Si6N11 :Ce are identified. The agreement with the experimental data for the computed quantities is quite reasonable and explains the different color of the emitted light. Also, the Stokes shifts are obtained within 20% difference relative to experimental data.

  3. Low-temperature thermoluminescence spectra of rare-earth-doped lanthanum fluoride

    SciTech Connect

    Yang, B.; Townsend, P.D.; Rowlands, A.P.

    1998-01-01

    Lanthanum fluoride consistently shows two strong thermoluminescence glow peaks at low temperature in pure material near 90 and 128 K. A model is proposed in which these thermoluminescence peaks arise from the annealing of halogen defect sites, similar to the H and V{sub k} centers of the alkali halides. Relaxation and decay of these defects in the pure LaF{sub 3} lattice results in broad-band intrinsic luminescence. Addition of rare-earth-impurity ions has two effects. First, the broad-band emission is replaced by narrow-band line emission defined by the trivalent rare-earth dopants. Second, it preferentially determines the formation of the halogen defect sites at impurity lattice sites and such sites appear to increase in thermal stability since the glow peak temperature increases from 128 K in the intrinsic material up to 141 K through the sequence of rare-earth dopants from La to Er. The temperature movement directly correlates with the changes in ionic size of the rare-earth ions, when allowance is made for differences in effective coordination number of the impurity ions. The data suggest two alternative lattice sites can be occupied. The model emphasizes that the intense thermoluminescence signals arise from internal charge rearrangements and annealing of defect complexes, rather than through the more conventional model of separated charge traps and recombination centers. At higher temperatures there is a complex array of glow peaks which depend not only on the dopant concentration but also are specific to each rare earth. Such effects imply defect models giving thermoluminescence within localized complexes and possible reasons are mentioned. {copyright} {ital 1998} {ital The American Physical Society}

  4. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than

  5. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  6. Electronic Structure of Doped Lanthanum Cuprates Studied with Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Hill, J.P.; Ellis, D.S.; Kim, J.; Zhang, H.; Gu, G.; Komiya, S.; Ando, Y.; Casa, D.; Gog, T.; Kim, Y.-J.

    2011-02-24

    We report a comprehensive Cu K-edge resonant inelastic x-ray scattering (RIXS) investigation of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) for 0 {le} x {le} 0.35, stripe-ordered La{sub 1.875}Ba{sub 0.125}CuO{sub 4} (LBCO), and La{sub 2}Cu{sub 0.96}Ni{sub 0.04}O{sub 4} (LCNO) crystals. The RIXS spectra measured at three high-symmetry momentum-transfer (q) positions are compared as a function of doping and for the different dopants. The spectra in the energy range 1-6 eV can be described with three broad peaks, which evolve systematically with increased doping. The most systematic trend was observed for q = ({pi},0) corresponding to the zone boundary. As hole doping increased, the spectral weight transfer from high energies to low energies is nearly linear with x at this q. We interpret the peaks as interband transitions in the context of existing band models for this system, assigning them to Zhang-Rice band {yields} upper Hubbard band, lower-lying band {yields} upper Hubbard band, and lower-lying band {yields} Zhang-Rice band transitions. The spectrum of stripe-ordered LBCO was also measured, and found to be identical to the correspondingly doped LSCO, except for a relative enhancement of the near-infrared peak intensity at {approx}1.5-1.7 eV. The temperature dependence of this near-infrared peak in LBCO was more pronounced than for other parts of the spectrum, continuously decreasing in intensity as the temperature was raised from 25 to 300 K. Finally, we find that 4% Ni substitution in the Cu site has a similar effect on the spectra as does Sr substitution in the La site.

  7. Manganese-doped lanthanum calcium titanate as an interconnect for flat-tubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Raeis Hosseini, Niloufar; Sammes, Nigel Mark; Chung, Jong Shik

    2014-01-01

    A cost-effective screen-printing process is developed to fabricate a dense layer of solid oxide fuel cell (SOFC) interconnect material. A series of lanthanum-manganese-doped CaTiO3 perovskite oxides (La0.4Ca0.6Ti1-xMnxO3-δ; (x = 0.0, 0.2, 0.4, 0.6)) powders is successfully synthesized using an EDTA-citrate method and co-sintered as an interconnect material on an extruded porous anode substrate in a flat-tubular solid oxide fuel cell. All samples adopt a single perovskite phase after calcination at 950 °C for 5 h. High-temperature XRD confirms that the perovskite structure is thermally stable in both oxidizing and reducing conditions. The highest electrical conductivity occurs when x = 0.6; at 12.20 S cm-1 and 2.70 S cm-1 under oxidizing and reducing conditions. The thermal expansion coefficient of La0.4Ca0.6Ti0.4Mn0.6O3 is 10.76 × 10-6 K-1, which closely matches that of 8 mol% yttria-stabilized zirconia. Chemical compatibility of samples and their reduction stability are verified at the operating temperature. The power density and area-specific resistance value at x = 0.6 is 208 mW cm-1 and 1.23 Ω cm2 at 800 °C under open circuit voltage, and 200 mV signal amplitude under 3% humidified hydrogen and air respectively. This performance indicates that La0.4Ca0.6Ti0.4Mn0.6O3-δ has potential for use as interconnect in a flat tubular SOFC.

  8. Phosphate content influence on structural, spectroscopic, and lasing properties of Er,Yb-doped potassium-lanthanum phosphate glasses

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Švejkar, Richard; Jelínková, Helena; Nejezchleb, Karel; Nitsch, Karel; Cihlář, Antonín; Král, Robert; Ledinský, Martin; Fejfar, Antonn; Rodová, Miroslava; Zemenová, Petra; Nikl, Martin

    2016-04-01

    The influence of the phosphorus pentoxide (P2O5) content on the material properties of Er,Yb-doped potassium-lanthanum phosphate glass was studied. Glass samples of the following nominal composition 35.0K2O-6.8Yb2O3-8.0La2O3-0.2Er2O3-50.0P2O5 (in mol%) were prepared from starting materials mixed with five additional amounts of P2O5 (0, 7.5, 15.0, 30.0, and 45.0 mol% related to the nominal glass composition). The P2O5 addition influence on properties of prepared glasses was studied using Raman, absorption, and fluorescence spectroscopy. The glass residual IR absorption and Judd-Ofelt intensity parameters together with absorption and emission cross sections were estimated. The results showed the increasing polymerization of glass and the P–O bond shortening with P2O5 content increase. The spectroscopy of Er and Yb ions was affected only marginally by the glass composition. It was found that fluorescence decay time corresponding to upper-laser-level I increased with the decrease of P2O5 content in the glasses, which was related to increasing OH- contamination of the glass. The laser action at 1.53 μm under 975-nm pulsed laser diode pumping was successfully demonstrated. Low threshold and laser slope efficiency up to 21% in respect to absorbed pumping power were obtained.

  9. Doped Lanthanum Hafnates as Scintillating Materials for High-Energy Photon Detection

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Recent years have seen the emergence of nanocrystalline complex oxide scintillators for use in X-ray and gamma-ray detection. In this study, we investigate the structural and optical properties of La2Hf2O7 nanoparticles doped with varying levels of Eu3+ or Ce3+ by use of X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical photoluminescence. In addition, scintillation response under X-ray and gamma-ray exposure is reported. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  10. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films

    NASA Astrophysics Data System (ADS)

    Hanafy, Taha A.

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ɛ', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σac, of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La3+, Gd3+, and Er3+ ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into αa and αc. This splitting is due to the segmental motion in the amorphous (αa) and crystalline (αc) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  11. A first-principles study of co-doping in lanthanum bromide

    NASA Astrophysics Data System (ADS)

    Aberg, Daniel; Sadigh, Babak; Schleife, Andre; Erhart, Paul

    2015-03-01

    It was recently shown that the energy resolution of Ce-doped LaBr3 scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that Sr dopants create and bind to Br vacancies, resulting in stable neutral complexes. The association with Sr causes the deep vacancy level to move toward the conduction band edge. This is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from the complexes can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon. Optical properties of the Ce-Sr-vacancy triple complex are discussed and compared to experiment. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) is acknowledged.

  12. Synthesis and characterization of calcium and iron co-doped lanthanum silicate oxyapatites by sol-gel process for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cao, Xiao Guo; Jiang, San Ping; Li, Yun Yong

    2015-10-01

    Lanthanum silicate oxyapatites with and without calcium (Ca) and iron (Fe) doping, La10Si5FeO26.5 (LSFO) and La9.5Ca0.5Si5.5Fe0.5O26.5 (LCSFO), are synthesized by sol-gel process (SGP) and solid state reaction process (SSP). The phase formation, microstructure and conductivities of LSFO and LCSFO oxyapatites are characterized by X-ray diffraction (XRD), scanning electron spectroscopy (SEM) and complex impedance analysis. The morphologies of LCSFO oxyapatite nanoparticles synthesized by SGP were characterized by transmission electron microscope (TEM). The thermal and decomposition properties of the LCSFO gel were analyzed by simultaneous differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA). The results show that the phase formation of LCSFO synthesized by SGP occurs at temperatures as low as 750 °C, significantly lower than ∼1500 °C required for LCSFO synthesized by SSP. Co-doping of Ca and Fe significantly improves the densification, sinterability and oxide-ion conductivity of lanthanum silicate oxyapatites. The best results were obtained on LCSFO synthesized by SGP, achieving oxide-ion conductivity of 2.08 × 10-2 S cm-1 at 800 °C, which is higher than 5.68 × 10-3 S cm-1 and 1.04 × 10-2 S cm-1 for LSFO and LCSFO synthesized by SSP, respectively, under the identical test conditions.

  13. High Temperature Electrical Properties and Defect Structures of Alkaline Earth-Doped Lanthanum Cuprate Superconductors.

    NASA Astrophysics Data System (ADS)

    Shen, Li.

    1995-01-01

    Existing oxygen nonstoichiometry data of rm La_{2-x}Ba_{x}CuO _{4-y} and rm La _{2-x}Sr_{x}CuO_ {4-y} have been fitted by defect structure models featuring isolated oxygen vacancies, neutral associates and singly charged associates, respectively. The associate models fit the data acceptably well up to x = 0.4 while the isolated vacancy model does not fit the data as satisfactorily. Therefore, the oxygen deficiency in both systems is attributed to dopant-vacancy associates rather than isolated oxygen vacancies. However, all three models are unable to reproduce the flattening of electrical properties at high doping levels. Jonker plots reveal that the flattening is caused by degeneracy. The oxygen partial pressure dependence of the electrical properties indicates that the associates are not neutral but singly charged. Thermoelectric power and electrical conductivity have been measured in situ for rm La_ {2-x}Ca_{x}CuO_{4 -y} with x = 0-0.16 in P(O_2 ) = 10^{-5} { -1} atm at T = 700-1000^circ C. The results are similar to those of rm La_{2-x}Ba_{x}CuO _{4-y} and rm La _{2-x}Sr_{x}CuO_ {4-y} yet significant magnitudes of oxygen deficiency reportedly occur in rm La_ {2-x}Ca_{x}CuO_{4 -y} at much lower doping levels. Defect structure models involving charged oxygen vacancies cannot simultaneously fit both properties. Neutral oxygen vacancies and their association with dopants were invoked to reconcile both electrical property and oxygen nonstoichiometry data. The proposed defect structure models have been rationalized based on the bond-length mismatch first observed by Goodenough and his coworkers. The Cu-O bonds in the CuO_2 layers are longer than the La-O bonds in the (LaO)_2 layers. Substitution of larger Ba or Sr for La relieves the mismatch by lengthening the La-O bonds. Holes created for charge compensation contribute to the relief by shortening the Cu-O bonds. Once the mismatch is completely relieved, charged oxygen vacancies are formed in the (LaO)_2 layers, to

  14. Effect of tri- and tetravalent metal doping on the electrochemical properties of lanthanum tungstate proton conductors.

    PubMed

    Porras-Vázquez, J M; dos Santos-Gómez, L; Marrero-López, D; Slater, P R; Masó, N; Magrasó, A; Losilla, Enrique R

    2016-02-21

    Rare-earth tungstates (La(28-y)W(4+y)O(54+δ)□(2-δ)) have attracted attention recently because of their relatively high proton-electron conductivity and high stability in a CO2 environment. Since doping on the tungsten-site may increase the conductivity, a new series of compounds with composition La(5.5)W(1-x)M(x)O(11.25-δ) (M = Al, Ti and Zr; x = 0, 0.05 and 0.10) have been investigated. The crystal structure of these materials has been studied using X-ray and time-of-flight neutron powder diffraction by Rietveld analysis. The concentration of oxygen vacancies for hydration in the structure has been indirectly determined by thermogravimetric analysis, and the total conductivity in several pO2, pH2O and pD2O atmospheres has been studied by impedance spectroscopy. An increase in the conductivity is observed, ranging from 4.1 mS cm(-1) for the undoped sample to 9.2 mS cm(-1) for La(5.5)W(0.9)Ti(0.1)O(11.25-δ), in wet N2 at 800 °C. PMID:26776842

  15. Variation in band gap of lanthanum chromate by transition metals doping LaCr{sub 0.9}A{sub 0.1}O{sub 3} (A:Fe/Co/Ni)

    SciTech Connect

    Naseem, Swaleha Khan, Wasi Saad, A. A. Shoeb, M. Ahmed, Hilal Naqvi, A. H.; Husain, Shahid

    2014-04-24

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO{sub 3} at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles.

  16. CW blue laser emission by second harmonic generation of 900-nm oscillation of Nd-doped strontium and lanthanum aluminate (ASL)

    NASA Astrophysics Data System (ADS)

    Varona, C.; Loiseau, P.; Aka, G.; Ferrand, B.; Lupei, V.

    2006-04-01

    Nd-doped strontium and lanthanum (ASL) crystals Sr 1-xLa x-yNd yMg xAl 12-xO 19 (0.05 <= x <= 0.5; y = 0.05) were grown by Czochralski pulling technique. Up to 1.67W of 900nm IR output laser power for an absorbed power of 2.53W was obtained under Ti:sapphire pumping at 792nm. Intracavity second harmonic generation experiments led to 320mW of blue laser power at 450nm with a 10mm-long BiB 3O 6 nonlinear crystal. Other nonlinear crystals were also evaluated such as LBO.

  17. Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Zhao, Hua; Zou, Yingyin K.; Chen, Xuesheng; Bartolo, Baldassare Di; Zhang, Jingwen W.

    2011-08-01

    Optical amplification was observed in electro-optic (EO) ceramic plates of neodymium doped lanthanum-modified lead zirconate titanate (Nd3+:PLZT), when the pumping and seeding beams are not overlapped temporarily. This striking feature in the gain measurement and the accompanying slowly trailing-off both seen in the optical amplification as well as in the lasing action are satisfactorily explained by electron releasing from the rich vacancy-based carrier traps in the intrinsically disordered ceramics, i.e., the consecutively optical, thermal stimuli are found responsible for the long persistent optoenergy storage, and consequently the slow response of the gain dynamics. These findings in optical amplification, the slowly trailing-off, and the underlying mechanism have opened a new way of developing novel controllable optical devices. The model thus established could serve as a guide in design and refinement of a new generation of products out of this excellent, well commercialized EO PLZT ceramics family and similar others.

  18. Effects of postdeposition annealing on the dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films derived from pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yao, Yingbang; Lu, S. G.; Chen, Haydn; Wong, K. H.

    2004-11-01

    Lanthanum-doped lead zirconate stannate titanate antiferroelectric thin films were deposited onto Pt-buffered silicon substrates using the pulsed laser deposition method. The deposition temperature was 570°C. The postdeposition annealing process was carried out in an oxygen-flow tube furnace at temperatures ranging from 650 to 800°C for a duration of 30min; its effects were studied through the variations of the microstructure as well as the electrical and dielectric properties. It was found that an appropriate annealing process at temperatures above 700°Ccould substantially improve the dielectric properties. However, annealing beyond 800°C caused the film properties to deteriorate severely. Explanations were given with regard to the microstructure-property relationship.

  19. Study of the Durability of Doped Lanthanum Manganite and Cobaltite Cathode Materials under ''Real World'' Air Exposure Atmospheres

    SciTech Connect

    Singh, Prabhakar; Mahapatra, Manoj; Ramprasad, Rampi; Minh, Nguyen; Misture, Scott

    2014-11-30

    The overall objective of the program is to develop and validate mechanisms responsible for the overall structural and chemical degradation of lanthanum manganite as well as lanthanum ferrite cobaltite based cathode when exposed to “real world” air atmosphere exposure conditions during SOFC systems operation. Of particular interest are the evaluation and analysis of degradation phenomena related to and responsible for (a) products formation and interactions with air contaminants, (b) dopant segregation and oxide exolution at free surfaces, (c) cation interdiffusion and reaction products formation at the buried interfaces, (d) interface morphology changes, lattice transformation and the development of interfacial porosity and (e) micro-cracking and delamination from the stack repeat units. Reaction processes have been studied using electrochemical and high temperature materials compatibility tests followed by structural and chemical characterization. Degradation hypothesis has been proposed and validated through further experimentation and computational simulation.

  20. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    SciTech Connect

    Ianculescu, Adelina Carmen; Vasilescu, Catalina Andreea; Crisan, Maria; Raileanu, Malina; Vasile, Bogdan Stefan; Calugaru, Mihai; Crisan, Dorel; Dragan, Nicolae; Curecheriu, Lavinia; Mitoseriu, Liliana

    2015-08-15

    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations of the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.

  1. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2=10-27-1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  2. Design and fabrication of lanthanum-doped tin-silver-copper lead-free solder for the next generation of microelectronics applications in severe environment

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad

    Tin-Lead solder (Sn-Pb) has long been used in the Electronics industry. But, due to its toxic nature and environmental effects, certain restrictions are made on its use by the European Rehabilitation of Hazardous Substances (RoHS) directive, and therefore, many researchers are looking to replace it. The urgent need for removing lead from solder alloys led to the very fast introduction of lead-free solder alloys without a deep knowledge of their behavior. Therefore, an extensive knowledge and understanding of the mechanical behavior of the emerging generation of lead-free solders is required to satisfy the demands of structural reliability. Sn-Ag-Cu (SAC) solders are widely used as lead-free replacements but their coarse microstructure and formation of hard and brittle Inter-Metallic Compounds (IMCs) have limited their use in high temperature applications. Many additives are studied to refine the microstructure and improve the mechanical properties of SAC solders including iron (Fe), bismuth (Bi), antimony (Sb) and indium (In) etc. Whereas many researchers studied the impact of novel rare earth (RE) elements like lanthanum (La), cerium (Ce) and lutetium (Lu) on SAC solders. These RE elements are known as “vitamins of metals” because of their special surface active properties. They reduce the surface free energy, refine the grain size and improve the mechanical properties of many lead free solder alloys like Sn-Ag, Sn-Cu and SAC but still a systematic study is required to explore the special effects of “La” on the eutectic SAC alloys. The objective of this PhD thesis is to extend the current knowledge about lead free solders of SAC alloys towards lanthanum doping with varying environmental conditions implemented during service. This thesis is divided into six main parts.

  3. Stability of the Zhang-Rice Singlet with Doping in Lanthanum Strontium Copper Oxide Across the Superconducting Dome and Above

    NASA Astrophysics Data System (ADS)

    Brookes, N. B.; Ghiringhelli, G.; Charvet, A.-M.; Fujimori, A.; Kakeshita, T.; Eisaki, H.; Uchida, S.; Mizokawa, T.

    2015-07-01

    The spin character of the states at the top of the valence band in doped La2 -xSrxCuO4 (x =0.03 , 0.07, 0.15, 0.22, and 0.30) has been investigated using spin-polarized resonant photoemission. A clear Zhang-Rice singlet (ZRS) is observed at all doping levels. Its stability and polarization are preserved as a function of doping, suggesting that the concept of the ZRS can be used across a wide doping range and up to the metallic nonsuperconducting overdoped regime. The results are significant for theoretical models that use the ZRS approximation and for the understanding of the peculiar interplay between the ZRS and the remaining localized spins.

  4. Stability of the Zhang-Rice Singlet with Doping in Lanthanum Strontium Copper Oxide Across the Superconducting Dome and Above.

    PubMed

    Brookes, N B; Ghiringhelli, G; Charvet, A-M; Fujimori, A; Kakeshita, T; Eisaki, H; Uchida, S; Mizokawa, T

    2015-07-10

    The spin character of the states at the top of the valence band in doped La(2-x)Sr(x)CuO(4) (x=0.03, 0.07, 0.15, 0.22, and 0.30) has been investigated using spin-polarized resonant photoemission. A clear Zhang-Rice singlet (ZRS) is observed at all doping levels. Its stability and polarization are preserved as a function of doping, suggesting that the concept of the ZRS can be used across a wide doping range and up to the metallic nonsuperconducting overdoped regime. The results are significant for theoretical models that use the ZRS approximation and for the understanding of the peculiar interplay between the ZRS and the remaining localized spins. PMID:26207496

  5. Hydrothermal synthesis of doped lanthanum zirconate nanomaterials and the effect of V–Ge substitution on their structural, electrical and dielectric properties

    SciTech Connect

    Farid, Muhammad Asim; Asghar, Muhammad Adnan; Ashiq, Muhammad Naeem Ehsan, Muhammad Fahad; Athar, Muhammad

    2014-11-15

    Graphical abstract: Variation of dielectric constant with frequency for all the synthesized materials. - Highlights: • Hydrothermal method has been successfully employed to synthesize the zirconates. • XRD confirmed the formation of required phase. • Increased electrical resistivity makes these materials useful for microwave devices. • Dielectric parameters of zirconates decrease with increasing frequency. • Dielectric constant decreases with increasing substituents concentration. - Abstract: A hydrothermal method was successfully employed for the synthesis of a series of vanadium and germanium co-doped pyrochlore lanthanum zirconates with composition La{sub 2−x}V{sub x}Zr{sub 2−y}Ge{sub y}O{sub 7} (where x, y = 0.0, 0.25, 0.50, 0.75 and 1.0). The XRD and FTIR analyses confirmed the formation of single phase except vanadium and germanium substituted samples and the crystallite sizes are in the range of 7–31 nm for V{sup 3+}–Ge{sup 4+} substituted samples. The theoretical compositions are confirmed by the ED-XRF studies. The room temperature electrical resistivity increase with the substituents concentration which suggests that the synthesized materials can be used for microwave devices as such devices required highly resistive materials. Dielectric properties were measured in the frequency range of 6 kHz to 1 MHz. The dielectric parameters decrease with increase in frequency. The DC resistivity data is in good agreement with the dielectric data.

  6. Synthesis and Luminescence Properties of Novel Ce(3+)- and Eu(2+)-Doped Lanthanum Bromothiosilicate La3Br(SiS4)2 Phosphors for White LEDs.

    PubMed

    Lee, Szu-Ping; Liu, Shuang-De; Chan, Ting-Shan; Chen, Teng-Ming

    2016-04-13

    Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely broad range from UV to blue region (300 to 600 nm) and generates a reddish-orange broadband emission centered at 640 nm. In addition, thermal luminescence properties of La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors from 20 to 200 °C were investigated. The combination of a 450 nm blue InGaN-based LED chip with the red-emitting La3Br(SiS4)2:Eu(2+) phosphor, and green-emitting BOSE:Eu(2+) commercial phosphor produced a warm-white light with the CRI value of ∼95 and the CCT of 5,120 K. Overall, these results show that the prepared phosphors may have potential applications in pc-WLED. PMID:26998783

  7. Structure and properties of antimony-doped lanthanum molybdate La{sub 2}Mo{sub 2}O{sub 9}

    SciTech Connect

    Alekseeva, O. A. Verin, I. A.; Sorokina, N. I.; Kharitonova, E. P.; Voronkova, V. I.

    2011-05-15

    Polycrystalline samples of the composition La{sub 2}Mo{sub 2-x}Sb{sub x}O{sub 9-y}, where 0 {<=} x {<=} 0.05, were prepared by solid-phase synthesis. Single crystals of La{sub 2}Mo{sub 1.96}Sb{sub 0.04}O{sub 8.17} were obtained by spontaneous crystallization from flux. The structure of the metastable {beta}{sub ms} phase of this compound was determined at room temperature by X-ray diffraction. It was found that the La, Mo, and O1 atoms are displaced from the threefold axis on which they are located in the high-temperature {beta} phase. It was shown that molybdenum atoms in the crystal structure are partially replaced by antimony atoms, which are located on the threefold axis. In antimony-doped crystals, lanthanum atoms partially return to the site on the threefold axis and the coordination environment of molybdenum cations becomes more ordered, thus facilitating the stabilization of the cubic phase at room temperature. Calorimetric measurements (DSC) showed that the introduction of Sb as the dopant into the La{sub 2}Mo{sub 2}O{sub 9} structure leads to a decrease in the temperature of the {alpha} {yields} {beta} phase transition from 570 to 520 Degree-Sign C and to the partial suppression of this transition. The temperature behavior of the conductivity confirms the DSC data. Thus, doping with Sb contributes to the stabilization of the cubic phase at room temperature.

  8. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    SciTech Connect

    Stergiou, Charalampos; Litsardakis, George

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover, the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.

  9. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaneva, N.; Bojinova, A.; Papazova, K.

    2016-02-01

    Here we report the preparation of ZnO particles with different concentrations of La3+ doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH3COO)2.2H2O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters.

  10. Scanning tunneling microscopy studies of an electron-doped high-Tc superconductor, praseodymium lanthanum cerium copper oxide

    NASA Astrophysics Data System (ADS)

    Kunwar, Shankar

    It has been more than two decades since the first high temperature superconductor was discovered. In this time there has been tremendous progress in understanding these materials both theoretically and experimentally. Some important questions however remain to be answered; one of them is the temperature dependence of the superconducting gap which is in turn tied to question of the origin of the pseudogap and its connection with superconductivity. In this thesis, we present detailed Scanning Tunneling Microscopy (STM) spectroscopic studies of an electron doped superconductor, Pr0.88LaCe 0.12CuO4-delta (PLCCO). The electron doped compounds form an interesting venue for STM studies for many reasons. In the hole-doped materials, especially in the underdoped side of the phase diagram, there is mounting evidence of a second gap that survives to high temperatures (high temperature pseudogap) that may have a different origin from superconductivity. This complicates studies of the temperature dependence of the superconducting gap in these materials. In PLCCO however, there is little evidence for a high temperature pseudogap potentially allowing us to address the question of the temperature evolution of the superconducting gap without the complication of a second gap. Secondly, the low Tc of the optimally doped materials makes it easily accessible to temperature dependent STM studies. Finally, while hole-doped materials have been extensively studied by scanning tunneling microscopy (STM), there have been no detailed STM spectroscopic studies on the electron doped compounds. In the first part of the thesis, we investigate the effect of temperature on the superconducting gap of optimally doped PLCCO with Tc = 24K. STM spectroscopy data is analyzed to obtain the gap as a function of temperature from 5K to 35K. The gap is parameterized with a d-wave form and the STM spectra are fit at each temperature to extract the gap value. A plot of this gap value as a function of

  11. Effect of lanthanum doping on tetragonal-like BiFe O3 with mixed-phase domain structures

    NASA Astrophysics Data System (ADS)

    You, Lu; Caesario, Petrus; Fang, Liang; Ren, Peng; Wang, Le; Zhou, Yang; Gruverman, Alexei; Wang, Junling

    2014-10-01

    The recent discoveries of both chemical-driven and strain-driven morphotropic phase boundaries (MPBs) in BiFe O3 (BFO) thin films have opened up new horizons in developing high-performance lead-free piezoelectrics. An attempt to bridge these two MPBs is made by doping La into highly strained BFO thin films with the coexistence of tetragonal-like and rhombohedral-like phases. The structural, morphological, and ferroelectric properties of such films are investigated. It is observed that La doping changes the energy landscape between the tetragonal-like and the rhombohedral-like polymorphs due to the chemical pressure imposed by the La substitution. Polar instability is found upon increasing La doping for the in-plane polarization component, which correlates with the vanishing of in-plane ferroelectric domain structures. The transition sequence of the in-plane ferroelectric polarization resembles that previously reported for the bulklike rhombohedral phase of BFO under continuous La doping, indicating the universality of the chemical-alloying effect on the ferroelectric order.

  12. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  13. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    NASA Astrophysics Data System (ADS)

    Chien, Teyu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jak; Freeland, John W.; Guisinger, Nathan P.

    2016-01-01

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. These results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials.

  14. Effect of sintering time on structural, microstructural and chemical composition of Ni-doped lanthanum gallate perovskites

    NASA Astrophysics Data System (ADS)

    Colomer, M. T.; Kilner, J. A.

    2015-08-01

    This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La0.90Sr0.10GaO3.00-δ. Independently of the sintering time, La0.90Sr0.10Ga1-xNixO3.00-δ (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa3.00O7.00 (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggest that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La4.00Ga2.00O9.00 (nominal composition) is also observed as second phase when samples are treated for 48 h.

  15. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    PubMed Central

    Chien, TeYu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jak; Freeland, John W.; Guisinger, Nathan P.

    2016-01-01

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. These results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials. PMID:26743875

  16. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces.

    PubMed

    Chien, TeYu; Liu, Jian; Yost, Andrew J; Chakhalian, Jak; Freeland, John W; Guisinger, Nathan P

    2016-01-01

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. These results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials. PMID:26743875

  17. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    DOE PAGESBeta

    Chien, TeYu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jak; Freeland, John W.; Guisinger, Nathan P.

    2016-01-08

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity in STO andmore » the existence of the dielectric dead layer at the interfaces of STO with metallic films. Finally, these results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials.« less

  18. Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition.

    PubMed

    Zhang, Jinzhong; Chen, Xiangui; Jiang, Kai; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-08-21

    Ferroelectric lanthanum (La)-substituted bismuth titanate (Bi(4-x)La(x)Ti(3)O(12), BLT) nanocrystalline films with the composition range of 0 ≤x≤ 1 have been directly deposited on n-type Si (100) substrates by chemical solution deposition. The La substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands and electronic band structures of the BLT films have been investigated by microscopy, Raman scattering, photoluminescence and spectroscopic ellipsometry at room temperature. X-Ray diffraction analysis shows that the films are polycrystalline and exhibit the pure perovskite phase structure. With increasing La composition, the (100)-orientation degree can be enhanced and the root-mean-square roughnesses slightly increase from 6.5 to 8.3 nm. It was found that the Raman-active mode A(1g)[Bi] at about 59 cm(-1) is unchanged while the B(1g) and A(1g)[Ti] phonon modes at about 648 and 853 cm(-1) are shifted towards higher frequency by about 36.6 and 8.4 cm(-1), respectively. Photoluminescence spectra show that the intensity of the peak located at about 2.3 eV increases with the La composition, except for the Bi(3)LaTi(3)O(12) film, due to the smallest grain size and oxygen vacancy defects. The optical constants of the BLT films have been uniquely extracted by fitting the measured ellipsometric spectra with a four-phase layered model (air/surface rough layer/BLT/Si) in the photon energy range of 0.73-4.77 eV. The Adachi dielectric function model has been successfully applied and reasonably describes the optical response behavior of the ferroelectric BLT films. Moreover, the film packing density decreases while the optical band gap linearly increases from 3.610 ± 0.066 to 3.758 ± 0.068 eV with increasing La composition. It is surmised that the phenomena are mainly ascribed to the variations of the electronic structure, especially for the conduction band, which is perturbed by the La doping. PMID:21743909

  19. Chromite alteration processes within Vourinos ophiolite

    NASA Astrophysics Data System (ADS)

    Grieco, Giovanni; Merlini, Anna

    2012-09-01

    The renewed interest in chromite ore deposits is directly related to the increase in Cr price ruled by international market trends. Chromite, an accessory mineral in peridotites, is considered to be a petrogenetic indicator because its composition reflects the degree of partial melting that the mantle experienced while producing the chromium spinel-bearing rock (Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993). However, the understanding of chromite alteration and metamorphic modification is still controversial (e.g. Evans and Frost in Geochim Cosmochim Acta 39:959-972, 1975; Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993; Oze et al. in Am J Sci 304:67-101, 2004). Metamorphic alteration leads to major changes in chromite chemistry and to the growth of secondary phases such as ferritchromite and chlorite. In this study, we investigate the Vourinos complex chromitites (from the mines of Rizo, Aetoraches, Xerolivado and Potamia) with respect to textural and chemical analyses in order to highlight the most important trend of alteration related to chromite transformation. The present study has been partially funded by the Aliakmon project in collaboration between the Public Power Corporation of Greece and Institute of Geology and Mineral Exploration of Kozani.

  20. Nitride tuning of lanthanide chromites.

    PubMed

    Black, Ashley P; Johnston, Hannah E; Oró-Solé, Judith; Bozzo, Bernat; Ritter, Clemens; Frontera, Carlos; Attfield, J Paul; Fuertes, Amparo

    2016-03-21

    LnCrO(3-x)N(x) perovskites with Ln = La, Pr and Nd and nitrogen contents up to x = 0.59 have been synthesised through ammonolysis of LnCrO4 precursors. These new materials represent one of the few examples of chromium oxynitrides. Hole-doping through O(2-)/N(3-) anion substitution suppresses the magnetic transition far less drastically than Ln(3+)/M(2+) (M = Ca, Sr) cation substitutions because of the greater covalency of metal-nitride bonds. Hence, nitride-doping is a more benign method for doping metal oxides without suppressing electronic transitions. PMID:26916315

  1. Effects of rapid thermal annealing on structural, chemical, and electrical characteristics of atomic-layer deposited lanthanum doped zirconium dioxide thin film on 4H-SiC substrate

    NASA Astrophysics Data System (ADS)

    Lim, Way Foong; Quah, Hock Jin; Lu, Qifeng; Mu, Yifei; Ismail, Wan Azli Wan; Rahim, Bazura Abdul; Esa, Siti Rahmah; Kee, Yeh Yee; Zhao, Ce Zhou; Hassan, Zainuriah; Cheong, Kuan Yew

    2016-03-01

    Effects of rapid thermal annealing at different temperatures (700-900 °C) on structural, chemical, and electrical characteristics of lanthanum (La) doped zirconium oxide (ZrO2) atomic layer deposited on 4H-SiC substrates have been investigated. Chemical composition depth profiling analysis using X-ray photoelectron spectroscopy (XPS) and cross-sectional studies using high resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy line scan analysis were insufficient to justify the presence of La in the investigated samples. The minute amount of La present in the bulk oxide was confirmed by chemical depth profiles of time-of-flight secondary ion mass spectrometry. The presence of La in the ZrO2 lattice led to the formation of oxygen vacancies, which was revealed through binding energy shift for XPS O 1s core level spectra of Zrsbnd O. The highest amount of oxygen vacancies in the sample annealed at 700 °C has yielded the acquisition of the highest electric breakdown field (∼ 6.3 MV/cm) and dielectric constant value (k = 23) as well as the highest current-time (I-t) sensor response towards oxygen gas. The attainment of both the insulating and catalytic properties in the La doped ZrO2 signified the potential of the doped ZrO2 as a metal reactive oxide on 4H-SiC substrate.

  2. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  3. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  4. Pneumoconiosis in Chromite Miners in South Africa1

    PubMed Central

    Sluis-Cremer, G. K.; Du Toit, R. S. J.

    1968-01-01

    Ten chromite miners in South Africa have been found to show radiological evidence of a fine nodulation; five of these miners had worked only in chromite mines. These cases occurred in a labour force of some 1,500 persons subjected to regular examination. Clinical evidence and the results of intratracheal injection of chromite suspension into rats indicate that the radiological changes are due not to fibrosis but to a benign deposition of chromite (Cr2O3FeO) dust in the lungs. Images PMID:5642648

  5. Preparation and properties of ceramic interconnecting materials, La 0.7Ca 0.3CrO 3- δ doped with GDC for IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Ma, Jianjun; Deng, Feijun; Meng, Guangyao; Liu, Xingqin

    One of the challenges for improving the performance and cost-effectiveness of solid oxide fuel cells (SOFCs) is the development of effective interconnect materials. A widely used interconnect ceramic for SOFCs is doped lanthanum chromite. In this paper, we report a doped lanthanum chromite, La 0.7Ca 0.3CrO 3- δ (LCC) + x wt.% Gd 0.2Ce 0.8O 1.9 (GDC) (x = 0-10), with improved electrical conductivity and sintering capability. In this composite material system, LCC + GDC were prepared by an auto-ignition process and the electrical conductivity was characterized in air and in H 2. The LCC powders exhibited a better sintering ability and could reach a 94.7% relative density at 1400 °C for 4 h in air and with the increase of GDC content the relative density increased, reached 98.5% when the GDC content was up to 10 wt.%. The electrical conductivity of the samples dramatically increased with GDC addition until a maximum of 134.48 S cm -1 in air at 900 °C when the materials contained 3 wt.% GDC. This is 5.5 times higher than pure LCC (24.63 S cm -1). For the sample with a 1 wt.% GDC content, the conductivity in pure H 2 at 900 °C was a maximum 5.45 S cm -1, which is also higher than that of pure LCC ceramics (4.72 S cm -1). The average thermal expansion coefficient (TEC) increased with the increase of GDC content, ranging from 11.12 to 14.32 × 10 -6 K -1, the majority of which unfortunately did not match that of 8YSZ. The oxygen permeation measurement presented a negligible oxygen ionic conduction, indicating that it is still an electronically conducting ceramic. Therefore, it is a very promising interconnect material for higher performance and cost-effectiveness for SOFCs.

  6. Lanthanum-Induced Gastrointestinal Histiocytosis

    PubMed Central

    Araya, Hiwot; Longacre, Teri A.; Pasricha, Pankaj J.

    2015-01-01

    A patient with end-stage renal disease (ESRD) on hemodialysis presented with fever, anorexia, and nausea shortly after starting oral lanthanum carbonate for phosphate control. Gastric and duodenal biopsies demonstrated diffuse histiocytosis with intracellular aggregates of basophilic foreign material. Transmission electron microscopy, an underutilized diagnostic test, revealed the nature of the aggregates as heavy metal particles, consistent with lanthanum. Symptoms and histiocytosis improved after discontinuation of lanthanum. Lanthanum may be an underdiagnosed cause of gastrointestinal histiocytosis. PMID:26157959

  7. Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm{sup 3+}-doped sodium - lanthanum - gadolinium molybdates and tungstates

    SciTech Connect

    Bol'shchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-12-09

    Two-micron lasing is obtained for the first time on the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in diode-pumped crystals of mixed sodium - lanthanum - gadolinium tungstate Tm:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} (C{sub Tm} = 3.6 at %) (3.6Tm : NLGW) and molybdate Tm:NaLa{sub 1/3}Gd{sub 2/3}(MoO{sub 4}){sub 2} (C{sub Tm} = 4.8 at %) (4.8Tm : NLGM). For the 3.6Tm : NLGW crystal, the quasi-cw laser output power exceeded 200 mW and the slope efficiency (with respect to absorbed pump power) for the {pi}- and {sigma}-polarisations at wavelengths of 1908 and 1918 nm was 34% and 30%, respectively. The laser wavelength of this crystal was continuously tuned within the spectral range of 1860 - 1935 nm. For the 4.8Tm : NLGM crystal, the slope efficiency for the {pi}- and {sigma}-polarisations at wavelengths of 1910 and 1918 nm was 27% and 23%, respectively, and the laser wavelength was tunable within the spectral range of 1870 - 1950 nm. (lasers)

  8. [Radiographic disappearance of lanthanum].

    PubMed

    Pastori, Giordano

    2015-01-01

    In 2006, Cerny and Kunzendorf in the New England Journal of Medicine Images in clinical medicine, showed the radiographic appearance of lanthanum for the first time. After many years we noticed the inverse phenomenon. In a peritoneal dialysis patient treated with lanthanum carbonate, we had two radiography of the abdomen for monitoring the peritoneal catheter. In the first radiography contrast material was seen in colon. In the most recent radiography contrast material disappeared. The patient was always taking the same dose of lanthanum carbonate (1000 mg bid), although at the time of the first radiography he took the chewable tablets, for the last radiography he took the new powder formulation. We found a report in literature highlighting this phenomenon meanwhile indicating a greater chelating effect for the powder. Our hypothesis is that despite the same lanthanum dose, powder provides a greater surface area of binding and a more dispersed bowel distribution to explain a masked radio-opacity. Considering the wide availability of the powder, this must be taken into account especially in evaluating therapeutic compliance. PMID:25774580

  9. Lanthanum fluoride nanoparticles for radiosensitization of tumors

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Bekah, Devesh; Cooper, Daniel; Shastry, Sathvik; Hill, Colin; Bradforth, Stephen; Nadeau, Jay

    2016-03-01

    Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorine6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.

  10. Fluid-present deformation aids chemical modification of chromite: Insights from chromites from Golyamo Kamenyane, SE Bulgaria

    NASA Astrophysics Data System (ADS)

    Satsukawa, Takako; Piazolo, Sandra; González-Jiménez, José María; Colás, Vanessa; Griffin, William L.; O'Reilly, Suzanne Y.; Gervilla, Fernando; Fanlo, Isabel; Kerestedjian, Thomas N.

    2015-07-01

    Chemical signatures of chromitites are commonly used to track the evolution of the Earth's mantle. However, chemical modification during deformation may have important implications for the interpretation of chromites' signatures. Here, we describe the details of how deformation promotes chemical modification in chromite. Physicochemical characteristics of the chromites were quantified by measuring crystallographic orientation relationships using Electron Back-Scattered Diffraction (EBSD) and electron microprobe analysis (EMP). Chromites show porphyroclastic textures with coarse-grained porphyroclasts (ca. 0.2-5 mm) and fine-grained neoblasts (< 200 μm). Coarse-grained chromites are chemically zoned in terms of major elements from core to rim, preserving this initial igneous feature in the cores, while the outer rims reveal a metamorphic signature. Large chromite grains are characterized by local crystal-plastic deformation, exhibiting distinct inter-crystalline deformation including continuous crystal bending and subgrain boundaries as well as chemical modification in their outer, deformed parts. Two types of fine-grained chromite, F1 and F2, are present. While F1 exhibits a well-developed polygonal texture, straight grain boundaries and low intercrystal misorientation (< 1°), F2 shows low-angle boundaries and significant intercrystalline misorientation (2-8°). Both F1 and F2 have higher Fe3 + and Cr and lower Mg# values than the cores of large grains. We interpret F1 and F2 to represent chromite recrystallized by heterogeneous nucleation and subgrain rotation recrystallization, respectively. Crystallographic preferred orientation (CPO) and misorientation data on the well-developed low-angle (subgrain) boundaries in coarse grains and F2 grains indicate that deformation in chromite was accommodated mainly by dislocation creep with the dominant activation of the {111}<100 > slip system. The retrograde P-T exhumation path predicted by thermodynamic and chemical

  11. ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES

    SciTech Connect

    E. L. BROSHA; R. MUKUNDAN; ET AL

    2000-10-01

    We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

  12. Unusual large chromite crystals in the Saint Aubin iron meteorite

    NASA Astrophysics Data System (ADS)

    Fehr, Karl Thomas; Carion, Alain

    2004-08-01

    In the Saint Aubin octahedrite, chromite crystals of up to 3 cm occur enclosed in the metal phase. They are twinned along [111] according to the spinel law and display pseudohexagonal shapes in cross-sections. The crystals are homogeneous and exhibit compositions close to pure chromite endmember. Vanadium is the only additional element observed in appreciable amounts of up to 0.73 wt%. Chromite in the Saint Aubin meteorite crystallized from liquids with very low amounts of Cr and O close to the Fe-FeS join as indicated by its composition and phase relations. The growth of large chromite crystals implies stable supersaturated conditions for a long period in the meteorite parent body of Saint Aubin.

  13. High temperature mechanical properties of calendar-rolled lanthanum chromite interconnect material

    SciTech Connect

    Sammes, N.M.; Ratnaraj, R.; Hatchwell, C.E.

    1995-12-31

    La{sub 1{minus}x}Sr{sub x}Cr{sub 1{minus}y}Co{sub y}O{sub 3} was fabricated using a calendar rolling technique. The green tapes were cut into bars and fired under various heating and cooling regimes. The high temperature mechanical properties of the material were then investigated as a function of the fabrication conditions employed. It was observed, for example, that the modulus of rupture of calendar-rolled La{sub 0.7}Sr{sub 0.3}Cr{sub 0.9}Co{sub 0.1}O{sub 3}, 95MPa at 1,000 C, was similar to the dry pressed sample which gave a value of 105MPa at 1,000 C. This paper will describe the significance of this result, and other results, in relation to the stacked planar SOFC system.

  14. The Emma Bell Deposit, Siskiyou Co., California : a possible low-grade source of chromite

    USGS Publications Warehouse

    Lipin, B.R.; Wetzel, Nicholas; Heinrich, S.M.

    1983-01-01

    The Emma Bell chromite deposit in Siskiyou County, California contains over 5 million tons of dunite averaging about 4 percent Cr2O3. Chromite is not evenly disseminated throughout the dunite, however. For the most part the deposit consists of many chromite-rich bands in sharp contact with, and separated by, common dunite containing 1 to 2 percent accessory chromite. Electron microprobe and petrographic analysis of accessory chromite shows that it is fine grained (average grain size 0.14 mm), generally lower in Cr2O3, and has a lower Cr/Fe ratio than segregated chromite. In addition, unusual patchy zoning is exhibited by some accessory chromite. These patchy zones are extremely rich in iron (>60 percent total iron oxide). The negative factors such as the fine-grained nature of the accessory chromite and high iron content compared to segregated chromite, could be overcome by the very large tonnage in the deposit.

  15. Energy Transfer in Rare Earth Ion Clusters and Fluorescence from Rare Earth Doped LANTHANUM(1.85)STRONTIUM(0.15)COPPER -OXYGEN(4) Superconductors.

    NASA Astrophysics Data System (ADS)

    Tissue, Brian Max

    1988-12-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare earth doped La_{1.85 }Sr_{0.15}CuO _4 superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er^{3+ }:SrF_2 and Pr ^{3+}:CaF_2. Application of a magnetic field to Er^{3+} :SrF_2 greatly increased the energy transfer rate. The magnetic field dependence in Er^{3+}:SrF _2 indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr ^{3+}:CaF_2 had no effect on the energy transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy transfer rate in Pr^{3+ }:CaF_2 showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu ^{3+} probe ion is developed to detect impurity phases in La_{1.85 }Sr_{0.15}CuO _4 superconductors. Two impurity phases were found in polycrystalline La_ {1.85}Sr_{0.15} CuO_4: unreacted La _2O_3 starting material, and a La-silicate phase, which formed from contamination during sintering. The spectroscopic technique was found to be more than 100 times more sensitive than powder x -ray diffraction to detect minor impurity phases. In preparing the superconductors, several studies were made on the effect of Pr^{3+}, Eu ^{3+}, Bi^{3+ }, and fluorine dopants on the superconducting properties of La_{1.85}Sr _{0.15}CuO_4 and La_2Cuo_4 . Pr^{3+}, Eu ^{3+}, Bi^ {3+}, and F_2 doping all decreased the superconductivity in La_ {1.85}Sr^{0.15} CuO_4. Treating semi-conducting La_2CuO_4 in F_2 gas converted it to a superconductor with an onset T_{rm c} of 30-35 K.

  16. Occupational health assessment of chromite toxicity among Indian miners

    PubMed Central

    Das, Alok Prasad; Singh, Shikha

    2011-01-01

    Elevated concentration of hexavalent chromium pollution and contamination has contributed a major health hazard affecting more than 2 lakh mine workers and inhabitants residing in the Sukinda chromite mine of Odisha, India. Despite people suffering from several forms of ill health, physical and mental deformities, constant exposure to toxic wastes and chronic diseases as a result of chromite mining, there is a tragic gap in the availability of 'scientific’ studies and data on the health hazards of mining in India. Occupational Safety and Health Administration, Odisha State Pollution Control Board and the Odisha Voluntary Health Association data were used to compile the possible occupational health hazards, hexavalent chromium exposure and diseases among Sukinda chromite mines workers. Studies were reviewed to determine the routes of exposure and possible mechanism of chromium induced carcinogenicity among the workers. Our studies suggest all forms of hexavalent chromium are regarded as carcinogenic to workers however the most important routes of occupational exposure to Cr (VI) are inhalation and dermal contact. This review article outlines the physical, chemical, biological and psychosocial occupational health hazards of chromite mining and associated metallurgical processes to monitor the mining environment as well as the miners exposed to these toxicants to foster a safe work environment. The authors anticipate that the outcome of this manuscript will have an impact on Indian chromite mining industry that will subsequently bring about improvements in work conditions, develop intervention experiments in occupational health and safety programs. PMID:21808494

  17. Sulfuric acid leaching kinetics of South African chromite

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Shi, Pei-yang; Zhang, Bo; Jiang, Mao-fa; Zhang, Qing-song; Zevenhoven, Ron; Saxén, Henrik

    2015-03-01

    The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching conditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional relationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leaching process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol-1.

  18. Metallic behavior of lanthanum disilicide

    NASA Technical Reports Server (NTRS)

    Long, Robert G.; Bost, M. C.; Mahan, John E.

    1988-01-01

    Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.

  19. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  20. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO{sub 3}, La(Ca)CrO{sub 3}, and Y(Ca)CrO{sub 3}. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La{sub 1-x}Sr{sub x}MnO{sub 3}. 5 refs.

  1. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO[sub 3], La(Ca)CrO[sub 3], and Y(Ca)CrO[sub 3]. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La[sub 1-x]Sr[sub x]MnO[sub 3]. 5 refs.

  2. [Lanthanum carbonate in clinical practice].

    PubMed

    Torregrosa Prats, V

    2008-01-01

    Lanthanum is an element belonging to the group called rare earths. Due to its low solubility, lanthanum carbonate has been widely studied as an intestinal phosphate binder. The results of different clinical trials show that it is an effective and well-tolerated phosphate binder used in monotherapy. Serum phosphate levels are controlled in approximately 70% of patients at 5 years without causing hypercalcemia. The only significant adverse effects observed are a low percentage of gastrointestinal disturbances (6%). Lanthanum carbonate does not alter serum values of liposoluble vitamins or affect the pharmacokinetics of digoxin, warfarin, furosemide, phenytoin, ACE inhibitors or beta-blockers. However, it does alter the pharmacokinetics of ciprofloxacin (quinolones in general), tetracyclines and doxycycline. Lanthanum carbonate (Fosrenol) is available in Spain as 500 mg, 750 mg, and 1,000 mg chewable tablets, which should not be swallowed without chewing to avoid loss of efficacy. The initial dose recommended by the WHO is 2,250 mg/day, which is equivalent to one 750 mg at each meal. Lanthanum carbonate or lanthanum phosphate can be clearly visualized on a plain x-ray of the abdomen in patients who have recently ingested it. In summary, lanthanum carbonate is a widely studied potent phosphate binder, which offers the possibility of improving control of serum phosphate in patients with chronic kidney disease, without significant side effects. The fact that it is available as chewable tablets and that the number of daily tablets required has been significantly reduced will probably facilitate better patient compliance. PMID:18847414

  3. Chromite resources of the podiform chromite deposits and exploration for concealed chromite deposits in the Medford-Coos Bay quadrangles, southwestern Oregon

    USGS Publications Warehouse

    Page, Norman J; Johnson, Maureen G.

    1977-01-01

    Exploration models for podiform chromite in the Medford-Coos Bay quadrangles must consider the facts that (1) one deposit occurs for every 5 km 2 of ultramafic outcrop; similarly for a 5 km 3 volume, and (2) the average deposit has a tonnage of 206 tonnes, a volume of 8.9 m 3 and a grade between 43 and 51 percent Cr2O3.

  4. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    NASA Astrophysics Data System (ADS)

    Housley, R. M.

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  5. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  6. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-01

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree. PMID:22280490

  7. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  8. Ames Lab 101: Lanthanum Decanting

    SciTech Connect

    Riedemann, Trevor

    2010-01-01

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  9. Ames Lab 101: Lanthanum Decanting

    ScienceCinema

    Riedemann, Trevor

    2012-08-29

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  10. Conditional estimates of the number of podiform chromite deposits

    USGS Publications Warehouse

    Singer, D.A.

    1994-01-01

    A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits. The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=-0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein. ?? 1994 Oxford University Press.

  11. Chromite deposits of the north-central Zambales Range, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.

    1970-01-01

    Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures

  12. Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Dinh, Thi Hinh; Lee, Hyun-Young; Yoon, Chang-Ho; Malik, Rizwan Ahmed; Kong, Young-Min; Lee, Jae-Shin; Tran, Vu Diem Ngoc

    2013-04-01

    To clarify the effect of A-site donor doping on the phase transition and the strain enhancement, we investigated the crystal structure, as well as the piezoelectric, ferroelectric and electric-field-induced strain (EFIS) properties of La-doped Bi1/2(Na0.82K0.18)1/2TiO3 (BNKT) ceramics. Similarly to our previous studies on BNKT doped with B-site donors such as Nb and Ta, La doping was found to induce a ferroelectric-to-nonpolar (FE-NP) phase transition, leading to a large enhancement in EFIS just after the transition. The result provides strong evidence that a close relationship exists between the Goldschumidt's tolerance factor and the FE-NP transition in BNKT, which has been observed in B-site-donor or isovalent impurity-doped BNKT.

  13. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  14. Rapid Synthesis of Nonstoichiometric Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Matsuda, S.; Shapiro, E.; Danielson, L.; Hardister, H.

    1987-01-01

    New process relatively fast and simple. Improved method of synthesizing nonstoichiometric lanthanum sulfide faster and simpler. Product purer because some of prior sources of contamination eliminated.

  15. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  16. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  17. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  18. Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free 0.96[Bi1/2(Na0.84K0.16)1/2](1- x)La x TiO3-0.04SrTiO3 (BNKTLa x-ST, with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05) ceramics have been synthesized using a conventional solid-state reaction method and their phase transition, dielectric, ferroelectric, and strain properties investigated. X-ray diffraction patterns revealed formation of pure perovskite phase. A phase transition from coexistence of rhombohedral and tetragonal to a pseudocubic phase was observed at x = 0.02. Polarization and bipolar strain hysteresis loops indicated that the ferroelectric order (FE) of BNKT-ST is significantly disrupted by lanthanum doping. The destabilization of the FE order results in degradation of the remanent polarization, coercive field, depolarization temperature ( T d), electromechanical coupling factor ( k p), and static d 33, accompanied by large electric-field-induced strain of 0.34% at 60 kV/cm with normalized strain of d 33 * = S max/ E max = 600 pm/V at a critical composition of around x = 0.02.

  19. Chromite ore processing residue in Hudson County, New Jersey.

    PubMed Central

    Burke, T; Fagliano, J; Goldoft, M; Hazen, R E; Iglewicz, R; McKee, T

    1991-01-01

    Chromite ore processing residue occurs at over 130 sites in Hudson County, New Jersey. Many of these sites are in urban residential areas. This waste is a result of 70 years of chromate and bichromate chemical manufacturing. At least 15% of the sites contain total chromium concentrations greater than 10,000 mg/kg, with hexavalent content ranging from about 1 to 50%. Continuing leaching of this waste results in yellow-colored surface water runoff and yellow deposits on the soil surface and inside basement walls. The chemistry, environmental fate, health effects, and human exposure potentials for this waste are described. Images FIGURE 1. PMID:1935843

  20. PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS

    SciTech Connect

    Ms. Xiaolei Sun; Professor George W. Roberts

    2000-06-21

    Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector.

  1. Synthesis and Characterization of Hydrophilic and Semiconductor Cadmium Chromite Nanostructures

    NASA Astrophysics Data System (ADS)

    Mousavi, Zahra; Salavati-Niasari, Masoud; Soofivand, Faezeh; Esmaeili-Zare, Mahdiyeh; Hamadanian, Masood

    2016-07-01

    Cadmium chromite nanostructures were synthesized in high yield by a simple co-precipitation method. CdCr2O4 nanostructures have been achieved using cadmium nitrate tetrahydrate and CrCl3·6H2O as precursors by a co-precipitation method. The effects of various parameters including alkaline agent, pH value, reaction temperature, and surfactant type were investigated to discover the optimum conditions, and it was found that the size and morphology of products can be affected by these parameters. The structure, morphology and surface chemistry of CdCr2O4 powder were investigated by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 20 nm. The hydrophilicity of the calcined oxides was investigated by wetting experiments and the sessile drop technique which were carried out at room temperature in air to determine the surface and interfacial interactions.

  2. Chromite in Lower Pennsylvanian Nuttall sandstone from West Virginia - Possible Blue Ridge province source

    SciTech Connect

    O'Connor, J.T. )

    1989-08-01

    Detrital chromite grains from heavy mineral separates of three samples of the Lower Pennsylvanian Nuttall Sandstone Member of the New River Formation were examined by use of a reflected-light petrographic microscope, a scanning electron microscope, and an electron microprobe. Some textures observed microscopically in the chromite grains are similar to those in chromite grains in dunite from the Blue Ridge province of North Carolina that has undergone regional metamorphism. Additional exsolution features are also observed in the chromites of this study. The major-oxide compositions of the detrital chromite grains vary more widely than those of the chromites of the Blue Ridge, possibly due to a larger sampling base. The detrital grain compositions (Cr/(Cr + Al), Mg/(Mg + Fe{sup +2})) plot near the fields of the Blue Ridge chromites, although the appearance of both more aluminum-rich and magnesium-poor compositions possibly indicate a higher facies of metamorphism than the Blue Ridge samples studied to date.

  3. Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate.

    PubMed

    Pennick, Michael; Dennis, Kerry; Damment, Stephen J P

    2006-07-01

    Lanthanum carbonate [La2(CO3)3] is a noncalcium, non-aluminum phosphate binder indicated for hyperphosphatemia treatment in end-stage renal disease. A randomized, open-label, parallel-group, phase I study was conducted to determine absolute bioavailability and investigate excretory routes for systemic lanthanum in healthy subjects. Twenty-four male subjects were randomized to a single lanthanum chloride (LaCl3) intravenous infusion (120 microg elemental lanthanum over a 4-hour period), a single 1-g oral dose [chewable La2(CO3)3 tablets; 4 x 250 mg elemental lanthanum], or no treatment (control). Serial blood, urine, and fecal samples were collected for 7 days postdosing. The absolute bioavailability of lanthanum [administered as La2(CO3)3] was extremely low (0.00127% +/- 0.00080%), with individual values in the range of 0.00015% to 0.00224%. Renal clearance was negligible following oral administration (1.36 +/- 1.43 mL/min). Intravenous administration confirmed low renal clearance (0.95 +/- 0.60 mL/min), just 1.7% of total plasma clearance. Fecal lanthanum excretion was not quantifiable after intravenous administration owing to high and variable background fecal lanthanum and constraints on the size of the intravenous dose. These findings demonstrate that lanthanum absorption from the intestinal tract into the systemic circulation is extremely low and that absorbed drug is cleared predominantly by nonrenal mechanisms. PMID:16809799

  4. Effect of additions of aluminosilicate and silicate materials on the softening temperature of chromite ore

    NASA Astrophysics Data System (ADS)

    Zhdanov, A. V.; Nurmaganbetova, B. N.; Pavlov, V. A.

    2015-07-01

    The temperatures of the beginning and end of softening and the temperature range of softening of the fines of the rich chromite ore of the Donskoy Ore Mining & Processing Plant in Kazakhstan are experimentally determined. The following natural and technical silica-containing materials, which are considered as fluxing additions to decrease the melting temperature of the chromite ore, are investigated: aluminosilicate clays, microsilica, and quartzite of various fractions. The effect of additions of the natural and technical silica-containing materials on the temperatures of the beginning and end of softening and the temperature range of softening of the chromite ore of DODPE is analyzed. The influences of various materials and their fraction compositions on the temperature of softening of the chromite ores are compared.

  5. Stabilized lanthanum sulphur compounds. [thermoelectric materials

    NASA Technical Reports Server (NTRS)

    Reynolds, G. H.; Elsner, N. B.; Shearer, C. H. (Inventor)

    1983-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium, or strontium. This compound is an excellent thermoelectric material.

  6. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  7. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, David; Wilde, Stephen B.

    1991-01-01

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic fields which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  8. Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material

    NASA Astrophysics Data System (ADS)

    Alwmark, Carl; Schmitz, Birger

    2009-03-01

    Chromite is the only common meteoritic mineral surviving long-term exposure on Earth, however, the present study of relict chromite from numerous Ordovician (470 Ma) fossil meteorites and micrometeorites from Sweden, reveals that when encapsulated in chromite, other minerals can survive for hundreds of millions of years maintaining their primary composition. The most common minerals identified, in the form of small (<1-10 μm) anhedral inclusions, are olivine and pyroxene. In addition, sporadic merrillite and plagioclase were found. Analyses of recent meteorites, holding both inclusions in chromite and corresponding matrix minerals, show that for olivine and pyroxene inclusions, sub-solidus re-equilibration between inclusion and host chromite during entrapment has led to an increase in chromium in the former. In the case of olivine, the re-equilibration has also affected the fayalite (Fa) content, lowering it with an average of 14% in inclusions. For Ca-poor pyroxene the ferrosilite (Fs) content is more or less identical in inclusions and matrix. By these studies an analogue to the commonly applied classification system for ordinary chondritic matrix, based on Fa in olivine and Fs in Ca-poor pyroxene, can be established also for inclusions in chromite. All olivine and Ca-poor pyroxene inclusions (>1.5 μm) in chromite from the Ordovician fossil chondritic material plot within the L-chondrite field, which is in accordance with previous classifications. The concordance in classification together with the fact that inclusions are relatively common makes them an accurate and useful tool in the classification of extraterrestrial material that lacks matrix silicates, such as fossil meteorites and sediment-dispersed chromite grains originating primarily from decomposed micrometeorites but also from larger impacts.

  9. Use in open-hearth roofs of periclase-chromite parts made from electrofused periclase-chromite

    SciTech Connect

    Simonov, K.V.; Bocharov, L.D.; Kapichev, A.G.; Kukushkin, A.P.; Solyanikov, B.G.; Tyvlebaev, V.G.

    1986-03-01

    The authors investigate the influence of the quality of periclasechromite parts on their wear rate and the life of open hearth roofs. The experimental parts met the property requirements of TU 14-8368-81 for dense PKhPPP, packed PKhPU, and medium density PKhPS; the experimental parts are characterized by a coarse-grained structure and high properties. The low silica and silicate content in the parts is responsible for their high temperature of deformation under load, and the heat resistance of the refractories is good. It was shown that the main improvement in the quality of the refractories is a signifigant reserve for increasing the life of open hearth roofs. The use in open hearth roofs of parts of electrofused periclase-chromite makes it possible to decrease the refractory consumption by 3.36 kg per ton of steel and to reduce the cost of a ton of steel.

  10. Timing resolution measurements of a 3 in. lanthanum bromide detector

    NASA Astrophysics Data System (ADS)

    Galli, L.; De Gerone, M.; Dussoni, S.; Nicolò, D.; Papa, A.; Tenchini, F.; Signorelli, G.

    2013-08-01

    Cerium-doped lanthanum bromide (LaBr3:Ce) is a scintillator that presents very good energy and timing resolutions and it is a perfect candidate for photon detector in future experiments to search for lepton flavor violation as in μ → eγ or μ → e conversion. While energy resolution was thoroughly investigated, timing resolution at several MeV presents some experimental challenge. We measured the timing resolution of a 3 in.×3 in. cylindrical LaBr3(Ce) crystal versus few reference detectors by means of a nuclear reaction from a Cockcroft-Walton accelerator that produces coincident γ-rays in the 4.4-11.6 MeV range. Preliminary results allow us to extrapolate the properties of a segmented γ-ray detector in the 50-100 MeV range.

  11. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone

    PubMed Central

    Satsukawa, Takako; Griffin, William L.; Piazolo, Sandra; O’Reilly, Suzanne Y.

    2015-01-01

    Investigations of the Mantle Transition Zone (MTZ; 410–660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context. PMID:26563583

  12. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Satsukawa, Takako; Griffin, William L.; Piazolo, Sandra; O'Reilly, Suzanne Y.

    2015-11-01

    Investigations of the Mantle Transition Zone (MTZ; 410-660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context.

  13. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    PubMed Central

    2011-01-01

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts. PMID:21639896

  14. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  15. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone.

    PubMed

    Satsukawa, Takako; Griffin, William L; Piazolo, Sandra; O'Reilly, Suzanne Y

    2015-01-01

    Investigations of the Mantle Transition Zone (MTZ; 410-660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context. PMID:26563583

  16. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Holm, Nils G

    2011-01-01

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts. PMID:21639896

  17. Lanthanum

    MedlinePlus

    ... medications called phosphate binders. It works by preventing absorption of phosphate from food in the stomach. ... it at room temperature and away from excess heat and moisture (not in the bathroom). Throw away ...

  18. Energy stabilization of the s -symmetry superatom molecular orbital by endohedral doping of C 82 fullerene with a lanthanum atom

    SciTech Connect

    Feng, Min; Shi, Yongliang; Lin, Chungwei; Zhao, Jin; Liu, Fupin; Yang, Shangfeng; Petek, Hrvoje

    2013-08-01

    Energy stabilization of the superatom molecular orbitals (SAMOs) in fullerenes is investigated with the goal of involving their nearly free-electron bands in practical charge transport applications. Combining low-temperature scanning tunneling microscopy-based spectroscopic methods and density functional theory calculations on an endohedral metallofullerene La@C82, we confirm that the s-SAMO of C82 fullerene is stabilized by as much as 2 eV with respect to that of C60 by endohedral doping with the La atom. On the copper metal substrate, the s-SAMO energy is further lowered to just 1 eV above the Fermi level, making the applications of s-SAMO state in transport more plausible. We conclude that in an endohedral metallofullerene, the s-SAMO state is stabilized through the hybridization with the s-symmetry valence state of the metal atom and the stabilization energy correlates with the ionization potential of the free atom.

  19. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  20. Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries.

    PubMed

    Le, Hang T T; Ngo, Duc Tung; Kalubarme, Ramchandra S; Cao, Guozhong; Park, Choong-Nyeon; Park, Chan-Jin

    2016-08-17

    A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites. PMID:27463563

  1. PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS

    SciTech Connect

    Ms. Xiaolei Sun; Professor George W. Roberts

    2000-08-29

    During this reporting period, a ''zinc chromite'' catalyst promoted with 6 wt.% cesium (Cs) was evaluated at the following conditions: Temperature--375 C; Total Pressure--6.8 MPa (1000 psig); Gas Hourly Space Velocity (GHSV) - 5000 standard liters/kg(cat)-hr, and; H{sub 2}/CO feed ratio--1.0 mole/mole. Decahydronaphthalene (DHN) was used as the slurry liquid. The experiment lasted for eight days of continuous operation. Although the experimental data once again did not exhibit the desired degree of consistency, the data did show that methanol was the primary reaction product. The slurry liquid did not decompose or alkylate to a measurable extent during the continuous 8-day experiment. There was a relatively significant loss of catalyst surface area during the experiment. Gas chromatography/mass spectrometry (GC/MS) analysis of various fractions of ''spent'' THQ was carried out. The fractions were prepared by silica gel liquid chromatography (LC). Chemical formuli and probable structures for each major compound were obtained. However, a higher degree of purification will be necessary to allow nuclear magnetic resonance (NMR) analysis to be used for definitive compound identification. A new Maxpro gas booster (DLE 15-75) was purchased because the existing Haskel gas booster once again developed a severe leak of carbon monoxide and hydrogen, and was judged to be unworthy of repair.

  2. PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS

    SciTech Connect

    Ms. Xiaolei Sun; Professor George W. Roberts

    2001-06-15

    This report describes the analytical protocols that were developed during the last two years to analyze ''spent'' THQ (tetrahydroquinoline) slurry liquid. Identification of the components of the ''spent'' THQ should help to understand the influence of the slurry medium on the methanol synthesis reaction, and on other reactions with THQ as the slurry liquid. Silica gel liquid chromatography and high performance liquid chromatography (HPLC) were used to isolate and purify the major compounds in the ''spent'' slurry liquid. Gas chromatography/mass spectroscopy (GC/MS), Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) were applied to identify the major compounds. Methyl-, dimethyl-, and trimethyl-THQ were found to comprise more than 80% of the ''spent'' liquid. The balance was various methylated indoles. A methyl group always is attached to the N atom in the ring structure. Speculative mechanisms are presented that may help to understand the interaction between the catalyst and the alkylated THQ slurry liquid, and the effect of liquid composition on the methanol synthesis reaction. A poster entitled ''Promoted Zinc Chromite Catalyst for Higher Alcohol Synthesis in a Slurry Reactor-2. Spent Liquid Analysis'' was presented at the AIChE National Meeting, Los Angeles, CA, Nov 12-17, 2000.

  3. Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol

    NASA Astrophysics Data System (ADS)

    Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.

    2015-05-01

    In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).

  4. Effect of heterovalent substitutions in yttrium chromite on the hyperfine interactions of 119Sn4+ studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Fabritchnyi, Pavel B.; Afanasov, Mikhail I.; Mezhuev, Evgeny M.; Wattiaux, Alain; Duttine, Mathieu; Labrugère, Christine

    2016-03-01

    In order to develop the 119Sn Mössbauer spectroscopic probe technique to study magnetically ordered materials, three Ca-substituted yttrium chromites, i.e. Y0.9Ca0.1CrO3, Y0.9Ca0.1Cr0.9Ti0.1O3 and Y0.8Ca0.2Cr0.8Ti0.2O3, doped with 0.3 atom-% Sn4+, were for the first time investigated. 119Sn Mössbauer spectra, recorded at 4.2 K, have allowed, through analysis of the magnetic hyperfine field values, probed by 119Sn nuclei, to gain insight into the local magnetically active surrounding of different Sn4+ ions. In all of these compounds, partial segregation of Sn4+ ions is revealed. In the case of Y0.9Ca0.1CrO3, neither highly oxidized Cr4+ nor Cr6+ species, expected to compensate for the Ca2+ positive charge deficit, is found in the vicinity of the 119Sn4+ probe. In the case of both studied Ti-containing chromites, 119Sn Mössbauer spectra have provided the original indirect evidence for the statistical distribution of Cr3+ and Ti4+ ions over the octahedral sites and permitted characterization of the occurring associates of Sn4+.

  5. Sulfidation Kinetics of Natural Chromite Ore Using H2S Gas

    NASA Astrophysics Data System (ADS)

    Ahmad, Sazzad; Rhamdhani, M. Akbar; Pownceby, Mark I.; Bruckard, Warren J.

    2015-04-01

    The kinetics and mechanism of natural chromite (FeCr2O4) sulfidation using 5 pct H2S (balance Ar) gas were studied in the temperature range 1173 K to 1473 K (900 °C to 1200 °C). Reaction products were examined using combined X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Results indicated the formation of an outer sulfide-rich layer comprising mixed (Fe,Cr)1- x S and (Cr,Fe)1- x S phases, underlain by a cation-depleted diffusion zone. The kinetics investigation indicated that the reaction rate increased with increasing temperature and that the sulfidation of chromite followed a shrinking unreacted core model. It is proposed that Cr3+ cation diffusion through the reaction product was the rate controlling step with an apparent activation energy of 166 ± 4 kJ mol-1. The calculated activation energy lies between the activation energy for Fe2+ and Cr3+ diffusion through pure chromite spinel and Fe-Cr alloy. Possible reasons for the discrepancy from pure chromite are expected to be the presence of minor Al and Mg in the natural chromite sample, and the partial pressure of oxygen under the reaction conditions used.

  6. Determination of lanthanum by flame photometric titration.

    PubMed

    Svehla, G; Slevin, P J

    1968-09-01

    The flame emission of lanthanum at 560 mmu decreases linearly with phosphate concentration until a 1:1 molar ratio is reached, and then remains practically constant. Lanthanum can be titrated with phosphate, the equivalence point being detected from the change in emission intensity. Errors due to consumption of solution by the atomizer can be kept low by using short spraying times and low galvanometer damping. The average error is about -1% for 0.1M solutions and less than -5% for 0.01M. The method gives good results in the presence of titanium(III), zirconium, thorium and aluminium but cerium(III) and yttrium seriously interfere. PMID:18960392

  7. Treatability of chromite ore processing waste by leaching.

    PubMed

    Unlü, K; Haskök, S

    2001-06-01

    Developing treatment and disposal strategies and health-based clean-up standards for chromium containing wastes continues to be an important environmental regulatory issue because of the opposing solubility and toxicity characteristics of chromium species under diverse environmental conditions. In this study, leaching characteristics of total Cr and Cr(VI) were investigated using laboratory column studies. The data obtained from the experimental studies were analysed to assess the treatability of chromite ore processing waste (COPW) by leaching and to identify the leaching strategies that enhance mass removal rates of chromium species. COPW used for laboratory soil column studies was obtained from an industrial plant producing sodium chromate in Mersin, Turkey. Laboratory investigations involved chemical characterisation of waste material and column studies. For waste characterisation, U.S. EPA toxicity characterisation leaching procedure (TCLP) was performed on COPW to determine the concentrations of metal species in the TCLP extract. For column studies, various laboratory columns containing plain COPW material, 1:1 COPW/reducing agent (elemental iron or manure) mixture and different type soils (sand, loam and clay) overlain by COPW were subjected to leaching tests using acidic, neutral and alkaline influent water to determine Cr mass leaching efficiencies. Based on the TCLP analyses, COPW is classified as hazardous waste. As a result of comparing the leaching efficiency data from twelve leaching columns, the maximum removal of total Cr was achieved by leaching COPW/manure mixture using acidic (pH 4.78) influent water. The highest Cr(VI) leaching efficiency was achieved in the columns of plain COPW and COPW/manure mixture using highly alkaline (pH 12.0) influent water. The least effective leaching efficiency for both total Cr and Cr (VI) was obtained by leaching plain COPW with neutral (pH 7.0) influent water. Land-disposal of the treated COPW material by mixing

  8. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    USGS Publications Warehouse

    Gijbels, R.h.; Millard, H.T., Jr.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  9. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles

    NASA Astrophysics Data System (ADS)

    González-Jiménez, José M.; Reich, Martin; Camprubí, Antoni; Gervilla, Fernando; Griffin, William L.; Colás, Vanessa; O'Reilly, Suzanne Y.; Proenza, Joaquín A.; Pearson, Norman J.; Centeno-García, Elena

    2015-08-01

    The Loma Baya complex in south-western Mexico is a volume of chromitite-bearing oceanic mantle that records a complex metamorphic history, defined by a first stage of hydrous metamorphism overprinted by a short-lived thermal event associated with an Eocene granite intrusion. During the hydrous metamorphism, the primary magmatic chromite-olivine assemblage was replaced by a secondary, porous intergrowth of Fe2+-rich chromite and chlorite. The heat supplied by an Eocene-age granite intrusion reversed the hydration reaction, producing chromite rims with perfectly developed crystal faces. This third-generation chromite is in equilibrium with highly magnesian (neoformed) olivine and defines a chemical trend analogous to the original magmatic one. The preservation of both reactions in the Loma Baya chromitite provides compelling evidence that the hydration of chromite can be reversed by either prograde metamorphism or any heating event, confirming previous thermodynamic predictions. Understanding these complex features is of particular interest due to the fact that changes in temperature and variable degrees of fluid/rock interaction during metamorphism and intrusion have also significantly affected the chromite-hosted IPGE carrier phases. Here, we propose that the metamorphic fluids involved in the hydrous metamorphism have caused the desulphurization of laurite RuS2, releasing minute particles of Ru-Os-Ir alloys <50 nm in diameter. The following short-lived thermal event that promoted dehydration in the chromitite had the opposite effect on nanoparticle stability, producing a significant coarsening of metal nanoparticles to dimensions larger than a micron. Based on such observations, we argue that IPGE nanoparticles can be exsolved and grown (or coarsen) from sulphide matrices during prograde metamorphism or heating and not exclusively upon cooling under magmatic conditions as it has been previously suggested. These results provide new insights on the relevant role of

  10. Zircon and chromite crystals in a muong nong-type tektite.

    PubMed

    Glass, B P

    1970-08-21

    Chromite, zircon, and quartz crystals (identified by x-ray diffraction) have been recovered from a 2.07-gram sample of Muong Nong-type tektite. The absence of eskolaite (Cr(2)O(3)) and baddeleyite (ZrO(2)) supports a previous conclusion that Muong Nong-type tektites were not heated as intensely as other tektite groups. X-ray asterism studies indicate that the crystals are shocked, which supports an impact origin. The presence of chromite and zircon together suggests that the Muong Nong-type tektite was produced from sedimentary material. PMID:17820307

  11. Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07  μm: quantitative effect of lanthanum, cerium, and thulium.

    PubMed

    Lupi, Jean-François; Vermillac, Manuel; Blanc, Wilfried; Mady, Franck; Benabdesselam, Mourad; Dussardier, Bernard; Neuville, Daniel R

    2016-06-15

    By pumping thulium-doped silica-based fibers at 1.07 μm, rapid generation of absorbing centers leads to photoinduced attenuation (PIA). This detrimental effect prevents exploiting laser emissions in the visible and near infrared. We report on the characterization of the PIA versus the fiber core composition, particularly the concentration of thulium (Tm), lanthanum (La), and cerium (Ce) ions. We show that UV emission induced by Tm-Tm energy transfers is the source of photodarkening and that lanthanum and cerium are efficient hardeners against PIA. PMID:27304285

  12. Steady photodarkening of thulium alumino-silicate fibers pumped at 107 μm: quantitative effect of lanthanum, cerium, and thulium

    NASA Astrophysics Data System (ADS)

    Lupi, Jean-François; Vermillac, Manuel; Blanc, Wilfried; Mady, Franck; Benabdesselam, Mourad; Dussardier, Bernard; Neuville, Daniel R.

    2016-06-01

    By pumping thulium-doped silica-based fibers at 1.07~\\mu m, rapid generation of absorbing centers leads to photo-induced attenuation (PIA). This detrimental effect prevents exploiting laser emissions in the visible and near infrared. We report on the characterization of the PIA versus the fiber core composition, particularly the concentration of thulium (Tm), lanthanum (La) and cerium (Ce) ions. We show that UV emision induced by Tm-Tm energy transfers is the source of photo-darkening, and that lanthanum and cerium are efficient hardeners against PIA.

  13. Chromite-Plagioclase Assemblages as a New Shock Indicator; Implications for the Shock and Thermal Histories of Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    Chromite in ordinary chondrites (OC) can be used as a shock indicator. A survey of 76 equilibrated H, L and LL chondrites shows that unshocked chromite grains occur in equant, subhedral and rounded morphologies surrounded by silicate or intergrown with metallic Fe-Ni and/or troilite. Some unmelted chromite grains are fractured or crushed during whole-rock brecciation. Others are transected by opaque veins; the veins form when impacts cause localized heating of metal-troilite intergrowths above the Fe-FeS eutectic (988 C), mobilization of metal-troilite melts, and penetration of the melt into fractures in chromite grains. Chromite-plagioclase assemblages occur in nearly every shock-stage S3-S6 OC; the assemblages range in size from 20-300 microns and consist of 0.2-20-micron-size euhedral, subhedral, anhedral and rounded chromite grains surrounded by plagioclase or glass of plagioclase composition. Plagioclase has a low impedance to shock compression. Heat from shock-melted plagioclase caused adjacent chromite grains to melt; chromite grains crystallized from this melt. Those chromite grains in the assemblages that are completely surrounded by plagioclase are generally richer in Al2O3, than unmelted, matrix chromite grains in the same meteorite. Chromite veinlets (typically 0.5-2 microns thick and 10-300 microns long) occur typically in the vicinity of chromite-plagioclase assemblages. The veinlets formed from chromite-plagioclase melts that were injected into fractures in neighboring silicate grains; chromite crystallized in the fractures and the residual plagioclase-rich melt continued to flow, eventually pooling to form plagioclase-rich melt pockets. Chromite-rich chondrules (consisting mainly of olivine, plagioclase-normative mesostasis, and 5-15 vol.% chromite) occur in many shocked OC and OC regolith breccias but they are absent from primitive type-3 OC. They may have formed by impact melting chromite, plagioclase and adjacent mafic silicates during higher

  14. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  15. Precipitation of copper and chromium impurities in lanthanum magnesium aluminate crystals during thermochemical reduction

    SciTech Connect

    Ballesteros, C. ); Gonzalez, R. ); Chen, Y. ); Kokta, M.R. )

    1993-02-01

    Thermochemical reduction at high temperatures has been performed on chromium-doped lanthanum magnesium aluminate crystals. Analytical transmission-electron-microscopy and optical-absorption techniques were used to characterize the crystals. Copper impurities inherently present in the crystals began to aggregate and form Cu-rich particles at 1500 K near the surface region. Below 1870 K there was no evidence of chromium precipitates being formed. However, Cr-rich particles were formed at 2020 K. The distribution of the precipitates was very inhomogeneous and the precipitates were also concentrated near the surface region.

  16. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    ERIC Educational Resources Information Center

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  17. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  18. Natural occurrence and synthesis of two new postspinel polymorphs of chromite.

    PubMed

    Chen, Ming; Shu, Jinfu; Mao, Ho-kwang; Xie, Xiande; Hemley, Russell J

    2003-12-01

    A high-pressure polymorph of chromite, the first natural sample with the calcium ferrite structure, has been discovered in the shock veins of the Suizhou meteorite. Synchrotron x-ray diffraction analyses reveal an orthorhombic CaFe2O4-type (CF) structure. The unit-cell parameters are a = 8.954(7) A, b = 2.986(2) A, c = 9.891(7) A, V = 264.5(4) A3 (Z = 4) with space group Pnma. The new phase has a density of 5.62 g/cm3, which is 9.4% denser than chromite-spinel. We performed laser-heated diamond anvil cell experiments to establish that chromite-spinel transforms to CF at 12.5 GPa and then to the recently discovered CaTi2O4-type (CT) structure above 20 GPa. With the ubiquitous presence of chromite, the CF and CT phases may be among the important index minerals for natural transition sequence and pressure and temperature conditions in mantle rocks, shock-metamorphosed terrestrial rocks, and meteorites. PMID:14645712

  19. Natural occurrence and synthesis of two new postspinel polymorphs of chromite

    PubMed Central

    Chen, Ming; Shu, Jinfu; Mao, Ho-kwang; Xie, Xiande; Hemley, Russell J.

    2003-01-01

    A high-pressure polymorph of chromite, the first natural sample with the calcium ferrite structure, has been discovered in the shock veins of the Suizhou meteorite. Synchrotron x-ray diffraction analyses reveal an orthorhombic CaFe2O4-type (CF) structure. The unit-cell parameters are a = 8.954(7) Å, b = 2.986(2) Å, c = 9.891(7) Å, V = 264.5(4) Å3 (Z = 4) with space group Pnma. The new phase has a density of 5.62 g/cm3, which is 9.4% denser than chromite-spinel. We performed laser-heated diamond anvil cell experiments to establish that chromite-spinel transforms to CF at 12.5 GPa and then to the recently discovered CaTi2O4-type (CT) structure above 20 GPa. With the ubiquitous presence of chromite, the CF and CT phases may be among the important index minerals for natural transition sequence and pressure and temperature conditions in mantle rocks, shock-metamorphosed terrestrial rocks, and meteorites. PMID:14645712

  20. Petrology of chromite in ureilites: Deconvolution of primary oxidation states and secondary reduction processes

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Harlow, George E.; Van Orman, James A.; Sutton, Stephen R.; Jercinovic, Michael J.; Mikouchi, Takashi

    2014-06-01

    Ureilites are ultramafic achondrites thought to be residues of partial melting on a carbon-rich asteroid. They show a trend of FeO-variation (olivine Fo from ∼74 to 95) that suggests variation in oxidation state. Whether this variation was established during high-temperature igneous processing on the ureilite parent body (UPB), or preserved from nebular precursors, is a subject of debate. The behavior of chromium in ureilites offers a way to assess redox conditions during their formation and address this issue, independent of Fo. We conducted a petrographic and mineral compositional study of occurrences of chromite (Cr-rich spinel) in ureilites, aimed at determining the origin of the chromite in each occurrence and using primary occurrences to constrain models of ureilite petrogenesis. Chromite was studied in LEW 88774 (Fo 74.2), NWA 766 (Fo 76.7), NWA 3109 (Fo 76.3), HaH 064 (Fo 77.5), LAP 03587 (Fo 74.9), CMS 04048 (Fo 76.4), LAP 02382 (Fo 78.6) and EET 96328 (Fo 85.2). Chromite occurs in LEW 88774 (∼5 vol.%), NWA 766 (<1 vol.%), NWA 3109 (<1 vol.%) and HaH 064 (<1 vol.%) as subhedral to anhedral grains comparable in size (∼30 μm to 1 mm) and/or textural setting to the major silicates (olivine and pyroxenes[s]) in each rock, indicating that it is a primary phase. The most FeO-rich chromites in these sample (rare grain cores or chadocrysts in silicates) are the most primitive compositions preserved (fe# = 0.55-0.6; Cr# varying from 0.65 to 0.72 among samples). They record olivine-chromite equilibration temperatures of ∼1040-1050 °C, reflecting subsolidus Fe/Mg reequilibration during slow cooling from ∼1200 to 1300 °C. All other chromite in these samples is reduced. Three types of zones are observed. (1) Inclusion-free interior zones showing reduction of FeO (fe# ∼0.4 → 0.28); (2) Outer zones showing further reduction of FeO (fe# ∼0.28 → 0.15) and containing abundant laths of eskolaite-corundum (Cr2O3-Al2O3); (3) Outermost zones showing extreme

  1. Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil Kumar; Banerjee, P. K.; Suresh, Nikkam

    2015-03-01

    The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the literature contains numerous reports related to the magnetic separation of different minerals, limited work concerning the application of magnetic separation to fine chromite from the Sukinda region of India to enhance its Cr:Fe ratio has been reported. In the present investigation, magnetic separation and mineralogical characterization studies of chromite fines were conducted to enhance the Cr:Fe ratio. Characterization studies included particle size and chemical analyses, X-ray diffraction analysis, automated mineral analysis, sink-and-float studies, and magnetic susceptibility measurements, whereas magnetic separation was investigated using a rare earth drum magnetic separator, a rare earth roll magnetic separator, an induced roll magnetic separator, and a wet high-intensity magnetic separator. The fine chromite was observed to be upgraded to a Cr:Fe ratio of 2.2 with a yield of 55.7% through the use of an induced roll magnetic separator and a feed material with a Cr:Fe ratio of 1.6.

  2. Beneficiation of Konya-Beyşehir Chromite for Producing Concentrates Suitable for Industry

    NASA Astrophysics Data System (ADS)

    Öztürk, Fatma Deniz; Abakay Temel, Halime

    2016-06-01

    Turkey has a 6% share of world chromite mining and possesses 25 million tons of reserves. Despite their economic importance, the most important Turkish chromite reserves have not been extensively studied with respect to their composition. In this study, the possibility of upgrading Konya-Beyşehir (Turkey) chromite to produce chromite concentrates suitable for industry is investigated. Two groups of enrichment experiments were made. The effects of some parameters that markedly influence the separation of a shaking table, such as the amplitude and slope of the shaking table and the frequency of strokes were investigated in the first group of experiments, The shaking table experiments were planned and carried out using the statistical methods of Design of Experiments (Yate's and ANOVA) in the second group of experiments. As a result, it was found that a concentrate containing 46.89% Cr2O3 content with a yield of 85.18% was obtained from a feed containing 3.98% Cr2O3 content in 0.2 + 0.1 mm size fraction.

  3. Insight into the Consolidation Mechanism of Oxidized Pellets Made from the Mixture of Magnetite and Chromite Concentrates

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Zhang, Qiang; Shi, Benjing; Zhang, Feng

    2016-04-01

    To produce more competitive stainless steel products, the utilization of low-cost chromite concentrate is of great importance. In a previous study, a high-quality product pellet (CMP) for blast furnace smelting process made from a mixture of 40 wt pct chromite and 60 wt pct magnetite concentrates was manufactured by a high-pressure grinding rollers pretreatment. In this work, an insight into the consolidation mechanism of CMP is taken in comparison with the oxidized pellets (MP) made from 100 pct magnetite concentrate by adopting the scanning electron microscopy, energy-dispersive spectrometer, and X-ray diffractometer. The mineralogy of the pellets and the morphology of the preheated and roasted mineral particles are demonstrated. To gain better understanding of the consolidation mechanism of CMP, the thermodynamics of chromite-magnetite spinel system and hematite-sesquioxide corundum system in air are considered by using FactSage software. It can be found that the solid-state bonding is the dominant form in the consolidation of CMP, which mainly depends on the recrystallization of hematite, the solid solution bonding in adjacent areas of both magnetite-chromite particles and chromite-chromite particles. The latter two bonds rely on the formation of the miscible sesquioxide and spinel solid solution at the contact areas of particles, which is largely affected by the oxidizability of magnetite and chromite spinels. When more chromite concentrate is blended, the weak bonding among the chromite particles gradually becomes the dominant factor, which will lead to the decrease of the mechanical strength of fired pellets. The presence of a small quantity of siliceous liquid phase in CMP is believed to be beneficial to the hardening by accelerating the ion diffusion rate and forming slag bonds.

  4. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  5. Adsorption of lanthanum to goethite in the presence of gluconate

    SciTech Connect

    Hull, Laurence C.; Sarah Pepper; Sue Clark

    2005-05-01

    Adsorption of Lanthanum to Goethite in the Presence of Gluconic Acid L. C. HULL,1 S. E. PEPPER2 AND S. B. CLARK2 1Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (hulllc@inel.gov) 2Washington State University, Pullman, WA (spepper@wsu.edu), (s_clark@wsu.edu) Lanthanide and trivalent-actinide elements in radioactive waste can pose risks to humans and ecological systems for many years. Organic complexing agents, from natural organic matter or the degradation of waste package components, can alter the mobility of these elements. We studied the effect of gluconic acid, as an analogue for cellulose degradation products, on the adsorption of lanthanum, representing lanthanide and trivalent-actinide elments, to goethite, representing natural iron minearals and degradation products of waste packages. Batch pH adsorption edge experiments were conducted with lanthanum alone, and with lanthanum and gluconate at a 1:1 mole ratio. Lanthanum concentrations studied were 0.1, 1, and 10 mM, covering a range from 10% to 1000% of the calculated available adsorption sites on goethite. In the absence of gluconate, lanthanum was primarily present in solution as free lanthanum ion. With gluconate present, free lanthanum concentration in solution decreased with increasing pH as step-wise deprotonation of the gluconate molecule increased the fraction lanthanum complexed with gluconate. Adsorption to the goethite surface was represented with the diffuse double-layer model. The number of adsorption sites and the intrinsic binding constants for the surface complexes were estimated from the pH adsorption edge data using the computer code FITEQL 4.0. Two surface reactions were used to fit the adsorption data in the absence of gluconate. A strong binding site with no proton release and a much higher concentration of weak binding sites with release of two protons per lanthanum adsorbed. The adsorption of lanthanum was not measurably affected by the presence of gluconate

  6. Sorption of lanthanum ions by natural clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Dampilova, B. V.; Zonkhoeva, E. L.

    2013-08-01

    The equilibrium and kinetics of sorption of lanthanum ions on natural clinoptilolite tuff are studied. It is demonstrated that sorption of lanthanum ions from diluted solutions occurs in micropores of clinoptilolite, and from concentrated solutions in the mesoporous structure of tuff. The main capacity of zeolite tuff is found in the secondary porous structure. The sorption of lanthanum ions is limited by diffusion in tuff grains. Lanthanum ions are regularly distributed in the tuff phase and interact with the Brønsted centers of large clinoptilolite cavities.

  7. Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content

    SciTech Connect

    Deus, R.C.; Cortés, J.A.; Ramirez, M.A.; Ponce, M.A.; Andres, J.; Rocha, L.S.R.; and others

    2015-10-15

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in the cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.

  8. The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions

    NASA Technical Reports Server (NTRS)

    Krot, Alexander; Ivanova, Marina A.; Wasson, John T.

    1993-01-01

    We characterize ten chromatic chondrules, two spinelian chondrules andd one spinel-bearing chondrule and summarize data for 120 chromitic inclusions discovered in an extensive survey of ordinary chondrites. Compositional and petrographic evidence suggests that chromitic chondrules and inclusions are closely related. The Cr/(Cr + Al) ratios in the spinal of these objects range from 0.5 to 0.9 and bulk Al2O3 contents are uniformly high (greater than 10 wt%, except for one with 8 wt%). No other elements having comparable solar abundances are so stongly enriched, and alkali feldspar and merrillite are more common than in normal chondrules. The Cr/Mg ratios in chromitic chondrules are 180-750 times the ratios in the bulk chondrite. With the possible exception of magnetic clumping of chromite in the presolar cloud, mechanical processes cannot account for this enrichment. Examination of nebular equilibrium processes shows that 50%-condensation temperatures of Cr at pH2/pH2O of 1500 are several tens of degrees below those of Mg as Mg2SiO4; the condensation of Cr is primarily as MgCr2O4 dissolved in MgAl2O4 at nebular pressures of 10(exp -4) atm or below. At pH2 = 10(exp -3) atm condesation as Cr in Fe-Ni is favored. Making the nebula much more oxidizing reduces the difference in condensation temperatures but Mg remains more refractory. We conclude that nebular equilibrium processes are not responsible for the enhanced Cr/Mg ratios. We propose that both Cr and Al became enriched in residues formed by incomplete evaporation of presolar lumps. We suggest that spinals remained as solid phases when the bulk of the silicates were incorporated into the evaporating melt; vaporization of Al and Cr were inhibited by the slow kinetics of diffusion. Subsequent melting and crystallization of these residues fractionated Cr from Al. The resulting materials constituted major components in the precursors of chromitic chondrules. Our model implies that chromitic chondrules and inclusions

  9. The Oxidation State Of Iron In Chromite As A Record Of Deep Earth Processes

    NASA Astrophysics Data System (ADS)

    McGowan, N.; Griffin, W. L.; Pearson, N.; O'Reilly, S. Y.; Clark, S. M.; Roque-Rosell, J.; Marcus, M.; McCammon, C. A.

    2015-12-01

    Recent work on podiform chromitite from the Luobusa massif, Tibet, suggests that a lithospheric slab containing the chromitite was driven into the Transition Zone (>400 km) after primary crystallisation at shallow depth [1]. Exsolution of coesite and pyroxenes from chromite is believed to reflect conversion from the spinel structure to the ultra-high pressure (UHP) calcium ferrite (CF) polymorph below 400 km [2]. Experimental studies report that UHP polymorphs can have a high affinity for Fe3+, leading to disproportionation of Fe2+ to Fe3+ + Fe0 [3], despite low fO2 as evidenced by inclusions of diamond, native metals and alloys, moissanite, and Cr2+-bearing chromite. Luobusa chromitites may be the first natural example of this phenomenon; one study reported a massive chromitite with higher Fe3+/∑Fe than nodular or disseminated varieties with lower modal chromite [4]. The absence of indicators of oxidation implies that the high Fe3+/∑Fe was not produced by formation or alteration of chromite at Earth's surface. A study using samples from Luobusa and the low-pressure Antalya Complex, Turkey was carried out to investigate relationships between pressure, fO2 and Fe3+/∑Fe. In the first application of μ-X-ray absorption near edge structure (μ-XANES) spectroscopy to measure chromite Fe3+/∑Fe, we constructed calibration curves for the pre-edge centroid and main edge maximum features using Fe3+/∑Fe (from Mössbauer spectroscopy) in synthetic and natural spinels. Pre-edge results show that Fe3+/∑Fe increases with vol.% chromite in chromitites from Luobusa, but not from Antalya (fig. 1). High Fe3+/∑Fe thus appears to be a consequence of crystallographic stabilisation of Fe3+ in the UHP polymorph stable below 400 km, despite low-fO2 conditions. The rapid upwelling of the Luobusa chromitite to the uppermost mantle (<10 Ma) has preserved the high Fe3+/∑Fe in samples where re-equilibration with olivine was limited. [1] McGowan et al., Geology (2015) 43, 179

  10. Self-activating and doped tantalate phosphors.

    SciTech Connect

    Nyman, May Devan; Rohwer, Lauren Elizabeth Shea

    2011-01-01

    An ideal red phosphor for blue LEDs is one of the biggest challenges for the solid-state lighting industry. The appropriate phosphor material should have good adsorption and emission properties, good thermal and chemical stability, minimal thermal quenching, high quantum yield, and is preferably inexpensive and easy to fabricate. Tantalates possess many of these criteria, and lithium lanthanum tantalate materials warrant thorough investigation. In this study, we investigated red luminescence of two lithium lanthanum tantalates via three mechanisms: (1) Eu-doping, (2) Mn-doping and (3) self-activation of the tantalum polyhedra. Of these three mechanisms, Mn-doping proved to be the most promising. These materials exhibit two very broad adsorption peaks; one in the UV and one in the blue region of the spectrum; both can be exploited in LED applications. Furthermore, Mn-doping can be accomplished in two ways; ion-exchange and direct solid-state synthesis. One of the two lithium lanthanum tantalate phases investigated proved to be a superior host for Mn-luminescence, suggesting the crystal chemistry of the host lattice is important.

  11. 40 CFR 721.10601 - Lanthanum lead titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lanthanum lead titanium zirconium... Specific Chemical Substances § 721.10601 Lanthanum lead titanium zirconium oxide. (a) Chemical substance... titanium zirconium oxide (PMN P-11-273; CAS No. 1227908-26-0) is subject to reporting under this...

  12. Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials?

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Janicke, J.

    1995-09-01

    Acapulco is considered to be a link between primitive chondritic meteorites and the differentiated achondrites. Its parent body presumably formed by accretion of material of chondritic compositions at an fO2 that lies between that of H- and enstatite chondrites [1]. The accreted chondritic material was subjected 4.557 Gyr ago to peak temperatures close to 1200 degrees C that lead to partial melting and extensive recrystallization [1, 2]. Seven morphologically different types of graphite with large variations in C- and N-isotopic compositions were recently reported from Acapulco [3, 4]. At least four distinct isotopic reservoirs are required to explain the C- and N-isotopic compositions of these graphites [3, 4]. While the silicate minerals in Acapulco have isotopically heavy N (delta^(15)N = + 15 per mil) chromites were found to be isotopically light (delta^(15)N = _ 75 to _ 82 per mil). Chromite occurs in Acapulco in six different assemblages: (1) as inclusions in silicates, (2) in FeNi, (3) in troilite, (4) with FeNi and troilite, (5) with FeNi and silicates, and (6) with troilite and silicates. It is also rarely present as small idiomorphic inclusions in plagioclase. Chromites in contact with silicates display no chemical zoning for Cr, Al, Ti, Fe, Mg, Mn, or Zn to the silicate borders thus indicating high degree of equilibration with the silicate neighbours. The MgO-contents of chromites in metals and troilites (4.74 to 7.2 %) are relatively lower and their compositional ranges are relatively wider than those in contact with silicates (6.1 to 7.69 %). Zoning profiles of MgO and FeO in chromites in all assemblages are quite flat. Chromites in contact with metals and troilite display a variety of zoning patterns of Cr, Al, Ti, and Zn. All these chromite types , however, depict the same MnO zoning trends with low MnO-contents in their cores (0.96 to 2.14 %) than in their rims to metal or troilite (1.7 to 3.1 %). With few exceptions, the zoning behaviour of Cr, Al

  13. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  14. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    SciTech Connect

    Gingasu, Dana; Mindru, Ioana; Culita, Daniela C.; Patron, Luminita; Calderon-Moreno, Jose Maria; Preda, Silviu; Oprea, Ovidiu; Osiceanu, Petre; Morena Pineda, Eufemio

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{sub 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.

  15. Peridotite hosted chromite, magnesite and olivine deposits of West Anatolia: A review

    NASA Astrophysics Data System (ADS)

    Zedef, Veysel

    2016-04-01

    Turkey has important chromite, magnesite and olivine deposits within peridotite host rocks. The peridotites (harzburgite, verlite, lherzolite and dunite) are mostly serpentinised as a result of metasomatic reaction of olivine and pyroxene minerals with percolating water. The serpentinites are generally an important part of ophiolitic complexes which displays a discontinuous belts all over the country. The chromite deposits are often related to cumulates and tectonites (as Alpine and/or podiform type deposits) and despite their small reserves, their grade can reach up to 58 %. In most deposits, a little enrichment efforts, the grade of chromite can easily be reached from 25 % to 40-45 %. The magnesite deposits of West Anatolia is especially concentrated in three provinces. These provinces are Konya, Kutahya and Eskisehir. The magnesites are of cryptocrystalline type and, like chromite deposits, their reserve are small but have high grade with low FeO-CaO and high MgO ratio. Once again, these deposits are found within serpentinised peridotites of ultramafic belts. The total (proven and inferred) magnesite reserves are approximately 200 million tons, and these are mostly cryptocrystalline character. A small amount of sedimentary magnesite deposits also present in Denizli (SW Anatolia) and Erzincan (Eastern Anatolia). The olivine deposits are found within peridotites of Western Anatolia. Especially, the Kızıldag olivine deposits (located between the border of Antalya and Konya provinces) are noteworthy with its huge (9 billion tons) reserves. The main olivine mineral is forsterite (Mg2SiO4) which has economically important when compared to other olivine mineral fayalite. The deposits have no quality problem but have a serious disadvantages since its location far from the ports and railway stations.

  16. The features of structural transformations in lanthanum manganites La{sub 1−x}A{sub x}MnO{sub 3+δ} (A = Ca, Sr, Ba)

    SciTech Connect

    Sedykh, Vera D.

    2014-10-27

    In this work, the effect of the ionic radius and concentration of a doping element on the features of the structural transformations in polycrystalline lanthanum manganites, La{sub 1−x}A{sub x}MnO{sub 3+δ} (A = Ca, Sr, Ba), has been studied by Mössbauer spectroscopy and X-ray diffraction analysis. For Mössbauer investigations, a small amount of {sup 57}Fe (2 at%) Mössbauer isotope was introduced into the samples. It follows from the analysis of the obtained data that both common features of the structural transformations and differences between them exist in lanthanum manganites depending on ionic radius and concentration of a doping element.

  17. Postmortem Study of a Magnesia-Chromite Brick from a Lead Recycling Furnace

    NASA Astrophysics Data System (ADS)

    Gregurek, D.; Reinharter, K.; Reiter, V.; Wenzl, C.; Spanring, A.

    2015-09-01

    This study provides an example of a detailed postmortem analysis carried out on a used silicate-bonded magnesia-chromite brick out of a lead recycling furnace. The magnesia-chromite brick suffered from a high chemical attack due to the process slag. The high CaO, BaO, and sulfur-bearing silicate slag, as well as a high Na2O supply from soda resulted not only in a deep-reaching infiltration of the brick microstructure but also in a severe corrosion of the brick components. Both the sintered magnesia and chromite were attacked chemically. The FactSage calculations showed the formation of high amounts of liquid phase in the infiltrated microstructure and the formation of various Na-Ca-Al-silicates. A detailed investigation of the wear mechanisms through "postmortem studies" is a crucial prerequisite for every refractory producer to understand the interactions between slag and refractory materials. The obtained information and insights serve as a basis for improving refractory materials (i.e., choice of refractories for individual process and new developments) and consequently furnace operations (i.e., prolonged furnace campaigns).

  18. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process

    NASA Astrophysics Data System (ADS)

    Gervilla, F.; Padrón-Navarta, J. A.; Kerestedjian, T.; Sergeeva, I.; González-Jiménez, J. M.; Fanlo, I.

    2012-10-01

    The Golyamo Kamenyane serpentinite is a portion of a metaophiolite, located in the Upper High-Grade Unit of the metamorphic basement of the Eastern Rhodope Metamorphic Complex, SE Bulgaria. It consists of metaharzburgite and metadunite hosting layers of metagabbro and some chromitite bodies. All these lithologies were affected by ultrahigh-pressure (UHP) metamorphism and subsequent retrograde evolution during exhumation. Chromite from chromitites can be classified into four textural groups: (1) partly altered chromite, (2) porous chromite, (3) homogeneous chromite and (4) zoned chromite. Partly altered chromite shows unaltered, Al-rich cores with unit cell size of 8.255 Å and Cr# [Cr/(Cr + Al) atomic ratio] = 0.52-0.60, Mg# [Mg/(Mg + Fe2+) atomic ratio] = 0.65-0.70 and Fe3+/(Fe3+ + Fe2+) = 0.20-0.30, surrounded by porous chromite, with a cell size of 8.325 Å, Fe3+/(Fe3+ + Fe2+) < 0.20 and values of Cr# and Mg# evolving from 0.60 to 0.91 and 0.65-0.44, respectively, from core to rim. The chemical composition of porous chromite varies within the following ranges: Cr# = 0.93-0.96, Mg# = 0.48-0.35 and Fe3+/(Fe3+ + Fe2+) = 0.22-0.53. Its unit cell size is very constant (8.350 Å). Most pores in porous and partly altered chromite are filled with chlorite, which also occurs between chromite grains. Homogeneous chromite has Fe3+/(Fe3+ + Fe2+) = 0.55-0.66, Cr# = 0.96-0.99, Mg# = 0.32-0.19 and a cell size of 8.385 Å. The cores of zoned chromite are similar to those of partially altered chromite, but the rims are identical to homogeneous chromite. Although chlorite predominates in the silicate matrix of homogeneous and zoned chromite, it coexists with some antigorite, talc and magnesiohornblende. Mineral data and thermodynamic modeling allow interpretation of the alteration patterns of chromite as the consequence of a two-stage process developed during retrograde metamorphic evolution coeval with fluid infiltration. During the first stage, chromite reacts in the presence

  19. Thermal stability of lanthanum scandate dielectrics on Si(100)

    SciTech Connect

    Sivasubramani, P.; Lee, T. H.; Kim, M. J.; Kim, J.; Gnade, B. E.; Wallace, R. M.; Edge, L. F.; Schlom, D. G.; Stevie, F. A.; Garcia, R.; Zhu, Z.; Griffis, D. P.

    2006-12-11

    The authors have examined the thermal stability of amorphous, molecular beam deposited lanthanum scandate dielectric thin films on top of Si (100) after a 1000 deg. C, 10 s rapid thermal anneal. After the anneal, crystallization of LaScO{sub 3} is observed. Excellent suppression of lanthanum and scandium diffusion into the substrate silicon is indicated by the back-side secondary ion mass spectrometry (SIMS) analyses. In contrast, front-side SIMS and high-resolution electron energy loss analyses of the amorphous Si/LaScO{sub 3}/Si (100) stack indicated the outdiffusion of lanthanum and scandium into the silicon capping layer during the anneal.

  20. Massive Chromite in the Brenham Pallasite and the Fractionation of Cr During the Crystallization of Asteroidal Cores

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Lange, David E.; Francis, Carl A.; Ulff-Moller, Finn

    1999-01-01

    Large (greater than or equal to 2 mm) chromite grains are present in IIIAB iron meteorites and in the main-group a pallasites (PMG), closely related to high-Au IIIAB irons, Pallasites seem to have formed by the intrusion of a highly evolved metallic magma from a IIIAB-like core into fragmented olivine of the overlying dunite mantle. High Cr contents are commonly encountered during the analyses of metallic samples of high-Au IIIAB irons and main-group pallasites, an indication that Cr contents were high in the intruding liquid and that Cr behaved as an incompatible element during the crystallization of the IIIAB magma, contrary to expectations based on the negative IIIAB Cr-Ni and Cr-Au trends among low-Au IIIAB irons. In a region about 10 cm across in the Brenham main-group pallasite massive chromite fills the interstices between olivine grains, the site normally occupied by metal in Brenham and other pallasites. The massive chromite may have formed as a late cumulus phase; because Fe-Ni was also crystallizing, its absence in the chromite-rich region suggests a separation associated with differences in liquid buoyancy. The coexisting chromite and olivine are zoned; in the olivine FeO is highest in pallasitic (olivine-metal) regions, lowest in rims adjacent to chromite, and intermediate in the cores of these olivines. Chromite shows the opposite zoning, with the highest FeO contents at grain edges adjacent to olivine. The observed gradients are those expected to form by Fe-Mg exchange between olivine and chromite during slow cooling at subsolidus temperatures. Compared to normal Brenham, contents of phosphoran olivine and phosphates are higher in the chromitic pallasitic region. We also report data for large-to-massive chromites present in PMG Molong and in high-Au IIIAB Bear Creek that, like Brenham, formed from a highly evolved magma. The Bear Creek chromite has a much lower Mg content than that in the pallasites, implying that, in the PMG, the Mg was extracted

  1. Kinetic study of the formation of oxygen vacancy on lanthanum manganite electrodes

    SciTech Connect

    Jiang, Y.; Wang, S.; Zhang, Y.; Yan, J.; Li, W.

    1998-02-01

    Strontium doped lanthanum manganite (LSM) has been considered one of the most promising cathode materials for solid oxide fuel cells (SOFC). The electrochemical reduction of oxygen on lanthanum manganite (LSM) electrodes has been investigated by cyclic voltammetry, alternating current (ac) impedance, and, in particular, potential step. An emphasis was given to the study of the kinetics of the formation of oxygen vacancy, which is shown to be the main cause for the reversed hysteresis in cyclic voltammograms and for the increase in the electrochemical activity of oxygen reduction on the cathodically polarized LSM electrode observed in both ac impedance and in potential step experiments. The potential step experiments show that the oxygen vacancy concentration increases exponentially with time when the LSM is under a cathodic polarization. In the present study, the rate controlling step for the formation of oxygen vacancies is the oxygen vacancy generation step. The cathodic current rising from the reaction on oxygen vacancies can make a significant contribution to the total reduction current.

  2. Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites

    NASA Astrophysics Data System (ADS)

    Jiao, Handong; Wang, Junxiang; Ge, Jianbang; Zhang, Long; Zhu, Hongmin; Jiao, Shuqiang

    2016-04-01

    Ru-doped lanthanum chromates (LaRuxCr1-xO3) were prepared through a solid-state reaction method. The perovskite pellets with high bulk density over 98% were obtained using the as-prepared LaRuxCr1-xO3 powders as starting materials by spark plasma sintering (SPS) process. The pellets performed high electrical conductivity, which increased with increasing of temperature and ruthenium content (0≤x≤0.10). The activation energy of lanthanum chromate was found to be decreased due to the ruthenium doping.

  3. The energetics of lanthanum tantalate materials

    SciTech Connect

    Forbes, Tori Z.; Nyman, May; Rodriguez, Mark A.; Navrotsky, Alexandra

    2010-11-15

    Lanthanum tantalates are important refractory materials with application in photocatalysis, solid oxide fuel cells, and phosphors. Soft-chemical synthesis utilizing the Lindqvist ion, [Ta{sub 6}O{sub 19}]{sup 8-}, has yielded a new phase, La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2}. Using the hydrated phase as a starting material, a new lanthanum orthotantalate polymorph was formed by heating to 850 {sup o}C, which converts to a previously reported LaTaO{sub 4} polymorph at 1200 {sup o}C. The stabilities of La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2} (LaTa-OH), the intermediate LaTaO{sub 4} polymorph (LaTa-850), and the high temperature phase (LaTa-1200) were investigated using high-temperature oxide melt solution calorimetry. The enthalpy of formation from the oxides were calculated from the enthalpies of drop solution to be -87.1{+-}9.6, -94.9{+-}8.8, and -93.1{+-}8.7 kJ/mol for LaTa-OH, LaTa-850, and LaTa-1200, respectively. These results indicate that the intermediate phase, LaTa-850, is the most stable. This pattern of energetics may be related to cation-cation repulsion of the tantalate cations. We also investigated possible LnTaO{sub 4} and Ln{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2} analogues of Ln=Pr, Nd to examine the relationship between cation size and the resulting phases. - Graphical abstract: The energetics of three lanthanum tantalates were investigated by the high-temperature oxide melt solution calorimetry. The enthalpies of formation from the oxides were calculated from the enthalpies of drop solution to be -87.1{+-}9.6, -94.9{+-}8.8, and -93.1{+-}8.7 kJ/mol for La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2}, LaTaO{sub 4} (850 {sup o}C), and LaTaO{sub 4} (1200 {sup o}C), respectively. These results indicate that the intermediate phase, LaTaO{sub 4} (850 {sup o}C), is the most stable in energy. Display Omitted

  4. Application of lanthanum halide scintillators and low-resolution dense plastics for modern MC&A needs.

    SciTech Connect

    Chung, K.; Belian, A. P.; McKigney E. A.; Russo, P. A.

    2004-01-01

    Recent developments in lanthanum halide scintillators and low-resolution dense plastics give breadth to gamma-ray methods of nuclear material detection suitable for modern MC and A needs. Demanding goals for modernization of MC and A cover both portable and continuous on-line measurement applications that are quantitative for inventory/verification, and that serve those quantitative measurement needs plant-wide. Improved performance (sensitivity and reoslution) is important for portable applications in which a single detector must measure many types of materials. Budget is a major issue for continuous inventory measurements with hundreds or even thousands of detectors placed throughout a facility. Experimentally proven resolution of under 4% for 662 keV {sup 137}Cs gamma rays measured with large cerium-doped LaCl{sub 3} (lanthanum chloride) crystals set a new performance standard for versatile, efficient portable applications comparable in price to NaI(Tl), which has been dominant for decades. While the relatively high cost of crystals remains an obstacle for the application of very large numbers of lanthanum halide scintillators as distributed networked detectors, scintillators made from high-density plastic offer a different type of solution for these gamma-ray measurements. Compared to lanthanum halide crystals they are inexpensive and can be larger in size. Despite lower resolution than NaI(Tl), a quantitative interpretation of the photopeak response of the low-cost dense plastic detectors can be tailored to the unique mechanical and spectral properties of different materials at each of hundreds of fixed on-line locations in a plant. This paper describes the properties and presents experimental results for the two new spectrometer types that, together, bracket NaI(Tl) detectors in both performance and cost, fulfilling modern demands for portable and continuous on-line accountability of uranium and plutonium.

  5. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; Yuan, Ding; Mukhopadhyay, Sanjoy; O'Brien, Robert; Lowe, Daniel; Kang, Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-01-01

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum tribromide, lanthanum trifluoride, or cerium tribromide. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  6. Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Bair, V. L.; Morris, J. F.

    1978-01-01

    Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.

  7. Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Bair, V. L.; Morris, J. F.

    1978-01-01

    This paper presents thermionic-conversion data obtained from a variable-gap cesium diminiode with a hot-pressed, sintered lanthanum-hexaboride emitter and an arc-melted lanthanum-hexaboride collector. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.

  8. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba.

    PubMed

    Reddy, B Jagannadha; Frost, Ray L

    2005-06-01

    The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of

  9. Determination of chromium and trace elements in El-Rubshi chromite from Eastern Desert, Egypt by neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Neutron activation analysis (NAA) is one of the most powerful analytical techniques for multielement determination of rocks. In the present work NAA and HPGe detector gamma-spectroscopy was used to determine chromium and 15 minor and trace elements qualitatively and quantitatively from chromite rock samples collected from El-Robshi area in the Eastern Desert, Egypt. The samples were properly prepared together with their standards and simultaneously irradiated by thermal neutrons at the TRIGA Mainz research reactor. Short time irradiation (1-5min) was used to determine Mg, Ti and Mn. Long time irradiation (6h) was used to determine Na, Ga, As, La, Sc, Cr, Fe, Co, Zn, Zr, Ce, Ce, Yb, Lu, Hf and Ta. In El-Robshi chromite comprises 18 sites, more than 100 lenses of massive chromite, more than 2700 tons averaging 44% Cr(2)O(3) and the average of (51)Cr 40.2%. PMID:20444611

  10. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  11. Laser glazing of lanthanum magnesium hexaaluminate

    NASA Astrophysics Data System (ADS)

    Zhang, Yanfei; Wang, Yaomin; Jarligo, Maria Ophelia; Zhong, Xinghua; Li, Qin; Cao, Xueqiang

    2008-08-01

    Lanthanum magnesium hexaalumminate (LMA) is an important candidate for thermal barrier coatings due to its thermal stability and low thermal conductivity. On the other hand, laser glazing method can potentially make thermal barrier coatings impermeable, resistant to corrosion on the surface and porous at bulk. LMA powder was synthesized at 1600 °C by solid-state reaction, pressed into tablet and laser glazed with a 5-kW continuous wave CO2 laser. Dendritic structures were observed on the surface of the laser-glazed specimen. The thicker the tablet, the easier the sample cracks. Cracking during laser glazing is attributed to the low thermal expansion coefficient and large thickness of the sample.

  12. Lanthanum sulfides as high temperature thermoelectric materials

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Matsuda, S.; Raag, V.

    1984-01-01

    Thermoelectric property measurements have been made for the nonstoichiometric lanthanum sulfides, LaS(R) with R in the range 1.33-1.50. The Seebeck coefficients and electrical resistivities increase with temperature from 200 to 1100 C. Power factors (defined as Seebeck coefficient squared divided by electrical resistivity) generally increase both as the temperature is increased and as the compound composition is varied from LaS(1.48) to LaS(1.35). The power factor values combined with estimates of thermal conductivities for LaS(1.38) and LaS(1.4) yield figures of merit greater than 0.0005 at 1000 C.

  13. Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Rubin, Alan E.

    1993-01-01

    Chromium-rich chondrules constitute less than 0.1 percent of all ordinary chondrite (OC) chondrules and comprise three groups: chromian-spinel chondrules, chromian-spinel inclusions, and chromite-rich mafic silicate (CRMS) chondrules. Chromian-spinel chondrules (typically 100-300 microns in apparent diameter) exhibit granular, porphyritic and unusual textures and occur mainly in H chondrites. Their morphologies are distinct from the irregularly shaped chromian-spinel inclusions of similar mineralogy. Chromian-spinel chondrules and inclusions consist of grains of chromian-spinel embedded in plagioclase (Pl) or mesostasis of Pl composition. Many also contain accessory ilmenite (Ilm), high-Ca pyroxene (Px), merrillite (Mer), and rare olivine (Ol); some exhibit concentric mineral and chemical zoning. CRMS chondrules (300-1100 microns in apparent diameter) are generally larger than chromian-spinel chondrules and occur in all metamorphosed OC groups. Most CRMS chondrules are nearly spherical although a few are ellipsoidal with a/b aspect ratios ranging up to 1.7. Textures include cryptocrystalline, granular, radial, barred, and porphyritic varieties; some contain apparently relict grains. The chondrules consist of chromite (Chr), Ol and Pl, along with accessory Mer, troilite (Tr), metallic Fe-Ni (Met), Px and Ilm. The mesostasis in CRMS chondrules is nearly opaque in transmitted light; thus, they can be easily recognized in the optical microscope. Based on the similarity of mineralogy and chemistry between CRMS chondrules of different textures (opaque chromite-rich mesostasis, skeletal morphology of Ol grains, similar bulk compositions) we suggest that these chondrules form a genetically related population.

  14. From spin induced ferroelectricity to dipolar glasses: Spinel chromites and mixed delafossites

    SciTech Connect

    Maignan, A.

    2012-11-15

    Magnetoelectric multiferroics showing coupling between polarization and magnetic order are attracting much attention. For instance, they could be used in memory devices. Metal-transition oxides are provided several examples of inorganic magnetoelectric multiferroics. In the present short review, spinel and delafossite chromites are described. For the former, an electric polarization is evidenced in the ferrimagnetic state for ACr{sub 2}O{sub 4} polycrystalline samples (A=Ni, Fe, Co). The presence of a Jahn-Teller cation such as Ni{sup 2+} at the A site is shown to yield larger polarization values. In the delafossites, substitution by V{sup 3+} at the Cr or Fe site in CuCrO{sub 2} (CuFeO{sub 2}) suppresses the complex antiferromagnetic structure at the benefit of a spin glass state. The presence of cation disorder, probed by transmission electron microscopy, favors relaxor-like ferroelectricity. The results on the ferroelectricity of ferrimagnets and insulating spin glasses demonstrate that, in this research field, transition-metal oxides are worth to be studied. - Graphical abstract: Electric polarization as a function of temperature is measured up to T{sub C} in three chromite ferrimagnetic spinels. Largest values are reached for spinels with Jahn-Teller cations at the A site (Ni or Fe). Highlights: Black-Right-Pointing-Pointer Electric polarization is evidenced in the ferrimagnetic state of the chromite spinels. Black-Right-Pointing-Pointer Jahn-Teller cations at the A site of these spinels lead to larger polarization values. Black-Right-Pointing-Pointer Vanadium substituted at the Cr (or Fe) site of delafossites changes the antiferromagnetic state to spin glass. Black-Right-Pointing-Pointer Electric polarization is not the result of magnetic ordering but magnetic disordering in Cr or Fe delafossites. Black-Right-Pointing-Pointer Relaxor-type ferroelectricity or spin induced ferroelectricity can be observed in the delafossites.

  15. Lutetium-doped EuO films grown by molecular-beam epitaxy

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Hollaender, B.; Schubert, J.; Shen, K. M.; Mannhart, J.; Schlom, D. G.

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  16. Temperature-dependent vibrational spectroscopic and X-ray diffraction investigation of nanosized nickel chromite

    NASA Astrophysics Data System (ADS)

    Matulková, Irena; Holec, Petr; Němec, Ivan; Kitazawa, Hideaki; Furubayashi, Takao; Vejpravová, Jana

    2015-06-01

    The nanocrystalline nickel chromite (NiCr2O4) with particle size of ∼20 nm was prepared by auto-combustion method. The nanocrystals were characterized by powder X-ray diffraction, vibrational spectroscopy and magnetic measurements. The expected structural phase transitions (cubic-tetragonal-orthorhombic) were studied by methods of temperature-dependent X-ray powder diffraction and vibrational spectroscopy. The evolution of the Raman spectra and X-ray diffraction patterns collected from 350 K down to 4 K confirmed the cubic-to-tetragonal distortion at ∼250 K, whereas the tetragonal-to-orthorhombic transition was not confirmed in the nanocrystalline sample.

  17. Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions

    NASA Astrophysics Data System (ADS)

    Manoochehri, Shahrzad; Schmidt, Max W.

    2014-12-01

    The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280-1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100-1,500 g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1-1 vol% are 140-3.5 days, equal to a growth rate of 0.007-0.3 m/day for grain sizes of 1-2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δ ρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution-reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70-80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9-250 years, whereas equivalent compaction times are 0.2-0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be

  18. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.

    PubMed

    Matern, Katrin; Kletti, Holger; Mansfeldt, Tim

    2016-07-01

    Chromite ore processing residue (COPR) is a hazardous waste. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Whereas old (between at least 40 and 180 years) COPR from the temperate zone has been intensively investigated, information on COPR in other regions is restricted. Relatively young (<25 years) COPR samples obtained from two abandoned landfill sites in India were investigated by a modified total microwave digestion method, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) in order to determine their chemical and mineralogical nature. By the use of microwave digestion with acid mixtures of HNO3, H3PO4, and HBF4 (5:3:2 vol), COPR was completely dissolved and element contents similar to those obtained by X-ray fluorescence were found. Total Cr contents of the two COPR accounted for 81 and 74 g kg(-1), of which 20 and 13% were present in the carcinogenic hexavalent form (CrVI). Apart from the common major mineral phases present in COPR reported earlier, a further Cr host mineral, grimaldiite [CrO(OH)], could be identified by XRPD and SEM. Additionally, well soluble Na2CrO4 was present. Improving the effectiveness of chromite ore processing and preventing the migration of Cr(VI) into water bodies are the main challenges when dealing with these COPR. PMID:27111471

  19. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  20. Relationship between PGE Content and Chromite Composition of the Lower and Middle Group Bushveld Chromitites

    NASA Astrophysics Data System (ADS)

    Naldrett, A. J.; Kinnaird, J.; Wilson, A.; Yudovskaya, M.; McQuade, S.; Chunnett, G.; Stanley, C.

    2009-12-01

    This paper is based on 465 analyses of Ni, Cu, S and PGE from the 19 chromitite horizons between the LG-1 and UMG-2 from 6 sectors around the Bushveld complex, along with microprobe analyses of representative samples of 41 chromites. Two trends in chromite composition, A and B, are distinguished on a plot of cation% Mg/(Mg+Fe2+) versus Cr/(Cr+Al). Trend A, that has a negative slope, is close to that predicted as the result of the reciprocal exchange substitution of Cr and Fe2+ for Mg and Al between spinel and liquid affecting the Mg-Fe2+ spinel-liquid Kd (Allan et al., 1988). Trend B, that has a positive slope and is defined primarily by the LG-5 to MG-2 chromitites, is the result of the progressive increase in the chemical potential of Al2O3 as a result of the fractional crystallization of orthopyroxene. Overall, the average PGE concentrations in massive chromitite increase upward. The LG-1 to LG-4 chromities have low (Pt+Pd)/(Rh+Ru+Ir+Os) ratios (0.1 to 0.3), above which there is an abrupt jump to higher ratios in the LG-5 (0.9 to 10) and all overlying chromitites. The Pt/Ru and Pd/Ru ratios are very variable, but the Ru/Ir, Ru/Rh and Ru/Os ratios of all chromitites are relatively constant, indicating that Pt and Pd respond to different concentration mechanisms to the other PGE. Rh, Ru, Ir and Os were likely concentrated by chromite itself, probably as grains of laurite and alloys incorporated in growing chromite crystals, but the bulk of the Pt, Pd along with lesser proportions of the other PGE were concentrated by sulfide liquid. Most chromitites now have very low contents of S, but mineragraphic and chemical data support the suggestion of Naldrett and Lehmann (1988) that vacancies in chromite forming above 900C were filled by Fe2+ derived from the destruction of interstitial sulfide liquid. Eales et al.’s (1988) data on En composition through the Bushveld Critical Zone, indicate that the LG-1 to LG-4 chromitites formed at a stage when influxes of magma into

  1. Antibacterial effect of lanthanum calcium manganate (La0.67Ca0.33MnO3) nanoparticles against Pseudomonas aeruginosa ATCC 27853.

    PubMed

    De, Debasis; Mandal, Santi M; Gauri, Samiran S; Bhattacharya, Rabindranath; Ram, S; Roy, Sanat K

    2010-04-01

    Nanotechnology based water purification system and treatment of human diseases are of higher priority in the immediate future for economic and undetermined health purpose. Nanoparticles offer the possibility of an efficient removal of pollutants and microbes in water treatment. Here we have used colossal magnetoresistance (CMR) materials, lanthanum calcium manganate (LCMO) and Eu3+ doped lanthanum calcium manganate (LECMO) nanoparticles, to determine the antibacterial efficacy against Pseudomonas aeruginosa-ATCC 27853, a soil and water born pathogenic bacteria. The average size of the synthesized nanoparticles was varied from 50 nm to 200 nm and X-ray diffraction pattern showed the formation of a single phase LCMO or LECMO of an orthorhombic crystal structure after annealing the precursor at 1000 degrees C for 2 h in air. The data revealed that LCMO nanoparticle have higher antibacterial activity compared to LECMO nanoparticle. Thus, LCMO nanoparticles can offer future applications as antimicrobial drug and in water purification technology. PMID:20738067

  2. PGE distribution in the Chromite bearing mafic-ultramafic Kondapalli Layered Complex, Krishna district, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Meshram, Tushar M.; Nannaware, Shraddha. B.; Nannaware, B.; Bhatacharjee, Shantanu; Waghmare, Minakshi. M.; Rajakumar, T.

    2015-09-01

    The Kondapalli Layered Complex (KLC) is a dismembered mafic-ultramafic layered intrusion, mainly composed of gabbroic and anorthositic rocks with subordinate ultramafics and chromitite. Chromitite occurs as lenses, pods, bands and disseminations. Platinum group of minerals (PGMs) occur as inclusions within chromite and silicates. The study indicates an inhomogeneous distribution of PGMs and distinct dominance of IPGEs over the PPGEs. The average ΣPGE content of chromite of KLC varies from 64 ppb to 576 ppb with Pt ranging from 5 to 495 ppb, Pd 5 to 191 ppb, Ir 3 to 106 ppb, Ru 3 to 376 ppb and Rh 3 to 135 ppb. The PGMs identified in the KLC indicate primary deposition of the IPGE, preceding chromite, indicating its orthomagmatic nature. Most of the PGM grains are usually below 10 μm. The identified PGMs are Laurite (RuS2), irarsite (Ir, As, S), iridosmine (Os, Ir), undetermined Os-Ir sulphide and Ru-Os-Ir-Zn alloys. Chromite also contains inclusions of pentlandite, millerite, chalcopyrite and pyrite. Study indicating that the KLC have orthomagmatic origin for PGE which are dominated by IPGE group and formed under surpa-subduction zone peridotite setting.

  3. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum.

    PubMed

    Ding, Bangfu; Han, Chao; Zheng, Lirong; Zhang, Junying; Wang, Rongming; Tang, Zilong

    2015-01-01

    The effect of isovalent lanthanum (La) doping on the monoclinic Y2WO6 photoluminescence was studied. Introducing the non-activated La(3+) into Y2WO6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La(3+) into Y2WO6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La(3+) is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La(3+) occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La(3+) occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere. PMID:25821078

  4. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum

    PubMed Central

    Ding, Bangfu; Han, Chao; Zheng, Lirong; Zhang, Junying; Wang, Rongming; Tang, Zilong

    2015-01-01

    The effect of isovalent lanthanum (La) doping on the monoclinic Y2WO6 photoluminescence was studied. Introducing the non-activated La3+ into Y2WO6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La3+ into Y2WO6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La3+ is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La3+ occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La3+ occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere. PMID:25821078

  5. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  6. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  7. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  8. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C., Jr.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  9. Toward laser cooling of negative lanthanum

    NASA Astrophysics Data System (ADS)

    Jordan, Elena; Cerchiari, Giovanni; Erlewein, Stefan; Kellerbauer, Alban; UNIC Team

    2016-05-01

    Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species by sympathetic cooling. It is a promising technique for cooling of antiprotons to a few mK and could clear the way for precision measurements on cold antihydrogen. Laser cooling of negative ions has never been achieved, since most species have no bound-bound electric dipole transitions. Negative lanthanum (La-) is one of the few anions with multiple electric dipole transitions. The bound-bound transition from the 3F2e ground state to the 3D1o excited state in La- has been proposed theoretically as a candidate for laser cooling. The potential laser cooling transition was identified using laser photodetachment spectroscopy and its excitation energy was measured. We have studied the aforementioned transition in a beam of La anions by high-resolution laser photodetachment spectroscopy. Seven of the nine expected hyperfine structure transitions have been resolved and the transition cross sections have been estimated from experimental observations. It was found that presently La- is the most promising candidate among the atomic anions. We plan to demonstrate the first direct laser cooling of negative ions in a linear radio frequency trap. We gratefully acknowledge support from the European Research Council (ERC).

  10. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  11. Large-area lanthanum hexaboride electron emitter

    SciTech Connect

    Goebel, D.M.; Hirooka, Y.; Sketchley, T.A.

    1985-09-01

    A large-area cathode assembly which is capable of continuous, high-current electron emission is described. The cathode utilizes an indirectly heated lanthanum hexaboride (LaB/sub 6/) disk as the thermionic electron emitter. The LaB/sub 6/ cathode emits over 600 A of electrons at an average of 20 A/cm/sup 2/ continuously with no observable lifetime limits to date after about 400 h of operation in a plasma discharge. Proper clasping of the LaB/sub 6/ disk is required to avoid impurity production from chemical reactions with the holder and to provide adequate support if the disk fractures during rapid thermal cycling. Modification of the LaB/sub 6/ surface composition due to preferential sputtering of boron by hydrogen and argon ions in the plasma discharge has been observed. The surface appearance is consistent with the formation of LaB/sub 4/ as a result of boron depletion. The electron emission capability of the cathode is not significantly altered by the surface change. This surface modification by preferential sputtering is not observed in hollow cathodes where the ion energy from the cathode sheath voltage is typically less than 50 V. The electron emission by the cathode has not been affected by exposure to both air and water during operation. Utilizing thick disks of this intermediate temperature cathode material results in reliable, high-current, long-lifetime electron emitter assemblies.

  12. Oriented chromite-diopside symplectic inclusions in olivine from lunar regolith delivered by "Luna-24" mission

    NASA Astrophysics Data System (ADS)

    Khisina, N. R.; Wirth, R.; Abart, R.; Rhede, D.; Heinrich, W.

    2013-03-01

    Calcium-chromium rich lamellae in olivine grain No. 1611 from the Luna-24 regolith were studied with FEG-EMPA and TEM. The lamellae consist of a worm-like intergrowth of FeCr2O4 chromite (Chr) and CaMgSi2O6 diopside (Di), with a Chr:Di modal proportion of 1:3. The linear extension of the lamellae and crystallographic orientation relationships among the symplectite phases and the olivine suggest that the lamellae nucleated at deformation defects in the olivine host. Calcium depletion haloes surrounding the lamellae amount to about 75 μm and indicate that the chromite + diopside lamellae were formed by segregation of calcium and chromium from the host olivine into the lamellae without addition of calcium and/or chromium from outside the olivine. The segregation of calcium and chromium and, consequently, the growth of the symplectic lamellae were diffusion-controlled. The segregation of a calcium-chromium component from the host olivine was associated with oxidation of divalent to trivalent chromium. Oxidation was facilitated by dehydrogenation, which was driven by decompression and/or a change in redox potential. Hydrogen point defects in the original olivine with H+ substituting for divalent cations on the M-sites provided the necessary electron acceptors for the oxidation of chromium and after electron transfer left olivine as molecular H2. The internal microstructure of the lamellae suggests that exsolution of the calcium-chromium rich lamellae from the host olivine and formation of the chromite-diopside symplectic intergrowth occurred simultaneously. The time scale derived from diffusion modeling of the calcium depletion haloes around the lamellae indicates a thermal event on the order of several months to several hundred years at most. Symplectic inclusions found in olivine from lunar, martian and terrestrial rocks are similar with respect to their shape, crystallographic orientation relationships, and internal microstructure of the spinel

  13. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Prichard, Hazel M.; Ishiwatari, Akira; Pimentel, Márcio

    2002-01-01

    Chromites separated from the upper mantle or lower crustal portions of 18 ophiolites ranging in age from 900 Ma to 50 Ma are examined for Re-Os isotopic systematics. The ophiolites include both MORB and back arc types, although most are from supra-subduction zone (SSZ) settings. The chromites are robust indicators of the initial Os isotopic compositions of the systems sampled. There is very limited range in calculated initial γ Os values, with the entire group averaging +1.31. Least squares linear regression of the age of chromite formation (in Ga) versus initial 187Os/ 188Os of a filtered suite yields a slope of -0.0058±0.0019 (2σ) and a present day intercept of 0.12809±0.00085 (2σ), equivalent to a γ Os value of +0.9±0.6. Of the suite of 51 samples analyzed, 68% lie within ±1% of this evolution trajectory. Although most of the samples formed in SSZ environments, there is little evidence to suggest modification of the mantle Os isotopic composition via radiogenic melts or fluids derived from subducting slabs. The ophiolite data are interpreted as representative of the convecting upper mantle and suggest that the present isotopic composition of the convecting upper mantle averages approximately 1.2% less radiogenic than the estimated minimum composition of the primitive upper mantle of 0.1296±8 (Meisel et al., 2001). The most likely explanation for the difference is the formation, subduction and isolation of some portion of the mafic oceanic crust. Using models based on the assumption that the convecting upper mantle comprises 50% of the total mass of the mantle, and that the average isolation period for subducted oceanic crust is 1.5 to 2.0 Ga, it is estimated that approximately 2 to 3% of the total mass of the mantle is composed of subducted mafic oceanic crust that remains isolated from the convecting upper mantle. Because the isotopic compositions of the DMM and PUM overlap within uncertainties, however, the results do not require any isolated slab

  14. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  15. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  16. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    SciTech Connect

    Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

    2010-06-09

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large

  17. Lanthanum Carbonate for Hyperphosphatemia in Patients on Peritoneal Dialysis

    PubMed Central

    Ohno, Michiya; Ohashi, Hiroshige; Oda, Hiroshi; Yokoyama, Haruko; Okada, Miho; Nagaya, Mayu; Izumi, Kumiko; Ito, Hitomi; Katoh, Shuji

    2013-01-01

    ♦ Background: The efficacy of the phosphate binder lanthanum carbonate has been demonstrated for hemodialysis patients, but no studies have focused on patients undergoing continuous ambulatory peritoneal dialysis (CAPD). We evaluated whether lanthanum carbonate could control phosphate levels in patients on CAPD. ♦ Methods: In this 48-week open-label prospective study, 28 patients on CAPD with a phosphate level of 6 mg/dL or greater were given lanthanum carbonate titrated from 750 mg to 2250 mg daily to achieve a target serum phosphate level of less than 6 mg/dL. The primary efficacy endpoint was reduction of serum phosphate to less than 6 mg/dL. Serum levels of calcium and parathyroid hormone were also evaluated, as were the Ca×P product and adverse effects. ♦ Results: From week 4 to the end of the study at week 48, we observed a significant reduction of serum phosphate to 5.25 ± 0.97 mg/dL from 6.88 ± 1.06 mg/dL at study start (p < 0.01). At the end of the study, 78.6% of participants had achieved the target of less than 6 mg/dL. Because no change of serum calcium occurred, the Ca×P product declined significantly during the study. Intact parathyroid hormone declined gradually over the study period, but the change had not reached significance at the end of the study (p = 0.11). The mean final dose of lanthanum carbonate was 946 mg daily. The only adverse effect reported was mild nausea in 1 patient. ♦ Conclusions: Lanthanum carbonate is an effective phosphate binder that can control serum phosphate and Ca×P product in CAPD patients with hyperphosphatemia. Lanthanum carbonate was well tolerated in our population. PMID:23209037

  18. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  19. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  20. Effects of lanthanum in cellular systems. A review.

    PubMed

    Das, T; Sharma, A; Talukder, G

    1988-12-01

    Lanthanum belongs to the group of elements known as "lanthanons," which also includes cerium, europium, promethium, and thulium. It is the most electropositive element of the rare earth group, is uniformly trivalent, and is similar in its chemical properties to the alkaline earth elements. The effects of this element and its compounds on cellular systems are of considerable interest because of their increasing use in industry and as a substitute or antagonist for calcium in a variety of cellular reactions. Lanthanum is also being employed extensively in studying anatomical barriers, membrane structure, and subcellular transport systems, particularly the calcium pathway. PMID:2484565

  1. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  2. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Phase dependent structural and electronic properties of Lanthanum Orthophosphate (LaPO4)

    NASA Astrophysics Data System (ADS)

    Neupane, Mahesh; Garrett, Gregory; Rudin, Sergey; Andzelm, Jan

    Lanthanum orthophosphate (LaPO4) belongs to the family of rare-earth (RE) orthophosphates. The La-ion lacks valence 4f-electron, so for it to exhibit f-electron dependent physics, it must be doped with additional RE elements. In the bulk form, LaPO4 exist in both a stable monoclinic and a metastable hexagonal phase, which both possess indirect energy transition characteristics. Though the overall optoelectronic properties of the RE-doped LaPO4 depend on the accuracy of the observed bulk energy gap, the reported experimental and theoretical energy gaps varies between ~81,2 and ~53 eV, respectively. Through this theoretical study, we attempt to establish a correlation between electronic properties of bulk LaPO4 and various levels of first principle theories. Compared to experimental data, the PBE0 functional over-predicts energy gaps and the energy differences between the indirect-to-direct transition energies by 25%. The HSE06 gives a good description of electronic properties and predicts the energy gaps to be 7.68 (monoclinic) and 7.29 eV (hexagonal). Analysis on the structural stability also reveals that the total energy difference between the two phases is 6meV, consistent with the experimentally observed instantaneous pressure and temperature dependent phase transition.

  5. Tuning the architecture and properties of microstructured yttrium tungstate oxide hydroxide and lanthanum tungstate.

    PubMed

    Kaczmarek, Anna M; Liu, Ying-Ya; Van der Voort, Pascal; Van Deun, Rik

    2013-04-21

    In this paper, various microstructures of yttrium and lanthanum tungstates were synthesized under hydrothermal conditions, at pH 5, in a ligand-free environment, and in the presence of a dioctyl sodium sulfosuccinate (DSS) surfactant. It was observed that the shape of the nanobuilding blocks, and therefore the architecture of the microstructures, could be tuned by controlling the reaction conditions, such as the source of the rare earth, the amount of a surfactant and the reaction time. X-ray powder diffraction (XRD), elemental analysis, scanning electron microscopy (SEM), and N2 adsorption were employed to characterize the obtained products. The photoluminescent properties of Eu(3+) and Dy(3+) doped tungstate materials were investigated. Luminescence measurements showed an efficient charge transfer from the WO4(2-) groups to Eu(3+) and Dy(3+) ions. It was found that under UV excitation the Dy(3+) doped Y(WO3)2(OH)3 and La2(WO4)3 precursors exhibit white emission. PMID:23426044

  6. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex

    NASA Astrophysics Data System (ADS)

    Distler, V. V.; Kryachko, V. V.; Yudovskaya, M. A.

    2008-01-01

    The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.

  7. The structural evolution of dunite and chromite ore from the Kharcheruz Massif, the Polar Urals

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. I.; Yurichev, A. N.

    2016-03-01

    The Kharcheruz block of the Syumkeu ultramafic massif is a southern fragment of the Khadata ophiolitic belt, which closes the ophiolites of the Polar Urals in the north. The block, striking in the latitudinal direction, is sheetlike in shape and primarily composed of dunite with nearly latitudinal zones of chromite mineralization. The dunites are subject to ductile deformation various in intensity, and this variability is displayed in their heterogeneous structure and texture. The following microstructural types are distinguished by the variety and intensity of their deformation: protogranular → mesogranular → porphyroclastic → porphyrolath → mosaic. The petrostructural patterns of olivines pertaining to the above types reflect conditions of ductile deformation. Protogranular dunite is formed as a product of pyroxene decomposition in mantle harzburgite accompanied by annealing recrystallization at a temperature above 1000°C. Mesogranular dunite is formed as a product of high-temperature plastic flow by means of translation sliding in olivine and diffuse creep at a temperature dropping from 1000 to 650°C and at a low rate (<10-6 s-1). Cr-spinel segregates into linear zones of disseminated chromite mineralization within zones of bedding-plane plastic flow. Porphyroclastic and mosaic dunites are formed under conditions of intense deformation at a temperature of 500-750°C and at a significant rate (>10-6 s-1). Dunite is deformed by means of syntectonic recrystallization and subordinate translation gliding. Linear zones of disseminated mineralization undergo destruction thereby, with the formation of lenticular chromitite bodies from which ductile olivine is squeezed out with the formation of densely impregnated and massive ores.

  8. Geology and economic potential for chromite in the Zhob Valley ultramafic rock complex, Hindubagh, Quetta division, West Pakistan

    USGS Publications Warehouse

    Rossman, D.L.; Ahmad, Zaki; Rahman, Hamidur

    1971-01-01

    The ultramafic rocks making up the Zhob Valley igneous complex have yielded small amounts of metallurgical-grade chromite since the early part of the century. From 1968-1970 a cooperative study undertaken by the Geological Survey of Pakistan and the U. S. Geological Survey, under the auspices of the Government of Pakistan and the Agency for International Development, evaluated the chromite potential of the Zhob Valley area and provided data for effective exploration. The Jung Tor Ghar ultramafic rock mass, covering an area of about 45 square miles, is a thrust-fault block completely surrounded and underlain (?) by sedimentary rocks as young as Late Cretaceous in age. The igneous rocks were thrust from the northwest along an east-trending, north-dipping fault in Late Cretaceous or Paleocene time and were peneplaned, dissected, and deeply laterized by mid-Eocene time. The ultramafic rocks consist of interlayered harzburgite and dunite and a cross-cutting dunite here called transgressive dunite. Layered structure passes without discernible deviation from the interlayered harzburgite-dunite through the transgressive dunite. The lowest rocks in the mass, composed mainly of transgressive dunite, grade upward into the interlayered rock about 3,000 feet above the fault block base. The upper transgressive dunites tend to form interconnecting linear networks and probably a few pipe-like structures. The transgressive dunite is thought to have formed by action of water derived from the underlying sedimentary rocks; the water heated by the hot ultramafic rock (at the time of emplacement) altered the pyroxene to olivine and talc, and, with lowering temperature, to serpentine. Other interpretations are possible. Virtually all the chromite in the Jung Tor Ghar lies in or immediately above the masses of transgressive dunite. This fact provides a key to chromite exploration: The most favorable zone for prospecting lies in the vicinity of the upper contacts of the transgressive

  9. Scintillators with potential to supersede lanthanum bromide

    SciTech Connect

    Cherepy, Nerine; Payne, Steven; Aszatlos, Steve; Hull, Giulia; Kuntz, J.; Niedermayr, Tom; Pimputkar, S.; Roberts, J.; Sanner, R.; Tillotson, T.; van Loef, Edger; Wilson, Cody; Shah, Kanai; Roy, U.; Hawrami, R.; Burger, Arnold; Boatner, Lynn; Choong, Woon-Seng; Moses, William

    2009-06-01

    New scintillators for high-resolution gamma ray spectroscopy have been identified, grown and characterized. Our development efforts have focused on two classes of high light yield materials: Europium-doped alkaline earth halides and Cerium-doped garnets. Of the halide single crystals we have grown by the Bridgman method - SrI{sub 2}, CaI{sub 2}, SrBr{sub 2}, BaI{sub 2} and BaBr{sub 2} - SrI{sub 2} is the most promising. SrI{sub 2}(Eu) emits into the Eu{sup 2+} band, centered at 435 nm, with a decay time of 1.2 {micro}s and a light yield of up to 115,000 photons/MeV. It offers energy resolution better than 3% FWHM at 662 keV, and exhibits excellent light yield proportionality. Transparent ceramics fabrication allows production of Gadolinium- and Terbium-based garnets which are not growable by melt techniques due to phase instabilities. While scintillation light yields of Cerium-doped ceramic garnets are high, light yield non-proportionality and slow decay components appear to limit their prospects for high energy resolution. We are developing an understanding of the mechanisms underlying energy dependent scintillation light yield non-proportionality and how it affects energy resolution. We have also identified aspects of optical design that can be optimized to enhance energy resolution.

  10. Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate

    NASA Astrophysics Data System (ADS)

    Shah, S. H.; Bristowe, P. D.

    2011-04-01

    Using first principles calculations and atomistic thermodynamics the bulk and defect properties of orthorhombic bismuth titanate (Bi4Ti3O12) and bismuth lanthanum titanate (Bi3.25La0.75Ti3O12) have been investigated. Heats of formation, valid chemical conditions for synthesis, lanthanum substitution energies and oxygen and bismuth vacancy formation energies have been computed. The study improves our understanding of how native point defects and substitutional impurities influence the ferroelectric properties of these layered perovskite materials. It is found that lanthanum incorporation could occur on either of the two distinct bismuth sites in the structure and that the effect of substitution is to increase the formation energy of nearby native oxygen vacancies. The results provide direct atomistic evidence over a range of chemical conditions supporting the suggestion that lanthanum incorporation reduces the oxygen vacancy concentration. Oxygen vacancies contribute to ferroelectric fatigue by interacting strongly with domain walls, and therefore a decrease in their concentration is beneficial. The conditions that favor the greatest reduction in oxygen vacancy concentration are described.

  11. Discovery of cesium, lanthanum, praseodymium and promethium isotopes

    SciTech Connect

    May, E.; Thoennessen, M.

    2012-09-15

    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  12. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  13. Comparative Planetary Mineralogy: V/(Cr+Al) Systematics in Chromites as an Indicator of Relative Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Kamer, J. M.; Shearer, C. K.

    2004-01-01

    As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.

  14. Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite.

    PubMed

    Dithmer, Line; Nielsen, Ulla Gro; Lürling, Miquel; Spears, Bryan M; Yasseri, Said; Lundberg, Daniel; Moore, Alanna; Jensen, Nicholai D; Reitzel, Kasper

    2016-06-15

    A combined field and laboratory scale study of 10 European lakes treated between 2006 and 2013 with a lanthanum (La) modified bentonite (LMB) to control sediment phosphorus (P) release was conducted. The study followed the responses in sediment characteristics including La and P fractions and binding forms, P adsorption capacity of discrete sediment layers, and pore water P concentrations. Lanthanum phosphate mineral phases were confirmed by solid state (31)P MAS NMR and LIII EXAFS spectroscopy. Rhabdophane (LaPO4 · nH2O) was the major phase although indications of monazite (LaPO4) formation were also reported, in the earliest treated lake. Molar ratios between La and P in the sediments were generally above 1, demonstrating excess La relative to P. Lanthanum was vertically mixed in the sediment down to a depth of 10 cm for eight of the ten lakes, and recovery of La in excess of 100% of the theoretical aerial load indicated translocation of the LMB towards the deepest areas of the lakes. Lanthanum was generally recovered from bed sediment samples following sequential chemical extraction from the HCl fraction. Soluble reactive P (SRP) release experiments on intact sediment cores indicated conditions of P retention (with the exception of two lakes) by sediments, indicating effective control of sediment P release, i.e. between two and nine years after treatment. PMID:26971297

  15. Phosphate-binding efficacy of crushed vs. chewed lanthanum carbonate in hemodialysis patients.

    PubMed

    How, Priscilla P; Anattiwong, Prathana; Mason, Darius L; Arruda, Jose A; Lau, Alan H

    2011-01-01

    Lanthanum carbonate, a chewable noncalcium-containing phosphorus (P) binder, is useful for treating secondary hyperparathyroidism in patients who have hypercalcemia and cannot swallow whole tablets. However, some patients cannot chew tablets or prefer to crush and mix them with food. This study was conducted to determine the P-binding efficacy of crushed lanthanum and compare it with chewed lanthanum in hemodialysis (HD) patients. After a 1-week washout period, 11 hemodialysis patients (7 men, 4 women) were randomized to receive, in a crossover fashion, lanthanum 1000 mg 3 times daily chewed with meals and lanthanum 1000 mg 3 times daily crushed into a fine powder, mixed with applesauce and taken with meals, for 4 weeks each. Serum P was measured at the end of each washout (baseline) and weekly during treatment. Changes in serum P from baseline for crushed lanthanum were compared with chewed lanthanum using paired sample t test. Administration of crushed lanthanum resulted in a significant reduction in serum P from baseline (P reduction [mg/dL] for crushed lanthanum in week 1: 2.1 ± 0.4, week 2: 1.7 ± 0.5, week 3: 1.7 ± 0.5, week 4: 1.7 ± 0.4, P<0.05). No statistically significant differences were observed in serum P reduction from baseline and serum P attained during treatment with crushed when compared with chewed lanthanum. Crushed lanthanum is effective in reducing serum P and have similar P-binding efficacy to chewed lanthanum. Crushing lanthanum and mixing it with food can thus be an option for patients who are unable to chew or swallow whole tablets. PMID:21138519

  16. Genesis of high-zinc chromite and associated cobalt-mineralized blackwall in the Sykesville District, Maryland piedmont

    SciTech Connect

    Wylie, A.G.; Candela, P.A.; Burke, T.M.

    1985-01-01

    Zone, Zn-bearing chromites occur in a serpentinized ultramafite (UM), pelitic schists, the associated blackwall, and a banded Fe oxide-quartz rock (BIR). The spinels are associated with Fe-Cu-Co mineralization in the Sykesville District of the Maryland Piedmont. Within most grains, three main zones can be distinguished based on optical properties and chemistry. The marked discontinuity between the central core and the middle zone (ferrit-chromite (FC)) and the anhedral form of the core suggest that the FC developed by the irreversible dissolution of the core and reprecipitation of FC as a mantle. The outer magnetite zone was added during the latter stages of serpentinization as chemical communication with the original spinel core ceased. The highest Zn contents occur in the spinel cores near the boundary with the FC. ZnO contents of up to 19 wt.% have been measured. To the authors knowledge, these are the highest reported concentrations of Zn in chromite. The Zn/Mg ratio in the spinel cores correlates closely with the host rock mineralogy such that /mu//sub ZnMg/ decreases monotonically from the pelite into the UM. The occurrence of chromite in all rock units and the strong field association between the UM and the BIR suggest that UM material was present on the seafloor. Based on chemical and textural evidence, the authors postulate that Zn was introduced during the earliest stages of the hydrothermal processes accompanying serpentinization and mineralization in a subaqueous environment. Cu and Zn were probably supplied by a seafloor hydrothermal system, and the BIR and Co were produced alteration of the UM unit.

  17. Distribution of platinum-group elements in the Bati Kef chromite deposit, Guleman-Elazig area, eastern Turkey.

    USGS Publications Warehouse

    Page, N.J.; Engin, T.; Singer, D.A.; Haffty, J.

    1984-01-01

    The distribution of platinum-group elements (PGE) within chromite deposits from an ophiolite is determined and their geochemistry compared with chromitites from ophiolites and from stratiform layered complexes elsewhere in the world. The Guleman area chromitites are lenses of layered massive to disseminated chromite in dunite or sheared harzburgite along and near the dunite-harzburgite contact. PGE were analysed by a fire assay/spectrographic method. The analyses, in ppb, varied narrowly near the detection limits; only Ir was mostly detected (24-27 ppb) . The data plot as independent, slight variations of individual PGE with crude and irregular spatial distributions, oriented with respect to the land surface. Based on studies elsewhere, the PGE reside mostly in laurite, erlichmanite and Os/Ir alloys included within or interstitial to chromite. Average values for each PGE were normalized with respect to average chondrite concentrations for these elements. All patterns for ophiolite-chromitites (5) show depletion of these elements relative to chondrite average concentrations, with greater depletion in Pt and Pd than in Ir and Ru, to produce patterns with negative slopes. Chromitites from differentiated stratiform complexes (2) yield patterns with positive slopes. -G.J.N.

  18. Review on dielectric properties of rare earth doped barium titanate

    NASA Astrophysics Data System (ADS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-07-01

    Rare earth doped Barium Titanate (BaTiO3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO3 downshifted the Curie temperature (TC). Transition temperature also known as Curie temperature, TC where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO3, Er-doped BaTiO3, Sm-doped BaTiO3, Nd-doped BaTiO3 and Ce-doped BaTiO3 had been proved to increase and the transition temperature or also known as TC also lowered down to room temperature as for all the RE doped BaTiO3 except for Er-doped BaTiO3.

  19. A simple spectrophotometric assay for micromolar amounts of lanthanum in the presence of calcium and phosphate.

    PubMed

    Fernandez-Gavarron, F; Brand, J G; Rabinowitz, J L

    1987-10-01

    A sensitive spectrophotometric assay for micromolar amounts of lanthanum in the presence of calcium and phosphate (as hydroxyapatite) was developed utilizing the change in absorption (at 652 nm) when the dye arsenazo III was complexed with lanthanum. Arsenazo III was used at a level of 25 microM and the solution pH was maintained at 3.1 with 0.2 M sodium acetate. Lanthanum concentrations down to 0.5 microM could be reliably assayed. Calcium ion did not complex well with arsenazo III at pH 3.1. With calcium present at 100 microM and lanthanum at 10 microM, the assay was 115 times more sensitive for lanthanum. The assay is simple, rapid, reproducible and, unlike the assay using radioactive lanthanum, can be performed at any time. PMID:3455624

  20. Extensive lanthanum deposition in the gastric mucosa: the first histopathological report.

    PubMed

    Makino, Mutsuki; Kawaguchi, Kenji; Shimojo, Hisashi; Nakamura, Hironori; Nagasawa, Masaki; Kodama, Ryo

    2015-01-01

    Lanthanum carbonate is one of the new phosphate binders used for the treatment of hyperphosphatemia in patients with chronic kidney disease. It is poorly absorbed from the gastrointestinal tract, forms insoluble complexes within the lumen, and prevents the absorption of dietary phosphate. A 63-year-old female with a 7-year history of peritoneal dialysis, who was treated with lanthanum carbonate for four years, underwent endoscopic submucosal dissection for intramucosal gastric cancer. Resected specimens showed massive accumulation of macrophages containing fine, granular, brown material in the lamina propria. This was confirmed as lanthanum deposition by scanning electron microscopy with energy dispersive x-ray spectroscopy. Although lanthanum may be poorly absorbed, increased tissue accumulation of lanthanum, particularly in the liver and bone, has been reported in animals with chronic kidney disease. This report indicates enhanced gastrointestinal absorption of lanthanum in some patients or conditions, although its clinical significance awaits further studies. PMID:25413959

  1. A search for H-chondritic chromite grains in sediments that formed immediately after the breakup of the L-chondrite parent body 470 Ma ago

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Schmitz, Birger; Rout, Surya S.; Tenner, Travis; Villalon, Krysten; Cronholm, Anders; Terfelt, Fredrik; Kita, Noriko T.

    2016-03-01

    A large abundance of L-chondritic material, mainly in the form of fossil meteorites and chromite grains from micrometeorites, has been found in mid-Ordovician 470 Ma old sediments globally. The material has been determined to be ejecta from the L chondrite parent body breakup event, a major collision in the asteroid belt 470 Ma ago. In this study we search the same sediments for H-chondritic chromite grains in order to improve our understanding of the extraterrestrial flux to Earth after the asteroid breakup event. We have used SIMS in conjunction with quantitative SEM/EDS to determine the three oxygen isotopic and elemental compositions, respectively, of a total of 120 randomly selected, sediment-dispersed extraterrestrial chromite grains mainly representing micrometeorites from 470 Ma old post-breakup limestone from the Thorsberg quarry in Sweden and the Lynna River site in Russia. We show that 99% or more of the grains are L-chondritic, whereas the H-chondritic fraction is 1% or less. The L-/H-chondrite ratio after the breakup thus was >99 compared to 1.1 in today's meteoritic flux. This represents independent evidence, in agreement with previous estimates based on sediment-dispersed extraterrestrial chromite grain abundances and sedimentation rates, of a two orders of magnitude higher post-breakup flux of L-chondritic material in the micrometeorite fraction. Finally, we confirm the usefulness of three oxygen isotopic SIMS analyses of individual extraterrestrial chromite grains for classification of equilibrated ordinary chondrites. The H- and L-chondritic chromites differ both in their three oxygen isotopic and elemental compositions, but there is some overlap between the groups. In chromite, TiO2 is the oxide most resistant to diagenesis, and the combined application of TiO2 and oxygen three-isotope analysis can resolve uncertainties arising from the compositional overlaps.

  2. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  3. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.

    PubMed

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-05-15

    Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358-445mgL(-1) which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1mgL(-1) Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR. PMID:22417394

  4. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    PubMed Central

    Dey, Satarupa; Paul, A.K.

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

  5. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    SciTech Connect

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  6. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures

    NASA Astrophysics Data System (ADS)

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R.; Smart, Simon; Diniz da Costa, João C.

    2015-02-01

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  7. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures

    PubMed Central

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate. PMID:25644988

  8. High temperature stability of lanthanum silicate dielectric on Si (001)

    SciTech Connect

    Jur, J. S.; Lichtenwalner, D. J.; Kingon, A. I.

    2007-03-05

    Integration of a high-{kappa} dielectric into complementary metal-oxide-semiconductor devices requires thermal stability of the amorphous dielectric phase and chemical compatibility with silicon. The stability of amorphous lanthanum silicate on Si (001) is investigated by means of metal-insulator-semiconductor capacitor measurements, back side secondary ion mass spectrometry (SIMS) depth profiling, and high-resolution transmission electron microscopy (HRTEM) after a 1000 deg. C, 10 s anneal in nitrogen ambient. Back side SIMS depth profiling of the TaN/LaSiO{sub x}/Si gate stack reveals no detectable lanthanum in the silicon substrate, and HRTEM shows stability of the amorphous LaSiO{sub x}. An effective work function near 4.0 eV is obtained for these gate stacks, making the stack design ideal for n-type metal-oxide-semiconductor device fabrication.

  9. Radiative lifetimes and transition probabilities of neutral lanthanum

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Palmer, A. J.; Lawler, J. E.

    2015-08-01

    The radiative lifetimes of 72 odd-parity levels of neutral lanthanum are measured to ±5% accuracy using time-resolved laser-induced fluorescence on a slow atomic beam. The levels range in energy from 15031 to 32140 cm-1. Branching fraction measurements using Fourier-transform spectroscopy are attempted and completed for all of the 72 levels. The branching fractions, when combined with the radiative lifetimes, yield new transition probabilities for 315 lines of the first spectrum of lanthanum (La i ). This study is part of a larger body of work on the radiative properties of rare earth neutral atoms, and is motivated by research needs in lighting science and astrophysics.

  10. Lanthanum(III) catalysts for highly efficient and chemoselective transesterification.

    PubMed

    Hatano, Manabu; Ishihara, Kazuaki

    2013-03-11

    A facile, atom-economical, and chemoselective esterification is crucial in modern organic synthesis, particularly in the areas of pharmaceutical, polymer, and material science. However, a truly practical catalytic transesterification of carboxylic esters with various alcohols has not yet been well established, since, with many conventional catalysts, the substrates are limited to 1°- and cyclic 2°-alcohols. In sharp contrast, if we take advantage of the high catalytic activities of La(Oi-Pr)(3), La(OTf)(3), and La(NO(3))(3) as ligand-free catalysts, ligand-assisted or additive-enhanced lanthanum(III) catalysts can be highly effective acid-base combined catalysts in transesterification. A highly active dinuclear La(III) catalyst, which is prepared in situ from lanthanum(III) isopropoxide and 2-(2-methoxyethoxy)ethanol, is effective for the practical transesterification of methyl carboxylates, ethyl acetate, weakly reactive dimethyl carbonate, and much less-reactive methyl carbamates with 1°-, 2°-, and 3°-alcohols. As the second generation, nearly neutral "lanthanum(III) nitrate alkoxide", namely La(OR)(m)(NO(3))(3-m), has been developed. This catalyst is prepared in situ from inexpensive, stable, low-toxic lanthanum(III) nitrate hydrate and methyltrioctylphosphonium methyl carbonate, and is highly useful in the non-epimerized transesterification of α-substituted chiral carboxylic esters, even under azeotropic reflux conditions. In these practical La(III)-catalyzed transesterifications, colorless esters can be obtained in small- to large-scale synthesis without the need for inconvenient work-up or careful purification procedures. PMID:23325290

  11. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect

    Guss, Paul; Guise, Ronald; O'Brien, Robert; Lowe, Daniel; Kang Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  12. Low-temperature sintering and phase changes in chromite interconnect materials

    SciTech Connect

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La[sub 0.7]Ca[sub 0.31],CrO[sub 3] that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO[sub 4]. In the La[sub 0.7]Ca[sub 0.31]CrO[sub 3], densification was closely associated with re-dissolution of the Ca into the perovskite.

  13. Low-temperature sintering and phase changes in chromite interconnect materials

    SciTech Connect

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La{sub 0.7}Ca{sub 0.31},CrO{sub 3} that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO{sub 4}. In the La{sub 0.7}Ca{sub 0.31}CrO{sub 3}, densification was closely associated with re-dissolution of the Ca into the perovskite.

  14. Analytical and mineralogical studies of ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques.

    PubMed

    Sánchez-Ramos, S; Doménech-Carbó, A; Gimeno-Adelantado, J V; Peris-Vicente, J

    2008-02-15

    A wide analytical study of South African chromite ore, material with high interest in ceramic industry, has been carried out. With this purpose, an accurate chemical identification and mineralogical characterization of the mineral and the gangue have been performed using X-ray fluorescence (XRF), voltammetry, X-ray diffraction (XRD), light microscopy (LM), and scanning electron microscopy (SEM/EDX). The elemental composition of the sample (ore and gangue) has been obtained by XRF. The voltammetric analysis has allowed to demonstrate that iron in the sample was as Fe(II). The main compound of the chromite ore was a spinel (magnesiochromite ferroan), identified by XRD from the sample, which constitutes the chromite ore. This technique has also been useful to characterize some silicates as impurities in the chromite ore sample. Light microscopy has allowed the detection of the spinel and the identification of a silicate impurity (chrome chlorite), by means of their colouration. On the other hand, the other silicate impurity was identified as labradorite by means of X-ray microscopy by SEM/EDX. Finally, a strategy was developed to calculate the composition of each mineral in the unknown sample. The obtained results were: chromite spinel 82.89%, chlorite 12.79% and labradorite 4.32%. PMID:18371822

  15. Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Li, Xiaobo

    2016-08-01

    Oxidation process plays an important role in producing sufficiently strong ferrous pellets for blast furnace, and the oxidation behavior of pellet feed greatly affects the quality of pellets. As a supplementary research to earlier published work, the present study fixes its particular attention on the fundamental oxidation behavior of a high FeO South African chromite concentrate in comparison to that of typical magnetite concentrate using differential scanning calorimetry, X-ray diffraction analysis, and thermogravimetry at various temperatures ranging from 473 K to 1273 K (200 °C to 1000 °C). The reaction mechanism and phase transformation during the oxidation process of chromite spinel is further explained by thermodynamics calculation performed by FactSage software. Besides, routine laboratory preheating-roasting test of single ore pellets is also conducted to reveal the relevance of oxidizability to the consolidation of pellets. The results show that the chromite spinel possesses much poorer oxidizability than magnetite, usually accompanying complex phase transformations via a preferential nucleation of Fe-rich sesquioxide from the chromite spinel matrix at low temperatures and thereafter the formation of Cr-rich sesquioxide on the substrate of Fe-rich phase at high temperatures. The oxidation of chromite spinel is inferior to that of magnetite from the viewpoint of thermodynamics and dynamic kinetics. Good inherent oxidizability of raw materials is found to have a positive effect on the induration process of pellet.

  16. Magnetoresistance of lanthanum manganites with activation-type conductivity

    SciTech Connect

    Kurkin, M. I. Neifeld, E. A.; Korolev, A. V.; Ugryumova, N. A.; Gudin, S. A.; Gapontseva, N. N.

    2013-05-15

    The temperature dependence of the resistivity and magnetic moment of La{sub 0.85}Ba{sub 0.15}MnO{sub 3} and La{sub 0.85}Sr{sub 0.15}MnO{sub 3} manganite single crystals in magnetic fields up to 90 kOe is investigated. Analysis of the experimental results shows that the magnetoresistance of lanthanum manganites far from the Curie temperature T{sub C} can be described quantitatively by the s-d model normally used for ferromagnets and taking into account only the exchange interaction between the spins of charge carriers and magnetic moments. These data also show that the features of lanthanum manganites responsible for colossal magnetoresistance (CMR) are manifested in a narrow temperature interval {delta}T Almost-Equal-To 20 K near T{sub C}. Our results suggest a CMR mechanism analogous to the mechanism of giant magnetoresistance (GMR) observed in Fe/Cr-type multilayers with nanometer layer thickness. The nanostratification observed in lanthanum manganites and required for GMR can be described taking into account the spread in T{sub C} in the CMR range {delta}T.

  17. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T.; Jha, Menaka; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Schmidt, O. G.

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  18. Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries.

    PubMed

    Lin, Xi; Wang, Hongqiang; Du, Haiwei; Xiong, Xinrun; Qu, Bo; Guo, Zaiping; Chu, Dewei

    2016-01-20

    In this work, lithium-doped lanthanum titanate (LLTO) nanosheets have been prepared by a facile hydrothermal approach. It is found that with the incorporation of lithium ions, the morphology of the product transfers from rectangular nanosheets to irregular nanosheets along with a transition from La2Ti2O7 to Li0.5La0.5TiO3. The as-prepared LLTO nanosheets are used to enhance electrochemical performance of the LiCo1/3Ni1/3Mn1/3O2 (CNM) electrode by forming a higher lithium-ion conductive network. The LiCo1/3Ni1/3Mn1/3O2-Li0.5La0.5TiO3 (CNM-LLTO) electrode shows better a lithium diffusion coefficient of 1.5 × 10(-15) cm(2) s(-1), resulting from higher lithium-ion conductivity of LLTO and shorter lithium diffusion path, compared with the lithium diffusion coefficient of CNM electrode (5.44 × 10(-16) cm(2) s(-1)). Superior reversibility and stability are also found in the CNM-LLTO electrode, which retains a capacity at 198 mAh/g after 100 cycles at a rate of 0.1 C. Therefore, it can be confirmed that the existence of LLTO nanosheets can act as bridges to facilitate the lithium-ion diffusion between the active materials and electrolytes. PMID:26697735

  19. Develop techniques for ion implantation of PLZT (lead-lanthanum-zirconate-titanate) for adaptive optics

    SciTech Connect

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-07-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550/sup 0/C. This report summarizes the research and provides a sampling of the data taken during the report period.

  20. Infrared luminescence of Tm{sup 3+}/Yb{sup 3+} codoped lanthanum aluminum germanate glasses

    SciTech Connect

    Zhang Qiang; Zhang Guang; Chen Guorong; Qiu Jianrong; Chen Danping

    2010-01-15

    Tm{sup 3+} doped and Tm{sup 3+}/Yb{sup 3+} codoped lanthanum aluminum germanate (LAG) glasses are prepared by melt-quenching method and characterized optically. Based on the measurement of absorption spectrum, Judd-Ofelt intensity parameters ({Omega}{sub 2},{Omega}{sub 4},{Omega}{sub 6}) are calculated. The radiation emission rates, branching ratios, and lifetimes of Tm{sup 3+} are calculated to evaluate the spectroscopic properties of Tm{sup 3+} in LAG glass. The infrared emission properties of the samples are investigated and the results show that the 1.8 {mu}m emission can be greatly enhanced by adding proper amount of Yb{sup 3+} under the excitation of 980 nm. The energy transfer processes of Yb{sup 3+}-Yb{sup 3+} and Yb{sup 3+}-Tm{sup 3+} are analyzed, and the results show that Yb{sup 3+} ions can transfer their energy to Tm{sup 3+} ions with high efficiency and large energy transfer coefficient.

  1. Waveshifting fiber readout of lanthanum halide scintillators

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Cherry, M. L.; Stacy, J. G.

    2006-07-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6 8 m2 hard X-ray coded aperture imaging telescope operating in the 20 600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr3 and LaCl3) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr3 or LaCl3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance.

  2. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  3. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from

  4. Ethanol Gas Sensor Based on Pure and La-Doped Bismuth Vanadate

    NASA Astrophysics Data System (ADS)

    Golmojdeh, Hosein; Zanjanchi, Mohamad Ali

    2014-02-01

    Bismuth vanadate (BiVO4) and lanthanum-doped bismuth vanadate (La-doped BiVO4) were prepared via the precipitation method. Their films were produced by simple drop-coating of the initial solutions over gold electrodes, which were coated over a glass substrate. The structural properties of BiVO4 and La-doped BiVO4 samples were studied using x-ray diffractometer, diffuse reflectance spectroscopy, scanning electron microscopy, atomic force microscopy, and compositional analysis. A chamber was designed to install the sensing device and also controllable tools for gas flow rate and temperature. Changes in the resistance of the prepared layers were recorded during exposure to various amounts of ethanol vapor at different temperatures. Both BiVO4 and La-doped BiVO4 layers showed measurable responses in the form of resistance drop (increased conductivity). The higher temperatures up to 450 °C led to stronger signals. The layer containing lanthanum showed signals with shorter recovery times. Introduction of lanthanum caused smaller crystallite sizes in addition to the formation of tetragonal phase of BiVO4. Presence of lanthanum increased the amounts of grain boundaries, magnitude of the response, and sensitivity. Sensitivity of La-doped BiVO4 was almost twice that of the BiVO4 at concentrations of 150-500 ppm of ethanol. Also, the correlation of the response as a function of concentration of ethanol in gas phase was exploited, and two different linear ranges were observed for the lower and higher concentrations.

  5. The soda-ash roasting of chromite ore processing residue for the reclamation of chromium

    NASA Astrophysics Data System (ADS)

    Antony, M. P.; Tathavadkar, V. D.; Calvert, C. C.; Jha, A.

    2001-12-01

    Sodium chromate is produced via the soda-ash roasting of chromite ore with sodium carbonate. After the reaction, nearly 15 pct of the chromium oxide remains unreacted and ends up in the waste stream, for landfills. In recent years, the concern over environmental pollution from hexavalent chromium (Cr6+) from the waste residue has become a major problem for the chromium chemical industry. The main purpose of this investigation is to recover chromium oxide present in the waste residue as sodium chromate. Cr2O3 in the residue is distributed between the two spinel solid solutions, Mg(Al,Cr)2O4 and γ-Fe2O3. The residue from the sodium chromate production process was analyzed both physically and chemically. The compositions of the mineral phases were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The influence of alkali addition on the overall reaction rate is examined. The kinetics of the chromium extraction reaction resulting from the residue of the soda-ash roasting process under an oxidizing atmosphere is also investigated. It is shown that the experimental results for the roasting reaction can be best described by the Ginstling and Brounshtein (GB) equation for diffusion-controlled kinetics. The apparent activation energy for the roasting reaction was calculated to be between 85 and 90 kJ·mol-1 in the temperature range 1223 to 1473 K. The kinetics of leaching of Cr3+ ions using the aqueous phase from the process residue is also studied by treating the waste into acid solutions with different concentrations.

  6. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. PMID:25966327

  7. Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil.

    PubMed

    Samantaray, S; Rout, G R; Das, P

    2001-10-01

    Metal contamination in soil and plant samples from a chromite mine and its adjoining regions was determined. The metal concentration varied in stem, leaf and root of different tree species. In the case of shrubs, the highest concentration of iron (18.5 mg kg(-1) was detected in the stem of Combretum roxburghii. The concentration of aluminium varied from 1.8 - 5.3 mg kg(-1) dry weight, whereas the nickel content was found to be the highest in the stem of Calotropis gigantea. In the case of herbs, chromium concentration was highest (60.9 mg kg(-1) dry weight) in Evovulus alsenoides and the lowest (18.8 mg kg(-1) dry weight) in Andrographis paniculata. There was a significant correlation observed between chromium in soil with the root of tree species like Lagerstroemia parviflora, Madhuca longifolia, Anogeissus latifolia and Haldina cordyfolia. Nickel in soil was significantly correlated with the stem and leaf of all the tree species except Chlroxylon sweitenta. Iron in soil showed correlation with the stem and leaf of Chloroxylon sweitenia. Among the shrubs (Calotropis gigantea, Combretum roxburghii and Smilax zeylancia), chromium in soil showed a correlation with the root. Nickel in soil was positively correlated with the stem and leaf of Calotropis gigantea and Combretum roxburghii. Among the herbs, chromium in the whole plant of Evolvulus alsenoids, Solanum surattense and Phyllanthus fraternus showed significant positive correlation with soil; nickel in Solanum surattense showed significant positive correlation with soil. The positive correlation coefficient was observed between iron in the whole plant and soil on Phyllanthus virgatus, Phyllanthus fraternus and Andrographis paniculata. The above information would be useful for the establishment of a vegetation cover on the minewaste heaps. PMID:11766037

  8. Morphology and composition of chalcopyrite, chromite, Cu, Ni-Fe, pentlandite, and troilite in vugs of 76015 and 76215

    NASA Technical Reports Server (NTRS)

    Carter, J. L.; Clanton, U. S.; Laughon, R. B.; Mckay, D. S.; Usselman, T. M.; Fuhrman, R.

    1975-01-01

    Vugs from 76015 and 76215 are lined with euhedral crystals of plagioclase, pyroxene, ilmenite, Ni-Fe, and troilite. Smaller crystals of chromite, pentlandite, and chalcopyrite occur on the surface of the troilite in 76015. Wire Cu and dendritic-metallic Cu occurs with metallic Ni-Fe and troilite in some vugs of 76215. Troilite in both samples may have crystallized from an immiscible sulfide liquid. With falling temperature, chalcopyrite, and pentlandite may have exsolved from the troilite in 76015. By contrast, metallic Cu may have formed in 76215 by thermal breakdown of a bornite, troilite, and Ni-Fe assemblage which originally crystallized from a low-Ni immiscible sulfide liquid.

  9. Corrosion Investigations of Black Chromite Films on Zn and Zn-Co Coatings with Low Cobalt Content

    NASA Astrophysics Data System (ADS)

    Boshkov, Nikolai; Boshkova, Neli; Bachvarov, Vasil; Peshova, Miglena; Lutov, Ludmil

    2015-12-01

    The corrosion resistance and protective ability of black-colored chromite (Cr3+ based) and chromium-free conversion films (CFs) on electrodeposited zinc and Zn-Co alloy coatings having low cobalt content in a neutral model medium of 3% NaCl solution have been investigated and characterized. Test methods such as polarization resistance measurements, scanning electron microscopy, EDS, x-ray diffraction analysis, and x-ray photoelectron spectroscopy analyses have been applied in order to scrutinize the actual protective characteristics of these films as well as to determine the composition of the corrosion products appearing as a result of the treatment in the corrosion medium. The experimental results revealed better protective characteristics, consequently superior performance of the electrodeposits with chromite films compared to these with chromium free or without any additional CF. The processes occurring on the sample's surface during the immersion in the chemical conversion solutions as well as the influence of the H3PO4 in the course of the treatment are also commented on and discussed.

  10. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.; Ament, K. A.

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  11. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  12. Stability of solid oxide fuel cell materials

    SciTech Connect

    Armstrong, T.R.; Pederson, L.R.; Stevenson, J.W.; Raney, P.E.

    1995-08-01

    The phase stability and sintering behavior of materials used in SOFCs has been evaluated. The sintering behavior of Ca and Sr doped lanthanum. manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. Ca and Sr doped lanthanum chromite (the preferred interconnect material) have been shown to rapidly expand in reducing atmospheres at temperatures as low as 700{degrees}C. This expansion is due to the reduction of Cr{sup 4+} to Cr{sup 3+} in reducing environments.

  13. Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method

    SciTech Connect

    Gingasu, Dana; Mindru, Ioana; Culita, Daniela C.; Patron, Luminita; Calderon-Moreno, Jose Maria; Osiceanu, Petre; Preda, Silviu; Oprea, Ovidiu; Parvulescu, Viorica; Teodorescu, Valentin; Walsh, James P.S.

    2015-02-15

    Highlights: • CoCr{sub 2}O{sub 4} was synthesized through the tartarate and gluconate precursor routes. • Both routes led to the formation of the single-phase CoCr{sub 2}O{sub 4}. • The crystallite size was in the range of 14–21 nm. • CoCr{sub 2}O{sub 4} samples presented ferrimagnetic ordering below Currie temperature T{sub c} = 97 K. • CoCr{sub 2}O{sub 4} samples presented catalytic performance in the total oxidation of CH{sub 4}. - Abstract: Cobalt chromite (CoCr{sub 2}O{sub 4}) was synthesized through the precursor method. The precursors: (NH{sub 4}){sub 3}[CoCr{sub 2}(C{sub 4}O{sub 6}H{sub 4}){sub 4}(OH){sub 3}]·4H{sub 2}O, (NH{sub 4}){sub 3}[CoCr{sub 2}(C{sub 6}O{sub 7}H{sub 10}){sub 4}(C{sub 6}O{sub 7}H{sub 9})]·5H{sub 2}O were characterized by elemental chemical analysis, infrared (IR) and ultraviolet–visible (UV–vis) spectroscopy, and thermal analysis. The final oxides were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), UV–vis, IR, Raman spectroscopy (RS), magnetic measurements, N{sub 2} adsorption–desorption analyses and X-ray photoelectron spectroscopy (XPS). XRD confirmed the cubic CoCr{sub 2}O{sub 4} phase only and determined average crystallite sizes between 14 and 21 nm. Electron microscopy revealed morphology corresponding to the complete crystallization into cubic CoCr{sub 2}O{sub 4}. All the samples presented ferrimagnetic ordering below the Currie temperature (T{sub c}), and a phase transition at T{sub s} ∼26 K attributed to the onset of long-range spiral magnetic order. The CoCr{sub 2}O{sub 4} nanoparticles generated through the gluconate route following calcination at 700 °C for 1 h were found to have the best catalytic activity in the total oxidation of methane.

  14. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)

    NASA Astrophysics Data System (ADS)

    Zhou, M.-F.; Robinson, P. T.; Malpas, J.; Aitchison, J.; Sun, M.; Bai, W.-J.; Hu, X.-F.; Yang, J.-S.

    2001-06-01

    The Sartohay block of the Dalabute ophiolite consists chiefly of mantle harzburgite and lherzolite with minor dunite. These rocks host voluminous chromite deposits with lenticular or vein-like shapes. The podiform chromitites are associated with, and cross-cut by, numerous troctolite dykes. Chromite in the chromitites has Al 2O 3 (23-31 wt%), TiO 2 (0.29-0.44 wt%), and Cr 2O 3 contents (<45 wt%) with Cr#s [100Cr/(Cr+Al)] (<60), typical of high-Al chromite deposits. The host peridotites in Sartohay have been texturally and geochemically modified by magmas from which the high-Al chromitites and mafic dykes formed. Dunites commonly envelop the podiform chromite bodies and show transitional contacts with the peridotites. Some of the peridotites and chromitites contain plagioclase that crystallized from impregnated melts. The dunite locally grades into troctolite with increasing plagioclase contents. As a result of melt impregnation, peridotites and dunites show variable Ca and Al contents and LREE enrichment. The parental magma of the chromitites was likely tholeiitic in composition, derived from partial melting of the asthenospheric mantle in a rising diapir. The interaction between this magma and pre-existing lithospheric mantle, composed of depleted lherzolite, would have formed a more silicic, tholeiitic magma from which high-Al chromitites crystallized. During this interaction, harzburgite and dunite were depleted in modal pyroxene and enriched in some incompatible elements (such as Al, Ca and LREE) due to melt impregnation.

  15. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  16. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    SciTech Connect

    Menaka; Patra, Rajkumar; Ghosh, Santanu; Ganguli, Ashok K.

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  17. MOCVD of very thin films of lead lanthanum titanate

    SciTech Connect

    Beach, D.B.; Vallet, C.E.

    1995-12-31

    Films of lead lanthanum titanate were deposited using metal-organic chemical vapor deposition (MOCVD) at temperatures between 500 and 550{degrees}C in a hot-wall reactor. The precursors used were Pb(THD){sub 2}, La(THD){sub 3}, and Ti(THD){sub 2}(I-OPr){sub 2} where THD = 2,2,6,6-tetramethyl-3,5-heptanedionate, O{sub 2}C{sub 11}H{sub 19}, and I-OPr = isopropoxide, OC{sub 3}H{sub 7}. The three precursors were delivered to the reactor using a single solution containing all three precursors dissolved in tetraglyme and the precursor solution was volatilized at 225{degrees}C. Films were deposited on Si and Si/Ti/Pt substrates, and characterized using Rutherford Backscattering Spectroscopy (RPS) and X-ray diffraction(XRD). Films deposited at 550{degrees}C had a composition which was close to that of the precursor solution while films deposited at 500{degrees}C were deficient in lanthanum. Even at 500{degrees}C, the desired perovskite phase showed an increase in the intensity of the X-ray lines, but did not change the width of these lines, implying the grain sizes had remained unchanged.

  18. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, Cressie E.; Kovach, Louis; Taylor, Albert J.

    1981-01-01

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400.degree. K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10-30 vol. % carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing bases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  19. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, C.E. Jr.; Kovach, L.; Taylor, A.J.

    1980-01-22

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400/sup 0/K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10 to 30 vol% carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing gases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  20. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  1. Optical amplification in disordered electrooptic Tm{sup 3+} and Ho{sup 3+} codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations

    SciTech Connect

    Zhao, Hua; Zhang, Kun; Xu, Long; Sun, Fankui; Zhang, Jingwen; Chen, Xuesheng; Li, Kewen K.

    2014-02-21

    Rare earth doped electro-optic (EO) ceramics of lanthanum-modified lead zirconate titanate (PLZT) are promising in building multifunctional optical devices, by taking advantage of both EO effect and optical activity. In this work, the combination of the measured spectra of absorption and photoluminescence, the fluorescent decay, the calculated Judd-Ofelt parameters, and measured single pass gain in Tm{sup 3+}, Ho{sup 3+} codoped PLZT ceramics have marked them out as promising gain media in building electrically controllable lasers/optical amplifiers and other multifunctional devices. Optical energy storage was also observed in the optical amplification dynamics.

  2. Metamorphic modifications of the Muremera mafic-ultramafic intrusions, eastern Burundi, and their effect on chromite compositions

    NASA Astrophysics Data System (ADS)

    Evans, David M.

    2015-01-01

    The Muremera mafic-ultramafic intrusions were emplaced into metasedimentary rocks of the Karagwe-Ankole Belt in eastern Burundi, as part of the Mesoproterozoic Kibaran tectonomagmatic event. Igneous minerals of the Muremera intrusions have been partly altered to hydrous and carbonated metamorphic assemblages, although in most cases, the original igneous textures are well-preserved. Rounded, subhedral cumulus olivine has been partially and pseudomorphically replaced by lizardite-magnetite mesh-rim and lizardite-brucite mesh-centre assemblages, while anhedral interstitial plagioclase has been replaced by chlorite-tremolite. A later and localized event results in prograde alteration to antigorite-magnetite-chlorite-talc-carbonate and talc-carbonate-chlorite assemblages. The rocks are inferred to have undergone at least three separate metamorphic/alteration events resulting in: AS1 - an early alteration assemblage (mesh-rim lizardite-magnetite) characterized by very low fluid/rock ratios and widespread distribution; AS2 - a later, widespread low-temperature retrogressive (mesh-centre lizardite-brucite) assemblage associated with abundant close-spaced parallel veins; AS3 - later, prograde (antigorite-magnetite) and AT4 (talc-chlorite-carbonate) assemblages associated with more localized shearing and higher fluid/rock ratios. The AS1 assemblage most likely represents deuteric alteration that occurred soon after intrusion and cooling. The AS2 assemblage may relate to a continuation of this cooling, or may be correlated with the regional upright D2 folding event, while the AS3 and AT4 alteration assemblages are most likely correlated with the N-S oriented D3 faulting episode linked to the distal East African Orogeny. Euhedral to subhedral chromite grains are essentially unaltered where enclosed in primary unaltered olivine, pyroxene or plagioclase, as well as in AS1 lizardite-magnetite and AS2 lizardite-brucite altered olivine or pyroxene. In samples which show alteration

  3. Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Cronholm, Anders; Schmitz, Birger

    The distribution of sediment-dispersed extraterrestrial (ordinary chondritic) chromite (EC) grains (>63 μm) has been studied across the latest Maastrichtian and Paleocene in the Bottaccione Gorge section at Gubbio, Italy. This section is ideal for determining the accumulation rate of EC because of its condensed nature and well-constrained sedimentation rates. In a total of 210 kg of limestone representing eight samples of 14-28 kg distributed across 24 m of the Bottaccione section, only 6 EC grains were found (an average of 0.03 EC grains kg-1). In addition, one probable pallasitic chromite grain was found. No EC grains could be found in two samples at the Cretaceous-Tertiary (K-T) boundary, which is consistent with the K-T boundary impactor being a carbonaceous chondrite or comet low in chromite. The average influx of EC to Earth is calculated to ˜0.26 grain m-2 kyr-1. This corresponds to a total flux of ˜200 tons of extraterrestrial matter per year, compared to ˜30,000 tons per year, as estimated from Os isotopes in deep-sea sediments. The difference is explained by the EC grains representing only unmelted ordinary chondritic matter, predominantly in the size range from ˜0.1 mm to a few centimeters in diameter. Sedimentary EC grains can thus give important information on the extent to which micrometeorites and small meteorites survive the passage through the atmosphere. The average of 0.03 EC grain kg-1 in the Gubbio limestone contrasts with the up to ˜3 EC grains kg-1 in mid-Ordovician limestone that formed after the disruption of the L chondrite parent body in the asteroid belt at ˜470 Ma. The two types of limestone were deposited at about the same rate, and the difference in EC abundance gives support for an increase by two orders of magnitude in the flux of chondritic matter directly after the asteroid breakup.

  4. Application of artificial neural network in 3D imaging with lanthanum bromide calorimeter

    NASA Astrophysics Data System (ADS)

    Gostojic, A.; Tatischeff, V.; Kiener, J.; Hamadache, C.; Karkour, N.; Linget, D.; Grave, X.; Gibelin, L.; Travers, B.; Blin, S.; Barrillon, P.

    2015-07-01

    Gamma-ray astronomy in the energy range from 0.1 up to 100 MeV holds many understudied questions connected with e.g. stellar nucleosynthesis, the active Sun, neutron stars and black holes. To access the physics behind, a significant improvement in detection sensitivity is needed compared to previous missions, e.g. CGRO and INTEGRAL. One of the promising concepts for a future gamma-ray mission is an Advanced Compton Telescope. Under the project of creating a prototype of such instrument, we study the perspectives of using a novel inorganic scintillator as a calorimeter part. Modern inorganic crystal or ceramics scintillators are constantly improving on qualities such as energy resolution and radiation hardness, and this makes them a smart choice for a new space-borne telescope. At CSNSM Orsay, we have assembled a detection module from a 5 × 5cm2 area and 1 cm thick, cerium-doped lanthanum (III) bromide (LaBr3:Ce) inorganic scintillator coupled to a 64 channel multi-anode photomultiplier. The readout of the PMT signals is carried out with the ASIC MAROC, used previously for the luminometer of the ATLAS detector (CERN). Characterization, thorough measurements with various radioactive sources, as well as, single photoelectron detection have been done. Furthermore, we made a comparison of measurements with a detailed GEANT4-based simulation which includes tracking of the optical photons. Finally, we have studied the 3D reconstruction of the first interaction point of incident gamma rays, utilizing a neural network algorithm. This spatial position resolution plays a crucial part in the future implementations and, together with the other measured properties, it makes our detector module very interesting for the next generation of space telescopes operating in the MeV range.

  5. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper

    NASA Astrophysics Data System (ADS)

    Marwani, Hadi M.; Lodhi, Mazhar Ullah; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-09-01

    In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters, influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface. Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model. Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to real environmental water samples with adequate results.

  6. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper.

    PubMed

    Marwani, Hadi M; Lodhi, Mazhar Ullah; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters, influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface. Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model. Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to real environmental water samples with adequate results. PMID:25258599

  7. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper

    PubMed Central

    2014-01-01

    In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters, influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface. Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model. Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to real environmental water samples with adequate results. PMID:25258599

  8. Garnet and chromite- bearing mantle peridotite xenoliths from Komsomolskaya pipe, Alakit field, Yakutia

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Valdykin, Nikolai; Makovchuk, Igor; Karpenko, Mikhail; Spetsius, Zdislav; Khmelnikova, Olga; Palessky, Stanislav

    2014-05-01

    Fresh xenoliths in Alakit field in Siberian platform are rare. In the xenoliths from Komsomolskaya pipe there were found 30 xenoliths with fresh Cpx, Gar as well as chromites, phlogopites and ilmenites which allows to construct the Cpx - based geotherm which was before constructed for the Yubileynaya pipe (Ashchepkov et al., 2004). The comparison of the garnets from the breccias and porphyric kimberlites show more depleted and Cr- rich varieties of garnets as it is common for the other pipes. Only relatively fresh material from the dark - grey breccia good relatively fresh xenoliths could be used for the mineral thermobarometry. Large xenolths from the Komsomolskaya pipe belong mainly to the Gar harzburgite or refertilized lherzolite types as also detected on the Cr2O3 - CaO diagram where they belong mainly to the 5-11% Cr2O3 interval. The low Cr varieties are mainly referring to the Fe- enriched pyroxenites or to Phl metasomatites. In SCLM beneath Komsomolskaya pipe is essentially more heated then those beneath Yubileynaya and Sytykanskaya pipes and in lower part they are close to the PTXFO2 are closer in conditrions to the ilmenites which determined the . Peridotites from the lithosphere base (7-6GPa) are enriched in Fe and belong to the porphyroclustic or deformed type by chemistry Fe# =0.14-0.15. the relatively HT conditions were determined also for the peridotites from the 5.0-4. GPa. The most of the Cpx- refertilized varieties give the conditions of the middle part of the mantle section. Their garnest are enriched in CaO probably reflection reactions with the Ca- rich protokimberlites. The Na- richterite bearin xenoliths are from the same PT interval The cold clot in the 60-5.5 GPa (34 mwm-2) are represented by the peridotites of low Fe# 7-9 Fe- low peridotites with the garnets of sub-Ca types. But there are also varieties of reduced Cr and the Fe-enriched which are closer to the pyroxenites or Phl metasomatites which in Pt are from the upper part of mantle

  9. Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles

    SciTech Connect

    Djerdj, Igor; Garnweitner, Georg; Sheng Su, Dang; Niederberger, Markus

    2007-07-15

    The preparation of lanthanum hydroxide and manganese oxide nanoparticles is presented, based on a nonaqueous sol-gel process involving the reaction of La(OiPr){sub 3} and KMnO{sub 4} with organic solvents such as benzyl alcohol, 2-butanone and a 1:1 vol. mixture thereof. The lanthanum manganese oxide system is highly complex and surprising results with respect to product composition and morphology were obtained. In dependence of the reaction parameters, the La(OH){sub 3} nanoparticles undergo a shape transformation from short nanorods with an average aspect ratio of 2.1 to micron-sized nanofibers (average aspect ratio is more than 59.5). Although not directly involved, KMnO{sub 4} plays a crucial role in determining the particle morphology of La(OH){sub 3}. The reason lies in the fact that KMnO{sub 4} is able to oxidize the benzyl alcohol to benzoic acid, which presumably induces the anisotropic particle growth in [0 0 1] direction upon preferential coordination to the {+-}(1 0 0), {+-}(0 1 0) and {+-}(-110) crystal facets. By adjusting the molar La(OiPr){sub 3}-to-KMnO{sub 4} ratio as well as by using the appropriate solvent mixture it is possible to tailor the morphology, phase purity and microstructure of the La(OH){sub 3} nanoparticles. Postsynthetic thermal treatment of the sample containing La(OH){sub 3} nanofibers and {beta}-MnOOH nanoparticles at the temperature of 800 deg. C for 8 h yielded polyhedral LaMnO{sub 3} and worm-like La{sub 2}O{sub 3} nanoparticles as final products. - Graphical abstract: Lanthanum hydroxide nanoparticles are synthesized based on a nonaqueous sol-gel process involving the reaction of La(OiPr){sub 3} and KMnO{sub 4} with organic solvents such as benzyl alcohol, 2-butanone and a 1:1 vol. mixture thereof. In dependence of the reaction parameters, the La(OH){sub 3} nanoparticles undergo a shape transformation from short nanorods to micron-sized nanofibers.

  10. Stability of solid oxide fuel cell materials

    SciTech Connect

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R.

    1996-08-01

    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  11. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Effect of Adsorbed Nitrogen on the Thermionic Emission from Lanthanum Hexaboride

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Wood, George P.

    1959-01-01

    The emission properties of lanthanum hexaboride in an atmosphere of nitrogen were investigated. The emitter was not poisoned by adsorbed nitrogen. This result should have application to magnetohydrodynamic devices in which electron flow from channel walls is required.

  13. METAL INTERACTIONS AT SULFIDE MINERAL SURFACES. PART 2. ADSORPTION AND DESORPTION OF LANTHANUM

    EPA Science Inventory

    Batch-type adsorption experiments with four sulfide minerals (chalcocite, galena, pyrite, and sphalerite) were used to investigate the adsorption and desorption behavior of lanthanum (III) in the presence of ethylenediaminetetraacetic acid (EDTA), a model humic substance. Linear ...

  14. Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan.

    PubMed

    Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad

    2016-06-01

    This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80-6.99 mg/kg) and Cd (0.21-0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk. PMID:26971962

  15. Application of potassium tetrafluorobromate to the rapid decomposition and determination of noble metals in chromites and related materials

    NASA Astrophysics Data System (ADS)

    Mitkin, V. N.; Zayakina, S. B.; Tsimbalist, V. G.; Galizky, A. A.

    2003-02-01

    Described is an effective new procedure for the preparation of chromites and other geological materials for the determination of the noble metals (NM). The procedure is based on the use of a mixture of KBrF 4 and KHF 2 obtained in situ by adding liquid BrF 3 to a mixture of KHF 2 and sample powder. South African Geostandards SARM-7 platinum ore from the Merensky Reef and SARM-65, a platinum-bearing chromite ore, were used for method development. Following fluorinative decomposition of samples, a homogeneous product is obtained which is suitable for instrumental analysis using either atomic absorption or emission spectrometry techniques. Sulfatization of fusion product using H 2SO 4 produces a non-hygroscopic material, which can be easily powdered and sampled directly into the argon plasma. Solution-based analytical techniques can be applied directly after fluorinative decomposition and conversion of resulting fluorides into chlorides by HCl treatment. The proposed new method, combined with spectrometric emission analysis of powders using a double-jet plasmatron dc plasma atomic emission spectrometry (AES) instrument achieved the following limits of detection (LOD) for the noble metals: Ag, Au and Pd: 1-2×10 -2 g/ton; Pt: 5×10 -2 g/ton; Ru, Rh, Ir and Os: 1-3×10 -3 g/ton. Graphic furnace atomic absorption spectrometry (GFAAS) with preliminary extraction, LODs for NMs were: Pt and Ru: 1×10 -2; Pd and Rh: 1×10 -3; Au and Ag: 1-2×10 -4 g/ton. The relative standard deviation of NM determinations was dependent on concentration and sample type but commonly was in the range of 3-15% dc plasma AES and 5-30% for extraction GFAAS.

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  17. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  18. Deposition and investigation of lanthanum cerium hexaboride thin films

    NASA Astrophysics Data System (ADS)

    Kuzanyan, A. S.; Harutyunyan, S. R.; Vardanyan, V. O.; Badalyan, G. R.; Petrosyan, V. A.; Kuzanyan, V. S.; Petrosyan, S. I.; Karapetyan, V. E.; Wood, K. S.; Wu, H.-D.; Gulian, A. M.

    2006-09-01

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ( T) and S( T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.

  19. Phases in lanthanum-nickel-aluminum alloys. Part 2

    SciTech Connect

    Mosley, W.C.

    1992-08-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  20. Synthesis and characterization of strontium-lanthanum apatites

    SciTech Connect

    Boughzala, K.; Salem, E. Ben; Chrifa, A. Ben; Gaudin, E.; Bouzouita, K. . E-mail: khaled.bouzouita@ipeim.rnu.tn

    2007-07-03

    Two series of strontium-lanthanum apatites, Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}F{sub 2} and Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}O with 0 {<=} x {<=} 6, were synthesized by solid state reaction in the temperature range of 1200-1400 deg. C. The obtained materials were characterized by powder X-ray diffraction, infrared absorption spectroscopy and solid {sup 31}P Nuclear Magnetic Resonance. Pure solid solutions were obtained within a limited range of unsubstituted phosphate and silicate apatites. A variation of the lattice parameters was observed, with an increase of a and a decrease of c parameters, related to the radius of the corresponding substituted ions.

  1. Sputtering studies during lanthanum implantation in stainless steels

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Respaldiza, M. A.; Soares, J. C.; da Silva, M. F.; Odriozola, J. A.

    1997-05-01

    Lanthanum ions of 100 keV have been implanted in AISI304 specimens at different doses. The erosion or sputtering of the surface atoms, either from the steel matrix or already implanted, during the implantation process imposes a limitation on the maximum implantable dose. Hoping to increase this dose, we deposited thin layers of aluminium and alumina (Al 2O 3) on top of steel samples of similar composition and sputtering behaviour (AISI302), as the sputtering effect is much weaker on such species and this layer could also prevent the steel atoms from being removed from the surface. The experimental determination of the sputtering coefficients, total or partial, and its comparison with theoretical values, when possible, is another aim of this work.

  2. Tribological behaviors of lanthanum-based phosphonate 3-aminopropyltriethoxysilane self-assembled films

    NASA Astrophysics Data System (ADS)

    Gu, Qinlin; Cheng, Xianhua

    2007-06-01

    Lanthanum-based thin films deposited on the phosphonate 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) were prepared on the hydroxylated glass substrate by a self-assembling process from specially formulated solution. Chemical compositions of the films and chemical state of the elements were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of the films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. As the results, the target film was obtained and reaction may have taken place between the film and the glass substrate. The tribological results show that lanthanum-based thin films are superior in reducing friction and resisting wear compared with APTES-SAM and phosphorylated APTES-SAM. SEM observation of the morphologies of worn surfaces indicates that the wear of APTES-SAM and the phosphorylated APTES-SAM is characteristic of brittle fracture and severe abrasion. Differently, slight abrasion and micro-crack dominate the wear of lanthanum-based thin films. The superior friction reduction and wear resistance of lanthanum-based thin films are attributed to the enhanced load-carrying capacity of the inorganic lanthanum particles in the lanthanum-based thin films as well as good adhesion of the films to the substrate.

  3. The management of hyperphosphatemia by lanthanum carbonate in chronic kidney disease patients

    PubMed Central

    Shigematsu, Takashi; Nakashima, Yuri; Ohya, Masaki; Tatsuta, Koichi; Koreeda, Daisuke; Yoshimoto, Wataru; Yamanaka, Shintaro; Sakaguchi, Toshifumi; Hanba, Yoshiyuki; Mima, Toru; Negi, Shigeo

    2012-01-01

    Hyperphosphatemia has been shown to be involved not only in the onset and progression of secondary hyperparathyroidism but also in vascular calcification. In addition, it influences the clinical course of patients with chronic kidney disease. Phosphate (Pi) binder is required in the management of hyperparaphosphatemia, because dietary Pi restriction and Pi removal by hemodialysis alone are insufficient. Lanthanum carbonate, a powerful Pi binder, has a similar effect to aluminum hydroxide in reducing serum Pi levels. As it is excreted via the liver, lanthanum carbonate has an advantage in patients with renal failure. The effect of lanthanum carbonate on serum Pi levels is almost two times higher than that of calcium (Ca) carbonate, which is commonly used. Lanthanum carbonate and Ca carbonate have an additive effect. Worldwide, there is 6 years worth of clinical treatment data on lanthanum carbonate; however, we have 3 years of clinical use in Japanese patients with hyperphosphatemia. No serious side effects have been reported. However, the most important concern is bone toxicity, which has been observed with use of aluminum hydroxide. For this study, clinical research involved analysis of bone biopsies. Although osteomalacia is the most noticeable side effect, this was not observed. Both the high- and the low-turnover bone disease concentrated into a normal bone turnover state. However, as the authors have less than 10 years’ clinical experience with lanthanum carbonate, patients should be monitored carefully. In addition, it is necessary to demonstrate whether potent treatment effects on hyperphosphatemia improve the long-term outcome. PMID:22723728

  4. Studies on gel-grown pure and strontium-modified lanthanum tartrate crystals

    NASA Astrophysics Data System (ADS)

    Firdous, A.; Quasim, I.; Ahmad, M. M.; Kotru, P. N.

    2009-07-01

    Crystals of pure and strontium-modified lanthanum tartrate bearing composition (La) 1-x(Sr) xC 4H 4O 6· nH 2O (where x=0, 0.04, 0.10, 0.15; n=5,5,6,8) were obtained using gel method. The materials were studied using CH analysis, X-ray powder diffraction, FTIR, EDAX and thermoanalytical techniques. X-ray powder diffraction results analyzed by using suitable software suggest that while unmodified lanthanum tartrate has a monoclinic structure with the space group P 21, the entry of strontium into its lattice changes the system to orthorhombic with the space group P 2121. The unit cell volume is observed to decrease with increase in the concentration of strontium in lanthanum tartrate. Thermal analysis suggests that pure lanthanum tartrate starts decomposing at 41.31 °C whereas the strontium-modified lanthanum tartrate brings about better thermal stability which increases with an increase in strontium concentration. The percentage weight loss calculations from the thermogram supplemented by EDAX, CH analysis and FTIR spectroscopy suggest that both unmodified and strontium-modified lanthanum tartrate spherulitic crystals contain water of hydration; the amount of water of hydration being different for crystals with different content of strontium.

  5. Chalcophile and platinum-group element distribution in the Ultramafic series of the Stillwater Complex, MT, USA—implications for processes enriching chromite layers in Os, Ir, Ru, and Rh

    NASA Astrophysics Data System (ADS)

    Barnes, Sarah-Jane; Pagé, P.; Prichard, H. M.; Zientek, M. L.; Fisher, P. C.

    2016-01-01

    All of the rocks from the Ultramafic series of the Stillwater Complex are enriched in PGE relative to most mafic magmas. Furthermore, the chromite layers are particularly enriched in IPGE (Os, Ir, and Ru) and Rh. This enrichment appears to be a common characteristic of ultramafic rocks from many types of settings, layered intrusions, ophiolites, and zoned complexes. We have carried out a petrological, mineralogical, and geochemical study to assess how the enrichment occurred in the case of the Stillwater Complex and applied our results to the chromite layers of the Bushveld and Great Dyke complexes. The minerals that now host the PGE are laurite and fine-grained intergrowths of pentlandite, millerite, and chalcopyrite. The laurite occurs as inclusions in chromite, and mass balance calculations indicate that it hosts most of the Os, Ir, and Ru. The sulfide minerals occur both as inclusions in chromite and as interstitial grains. The sulfides host much of the Pd and Rh. The IPGE and Rh correlate with Cr but not with S or Se, indicating that these elements were not collected by a sulfide liquid. Palladium, Cu, and Se correlate with each other, but not with S. The low S/Se (<1500) of the whole rock and magnetite rims around the sulfides indicate some S has been lost from the rocks. We conclude that to account for all observations, the IPGE and Rh were originally collected by chromite, and subsequently, small quantities of base metal sulfide liquid was added to the chromite layers from the overlying magma. The IPGE and Rh in the chromite diffused from the chromite into the base metal sulfides and converted some of the sulfides to laurite.

  6. Fabrication and spectral properties of Nd 3+-doped yttrium lanthanum oxide transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoman; Yang, Qiuhong; Dou, Chuanguo; Xu, Jun; Zhou, Hongxu

    2008-06-01

    Transparent 1 at% Nd3+:Y1.9La0.1O3 ceramics were fabricated with nanopowders prepared by carbonate coprecipitation method. The powder compacts were sintered in H2 atmosphere at 1550 °C for 30 h. The Nd3+:Y1.9La0.1O3 ceramics display uniform grains of about 50 μm and high transparency. The highest transmittance of the ceramics reaches 67%. The strongest absorption peak is in the wavelength of 820 nm with absorption cross section of 2.48 × 10-20 cm2. The absorption is still high at LD wavelength 806 nm with absorption cross section of 1.78 × 10-20 cm2 and broad full width at half maximum (FWHM) of about 6.3 nm. The strongest emission peak was centered at 1078 nm with large stimulated emission cross section of 9.63 × 10-20 cm2 and broad FWHM of about 7.8 nm. The broad absorption and emission bandwidth of Nd3+:Y1.9La0.1O3 transparent ceramics are favorable to achieve the miniaturized LD pumping apparatus and ultrashort modelocked pulse laser output, respectively.

  7. Electron-microscope study of lanthanum-doped lead zirconate-titanate solid solutions

    SciTech Connect

    Ishchuk, V.M.; Presnyakova, O.V.

    1985-12-01

    This paper examines the structure of specimens of lanthanumdoped lead zirconate-titanate solid solutions in the hysteresis region of the phase diagram, using transmission electron microscopy. The electron-microscopic images of PLZT ceramic of composition display an unusual diffraction contrast. An analysis of the images obtained for different orientations of the cleavages of specimens of composition indicate that the second-phase inclusions are cylindrical in the main. The authors hypothesize that the inclusions are a ferroelectric phase in an antiferroelectric matrix.

  8. Interplay Between Structural, Jahn-Teller, and Magnetic States of Slightly Doped Lanthanum Manganites

    NASA Astrophysics Data System (ADS)

    Golenishchev-Kutuzov, V. A.; Golenishchev-Kutuzov, A. V.; Kalimullin, R. I.; Semennikov, A. V.

    2016-03-01

    By combining the results of elastic moduli, electrical resistivity, and magnetization measurements for La_{1-x} Srx MnO3 (x = 0.125, x = 0.15, and x = 0.175), we have constructed a phase diagram that describes the structural, magnetic, transport properties and the relationships among them as a function of the composition and temperature (140-340 K). The local, intermediate, and cooperative Jahn-Teller distortions of the octahedral structural units MnO6 have been studied. It is common for these distortions to be observed using probes of intermediate structures (domains or super-cells), but they are absent in the averaged crystallographic structure. In the cooperative Jahn-Teller distorted phase, the macroscopic sample length is temperature dependent. We presume that the structural transitions from the cooperative Jahn-Teller phase to the charge ordering phase at low temperatures (150 and 180 K at x = 0.125 and x = 0.15) are due to the increase in the spontaneous magnetization with the conservation of the local deformations of separate octahedra. The agreement between the types of the orbital ordering and the local, intermediate, and Jahn-Teller cooperative distortions of octahedra was established.

  9. Observation of d-p hybridized aromaticity in lanthanum-doped boron clusters.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2014-01-14

    The concept of aromaticity has been advanced beyond the framework of organic chemistry, and multiple aromaticity (σ, π, and δ) has been observed to account for the highly symmetric structures or unusual stability of the clusters. In the present study, the electronic structures and chemical bonding of small monolanthanum boride clusters are investigated using photoelectron imaging spectroscopy and first principles electronic structure calculations. Accurate electron affinities of 1.32 ± 0.04 and 1.13 ± 0.06 eV for the neutral LaB2 and LaB3 clusters are obtained by the vibrationally-resolved photoelectron spectra of the LaB2(-) and LaB3(-) clusters, respectively. It is shown that LaB2(-) and LaB3 exhibit enhanced stability in their respective cluster series, as evidenced from the calculated removal energies and HOMO-LUMO gaps. Molecular orbital analysis discloses that these two clusters possess doubly aromatic characters (σ and π), responsible for their enhanced stability. Interestingly, unlike conventional σ-, π-, and δ-aromaticity formed by the delocalization of unhybridized p or d orbitals, the σ and π delocalized molecular orbitals shown here are formed through the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the remaining boron atoms, representing an intriguing d-p hybridized aromaticity. PMID:24141329

  10. Structure and magnetic interactions in (Sr, Sb)-doped lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Karpinsky, D. V.; Troyanchuk, I. O.; Silibin, M. V.; Gavrilov, S. A.; Bushinky, M. V.; Sikolenko, V.; Frontzek, M.

    2016-05-01

    Ceramic samples La1-2xSr2xMn1-xSbxO3 (x≤0.2) have been studied by X-ray and neutron powder diffraction, magnetization measurements and charge density calculations have also been performed. The compounds are characterized by the rhombohedral structure at room temperature; temperature decrease causes structural transition to the orthorhombic structure. La1-2xSr2xMn1-xSbxO3 ceramics are characterized by homovalent manganese ions and have long range ferromagnetic order which gradually diminishes with the chemical substitution. It is considered that magnetic properties of the compounds are determined by the dominance of ferromagnetic superexchange interactions stabilized in the orbital disordered orthorhombic phase. Significant covalent component of the Mn-O chemical bonds contributes to the long-range ferromagnetic order of the compounds, the covalency of the chemical bonds is assumed to be isotropically distributed over the orthorhombic phase.

  11. RETRACTED: Structure and properties of lanthanum-doped bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Singh, V. R.; Garg, A.; Agrawal, D. C.

    2009-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as it is a duplicate of a paper that has already been published in Appl. Phys. Lett., 92 (2008) 152905 1-3, doi: 10.1063/1.2901017. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  12. Preparation and laser performance of Nd-doped yttrium lanthanum oxide transparent ceramic

    NASA Astrophysics Data System (ADS)

    Yang, Qiuhong; Lu, Shenzhou; Zhang, Bin; Zhang, Haojia; Zhou, Jun; Yuan, Zhijun; Qi, Yunfeng; Lou, Qihong

    2011-03-01

    1.5 at.% Nd:Y 1.8La 0.2O 3 transparent ceramic was fabricated by a solid-state reaction method and sintered at 1650-1700 °C for 40-50 h under H 2 atmosphere. The spectroscopic properties were investigated at room temperature. The transparent ceramic has excellent spectroscopic properties, with the absorption cross section of 1.50 × 10 -20 cm 2 and broad full width at half maximum (FWHM) of about 8 nm at LD wavelength 806 nm, the emission cross section of 2.03 × 10 -20 cm 2 at 1079 nm, and the decay lifetime of 200 μs. Laser performance was carried out using an uncoated Nd:Y 1.8La 0.2O 3 ceramic plate under laser diode end-pumping without any water cooling device. The room temperature thermal conductivity of this ceramic is 6.20 W/mK. For Nd:Y 1.8La 0.2O 3 ceramic laser, a maximum output power of 62 mW was obtained at 1079 nm under a 808 nm diode pump.

  13. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application

    SciTech Connect

    Nag, S.; Mukhopadhyay, S.; Basu, R.N.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Phase pure La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) material is prepared by combustion synthesis. Black-Right-Pointing-Pointer LCZ and Ni-LCZ bulk samples are prepared with theoretical density close to 100%. Black-Right-Pointing-Pointer Bulk electrical conductivity {approx}400 S/cm is obtained for Ni-LCZ cermet at 750 Degree-Sign C. -- Abstract: La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) and Ni-LCZ cermet have been prepared by combustion synthesis and conventional solid state mixing methods respectively. Both the materials are sintered in air and controlled atmosphere (5% H{sub 2} in Ar). The density obtained for the material sintered at 1400 Degree-Sign C in controlled atmosphere is found to be more than 99.5%. This sintering temperature (1400 Degree-Sign C) is considered to be much lower compared to the conventional sintering temperature. The corresponding total conductivity for such Ni-LCZ cermet materials is {approx}400 S/cm measured at 750 Degree-Sign C having 40 vol% of Ni and 60 vol% LCZ.

  14. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  15. Lanthanum Molybdate Nanoparticles from the Bradley Reaction: Factors Influencing Their Composition, Structure, and Functional Characteristics as Potential Matrixes for Luminescent Phosphors

    PubMed Central

    2014-01-01

    Interaction of lanthanum isopropoxide with molybdenum(VI) alkoxides in La/Mo ratios varying from 3:1 to 1:1 in acetophenon or allyl alcohol as solvents offers nanosized poorly crystalline products of complex composition, where the precipitation of Mo-rich ones is followed by the formation of La-rich ones with conservation of the reaction stoichiometry in total. Thermal treatment of the precipitates at temperatures over 700 °C leads to the formation of stoichiometric phases of the α- and β-La2Mo2O9 compositions. Introduction of smaller Re3+ cations such as Sm3+ by doping favors stabilization of the La2–xRExMo2O9 phase with improved crystallinity even after lower-temperature thermal treatment. The doping is successful only when the Re3+ (Sm3+, Eu3+, and Tb3+) is introduced as an alkoxide: application of Re3+(acac)3 as Re3+ sources leads to materials free from Re3+. The produced samples were characterized by XPD, TGA, SEM, and TEM studies as well as the luminescent properties for the Sm3+-doped phases. PMID:24392745

  16. Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

    PubMed Central

    2015-01-01

    In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-La2O3 in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-La2O3, respectively. Similar to the RAW264.7 cells, the toxicity of nano-La2O3 was stronger than that of micro-La2O3 in the A549 cells. We found that nano-La2O3 was absorbed in the lungs more and was eliminated more slowly than micro-La2O3. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure. PMID:26191385

  17. Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Lou, Qi-Wei; Chen, Xue-Feng; Zhang, Hong-Ling; Dong, Xian-Lin; Wang, Gen-Shui

    2015-11-01

    The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13≤ x ≤0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content. Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).

  18. In vitro bioequivalence approach for a locally acting gastrointestinal drug: lanthanum carbonate.

    PubMed

    Yang, Yongsheng; Shah, Rakhi B; Yu, Lawrence X; Khan, Mansoor A

    2013-02-01

    A conventional human pharmacokinetic (PK) in vivo study is often considered as the "gold standard" to determine bioequivalence (BE) of drug products. However, this BE approach is not always applicable to the products not intended to be delivered into the systemic circulation. For locally acting gastrointestinal (GI) products, well designed in vitro approaches might be more practical in that they are able not only to qualitatively predict the presence of the active substance at the site of action but also to specifically assess the performance of the active substance. For example, lanthanum carbonate chewable tablet, a locally acting GI phosphate binder when orally administrated, can release free lanthanum ions in the acid environment of the upper GI tract. The lanthanum ions directly reach the site of action to bind with dietary phosphate released from food to form highly insoluble lanthanum-phosphate complexes. This prevents the absorption of phosphate consequently reducing the serum phosphate. Thus, using a conventional PK approach to demonstrate BE is meaningless since plasma levels are not relevant for local efficacy in the GI tract. Additionally the bioavailability of lanthanum carbonate is less than 0.002%, and therefore, the PK approach is not feasible. Therefore, an alternative assessment method is required. This paper presents an in vitro approach that can be used in lieu of PK or clinical studies to determine the BE of lanthanum carbonate chewable tablets. It is hoped that this information can be used to finalize an in vitro guidance for BE studies of lanthanum carbonate chewable tablets as well as to assist with "in vivo" biowaiver decision making. The scientific information might be useful to the pharmaceutical industry for the purpose of planning and designing future BE studies. PMID:23249191

  19. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Astrophysics Data System (ADS)

    Yang, J.; Anders, E.

    1982-06-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  20. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  1. Conversion to lanthanum carbonate monotherapy effectively controls serum phosphorus with a reduced tablet burden: a multicenter open-label study

    PubMed Central

    2011-01-01

    Abstract Background Lanthanum carbonate (FOSRENOL®) is an effective, well-tolerated phosphate binder. The ability of lanthanum to reduce serum phosphorus levels to ≤5.5 mg/dL in patients with end-stage renal disease (ESRD) was assessed in a clinical practice setting. Methods A 16-week, phase IV study enrolled 2763 patients at 223 US sites to evaluate the efficacy of lanthanum carbonate in controlling serum phosphorus in patients with ESRD, and patient and physician satisfaction with, and preference for, lanthanum carbonate after conversion from other phosphate-binder medications. Patients received lanthanum carbonate prescriptions from physicians. These prescriptions were filled at local pharmacies rather than obtaining medication at the clinical trial site. Changes from serum phosphorus baseline values were analyzed using paired t tests. Patient and physician preferences for lanthanum carbonate versus previous medications were assessed using binomial proportion tests. Satisfaction was analyzed using the McNemar test. Daily dose, tablet burden, and laboratory values including albumin-adjusted serum calcium, calcium × phosphorus product, and parathyroid hormone levels were secondary endpoints. Results Serum phosphorus control (≤5.5 mg/dL) was effectively maintained in patients converting to lanthanum carbonate monotherapy; 41.6% of patients had controlled serum phosphate levels at 16 weeks. Patients and physicians expressed markedly higher satisfaction with lanthanum carbonate, and preferred lanthanum carbonate over previous medication. There were significant reductions in daily dose and daily tablet burden after conversion to lanthanum carbonate. Conclusions Serum phosphorus levels were effectively maintained in patients converted from other phosphate-binder medications to lanthanum carbonate, with increased satisfaction and reduced tablet burden. Trial Registration ClinicalTrials.gov: NCT0016012 PMID:21962172

  2. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  3. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  4. Influence of lanthanum oxide as quality promoter on cathodes for MCFC

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Nóvoa, X. R.; Rodrigo, T.; Daza, L.

    A novel material based on lithium nickel mixed oxides modified by lanthanum impregnation was investigated as an alternative cathode for molten carbonate fuel cells (MCFCs). The electrochemical behaviour of the new cathode material was evaluated in an eutectic mixture of lithium and potassium (Li:K, 62:38) at 650 °C by electrochemical impedance spectroscopy (EIS) as a function of lanthanum content, immersion time and gas composition. The impedance spectra inform on electrode structural changes during the first 100 h. The loss of lithium and the low dissolution of nickel and lanthanum are responsible of these changes. Later on, the structure reaches a stable state. The lanthanum-impregnated cathodes show higher catalytic activity for oxygen reduction and lower dissolution of nickel oxide than the lanthanum-free sample. The cathode material having 0.3 wt.% of La 2O 3 shows the best behaviour. The loss of lithium was confirmed by X-ray diffraction (XRD) and inductive coupled plasma-atomic emission spectroscopy (ICP-AES).

  5. Lanthanum: new drug. Hyperphosphataemia in dialysis patients: more potential problems than benefits.

    PubMed

    2007-04-01

    (1) In dialysis patients with chronic renal failure, hyperphosphataemia can cause osteorenal dystrophy, leading to bone pain, fractures and excess cardiovascular mortality. In addition to a low-phosphorus diet and dialysis, phosphorus chelators are usually needed to control blood phosphorus levels. The first choice is calcium carbonate, and sevelamer is an alternative. (2) Lanthanum carbonate, a phosphorus chelator, is now also licensed for the treatment of hyperphosphataemia in dialysis patients with chronic renal failure. (3) In addition to three dose-finding placebo-controlled studies, clinical evaluation includes 2 comparative randomised unblinded trials: one 6-month trial versus calcium carbonate and a 2-year trial versus other phosphorus chelators. During these trials, lanthanum was no more effective than the comparators in terms of effects on the mortality rate, incidence of fractures, or blood phosphorus level. (4) During these trials, adverse events attributed to treatment were more frequent with lanthanum than with the other phosphorus chelators. The main problems were gastrointestinal disorders (nausea, vomiting, diarrhoea, constipation and abdominal pain), headaches, seizures, and encephalopathy. (5) The accumulation of lanthanum in the bones and brain is troubling. The known long-term adverse effects of aluminium, another trivalent cation with weak gastrointestinal absorption, suggest that caution is also required with lanthanum. (6) In practice, when a phosphorus chelator is needed to treat hyperphosphataemia in dialysis patients with chronic renal failure, calcium carbonate is the first choice and sevelamer remains the best alternative. PMID:17458039

  6. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  7. Column biosorption of lanthanum and europium by Sargassum.

    PubMed

    Diniz, Vivian; Weber, Martin E; Volesky, Bohumil; Naja, Ghinwa

    2008-01-01

    Batch and column biosorption of La(3+) (lanthanum) and Eu(3+) (europium) was studied using protonated Sargassum polycystum biomass. The ion exchange sorption mechanism was confirmed by the proportional release of protons and by the total normality of the solution, which remained constant during the process. Equilibrium isotherms were determined for the binary systems, La/H and Eu/H for a total normality of 3 meq g(-1), which produced separation factors of 2.7 and 4.7, respectively, demonstrating a higher affinity of the biomass towards europium. Column runs with a single metal feed were used to estimate the intra-particle mass transfer coefficients for La and Eu (6.0 x 10(-4) and 3.7 x 10(-4) min(-1), respectively). Modeling batch and column binary systems with proton as the common ion was able to predict reasonably well the behavior of a ternary system containing protons. The software FEMLAB was used for solving the set of coupled partial differential equations. Moreover, a series of consecutive sorption/desorption runs demonstrated that the metal could be recovered and the biomass reused in multiple cycles by using 0.1N HCl with no apparent loss in the biosorbent metal uptake capacity. PMID:17707878

  8. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  9. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    PubMed Central

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  10. Performance of Lanthanum Strontium Manganite Electrodes at High Pressure

    SciTech Connect

    Thomsen, Edwin C.; Coffey, Greg W.; Pederson, Larry R.; Marina, Olga A.

    2009-06-15

    The high-pressure performance of lanthanum strontium manganite (LSM), LSM-zirconia, and LSM/ceria composite electrodes was studied by impedance spectroscopy and dc methods. Electrode resistances decreased in proportion to P(O2)1/2 for the LSM electrode in both cathodic and anodic directions to at least 100 atm, a decrease that was attributed to dissociative oxygen adsorption, surface diffusion, and related phenomena. For the LSM-20/zirconia composite electrode, resistances decreased in proportion to P(O2)1/4 across the entire pressure range considered. Two principal features appeared in the impedance spectra, one that showed a P(O2)1/4 dependence attributed to charge transfer reactions, and one that was nearly pressure-independent, possibly due to transport in the zirconia portion of the composite. For the LSM-20/ceria composite electrode, resistances decreased as P(O2)0.3-0.4 at high pressure, depending on temperature. Two features appeared in the impedance spectra: one at low to intermediate frequency having a P(O2)1/2 dependence and one at high frequency having a P(O2)1/4 dependence. These features are attributed to dissociative oxygen adsorption and to charge transfer reactions, respectively. Results suggest that cathodic losses can be substantially lowered by operation of solid oxide fuel cells at greater than ambient pressure.

  11. Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium.

    PubMed

    Zhang, Haifeng; He, Xiao; Bai, Wei; Guo, Xiaomei; Zhang, Zhiyong; Chai, Zhifang; Zhao, Yuliang

    2010-12-01

    With their widespread applications in industry, agriculture and many other fields, more and more rare earth elements (REEs) are getting into the environment, especially the aquatic systems. Therefore, understanding the aquatic ecotoxicity of REEs has become more and more important. In the present work, Caenorhabditis elegans (C. elegans) was used as a test organism and life-cycle endpoints were chosen along with elemental assay to evaluate the aquatic toxicity of lanthanum (La), a representative of REEs. The results show La³+ had significant adverse effects on the growth and reproduction of worms above a concentration of 10 μmol L⁻¹. The elemental mapping by microbeam synchrotron radiation X-ray fluorescence (μ-SRXRF) illustrated how La treatment disturbed the metals distribution in the whole body of a single tiny nematode at lower levels. Our results suggested that the high-level REEs in some polluted water bodies would lead to an aquatic ecological crisis. The assessment we performed in the present work could be developed as a standardized test design for aquatic toxicological research. PMID:21510015

  12. Work function measurement of lanthanum-boron compounds

    NASA Technical Reports Server (NTRS)

    Jacobson, D. L.; Storms, E. K.

    1978-01-01

    The relationship between emission properties and sample composition is studied for lanthanum-boron compounds. Specifically, the La-B system is considered between 1400 and 2100 K and between LaB(4.24) and LaB(29.2) to determine the phase relationship, chemical activity of the compounds, vapor composition, and vaporization rate. The results indicate that: (1) a blue-colored phase near LaB(9) exists between a purple-colored LaB(6) and elemental boron, (2) vaporization is sufficiently more rapid than diffusion so that great compositional differences exist between the surface and the interior, (3) an activation energy lowers the boron vaporization rate from LaB(6), and (4) a steady-state surface composition between LaB(6.04) and LaB(6.07) exists for freely vaporizing materials as a function of interior composition, purity, and temperature. It is noted that the ultimate life of a thermionic diode is governed by electrode vaporization rate whereas efficiency is governed by the electrode work function.

  13. Proton-Proton Correlation in Central Collisions of Lanthanum + Lanthanum at 1.2 Gev/a

    NASA Astrophysics Data System (ADS)

    Chang, James W.

    1992-01-01

    Central collisions between 1.2 GeV/A lanthanum projectiles and lanthanum nuclei are analysed for HBT-based proton-proton (pp) correlation. The La + La collision system is unique in that it has both the largest beam and beam + target size in any of the pp correlation analyses performed. The data is obtained from LBL's BEVALAC experiment E684HX. The time-of-flight system also with the Heavy Ion Spectrometer System (HISS) allows identification of protons at average mass resolution of 40.6 MeV (5%). The systematic background is removed from the correlation by the event-mixing method. The correlation from data is compared to the calculated correlation which uses a Gaussian source distribution and pp wavefunction resulting from Fermi statistics, S-wave Reid soft-core nuclear potential, and full Coulomb potential. The RMS radius of the La + La system is found to be 4.90 +/- 0.22 fm when systematic corrections are applied. When this radius (r_sp{RMS}{p }) is compared to the radius obtained using pion-pion correlation on the same data (r_sp {RMS}{pi} = 7.31 +/- 0.29 fm), it is found that the r _sp{RMS}{p}/r_sp{RMS }{pi} ratio is 0.67. Survey of other proton and pion correlation results from same systems reveal that r_sp{RMS} {p} < r_sp{RMS}{pi } in general, with the ratio r_sp {RMS}{p}/r_sp{RMS} {pi} decreasing with increase in colliding system size. Survey of pp correlation results from other experiments are considered to test the bore -cut and billiard-ball models. It is found that when the system is large (A_{total} > 118), the bore-cut model underestimates the size, and the billiard-ball model overestimates the size. The billiard -ball model looks attractive due to the smoothness of the transition between correct size estimation and overestimation. A conjecture is made that if this model is true, then the over-estimation of size may be a signature of nucleon density increase at large colliding systems. Compromise scenarios between the bore-cut and billiard-ball models

  14. Effect of production conditions on the corrosion resistance of lanthanum hexaboride powders and parts made from them

    SciTech Connect

    Paderno, Y.B.; Dudnik, E.M.; Masyuk, T.V.; Tkasch, A.V.; Zaitseva, A.Z.

    1985-10-01

    The authors studied the effect of chemical and thermal treatments of an industrial LaB6 powder on the corrosion resistance of the powder itself and parts pressed hot from it. To start, two batches of an industrial lanthanum hexaboride powder were used; and any boron oxide present removed by washing the powders with warm distilled water. To free the powders of lanthanum borates and lanthanum oxide, the powders were treated with a hydrochloric acid solution. The authors determine that this hydrochloric acid cleaning method is an effective means of ridding an industrial lanthanum hexaboride powder of impurities. It is also shown that acid treatment of industrial LaB6 powders substantially improves the corrosion resistance of parts made from them by powder metallurgy techniques. Also, a mechanism of rupture of hotpressed and sintered lanthanum hexaboride parts is proposed.

  15. Early chromite mining and agricultural clearance: Opportunities for the investigation of agricultural sediment dynamics in the Eastern Piedmont (USA)

    USGS Publications Warehouse

    Bain, D.J.; Brush, G.S.

    2005-01-01

    Many flood plains in the Eastern Piedmont (USA) are buried under deposits of sediment resulting from European agricultural clearance. Classic radioisotopic dating techniques cover temporal periods too short (137Cs, 210Pb) or too long (14C) to reliably date sediments deposited during periods of local European activity (1660-1900). Moreover, many potential biomarkers, such as pollen, degrade in oxic flood plain sediments. In the Baltimore, Maryland (USA) region, early chromite mining (1820 - 1880) occurred during periods of rapid agricultural clearance. Use of chromium (Cr) chemostratigraphic profiles in flood plain sediments tied to historical mining activity can provide improved precision in overbank accumulation rates and timing. Sediment cores were collected from the Red Run basin, which is part of the Baltimore Ecosystem Study, an urban Long-Term Ecological Research site. Trace metal chemostratigraphic profiles were measured and peaks in Cr concentration tied to historic mining activity. Dates from Cr chemostratigraphic profiles were combined with 137Cs dating to reconstruct flood plain sedimentation rates. Red Run early sedimentation rates (1820 - 1880) were higher (0.45 - 1.19 cm/yr) than more recent (1880 - 1963) rates (0.08 - 0.46 cm/yr). This indicates that Piedmont flood plain vertical sediment accumulation might have peaked before the peak in agricultural clearance, earlier than assumed by regional models. The Cr chemostratigraphy is applicable to a wider region including much of the Maryland and Pennsylvania (USA) Piedmont.

  16. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics. PMID:26862886

  17. Eutrophication management in surface waters using lanthanum modified bentonite: A review.

    PubMed

    Copetti, Diego; Finsterle, Karin; Marziali, Laura; Stefani, Fabrizio; Tartari, Gianni; Douglas, Grant; Reitzel, Kasper; Spears, Bryan M; Winfield, Ian J; Crosa, Giuseppe; D'Haese, Patrick; Yasseri, Said; Lürling, Miquel

    2016-06-15

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in saline waters need a careful risk evaluation due to potential lanthanum release. PMID:26706125

  18. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  19. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. PMID:25303462

  20. Effects of verapamil, dantrolene and lanthanum on catecholamine release from rat adrenal medulla.

    PubMed Central

    Cohen, J; Gutman, Y

    1979-01-01

    1. The release of catecholamines (CA) from rat adrenal incubated in vivo in Locke solution was studied. 2. Acetylcholine-induced release of CA and CA release by 56 mM KCl were inhibited by verapamil and lanthanum chloride which block calcium permeability. 3. CA secretion induced by salbutamol or by theophylline was unaffected by either verapamil or lanthanum chloride. 4. Dantrolene-sodium inhibited the CA secretion induced by theophylline but only partially reduced potassium-induced release of CA. 5. Verapamil enhanced the secretion of CA induced by salbutamol (in a calcium-free medium). 6. Tyramine-induced secretion of CA was unaffected by lanthanum chloride, verapamil or dantrolene-sodium. 7. It is suggested that cyclic adenosine 3',5'-monophosphate-mediated CA secretion (induced by theophylline or salbutamol) depends on release of calcium from intracellular stores, and that CA secretion induced by tyramine is independent of intra- or extracellular calcium. PMID:435689

  1. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-05-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  2. Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Wang, Chaohui; Wang, You; Wang, Liang; Hao, Guangzhao; Sun, Xiaoguang; Shan, Fan; Zou, Zhiwei

    2014-10-01

    This work seeks to develop an innovative nanocomposite thermal barrier coating (TBC) exhibiting low thermal conductivity and high durability compared with that of current TBCs. To achieve this objective, nanosized lanthanum zirconate particles were selected for the topcoat of the TBC system, and a new process—suspension plasma spray—was employed to produce desirable microstructural features: the nanocomposite lanthanum zirconate TBC contains ultrafine splats and high volume porosity, for lower thermal conductivity, and better durability. The parameters of plasma spray experiment included two main variables: (i) spray distance varying from 40 to 80 mm and (ii) the concentration of suspension 20, 25, and 30 wt.%, respectively. The microstructure of obtained coatings was characterized with scanning electron microscope and x-ray diffraction. The porosity of coatings is in the range of 6-10%, and the single phase in the as-sprayed coatings was pyrochlore lanthanum zirconate.

  3. Lanthanum phosphate deposition in the gastric mucosa of patients with chronic renal failure.

    PubMed

    Iwamuro, Masaya; Kanzaki, Hiromitzu; Tanaka, Takehiro; Kawano, Seiji; Kawahara, Yoshiro; Okada, Hiroyuki

    2016-07-01

    A 77-year-old Japanese man underwent endoscopic submucosal dissection twice over a 5-year period for the treatment of two separate early gastric cancers. He had been taking lanthanum carbonate, an orally administered phosphate binder, for 3 years. Esophagogastroduodenoscopy revealed reddish mucosa in the greater curvature and anterior wall of the gastric angle, while granular, white deposits were also observed in some areas of this reddish mucosa. Additionally, biopsy specimens from the gastric mucosa revealed the deposition of fine, amorphous, eosinophilic material, which appeared bright on scanning electron microscopy. Energy dispersive X-ray spectroscopy revealed the presence of lanthanum and phosphate in these bright areas, and elemental mapping confirmed that their distribution was identical to that seen in the bright areas. Based on these findings, the diagnosis of lanthanum phosphate deposition in the gastric mucosa was determined. PMID:27383105

  4. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    SciTech Connect

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  5. The effect of sevelamer carbonate and lanthanum carbonate on the pharmacokinetics of oral calcitriol

    PubMed Central

    Pierce, David; Hossack, Stuart; Poole, Lynne; Robinson, Antoine; Van Heusen, Heather; Martin, Patrick; Smyth, Michael

    2011-01-01

    Background. Lanthanum carbonate and sevelamer carbonate are non-calcium-based phosphate binders used to manage hyperphosphataemia in patients with chronic kidney disease (CKD). Patients with CKD may require intravenous or oral active vitamin D. We investigated the effects of lanthanum carbonate and sevelamer carbonate on the bioavailability of oral calcitriol. Methods. This was a three-period, crossover study in healthy volunteers. Forty-one individuals were randomized to one of six possible sequences, each consisting of three treatment periods separated by washouts. The treatments were calcitriol (1 μg at lunch), calcitriol with lanthanum carbonate (3000 mg/day) and calcitriol with sevelamer carbonate (7200 mg/day). Serum calcitriol levels were assessed at baseline and throughout the study. Results. Co-administration of lanthanum carbonate with calcitriol had no significant effect on area under the curve over 48 h (AUC0–48) for serum exogenous calcitriol [least-squares (LS) mean, calcitriol with lanthanum carbonate vs calcitriol alone: 429 pg h/mL vs 318 pg h/mL, respectively; P = 0.171]. Similarly, there was no significant effect on maximum concentration (Cmax). In contrast, co-administration with sevelamer was associated with a significant reduction in bioavailability parameters for calcitriol (calcitriol with sevelamer carbonate vs calcitriol alone, LS mean AUC0–48: 137 pg h/mL vs 318 pg h/mL, respectively; P = 0.024; LS mean Cmax: 40.1 pg/mL vs 49.7 pg/mL, respectively; P < 0.001). Conclusions. Sevelamer carbonate significantly reduces serum concentrations of exogenous calcitriol when administered concomitantly with oral calcitriol, whereas lanthanum carbonate has no significant effect. This should be considered when treating CKD patients who require phosphate binders and oral vitamin D. PMID:20921291

  6. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  7. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.

  8. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Shaw, R. W.

    1995-08-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 103 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation-ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4D5/2 state of lanthanum at 30354 cm-1 . The general utility of this spectral approach is discussed.

  9. LaZnB(5)O(10), the first lanthanum zinc borate.

    PubMed

    Jiao, Zhi-Wei; Wang, Ru-Ji; Wang, Xiao-Qing; Shen, De-Zhong; Shen, Guang-Qiu

    2009-01-01

    Lanthanum zinc penta-borate, LaZnB(5)O(10), was synthesized by flux-supported solid-state reaction. It is a member of the LnMB(5)O(10) (Ln = rare earth ion and M = divalent metal ion) structure type. The crystal shows a three-dimensional structure constructed from two-dimensional {[B(5)O(10)](5-)}(n) layers with the lanthanum (coordination number nine) and zinc (coordination number six) ions filling in the inter-layers. PMID:21579905

  10. Titania-lanthanum phosphate photoactive and hydrophobic new generation catalyst

    NASA Astrophysics Data System (ADS)

    Jyothi, Chembolli K.; Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Sankar, Sasidharan; Smitha, V. S.; Warrier, K. G. K.

    2011-07-01

    Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO 2:LaPO 4 ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO 2 in TiO 2-LaPO 4 composite precursors was found to be stable even on annealing at 800 °C. The glass substrates, coated with TL1 (TiO 2-LaPO 4 composition with 1 mol% LaPO 4) and TL50 (composite precursor containing TiO 2 and LaPO 4 with molar ratio 1:1) sols and annealed at 400 °C, produced contact angles of 74° and 92°, respectively, though it is only 62° for pure TiO 2 coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 °C, has shown the highest UV photoactivity with an apparent rate constant, kapp=24×10 -3 min -1, which is over five times higher than that observed with standard Hombikat UV 100 ( kapp=4×10 -3 min -1). The photoactivity combined with a moderate contact angle (85.3°) shows that this material has a promise as an efficient self-cleaning precursor.

  11. A new large area lanthanum hexaboride plasma source

    SciTech Connect

    Cooper, C. M.; Gekelman, W.; Pribyl, P.; Lucky, Z.

    2010-08-15

    A new 18x18 cm{sup 2} active area lanthanum hexaboride (LaB{sub 6}) plasma source for use in a dc discharge has been developed at UCLA. The cathode consists of four tiled LaB{sub 6} pieces indirectly heated to electron emission (1750 deg. C) by a graphite heater. A molybdenum mesh anode 33 cm in front of the LaB{sub 6} accelerates the electrons, ionizing a fill gas to create a 20x20 cm{sup 2} nearly square plasma. The source is run in pulsed operation with the anode biased up to +400 V dc with respect to the cathode for up to 100 ms at a 1 Hz repetition rate. Both the cathode and anode ''float'' electrically with respect to the chamber walls. The source is placed in a toroidal chamber 2 m wide and 3 m tall with a major radius of 5 m. Toroidal and vertical magnetic fields confine the current-free plasma which follows the field in a helix. The plasma starts on the bottom of the machine and spirals around it up to four times (120 m) and can be configured to terminate either on the top wall or on the neutral gas itself. The source typically operates with a discharge current up to 250 A in helium making plasmas with T{sub e}<30 eV, T{sub i}<16 eV, and n{sub e}<3x10{sup 13} cm{sup -3} in a background field of 100 G

  12. Back bombardment for dispenser and lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Bakr, Mahmoud; Kinjo, R.; Choi, Y. W.; Omer, M.; Yoshida, K.; Ueda, S.; Takasaki, M.; Ishida, K.; Kimura, N.; Sonobe, T.; Kii, T.; Masuda, K.; Ohgaki, H.; Zen, H.

    2011-06-01

    The back bombardment (BB) effect limits wide usage of thermionic rf guns. The BB effect induces not only ramping-up of a cathode’s temperature and beam current, but also degradation of cavity voltage and beam energy during a macropulse. This paper presents a comparison of the BB effect for the case of dispenser tungsten-base (DC) and lanthanum hexaboride (LaB6) thermionic rf gun cathodes. For each, particle simulation codes are used to simulate the BB effect and electron beam dynamics in a thermionic rf gun cathode. A semiempirical equation is also used to investigate the stopping range and deposited heat power of BB electrons in the cathode material. A numerical simulation method is used to calculate the change of the cathode temperature and current density during a single macropulse. This is done by solving two differential equations for the rf gun cavity equivalent circuit and one-dimensional thermal diffusion equation. High electron emission and small beam size are required for generation of a high-brightness electron beam, and so in this work the emission properties of the cathode are taken into account. Simulations of the BB effect show that, for a pulse of 6μs duration, the DC cathode experiences a large change in the temperature compared with LaB6, and a change in current density 6 times higher. Validation of the simulation results is performed using experimental data for beam current beyond the gun exit. The experimental data is well reproduced using the simulation method.

  13. A Russian record of a Middle Ordovician meteorite shower: Extraterrestrial chromite at Lynna River, St. Petersburg region

    NASA Astrophysics Data System (ADS)

    Lindskog, Anders; Schmitz, Birger; Cronholm, Anders; Dronov, Andrei

    2012-08-01

    Numerous fossil meteorites and high concentrations of sediment-dispersed extraterrestrial chromite (EC) grains with ordinary chondritic composition have previously been documented from 467 ± 1.6 Ma Middle Ordovician (Darriwilian) strata. These finds probably reflect a temporarily enhanced influx of L-chondritic matter, following the disruption of the L-chondrite parent body in the asteroid belt 470 ± 6 Ma. In this study, a Volkhovian-Kundan limestone/marl succession at Lynna River, northwestern Russia, has been searched for EC grains (>63 μm). Eight samples, forming two separate sample sets, were collected. Five samples from strata around the Asaphus expansus-A. raniceps trilobite Zone boundary, in the lower-middle Kundan, yielded a total of 496 EC grains in 65.5 kg of rock (average 7.6 EC grains kg-1, but up to 10.2 grains kg-1). These are extremely high concentrations, three orders of magnitude higher than "background" levels in similar condensed sediment from other periods. EC grains are typically about 50 times more abundant than terrestrial chrome spinel in the samples and about as common as terrestrial ilmenite. Three stratigraphically lower lying samples, close to the A. lepidurus-A. expansus trilobite Zone boundary, at the Volkhov-Kunda boundary, yielded only two EC grains in 38.2 kg of rock (0.05 grains kg-1). The lack of commonly occurring EC grains in the lower interval probably reflects that these strata formed before the disruption of the L-chondrite parent body. The great similarity in EC chemical composition between this and other comparable studies indicates that all or most EC grains in these Russian mid-Ordovician strata share a common source--the L-chondrite parent body.

  14. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. PMID:21543156

  15. Urinary excretion of chromium following ingestion of chromite-ore processing residues in humans: implications for biomonitoring.

    PubMed

    Gargas, M L; Norton, R L; Harris, M A; Paustenbach, D J; Finley, B L

    1994-12-01

    Biomonitoring programs for urinary chromium (Cr) typically attempt to evaluate occupational exposure via the inhalation route. This study investigated whether Cr can be detected in the urine of people following the ingestion of soils that contain relatively high concentrations of chromium in chromite ore processing residue (COPR). To evaluate the reasonableness of using urinary monitoring to assess environmental exposure, six volunteers ingested 400 mg of soil/day (low-dose group), two others ingested 2.0 g of soil/day (high-dose group) for 3 consecutive days, and one person ingested a placebo on each of 3 days. The soil and COPR mixture contained concentrations of total chromium (Cr) and hexavalent chromium [Cr(VI)] of 103 +/- 20 and 9.3 +/- 3.8 mg/kg, respectively. Therefore, the low-dose group ingested 41 micrograms Cr/day [including 3.7 micrograms Cr(VI)] and the high-dose group ingested 206 micrograms Cr/day [including 18.6 micrograms Cr(VI)] on each of 3 consecutive days. All urine samples were collected and analyzed individually for total Cr on the day prior to dosing, during the 3 days of dosing, and up to the first void 48 h after the last dose. No significant increases in urinary Cr excretion were found when background excretion data were compared with data following each of the 3 days of dosing or in daily mean urine concentrations of the high- vs the low-dose groups. It appears that Cr present in a soil and COPR mixture at Cr doses up to 200 micrograms/day is not sufficiently bioavailable for biomonitoring of urine to be informative.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7846309

  16. Bio-concentration of chromium--an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India.

    PubMed

    Mohanty, Monalisa; Pattnaik, Mausumi M; Mishra, Aruna K; Patra, Hemanta K

    2012-01-01

    Mine waste water at South Kaliapani usually contains toxic levels of hexavalent Cr(VI). The present in situ study was conducted at South Kaliapani chromite mine area in Orissa state, India, to assess the phytoremediation ability of three plants, namely, rice (Oryza sativa L.), paragrass (Brachiaria mutica), and an aquatic weed (Eichhornia crassipes), in attenuating Cr(VI) from mine waste water and to correlate the bio-concentration factors (BCF) of Cr. Water hyacinth (E. crassipes) showed 24% to 54% reduction whereas paragrass (B. mutica) was able to reduce 18% to 33% of Cr(VI) from mine water. This reduction was studied over a period of 100 days of plant growth. The reduction was observed through a passage of a sum total of 2,000 sq. ft. cultivated plots and ponds separately. Reduction in Cr(VI) content in mine water varies with plant age as well as with the distance of passage. Cr accumulation and BCF values increased with high soil Cr levels as well as the age of plants. High BCF and transportation index (Ti) values, i.e., 10,924 and 32.09, respectively, were noted for water hyacinth. The Ti values indicated that the root-to-shoot translocation of Cr was very high after 100 days of growth. The total accumulation rate was maximum (8.29 mg Cr kg dry biomass(-1) day (-1)) in paragrass. The BCF values for roots were noted to be higher than those of leaves, stems, and grains of the 125-day-old plants. Hence, paragrass and water hyacinth may be used as tools of phytoremediation to combat the problem of in situ Cr contamination. PMID:21487717

  17. Reconstruction of Overbank Sedimentation Rates with Chromite Mining Waste in Small, Urbanizing Eastern Piedmont Watersheds (Baltimore, MD, USA)

    NASA Astrophysics Data System (ADS)

    Bain, D. J.; Brush, G. S.

    2003-12-01

    Basin scale sediment dynamics continue to elude generalization, especially in areas where the agricultural transition preceded the advent of conventional data sources such as the decennial census and aerial photography. Studies of sediment accumulation in overbank areas are similarly impeded by the short temporal coverage of radio-isotopes (e.g., 137Cs ˜40 years and 210Pb ˜100 years) and the tendency of biomarkers to degrade in unsaturated overbank sediments. European settlement and associated land use transitions began ˜1730 in the Red Run basin, a small (2000 ha) drainage in western Baltimore County. Early chromite mining activity (1820-1880) introduced Cr contaminated sediments to the fluvial system during a rapid transition to agricultural land use (the peak of local agricultural activity is commonly estimated to be ˜1900). Sedimentation rates were reconstructed for a series of overbank cores using 137Cs techniques and Cr concentration stratigraphy dated with corresponding changes in mining activity. Sedimentation rates during 1820-1880 are 4-8x pre-1820 rates, 1-4x 1880-1963 rates and 2-8x post 1963 rates. These rates are compared with regional land use change/basin sediment dynamics models. Sediment accumulation in Red Run began earlier than regional models suggest and periods of peak sedimentation occurred before peak regional agricultural activity. These results indicate that floodplain sedimentation in Eastern Piedmont basins may have occurred much earlier than expected, leaving a legacy of buried sediments that continues to influence fluvial systems, especially as these areas undergo urbanization.

  18. Spacecraft charging control by thermal, field emission with lanthanum-hexaboride emitters

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermal, field emitters of lanthanum (or perhaps cerium) hexaboride (LaB6) with temperature variability up to about 1500K are suggested for spacecraft charging control. Such emitters operate at much lower voltages with considerably more control and add plasma-diagnostic versatility. These gains should outweigh the additional complexity of providing heat for the LaB6 thermal, field emitter.

  19. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). PMID:26070190

  20. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  1. Comparative evaluation of the in vitro efficacy of lanthanum carbonate chewable tablets.

    PubMed

    Yang, Yongsheng; Bykadi, Srikant; Carlin, Alan S; Shah, Rakhi B; Yu, Lawrence X; Khan, Mansoor A

    2013-04-01

    The aims of this study were to systematically evaluate the effects of pH levels, phosphate concentrations, and tablet integrity on the phosphate binding profiles of lanthanum carbonate chewable tablets, and to compare the in vitro phosphate binding efficacy of one reference and two test products of lanthanum carbonate chewable tablets. Langmuir equation was utilized to calculate the binding constants k1 and k2 . The phosphate binding to the tablets of lanthanum carbonate product was pH dependent, with a faster binding rate at low pH. The crushed tablets bind phosphate more rapid. Compared with the whole tablets, the kinetic binding profiles from the crushed tablets were less variable under all conditions for both test and reference products. The phosphate level has a significant impact on the phosphate binding for both whole and crushed tablets under all pH conditions, with more binding at higher phosphate concentration. The phosphate binding profiles displayed significant difference among the products. For a crushed tablet, the phosphate binding to lanthanum reached equilibrium within 8 h under all conditions. The 90% confidence interval for the k2 ratio (test/reference) was well within the 80%-125% under all pH conditions. However, the k1 ratio varies from 54% to 144%. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1370-1381, 2013. PMID:23334989

  2. First-principles study of the solid solution of hydrogen in lanthanum

    SciTech Connect

    Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter; Vajda, Peter; Yvon, Klaus

    2011-09-01

    Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linear arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.

  3. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden.

    PubMed

    Dey, Satarupa; Paul, A K

    2016-08-01

    Arthrobacter sp. SUK 1201, a chromate resistant and reducing bacterium isolated from chromite mine overburden of Sukinda valley, Odisha, India has been evaluated for its hexavalent chromium [Cr(VI)] reduction potential using cell-free culture filtrate as extracellular chromate reductase enzyme. Production of the enzyme was enhanced in presence of Cr(VI) and its reducing efficiency was increased with increasing concentration of Cr(VI). The Michaelis-Menten constant (Km) and the maximum specific velocity (Vmax) of the extracellular Cr(VI) reductase were calculated to be 54.03 μM Cr(VI) and 5.803 U mg(-1) of protein respectively showing high affinity towards Cr(VI). The reducing activity of the enzyme was maximum at pH 6.5-7.5 and at a temperature of 35 °C and was dependent on NADH. The enzyme was tolerant to different metals such as Mn(II), Mg(II) and Fe(III) and was able to reduce Cr(VI) present in chromite mine seepage. These findings suggest that the extracellular chromate reductase of Arthrobacter sp. SUK 1201 has a great promise for use in Cr(VI) detoxification under different environmental conditions, particularly in the mining waste water treatment systems. PMID:27176938

  4. Differentiation of Neotethyan ophiolitic mélange and an approach revealing its surficial chromite deposits using ASTER image and spectral measurements (Sivas, Turkey)

    NASA Astrophysics Data System (ADS)

    Kavak, Kaan Şevki; Töre, Yavuz; Temiz, Haluk; Parlak, Osman; Çığla, Hande; Yakan, Mustafa

    2010-10-01

    This work is aimed at differentiation of ophiolitic mélange rocks which were outcropped 60 km far from Sivas city center using image processing and spectral measurement methods. These rocks are known as oceanic crust remnants which were made up of different rocks. Turkey hosts several paleo-oceans and their realms in Alpine-Himalayan orogenic belt. The Neotethyan ophiolites in Turkey are characterized by supra subduction zone (SSZ-type) ophiolites. Ophiolitic rocks are generally coloured with greenish tones and human eye could not separate these tone differences. But satellite images such as ASTER can realize these separation utilizing spectral enhancement methods such as classification and decorrelation stretching. Chromite is a valuable mineral and is formed in only ophiolitic rocks. Dunites and harzburgites named as also ultramafic tectonits of ophiolitic serie mainly contain these deposits in study area. In this study, an approach was also realized to find target regions of chromite deposits with the aid of spectral methods. Spectral measurements were realized to determine boundaries between different mélange rocks using spectroradiometer. Reflectance curves collected from field and laboratory analysis were evaluated together and compared with ASTER image of the study area respectively. A detailed differentiation generally was accompanied with petrographic and geochemical analyses.

  5. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment.

    PubMed

    Kumar, Adarsh; Maiti, Subodh Kumar

    2015-01-01

    The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments. PMID:25495934

  6. Beam-hardening artifacts on computed tomography images caused by lanthanum carbonate hydrate in a patient on dialysis.

    PubMed

    Hayashi, Hiromitsu; Machida, Minoru; Sekine, Tetsuro; Yamaguchi, Hidenori; Kiriyama, Tomonari; Kumita, Shin-Ichiro

    2010-05-01

    Lanthanum carbonate hydrate is a nonaluminum, noncalcium phosphate binder containing lanthanum (La). It is effective in decreasing the serum phosphate level in patients on dialysis. Because the atomic number of the La contained in lanthanum carbonate hydrate is relatively high, at 57, this agent may cause strong artifacts on computed tomography (CT) images, which may be mistakenly interpreted as foreign bodies. We recently performed CT examination of a patient on Fosrenol chewable tablets (i.e., lanthanum carbonate hydrate). The CT images were difficult to evaluate because of strong beam hardening artifacts, and differentiation from foreign body aspiration was required. We report here our experience and a discussion of the characteristics of this artifact. PMID:20512553

  7. Structural phase transitions and superconductivity in lanthanum copper oxides

    SciTech Connect

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-12-31

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La{sub 2}CuO{sub 4}. This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper.

  8. Origins of chromite and magnetite in sedimentary rocks deposited in a shallow water environment in the 3.2 Ga Moodies Group, South Africa

    NASA Astrophysics Data System (ADS)

    Otake, T.; Sakamoto, Y.; Itoh, S.; Yurimoto, H.; Kakegawa, T.

    2012-12-01

    *Otake, T. totake@eng.hokudai.ac.jp Div. of Sustainable Resources Engineering, Hokkaido Univ., Sapporo, Japan Sakamoto, Y. yu.sakamoto12@gmail.com Dep. of Earth Science, Tohoku Univ., Sendai, Japan Itoh, S. sitoh@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Yurimoto. H. yuri@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Kakegawa, T. kakegawa@m.tohoku.ac.jp Dep. of Earth Science, Tohoku Univ., Sendai, Japan Geochemical data from ferruginous chemical sedimentary rocks (e.g., Banded Iron Formation: BIF) have been used to reconstruct the surface environments of early Earth. However, only a few studies have investigated the geochemical characteristics of BIFs deposited in a shallow water environment during the Archean, which may have differed from those deposited in a deep water environment. Therefore, we investigated geological, petrographic and geochemical characteristics of ferruginous rocks deposited in a shallow water environment in the Moodies group, in the Barberton Greenstone Belt, South Africa. We obtained ferruginous rock samples in the Moodies group from both an outcrop and underground gold mine, and compared the characteristics of these samples. The 70 sedimentary rock samples were divided into groups based on the dominant Fe minerals they contain: Hematite-rich jaspilite (HM group), Magnetite-rich iron formation/shale/sandstone (MT group), and Siderite-rich sandstone (SD group). Samples in the HM group are predominantly composed of fine-grained quartz (< 20 μm) and hematite (< 5 μm), which are interpreted to be chemical precipitates. Samples in the MT group contain quartz, magnetite, siderite, ankerite, chlorite, biotite and chromite. The grain size of magnetite is much larger (20-150 μm) than that of hematite in the HM group. The magnetite is interpreted as a secondary mineral transformed from hematite during early diagenesis. Results of in situ oxygen isotope analysis by

  9. Facile preparation of apatite-type lanthanum silicate by a new water-based sol–gel process

    SciTech Connect

    Yamagata, Chieko; Elias, Daniel R.; Paiva, Mayara R.S.; Misso, Agatha M.; Castanho, Sonia R.H. Mello

    2013-06-01

    Highlights: ► We use a Na{sub 2}SiO{sub 3} waste solution as source of Si. ► We present a simple, rapid and low temperature method of lanthanum silicate apatite preparation. ► TEOS, a high cost reagent, was successfully substituted by a cheap price Na{sub 2}SiO{sub 3}, to obtain pure La{sub 9.56}(SiO{sub 4})6O{sub 2.33} lanthanum silicate apatite. - Abstract: In recent years, apatite-type lanthanum silicates ([Ln{sub 10−x}(XO{sub 4})6O{sub 3–1.5x}] (X = Si or Ge)) have been studied for use in SOFC (solid oxide fuel cells), at low temperature (600–800 °C), due to its ionic conductivity which is higher than that of YSZ (Yttrium Stabilized Zirconia) electrolyte. For this reason they are very promising materials as solid electrolyte for SOFCs. Synthesis of functional nanoparticles is a challenge in the nanotechnology. In this work, apatite-type lanthanum silicate nanoparticles were synthesized by a water-based sol–gel process, i.e., sol–gel technique followed by chemical precipitation of lanthanum hydroxide on the gel of the silica. Na{sub 2}SiO{sub 3} waste solution was used as silica source. Spherical aerogel silica was prepared by acid catalyzed reaction, followed by precipitation of lanthanum hydroxide to obtain the precursor of apatite-type lanthanum silicate. Powders of apatite-type lanthanum silicate achieved from the precursor were characterized by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area measurements (BET). The apatite phase was formed at 900 °C.

  10. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    SciTech Connect

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy; Elam, Jeffrey W.; Dumesic, James A; Marshall, Christopher L.

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and the Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.

  11. Highly stable, mesoporous mixed lanthanum-cerium oxides with tailored structure and reducibility

    SciTech Connect

    Liang, Shuang; Broitman, Esteban; Wang, Yanan; Cao, Anmin; Veser, Goetz

    2011-05-01

    Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.

  12. Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C.

    PubMed

    Seri, Kei-ichi; Sakaki, Tsuyoshi; Shibata, Masao; Inoue, Yoshihisa; Ishida, Hitoshi

    2002-02-01

    Lanthanum(III) chloride was found to effectively catalyze the degradation of cellulose in water at 250 degrees C. The degradation conversion of cellulose in the presence of a catalytic amount of lanthanum chloride reached 80.3% after 180 s, which corresponded to the turnover number of 83, whereas the reaction did scarcely proceed in the absence of the catalyst. The degradation products were separately quantified as water-soluble (WS), methanol-soluble (MS), methanol-insoluble (MI), and gaseous (G) products. The HPLC and GC analyses revealed that the WS materials are mainly composed of 5-hydroxymethyl-2-furaldehyde (HMF), D-glucose, and levulinic acid. Cellobiose, the disaccharide component of cellulose, was scarcely detected during the reaction. PMID:11800491

  13. Plasma Spray Deposition of Lanthanum Phosphate and Phase Structure of the Resultant Coatings

    NASA Astrophysics Data System (ADS)

    Pragatheeswaran, A.; Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Bhandari, Subhankar; Ramachandran, K.

    2015-12-01

    Plasma-sprayed lanthanum phosphate coatings were prepared on stainless steel substrates at different input powers from 16 to 24 kW. Coatings were characterized by x-ray diffraction, scanning electron microscopy, and Fourier transformed infrared spectroscopy. Results showed that the as-sprayed coatings consist of lanthanum ortho (LaPO4), poly(La2P4O13), and oxy(La3PO7) phosphates. Subsequent heat treatment of the coatings resulted in the recombination of the La-polyphosphate and La-oxyphosphate to form LaPO4. SEM images of microstructure of the coatings and coating-substrate interface showed micro-cracks, voids, and porosity that were found to decrease with deposition power.

  14. Infrared multiple-photon dissociation spectroscopy of tripositive ions: lanthanum-tryptophan complexes.

    PubMed

    Verkerk, Udo H; Zhao, Junfang; Saminathan, Irine S; Lau, Justin Kai-Chi; Oomens, Jos; Hopkinson, Alan C; Siu, K W Michael

    2012-04-16

    Collision-induced charge disproportionation limits the stability of triply charged metal ion complexes and has thus far prevented successful acquisition of their gas-phase IR spectra. This has curtailed our understanding of the structures of triply charged metal complexes in the gas phase and in biological environments. Herein we report the first gas-phase IR spectra of triply charged La(III) complexes with a derivative of tryptophan (N-acetyl tryptophan methyl ester), and an unusual dissociation product, a lanthanum amidate. These spectra are compared with those predicted using density functional theory. The best structures are those of the lowest energies that differ by details in the π-interaction between La(3+) and the indole rings. Other binding sites on the tryptophan derivative are the carbonyl oxygens. In the lanthanum amidate, La(3+) replaces an H(+) in the amide bond of the tryptophan derivative. PMID:22455512

  15. Lanthanum(III) and praseodymium(III) derivatives with dithiocarbamates derived from α-amino acids

    NASA Astrophysics Data System (ADS)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2006-06-01

    Lanthanum(III) and praseodymium(III) complexes with dithiocarbamates have been synthesized by the reactions of lanthanum(III) and praseodymium(III) chloride with barium dithiocarbamate and complexes of type [LnCl(L)H 2O] n have been obtained (where Ln = La(III) or Pr(III); L = barium salt of dithiocarbamate derived from glycine, L-leucine, L-valine, DL-alanine). The complexes have been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H NMR spectral studies. The presence of coordinated water molecule is inferred from thermogravimetric analysis which indicates the loss of one water molecule at 150-170 °C. The oscillator strength, Judd-Ofelt intensity parameter, stimulated emission cross-section, etc. have been obtained for different transitions of Pr 3+.

  16. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    SciTech Connect

    Sethulakshmi, N.; Anantharaman, M. R.; Al-Omari, I. A.; Suresh, K. G.

    2014-03-03

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300 K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J·kg{sup −1}·K{sup −1} was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300 K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300 K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62 K at 280 K.

  17. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum-hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium-diode performance should result from the lower collector temperatures allowed for earth and low-power-space duties. Decreased temperatures will lessen thermal-transport losses that attend thermionic-conversion mechanisms. Such advantages will add to those from collector-Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes appear feasible.

  18. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  19. Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, Paul; Foster, Michael E.; Wong, Bryan M.; Doty, F. Patrick; Shah, Kanai; Squillante, Michael R.; Shirwadkar, Urmila; Hawrami, Rastgo; Tower, Josh; Yuan, Ding

    2014-01-01

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  20. Thermopower of lanthanum monochalcogenides subjected to uniform compression up to 22 GPa

    NASA Astrophysics Data System (ADS)

    Stepanov, N. N.; Morozova, N. V.; Kar'kin, A. E.; Korobeinikov, I. V.; Golubkov, A. V.; Kaminskii, V. V.

    2015-03-01

    It is shown that lanthanum monochalcogenides (LaS, LaSe, LaTe), in which metal ions are trivalent at least up to 22 GPa, may be used as reference materials in finding the stability domains of a variable-valence state in rare-earth elements in different compounds studied under pressure. The thermopower of these materials throughout the pressure interval studied varies between 1 and 4 μV/K.

  1. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    SciTech Connect

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-07-15

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y{sub 2}O{sub 3} nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO{sub 4} and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO{sub 4}–20%Y{sub 2}O{sub 3}), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO{sub 4} in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  2. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Seager, C.H.; Land, C.E.

    1984-08-15

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  3. Chromium and copper substituted lanthanum nano-ferrites: Their synthesis, characterization and application studies

    NASA Astrophysics Data System (ADS)

    Jauhar, Sheenu; Singhal, Sonal

    2014-10-01

    Nano-crystalline lanthanum ferrites substituted by chromium and copper having formula LaMxFe1-xO3 (M = Cr, Cu; 0.0 ⩽ x ⩽ 0.5) were synthesized using sol-gel auto-combustion method. The formation of ferrite particles was confirmed using Fourier Transform Infra-Red (FT-IR) spectra and powder X-ray Diffraction (XRD) techniques. The entire ferrite compositions were found to be pure phased with same symmetry as LaFeO3. The average crystallite size was calculated to be ∼60 nm. The ferrite compositions were observed to behave as semi-conductors, as their resistivity decreased with increasing temperature. These ferrite compositions were employed as catalysts in the decomposition of hydrogen peroxide solution (0.17 M). Pure LaFeO3 was found to have a very low catalytic activity towards the decomposition of hydrogen peroxide solution, while presence of copper in the lanthanum ferrite lattice was found to significantly enhance its catalytic activity. The rate constant in case of reactions catalysed by LaCu0.5Fe0.5O3 was nearly 25 times larger than that obtained from reactions catalysed by pure LaFeO3. However, chromium substitution was not found to influence the catalytic activity of lanthanum ferrites as chromium substituted lanthanum ferrites exhibited very low catalytic activity. This was explained on the basis of relative stability of oxidation states of the substituent ions and the presence of defects in the crystal lattice.

  4. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  5. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates.

    PubMed

    Lou, Weiwei; Dong, Yiwen; Zhang, Hualin; Jin, Yifan; Hu, Xiaohui; Ma, Jianfeng; Liu, Jinsong; Wu, Gang

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH=5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants. PMID:26404255

  6. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOEpatents

    Karp, Joel S.; Surti, Suleman

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  7. Impact of lanthanum carbonate on cortical bone in dialysis patients with adynamic bone disease.

    PubMed

    Yajima, Aiji; Inaba, Masaaki; Tominaga, Yoshihiro; Tanaka, Motoko; Otsubo, Shigeru; Nitta, Kosaku; Ito, Akemi; Satoh, Shigeru

    2013-04-01

    Among the most serious problems in patients with chronic kidney disease (CKD) is fragility of cortical bone caused by cortical thinning and increased cortical porosity; the cortical fragility is sometimes irreversible, with fractures generally initiating from cortical bone. Therefore, development of treatments for problems of cortical bone is urgently desired. Cortical bone has the three surfaces, including the periosteal surface, intracortical spaces and endocortical surface. Bone turnover at the endocortical surface and intracortical resorption spaces are increased as compared with that at cancellous surface. Bone growth sometimes depends on apposition at the periosteal surface. We treated hyperphosphatemia in two hemodialysis patients with adynamic bone disease with 750-1500 mg/day of lanthanum carbonate, which is a non-calcium containing phosphate binder; the treatment resulted in a decrease of the serum phosphorus levels (P levels), without significant change of the serum intact parathyroid hormone levels. We now report that treatment of these patients with lanthanum carbonate increased mineralization of the periosteal surface, increased bone mass within the intracortical resorption spaces and increased mineralization of the minimodeling surface at the endocortical surface. In addition, woven bone volume in cortical bone was decreased and mineralization of bone units, namely, osteons, was increased. Although these findings were not observed across all surfaces of the cortical bone in the patients, it is expected that lanthanum carbonate would increase the cortical stability in CKD patients, with consequent reduction in the fracture rate in these patients. PMID:23586512

  8. Lanthanum Carbonate Reduces Urine Phosphorus Excretion: Evidence of High-Capacity Phosphate Binding

    PubMed Central

    Pennick, Michael; Poole, Lynne; Dennis, Kerry; Smyth, Michael

    2012-01-01

    The effectiveness of phosphate binders can be assessed by evaluating urinary phosphorus excretion in healthy volunteers, which indicates the ability of the phosphate binder to reduce gastrointestinal phosphate absorption. Healthy volunteers were enrolled into one of five separate randomized trials; four were open label and one double blind. Following a screening period of <28 days, participants received differing tablets containing lanthanum carbonate [LC, 3000 mg/day of elemental lanthanum (in one study other doses were also used)]. Participants received a standardized phosphate diet and remained in the relevant study center throughout the duration of each treatment period. The end point in all studies was the reduction in urinary phosphorus excretion. Reductions in mean 24-h urinary phosphorus excretion in volunteers receiving a lanthanum dose of 3000 mg/day were between 236 and 468 mg/day over the five separate studies. These data in healthy volunteers can be used to estimate the amount of reduction of dietary phosphate absorption by LC. The reduction in 24-h urinary phosphorus excretion per tablet was compared with published data on other phosphate binders. Although there are limitations, evidence suggests that LC is a very effective phosphate binder in terms of binding per tablet. PMID:22250993

  9. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride

    PubMed Central

    2013-01-01

    Background We report the synthesis of benzimidazoles using lanthanum chloride as an efficient catalyst. One-pot synthesis of 2-substituted benzimidazole derivatives from o-phenylenediamine and a variety of aldehydes were developed under mild reaction conditions. Results We have examined the effect of different solvents using the same reaction conditions. The yield of the product varied with the nature of the solvents, and better conversion and easy isolation of products were found with acetonitrile. In a similar manner, the reaction with o-phenylenediamine and 3,4,5-trimethoxybenzaldehyde was carried out without any solvents. The observation shows that the reaction was not brought into completion, even after starting for a period of 9 h, and the reaction mixture showed a number of spots in thin-layer chromatography. Conclusions In conclusion, lanthanum chloride has been employed as a novel and efficient catalyst for the synthesis of benzimidazoles in good yields from o-phenylenediamine and a wide variety of aldehydes. All of the reactions were carried out in the presence of lanthanum chloride (10 mol%) in acetonitrile at room temperature. PMID:23919542

  10. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates

    PubMed Central

    Lou, Weiwei; Dong, Yiwen; Zhang, Hualin; Jin, Yifan; Hu, Xiaohui; Ma, Jianfeng; Liu, Jinsong; Wu, Gang

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH = 5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants. PMID:26404255

  11. Single crystal growth and characterization of lanthanum-neodymium oxalate octahydrate

    NASA Astrophysics Data System (ADS)

    Want, Basharat

    2011-11-01

    Single crystals of mixed lanthanum-neodymium oxalates are grown by gel diffusion method using agar gel as a medium of growth. The crystals grow in the agar gel with hexagonal morphology having (001), (110) and (010) as habit faces. Single crystal X-ray diffraction results show that the crystals belong to monoclinic system with cell parameters; a=10.344(2) Å, b=9.643(6) Å, c=11.721(2) Å, β=118.7 (2)° , bearing the space group P2/c. Fourier transform infrared spectrum of the crystals indicates the presence of water and other functional groups associated with the oxalate ions. Thermogravimetric and differential thermal analysis support the presence of 8H 2O molecules attached to the lanthanum-neodymium crystal lattice. The thermal decomposition in the nitrogen atmosphere leads to the formation of mixed lanthanum-neodymium oxide as the final product. Energy dispersive analysis of X-rays along with elemental analysis suggests the stoichiometry of the gel grown crystals to be La 1.5Nd 0.5(C 2O 4) 3·8H 2O.

  12. Controlling the reaction between boron-containing sealing glass and a lanthanum-containing cathode by adding Nb2O5

    NASA Astrophysics Data System (ADS)

    Zhao, Dandan; Fang, Lihua; Tang, Dian; Zhang, Teng

    2016-09-01

    In solid oxide fuel cell (SOFC) stacks, the volatile boron species present in the sealing glass often react with the lanthanum-containing cathode, degrading the activity of the cathode (this phenomenon is known as boron poisoning). In this work, we report that this detrimental reaction can be effectively reduced by doping bismuth-containing borosilicate sealing glass-ceramic with a niobium dopant. The addition of Nb2O5 not only condenses the [SiO4] structural units in the glass network, but also promotes the conversion of [BO3] to [BO4]. Moreover, the Nb2O5 dopant enhances the formation of boron-containing phases (Ca3B2O6 and CaB2Si2O8), which significantly reduces the volatility of boron compounds in the sealing glass, suppressing the formation of LaBO3 in the reaction couple between the glass and the cathode. The reported results provide a new approach to solve the problem of boron poisoning.

  13. Development and validation of an ion chromatography method for the determination of phosphate-binding of lanthanum carbonate.

    PubMed

    Samy, Raghu; Faustino, Patrick J; Adams, Wallace; Yu, Lawrence; Khan, Mansoor A; Yang, Yongsheng

    2010-04-01

    Lanthanum carbonate is indicated to reduce serum phosphate in patients with end stage renal disease (ESRD). When given orally, lanthanum carbonate dissociates in the acid environment of the upper gastrointestinal tract to release lanthanum ions. The free lanthanum ions bind with dietary phosphate released from food during digestion to form highly insoluble lanthanum-phosphate complexes which prevent the absorption of phosphate, consequently reduce the serum phosphate. In order to evaluate the in vitro binding capacity of lanthanum carbonate, a simple and efficient ion chromatography (IC) method was developed and validated for determination of phosphate across the pH range encountered in the gastrointestinal tract. Chromatographic separation was achieved on a Dionex ICS-2000 IC system using a Dionex AS16, IonPac (4mmx250mm) analytical column and Dionex AG16, IonPac (4mmx50mm) guard column. Column temperature was maintained at 30 degrees C. Injection volume was 10microL. The compounds were eluted isocratically at a flow rate of 1mL/min and detected by suppressed conductivity. The analytical method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, quantification limit, linearity, and stability. The intra-day accuracy ranged from 89% to 103% for the solutions of pH 1.2-6.8. The intra-day precision (RSD) ranged from 0.6% to 3.7% for the solutions of pH 1.2-6.8. The analytical range was linear from 2 to 200ppm (mg/L). The R(2) ranged from 0.9998 to 1.0. This method was found to be simple, robust, sensitive, specific, and accurate. It has been successfully applied for determination of phosphate binding to lanthanum carbonate over the human gastrointestinal pH range at different time-points (from 0.5 to 24h). PMID:20031362

  14. Diode pumped neodymium doped ASL (Sr1-xLax-yNdyMgxAl12-xO19) laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Loiseau, Pascal; Aka, Gérard

    2013-07-01

    Blue laser based on Neodymium doped strontium lanthanum magnesium aluminoxide (Sr1-xLax-yNdyMgxAl12-xO19) single crystal were constructed by second harmonic generation. Output power of 1.72 W at 900nm was obtained under 792nm laser diode pump. Intra cavity second harmonic generation were performed with non linear crystal LBO leading to output power of 76.6 mW at 450nm with absorbed power of 13.7 W and average absorption efficiency of 61% in Nd:ASL crystal.

  15. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  16. DETERMINATION OF LEAD AND CADMIUM IN FISH AND CLAM TISSUE BY ATOMIC ABSORPTION SPECTROMETRY WITH A MOLYBDENUM AND LANTHANUM TREATED PYROLYTIC GRAPHITE ATOMIZER

    EPA Science Inventory

    A molybdenum and lanthanum treated pyrolytically coated graphite tube is employed for the furnace atomic absorption spectrometric determination of lead and cadmium directly in nitric-perchloric acid tissue digests. Lanthanum tends to promote the formation of a smooth lead atomiza...

  17. Studies on Synthesis, Structural and Electrical Properties of Complex Oxide Thin Films: Barium Strontium Titanate and Lanthanum Strontium Nickelate

    NASA Astrophysics Data System (ADS)

    Podpirka, Adrian A.

    High performance miniaturized passives are of great importance for advanced nanoelectronic packages for several applications including efficient power delivery. Low cost thin film capacitors fabricated directly on package (and/or on-chip) are an attractive approach towards realizing such devices. This thesis aims to explore fundamental frequency dependent dielectric and insulating properties of thin film high-k dielectric constant in the perovskite and perovskite-related complex oxides. Throughout this thesis, we have successfully observed the role of structure, strain and oxygen stoichiometry on the dielectric properties of thin film complex oxides, allowing a greater understanding of processing conditions and polarization mechanisms. In the first section of the thesis, we explore novel processing methods in the conventional ferroelectric, barium strontium titanate, Ba1-xSr xTiO3 (BST), using ultraviolet enhanced oxidation techniques in order to achieve improvements in the dielectric properties. Using this method, we also explore the growth of BST on inexpensive non-noble metals such as Ni which presents technical challenges due to the ability to oxidize at high temperatures. We observe a significant lowering of the dielectric loss while also lowering the process temperature which allows us to maintain an intimate interface between the dielectric layer and the metal electrode. The second section of this thesis explores the novel dielectric material, Lanthanum Strontium Nickelate, La2-xSrxNiO4 (LSNO), which exhibits a colossal dielectric response. For the first time, we report on the colossal dielectric properties of polycrystalline and epitaxial thin film LSNO. We observe a significant polarization dependence on the microstructure due to the grain/grain boundary interaction with charged carriers. We next grew epitaxial films on various insulating oxide substrates in order to decouple the grain boundary interaction. Here we observed substrate dependent dielectric

  18. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  19. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  20. Thermochemistry of perovskites in the lanthanum-strontium-manganese-iron oxide system

    NASA Astrophysics Data System (ADS)

    Marinescu, Cornelia; Vradman, Leonid; Tanasescu, Speranta; Navrotsky, Alexandra

    2015-10-01

    The enthalpies of formation from binary oxides of perovskites (ABO3) based on lanthanum strontium manganite La(Sr)MnO3 (LSM) and lanthanum strontium ferrite La(Sr)FeO3 (LSF) and mixed lanthanum strontium manganite ferrite La(Sr)Mn(Fe)O3 (LSMF) were measured by high temperature oxide melt solution calorimetry. Using iodometric titration, the oxygen content was derived. The perovskites with A-site cation deficiency have greater oxygen deficiency than the corresponding A-site stoichiometric series. Stability of LSMF decreases with increasing iron content. Increasing oxygen deficiency clearly destabilizes the perovskites. The results suggest an enthalpy of oxygen incorporation that is approximately independent of composition. 0.35La2O3 (xl, 25 °C)+Mn2O3 (xl, 25 °C)+0.3SrO (xl, 25 °C)+Fe2O3 (xl, 25 °C)+O2 (g, 25 °C)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 °C). (b) ∆ Hf,ox* (La0.7Sr0.3Mn1-yFeyO3-δ) .0.35 La2O3 (xl, 25 ººC) + (0.7-y+ 2δ)/2 Mn2O3 (xl, 25 ºC) + 0.3 SrO (xl, 25 ºC) + y/2Fe2O3 (xl, 25 ºC) + (0.3-2δ) MnO2 (xl, 25 ºC)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 ºC).

  1. Lanthanum oxide-coated stainless steel for bipolar plates in solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Seol; Lee, Jun; Hwang, Hae Jin; Whang, Chin Myung; Moon, Ji-Woong; Kim, Do-Hyeong

    Solid oxide fuel cells typically operate at temperatures of about 1000 °C. At these temperatures only ceramic interconnects such as LaCrO 3 can be employed. The development of intermediate-temperature solid oxide fuel cells (IT-SOFCs) can potentially bring about reduced manufacturing costs as it makes possible the use of an inexpensive ferritic stainless steel (STS) interconnector. However, the STS suffers from Cr 2O 3 scale formation and a peeling-off phenomenon at the IT-SOFC operating temperature in an oxidizing atmosphere. Application of an oxidation protective coating is an effective means of providing oxidation resistance. In this study, we coated an oxidation protective layer on ferritic stainless steel using a precursor solution prepared from lanthanum nitrate, ethylene glycol, and nitric acid. Heating the precursor solution at 80 °C yielded a spinable solution for coating. A gel film was coated on a STS substrate by a dip coating technique. At the early stage of the heat-treatment, lanthanum-containing oxides such as La 2O 3 and La 2CrO 6 formed, and as the heat-treatment temperature was increased, an oxidation protective perovskite-type LaCrO 3 layer was produced by the reaction between the lanthanum-containing oxide and the Cr 2O 3 scale on the SUS substrate. As the concentration of La-containing precursor solution was increased, the amount of La 2O 3 and La 2CrO 6 phases was gradually increased. The coating layer, which was prepared from a precursor solution of 0.8 M, was composed of LaCrO 3 and small amounts of (Mn,Cr)O 4 spinel. A relatively dense coating layer without pin-holes was obtained by heating the gel coating layer at 1073 K for 2 h. Microstructures and oxidation behavior of the La 2O 3-coated STS444 were investigated.

  2. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    PubMed

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  3. Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator

    NASA Astrophysics Data System (ADS)

    Thomas, James A.; Fainman, Yeshaiahu

    1995-07-01

    We introduce a programmable diffractive optical element based on an electro-optic phased array implemented with a multichannel lanthanum-modified lead zirconate titanate phase modulator. The design and fabrication procedures are outlined, along with an experimental demonstration of the device. Experimental results from a 16-channel device operating with a 2 pi voltage of 300 V demonstrate selective beam steering. The programmable diffractive optical element allows for efficient, high-speed high-resolution random-access optical beam steering over a continuous scanning range.

  4. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  5. The strong influence of iron additions on the lead-lanthanum-titanate ceramics

    NASA Astrophysics Data System (ADS)

    Omari, Lhaj el Hachemi; Sayouri, Salaheddine

    2013-11-01

    In the present work, phase transitions and electrical characteristics of iron and lanthanum substituted lead titanate are reported. Structural analysis of the prepared samples was carried out to confirm the formation of the compounds in the proper phase. The average grain size was estimated using Scherrer's equation. Dielectric properties of the samples have been studied as functions of temperature and frequency. Variations of the dielectric constant (ɛr) as function of temperature show a diffuse ferro-paraelectric phase transition. The diffusivity and the relaxation strength were estimated using the modified Uchino-law, and the relaxation time of these materials satisfies the Vogel-Fulcher equation.

  6. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  7. Investigation of the elemental composition of lanthanum-cerium hexaboride crystals

    NASA Astrophysics Data System (ADS)

    Badalyan, Georgi; Kuzanyan, Armen; Petrosyan, Vahagn; Kuzanyan, Vazgen; Gulian, Armen

    2010-10-01

    Crystals of solid solutions of lanthanum-cerium hexaborides (La1-xCex)B6 possess unique thermoelectric properties in the temperature range of 0.3-9 K and they can be used in thermoelectric single-photon detectors as a sensor. One can observe a wide spread in thermoelectric measurement values reported in the literature, which is because of different qualities of studied crystals. The greatest influence on both the Seebeck coefficient and electrical resistivity of samples is exercised by the presence of uncontrolled impurities in crystals and the deviation from stoichiometry. In this work we have studied just the aforementioned parameters of the crystals obtained by three different methods.

  8. Temperature Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    Lanthanum titanate (La2Ti2O7) a layered distorted perovskite (1) with space group Pna2(sub 1) has been shown to have potential as a high temperature piezoelectric (2). However this highly refractory oxide compound must be consolidated at relatively high temperatures approximately 1400 C. Commercial La2Ti207 powders were mechanically alloyed with additions of Y2O3 to lower the consolidation temperature by 300 C and to provide post processing mechanical stability. Temperature dependent electrical, elastic and anelastic behavior were selected as nondestructive means of evaluating the effects of yttria on the properties of this ferroceramic material.

  9. Bistable optical information storage using antiferroelectric-phase lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.

    1988-11-01

    A recently discovered photostorage effect in antiferroelectric-phase (AFE-phase) lead lanthanum zirconate titanate (PLZT) compositions appears to be particularly applicable to binary optical information storage. The basis for bistable optical information storage is that exposure to near-UV or visible light shifts the electric field threshold of the phase transition between the field-induced ferroelectric (FE) phase and the stable AFE phase in the direction of the initial AFE /yields/ FE phase transition. Properties of this photoactivated shift of the FE /yields/ AFE phase transition, including preliminary photosensitivity measurements and photostorage mechanisms, are presented. Photosensitivity enhancement by ion implantation is also discussed.

  10. Photosensitivity enhancement by H- and He-ion implantation in lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.; Peercy, P.S.

    1980-07-01

    H- and He-ion implantation has been used to increase the photoferroelectric image storage sensitivity of lead lanthanum zirconium titanate ceramics by factors of approx.10 and approx.30, respectively. The increased photosensitivity can be attributed primarily to implantation-produced disorder, which increases the efficiency of carrier photoexcitation and trapping and reduces the exposure energy required to establish nonvolatile space-charge fields. Implantation-induced disorder may also contribute to a substantial increase in photoconductivity in the ion-damaged near-surface region.

  11. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1987-12-01

    Large (approx. 5 cm) diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1 to 5 micro electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, has been consistently measured. To obtain this high current density, the LaB6 cathodes have been heated to temperatures between approximately 1600 to 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure .000001 to .00001 Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser type cathodes.

  12. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    SciTech Connect

    Davydenko, V. I. Ivanov, A. A. Shul’zhenko, G. I.

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  13. Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur A.; Li, Billy Chun-Yip; Fleurial, Pierre; Star, Kurt

    2010-01-01

    The development of more efficient thermoelectric couple technology capable of operating with high-grade heat sources up to 1,275 K is key to improving the performance of radioisotope thermoelectric generators. Lanthanum telluride La3-xTe4 and 14-1-11 Zintls (Yb14MnSb11) have been identified as very promising materials. The fabrication of advanced high-temperature thermoelectric couples requires the joining of several dissimilar materials, typically including a number of diffusion bonding and brazing steps, to achieve a device capable of operating at elevated temperatures across a large temperature differential (up to 900 K). A thermoelectric couple typically comprises a heat collector/ exchanger, metallic interconnects on both hot and cold sides, n-type and ptype conductivity thermoelectric elements, and cold-side hardware to connect to the cold-side heat rejection and provide electrical connections. Differences in the physical, mechanical, and chemical properties of the materials that make up the thermoelectric couple, especially differences in the coefficients of thermal expansion (CTE), result in undesirable interfacial stresses that can lead to mechanical failure of the device. The problem is further complicated by the fact that the thermoelectric materials under consideration have large CTE values, are brittle, and cracks can propagate through them with minimal resistance. The inherent challenge of bonding brittle, high-thermal-expansion thermoelectric materials to a hot shoe material that is thick enough to carry the requisite electrical current was overcome. A critical advantage over prior art is that this device was constructed using all diffusion bonds and a minimum number of assembly steps. The fabrication process and the materials used are described in the following steps: (1) Applying a thin refractory metal foil to both sides of lanthanum telluride. To fabricate the n-type leg of the advanced thermoelectric couple, the pre-synthesized lanthanum

  14. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  15. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.

    PubMed

    Cooper, Daniel R; Kudinov, Konstantin; Tyagi, Pooja; Hill, Colin K; Bradforth, Stephen E; Nadeau, Jay L

    2014-06-28

    CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthesis methods for water-dispersible Ce0.1La0.9F3/LaF3 and CeF3/LaF3 core/shell nanoparticles and an investigation of energy transfer to photosensitizers. Unbound deuteroporphyrin IX 2,4-disulfonic acid was found to substantially quench the luminescence of large (>10 nm diameter) aminocaproic acid-stabilized nanoparticles at reasonable concentrations and loading amounts: up to 80% quenching at 6% w/w photosensitizer loading. Energy transfer was found to occur primarily through a cascade, with excitation of "regular" site Ce(3+) at 252 nm relayed to photosensitizer molecules at the nanoparticle surface through intermediate "perturbed" Ce(3+) sites. Smaller (<5 nm) citrate-stabilized nanoparticles were coated with the bisphosphonate alendronate, allowing covalent conjugation to chlorin e6 and resulting in static quenching of the nanoparticle luminescence: ∼50% at ∼0.44% w/w. These results provide insight into energy transfer mechanisms that may prove valuable for optimizing similar systems. PMID:24827162

  16. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei

    2016-09-01

    Development of cost-effective and efficient electrochemical catalysts for the fuel cells electrode is of prime importance to emerging renewable energy technologies. Here, we report for the first time the novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite with good potentiality for the electrode material of the symmetrical solid oxide fuel cells (SSOFC). The Sc0.2Zr0.8O2-δ (SSZ) electrolyte supported symmetrical cells with impregnated LCFNb and LCFNb/SDC (Ce0.8Sm0.2O2-δ) electrodes achieve relatively high power outputs with maximum power densities (MPDs) reaching up to 392 and 528.6 mW cm-2 at 850 °C in dry H2, respectively, indicating the excellent electro-catalytic activity of LCFNb towards both hydrogen oxidation and oxygen reduction. Besides, the MPDs of the symmetrical cells with LCFNb/SDC composite electrodes in CO and syngas (CO: H2 = 1:1) are almost identical to those in H2, implying that LCFNb material has similar catalytic activities to carbon monoxide compared with hydrogen. High durability in both H2, CO and syngas during the short term stability tests for 50 h are also obtained, showing desirable structure stability, and carbon deposition resistance of LCFNb based electrodes. The present results indicate that the LCFNb perovskite with remarkable cell performance is a promising electrode material for symmetrical SOFCs.

  17. Doped Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, Cynthia; Libal, Andras; Reichhardt, Charles

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  18. Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: Evidence for a global major spike in flux of L-chondritic matter

    NASA Astrophysics Data System (ADS)

    Cronholm, Anders; Schmitz, Birger

    2010-07-01

    Previous studies of mid-Ordovician limestone in Sweden have shown that over a stratigraphic interval representing a few million years there is a two orders-of-magnitude enrichment in fossil L-chondritic meteorites (Ø = 1-21 cm) and sediment-dispersed extraterrestrial chromite (EC) grains (>63 μm). This has been interpreted as a dramatic increase in the flux of L-chondritic matter to Earth following the breakup of the L-chondrite parent body, which based on Ar-Ar gas retention ages (470 ± 6 Ma) of recently fallen meteorites occurred at about this time. Here we show that the general trend in the distribution of sediment-dispersed EC grains can be reproduced in the Puxi River section in central China. A total of 288 kg of limestone was searched for chrome spinels. In samples spanning the lower 8 m of the section, representing the Paroistodus originalis and Lenodus antivariabilis conodont zones, a total of 110 kg of limestone yielded only one EC grain. Similarly to the Swedish sections, EC grains begin to be common in the overlying L. variabilis Zone and remain common throughout the upper 9 m of the section, representing the L. variabilis, Yangtzeplacognathus crassus and L. pseudoplanus zones. In this part of the section 178 kg of limestone yielded 290 EC grains, with an average chemical composition very similar to chromite from recent L chondrites. In most of the beds over this interval one finds 1-4 EC grains per kilogram rock, a clear two orders-of-magnitude enrichment relative to the lower part of the section. Small bed-by-bed variations in the EC content over the upper interval most likely reflect small variations in sedimentation rates. The Puxi River section contains only very rare terrestrial chrome spinel grains, which can be distinguished already by their rounded, abraded appearance compared to the angular, pristine extraterrestrial spinels. In the mid-Ordovician, based on paleoplate reconstructions, the Puxi River site was positioned at mid-latitudes on

  19. Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, copper, nickel, lead and zinc at trace level using 8-hydroxyquinoline as a chelating agent and lanthanum(III) as a carrier element is proposed. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The results were compared with those obtained using flame atomic absorption spectrometry (F-AAS). The influence of several parameters such as pH, amount of lanthanum(III) as a carrier element, amount of 8-hydroxyquinoline, duration of co-precipitation was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The detection limits (DL) for ICP-OES were 0.31, 2.9, 1.4, 3.2 and 1.2 μg L(-1) for Cd, Cu, Ni, Pb and Zn, respectively, whereas for F-AAS DL were 0.63, 1.1, 3.2, 2.7 and 0.74 μg L(-1). The recovery of the method for the determined elements was better than 94% with relative standard deviation between 0.63% and 2.9%. The preconcentration factor was 60. The proposed method was successfully applied for determination of Cd, Cu, Ni, Pb, and Zn in plant materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). PMID:24206710

  20. Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria.

    PubMed

    Herrmann, Henning; Nolde, Jürgen; Berger, Svend; Heise, Susanne

    2016-02-01

    Rare earth elements (REE) used to be taken as tracers of geological origin for fluvial transport. Nowadays their increased applications in innovative environmental-friendly technology (e.g. in catalysts, superconductors, lasers, batteries) and medical applications (e.g. MRI contrast agent) lead to man-made, elevated levels in the environment. So far, no regulatory thresholds for REE concentrations and emissions to the environment have been set because information on risks from REE is scarce. However, evidence gathers that REE have to be acknowledged as new, emerging contaminants with manifold ways of entry into the environment, e.g. through waste water from hospitals or through industrial effluents. This paper reviews existing information on bioaccumulation and ecotoxicity of lanthanum in the aquatic environment. Lanthanum is of specific interest as one of the major lanthanides in industrial effluents. This review focuses on the freshwater and the marine environment, and tackles the water column and sediments. From these data, methods to derive quality criteria for sediment and water are discussed and preliminary suggestions are made. PMID:26528910

  1. Syntheses, Characterization, Thermal, and Antimicrobial Studies of Lanthanum(III) Tolyl/Benzyldithiocarbonates

    PubMed Central

    Andotra, Savit; Kalgotra, Nidhi; Pandey, Sushil K.

    2014-01-01

    Lanthanum(III) tris(O-tolyl/benzyldithiocarbonates), [La(ROCS2)] (R = o-, m-, p-CH3C6H4 and C6H5CH2), were isolated as yellow solid by the reaction of LaCl3·7H2O with sodium salt of tolyl/benzyldithiocarbonates, ROCS2Na (R = o-, m-, p-CH3C6H4 and C6H5CH2), in methanol under anhydrous conditions in 1 : 3 molar ratio. These complexes have formed adducts with nitrogen and phosphorus donor molecules by straightforward reaction of these complexes with donor ligands, which have the composition of the type [La(ROCS2)3·nL] (where n = 2, L = NC5H5 or P(C6H5)3 and n = 1, L = N2C12H8 or N2C10H8). Elemental analyses, mass, IR, TGA, and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies indicated bidentate mode of bonding by dithiocarbonate ligands leading to hexacoordinated and octacoordinated geometry around the lanthanum atom. Antimicrobial (antifungal and antibacterial) activity of the free ligands and some of the complexes have also been investigated which exhibited significantly more activity for the complexes than the free ligands. PMID:24817836

  2. Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma

    NASA Astrophysics Data System (ADS)

    Yar, Mazher Ahmed; Wahlberg, Sverker; Bergqvist, Hans; Salem, Hanadi G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    High purity W and W-0.9La 2O 3 (wt.%) nanopowders were produced by a wet chemical route. The precursor was prepared by the reaction of ammonium paratungstate (APT) with lanthanum salt in aqueous solutions. High resolution electron microscopy investigations revealed that the tungstate particles were coated with oxide precipitates. The precursor powder was reduced to tungsten metal with dispersed lanthanum oxide. Powders were consolidated by spark plasma sintering (SPS) at 1300 and 1400 °C to suppress grain growth during sintering. The final grain size relates to the SPS conditions, i.e. temperature and heating rate, regardless of the starting powder particle size. Scanning electron microscopy revealed that oxide phases were mainly accumulated at grain boundaries while the tungsten matrix constituted of nanosized sub-grains. The transmission electron microscopy revealed that the tungsten grains consist of micron-scale grains and finer sub-grains. EDX analysis confirmed the presence of W in dispersed oxide phases with varying chemical composition, which evidenced the presence of complex oxide phases (W-O-La) in the sintered metals.

  3. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  4. Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts.

    PubMed

    Vieira, Sara S; Magriotis, Zuy M; Santos, Nadiene A V; Saczk, Adelir A; Hori, Carla E; Arroyo, Pedro A

    2013-04-01

    In this work the use of the heterogeneous catalysts pure (LO) and sulfated (SLO) lanthanum oxide, pure HZSM-5 and SLO/HZSM-5 (HZSM-5 impregnated with sulfated lanthanum oxide (SO4(2-)/La2O3)) was evaluated. The structural characterization of the materials (BET) showed that the sulfation process led to a reduction of the SLO and SLO/HZSM-5 surface area values. FTIR showed bands characteristic of the materials and, FTIR-pyridine indicated the presence of strong Brønsted sites on the sulfated material. In the catalytic tests the temperature was the parameter that most influenced the reactions. The best reaction conditions were: 10% catalyst, 100°C temperature and 1:5 m(OA)/m(meOH) for LO, SLO, SLO/HZSM-5 and 10% catalyst, 100°C temperature and 1:20 m(OA)/m(meOH) for HZSM-5. Under these conditions the conversions were: 67% and 96%, for LO and SLO, respectively and 80% and 100%, for HZSM-5 and SLO/HZSM-5, respectively. All catalysts deactivated after the first use, but the deactivation of SLO/HZSM-5 was smaller. PMID:23428822

  5. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  6. A polynuclear coordination glutarate of lanthanum(III) with an uncommon cage feature.

    PubMed

    Benmerad, Belkacem; Guehria-Laïdoudi, Acoura; Dahaoui, Slimane; Lecomte, Claude

    2004-03-01

    The title compound, triaquatris(glutarato)dilanthanum(III) dihydrate, [[La2(C5H6O4)3(H2O)3] x 2H2O]n, is the first reported glutarate coordination polymer of lanthanum(III) without a protonated ligand. The noteworthy features in the structure are, firstly, the unusual binuclear lanthanum cage formed by three bridging bonds through O atoms involved in different coordination modes and, secondly, the very rare 'malonate' mode exhibited by a dicarboxylate ligand with an alkyl chain of five C atoms. To our knowledge, this eta7 chelation for the glutarate ligand has not been reported and was thought to be forbidden for steric reasons. The gauche-gauche conformation of the corresponding ligand favours cage formation, but trans geometries created along the ligating O atoms prevent cluster packing. The two independent La atoms are nine- and tenfold coordinated, leading to distorted one-face-sharing LaO7(H2O)2 and LaO9(H2O) polyhedra, respectively. In the three-dimensional framework, these asymmetric subunits are linked in a zigzag manner via one-edge-sharing LaO9(H2O) polyhedra and are connected by the carbon backbone chains of the ligands. The structure is very compact and, unlike many other reported dicarboxylate lanthanides, connectivity between the two metal atoms and the three ligands yields a crystal packing with cavities accommodating two guest water molecules but without an open framework. PMID:15004362

  7. Pre-existing oral contrast from lanthanum carbonate: a confounding factor in CT mesenteric angiography

    PubMed Central

    Bull, M D; Shrimanker, R; Thomas, M R M; Mulgrew, C J

    2012-01-01

    A 69-year-old male was referred from the renal unit to radiology for investigation of bleeding per rectum. A CT mesenteric angiogram was performed. However, it was noted on the pre-contrast images that the large bowel contained positive oral contrast media. The procedure was abandoned as it would have been difficult to see extravasation of intravenous contrast from a bleeding point in the large bowel. The initial belief was that either the patient had been given oral contrast by ward staff on the assumption that it would be needed, or had had a recent radiological study requiring contrast, which was still present. Neither was the case; it emerged that the patient was taking Fosrenol (Shire Pharmaceuticals, Wayne, PA), a lanthanum carbonate medication used in the treatment of hyperphosphataemia. Lanthanum is densely radio-opaque and appears as positive bowel contrast on CT and plain radiography studies. When considering radiological studies specifically requiring the absence of oral contrast, it is important to be aware of the patient's drug history to avoid non-diagnostic scans with the associated radiation exposure. PMID:22457410

  8. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Esro, M.; Mazzocco, R.; Vourlias, G.; Kolosov, O.; Krier, A.; Milne, W. I.; Adamopoulos, G.

    2015-05-01

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlOy dielectrics exhibit a wide band gap (˜6.18 eV), high dielectric constant (k ˜ 16), low roughness (˜1.9 nm), and very low leakage currents (<3 nA/cm2). TFTs employing solution processed LaAlOy gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (˜10 V), high on/off current modulation ratio of >106, subthreshold swing of ˜650 mV dec-1, and electron mobility of ˜12 cm2 V-1 s-1.

  9. Lanthanum carbonate has a radiopaque appearance on the plain abdominal radiography.

    PubMed

    Ruiz Pardo, José; Ibáñez Cánovas, Noelia; Abrisqueta Carrión, Jesús; Luján Mompeán, Juan Antonio; Parrilla Paricio, Pascual

    2016-06-01

    An 84-year-old woman presented to her local emergency department for abdominal pain. Her medical history included hemodialysis in the treatment of chronic renal failure, Parkinson's disease, chronic atrial fibrillation, chronic constipation, appendicectomy and cholecystectomy. The patient complained of diffuse abdominal pain for 4 days, associated with nausea and vomiting in the last 24 hours. Physical examination revealed a soft and depressible abdomen, diffusely painful, without signs of peritoneal irritation. A digital rectal exam revealed large amount of stool in the rectal vault without palpable masses. Blood tests showed a creatinine level of 2.7 mg/dl due to chronic renal failure and the plain abdominal radiography revealed a dolichocolon completely contrasted. The patient denied the realization of any medical imaging-proofs with oral or rectal contrast. Reviewing home treatment, the patient was taking lanthanum carbonate (2 tablets of 750 mg per day) since 1 month ago, a drug that contrasts the digestive tract. Appreciating contrast in the colon, intestinal subocclusion was excluded and the clinical picture was attributed to her chronic constipation. In conclusion, it should be noted that lanthanum carbonate contrasts the digestive tract, with radiopaque appearance on the plain abdominal radiography and without any pathological significance. PMID:27324519

  10. Ultrasonic mediated synthesis of monodispersed lanthanum hydroxide nanorods for possible bioimplant application.

    PubMed

    Harini, Dhandapani; Rajaram, Anantanarayanan; Rajaram, Rama

    2015-01-01

    Monodispersed lanthanum hydroxide nano-rods (LaNRs) were synthesized for prospective biomedical application using a microwave heating and ultrasonic agitation methodology which does not require any toxic stabilizing agent. The average length and diameter of the LaNRs thus obtained were 183.4 ± 3.6 and 9.9 ± 0.2 nm respectively, as analyzed by HRTEM. FTIR spectrum confirmed the presence of OH groups. The thermal transformation of lanthanum hydroxide (La(OH)3) was studied by thermogravimetric analysis. The synthesized LaNRs were found to be stable for a period of 1 month at room temperature. They were biocompatible as evaluated by haemocompatibility assay and viability assay using human peripheral blood mononuclear cells. The pro-angiogenic property of LaNRs was demonstrated by in vivo chick chorioallantoic membrane assay. The LaNRs induced osteoblast differentiation of human adipose derived stem cells with significant calcium (Ca(2+)) deposition indicating potential applications in bone tissue engineering. PMID:25601669

  11. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    SciTech Connect

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)

  12. Low temperature glassy relaxation in rare earth doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Lawes, Gavin

    2012-10-01

    Magnetic nanoparticles typically exhibit glassy relaxation at low temperature, which can be affected by doping. Gadolinium and Lanthanum doped Fe3O4 nanoparticles were synthesized using a chemical co-precipitation method. The structural and optical properties of these nanoparticles were characterized by using Transmission Electron Microscope (TEM) and the Raman spectroscopy. The TEM images show the formation of nanoparticles of size ranging between 12-14 nm and Raman spectra are consistent with the formation of Fe3O4. AC magnetic measurements were also conducted on these nanoparticles. From the ac out-of-phase susceptibility (χ//) vs temperature (T) graphs, it is observed that the doped nanoparticles show larger amplitude relaxation peaks at low temperature as compared to the undoped particles. These magnetic relaxation features develop roughly between 25K to 35K and show frequency dependence. The increased magnetic relaxation at low temperatures can be attributed to structural defects which may arise due to the doping of lanthanides in Fe3O4 nanoparticles.

  13. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    SciTech Connect

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  14. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGESBeta

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  15. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    SciTech Connect

    Kumar, P.; Nath, M.; Ghosh, A.; Tripathi, H.S.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{sub 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.

  16. Chromium bioaccumulation in rice grown in contaminated soil and irrigated mine wastewater--a case study at South Kaliapani chromite mine area, Orissa, India.

    PubMed

    Mohanty, Monalisa; Pattnaik, Mousumi Madhusmita; Mishra, Aruna Kumari; Patra, Hemanta Kumar

    2011-01-01

    The level of chromium (Cr) contamination in soils and irrigated mine wastewater at South Kaliapani chromite mine region of Orissa, (India) were investigated. Chromium bioaccumulation in rice plants (Oryza sativa L. cv. Khandagiri) irrigated with Cr+6 contaminated mine wastewater was analyzed along with its attenuation from mine wastewater. The levels of Cr+6 in irrigated mine wastewaters in successive rice grown plots were analyzed on 75 days and 100 days after transplantation of seedlings. Total chromium content in different parts of rice plants and soil samples from different plots was analyzed during harvesting stage (125 days after transplantation). Cr accumulation was significantly high in surface soils (0-20 cm) with a mean value of 11,170 mg kg(-1), but it decreased significantly after the crop harvest. About 70% to 90% reduction of Cr+6 levels was observed in irrigated mine wastewater when passed through successive rice plots. High bio-concentration of Cr in leaves with values ranging from 125-498 mg kg(-1) as compared to stem (25-400 mg kg(-1)) and grain (5-23 mg kg(-1)) was noticed. The reduction of Cr+6 levels is related to plant age, high biomass and area of water passage and was attributed to rhizofiltration technique. PMID:21598771

  17. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    PubMed

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels. PMID:25929874

  18. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    PubMed

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels. PMID:26592036

  19. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. PMID:26972261

  20. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following

  1. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  2. Magnetic and Magneto-Optical Properties of Doped Oxides

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammed

    This thesis describes the growth, structural characterisation, magnetic and magneto-optics properties of lanthanum strontium manganite (LSMO), GdMnO3 and transition metal (TM)-doped In2O3 thin films grown under different conditions. The SrTiO3 has been chosen as a substrate because its structure is suitable to grow epitaxial LSMO and GdMnO3 films. However, the absorption of SrTiO3 above its band gap at about 3.26 eV is actually a limitation in this study. The LSMO films with 30% Sr, grown on both SrTiO3 and sapphire substrates, exhibit a high Curie temperature (Tc) of 340 K. The magnetic circular dichroism (MCD) intensity follows the magnetisation for LSMO on sapphire; however, the measurements on SrTiO3 were dominated by the birefringence and magneto-optical properties of the substrate. In the GdMnO3 thin films, there are two well-known features in the optical spectrum; the charge transfer transition between Mn d states at 2 eV and the band edge transition from the oxygen p band to d states at about 3 eV; these are observed in the MCD. This has been measured at remanence as well as in a magnetic field. The optical absorption at 3 eV is much stronger than at 2 eV, however, the MCD is considerably stronger at 2 eV. The MCD at 2 eV correlates well with the Mn spin ordering and it is very notable that the same structure appears in this spectrum, as is seen in LaMnO3. The results of the investigations of Co and Fe-doped In2O3 thin films show that TM ions in the films are TM2+ and substituted for In3+. The room temperature ferromagnetism observed in TM-doped In2O3 is due to the polarised electrons in localised donor states associated with oxygen vacancies. The formation of Fe3O4 nanoparticles in some Fe-doped films is due the fact that TM-doped In2O3 thin films are extremely sensitive to the growth method and processing condition. However, the origin of the magnetisation in these films is due to both the Fe-doped host matrix and also to the nanoparticles of Fe3O4.

  3. Trap State Introduction versus Band Gap Narrowing in Nitrogen-Doped La2Ti2O7

    NASA Astrophysics Data System (ADS)

    Yost, Brandon; Cushing, Scott; Wu, Nianqiang; Bristow, Alan

    2015-03-01

    Nitrogen doping was reported to extend lanthanum dititanate's (LTO), La2Ti2O7, absorption from 380 nm to 500 nm by narrowing the band gap without introducing trap states. N-LTO holds promise for solar water splitting if, unlike in N-doped TiO2, spectral coverage can be increased without decreasing carrier lifetimes and decrementing the overall performance. Therefore, in this presentation, the effect of N-doping on LTO is confirmed using transient absorption spectroscopy with a supercontinuum and THz probe. The supercontinuum probe reveals carrier evolution in both band edge and mid-gap defect states. By exciting above and below the band edge, the influence of N-doping on the density of trap states is directly compared to the band edge position. Further, comparison of dynamics measured with the supercontinuum and THz probes reveals which changes in lifetime correspond to increased mobility or increased trapping, showing how the shifted band edge modifies carrier dynamics, and that N-doping in LTO is an efficient strategy for solar energy harvesting.

  4. Synthesis of La{sup 3+} doped nanocrystalline ceria powder by urea-formaldehyde gel combustion route

    SciTech Connect

    Biswas, M.; Bandyopadhyay, S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Nano LC synthesized by gel combustion, using urea-formaldehyde fuel for first time. Black-Right-Pointing-Pointer Largely single crystals were produced in average range of 20-30 nm. Black-Right-Pointing-Pointer La{sup 3+} doping increases cell dimension linearly. Black-Right-Pointing-Pointer La{sup 3+} doping introduces ionic point defects but does not change electronic band gap. Black-Right-Pointing-Pointer Presence of Ce{sup 3+} indicates that this synthesis route produces reactive powders. -- Abstract: Nanocrystalline ceria powders doped with various concentrations of lanthanum oxide have been prepared following gel combustion route using for the first time urea-formaldehyde as fuel. The synthesized products were characterized by XRD, FESEM, TEM, PL and UV-vis spectroscopy. Peak positions of XRD were refined and the lattice parameters were obtained by applying Cohen's method. Unit cell parameter increases with concentration of La{sup 3+} ion and the variation is consistently linear. XRD calculations showed the dependence of crystallite size on dopant concentrations at lower level. TEM observation revealed unagglomerated particles to be single crystals in the average range of 20-30 nm. Band gap of the La{sup 3+} doped ceria materials does not change with doping. Spectroscopic experiments proved the existence of Ce{sup 3+} in the formed powder.

  5. Effects of lanthanum carbonate on vascular calcification in elderly maintenance hemodialysis patients.

    PubMed

    Wang, Xiao-Hui; Zhang, Xin; Mu, Chang-Jun; He, Yong; Peng, Qing-Ping; Yang, Guo-Sheng; Li, Ming-Mei; Liu, Duan; Li, Jing; Ding, Guo-Hua

    2015-08-01

    The effect of lanthanum carbonate on abdominal aortic calcification (AAC) in the elderly maintenance hemodialysis (MHD) patients was investigated. Fifty-four cases subjected to routine MHD complicated with skin pruritus admitted to our hospital were selected and randomly divided into case group (n=28) and control group (n=26). The control group was given routine MHD alone. The case group was given lanthanum carbonate additionally on the basis of routine MHD. The changes of itching degrees at first and third month, and serum calcium, phosphorus, calcium-phosphorus products, intact parathyroid hormone (iPTH) levels and AAC scores at third month after treatments were compared between the two groups. The correlation between calcium-phosphorus products and AAC scores was also analyzed. There was no significant difference in the baseline of blood urea nitrogen (BUN), serum creatinine (Scr), uric acid, albumin, hemoglobin, C reactive protein (CRP), low density lipoprotein (LDL), high density lipoprotein (HDL), triglyceride, total cholesterol between case group and control group (P>0.05 for all). There was also no significant difference in the baseline itching scores between the case group and the control group (P>0.05). At 1st and 3rd month after treatment, the itching scores in the case group were 14.2 ± 3.2 and 10.5 ± 2.3, respectively, which were significantly lower than the baseline and those in the control group (P<0.05 for all). At 1st and 3rd month after treatment, the itching scores in the control group were 23.6 ± 5.9 and 24.8 ± 6.3, respectively, which were significantly higher than the baseline (P<0.05). There was no significant difference in the baseline of serum calcium, phosphorus, calcium-phosphorus products, iPTH levels between the case group and control group (P>0.05). At 3rd month after treatment, serum phosphorus, calcium-phosphorus products and iPTH levels in the case group were decreased significantly as compared with the baseline (P<0.05), and

  6. Synthesis of La and Nb doped PZT powder by the gel-combustion method.

    PubMed

    Cernea, M; Montanari, G; Galassi, C; Costa, A L

    2006-03-28

    Lanthanum and niobium doped PZT with composition (Pb0.93La0.07)[(Zr0.60Ti0.40)]0.9825Nb0.0175O3 (PZTLN) was prepared by the gel-combustion method. A precursor sol was obtained from lead nitrate, zirconyl nitrate, lanthanum oxide, peroxo-citrato-niobium and a peroxo-citrate complex of titanium isopropoxide as starting precursors. Various molar ratios of citrate/nitrate (CA/NO3(-) = 1.3, 0.36 and 0.09) were used to prepare very fine powders of PZTLN. The gels resulting from these sols were transformed into powders by an auto-combustion process at ≤400 °C. The powders consisted of rhombohedral PZT (PbZr0.60Ti0.40O3), pyrochlore (Pb2Ti2O6) and lead carbonate (Pb2O·CO3) phases. The pure rhombohedral phase is found in PZTLN pellets sintered at 1100 °C for all citrate/nitrate ratios. Titanium and niobium precursors were modified with peroxo radicals. During the gel-combustion reaction, the temperature of the gel increases, leading to lead evaporation. The loss of lead as well as the particle size increases as the CA/NO3(-) ratio decreases. The smallest grained powder (about 50 nm) was obtained with the ratio CA/NO3(-) equal to 0.09. PMID:26558585

  7. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  8. Intense laser-induced electron emission from prepoled lead-lanthanum-zirconium-titanate ceramics

    NASA Astrophysics Data System (ADS)

    Geissler, K.; Gundel, H.; Riege, H.; Handerek, J.

    1990-03-01

    A sample of lead-lanthanum-zirconium-titanate (PLZT 9/65/35) has been exposed to 6-ns-long laser pulses of 266 nm wavelength. The maximum output pulse energy of the laser beam was 300 μJ, the output power density on the sample 5×105 W/cm2, and the beam diameter 3 mm. By applying a moderate extraction voltage of several kilovolts, intense electron beam pulses are emitted from the free sample surface. Their time structure corresponds to the time structure of the laser pulse. Electron beam current intensities of up to 0.1 A and 2 A/cm2 and total charges of 1 nC (corresponding to 20 nC/cm2 ) were measured with a simple Faraday cup. In the range where the parameters of laser intensity and of extraction voltage could be varied their influence on the emitted electron beam current amplitude was determined.

  9. Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid

    SciTech Connect

    Konishi, Yasuhiro; Asai, Satoru; Midoh, Yuji; Oku, Muneharu )

    1993-07-01

    Biopolymer gel particles of alginic acid were found to be a useful material for recovering zinc, cadmium, and lanthanum from aqueous solutions. The metals sorbed by the gel particles could be completely eluted by using dilute HCl solution of 0.1 kmol/m[sup 3]. The distribution ratios of the individual metals between the gel and liquid phases were measured by using a batch method. The equilibrium data were consistent with predictions made assuming that sorption takes place with the ion-exchange reaction between metal ions and alginic acid. The maximum sorption capacity of the gel particles and the distribution equilibrium constants for the metals were determined by comparing the experimental data with the theoretical predictions. The observed effect of temperature on the distribution equilibrium was insignificant in the range from 15 to 35[degrees]C. 17 refs., 6 figs., 1 tab.

  10. Preparation of Lanthanum Zirconate Coatings by the Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Coyle, T.; Zhao, D.

    2014-06-01

    Solution precursor plasma spray (SPPS) can synthesize powders and deposit the coatings synchronously. The lanthanum zirconate coatings are deposited by SPPS in the present study, and the dense coating can be obtained through changing the precursor solution. The addition of urea can change the heat exchange process for some precursor mixtures. However, almost no effect can be found on the microstructure of powder and coating by the addition of urea. The extra heat energy caused by the addition of urea is so small, as compared with the heat input by the present plasma jet, so that the heating effect can be ignored. The porosity of coatings increase when the LaCl3·7H2O instead of La(NO3)3·6H2O reacts with Zr(CH3CO2)4.

  11. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    PubMed Central

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  12. Model for ion-implantation-induced improvements of photoferroelectric imaging in lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-11-01

    Studies of photoferroelectric image storage in H-, He-, and, more recently, Ar-implanted /(PLZT) lead lanthanum zirconate titanate reveal that the photosensitivity can be significantly increased by ion implantation into the image storage surface. For example, the photosensitivity after implantation with 5 x 10/sup 14/ 500-keV Ar/cm/sup 2/ is increased by about three orders of magnitude over that of unimplanted PLZT. The increase in photosensitivity results from a decrease in dark conductivity and changes in the photoconductivity of the implanted layer. We present a phenomenological model which describes the photosensitivity enhancement obtained by ion implantation. This model takes into account both light- and ion- implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage with near-UV light intensity for ion-implantated PLZT.

  13. Effects of ion implantation on the photoferroelectric properties of lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.; Peercy, P.S.

    1981-01-01

    Earlier studies of Ar-, Ar + Ne- and Ar + Ne + He- implanted ferroelectric-phase lead lanthanum zirconate titanate (PLZT) ceramics indicate that ion implantation can increase the intrinsic (near-uv) photoferroelectric sensitivity by more than four orders of magnitude compared to that of unimplanted PLZT. More recent studies involving implantation of chemically active ions, e.g., Al and Cr, indicate that the absorption spectrum of the implanted region can be extended from the near-uv to the visible, and that the extrinsic (visible-light) photoferroelectric sensitivity can be improved substantially with respect to that of PLZT implanted with inert ions. The results of these studies are reviewed and photographic sensitivities of Ar-, Ar + Ne-, Ar + Ne + He-, Al-, Cr-, Fe-, and Fe + Ne- implanted PLZT at both near-uv and visible-light wavelengths are compared with the sensitivities of other image storage media.

  14. Observations of Multiple Bound-Bound Transitions in the Negative Ion of Lanthanum La-

    NASA Astrophysics Data System (ADS)

    Walter, C. W.; Gibson, N. D.; Matyas, D. J.; Crocker, C. T.; Dungan, K. A.; Matola, B. R.; Scharpf, M. T.; Rohlén, J.

    2013-05-01

    The negative ion of lanthanum has been investigated with tunable infrared laser photodetachment spectroscopy. The relative signal of neutral atom production was measured with a crossed laser-ion beam apparatus over the photon energy range 0.29 - 0.77 eV. The spectrum reveals a number of sharp peaks due to bound-bound electric-dipole transitions in La-, observed here through a two-step process of excitation followed by photodetachment of the upper state. The observed photodetachment spectrum is compared to theoretical calculations of energy levels and transition strengths by O'Malley and Beck. The richness of the observed bound state spectrum is unprecedented for atomic negative ions, and it highlights the unique properties of La- for applications such as laser cooling. This material is based on work supported by the National Science Foundation under Grant Nos. 0757976 and 1068308.

  15. Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films

    SciTech Connect

    Araújo, E.B.; Nahime, B.O.; Melo, M.; Dinelli, F.; Tantussi, F.; Baschieri, P.; Fuso, F.; Allegrini, M.

    2015-01-15

    Highlights: • Pyrochlore phase crystallizes near the bottom film-electrode interface. • PLZT films show a non-uniform microstrain and crystallite size in depth profile. • Complex grainy structure leads to different elastic modulus at the nanoscale. - Abstract: Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale.

  16. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOEpatents

    Leung, Ka-Ngo; Gordon, Keith C.; Kippenham, Dean O.; Purgalis, Peter; Moussa, David; Williams, Malcom D.; Wilde, Stephen B.; West, Mark W.

    1989-01-01

    A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

  17. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOEpatents

    Leung, Ka-Ngo; Gordon, K.C.; Kippenhan, D.O.; Purgalis, P.; Moussa, D.; Williams, M.D.; Wilde, S.B.; West, M.W.

    1987-10-16

    A large area directly heated lanthanum hexaboride (LaB/sub 6/) cathode system is disclosed. The system comprises a LaB/sub 6/ cathode element generally circular in shape about a central axis. The cathode element has a head with an upper substantially planar emission surface, and a lower downwardly and an intermediate body portion which diminishes in cross-section from the head towards the base of the cathode element. A central rod is connected to the base of the cathode element and extends along the central axis. Plural upstanding spring fingers are urged against an outer peripheral contact surface of the head end to provide a mechanical and electrical connection to the cathode element. 7 figs

  18. Accomplishment of highly porous-lithium lanthanum titanate through microwave treatment

    NASA Astrophysics Data System (ADS)

    Lakshmi, D.; Nalini, B.; Abhilash, K. P.; Selvin, P. Christopher

    2016-05-01

    Perovskite structured (ABO3) lithium lanthanum titanate (LLTO) is a successful electrolyte reported by several scientists in the recent past. It is believed that intercalation and de-intercalation of Li ions inside solid electrolyte can be improved by increasing the porosity of the material. Hence in this research work, an attempt is made to increase the porosity of the LLTO electrolyte by rapid-microwave synthesis route. The microwave prepared LLTO is compared with the sol-gel synthesized LLTO. The prepared samples are analyzed with XRD, SEM, PL and cyclic Voltammetry studies. Morphological analysis proves that microwave synthesized LLTO contains much pores compared to the Sol-gel LLTO. A remarkable difference in its electrochemical property is also demonstrated and analysed with cyclic voltammetric studies and the results are presented.

  19. Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments.

    PubMed

    Balusamy, Brabu; Taştan, Burcu Ertit; Ergen, Seyda Fikirdesici; Uyar, Tamer; Tekinay, Turgay

    2015-07-01

    This study demonstrates the acute toxicity of lanthanum oxide nanoparticles (La2O3 NP) on two sentinel aquatic species, fresh-water microalgae Chlorella sp. and the crustacean Daphnia magna. The morphology, size and charge of the nanoparticles were systematically studied. The algal growth inhibition assay confirmed absence of toxic effects of La2O3 NP on Chlorella sp., even at higher concentration (1000 mg L(-1)) after 72 h exposure. Similarly, no significant toxic effects were observed on D. magna at concentrations of 250 mg L(-1) or less, and considerable toxic effects were noted in higher concentrations (effective concentration [EC50] 500 mg L(-1); lethal dose [LD50] 1000 mg L(-1)). In addition, attachment of La2O3 NP on aquatic species was demonstrated using microscopy analysis. This study proved to be beneficial in understanding acute toxicity in order to provide environmental protection as part of risk assessment strategies. PMID:26022751

  20. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1988-04-01

    Large diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1-5-microsec electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, approximately 300,000 A/sq cm sq rad has been consistently measured. To obtain this high-current density, the LaB6 cathodes have been heated to temperatures between about 1600 and 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure 10 to the -6th to -10 to the -5th Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser-type cathodes.