Science.gov

Sample records for doped layer final

  1. Doped biocompatible layers prepared by laser

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Weiserová, M.; Kocourek, T.; Jurek, K.; Strnad, J.

    2010-03-01

    The contribution deals with KrF laser synthesis and study of doped biocompatible materials with focus on diamond-like carbon (DLC) and hydroxyapatite (HA). Overview of materials used for dopation is given. Experimental results of study of HA layers doped with silver are presented. Films properties were characterized using profilometer, SEM, WDX, XRD and optical transmission. Content of silver in layers moved from 0.06 to 13.7 at %. The antibacterial properties of HA, silver and doped HA layers were studied in vivo using Escherichia coli cells.

  2. Nanozeolites doped photopolymer layers with reduced shrinkage.

    PubMed

    Moothanchery, Mohesh; Naydenova, Izabela; Mintova, Svetlana; Toal, Vincent

    2011-12-01

    An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles. PMID:22273971

  3. Organic doping of rotated double layer graphene

    NASA Astrophysics Data System (ADS)

    George, Lijin; Jaiswal, Manu

    2016-05-01

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with different rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.

  4. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    SciTech Connect

    Liu, Xiang W.; Devaraju, M.K.; Yin, Shu; Sato, Tsugio

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidation catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.

  5. Superconducting junctions from doped nonsuperconducting CuO2 layers

    NASA Astrophysics Data System (ADS)

    Loktev, V. M.; Pogorelov, Yu. G.

    2011-04-01

    The theoretical approach proposed recently to describe the redistribution of electronic charge in multilayered selectively doped systems is modified for a system with a finite number of layers. Special attention is payed to the case of a finite heterostructure made of copper-oxide layers which are all nonsuperconducting (including nonconducting) because the doping levels in them are beyond the characteristic interval for superconductivity. Specific finite structures and doping configurations are proposed to obtain atomically thin superconducting heterojunctions of different compositions.

  6. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  7. Improving the electrical properties of graphene layers by chemical doping

    NASA Astrophysics Data System (ADS)

    Farooq Khan, Muhammad; Zahir Iqbal, Muhammad; Waqas Iqbal, Muhammad; Eom, Jonghwa

    2014-10-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics.

  8. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  9. Nanoscale imaging of freestanding nitrogen doped single layer graphene.

    PubMed

    Iyer, Ganjigunte R S; Wang, Jian; Wells, Garth; Bradley, Michael P; Borondics, Ferenc

    2015-02-14

    Graphene can be p-type or n-type doped by introduction of specific species. Doping can modulate the electronic properties of graphene, but opening a sizable-well-tuned bandgap is essential for graphene-based tunable electronic devices. N-doped graphene is widely used for device applications and is mostly achieved by introducing ammonia into the synthesis gas during the chemical vapor deposition (CVD) process. Post synthesis treatment studies to fine-tune the electron hole doping in graphene are limited. In this work realization of N-doping in large area freestanding single layer graphene (LFG) is achieved by post treatment in nitrogen plasma. The changes in the chemical and electronic properties of graphene are followed with Raman microscopy and mapped via synchrotron based scanning transmission X-ray microscopy (STXM) at the nanoscale. PMID:25584935

  10. Nanoscale imaging of freestanding nitrogen doped single layer graphene

    NASA Astrophysics Data System (ADS)

    Iyer, Ganjigunte R. S.; Wang, Jian; Wells, Garth; Bradley, Michael P.; Borondics, Ferenc

    2015-01-01

    Graphene can be p-type or n-type doped by introduction of specific species. Doping can modulate the electronic properties of graphene, but opening a sizable-well-tuned bandgap is essential for graphene-based tunable electronic devices. N-doped graphene is widely used for device applications and is mostly achieved by introducing ammonia into the synthesis gas during the chemical vapor deposition (CVD) process. Post synthesis treatment studies to fine-tune the electron hole doping in graphene are limited. In this work realization of N-doping in large area freestanding single layer graphene (LFG) is achieved by post treatment in nitrogen plasma. The changes in the chemical and electronic properties of graphene are followed with Raman microscopy and mapped via synchrotron based scanning transmission X-ray microscopy (STXM) at the nanoscale.Graphene can be p-type or n-type doped by introduction of specific species. Doping can modulate the electronic properties of graphene, but opening a sizable-well-tuned bandgap is essential for graphene-based tunable electronic devices. N-doped graphene is widely used for device applications and is mostly achieved by introducing ammonia into the synthesis gas during the chemical vapor deposition (CVD) process. Post synthesis treatment studies to fine-tune the electron hole doping in graphene are limited. In this work realization of N-doping in large area freestanding single layer graphene (LFG) is achieved by post treatment in nitrogen plasma. The changes in the chemical and electronic properties of graphene are followed with Raman microscopy and mapped via synchrotron based scanning transmission X-ray microscopy (STXM) at the nanoscale. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05385k

  11. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  12. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    SciTech Connect

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo E-mail: kbh37@incheon.ac.kr; Park, Min; Lee, Minwoo; Jeong, Dae Hong; Shin, Dong Seok; Kim, Byung Hoon E-mail: kbh37@incheon.ac.kr; Kubatkin, Sergey

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  13. Verification of electron doping in single-layer graphene due to H2 exposure with thermoelectric power

    NASA Astrophysics Data System (ADS)

    Hong, Sung Ju; Park, Min; Kang, Hojin; Lee, Minwoo; Soler-Delgado, David; Shin, Dong Seok; Kim, Kyung Ho; Kubatkin, Sergey; Jeong, Dae Hong; Park, Yung Woo; Kim, Byung Hoon

    2015-04-01

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H2 molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  14. Photoluminescence of Si-doped GaAs epitaxial layers

    SciTech Connect

    Yaremenko, N. G. Karachevtseva, M. V.; Strakhov, V. A.; Galiev, G. B.; Mokerov, V. G.

    2008-12-15

    The effect of arsenic pressure on the amphoteric behavior of Si during the growth of the Si-doped (100)-, (111)Ga-, and (111)As-oriented GaAs layers is studied by photoluminescence spectroscopy. The edge luminescence band is examined, and the concentration and the degree of compensation as functions of the arsenic pressure are determined. Nonstoichiometry defects in GaAs layers grown with a deficit and an excess of arsenic are studied. It is shown that the defects formed in the (111)Ga- and (111)As-oriented layers are different in nature.

  15. SNMS investigations of platinum-doped nanogranular tin dioxide layers

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Sommer, M.; Goschnick, J.

    2005-09-01

    Thin platinum-doped nanogranular SnO 2 layers are examined because of its high gas sensitivity and fast gas response to be applied in gas sensor microarrays. The nanogranular metal oxide layers were prepared from a colloidal dispersion using spin coating on silicon substrates. Field emission scanning electron microscopy (FE-SEM) investigations showed quite homogeneous layers of 20 nm particles, containing a few holes of some micron width, probably due to bubbles introduced into the layer during wet deposition. Depth resolved analysis with secondary neutral mass spectrometry (SNMS) was employed to characterize the elemental content and depth distribution of the 20 nm particle layers. A platinum content of approx. 1 at.%, homogeneously spread throughout the particles was found, as well as carbon and chlorine residues of a few atomic percent enriched at the surface of the particles.

  16. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    NASA Astrophysics Data System (ADS)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  17. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  18. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  19. Doping, adsorption, and polarity of atomic-layer materials: A predictive theory from systematic first-principles study

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Fujimoto, Yoshitaka; Koretsune, Takashi

    2015-03-01

    Based on the extensive first-principles electronic-structure study of various doped hexagonal boron-nitride (h-BN) atomic layers as well as that of various doped graphene and carbon nanotubes, we propose a simple but predictive theory of polarity in doped atomic-layer materials. We first report the electronic structure of the pristine h-BN, h-BN layers with B and B3N vacancies which have been experimentally produced and observed frequently, and doped h-BN layers, and show that both p-type and n-type h-BN layers can be produced in a variety of ways. We next review the electronic structure of doped graphene and carbon nanotubes and the effect of the H adsorption which can even change the polarity of the system. Finally we propose a simple but predictive theory which is based on the number of valence electrons of each system, and can explain the polarities of all the h-BN, graphene, and nanotube-based systems studied so far. Supported by MEXT 25107005 and 25104711, JSPS 22740252 and 26390062, and MEST TIES project.

  20. Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Kumar, Melvin David; Park, Yun Chang; Kim, Joondong

    2015-06-01

    The distinguished transparent conductive oxide (TCO) layers like indium-doped-tin oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers were prepared in different combinations with and without thin Ni metal layer. The optical and electrical properties of prepared samples were analyzed and compared with the objective to understand the role and influence of the Ni layer in each TCO combination. The highest transmittance value of 91.49% was exhibited by prepared AZO layers. Even though if the transmittance of Ni inserting TCO layers was marginally reduced than that of the ordinary TCO samples, they exhibited balanced optical properties with enhanced electrical properties. Carrier concentration of indium doped tin-oxide and aluminum doped zinc oxide (ITO/AZO) bilayer sample is increased more than double the times when the Ni layer was inserted between ITO and AZO. Thin layer of Ni in between TCO layers reduced sheet resistance and offered substantial transmittance, so that the figure of merit (FOM) value of Ni embedding TCOs was greater than that of TCOs without Ni layer. The ITO/Ni/AZO combination provided optimum results in all the electrical properties. As compared to other TCO/metal combinations, the overall performance of ITO/Ni/AZO tri-layer combination was appreciable. These results show that the optical and electrical properties of TCO layers could be enhanced by inserting a Ni layer with optimum thickness in between them.

  1. Characterization of Yb:YAG active slab media based on a layered structure with different doping

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Ciofini, M.; Esposito, L.; Ferrara, P.; Gizzi, L. A.; Hostaša, J.; Labate, L.; Pirri, A.; Toci, G.; Vannini, M.

    2013-05-01

    Slabs with non-uniform doping distribution are studied with the aim of reducing thermal deformations in high-energy high-average-power Yb:YAG slab systems. We present a numerical analysis based on Finite Element Mesh (FEM) methods suitable to model non-uniform devices. The thermal variation of the refractive index, the end-faces deformations and the photo-elastic effect have been calculated in order to estimate the total thermal-lens effect. The stress distributions are also obtained. Some results of this numerical approach are compared to experimental thermal lens measurements in a simple geometry for both uniform and structured samples, in order to validate the numerical procedures. Finally we compare numerical simulations for different single- or double-sided pumping and cooling geometries. They show that structured slabs can reduce thermal gradients with respect to uniformly doped means with comparable absorption and geometry. This means a reduction of thermal lens effect and thus an increase of maximum allowed pump power loading. Previous literature reports some work made with structured slabs where higher doping was located in layers with lower pump radiation levels, in order to get a more uniform absorption. Interestingly our modeling indicates that reduced thermal effects are instead obtained when a higher doping is located close to the cooled surfaces.

  2. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  3. Dielectric function for doped graphene layer with barium titanate

    NASA Astrophysics Data System (ADS)

    Martinez Ramos, Manuel; Garces Garcia, Eric; Magana, Fernado; Vazquez Fonseca, Gerardo Jorge

    2015-03-01

    The aim of our study is to calculate the dielectric function for a system formed with a graphene layer doped with barium titanate. Density functional theory, within the local density approximation, plane-waves and pseudopotentials scheme as implemented in Quantum Espresso suite of programs was used. We considered 128 carbon atoms with a barium titanate cluster of 11 molecules as unit cell with periodic conditions. The geometry optimization is achieved. Optimization of structural configuration is performed by relaxation of all atomic positions to minimize their total energies. Band structure, density of states and linear optical response (the imaginary part of dielectric tensor) were calculated. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.

  4. Fe-doped InN layers grown by molecular beam epitaxy

    SciTech Connect

    Wang Xinqiang; Liu Shitao; Ma Dingyu; Zheng Xiantong; Chen Guang; Xu Fujun; Tang Ning; Shen Bo; Zhang Peng; Cao Xingzhong; Wang Baoyi; Huang Sen; Chen, Kevin J.; Zhou Shengqiang; Yoshikawa, Akihiko

    2012-10-22

    Iron(Fe)-doped InN (InN:Fe) layers have been grown by molecular beam epitaxy. It is found that Fe-doping leads to drastic increase of residual electron concentration, which is different from the semi-insulating property of Fe-doped GaN. However, this heavy n-type doping cannot be fully explained by doped Fe-concentration ([Fe]). Further analysis shows that more unintentionally doped impurities such as hydrogen and oxygen are incorporated with increasing [Fe] and the surface is degraded with high density pits, which probably are the main reasons for electron generation and mobility reduction. Photoluminescence of InN is gradually quenched by Fe-doping. This work shows that Fe-doping is one of good choices to control electron density in InN.

  5. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current–voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current–voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  6. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  7. Layered manganites : magnetic structure at extreme doping levels.

    SciTech Connect

    Mitchell, J. F.

    1998-09-11

    We report powder neutron diffraction results on the crystal and magnetic structures of the bilayer Ruddlesden-Popper phase Sr{sub 3}Mn{sub 2}O{sub 7{minus}{delta}} ({delta} = 0.0, 0.45) and correlate these structures with their magnetic and transport properties. The {delta} = 0.45 compound contains a large number of oxygen vacancies that are disordered in the MnO{sub 2} planes. As a result of this disordered vacancy structure, Sr{sub 3}Mn{sub 2}O{sub 6.55} is a nonmagnetic insulator. Sr{sub 3}Mn{sub 2}O{sub 7.0} ({delta} = 0) is an antiferromagnetic insulator whose magnetic structure is related to that of the SrMnO{sub 3} perovskite. Comparison of this end-member compound to its doped congeners in the La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} series highlights the extreme sensitivity of magnetic structure to dopant concentration in these layered materials.

  8. Suppression of segregation of the phosphorus δ-doping layer in germanium by incorporation of carbon

    NASA Astrophysics Data System (ADS)

    Yamada, Michihiro; Sawano, Kentarou; Uematsu, Masashi; Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi; Itoh, Kohei M.

    2016-03-01

    The successful formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) is reported. When the P δ-doping layers were grown by molecular beam epitaxy (MBE) directly on Ge wafers whose surfaces had residual carbon impurities, more than a half the phosphorus atoms were confined successfully within a few nm of the initial doping position even after the growth of Ge capping layers on the top. On the other hand, the same P layers grown on Ge buffer layers that had much less carbon showed significantly broadened P concentration profiles. Current-voltage characteristics of Au/Ti/Ge capping/P δ-doping/n-Ge structures having the abrupt P δ-doping layers with carbon assistance showed excellent ohmic behaviors when P doses were higher than 1 × 1014 cm-2 and the capping layer thickness was as thin as 5 nm. Therefore, the insertion of carbon around the P doping layer is a useful way of realizing ultrashallow junctions in Ge.

  9. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    SciTech Connect

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna

    2015-06-24

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 – 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (<2 at. %) were preferably oriented along the (100) plane, whereas in the case of higher Mo-doping concentration (>2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance of 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.

  10. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  11. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  12. Origin of ferromagnetism enhancement in bi-layer chromium-doped indium zinc oxides

    SciTech Connect

    Hsu, C. Y.

    2012-08-06

    This work demonstrates that by controlling the rapid thermal annealing temperature, amorphous chromium-doped indium zinc oxide films develop an amorphous-crystalline bi-layer structure and show magnetization up to {approx}30 emu/cm{sup 3}. The crystalline layer arises from significant out-diffusion of Zn from surfaces, leading to a large difference in the Zn:In ratio in amorphous and crystalline layers. Doped Cr ions in amorphous and crystalline layers form different valence configurations, creating a charge reservoir which transfers electrons through amorphous-crystalline interfaces and in turn enhances ferromagnetism.

  13. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-11-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.

  14. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  15. Metallic conduction induced by direct anion site doping in layered SnSe2

    PubMed Central

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm−3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm−1 from ~1.7 S·cm−1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm−3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  16. Metallic conduction induced by direct anion site doping in layered SnSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-Taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm-3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm-1 from ~1.7 S·cm-1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm-3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2.

  17. Metallic conduction induced by direct anion site doping in layered SnSe2.

    PubMed

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~10(20) cm(-3) is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S · cm(-1) from ~1.7 S · cm(-1) for non-doped SnSe2. When the carrier concentration exceeds ~10(19) cm(-3), the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  18. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    NASA Astrophysics Data System (ADS)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  19. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.

    2013-05-27

    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  20. Defect formation and carrier doping in epitaxial films of the infinite layer compound

    SciTech Connect

    Feenstra, R.; Pennycook, S.J.; Chisholm, M.F.

    1996-02-01

    The correlation between defect formation and carrier doping in epitaxial films of the infinite layer compound SrCuO{sub 2} has been studied via molecular beam epitaxy controlled layer-by-layer growth experiments, chemically resolved scanning transmission electron microscopy, scanning tunneling microscopy, x-ray diffraction, electrical transport measurements, and post-growth oxidation-reduction annealing. Based on the complementary information provided by these experiments, it is concluded that the carrier doping is dominated by the formation of an electron-doped, Sr and O deficient matrix under mildly oxidizing growth conditions. Hole-doping is induced by extended defects containing excess Sr atoms and may lead to superconductivity after high-temperature oxidation.

  1. The doping of the polyimide alignment layer by semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Galin, I. F.; Gavrish, E. O.; Vakulin, D. A.

    2013-08-01

    We investigated the electro-optic properties of nematic liquid crystal cells oriented by polyimide (PI) layer doped with 3.5 nm semiconductor quantum dots (QDs) CdSe/ZnS at concentrations of 0.05 and 0.1 wt. %. It is shown that doping PI orienting layer by QDs reduces the permittivity and the phase delay, as well as increases the electrical resistance of the cells. Also we observed deceleration of liquid crystal (LC) optical response caused by the screening effect of the orienting layer.

  2. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  3. Layer-resolved photoemission tomography: The p -sexiphenyl bilayer upon Cs doping

    NASA Astrophysics Data System (ADS)

    Reinisch, E. M.; Puschnig, P.; Ules, T.; Ramsey, M. G.; Koller, G.

    2016-04-01

    The buried interface between a molecular thin film and the metal substrate is generally not accessible to the photoemission experiment. With the example of a sexiphenyl (6 P ) bilayer on Cu we show that photoemission tomography can be used to study the electronic level alignment and geometric structure, where it was possible to assign the observed orbital emissions to the individual layers. We further study the Cs doping of this bilayer. Initial Cs exposure leads to a doping of only the first interface layer, leaving the second layer unaffected except for a large energy shift. This result shows that it is in principle possible to chemically modify just the interface, which is important to issues like tuning of the energy level alignment and charge transfer to the interface layer. Upon saturating the film with Cs, photoemission tomography shows a complete doping (6 p4 - ) of the bilayer, with the molecular geometry changing such that the spectra become dominated by σ -orbital emissions.

  4. Application of N- and B-doped CVD diamond layers for cyclic voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Torz-Piotrowska, R.; Wrzyszczyński, A.; Paprocki, K.; Staryga, E.

    2009-10-01

    Conductive polycrystalline diamond layers prepared by the CVD process have received attention from electrochemists owing to such superior electrochemical properties as the wide potential window, the very low background current, the stability of chemical and physical properties. In this paper, the cyclic voltammetry application using N- and B-doped diamond electrodes was studied. Diamond layers, doped with boron and nitrogen, were synthesized on a silicon substrate in a hot-filament CVD reactor. The obtained diamond layers were characterized using Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of diamond layers were measured in KCl and NaCl basic solutions to gain knowledge about their potential application as an electrode material. It was found that boron doped diamond electrodes showed potential windows up to about 7 V which were almost twice wider than those observed for conventional Pt electrodes.

  5. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  6. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    NASA Astrophysics Data System (ADS)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  7. Theoretical investigation of superconductivity in doped fullerenes. Final report

    SciTech Connect

    Jishi, R.A.

    1995-03-01

    The aim of the research the authors are conducting is to understand the phenomenon of superconductivity in the fullerene system. Towards achieving this goal they have conducted a series of studies and have published several papers quite recently. They have developed a force-constant model for the C60 molecule which accounts for all measured frequencies in C60. The model employs four bond-stretching and four angle-bending force constants that were doped to reproduce the correct values of the frequencies of the Raman-active vibrational modes. The model was successfully applied to higher fullerenes, such as C70 and the effect of doping by alkali metal atoms on the phonon modes in C60 and in C70 was considered. The study of the phonon spectrum in doped C60 and doped C70 is an important step in view of the fact that while doped C60 is superconducting, doped C70 is not. The studies the authors have carried out, combined with studies on the electronic states in doped C70, could elucidate the difference in the electrical properties between these two materials.

  8. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    SciTech Connect

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-15

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.

  9. Numerical simulation on white OLEDs with dotted-line doped emitting layers

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Hsuan; Wen, Chien-Yang; Huang, Yi-Hsiang; Kuo, Yen-Kuang

    2009-02-01

    White organic light-emitting diodes (OLEDs) have attracted great attention recently. In this study, high-efficiency white organic light-emitting diodes with dotted-line doped layers are numerically investigated with the APSYS (abbreviation of Advanced Physical Model of Simulation Devices) simulation program. The APSYS simulation program, developed by Crosslight Inc., is capable of dealing with the optical, electrical, and thermal characteristics of OLED devices. To approach the real situation, the OLED device fabricated by Park et al. (Current Applied Physics 1, 116, 2001) was first modeled by adjusting the appropriate physical parameters. Based on this OLED structure, a new structure of ITO/α-NPD (40 nm)/Alq3:DCJTB (30 nm)/Alq3 (30 nm)/Mg:Ag emitting quasi-white light was then proposed. Then, the single layer of Alq3:DCJTB was replaced by multi-(Alq3:DCJTB/Alq3)n layers, which are the so-called dotted-line doped layers (see, e.g., paper by Han et al., Solid State Communications 141, 332, 2007), to further improve the optical performance. The optical properties of the white OLEDs with different pairs of (Alq3:DCJTB/Alq3)n dotted-line doped layers are investigated and discussed in detail. Optimization of the proposed quasi-white OLED structures is attempted. The simulation results indicate that the OLED with dotted-line doped layers has higher radiative recombination rate and better emission efficiency than that with a single Alq3:DCJTB layer. The physical origin of the improved optical performance for the OLED with dotted-line doped layers could be due to the increased electrons and holes at the interfaces between the Alq3:DCJTB and Alq3 layers, which thus results in higher radiative recombination rate and better emission efficiency.

  10. Band Gap Engineering and Layer-by-Layer Band Gap Mapping of Selenium-doped Molybdenum Disulfide

    SciTech Connect

    Gong, Yongji; Liu, Zheng; Lupini, Andrew R; Lin, Junhao; Pantelides, Sokrates T; Pennycook, Stephen J; Zhou, Wu; Ajayan, Pullikel M

    2014-01-01

    Ternary two-dimensional dichalcogenide alloys exhibit compositionally modulated electronic structure and hence, control of dopant concentration within each layer of these layered compounds provides a powerful way to modify their properties. The challenge then becomes quantifying and locating the dopant atoms within each layer in order to better understand and fine-tune the desired properties. Here we report the synthesis of selenium substitutionally doped molybdenum disulfide atomic layers, with a broad range of selenium concentrations, resulting in band gap modulations of over 0.2 eV. Atomic scale chemical analysis using Z-contrast imaging provides direct maps of the dopant atom distribution in individual MoS2 layers and hence a measure of the local band gaps. Furthermore, in a bilayer structure, the dopant distribution of each layer is imaged independently. We demonstrate that each layer in the bilayer contains similar doping levels, randomly distributed, providing new insights into the growth mechanism and alloying behavior in two-dimensional dichalcogenide atomic layers. The results show that growth of uniform, ternary, two-dimensional dichalcogenide alloy films with tunable electronic properties is feasible.

  11. Morphology and electrical conduction of Si:P δ-doped layers on vicinal Si(001)

    NASA Astrophysics Data System (ADS)

    Reusch, T. C. G.; Goh, K. E. J.; Pok, W.; Lo, W.-C. N.; McKibbin, S. R.; Simmons, M. Y.

    2008-09-01

    We present a combined scanning tunneling microscopy (STM) and low-temperature magnetotransport study of Si:P δ-doped layers on vicinal Si(001) substrates. The substrates were misoriented 4° toward [110] resulting in a high step density on the starting growth surface. Atomically resolved STM was used to study all stages of the fabrication. We find only a weak influence of the high step density and discuss the implications for the fabrication δ-doped layers and planar nanoscale Si:P devices by scanning tunneling lithography.

  12. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-01

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state. PMID:24635343

  13. Stability of few layer graphene films doped with gold (III) chloride

    NASA Astrophysics Data System (ADS)

    Abdullah-Al-Galib, Mir; Hou, Bo; Shahriad, Tahmeed; Zivanovic, Sandra; Radadia, Adarsh D.

    2016-03-01

    In this paper we study the stability of few layer graphene (5-7 layers) doped with gold nanoparticles through spin coating of a gold (III) chloride solution. Specifically sheet resistance, optical transmittance and surface morphology were monitored over a period of four weeks. Through scanning electron microscopy we observed that the gold nanoparticles of 29.1 ± 1.3 nm diameters, which were formed on surfaces freshly doped with a 20 mM solution, agglomerate and fuse over the period of four weeks into larger particles of 50-110 nm diameters. At the end of four weeks of aging, regardless in air or vacuum, the optical transmittance at 550 nm for the doped samples resumed a value close to that of undoped samples. During these four weeks, the sheet resistances of the samples doped with 20 mM gold chloride also increased from 130 ohm/sq to 300 ohm/sq, but stayed comparable to indium tin oxide. In summary, despite the instability of doped FLG surfaces obtained using gold (III) chloride solutions, this study warrants the use of doped FLG films for building the next generation photovoltaics.

  14. Window layer with p doped silicon oxide for high Voc thin-film silicon n-i-p solar cells

    NASA Astrophysics Data System (ADS)

    Biron, Rémi; Pahud, Celine; Haug, Franz-Josef; Escarré, Jordi; Söderström, Karin; Ballif, Christophe

    2011-12-01

    We investigate the influence of the oxygen content in boron-doped nanocrystalline silicon oxide films (p-nc-SiOx) and introduce this material as window layer in n-i-p solar cells. The dependence of both, optical and electrical properties on the oxygen content is consistent with a bi-phase model which describes the p-nc-SiOx material as a mixture of an oxygen-rich (O-rich) phase and a silicon-rich (Si-rich) phase. We observe that increasing the oxygen content enhances the optical gap E04 while deteriorating the activation energy and the planar conductivity. These trends are ascribed to a higher volume fraction of the O-rich phase. Incorporated into n-i-p a-Si:H cells, p-nc-SiOx layers with moderate oxygen content yield open circuit voltage (Voc) up to 945 mV, which corresponds to a relative gain of 11% compared to an oxygen-free p-layer. As a similar gain is obtained on planar and on textured substrates, we attribute the increase in Voc to the higher work function of the p-nc-SiOx layer made possible by its wider band gap. These results are attained without changing the dilution ratio of the 250 nm thick intrinsic layer. We also observe an enhancement of 0.6 mA cm-2 in short circuit current density in the short wavelengths due to the higher transparency of the p-nc-SiOx layer. Finally, an initial efficiency of 9.9% for a single junction 250 nm a-Si:H n-i-p solar cell on plastic foil is achieved with the optimization of the p layer thickness, the doping ratio of the front transparent conductive oxide, and the optical properties of the back reflector.

  15. Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer.

    PubMed

    Kim, Shin Sung; Bae, Seunghwan; Jo, Won Ho

    2015-12-21

    Herein we report a simple n-doping method to enhance the performance of perovskite solar cells with a planar heterojunction structure. Devices with an n-doped PCBM electron transporting layer exhibit a power conversion efficiency of 13.8% with a remarkably enhanced short-circuit current of 22.0 mA cm(-2) as compared to the devices with an un-doped PCBM layer. PMID:26466302

  16. Highly enhanced phosphorescent organic light-emitting diodes with cesium fluoride doped electron injection layer

    NASA Astrophysics Data System (ADS)

    Han, Jongseok; Kwon, Yongwon; Sohn, Jiho; Lee, Changhee

    2015-09-01

    We systematically investigate doping effect of cesium fluoride (CsF) on the device performance of organic light-emitting diodes (OLEDs). CsF can be used as a stable n-type dopant due to its low chemical reactivity and simple deposition process. We have observed that CsF could be employed as an effective n-type dopant in thin films of 3,3'-[5'- [3-(3-Pyridinyl)phenyl][1,1':3',1''-terphenyl]-3,3''-diyl]bispyridine (TmPyPB) through experimental studies of optical absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS) with different doping concentration. In addition, we measured bulk resistance using impedance spectroscopy in an electron-only devices (EODs) with CsF-doped TmPyPB. As the doping ratio of the CsF increases, the current densities of EOD increase and the bulk resistances of the CsF-doped layer decrease. Owing to high electrical property of CsF-doped TmPyPB in EIL, green phosphorescent OLEDs showed significantly lower voltage and considerably enhanced efficiency. The device with 30 vol% CsF-doped TmPyPB showed power efficiency of 28.1 lm/W at 1000 cd/m2, whereas the device with pristine TmPyPB exhibited 13.8 lm/W. From these results, CsF-doped TmPyPB as EIL can reduce bulk resistance of EIL and improve the electron-injection and transport properties of electron-transport layer. Therefore, we can utilize CsF as an efficient n-type dopant in EIL of OLEDs.

  17. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  18. Quasi-particle band structure of potassium-doped few-layer black phosphorus with GW approximation

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu; Baik, Seung Su; Choi, Hyoung Joon

    We calculate the quasi-particle band structure of pristine and potassium-doped black phosphorus (BP) by using the GW approximation. We obtain band gaps of pristine bulk and few-layer BP and compare them with the result of the density functional calculations and experimental measurements. For potassium-doped cases, we calculate the electronic band structure of potassium-doped few-layer BPs with various doping densities. We obtain the critical doping density for the band-gap closing, and the energy-band dispersions when the band gap is inverted. We discuss Dirac semimetal properties of doped few-layer BPs obtained by the GW approximation. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039).

  19. Lanthanide-doped titanium dioxide layers as photocatalysts

    NASA Astrophysics Data System (ADS)

    Uzunova-Bujnova, M.; Todorovska, R.; Dimitrov, D.; Todorovsky, D.

    2008-09-01

    Films (˜0.5 mg/cm 2) from TiO 2 doped with 1-10 mol% Ln 3+ (Ln = La or Gd) are deposited on different types of substrates by spray-pyrolysis using ethylene glycol solutions of Ti 4+-Ln 3+ citric complexes as starting material and O 2 as a carrier gas. The films are post-deposition heated at 500 °C. Their phase composition, crystal structure, morphology, sorption ability and photocatalytic activity are studied. Aqueous solution of methylene blue is applied as a model pollutant. A film with 5 mol% La on Ti-coated stainless steel substrate shows significantly higher photocatalytic activity than the best performing samples produced from commercially available titania.

  20. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    PubMed Central

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-01-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm−2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach. PMID:26525386

  1. Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Gamarra, Piero; Lacam, Cedric; Tordjman, Maurice; Splettstösser, Jörg; Schauwecker, Bernd; di Forte-Poisson, Marie-Antoinette

    2015-03-01

    This work reports on the optimisation of carbon doping GaN buffer layer (BL) for AlGaN/GaN HEMT (high electron mobility transistor) structures, grown by low pressure metal-organic vapour phase epitaxy (LP-MOVPE) on 3 in. SiC semi-insulating substrates. The incorporation of carbon impurities in GaN is studied as a function of the growth conditions, without using an external carbon source. We observed that the C incorporation can be effectively controlled over more than one order of magnitude by tuning the reactor pressure and the growth temperature, without degradation of the crystalline properties of the GaN layers. HEMT structures with a specific barrier design were grown with different carbon dopings in the GaN BL and processed into transistors to evaluate the impact of the BL doping on the device performances. A significant improvement of the HEMT drain leakage current and of the breakdown voltage was obtained by increasing the carbon incorporation in the GaN BL. The RF performances of the devices show a trade-off between leakage currents and trapping phenomena which are enhanced by the use of carbon doping, limiting the delivered output power. An output power as high as 6.5 W/mm with a Power Added Efficiency of 70% has been achieved at 2 GHz by the HEMT structures with the lowest carbon doping in the BL.

  2. Biophotonic low-coherence sensors with boron-doped diamond thin layer

    NASA Astrophysics Data System (ADS)

    Milewska, D.; Karpienko, K.; Sobaszek, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    Low-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective layer has been developed. B-NCD layers with different boron doping level were investigated. The boron level, expressed as the boron to carbon (/[C]) ratio in the gas phase, was: 0, 2000, 5000 or 10000 ppm. B-NCD layers were grown by chemical vapor deposition (CVD). The sensing Fabry-Perot interferometer, working in the reflective mode, was connected to the source and to the optical processor by single-mode fibers. Superluminescent diodes with Gaussian spectral density were used as sources, while an optical spectrum analyzer was used as an optical processor. The design of the sensing interferometer was optimized to attain the maximum interference contrast. The experiment has shown that B-NCD thin layers can be successfully used in biophotonic sensors.

  3. Incommensurate superstructure in heavily doped fullerene layer on Bi/Si(111) surface

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Cs adsorption onto the C60-covered Si(111)-β- √{ 3 } × √{ 3 } -Bi reconstruction has been studied by means of scanning tunneling microscopy and photoelectron spectroscopy. Unexpected increase in apparent size of every second C60 molecule has been detected, hereupon the close packed molecular array almost doubles its periodicity. The change affects only the fullerenes that are in direct contact with the metal-induced reconstruction and takes no place already in the second layer. Photoelectron studies have revealed that this incommensurate "2 × 2" superstructure of a heavily doped C60 monolayer remains in an insulating state regardless of doping level.

  4. Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers

    SciTech Connect

    Duong, Dinh Loc; Lee, Si Young; Kim, Seong Kyu; Lee, Young Hee

    2015-06-15

    We report graphene/ferroelectric/graphene hybrid structure to demonstrate an asymmetrical doping in two graphene layers, one side with electrons and another side with holes. Two ferroelectrics, a poly(vinylidenefluoride) (PVDF) and a hydrofluorinated graphene, were used to demonstrate the concept with density functional calculations, revealing the Fermi level shift of 0.35 and 0.75 eV, respectively. This concept was confirmed by Raman spectroscopy using graphene/poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/graphene hybrid, which can easily form β-phase close to our simulation model. G-band peak position was downshifted for electron doping and upshifted for hole doping. This hybrid structure opens an opportunity to study bilayer graphene system with a controllable thickness for a wide range of high carrier concentration.

  5. (abstract) All Epitaxial Edge-geometry SNS Devices with Doped PBCO and YBCO Normal Layers

    NASA Technical Reports Server (NTRS)

    Barner, J. B.; Hunt, B. D.; Foote, M. C.

    1995-01-01

    We will present our results on tapered-edge-geometry SNS weak link fabricated from c-axis oriented base-, counterelectrode and normal layers using a variety of processing conditions. To date, we have employed a variety of different normal materials (Co-doped YBCO, Y-doped PBCO, Ca-doped PBCO). We have been examining the junction fabrication process in detail and we will present our methods. In particular, we have been examining both epitaxial and non-epitaxial milling mask overlayers and we will present a comparison of both methods. These devices behave similar to the expectations of the resisively shunted junction model and conventional SNS proximity effect models but with some differences which will be discussed. We will present the detailed systematics of our junctions including device parameters versus temperature, rf and dc magnetic response for the various processing conditions.

  6. P-type conductivity control of Si-doped GaAsSb layers grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yokoyama, Haruki; Hoshi, Takuya

    2015-01-01

    The electrical characteristics of Si-doped GaAsSb layers grown at various growth temperatures from 530 to 630 °C by metalorganic chemical vapor deposition (MOCVD), are investigated. When the substrate temperature is 530 °C, the conductivity of Si-doped GaAsSb layers is n-type. In contrast, Si-doped GaAsSb layers grown at higher temperature (580 °C) show p-type conductivity. Moreover, the p-type carrier concentration in these layers increases proportionally to the increase of the disilane (Si2H6) flow rate. This is the first time that p-type doping into GaAsSb layers has been achieved by MOCVD using Si as a dopant.

  7. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    PubMed

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn. PMID:27254534

  8. Self-Doping, O2-Stable, n-Type Interfacial Layer for Organic Electronics

    SciTech Connect

    Reilly, T. H. III; Hains, A. W.; Chen, H. Y.; Gregg, B. A.

    2012-04-01

    Solid films of a water-soluble dicationic perylene diimide salt, perylene bis(2-ethyltrimethylammonium hydroxide imide), Petma{sup +}OH{sup -}, are strongly doped n-type by dehydration and reversibly de-doped by hydration. The hydrated films consist almost entirely of the neutral perylene diimide, PDI, while the dehydrated films contain {approx}50% PDI anions. The conductivity increases by five orders of magnitude upon dehydration, probably limited by film roughness, while the work function decreases by 0.74 V, consistent with an n-type doping density increase of {approx}12 orders of magnitude. Remarkably, the PDI anions are stable in dry air up to 120 C. The work function of the doped film, {phi} (3.96 V vs. vacuum), is unusually negative for an O{sub 2}-stable contact. Petma{sup +} OH{sup -} is also characterized as an interfacial layer, IFL, in two different types of organic photovoltaic cells. Results are comparable to state of the art cesium carbonate IFLs, but may improve if film morphology can be better controlled. The films are stable and reversible over many months in air and light. The mechanism of this unusual self-doping process may involve the change in relative potentials of the ions in the film caused by their deshielding and compaction as water is removed, leading to charge transfer when dry.

  9. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    DOE PAGESBeta

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  10. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  11. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    SciTech Connect

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d, electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.

  12. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    DOE PAGESBeta

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d,more » electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.« less

  13. Conductive surface modification of LiFePO4 with nitrogen doped carbon layers for lithium-ion batteries

    SciTech Connect

    Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A; Unocic, Raymond R; Nanda, Jagjit; Dai, Sheng; Paranthaman, Mariappan Parans

    2012-01-01

    The LiFePO4 rod surface modified with nitrogen doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The coated LiFePO4 rod exhibits good capacity retention and high rate capability as the nitrogen doped carbon improves conductivity and prevents aggregation of the rod during cycling.

  14. Formation of manganese {delta}-doped atomic layer in wurtzite GaN

    SciTech Connect

    Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R.

    2012-09-01

    We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

  15. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  16. Resonant doped bismuth telluride for reliable, efficient cryocooling. Final report

    SciTech Connect

    Volckmann, E.H.

    1992-10-16

    Today's cryogenic coolers that operate down to 77 K suffer from several problems. Their most serious difficulties are significant noise levels, excessive vibration and poor reliability. Thermoelectric coolers do not suffer any of these concerns. However, thermoelectric coolers are not presently capable of cooling to temperatures as low as 77 K. Development of thermoelectric materials capable of extending cooler performance to these temperatures would open up potential applications such as cryogenic cooling of infrared detectors and CCDs as well as removing heat from Joule-Thomson refrigerators. Presently, the best thermoelectric materials over the temperature range 200 K to 450 K and the most practical below 200 K, are solid solutions of Bi2Te3, Sb2Te3 and/or Bi2Se3. These alloys yield a peak dimensionless figure of merit, ZT, of approximately one near 300 K. These materials often require doping in order to optimize the carrier concentration and figure of merit, Z. As reported by Ravich and Vedernikov, certain impurities can also be added to improve thermoelectric properties through a selective scattering mechanism.

  17. Fabrication and characterization of perovskite-type solar cells with Nb-doped TiO2 layers

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Oku, Takeo; Suzuki, Atsushi; Akiyama, Tsuyoshi

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing perovskite CH3NH3PbI3 using Nb-doped TiO2 as an electron-transporting layer were fabricated and characterized. Nb-doped TiO2 layer showed an improvement of the short-circuit current density and power conversion efficiency using Ti0.95Nb0.05O2.

  18. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C{sub 60} layers

    SciTech Connect

    Tsukanov, D. A. Saranin, A. A.; Ryzhkova, M. V.; Borisenko, E. A.; Zotov, A. V.

    2015-01-05

    Electrical conductance of sodium-doped C{sub 60} ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)√3 × √3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C{sub 60} ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C{sub 60} layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC{sub 60} and Na{sub 2}C{sub 60} compound layers.

  19. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping

    PubMed Central

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs. PMID:25435832

  20. Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer

    NASA Astrophysics Data System (ADS)

    Leem, Dong-Seok; Park, Hyung-Dol; Kang, Jae-Wook; Lee, Jae-Hyun; Kim, Ji Whan; Kim, Jang-Joo

    2007-07-01

    The authors report a promising metal oxide-doped hole transporting layer (HTL) of rhenium oxide (ReO3)-doped N ,N'-diphenyl-N ,N'-bis (1,1'-biphenyl)-4,4'-diamine (NPB). The tris(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with ReO3-doped NPB HTL exhibit driving voltage of 5.2-5.4V and power efficiency of 2.2-2.3lm/W at 20mA/cm2, which is significantly improved compared to those (7.1V and 2.0lm/W, respectively) obtained from the devices with undoped NPB. Furthermore, the device with ReO3-doped NPB layer reveals the prolonged lifetime than that with undoped NPB. Details of ReO3 doping effects are described based on the UV-Vis absorption spectra and characteristics of hole-only devices.

  1. Eu-doped Mg-Al layered double hydroxide as a responsive fluorescent material and its interaction with glutamic acid

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Li, Fei; Yu, Gensheng; Wei, Junchao

    2012-10-01

    The paper describes a study on the fluorescence of a Eu-doped Mg-Al layered double hydroxide (Eu-doped LDH) response to glutamic acid (Glu). Various characterizations (UV-Vis transmittance, TG-DTA and IR-spectrum) indicated that there is an interaction between the Eu-doped LDH and Glu. Fluorescent study was found that the red emissions resulted from 5D0-7FJ transition (J = 1, 2) of Eu3+ markedly decreased, while the blue emission at 440 nm contributed to Glu shifted to low energy after the addition of Glu to the Eu-doped LDH. The fluorescent changes may be relevant to the hydrogen-bond interaction between the Eu-doped LDH and Glu, and the mechanism of the interaction between Eu-doped LDH and Glu was discussed.

  2. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  3. Defect formation in epitaxial layers of doped with cd and sn

    SciTech Connect

    Arbenina, V.V.; Skakovskii, S.I.; Voloshin, A.E.

    1986-10-01

    The authors consider the dislocation structure and impurity-atom distributions in GaSb epitaxial layers doped with Cd and Sn and grown by liquid-phase epitaxy (LPE) on undoped gallium antimonide substrates. A horizontal apparatus was used to carry out epitaxy. The samples were investigated by x-ray topography and double-crystal spectroscopy. The concentration and mobility of the charge carriers were determined by Hall-effect measurements using the Van der Pauw method. It is shown that in the case of double doping of gallium antimonide by cadmium and tin the dislocation density may decrease by an order of magnitude compared to values obtained when these impurities are individually added. A possible distribution mechanism of Cd and Sn atoms in the GaSb lattice is presented.

  4. Superresolution Structure Optical Disk with Semiconductor-Doped Glass Mask Layer Containing CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Tung‑Ti; Wang, Jr‑Hau; Hsieh, Tsung‑Eong; Shieh, Han‑Ping D.

    2006-02-01

    In this work, we demonstrate a distinct superresolution phenomenon and signal properties of an optical disk with a semiconductor-doped glass (SDG) mask layer containing CdSe nanoparticles. It was found that the 69 nm marks could be consistently retrieved at reading power (Pr) = 4 mW with carrier-to-noise ratio (CNR) = 13.56 dB. The signals were clearly resolved with CNRs nearly equal to 40 dB at Pr=4 mW when the recorded marks were larger than 100 nm. The cyclability test indicated that the CdSe-SiO2 SDG layer might serve as a stable and reliable optical mask layer in 105 readout cycles.

  5. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III; James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  6. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Moghaddam, Saeed; Zhou, Chuanzhen; Liu, Yang; Fancher, Chris M.; Jones, Jacob L.

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  7. The effects of layering in ferroelectric Si-doped HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Liu, Yang; Fancher, Chris M.; Jones, Jacob L.; Moghaddam, Saeed; Nishida, Toshikazu

    2014-08-01

    Atomic layer deposited Si-doped HfO2 thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO2 thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  8. First-principles study of the noble metal-doped BN layer

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Sun, Xin; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei

    2011-04-18

    Intriguing electronic and magnetic properties of BN layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the band gap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus exhibit a magnetic moment of 1.0 µB, leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices.

  9. Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer

    NASA Astrophysics Data System (ADS)

    Jian-Feng, Li; Chuang, Zhao; Heng, Zhang; Jun-Feng, Tong; Peng, Zhang; Chun-Yan, Yang; Yang-Jun, Xia; Duo-Wang, Fan

    2016-02-01

    In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)) (PEDOT:PSS) and its influence on the performance of perovskite solar cells. . The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide (ITO)/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al, where PEDOT:PSS and PC61BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency (PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G (100 mW/cm2 illumination) after the buffer layer has been modified. Project supported by the National Natural Science Foundation of China (Grant Nos. 61264002, 61166002, 91333206, and 51463011), the Natural Science Foundation of Gansu Province, China (Grant No. 1308RJZA159), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0840), the Research Project of Graduate Teacher of Gansu Province, China (Grant No. 2014A-0042), and the Postdoctoral Science Foundation from Lanzhou Jiaotong University, China.

  10. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2.

    PubMed

    Kaushik, Naveen; Karmakar, Debjani; Nipane, Ankur; Karande, Shruti; Lodha, Saurabh

    2016-01-13

    We demonstrate a low and constant effective Schottky barrier height (ΦB ∼ 40 meV) irrespective of the metal work function by introducing an ultrathin TiO2 ALD interfacial layer between various metals (Ti, Ni, Au, and Pd) and MoS2. Transmission line method devices with and without the contact TiO2 interfacial layer on the same MoS2 flake demonstrate reduced (24×) contact resistance (RC) in the presence of TiO2. The insertion of TiO2 at the source-drain contact interface results in significant improvement in the on-current and field effect mobility (up to 10×). The reduction in RC and ΦB has been explained through interfacial doping of MoS2 and validated by first-principles calculations, which indicate metallic behavior of the TiO2-MoS2 interface. Consistent with DFT results of interfacial doping, X-ray photoelectron spectroscopy (XPS) data also exhibit a 0.5 eV shift toward higher binding energies for Mo 3d and S 2p peaks in the presence of TiO2, indicating Fermi level movement toward the conduction band (n-type doping). Ultraviolet photoelectron spectroscopy (UPS) further corroborates the interfacial doping model, as MoS2 flakes capped with ultrathin TiO2 exhibit a reduction of 0.3 eV in the effective work function. Finally, a systematic comparison of the impact of selective doping with the TiO2 layer under the source-drain metal relative to that on top of the MoS2 channel shows a larger benefit for transistor performance from the reduction in source-drain contact resistance. PMID:26649572

  11. Investigation of electrical and optothermal properties of Si-doped GaSb epitaxial layers by the Hall effect, PL measurement and photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Genty, F.; Yacoubi, N.

    2009-11-01

    The aim of this work is to investigate the influence of Si-doping on the optical, thermal and electrical properties of GaSb epitaxial layers. Such an influence was quantified through photoluminescence (PL), mirage effect (photothermal spectroscopy) and Hall effect measurements. Several GaSb samples, grown by Molecular Beam Epitaxy (MBE) on (100)-oriented GaAs semiinsulating substrates, with different Si-doping levels ranging from 4.95 × 1016at .cm-3 up to 8.11.1019 at .cm-3 were tested. As a comparison, the same measurements were also performed on a GaSb non intentionally doped layer. The Hall effect data shows a monotonic decrease in carrier mobility when the hole concentration increase. The effect of band-to-band, band-impurity transitions on the PL gap E0 and the influence of high impurity concentration on the PL and absorption spectra have been also studied. Finally, the optical absorption changes induced by Si-doping on GaSb samples were investigated by photothermal deflection. It was shown that this technique allows a very precise deduction of the real interband gap energy of a semiconductor material as GaSb. Thermal conductivities were also deduced from the photothermal deflection measurements. The found values are very low due to the thermal resistivity of the layer-substrate interface but also due to the lattice-mismatch between GaSb epilayers and the GaAs substrate. However, the contribution of the free carriers to the thermal conductivity, with a high p-doping level (p > 1019cm-3), could be highlighted.

  12. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly. PMID:26789206

  13. Enhanced room-temperature thermoelectric performance of In-doped ZnO:Al thin films through prefabricated layer doping method

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Fan, Ping; Luo, Jing-Ting; Liang, Guang-Xing; Zhang, Dong-Ping

    2015-05-01

    In this study, AZO thin films prepared by direct current reactive magnetron sputtering using a Zn-Al alloy target and In with varied content were doped through the prefabricated layer doping method in order to optimize their thermoelectric properties. The effects of In content on the room temperature microstructure and thermoelectric properties of the AZO thin films were investigated. It was found that the absolute value of the Seebeck coefficient of the thin films increases stably after In doping and reaches 153 μV·K-1 when the In content is 0.71%. Though the electrical conductivity of In-doped thin films is smaller than those of the un-doped films, the power factor of the thin films shows a significant increase after In doping with a maximum value of 2.22 × 10-4 W·m-1·K-2, which is several times that of the un-doped films.[Figure not available: see fulltext.

  14. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  15. Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells

    SciTech Connect

    Wang, Chao-Chun; Wuu, Dong-Sing; Lin, Yang-Shih; Lien, Shui-Yang; Huang, Yung-Chuan; Liu, Chueh-Yang; Chen, Chia-Fu; Nautiyal, Asheesh; Lee, Shuo-Jen

    2011-11-15

    In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (T{sub diffuse}/T{sub total}) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10{sup -3}{Omega} cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

  16. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. PMID:26070189

  17. Photoluminescence study of (Er3+ + Yb3+) doped gallium nitride layers fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prajzler, Vaclav; Hüttel, Ivan; Spirkova, Jarmila; Oswald, Jiri; Perina, Vratislav; Zavadil, Jiri; Machovic, Vladimír; Burian, Zdenek

    2005-09-01

    Erbium (Er3+) and Ytterbium (Yb3+) ions doped Gallium Nitride (GaN) layers were deposited by RF magnetron sputtering. Deposition was carried out in Ar + N2 gas mixture using Ga and Ga2O3 target as the source of Gallium. For the erbium and ytterbium doping, the Er2O3, Yb2O3 pellets, or Er and Yb powder were laid on the top of the Ga2O3 target. The GaN layers were deposited on silicon and Corning glass substrates. The properties of the GaN layers were investigated by using X-ray diffraction, Raman spectroscopy, absorption spectra and photoluminescence spectra. Prism coupling mode spectroscopy was used to measure the waveguiding properties. The composition of the fabricated samples was determined by using nuclear chemical analysis as Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA). The results of the experiments were evaluated in terms of the relations between the technology approaches and the composition and luminescence properties of the fabricated thin films. Up to now the best results, which can be utilized for a structure operating at 1550 nm (when pumped at 980 nm), were obtained when using (erbium plus ytterbium) metallic powder and Corning glass as the substrate for the deposition.

  18. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  19. Electrical and optical properties of Ti doped ZnO films grown on glass substrate by atomic layer deposition

    SciTech Connect

    Wan, Zhixin; Kwack, Won-Sub; Lee, Woo-Jae; Jang, Seung-II; Kim, Hye-Ri; Kim, Jin-Woong; Jung, Kang-Won; Min, Won-Ja; Yu, Kyu-Sang; Park, Sung-Hun; Yun, Eun-Young; Kim, Jin-Hyock; Kwon, Se-Hun

    2014-09-15

    Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electron microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.

  20. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  1. Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment.

    PubMed

    Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik

    2016-07-25

    In this paper, a 1.8 keV ion beam (IB) sputtered thin layer of aluminum-doped zinc oxide (AZO) with columnar AZO bumps covering the surface working as an alignment layer for the homogeneous alignment of liquid crystals (LC) is investigated. Bumpy AZO alignment layers in twisted nematic (TN) cells generated larger LC pre-tilt angles and thus enabled accelerated switching of LC, and the highly conductive bumpy AZO thin layers allowed super-fast release of accumulated charges, and led to low residual DC performance. These results indicate the promising applications of AZO bumps layer as alignment layer in LC devices. PMID:27464189

  2. On the radiation resistance of planar Gunn diodes with δ-doped layers

    SciTech Connect

    Obolenskaya, E. S. Churin, A. Yu.; Obolensky, S. V.; Murel, A. V.; Shashkin, V. I.

    2015-11-15

    The radiation resistance of planar Gunn diodes is investigated. Based on the results of measurements of the pulsed current–voltage characteristics and computer simulations it is shown that the use of δ layers of doping impurities contributes to the higher radiation resistance of planar diodes by an order of magnitude compared to conventional Gunn diodes. The results of this study make it possible to formulate methodical guidelines to reduce the amount of computational and experimental studies without a considerable decrease in their informativity.

  3. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  4. Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4.

    PubMed

    Sun, Xiaoqin; Xie, Yinghao; Wu, Fangfang; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2015-08-01

    Layered semiconductor photocatalysts have been found to exhibit promising performance levels, probably linked to their interlayer framework that facilitates separation of charge carriers and the reduction/oxidation reactions. Layered titanates, however, generally demonstrate activities under UV irradiation, and therein lies the strong desire to extend their activity into the visible light region. Here, we investigated a series of layered perovskite by doping Sr2TiO4 with Cr and/or La in the hope to improve their visible light responses. Their crystal structures and other physicochemical properties were systematically explored. Our results show that La and Cr can be successfully accommodated in the layered structure and Cr is an efficient dopant for the extension of visible light absorbance. Much enhanced photocatalytic hydrogen evolution was observed after doping and was found to be composition-dependent. The highest hydrogen production rate approaches 97.7 μmol/h for Sr2Ti0.95Cr0.05O4-δ under full range irradiation (λ ≥ 250 nm) and 17 μmol/h for Sr2Ti0.9Cr0.1O4-δ under visible light irradiation (λ ≥ 400 nm), corresponding to an apparent quantum efficiency of 0.16% and 0.05%, respectively. Theoretical calculation reveals that the improved optical and photocatalytic properties are owing to a newly formed spin-polarized valence band from Cr 3d orbitals. The decreased unit cell parameters, reduced band gaps as well as anisotropic properties of layered architectures are likely the reasons for a better activity. Nevertheless, instability of these compounds in the presence of moisture and CO2 was also noticed, suggesting that protective atmospheres are needed for the storage of these photocatalysts. PMID:26171625

  5. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  6. Dimensionality and doping effect on the Core-level X-ray photoemission satellites in layered ruthenates.

    NASA Astrophysics Data System (ADS)

    Guo, Haizhong; Li, Yi; Hu, Biao; Jin, Rongying; Plummer, E. W.; Zhang, Jiandi; Urbina, D.; Liu, Tijiang; Fobes, David; Mao, Zhiqiang

    2009-03-01

    Core-level photoelectron spectra of the layered perovskite crystal Srn+1RunO3n+1 (n = 1, 2, and 3) and Mn-doped Sr3Ru2O7 are investigated by x-ray photoemission spectroscopy (XPS) techniques. The Sr 3d and Ru 3d core-level spectra exhibit a two-peak structure, screened and unscreened peaks, indicating strong correlation effects among Ru 4d electrons. However, there are little changes of the core-level satellite features with n, suggesting the electron-electron correlation is mainly confined in the RuO2 plane. On the other hand, doping of Mn will drastically affect the core-level spectral weight, reflecting the doping-induced metal-to-insulator transition in the doped system. The position of Ru-core levels remain the same, thus, indicating no doping-induced change of Ru valence.

  7. Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering

    PubMed Central

    Jung, Min-Cherl; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing

    2015-01-01

    We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the valence band maximum of perovskite for efficient hole extraction while maintaining a high open circuit voltage. Time-dependent solar cell performance measurements revealed significantly improved air stability for perovskite solar cells with the n-i-p structured spiro-OMeTAD HTL showing sustained efficiencies even after 840 h of air exposure. PMID:25985417

  8. Structural and electronic properties of manganese-doped Bi2Te3 epitaxial layers

    NASA Astrophysics Data System (ADS)

    Růžička, J.; Caha, O.; Holý, V.; Steiner, H.; Volobuiev, V.; Ney, A.; Bauer, G.; Duchoň, T.; Veltruská, K.; Khalakhan, I.; Matolín, V.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Springholz, G.

    2015-01-01

    We show that in manganese-doped topological insulator bismuth telluride layers, Mn atoms are incorporated predominantly as interstitials in the van der Waals gaps between the quintuple layers and not substitutionally on Bi sites within the quintuple layers. The structural properties of epitaxial layers with Mn concentration of up to 13% are studied by high-resolution x-ray diffraction, evidencing a shrinking of both the in-plane and out-of plane lattice parameters with increasing Mn content. Ferromagnetism sets in for Mn contents around 3% and the Curie temperatures rises up to 15 K for a Mn concentration of 9%. The easy magnetization axis is along the c-axis perpendicular to the (0001) epilayer plane. Angle-resolved photoemission spectroscopy reveals that the Fermi level is situated in the conduction band and no evidence for a gap opening at the topological surface state with the Dirac cone dispersion is found within the experimental resolution at temperatures close to the Curie temperature. From the detailed analysis of the extended x-ray absorption fine-structure experiments (EXAFS) performed at the MnK-edge, we demonstrate that the Mn atoms occupy interstitial positions within the van der Waals gap and are surrounded octahedrally by Te atoms of the adjacent quintuple layers.

  9. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    PubMed

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material. PMID:26960451

  10. Solution doped preform with improved uniformity and concentration using dual-layer soot deposition

    NASA Astrophysics Data System (ADS)

    Muhd-Yassin, S. Z.; Omar, Nasr Y. M.; Mat-Sharif, K. A.; Zulkifli, M. I.; Safar, M. H.; Aljamimi, S. M.; Yusoff, Z.; Emami, S. D.; Paul, M. C.; Abdul-Rashid, H. A.

    2016-03-01

    A new method of soot deposition to improve the characteristics of a solution-doped optical fibre preform is reported. The soot was generated using a modified chemical vapour deposition (MCVD) technique. A better longitudinal uniformity of the core refractive index profile and a higher degree of dopant incorporation were obtained when two layers of soot were deposited in the core. These improvements were further extended by depositing each layer at different temperatures. A variation of 0.15 × 10-2 (%RSD 3.5%) in the refractive index difference along 23 cm of the preform and a core-to-cladding refractive index difference of approximately 0.012 were achieved using a 1.2 M AlCl3 solution.

  11. Magnetic, luminescent Eu-doped Mg-Al layered double hydroxide and its intercalation for ibuprofen.

    PubMed

    Wang, Jun; Zhou, Jideng; Li, Zhanshuang; Song, Yanchao; Liu, Qi; Jiang, Zhaohua; Zhang, Milin

    2010-12-27

    A magnetic, luminescent Eu-doped Mg-Al layered double hydroxide with ibuprofen (IBU) intercalated in the gallery has been successfully prepared by a simple coprecipitation method. The physicochemical properties of the samples were well characterized by powder XRD, TEM, FTIR, TGA, inductively coupled plasma MS (ICP-MS), vibrating sample magnetometry (VSM), and fluorospectrophotometry. The results revealed that Fe(3)O(4) nanoparticles are coated on the surface of layered double hydroxides and the obtained (Mg(2)Al(0.95)Eu(0.05))(Fe)-(IBU) sample exhibits both superparamagnetic and luminescent properties, with a saturation magnetization value of 1.86 emu  g(-1) and a strong emission band at 610 nm, respectively. Additionally, it was found that the ibuprofen loading amount is about 31 % (w/w), and the intercalated ibuprofen possesses sustained release behavior when the magnetic, luminescent composite is immersed in simulated body fluid (SBF). PMID:21038324

  12. Microstructure of the Native Oxide Layer on Ni and Cr-doped Ni Nanoparticles

    SciTech Connect

    Wang, Chong M.; Baer, Donald R.; Bruemmer, Stephen M.; Engelhard, Mark H.; Bowden, Mark E.; Sundararajan, J. A.; Qiang, You

    2011-10-01

    Metallic or alloy nanoparticles exposed to air at room temperature will be instantaneously oxidized and covered by an oxide layer. However, for most cases, the true structural nature of the oxide layer formed at this stage is hard to determine. In this paper, we report the structure, morphology, and electronic structure (the density of state of both valence and conduction bands measured by a combination of XPS and EELS) of pure Ni and Cr-doped Ni nanoparticles synthesized using a cluster deposition process. Structural characterization carried out at the atomic level using aberration corrected high resolution transmission electron microscopy (HRTEM) in combination with electron and x-ray diffractions reveals that both pure Ni and Cr-doped Ni particles exposed to air at room temperature similarly possesses a core-shell structure of metal core covered by an oxide layer of typically 1.6 nm in thickness. There exists a critical size of ~ 6 nm, below which the particle is fully oxidized. The oxide particle corresponds to the rock-salt structured NiO and is faceted on the (001) planes. XPS of O-1s shows a strong peak that is attributed to (OH)-, which in combination with the atomic level HRTEM imaging indicates that the very top layer of the oxide is hydrolyzed as Ni(OH)2. Chemical composition analysis using EDS, EELS, and XPS indicates that the Cr dopant at the level of ~ 5at% forms solid solution with the Ni lattice. The Cr shows no segregation on the surface or preferential oxidation during the initial oxidation.

  13. The effects of doping layer location on the electronic and optical properties of GaN step quantum well

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, Hassen

    2016-09-01

    In the present work, the intersubband transition and the optical absorption coefficient between the ground and the first excited states in the Si-δ-doped step AlGaN/GaN quantum well were theoretically studied by solving Schrödinger-Poisson equations self-consistently within the framework of effective mass approximation. The delta-doped layer was inserted in three different locations (middle of the quantum well, middle of the step quantum well and middle of the left barrier). The obtained results show that the energy difference between the ground and the first excited state and the optical absorption depend not only on the doping layer concentration but also on its location. The shape of the confining potential and the wavefunctions were also changed depending on the doped layer location. It was found that doping in the middle quantum well is advantageous to obtain an optical absorption with a higher energy separation; however, doping in the left barrier gives us an optical absorption with a lower energy separation. The obtained results in optical absorption give us a new degree of freedom in optoelectronic devices based on intersubband transitions.

  14. Layer-by-layer assembly of multifunctional porous N-doped carbon nanotube hybrid architectures for flexible conductors and beyond.

    PubMed

    Zhao, Songfang; Gao, Yongju; Li, Jinhui; Zhang, Guoping; Zhi, Chunyi; Deng, Libo; Sun, Rong; Wong, Ching-Ping

    2015-04-01

    Coassemble diverse functional nanomaterials with carbon nanotubes (CNTs) to form three-dimensional (3D) porous CNTs hybrid architectures (CHAs) are potentially desirable for applications in energy storage, flexible conductors, and catalysis, because of diverse functionalities and synergistic effects in the CHAs. Herein, we report a scalable strategy to incorporate various functional nanomaterials with N-doped CNTs (N-CNTs) into such 3D porous CHAs on the polyurethane (PU) sponge skeletons via layer-by-layer (LbL) assembly. To investigate their properties and applications, the specific CHAs based on N-CNTs and Ag nanoparticles (NPs), denoted as PU-(N-CNTs/Ag NPs)n, are developed. The unique binary structure enables these specific CHAs conductors to possess reliable mechanical and electrical performance under various elastic deformations as well as excellent hydrophilicity. Moreover, they are employed as strain-gauge sensor and heterogeneous catalyst, respectively. The sensor could detect continuous signal, static signal, and pulse signal with superior sustainability and reversibility, indicating an important branch of electromechanical devices. Furthermore, the synergistic effects among N-CNTs, Ag NPs, and porous structure endow the CHAs with excellent performance in catalysis. We have a great expectation that LbL assembly can afford a universal route for incorporating diverse functional materials into one structure. PMID:25749434

  15. Layer-dependent fluorination and doping of graphene via plasma treatment.

    PubMed

    Chen, Minjiang; Zhou, Haiqing; Qiu, Caiyu; Yang, Huaichao; Yu, Fang; Sun, Lianfeng

    2012-03-23

    In this work, the fluorination of n-layer graphene is systematically investigated using CHF₃ and CF₄ plasma treatments. The G and 2D Raman peaks of graphene show upshifts after each of the two kinds of plasma treatment, indicating p-doping to the graphene. Meanwhile, D, D' and D + G peaks can be clearly observed for monolayer graphene, whereas these peaks are weaker for thicker n-layer graphene (n ≥ 2) at the same experimental conditions. The upshifts of the G and 2D peaks and the ratio of I(2D)/I(G) for CF₄ plasma treated graphene are larger than those of CHF₃ plasma treated graphene. The ratio of I(D)/I(G) of the Raman spectra is notably small in CF₄ plasma treated graphene. These facts indicate that CF₄ plasma treatment introduces more p-doping and fewer defects for graphene. Moreover, the fluorination of monolayer graphene by CF₄ plasma treatment is reversible through thermal annealing while that by CHF₃ plasma treatment is irreversible. These studies explore the information on the surface properties of graphene and provide an optimal method of fluorinating graphene through plasma techniques. PMID:22382072

  16. Magnetic phase diagram of layered manganites in the highly doped regime.

    SciTech Connect

    Mitchell, J. F.; Ling, C. D.; Millburn, J. E.; Argyriou, D. N.; Berger, A.; Medarde, M.

    2000-11-02

    The naturally layered colossal magnetoresistive (CMR) manganites La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} exhibit an extremely varied range of magnetic and electronic behavior over a very narrow composition range between x = 0.3 and x = 0.5. The successful synthesis in our laboratories of compounds with nominally greater than 50 percent Mn{sup 4+} concentration has now allowed the study of this heretofore unexplored region of the phase diagram. Here we present detailed neutron diffraction measurements of these compounds with doping levels 0.5 < x <1.0. As predicted by simple theories, the type-A layered antiferromagnetic (AF) structure is found at x{approximately}0.5 and the type-G ''rocksalt'' AF structure at x = 1.0. Between these two extremes is found a C-type structure (ferromagnetic rods parallel to b coupled antiferromagnetically to all neighboring rods) stabilized by orbital ordering of y{sup 2} states. Also in this Mn{sup 4+}-rich regime is found a region in which no long-range magnetic order is observed. We discuss how semi-empirical models can explain the variety of magnetic structures and how structural trends as a function of doping corroborate the unifying notion of a shift from in-plane to axial orbital occupation as the Mn{sup 4+} concentration is decreased.

  17. Optical detection of strain and doping inhomogeneities in single layer MoS2

    NASA Astrophysics Data System (ADS)

    Michail, A.; Delikoukos, N.; Parthenios, J.; Galiotis, C.; Papagelis, K.

    2016-04-01

    Van der Waals single-layer materials are characterized by an inherent extremely low bending rigidity and therefore are prone to nanoscale structural modifications due to substrate interactions. Such interactions can induce excess charge concentration, conformational ripples, and residual mechanical strain. In this work, we employed spatially resolved Raman and photoluminescence (PL) images to investigate strain and doping inhomogeneities in a single layer exfoliated molybdenum disulphide crystal. We have found that correlations between the spectral parameters of the most prominent Raman bands A1' and E' enable us to decouple and quantify strain and charge doping effects. In comparison with Atomic Force Microscopy (AFM) topography, we show that the spatial distribution of the position of the A- -trion PL peak is strain sensitive and its linewidth can capture features smaller than the laser spot size. The presented optical analysis may have implications in the development of high-quality devices based on two-dimensional materials since structural and electronic modifications affect considerably their carrier mobility and conductivity.

  18. Strain and defects in Si-doped (Al)GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Forghani, Kamran; Schade, Lukas; Schwarz, Ulrich T.; Lipski, Frank; Klein, Oliver; Kaiser, Ute; Scholz, Ferdinand

    2012-11-01

    Si is the most common dopant in (Al)GaN based devices acting as a donor. It has been observed that Si induces tensile strain in (Al)GaN films, which leads to an increasing tendency for cracking of such films with the increase of Si content and/or the increase of Al content. Based on x-ray investigations, the Si-doped films have a larger in-plane lattice constant than their undoped buffer layers, indicating involvement of a mechanism other than the change of lattice constants expected from an alloying effect. In this work, we present a model about Si dislocation interaction while debating other proposed models in the literature. According to our model, Si atoms are attracted to the strain dipole of edge-type dislocations in (Al)GaN films. It is expected that Si is more incorporated on that side of the dislocation, which is under compression leading to the formation of off-balanced dipoles with reduced compressive component. In response to such off-balanced dipoles—appearing as tensile dominant strain dipoles—the dislocation lines climb in order to accommodate the excess tensile strain. However, this dislocation climb mechanism is hindered by forces exerted by vacancies created due to the climb process. Accordingly, we have observed a lower strain level in our Si doped layers when they contain fewer dislocations. These findings were further supported by x-ray diffraction, transmission electron microscopy, and micro-photoluminescence investigations.

  19. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  20. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  1. Doping effects in p- and n-type layers of 390-nm InGaN DQW lasers

    NASA Astrophysics Data System (ADS)

    Alahyarizadeh, Gh.; Amirhoseiny, M.; Hassan, Z.

    2015-06-01

    The performance characteristics of deep violet InGaN laser diodes (LDs) are theoretically studied with the effects of doping concentrations in p- and n-type layers. Comprehensive study on output performance characteristics such as output power, threshold current, slope efficiency, DQE, and optical intensity, as well as on several internal parameters such as quantum well (QW) carrier densities, electron and hole current densities of deep violet InGaN double quantum well (DQW) lasers, have been done. The simulation results indicate that output power of LD is increased by increasing doping concentration in both n- and p-type layers. it can be due to increased carrier current densities and consequently increased radiative recombination. The results also indicate decrease in slope efficiency and DQE with increasing doping concentration. This situation can be caused by increasing nonradiative recombinations, such as Auger recombination inside and outside the active region, current overflow from the active region, and optical losses. Increasing current overflow from the active region also causes an increase in threshold current. Using higher doping concentration in n-type layers results in increase in electron current density in the n-side and consequently, higher electron flow in the active region. It causes an increase in higher radiative recombination and a higher need for holes and consequently, a higher hole current density in p-type layers. As well as, optical intensity of LDs is increased by increasing the doping concentration.

  2. Fabrication of N-doped TiO2 coatings on nanoporous Si nanopillar arrays through biomimetic layer by layer mineralization.

    PubMed

    Yan, Yong; Wang, Dong; Schaaf, Peter

    2014-06-14

    Si/N-doped TiO2 core/shell nanopillar arrays with a nanoporous structure are fabricated through a simple protein-mediated TiO2 deposition process. The Si nanopillar arrays are used as templates and alternatively immersed in aqueous solutions of catalytic molecules (protamine, PA) and the titania precursor (titanium(iv) bis(ammonium lactato)dihydroxide, Ti-BALDH) for the layer by layer mineralization of a PA/TiO2 coating. After a subsequent calcination, a N-doped TiO2 layer is formed, and its thickness could be controlled by varying the cycles of deposition. Moreover, the nanoporous structure of the Si nanopillars strongly affects the formation of the TiO2 layer. The obtained Si/TiO2 nanocomposites show significantly improved solar absorption compared with commercially purchased TiO2 nanoparticles. PMID:24754039

  3. Structural modification of boron-doped ZnO layers caused by hydrogen outgassing

    NASA Astrophysics Data System (ADS)

    Lovics, R.; Csik, A.; Takáts, V.; Hakl, J.; Vad, K.

    2015-07-01

    Results of annealing experiments of boron-doped zinc oxide (ZnO:B) layers prepared by low pressure chemical vapor deposition method on polished Si, soda-lime glass for windows, and AF45 Schott alkali free thin glass substrates are presented. It is shown that short annealing of samples at 150 °C and 300 °C in air causes serious surface degradation of samples prepared on Si and soda-lime glass substrate. The characteristic feature of degradation is the creation of bubbles and craters on the sample surface which fully destroy the continuity of zinc oxide layers. The results of depth distribution mapping of elements indicate that the formation of bubbles is linked to increase in hydrogen concentration in the layer. The surface degradation was not noticed on samples deposited on AF45 Schott alkali free thin glass which has a SiO2 diffusion barrier layer on the surface, only much fewer and smaller bubbles were visible. The results indicate the important role of hydrogen outgassing from the substrate induced by a thermal shock.

  4. The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.

    2010-12-01

    The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase

  5. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    SciTech Connect

    Wang, Chenggong; Wang, Congcong; Kauppi, John; Liu, Xiaoliang; Gao, Yongli

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  6. Controlled current matching in small molecule organic tandem solar cells using doped spacer layers

    NASA Astrophysics Data System (ADS)

    Schueppel, Rico; Timmreck, Ronny; Allinger, Nikola; Mueller, Toni; Furno, Mauro; Uhrich, Christian; Leo, Karl; Riede, Moritz

    2010-02-01

    Current matching of the subcells is crucial to optimize the performance of tandem solar cells. Due to the thin film optics of organic solar cells, the position of the two subcells relative to the reflecting electrode becomes a very important issue. This is demonstrated for an indium tin oxide (ITO)/pin/pii/Al structure with thin intrinsic absorbing layers consisting of zinc-phthalocyanine and fullerene C60 and a metal-free lossless recombination contact between the subcells. By keeping the thickness of the absorbing layers constant and changing only the thickness of the inner p-doped transparent layer in 16 steps from 0to186nm, the distance of the ITO-sided subcell from the reflecting electrode (Al) is systematically varied. Thus, the p-doped layer works as an optical spacer between both subcells. The influence of its thickness on the thin film optics is shown in optical simulations and confirmed with current-voltage measurements. If both subcells are separated only by the recombination contact, they are positioned in the first interference maximum of the incident light and the currents of the individual subcells nearly matches. By increasing the spacer layer thickness, the ITO-sided subcell is moved to the first interference minimum, limiting the measured short circuit current density jsc of the tandem solar cell to about 1/2 of its initial value without spacer. At a spacer thickness of about 140nm, jsc recovers in the second interference maximum to nearly its original value. Within this series, an almost constant high fill factor of about 59% as well as a constant open circuit voltage of 1.06V is observed, showing that the Ohmic losses in the spacer are negligible. The power conversion efficiency of these devices reaches nearly 4% in the first and approximately 3.6% in the second interference maximum, respectively, in an outdoor test at 1sun. Furthermore, it is shown that for thicker absorber layers, an optimized current density cannot be reached in the first

  7. Crystalline Fraction and Doping Concentration Effect on Heterojunction Solar Cells n-Doped µc-Si:H Back Surface Field Layer.

    PubMed

    Kim, Sangho; Shin, Chonghoon; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    The back surface field (BSF) plays a vital role for high efficiency in the Heterojunction Intrinsic Thin (HIT) film solar cell. This paper investigated the effect of crystalline volume fraction (Xc) and 1% hydrogen diluted phosphine (PH3) gas doping concentration of the n-type µc-Si:H back surface file (BSF) layer. Initially, the thickness of the n-type µc-Si:H BSF layer was optimized. With increase in Xc from 6% to 59%, the open circuit voltage (Voc) increased from 573 mV to 696 mV, and the fill factor (FF) also increased from 59% to 71%. In the long wavelengths region (≥ 950 nm), the QE of the solar cells decreased over the optimized Xc of the n-doped micro BSF layer, due to the defects of a film. In the second part of this paper, the effect of high conductivity n-type µc-Si:H BSF layer with optimized thickness on the performance of HIT solar cells was investigated, by doping gas ratio variation. Even though Xc decreased, conductivity was increased, with increasing PH3 doping concentration. Under the optimized condition, a n-µc-Si:H BSF layer has a dark conductivity of 2.59 S/cm, activation energy of 0.0519 eV, and X, of 52%. The conversion efficiency of 18.9% was achieved with a Voc of 706 mV, fill factor of 72%, and short circuit current density of 37.1 mW·cm(-2). PMID:26413655

  8. Shallow melting of thin heavily doped silicon layers by pulsed CO/sub 2/ laser irradiation

    SciTech Connect

    James, R.B.; Christie, W.H.

    1989-05-01

    We show that an extremely shallow (approx. <800 A) melt depth can be easily obtained by irradiating a thin (/similar to/200 A) heavily doped silicon layer with a CO/sub 2/ laser pulse. Since the absorption of the CO/sub 2/ laser pulse is dominated by free-carrier transitions, the beam heating occurs primarily in the thin degenerately doped film at the sample surface, and there is little energy deposited in the underlying lightly doped substrate. For CO/sub 2/ pulse-energy densities exceeding a threshold value of about 5 J/cm/sup 2/, surface melting occurs and the reflectivity of the incident laser pulse increases abruptly to about 90%. This large increase in the reflectivity acts like a switch to reflect almost all of the energy in the remainder of the CO/sub 2/ laser pulse, thereby greatly reducing the amount of energy available to drive the melt front to deeper depths in the material. This is in contrast to the energy deposition of a laser pulse that has a photon energy exceeding the band gap, in which case the penetration depth of the incident radiation is only weakly affected by the free-carrier density. Transmission electron microscopy shows no extended defects in the near-surface region after CO/sub 2/ laser irradiation, and van der Pauw electrical measurements verify that 100% of the implanted arsenic dopant is electrically active. Calculated values for the melt depth versus incident pulse-energy density (E/sub L/) indicate that there exists a window where the maximum melt-front penetration increases slowly with increasing E/sub L/ and has a value of less than a few hundred angstroms.

  9. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    SciTech Connect

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M.; Sawano, Kentarou

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  10. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  11. High-Performance Few-layer Mo-doped ReSe2 Nanosheet Photodetectors

    PubMed Central

    Yang, Shengxue; Tongay, Sefaattin; Yue, Qu; Li, Yongtao; Li, Bo; Lu, Fangyuan

    2014-01-01

    Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry. We investigated the effects of physisorption of gas molecule on the few-layer Mo:ReSe2 nanosheet based photodetectors. We compared the photoresponse of the as-exfoliated device with annealed device both in air or ammonia (NH3) environment. After annealing at sub-decomposition temperatures, the Mo:ReSe2 photodetectors show a better photoresponsivity (~55.5 A/W) and higher EQE (10893%) in NH3 than in air. By theoretical investigation, we conclude that the physisorption of NH3 molecule on Mo:ReSe2 monolayer can cause the charge transfer between NH3 molecule and Mo:ReSe2 monolayer, increasing the n-type carrier density of Mo:ReSe2 monolayer. The prompt photoswitching, high photoresponsivity and different sensitivity to surrounding environment from the few-layer anisotropic Mo:ReSe2 can be used to design multifunctional optoelectronic and sensing devices. PMID:24962077

  12. Fabrication of Beryllium Capsules with Copper-Doped Layers for NIF Targets: A Progress Report

    SciTech Connect

    McElfresh, M; Gunther, J; Alford, C; Fought, E; Cook, R; Nikroo, A; Xu, H; Cooley, J C; Field, R D; Hackenberg, R E; Nobile, A

    2005-08-12

    The sputtering of beryllium (Be) has been used at LLNL for nearly 30 years in the fabrication of laser targets. Several years ago the prospect of using sputtering to fabricate spherical Be capsules for National Ignition Facility (NIF) targets began to be explored and a basic strategy was developed that involved sputtering down onto plastic mandrels bouncing in a pan. While this appears to be very straightforward in principle, in practice sputtering has been used almost exclusively to make thin films (< 1 micron) on flat substrates. Thick films pose a significant challenge for sputtering while materials on spherical substrates are essentially unexplored. More recently, based on computational results, the point design for the first NIF ignition target capsule was specified as a Be capsule with Cu-doped layers of specific thickness, each layer with a different concentration of copper. While the work described here was motivated by the need to make the layered capsules, the primary progress on Be capsules has been the development of a more complete metallurgical understanding of the materials that are fabricated and the beginning of the exploration of the relationship between the sputter processing and microstructure of these spherical samples. At least two barriers to growth to full thickness (i.e. 170 microns) have been identified and efforts to overcome these barriers are underway.

  13. Final Technical Report: Grain Boundary Complexions and Transitions in Doped Silicon

    SciTech Connect

    Jian Luo

    2012-10-15

    This four-year research project has advanced the fundamental knowledge of grain boundary (GB) complexions (i.e., "two-dimensional interfacial phases") and associated GB "phase" transitions in several grounds. First, a bilayer interfacial phase, which had been directly observed by microscopy only in complex ceramic systems in prior studies, has been identified in simpler systems such as Au-doped Si and Bi-doped Ni in this study, where the interpretations of the their formation mechanisms and microscopic images are less equivocal. Second, convincing evidence for the existence of a first-order GB transition from a nominally "clean" GB to a bilayer adsorption interfacial phase has been revealed for Au-doped Si; the confirmation of the first-order nature of interfacial transitions at GBs, which was rare in prior studies, is scientifically significant and technologically important. Third, the bilayer interfacial phase discovered in Bi-doped Ni has been found to be the cause of the mysterious liquid metal embrittlement phenomenon in this system; the exact atomic level mechanism of this phenomenon has puzzled the materials and physics communities for over a century. Finally, significant advancements have been made to establish phenomenological thermodynamic models for GB complexions and transitions. Since GB complexions can control the transport, mechanical and physical properties of a broad range of metallic and ceramic materials, the fundamental knowledge generated by this project can have broad impacts on materials design in general. In this regard, understanding and controlling GB phase behaviors (complexions and transitions) can be an important component for the "Materials Genome" project.

  14. Enhanced magnetization in ultrathin manganite layers via structural ``delta-doping'' of octahedral rotations

    NASA Astrophysics Data System (ADS)

    Moon, Eun Ju; Kirby, Brian J.; May, Steven J.

    The design of rotations and distortions of the corner-shared BO6 octahedra has emerged as an exciting platform to control electronic or magnetic behavior in ABO3 perovskite heterostructures. Recent work has shown that purely structural effects can be used to spatially confined magnetism in oxide heterostructures and point to the design of rotational gradients as routes to realize novel electronic or ferroic states in oxide superlattices [Nat. Comm. 5, 5710 (2014)]. Here, we demonstrate a structural ``delta doping'' approach for controlling magnetism in ultrathin layers within isovalent manganite superlattices. Polarized neutron reflectivity and temperature dependent magnetization measurements are used to correlate enhanced magnetization with local regions of suppressed octahedral rotations in the heterostructures. This work was supported by the U. S. Army Research Office under Grant No. W911NF-15-1-0133.

  15. The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wu, Na; Luo, Qun; Qiao, Xvsheng; Ma, Chang-Qi

    2015-12-01

    Recently, spectra conversion has been used to minimize energy loss in photovoltaic devices. In this work, we explore the development of a novel Eu3+-doped ZnO bi-functional layer for use in organic solar cells. The bi-functional layer acts as both a spectra conversion and an electron transporting layer. Compared to conventional spectra conversion layers, it has a simpler device structure, is easier to fabricate, and has a wider spectrum-sensitized region. A series of Eu3+-doped ZnO nanocrystals were synthesized using the simple solution route. X-ray powder diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-visible absorbance spectra were used to characterize the obtained ZnO nanocrystals. The results reveal that the size and bandgap of ZnO nanocrystals can be controlled through regulation of the doping concentration of Eu3+ ions. The energy transfer of ZnO → Eu3+ is observed by photoluminescence (PL) spectra. At a bandgap excitation of around 300-400 nm, a typical emission band from the Eu3+ is obtained. By employing the Eu3+- doped ZnO nanocrystals as a buffer layer in a P3HT:PC61BM bulk heterojunction device, the obtained performance is similar to the undoped ZnO device, indicating that the electrical properties of ZnO are not affected by Eu3+ doping. Due to the down-conversion energy transfer between ZnO and Eu3+, the external quantum efficiency of the ZnO:Eu3+ device at 300-400 nm is higher than that of the pure ZnO device, which subsequently leads to an increase in short circuit current density (J SC). This work proves that it is possible to improve the solar spectrum response in the ultraviolet region of organic solar cells effectively by incorporating the bi-functional layer.

  16. Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yufei; Wang, Qing; Bian, Tong; Yu, Huijun; Fan, Hua; Zhou, Chao; Wu, Li-Zhu; Tung, Chen-Ho; O'Hare, Dermot; Zhang, Tierui

    2015-04-01

    Ni3+ doped NiTi layered double hydroxide (NiTi-LDH) monolayer nanosheets with a particle size of ~20 nm and a thickness of ~0.9 nm have been successfully prepared through a facile bottom-up approach. These NiTi-LDH monolayer nanosheets exhibit excellent supercapacitor performance, including a high specific pseudocapacitance (2310 F g-1 at 1.5 A g-1) and long durability compared with bulk LDH, owing to highly exposed conductive Ni3+ species (NiOOH) which lead to the increased mobility rate of surface charge and electrolyte-transfer. Therefore, this work is expected to take a significant step towards exploring novel 2D monolayer electrode materials with unique physical and chemical properties for applications in energy storage and conversion.Ni3+ doped NiTi layered double hydroxide (NiTi-LDH) monolayer nanosheets with a particle size of ~20 nm and a thickness of ~0.9 nm have been successfully prepared through a facile bottom-up approach. These NiTi-LDH monolayer nanosheets exhibit excellent supercapacitor performance, including a high specific pseudocapacitance (2310 F g-1 at 1.5 A g-1) and long durability compared with bulk LDH, owing to highly exposed conductive Ni3+ species (NiOOH) which lead to the increased mobility rate of surface charge and electrolyte-transfer. Therefore, this work is expected to take a significant step towards exploring novel 2D monolayer electrode materials with unique physical and chemical properties for applications in energy storage and conversion. Electronic supplementary information (ESI) available: Experimental details and additional characterization data. See DOI: 10.1039/c5nr01320h

  17. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries.

    PubMed

    Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing

    2016-06-29

    Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer. PMID:27250732

  18. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    SciTech Connect

    Johnston, S.; Lee, W.S.; Nowadnick, E.A.; Moritz, B.; Shen, Z.-X.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  19. Chemical doping and high-pressure studies of layered β -PdB i2 single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Lv, Bing; Xue, Yu-Yi; Zhu, Xi-Yu; Deng, L. Z.; Wu, Zheng; Chu, C. W.

    2015-11-01

    We have systematically grown large single crystals of the layered compounds β -PdB i2 , and both the hole-doped PdB i2 -xP bx and the electron-doped N axPdB i2 , and studied their magnetic and transport properties. Hall effect measurements on PdB i2 , PdB i1.8P b0.2 , and N a0.057PdB i2 show that the charge transport is dominated by electrons in all of the samples. The electron concentration is substantially reduced upon Pb doping in PdB i2 -xP bx and increased upon Na intercalation in N axPdB i2 , indicating effective hole doping by Pb and electron doping by Na. We observed a monotonic decrease of the superconducting transition temperature (Tc) from 5.4 K in undoped PdB i2 to less than 2 K for x >0.35 in hole-doped PdB i2 -xP bx . Meanwhile, a rapid decrease of Tc with Na intercalation is also observed in the electron-doped N axPdB i2 , which is in disagreement with the theoretical expectation. In addition, both the magnetoresistance and Hall resistance further reveal evidence for a possible spin excitation associated with Fermi surface reconstruction at ˜50 K in the Na-intercalated PdB i2 sample. The complete phase diagram is thus established from hole doping to electron doping. Meanwhile, a high-pressure study of the undoped PdB i2 shows that the Tc is linearly suppressed under pressure with a d Tc/d P coefficient of -0.28 K/GPa.

  20. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  1. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  2. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Agrawal, Y.C.

    1998-10-05

    This report summarizes the activities and findings from a field experiment devised to estimate the rates and mechanisms of transport of carbon across the continental shelves. The specific site chosen for the experiment was the mid-Atlantic Bight, a region off the North Carolina coast. The experiment involved a large contingent of scientists from many institutions. The specific component of the program was the transport of carbon in the bottom boundary layer. The postulate mechanisms of transport of carbon in the bottom boundary layer are: resuspension and advection, downward deposition, and accumulation. The high turbulence levels in the bottom boundary layer require the understanding of the coupling between turbulence and bottom sediments. The specific issues addressed in the work reported here were: (a) What is the sediment response to forcing by currents and waves? (b) What is the turbulence climate in the bottom boundary layer at this site? and (c) What is the rate at which settling leads to carbon sequestering in bottom sediments at offshore sites?

  3. Nissin Ion Doping System--H{sub 2}{sup +} Implantation for Silicon Layer Exfoliation

    SciTech Connect

    Cherekdjian, S.; Maschmeyer, R. O.; Cites, J.; Tatemichi, J.; Inouchi, Y.; Onoda, M.; Orihira, K.; Matsumoto, T.; Konishi, M.; Naito, M.

    2011-01-07

    A Nissin iG4 ion doping system (termed iG4) utilizes broad beam technology to implant GEN 4 sheets of glass for LCD production. The mechanical scanned end-station with robotic handling for GEN 4 glass substrates was redesigned, and a new end-station was built to handle rectangular silicon tiles (23x18 cm). A three sub-system modular risk reduction process was used to test production solutions, and maximize the success of transferring the R and D implant recipes developed on a standard focused beam ion implanter to the Nissin broad beam iG4 solution. The silicon tile end-station including the implant scanning system was tested for reliability and durability. The end-station handled rectangular silicon tiles reliably without detrimental edge chipping or silicon breakage. The ion optics was demonstrated to successfully provide stable hydrogen ions for the Corning registered silicon on glass layer transfer process. This layer transfer process is very susceptible and sensitive to the implant processing temperature. The temperature excursions during implant processing for the iG4 exfoliation process were found to be in line with the R and D focused ion beam system. This data confirmed the system production-readiness in providing an efficient solution for the high volume production of hydrogen implanted silicon rectangular tiles.

  4. Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Kuei; Huang, Yi-Chi; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-08-01

    Solution-processed vanadium-doped molybdenum oxide films (V)MoOx films with mole ratios of Mo:V = 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, are fabricated as hole transport layer (HTL) in organic photovoltaics with active layer blend comprising poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The device structure is ITO/(V)MoOx/P3HT:PCBM/ZnO NP/Al, and the working area is 0.16 cm2. The result shows that the device using V0.05MoOx HTL has the best performance, including power conversion efficiency of 2.16%, Voc of 0.6 V, Jsc of 6.93 mA/cm2, and FF of 51.9%. Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of (V)MoOx films. UPS analysis indicates that V0.05MoOx has the smallest energy band offset between its valence band edge to the HOMO of P3HT, which is advantageous for hole transporting from P3HT to ITO anode via the V0.05MoOx HTL. In addition, V0.05MoOx film shows the lowest electrical resistivity among all (V)MoOx films, which is further beneficial for hole transportation.

  5. Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers

    NASA Astrophysics Data System (ADS)

    Baktash, Ardeshir; Amiri, Omid; Sasani, Alireza

    2016-05-01

    Here the effect of Magnesium doped TiO2 and ZnO as hole blocking layers (HBLs) are investigated by using solar cell capacitance simulator (SCAPS). The Impact of Magnesium concentration into the TiO2 and ZnO and effect of operating temperature on the performance of the perovskite solar cell are investigated. Best cell performance for both TiO2 and ZnO HBLs (with cell efficiencies of 19.86% and 19.57% respectively) are concluded for the doping level of 10% of Mg into the structure of HBLs. Increase in operating temperature from 300 K to 400 K are decreased the performance of the perovskite solar cell with both pure and Mg-doped HBLs. However, the cells with pure ZnO layer and with Zn0.9 Mg0.1O layer show the highest (with a decline of 8.88% in efficiency) and the lowest stability (with a decline of 50.49% in efficiency) at higher temperatures respectively. Moreover, the cell with Ti0.9 Mg0.1O2 layer shows better stability (with 21.85% reduction in efficiency) than the cell with pure TiO2 compact layer (with 23.28% reduction in efficiency) at higher operating temperatures.

  6. Structural phase states in nickel-titanium surface layers doped with silicon by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kashin, Oleg A.; Lotkov, Aleksandr I.; Kudryashov, Andrey N.; Krukovsky, Konstantin V.; Ostapenko, Marina G.; Neiman, Alexey A.; Borisov, Dmitry P.

    2015-10-01

    The paper reports on a study of NiTi-based alloys used for manufacturing self-expanding intravascular stents to elucidate how the technological modes of plasma immersion ion implantation with silicon influence the chemical and phase composition of their surface layers. It is shown that two types of surface structure can be obtained depending on the mode of plasma immersion implantation: quasi-amorphous Si coating and Si-doped surface layer. The Si-doped surface layer contains new phases: a phase structured as the main B2 phase of NiTi but with a lower lattice parameter, R phase, and phase of highly dispersed SiO2 precipitates.

  7. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  8. The effects of zinc-doping on the composition of InGaAsP layers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Salehzadeh, O.; He, C.; Benyon, W.; SpringThorpe, A. J.

    2016-07-01

    We report on the effects of Zn-doping using diethylzinc (DEZn) on the growth of In1-xGaxAsyP1-y quaternary layers (x=0.18-0.41 and y=0.34-0.76) by metalorganic chemical vapour deposition. Independent of the quaternary layer compositions, a systematic reduction (increase) in Indium (Gallium) was observed. This was accompanied by a reduction in the overall growth rate, and increased tensile strain, with increasing DEZn flow. In contrast, the dependence of arsenic/phosphorus incorporation on DEZn flow was found to depend on the surface stoichiometry. We show quantitatively that the observed tensile strain can be explained by compositional variations caused by the Zn-doping process. These results suggest that DEZn affects both homogeneous and heterogeneous processes during the growth of InGaAsP layers.

  9. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Han, Kyu Seok; Kalode, Pranav Y.; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-02-01

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08016a

  10. Ab initio search for novel bipolar magnetic semiconductors: Layered YZnAsO doped with Fe and Mn

    NASA Astrophysics Data System (ADS)

    Bannikov, V. V.; Ivanovskii, A. L.

    2013-02-01

    Very recently, the newest class of spintronic materials, where reversible spin polarization can be controlled by applying gate voltage: so-called bipolar magnetic semiconductors (Xingxing Li et al., arXiv:1208.1355) was proposed. In this work, a novel way to creation of bipolar magnetic semiconductors by doping of non-magnetic semiconducting 1111 phases with magnetic d n < 10 atoms is discussed using ab initio calculations of layered YZnAsO doped with Fe and Mn. In addition, more complex materials with several spectral intervals with opposite 100% spin polarization where multiple gate-controlled spin-polarization can be expected are proposed.

  11. Investigations of segregation phenomena in highly strained Mn-doped Ge wetting layers and Ge quantum dots embedded in silicon

    SciTech Connect

    Prestat, E. Porret, C.; Favre-Nicolin, V.; Tainoff, D.; Boukhari, M.; Bayle-Guillemaud, P.; Jamet, M.; Barski, A.

    2014-03-10

    In this Letter, we investigate manganese diffusion and the formation of Mn precipitates in highly strained, few monolayer thick, Mn-doped Ge wetting layers and nanometric size Ge quantum dot heterostructures embedded in silicon. We show that in this Ge(Mn)/Si system manganese always precipitates and that the size and the position of Mn clusters (precipitates) depend on the growth temperature. At high growth temperature, manganese strongly diffuses from germanium to silicon, whereas decreasing the growth temperature reduces the manganese diffusion. In the germanium quantum dots layers, Mn precipitates are detected, not only in partially relaxed quantum dots but also in fully strained germanium wetting layers between the dots.

  12. Effect of thin emitter set-back layer on GaAs delta-doped emitter bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Lew, K. L.; Yoon, S. F.

    2005-05-01

    GaAs delta-doped emitter bipolar junction transistors (δ-BJT) with different emitter set-back layer thicknesses of 10to50nm were fabricated to study the emitter set-back layer thickness effect on device dc performance. We found that the current gain decreases following decrease in the emitter set-back layer thickness. A detailed analysis was performed to explain this phenomenon, which is believed to be caused by reduction of the effective barrier height in the δ-BJT. This is due to change in the electric-field distribution in the delta-doped structure caused by the built-in potential of the base-emitter (B-E ) junction. Considering the recombination and barrier height reduction effects, the thickness of the emitter set-back layer should be designed according to the B-E junction depletion width with a tolerance of ±5nm. The dc performance of a δ-BJT designed based on this criteria is compared to that of a Al0.25Ga0.75As /GaAs heterojunction bipolar transistor (HBT). Both devices employed base doping of 2×1019cm-3 and base-to-emitter doping ratio of 40. Large emitter area (AE≈1.6×10-5cm-2) and small emitter area (AE≈1.35×10-6cm-2) device current gains of 40 and 20, respectively, were obtained in both types of transistors passivated by (NH4)2S treatment. The measured current gain of the GaAs δ-BJT is the highest reported for a homojunction device with such high base-to-emitter doping ratio normally used in HBT devices.

  13. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Lohrenz, S.E.; Asper, V.L.

    1997-09-01

    The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.

  14. Low-energy model and electron-hole doping asymmetry of single-layer Ruddlesden-Popper iridates

    NASA Astrophysics Data System (ADS)

    Hampel, Alexander; Piefke, Christoph; Lechermann, Frank

    2015-08-01

    We study the correlated electronic structure of single-layer iridates based on structurally undistorted Ba2IrO4 . Starting from the first-principles band structure, the interplay between local Coulomb interactions and spin-orbit coupling is investigated by means of rotational-invariant slave-boson mean-field theory. The evolution from a three-band description towards an anisotropic one-band (J =1 /2 ) picture is traced. Single-site and cluster self-energies shed light on competing Slater- and Mott-dominated correlation regimes. A nodal/antinodal Fermi-surface dichotomy is revealed at strong coupling, with an asymmetry between electron and hole doping. Electron-doped iridates show clearer tendencies of Fermi-arc formation, reminiscent of hole-doped cuprates.

  15. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    SciTech Connect

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V. Yurasov, D. V.

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures with a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.

  16. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, V.L.; Singhal, S.C.; Pal, U.B.

    1992-07-21

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro[sub 3] particles; (2) dispersing doped LaCrO[sub 3] particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then a dense skeletal LaCrO[sub 3] structure is electrochemically vapor deposited between and around the doped LaCrO[sub 3] particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell. 4 figs.

  17. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    NASA Technical Reports Server (NTRS)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  18. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.; Pal, Uday B.

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  19. Tunable plasmons in few-layer nitrogen-doped graphene nanostructures: A time-dependent density functional theory study

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-qin; Zhang, Hong; Cheng, Xin-lu; Miyamoto, Yoshiyuki

    2016-05-01

    Compared with conventional metal plasmonic materials, surface plasmons in graphene are advantageous in terms of higher confinement, relative low loss, flexible featuring, and good tunability. However, the working frequencies of the pristine graphene (undoped graphene) surface plasmons are located in the terahertz and infrared regions, which limit their applications. Here we show high-frequency plasmons in nitrogen (N)-doped graphene nanostructures investigated by time-dependent density functional theory. We found the optical absorption strength of systems containing two layers to be more than twofold stronger than that of systems with monolayers. The optical absorption strength increases as the interlayer distance increases, and the absorption spectra are red-shifted for impulse excitations polarized in the armchair edge direction (x axis). For microstructures of more than two layers, the optical absorption strength increases as number of layers of the N-doped graphene nanostructures increases. In addition, when the number of layers becomes elevated at low-energy resonances, the absorption spectra are seen to blue-shift. The plasmon energy resonance points are located in the visible and ultraviolet regions. The N-doped graphene provides an effective strategy for nanoscale plasmon devices in the visible and ultraviolet regions, despite their weaker absorption intensities when compared with the pristine graphene.

  20. Radionuclide separations using pillared layered materials. Final report

    SciTech Connect

    Clearfield, A.

    1995-08-31

    The objective of this project is to prepare an all inorganic strontium specific sorbent or ion exchanger for the removal of highly alkaline nuclear waste solutions. A series of clays and layered titanates were pillared and calcined to convert their essentially two dimensional structure to three dimensional porous structures with high surface areas. The pillaring agents were alumina, zirconia, chromia and silica based. The pillared clays, particularly those containing Zr pillars, achieved moderate (Kd as high at 13,700 ml/g with V:m = 28) selectivities for Sr{sup 2+}. In contrast, the silica pillared titanates showed exceptional affinities for Sr{sup 2+} with Kd values in excess of 100,000 ml/g in 5M NaNO{sup 3} + 1M NaOH. These latter results suggest a more detailed study of the pillared titanates in the presence of simulants closely resembling real waste solutions.

  1. Final report for CCS cross-layer reliability visioning study

    SciTech Connect

    Quinn, Heather M; Dehon, Andre; Carter, Nicj

    2010-12-20

    The geometric rate of improvement of transistor size and integrated circuit performance known as Moore's Law has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. Looking forward, increasing unpredictability threatens our ability to continue scaling integrated circuits at Moore's Law rates. As the transistors and wires that make up integrated circuits become smaller, they display both greater differences in behavior among devices designed to be identical and greater vulnerability to transient and permanent faults. Conventional design techniques expend energy to tolerate this unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. However, the rising energy costs needed to compensate for increasing unpredictability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor on integrated circuit performance and energy efficiency is a national concern. Reliability and energy consumption are both reaching key inflection points that, together, threaten to reduce or end the benefits of feature size reduction. To continue beneficial scaling, we must use a cross-layer, Jull-system-design approach to reliability. Unlike current systems, which charge every device a substantial energy tax in order to guarantee correct operation in

  2. Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Su; Lee, Dong Uk; Kim, Eun Kyu; Choi, Won Jun

    2015-11-01

    We report an effect of photoelectric conversion efficiency (PCE) by space layer doping in InAs/GaAs quantum dot solar cells (QDSC) and δ-doped QDSC grown by molecular beam epitaxy. The PCEs of QDSC and δ-doped QDSC without anti-reflection coating were 10.8% and 4.3%, respectively. The QDSC had about four electrons per QD, and its ideality factor was temperature-independent, which implies that recombination of electron-hole pairs is suppressed by strong potential barriers around charged dots. From the deep level transient spectroscopy measurements, four defect levels, including QD with the activation energy ranges from 0.08 eV to 0.50 eV below GaAs conduction band edge, appeared. Especially, the M1 defect (Ec-0.14 eV) was newly formed in δ-doped QDSC and its density was higher than those of M3 (Ec-0.35 eV) and M4 (Ec-0.50 eV) levels in QDSC. These results suggest that the photo-carriers recombining at M1 defect might be responsible for the reduction of PCE in δ-doped QDSC.

  3. Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells

    SciTech Connect

    Lee, Kyoung Su; Lee, Dong Uk; Kim, Eun Kyu; Choi, Won Jun

    2015-11-16

    We report an effect of photoelectric conversion efficiency (PCE) by space layer doping in InAs/GaAs quantum dot solar cells (QDSC) and δ-doped QDSC grown by molecular beam epitaxy. The PCEs of QDSC and δ-doped QDSC without anti-reflection coating were 10.8% and 4.3%, respectively. The QDSC had about four electrons per QD, and its ideality factor was temperature-independent, which implies that recombination of electron-hole pairs is suppressed by strong potential barriers around charged dots. From the deep level transient spectroscopy measurements, four defect levels, including QD with the activation energy ranges from 0.08 eV to 0.50 eV below GaAs conduction band edge, appeared. Especially, the M1 defect (E{sub c}-0.14 eV) was newly formed in δ-doped QDSC and its density was higher than those of M3 (E{sub c}-0.35 eV) and M4 (E{sub c}-0.50 eV) levels in QDSC. These results suggest that the photo-carriers recombining at M1 defect might be responsible for the reduction of PCE in δ-doped QDSC.

  4. Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Bing; Wang, Cong; Yoon, Soon Fatt; Michel, Jurgen; Fitzgerald, Eugene A.; Tan, Chuan Seng

    2016-02-01

    High quality germanium (Ge) epitaxial film is grown directly on silicon (001) substrate with 6° off-cut using a heavily arsenic (As) doped Ge seed layer. The growth steps consists of (i) growth of a heavily As-doped Ge seed layer at low temperature (LT, at 400 °C), (ii) Ge growth with As gradually reduced to zero at high temperature (HT, at 650 °C), (iii) pure Ge growth at HT. This is followed by thermal cyclic annealing in hydrogen at temperature ranging from 600 to 850 °C. Analytical characterization have shown that the Ge epitaxial film with a thickness of ˜1.5 µm experiences thermally induced tensile strain of 0.20% with a treading dislocation density (TDD) of mid 106/cm2 which is one order of magnitude lower than the control group without As doping and surface roughness of 0.37 nm. The reduction in TDD is due to the enhancement in velocity of dislocations in an As-doped Ge film.

  5. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.

    PubMed

    Han, Kyu Seok; Kalode, Pranav Y; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-02-25

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility. PMID:26864992

  6. Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition

    PubMed Central

    2013-01-01

    High-quality Ti-doped ZnO films were grown on Si, thermally grown SiO2, and quartz substrates by atomic layer deposition (ALD) at 200°C with various Ti doping concentrations. Titanium isopropoxide, diethyl zinc, and deionized water were sources for Ti, Zn, and O, respectively. The Ti doping was then achieved by growing ZnO and TiO2 alternately. A hampered growth mode of ZnO on TiO2 layer was confirmed by comparing the thicknesses measured by spectroscopic ellipsometry with the expected. It was also found that the locations of the (100) diffraction peaks shift towards lower diffraction angles as Ti concentration increased. For all samples, optical transmittance over 80% was obtained in the visible region. The sample with ALD cycle ratio of ZnO/TiO2 being 20 had the lowest resistivity of 8.874 × 10−4 Ω cm. In addition, carrier concentration of the prepared films underwent an evident increase and then decreased with the increase of Ti doping concentration. PMID:23442766

  7. The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials.

    PubMed

    Liu, Jiatu; Wang, Shuangbao; Ding, Zhengping; Zhou, Ruiqi; Xia, Qingbing; Zhang, Jinfang; Chen, Libao; Wei, Weifeng; Wang, Peng

    2016-07-20

    Polyanion doping shows great potential to improve electrochemical performance of Li-rich layered oxide (LLO) materials. Here, by optimizing the doping content and annealing temperature, we obtained boron-doped LLO materials Li1.2Mn0.54Ni0.13Co0.13BxO2 (x = 0.04 and 0.06) with comprehensively improved performance (94% capacity retention after 100 cycles at 60 mA/g current density and a rate capability much higher compared to that of the pristine sample) at annealing temperatures of 750 and 650 °C, respectively, which are much lower than the traditional annealing temperature of similar material systems without boron. The scenario of the complex crystallization process was captured using Cs-corrected high-angle annular dark field scanning transmission electron microscopic (HAADF-STEM) imaging techniques. The existence of layered, NiO-type, and spinel-like structures in a single particle induced by boron doping and optimization of annealing temperature is believed to contribute to the remarkable improvement of cycling stability and rate capability. PMID:27337243

  8. Structure and electrical properties of Al-doped HfO₂ and ZrO₂ films grown via atomic layer deposition on Mo electrodes.

    PubMed

    Yoo, Yeon Woo; Jeon, Woojin; Lee, Woongkyu; An, Cheol Hyun; Kim, Seong Keun; Hwang, Cheol Seong

    2014-12-24

    The effects of Al doping in atomic-layer-deposited HfO2 (AHO) and ZrO2 (AZO) films on the evolutions of their crystallographic phases, grain sizes, and electric properties, such as their dielectric constants and leakage current densities, were examined for their applications in high-voltage devices. The film thickness and Al-doping concentration were varied in the ranges of 60-75 nm and 0.5-9.7%, respectively, for AHO and 55-90 nm and 1.0-10.3%, respectively, for AZO. The top and bottom electrodes were sputtered Mo films. The detailed structural and electrical property variations were examined as functions of the Al concentration and film thickness. The AHO films showed a transition from the monoclinic phase (Al concentration up to 1.4%) to the tetragonal/cubic phase (Al concentration 2.0-3.5%), and finally, to the amorphous phase (Al concentration >4.7%), whereas the AZO films remained in the tetragonal/cubic phase up to the Al concentration of 6.4%. For both the AHO and AZO films, the monoclinic and amorphous phases had dielectric constants of 20-25, and the tetragonal/cubic phases had dielectric constants of 30-35. The highest electrical performance levels for the application to the high-voltage charge storage capacitors in flat panel displays were achieved with the 4.7-9.7% Al-doped AHO films and the 2.6% Al-doped AZO films. PMID:25423483

  9. Bottom boundary layer measurements in OMP. Final report

    SciTech Connect

    Gross, T.F.; Williams, A.J.

    1998-11-01

    The main role of the Benthic Acoustic Stress Sensor (BASS) tripods within the Ocean Margins Program experiments was to detect and quantify organic carbon rich particle transport off the shelf. This requires measures of the turbulent boundary layer flow and bed stress, the physical forcing of the particle transport, as well as the concentration and type of particles which are being transported. The BASS tripods were deployed at sites 17 and 26. Data from site 26 were recovered spanning three periods: Feb. 2--April 6, May 13--June 27, June 28--Aug. 18. Site 17 was occupied Feb. 12--april 11. The BASS tripods were arrayed with five BASS sensors measuring detailed velocity parameters within four meters of the seabed. Velocity time series indicate a usually weak tidal flow which produces small bed stress by itself. On the occasions when a strong flow, probably the Gulf Stream, crosses the area, the bed shear stress increases dramatically to as much as 10 dyne cm{sup {minus}2}. This is competent to move unconsolidated sediments in the area. Other instruments from the tripods include: two conductivity/temperature sensor pairs, five WetStar fluorometers, thermistors, transmissometer, optical backscatterence sensors and a pressure sensor.

  10. Synthesis and characterization of P δ-layer in SiO2 by monolayer doping

    NASA Astrophysics Data System (ADS)

    Arduca, Elisa; Mastromatteo, Massimo; De Salvador, Davide; Seguini, Gabriele; Lenardi, Cristina; Napolitani, Enrico; Perego, Michele

    2016-02-01

    Achieving the required control of dopant distribution and selectivity for nanostructured semiconducting building block is a key issue for a large variety of applications. A promising strategy is monolayer doping (MLD), which consists in the creation of a well-ordered monolayer of dopant-containing molecules bonded to the surface of the substrate. In this work, we synthesize a P δ-layer embedded in a SiO2 matrix by MLD. Using a multi-technique approach based on time of flight secondary ion mass spectrometry (ToF-SIMS) and Rutherford backscattering spectrometry (RBS) analyses, we characterize the tuning of P dose as a function of the processing time and temperature. We found the proper conditions for a full grafting of the molecules, reaching a maximal dose of 8.3 × 1014 atoms/cm2. Moreover, using 1D rate equation model, we model P diffusion in SiO2 after annealing and we extract a P diffusivity in SiO2 of 1.5 × 1017 cm2 s-1.

  11. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    PubMed

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-01

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. PMID:25916491

  12. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Lee, June Key; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo

    2015-05-01

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ˜35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  13. Relaxor properties of lanthanum-doped bismuth layer-structured ferroelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Bing; Hui, Rong; Zhu, Jun; Lu, Wang-Ping; Mao, Xiang-Yu

    2004-11-01

    Several polycrystalline samples of bismuth layer-structured ferroelectrics (BLSF) family doped by lanthanum, Bi4-xLaxTi3O12, SrBi4-xLaxTi4O15, Sr2Bi4-xLaxTi5O18, and (Bi,La)4Ti3O12-Sr(Bi,La)4Ti4O15, were prepared by the traditional solid-state reaction method. Their ferroelectric and dielectric properties were investigated. The dielectric measurement data showed that the content of lanthanum determined the ferroelectric characteristics of the compounds. In each series samples, they behaved as normal ferroelectrics for small x, but all of them tended to become relaxors when x was increased. The critical value of the La content causing relaxor characteristics is different for the different BLSFs due to the difference of the number of strontium atoms in their crystal structures. The appearance of the relaxor behavior was attributed to a ferroelectric microdomain state induced by random fields.

  14. Chromium and yttrium-doped magnesium aluminum oxides prepared from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    García-García, J. M.; Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2007-12-01

    Layered double hydroxides with the hydrotalcite-like structures, containing Mg 2+ and Al 3+, doped with Cr 3+ and Y 3+, have been prepared by precipitation at constant pH. The weight percentages of Cr 3+ and Y 3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV-vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at -196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE - L∗a∗b∗) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.

  15. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGESBeta

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  16. Electron transport in Al-doped ZnO nanolayers obtained by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Blagoev, B. S.; Dimitrov, D. Z.; Mehandzhiev, V. B.; Kovacheva, D.; Terziyska, P.; Pavlic, J.; Lovchinov, K.; Mateev, E.; Leclercq, J.; Sveshtarov, P.

    2016-03-01

    Al-doped ZnO thin films with different Al content were prepared by atomic layer deposition (ALD). To carry out thermal ALD, diethyl zinc (DEZ) and tri-methyl aluminium (TMA) were used as Zn and Al precursors, respectively, and water vapor as oxidant. Various numbers n of DEZ and m TMA cycles was used to obtain different [ZnO] n [Al2O3] m films, where n = 100 – 95, m = 1 – 5. The X-ray diffraction analysis showed a predominantly (100) oriented polycrystalline phase for the ZnO:Al films with a low Al content (m = 1 – 3) and an amorphous structure for pure Al2O3. In ZnO:Al with a higher Al content (m = 4 – 6) the (100) reflection disappeared and the (002) peak increased. The resistivity of the films decreased with the increase in the Al content, reaching a minimum of 3.3×10-3 Ω cm at about 1.1 % Al2O3 for the [ZnO]99[Al2O3]2 sample; for higher dopant concentrations, the resistivity increased because of the increased crystal inhomogeneity due to axis reorientation.

  17. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    SciTech Connect

    Lee, June Key E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo E-mail: hskim7@jbnu.ac.kr

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ∼35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  18. Cr-doped TiSe2 - A layered dichalcogenide spin glass

    DOE PAGESBeta

    Luo, Huixia; Tao, Jing; Krizan, Jason W.; Seibel, Elizabeth M.; Xie, Weiwei; Sahasrabudhe, Girija S.; Bergman, Susanna L.; Phelan, Brendan F.; Wang, Zhen; Zhang, Jiandi; et al

    2015-09-17

    We report the magnetic characterization of the Cr-doped layered dichalcogenide TiSe2. The temperature dependent magnetic susceptibilities are typical of those seen in geometrically frustrated insulating antiferromagnets. The Cr moment is close to the spin-only value, and the Curie–Weiss temperatures (θcw) are between –90 and –230 K. Freezing of the spin system, which is glassy, characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until below T/θcw = 0.05. The CDW transition seen in the resistivity for pure TiSe2 is still present for 3% Cr substitution but is absent by 10% substitution, above which themore » materials are metallic and p-type. Structural refinements, magnetic characterization, and chemical considerations indicate that the materials are of the type Ti1–xCrxSe2-x/2 for 0 ≤ x ≤ 0.6.« less

  19. Cr-doped TiSe2 - A layered dichalcogenide spin glass

    SciTech Connect

    Luo, Huixia; Tao, Jing; Krizan, Jason W.; Seibel, Elizabeth M.; Xie, Weiwei; Sahasrabudhe, Girija S.; Bergman, Susanna L.; Phelan, Brendan F.; Wang, Zhen; Zhang, Jiandi; Cava, R. J.

    2015-09-17

    We report the magnetic characterization of the Cr-doped layered dichalcogenide TiSe2. The temperature dependent magnetic susceptibilities are typical of those seen in geometrically frustrated insulating antiferromagnets. The Cr moment is close to the spin-only value, and the Curie–Weiss temperatures (θcw) are between –90 and –230 K. Freezing of the spin system, which is glassy, characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until below T/θcw = 0.05. The CDW transition seen in the resistivity for pure TiSe2 is still present for 3% Cr substitution but is absent by 10% substitution, above which the materials are metallic and p-type. Structural refinements, magnetic characterization, and chemical considerations indicate that the materials are of the type Ti1–xCrxSe2-x/2 for 0 ≤ x ≤ 0.6.

  20. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    SciTech Connect

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorption fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.

  1. Photoluminescence of Sm doped porous silicon—evidence for light emission through luminescence centers in SiO2 layers

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhang, L. Z.; Huang, Y. M.; Zhang, B. R.; Qin, G. G.

    1994-06-01

    After oxidation promoted by gamma-ray irradiation, in the photoluminescence (PL) spectra of Sm doped porous silicon (PS), there are three sharp peaks, superimposed on a broad band, with wavelengths near to those of the Sm doped SiO2 [R. Morimo, T. Mizushima, and H. Okumura, J. Electrochem. Soc. 137, 2340 (1990)]. The experimental results indicate that Sm-related luminescence centers can be created within the oxide of porous silicon, and only in porous silicon with high porosity can the Sm-related luminescence be found in the SiO2 layer. This experimental result can be explained by the fact that the excitation of electron-hole pairs occurs in nanoscale silicon, and the recombination occurs at the Sm-related luminescence centers in SiO2 layers covering nanoscale silicon.

  2. Simulation of the effective concentration profiles in InGaAs/GaAs heterostructures containing δ-doped layers

    SciTech Connect

    Khazanova, S. V. Degtyarev, V. E.; Tikhov, S. V.; Baidus, N. V.

    2015-01-15

    InGaAs/GaAs heterostructures containing quantum wells and δ-doped layers are studied theoretically and experimentally. On the basis of the procedure of self-consistently solving the Schrödinger equation and Poisson equation, the differential capacitance and the apparent electron concentration profiles are numerically calculated for structures with different mutual arrangements of the quantum well and the δ layer. The results of the calculations are compared with the result of analyzing the experimental capacitance-voltage characteristics of the structures. The systematic features of the behavior of the apparent concentration profiles and capacitance-voltage characteristics in relation to the geometric properties of the structure, the temperature, and the doping level are established.

  3. Distinct oxygen hole doping in different layers of Sr₂CuO4-δ/La₂CuO₄ superlattices

    DOE PAGESBeta

    Smadici, S.; Lee, J. C. T.; Rusydi, A.; Logvenov, G.; Bozovic, I.; Abbamonte, P.

    2012-03-28

    X-ray absorption in Sr₂CuO4-δ/La₂CuO₄ (SCO/LCO) superlattices shows a variable occupation with doping of a hole state different from holes doped for x≲xoptimal in bulk La2-xSrxCuO₄ and suggests that this hole state is on apical oxygen atoms and polarized in the a-b plane. Considering the surface reflectivity gives a good qualitative description of the line shapes of resonant soft x-ray scattering. The interference between superlattice and surface reflections was used to distinguish between scatterers in the SCO and the LCO layers, with the two hole states maximized in different layers of the superlattice.

  4. Hybrid Modulation-Doping of Solution-Processed Ultrathin Layers of ZnO Using Molecular Dopants.

    PubMed

    Schießl, Stefan P; Faber, Hendrik; Lin, Yen-Hung; Rossbauer, Stephan; Wang, Qingxiao; Zhao, Kui; Amassian, Aram; Zaumseil, Jana; Anthopoulos, Thomas D

    2016-05-01

    An alternative doping approach that exploits the use of organic donor/acceptor molecules for the effective tuning of the free electron concentration in quasi-2D ZnO transistor channel layers is reported. The method relies on the deposition of molecular dopants/formulations directly onto the ultrathin ZnO channels. Through careful choice of materials combinations, electron transfer from the dopant molecule to ZnO and vice versa is demonstrated. PMID:26437002

  5. Optical reflectivity and Raman scattering in few-layer-thick graphene highly doped by K and Rb.

    PubMed

    Jung, Naeyoung; Kim, Bumjung; Crowther, Andrew C; Kim, Namdong; Nuckolls, Colin; Brus, Louis

    2011-07-26

    We report the optical reflectivity and Raman scattering of few layer (L) graphene exposed to K and Rb vapors. Samples many tens of layers thick show the reflectivity and Raman spectra of the stage 1 bulk alkali intercalation compounds (GICs) KC(8) and RbC(8). However, these bulk optical and Raman properties only begin to appear in samples more than about 15 graphene layers thick. The 1 L to 4 L alkali exposed graphene Raman spectra are profoundly different than the Breit-Wigner-Fano (BWF) spectra of the bulk stage 1 compounds. Samples less than 10 layers thick show Drude-like plasma edge reflectivity dip in the visible; alkali exposed few layer graphenes are significantly more transparent than intrinsic graphene. Simulations show the in-plane free electron density is lower than in the bulk stage 1 GICs. In few layer graphenes, alkalis both intercalate between layers and adsorb on the graphene surfaces. Charge transfer electrically dopes the graphene sheets to densities near and above 10(+14) electrons/cm(2). New intrinsic Raman modes at 1128 and 1264 cm(-1) are activated by in-plane graphene zone folding caused by strongly interacting, locally crystalline alkali adlayers. The K Raman spectra are independent of thickness for L = 1-4, indicating that charge transfer from adsorbed and intercalated K layers are similar. The Raman G mode is downshifted and significantly broadened from intrinsic graphene. In contrast, the Rb spectra vary strongly with L and show increased doping by intercalated alkali as L increases. Rb adlayers appear to be disordered liquids, while intercalated layers are locally crystalline solids. A significant intramolecular G mode electronic resonance Raman enhancement is observed in K exposed graphene, as compared with intrinsic graphene. PMID:21682332

  6. A Titanium-Doped SiOx Passivation Layer for Greatly Enhanced Performance of a Hematite-Based Photoelectrochemical System.

    PubMed

    Ahn, Hyo-Jin; Yoon, Ki-Yong; Kwak, Myung-Jun; Jang, Ji-Hyun

    2016-08-16

    This study introduces an in situ fabrication of nanoporous hematite with a Ti-doped SiOx passivation layer for a high-performance water-splitting system. The nanoporous hematite with a Ti-doped SiOx layer (Ti-(SiOx /np-Fe2 O3 )) has a photocurrent density of 2.44 mA cm(-2) at 1.23 VRHE and 3.70 mA cm(-2) at 1.50 VRHE . When a cobalt phosphate co-catalyst was applied to Ti-(SiOx /np-Fe2 O3 ), the photocurrent density reached 3.19 mA cm(-2) at 1.23 VRHE with stability, which shows great potential of the use of the Ti-doped SiOx layer with a synergistic effect of decreased charge recombination, the increased number of active sites, and the reduced hole-diffusion pathway from the hematite to the electrolyte. PMID:27358249

  7. Comparative study of InGaP/GaAs high electron mobility transistors with upper and lower delta-doped supplied layers

    SciTech Connect

    Tsai, Jung-Hui Ye, Sheng-Shiun; Guo, Der-Feng; Lour, Wen-Shiung

    2012-04-15

    Influence corresponding to the position of {delta}-doped supplied layer on InGaP/GaAs high electron mobility transistors is comparatively studied by two-dimensional simulation analysis. The simulated results exhibit that the device with lower {delta}-doped supplied layer shows a higher gate potential barrier height, a higher saturation output current, a larger magnitude of negative threshold voltage, and broader gate voltage swing, as compared to the device with upper {delta}-doped supplied layer. Nevertheless, it has smaller transconductance and inferior high-frequency characteristics in the device with lower {delta}-doped supplied layer. Furthermore, a knee effect in current-voltage curves is observed at low drain-to-source voltage in the two devices, which is investigated in this article.

  8. Properties of planar Nb/{alpha}-Si/Nb Josephson junctions with various degrees of doping of the {alpha}-Si layer

    SciTech Connect

    Gudkov, A. L.; Kupriyanov, M. Yu.; Samus', A. N.

    2012-05-15

    The properties of Nb/{alpha}-Si/Nb planar Josephson junctions with various degrees of doping of the amorphous silicon layer are experimentally studied. Tungsten is used as a doping impurity. The properties of the Josephson junctions are shown to change substantially when the degree of doping of the {alpha}-Si layer changes: a current transport mechanism and the shape of the current-voltage characteristic of the junctions change. Josephson junctions with SNS-type conduction are formed in the case of a fully degenerate {alpha}-Si layer. The properties of such junctions are described by a classical resistive model. Josephson junctions with a resonance mechanism of current transport through impurity centers are formed at a lower degree of doping of the {alpha}-Si layer. The high-frequency properties of such junctions are shown to change. The experimental results demonstrate that these junctions are close to SINIS-type Josephson junctions.

  9. Super-fast switching of liquid crystals sandwiched between highly conductive graphene oxide/dimethyl sulfate doped PEDOT:PSS composite layers

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Yifan; Oh, Byeong-Yun; Seo, Dae-Shik; Li, Xiangdan

    2016-05-01

    Graphene oxide (GO)-doped dimethyl sulfate (DMS)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) superconductive alignment layer, aligning liquid crystals (LCs) with super switching and non-residual direct current (non-residual DC) performance, is presented in this manuscript. Doping of GO increased the pristine polar energy of a thin composite layer as well as the corresponding anchoring energy of the LCs sandwiched between these thin layers but only slightly affected the thin layers' morphology. When rubbed GO/DMS/PEDOT:PSS composite layers were used as alignment layers, a homogeneous alignment of nematic LCs was observed with competitive optoelectrical switching properties and non-residual DC performance because of the enhanced field effect and charge transport induced by the doped GO.

  10. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  11. Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer.

    PubMed

    Wu, Yi-Lin; Chen, Chien-Yu; Huang, Yi-Hsiang; Lu, Yin-Jui; Chou, Cheng-Hsu; Wu, Chung-Chih

    2014-08-01

    In this work, we conducted studies of tandem organic light-emitting devices (OLEDs) based on the connecting structure consisting of n-doped electron-transport layer (n-ETL)/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN)/hole-transport layer. We investigated effects of different n-ETL materials and different HATCN thicknesses on characteristics of tandem OLEDs. Results show that the tandem OLEDs with n-BPhen and a 20 nm layer of HATCN in the connecting structure exhibited the best performance. With these, highly efficient and bright green phosphorescent two-emitting-unit tandem OLEDs, with drive voltages significantly lower than twice that of the single-unit benchmark device and current efficiencies higher than twice that of the single-unit benchmark device, were demonstrated. PMID:25090347

  12. Lead-nano-dopings effects on the structural, microstructural, vibrational and thermal properties of Bi 2- xPb xSrV 2O 9 layered perovskite

    NASA Astrophysics Data System (ADS)

    Elsabawy, Khaled M.; Abou Sekkina, Morsy M.; Asker, Mohamed A.; El-Newehy, Mohamed H.

    2010-07-01

    The sample with in the general formula Bi 2-xPb xSrV 2O 9, where x = 0.0, 0.05, 0.1, 0.2, 0.3, and 0.6 mol were synthesized by the high temperature solid state reaction and firing method. The X-ray diffractograms confirmed the formation of single phased layered perovskite in all samples. TGA and DTA thermal analyses on the green samples included steps of thermal analysis of strontium carbonate, bismuth carbonate, ammonium vanadate, lead oxide and finally on the high temperature solid state formation. The effect of lead dopings on the sintering, structural and micro-structure, properties of 212BiSrV-ceramics were investigated. The infrared absorption spectra show a series of vibrational modes within the range of 400-1600 cm -1.

  13. Density functional study on the hole doping of single-layer SnS2 with metal element X (X = Li, Mg, and Al).

    PubMed

    Yu, Dandan; Liu, Yanyu; Sun, Lili; Wu, Ping; Zhou, Wei

    2016-01-01

    The effects of metal element X-doping on the electronic and optical properties of single-layer SnS2 were investigated using density functional theory. The results show that the doping is energetically more favorable under S-rich conditions than under Sn-rich conditions. For Li and Mg doping, there is the existence of ionic bonding between the dopants and adjacent S atoms, and the systems exhibit magnetic ground states. However, covalent bonding character is observed in Al-doped single-layer SnS2, and the system exhibits non-magnetic ground states. The optical properties show that the optical absorptions are anisotropic for all doping cases. The X doping not only results in a red shift of the absorption edges, but also enhances the effective utilization in the near-infrared light region. Additionally, Li-doped single-layer SnS2 is active for overall water splitting under visible light radiation whereas Mg and Al-doped SnS2 are only suitable for oxygen evolution. PMID:26611638

  14. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  15. A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene.

    PubMed

    Barsan, Madalina M; David, Melinda; Florescu, Monica; Ţugulea, Laura; Brett, Christopher M A

    2014-10-01

    The layer-by-layer (LbL) technique has been used for the construction of a new enzyme biosensor. Multilayer films containing glucose oxidase, GOx, and nitrogen-doped graphene (NG) dispersed in the biocompatible positively-charged polymer chitosan (chit(+)(NG+GOx)), together with the negatively charged polymer poly(styrene sulfonate), PSS(-), were assembled by alternately immersing a gold electrode substrate in chit(+)(NG+GOx) and PSS(-) solutions. Gravimetric monitoring during LbL assembly by an electrochemical quartz microbalance enabled investigation of the adsorption mechanism and deposited mass for each monolayer. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the LbL modified electrodes, in order to establish the contribution of each monolayer to the overall electrochemical properties of the biosensor. The importance of NG in the biosensor architecture was evaluated by undertaking a comparative study without NG in the chit layer. The GOx biosensor's analytical properties were evaluated by fixed potential chronoamperometry and compared with similar reported biosensors. The biosensor operates at a low potential of -0.2V vs., Ag/AgCl, exhibiting a high sensitivity of 10.5 μA cm(-2) mM(-1), and a detection limit of 64 μM. This study shows a simple approach in developing new biosensor architectures, combining the advantages of nitrogen-doped graphene with the LbL technique for enzyme immobilization. PMID:24997303

  16. Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Hung; Lin, Chi-Feng; Lee, Jiun-Haw

    2007-11-01

    White organic light-emitting devices (OLEDs) consisting of ambipolar 9,10-bis(2'-naphthyl) anthracene (ADN) as a host of blue-emitting layer (EML) were investigated. A thin codoped layer of yellow 5,6,11,12-Tetraphenylnaphthacene (rubrene) served as a probe for detecting the position of maximum recombination rate in the 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) doped-ADN EML. Due to the energy barrier and bipolar carrier transport, the maximum recombination rate was found to be close to but not exactly at the interface of the hole-transporting layer and the EML. With appropriate tuning in the thickness, position, and dopant concentrations of the codoped layer (rubrene:DPAVBi:ADN) in the EML, the device driving voltage decreased by 21.7%, nearly 2 V in reduction, due to the increased recombination current from the faster exciton relaxation induced by the yellow dopants. Among the advantages of introducing the codoped layer over conventional single-doped layers are the elimination of the trapping effect to avoid increasing the device driving voltage, the alleviation of the dependence of the recombination zone on the applied voltage for improving color stability, and the utilization of excitons in a more efficient way to enhance device efficiency. Without using any electrically conductive layers such as the p-i-n structure, we were able to successfully generate 112 cd/m2 at 4 V from our white OLED simply by engineering the structure of the EML.

  17. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    SciTech Connect

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  18. Eu(3+)-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells.

    PubMed

    Shen, Jie; Li, Zhiqiang; Cheng, Rui; Luo, Qi; Luo, Yudan; Chen, Yiwei; Chen, Xiaohong; Sun, Zhuo; Huang, Sumei

    2014-10-22

    We present for the first time the synthesis of Eu(3+)-doped β-phase sodium gadolinium fluoride (NaGdF4:Eu) nanocrystals (NCs) using a hydrothermal method and the application of down conversion (DC) NaGdF4:Eu NCs to efficient dye-sensitized solar cells (DSSCs). The as-prepared NaGdF4:Eu(3+) NCs were characterized by X-ray diffraction, photoluminescence spectrometry, and scanning and transmission electron microscopy. DC layers consisting of poly(methyl methacrylate) (PMMA) doped with luminescent NaGdF4:Eu(3+) were prepared and attached onto the back of a prefabricated TiO2 anode to form a more efficient DSSC, compared with a device based on a pure TiO2 electrode. The influences of both doped and undoped NaGdF4 NC layers on the photovoltaic devices were compared and evaluated by the measurement of the device's incident-photon-to-current efficiency (IPCE). An obvious increase in IPCE was observed when the DC layer was added in the device. As the down-converted photons can be reabsorbed within DSSCs to generate photocurrent, the DSSC with a 100 nm thick NaGdF4:Eu(3+) DC-PMMA layer improved photoelectric conversion efficiency by 4.5% relative to the uncoated solar cell. The experiments conclude that NaGdF4:Eu(3+) nanocrystals mainly act as luminescent DC centers and light scatterers in the ultraviolet and visible domains, respectively, for enhancing the spectral response of the device in the measured spectral regime. PMID:25269703

  19. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature

    NASA Astrophysics Data System (ADS)

    Jang, Cholho; Zhizhen, Ye; Jianguo, Lü

    2015-12-01

    Ga doped ZnO (GZO)/Cu grid double layer structures were prepared at room temperature (RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit (ΦTC = 6.19 × 10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor (FF) of the GZO/Cu grid double layer are 83.74%, 1.10 × 10-4 Ω·cm and 0.173, respectively. Project supported by the Key Project of the National Natural Science Foundation of China (No. 91333203), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT13037), the National Natural Science Foundation of China (No. 51172204), and the Zhejiang Provincial Department of Science and Technology of China (No. 2010R50020).

  20. Improving efficiency of silicon solar cells using europium-doped silicate-phosphor layer by spin-on film coating

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Yang, Guo-Chang; Shen, Yu-Tang; Deng, Yu-Jie

    2016-03-01

    This paper reports impressive enhancements in the efficiency of crystalline silicon solar cells through the application of a Eu-doped silicate phosphor luminescent downshifting (LDS) layer controlled by spin-on film technique. Surface morphology was examined using scanning electron microscope (SEM), chemical composition was analyzed using energy dispersive spectroscopy (EDS), and fluorescence emission was characterized using photoluminescence (PL) measurements at room temperature. The optical reflectance, absorbance, and external quantum efficiency (EQE) response of SiO2-coated cells with and without Eu-doped silicate phosphor were measured and compared. An 18.77% improvement in efficiency was achieved, as determined by photovoltaic current-voltage measurement under one-sun AM 1.5 G illuminations.

  1. Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk

    NASA Astrophysics Data System (ADS)

    Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji

    Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow

  2. Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer

    SciTech Connect

    Dementyev, P. A.; Dunaevskii, M. S. Samsonenko, Yu. B.; Cirlin, G. E.; Titkov, A. N.

    2010-05-15

    A technique for measurement of longitudinal current-voltage characteristics of semiconductor nanowhiskers remaining in contact with the growth surface is suggested. The technique is based on setting up a stable conductive contact between the top of a nanowhisker and the probe of an atomic-force microscope. It is demonstrated that, as the force pressing the probe against the top of the nanowhisker increases, the natural oxide layer covering the top is punctured and a direct contact between the probe and the nanowhisker body is established. In order to prevent nanowhiskers from bending and, ultimately, breaking, they need to be somehow fixed in space. In this study, GaAs nanowhiskers were kept fixed by partially overgrowing them with a GaAs layer. To isolate nanowhiskers from the matrix they were embedded in, they were coated by a nanometer layer of AlGaAs. Doping of GaAs nanowhiskers with silicon was investigated. The shape of the current-voltage characteristics obtained indicates that introduction of silicon leads to p-type conduction in nanowhiskers, in contrast to n-type conduction in bulk GaAs crystals grown by molecular-beam epitaxy. This difference is attributed to the fact that the vapor-liquid-solid process used to obtain nanowhiskers includes a final stage of liquid-phase epitaxy, a characteristic of the latter being p-type conduction obtained in bulk GaAs(Si) crystals.

  3. A solution-doped small molecule hole transport layer for efficient ITO-free organic solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bormann, Ludwig; Selzer, Franz; Leo, Karl; Mueller-Meskamp, Lars

    2015-10-01

    Indium-tin-oxide-free (ITO-free) organic solar cells are an important, emerging research field because ITO transparent electrodes are a bottleneck for cheap large area devices on flexible substrates. Among highly conductive PEDOT:PSS and metal grids, percolation networks made of silver nanowires (AgNW) with a diameter in the nanoscale show a huge potential due to easy processing (e.g. spray coating), high aspect ratios and excellent electrical and optical properties like 15 Ohm/sq with a transmission of 83.5 % including the substrate. However, the inherent surface roughness of the AgNW film impedes the implementation as bottom electrode in organic devices, especially fully vacuum deposited ones, where often shunts are obtained. Here, we report about the solution processing of a small molecule hole transport layer (s-HTL) comprising N,N'-((Diphenyl-N,N'-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB, host material) and the proprietary NDP9 (p-dopant) deposited from tetrahydrofuran (THF) as non-halogenated, "green" solvent. We show, that the doping process already takes place in solution and that conductivities, achieved with this process at high doping efficiencies (4 * 10^-4 S/cm at 10 wt% doping concentration), are comparable to thermal co-evaporation of BF-DPB:NDP9 under high vacuum, which is the proven deposition method for doped small molecule films. Applying this s-HTL to AgNW films leads to well smoothened electrodes, ready for application in organic devices. Vacuum-deposited organic p-i-n solar cells with DCV2-5T-Me(3:3):C60 as active layer show a power conversion efficiency of 4.4% and 3.7% on AgNW electrode with 35nm and 90 nm wire diameter, compared to 4.1% on ITO with the s-HTL.

  4. Non-equilibrium Approach to Doping of Wide Bandgap materials by Molecular Beam Epitaxy. Final Report

    SciTech Connect

    Tamargo, M. C.; Neumark, G. F.

    2004-04-19

    It is well known that it has been difficult to obtain good bipolar doping in a wide bandgap semiconductors. Developed a new doping technique, involving use of a standard dopant, together with a ''co-dopant'' used to facilitate the introduction of the dopant, and have vastly alleviated this problem.

  5. Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

    NASA Astrophysics Data System (ADS)

    Aravazhi, Shanmugam; Geskus, Dimitri; van Dalfsen, Koop; Vázquez-Córdova, Sergio A.; Grivas, Christos; Griebner, Uwe; García-Blanco, Sonia M.; Pollnau, Markus

    2013-05-01

    Single-crystalline KY1- x-y-z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.

  6. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  7. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  8. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    PubMed Central

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-01-01

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties. PMID:24854359

  9. Well-aligned Nd-doped SnO2 nanorod layered arrays: preparation, characterization and enhanced alcohol-gas sensing performance.

    PubMed

    Qin, Guohui; Gao, Fan; Jiang, Qiuping; Li, Yuehua; Liu, Yongjun; Luo, Li; Zhao, Kang; Zhao, Heyun

    2016-02-21

    Well-oriented neodymium doped SnO2 layered nanorod arrays were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide at 210 °C. The morphology and phase structure of the Nd-doped SnO2 nanoarrays were investigated by X-ray powder diffraction spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman scattering spectroscopy, X-ray photoelectron spectroscopy and the BET method. The results demonstrated that the Nd-doped SnO2 layered nanorod arrays showed a unique nanostructure combined together with double layered arrays of nanorods with a diameter of 12 nm and a length of several hundred nanometers. The Nd-doped layered SnO2 nanoarrays kept the crystal structure of the bulk SnO2 and possessed more surface defects caused by the Nd ions doped into the SnO2 lattice. The Nd dopant acts as a crystallite growth inhibitor to prevent the growth of SnO2 nanorods. An investigation into the gas-sensing properties indicated that the optimized doping level of 3.0 at% Nd-doped SnO2 layered nanorod arrays exhibited an excellent sensing response toward alcohol at a lower temperature of 260 °C. The enhanced sensor performance was attributed to the higher specific surface area, multi-defect surface structure and the excellent catalytic properties of Nd dopant that is able to increase the amount of active sites on the surface of semiconducting oxides. The Nd-doped SnO2 nanoarray sensors were considered to be a promising candidate for trace alcohol detections in environmental gas monitoring. PMID:26863493

  10. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Jung, Jong-Hyuk; Im, Won Bin; Yoon, Sukeun; Shin, Kyung-Hee; Lee, Jong-Won

    2013-10-23

    Rechargeable metal-air batteries have attracted a great interest in recent years because of their high energy density. The critical challenges facing these technologies include the sluggish kinetics of the oxygen reduction-evolution reactions on a cathode (air electrode). Here, we report doped lanthanum nickelates (La2NiO4) with a layered perovskite structure that serve as efficient bifunctional electrocatalysts for oxygen reduction and evolution in an aqueous alkaline electrolyte. Rechargeable lithium-air and zinc-air batteries assembled with these catalysts exhibit remarkably reduced discharge-charge voltage gaps (improved round-trip efficiency) as well as high stability during cycling. PMID:24053465

  11. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    SciTech Connect

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  12. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  13. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.

    PubMed

    Xu, Jiaoxing; Dong, Guofa; Jin, Chuanhong; Huang, Meihua; Guan, Lunhui

    2013-03-01

    S and N co-doped, few-layered graphene oxide is synthesized by using pyrimidine and thiophene as precursors for the application of the oxygen reduction reaction (ORR). The dual-doped catalyst with pyrrolic/graphitic N-dominant structures exhibits competitive catalytic activity (10.0 mA cm(-2) kinetic-limiting current density at -0.25 V) that is superior to that for mono N-doped carbon nanomaterials. This is because of a synergetic effect of N and S co-doping. Furthermore, the dual-doped catalyst also shows an efficient four-electron-dominant ORR process, which has excellent methanol tolerance and improved durability in comparison to commercial Pt/C catalysts. PMID:23404829

  14. Effect of in situ Sb doping on crystalline and electrical characteristics of n-type Ge1- x Sn x epitaxial layer

    NASA Astrophysics Data System (ADS)

    Jeon, Jihee; Asano, Takanori; Shimura, Yosuke; Takeuchi, Wakana; Kurosawa, Masashi; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-04-01

    We examined the molecular beam epitaxy of Ge1- x Sn x with in situ Sb doping on Ge substrates. The effects of Sb doping on the crystalline and electrical characteristics of Ge1- x Sn x epitaxial layer were investigated in detail. We found that Sb doping with a concentration of 1020 cm-3 remarkably improves the crystallinity, and surface uniformity of the Ge1- x Sn x epitaxial layer by changing the growth mode by the surfactant effect of Sb atoms. Low-temperature Ge1- x Sn x growth with in situ Sb doping realizes a very high electron concentration of 1020 cm-3, which is above the thermal equilibrium solid solubility, as a result of suppressing Sb segregation and precipitation.

  15. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    NASA Astrophysics Data System (ADS)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  16. Graphene on a metal surface with an h-BN buffer layer: gap opening and N-doping

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Lu, Yunhao; Feng, Y. P.

    2016-04-01

    Graphene grown on a metal surface, Cu(111), with a boron-nitride (h-BN) buffer layer is studied. Our first-principles calculations reveal that charge is transferred from the copper substrate to graphene through the h-BN buffer layer which results in n-doped graphene in the absence of a gate voltage. More importantly, a gap of 0.2 eV, which is comparable to that of a typical narrow gap semiconductor, opens just 0.5 eV below the Fermi level at the Dirac point. The Fermi level can be easily shifted inside this gap to make graphene a semiconductor, which is crucial for graphene-based electronic devices. A graphene-based p-n junction can be realized with graphene eptaxially grown on a metal surface.

  17. Electron beam evaporated carbon doping of InGaAs layers grown by gas source molecular beam epitaxy

    SciTech Connect

    Salokatve, A.; Toivonen, M.; Asonen, H.; Pessa, M.; Likonen, J.

    1996-12-31

    The authors have studied carbon doping of GaInAs grown by gas-source molecular beam epitaxy. Graphite was used as a source material for carbon evaporation. GaInAs was studied due to its importance as a base layer in InP-based heterojunction bipolar transistors. They show that useful p-type acceptor concentrations can be achieved by evaporation from graphite source for GaInAs grown by gas-source molecular beam epitaxy. Secondary ion mass spectroscopy and Van der Pauw Hall measurements were used to characterize the carbon and net acceptor concentrations of their GaInAs layers. The effect of rapid thermal annealing on acceptor concentrations and Hall mobilities was also studied.

  18. Radiation tolerant GaAs MESFET with a highly-doped thin active layer grown by OMVPE

    SciTech Connect

    Nishiguchi, M.; Hashinaga, T.; Nishizawa, H.; Hayashi, H. ); Okazaki, N. ); Kitagawa, M.; Fujino, T. )

    1990-12-01

    A new structure of GaAs MESFET with high radiation tolerance is proposed. Changes in electrical parameters of a GaAs MESFET as a function of total {gamma}-ray dose have been found to be caused mainly by a decrease in the effective carrier concentration in an active layer. The authors have designed a new structure from a simulation based on an empirical relationship between the changes of the effective carrier concentration and the total {gamma}-ray dose. It has been successfully demonstrated by utilizing a highly-doped thin active layer (4 {times} 10{sup 18} cm{sup {minus}3}, 100 {Angstrom}) grown by OMVPE. This MESFET can withstand a dose ten times higher (1 {times} 10{sup 9} rads(GaAs)) than a conventional one can.

  19. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  20. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively. PMID:26413646

  1. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal.

    PubMed

    Seo, J J; Kim, B Y; Kim, B S; Jeong, J K; Ok, J M; Kim, Jun Sung; Denlinger, J D; Mo, S-K; Kim, C; Kim, Y K

    2016-01-01

    A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3. PMID:27050161

  2. Imaging of Compressed Pure-CH Shells and CH Shells with Titanium-Doped Layers on OMEGA

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Yaakobi, B.; Goncharov, V. N.; Delettrez, J. A.; Marshall, F. J.; Meyerhofer, D. D.

    1999-11-01

    The compressed shell integrity of spherical targets has been studied using the 60-beam, 30-kJ UV, OMEGA laser system. The emission from the hot core has been imaged through the cold shell at two narrow, x-ray energy bands, absorbing and nonabsorbing by the shell, allowing nonuniformities in the core emission and the cold shell areal density to be measured. Images of the target have been obtained using a pinhole-array with K-edge filters. The x-ray energies used are around 2.8 and 4.5 keV for pure-CH shells, and around 4.5 and 6 keV for titanium-doped layers. Additional images of the shell are obtained with a framed monochromatic x-ray microscope and a time-integrated crystal-spectrometer/pinhole-array combination. We will present measurements of the compressed shell integrity at the stagnation stage of spherical implosions by varying the position of the titanium-doped layer within the shell, by varying the thickness of the CH shell, and by using two different laser pulse shapes. The experimental results will be compared with 2-D (ORCHID) hydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  3. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal

    PubMed Central

    Seo, J. J.; Kim, B. Y.; Kim, B. S.; Jeong, J. K.; Ok, J. M.; Kim, Jun Sung; Denlinger, J. D.; Mo, S. -K.; Kim, C.; Kim, Y. K.

    2016-01-01

    A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3. PMID:27050161

  4. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal

    NASA Astrophysics Data System (ADS)

    Seo, J. J.; Kim, B. Y.; Kim, B. S.; Jeong, J. K.; Ok, J. M.; Kim, Jun Sung; Denlinger, J. D.; Mo, S.-K.; Kim, C.; Kim, Y. K.

    2016-04-01

    A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.

  5. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  6. Electrically Active Defects in GaN Layers Grown With and Without Fe-doped Buffers by Metal-organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Umana-Membreno, G. A.; Parish, G.; Fichtenbaum, N.; Keller, S.; Mishra, U. K.; Nener, B. D.

    2008-05-01

    Electrically active defects in n-GaN films grown with and without an Fe-doped buffer layer have been investigated using conventional and optical deep-level transient spectroscopy (DLTS). Conventional DLTS revealed three well- defined electron traps with activation energies E a of 0.21, 0.53, and 0.8 eV. The concentration of the 0.21 and 0.8 eV defects was found to be slightly higher in the sample without the Fe-doped buffer, whereas the concentration of the 0.53 eV trap was higher in the sample with the Fe-doped buffer. A minority carrier trap with E a ≈ 0.65 eV was detected in both samples using optical DLTS; its concentration was ˜40% higher in the sample without the Fe-doped buffer. Mobility spectrum analysis and multiple magnetic-field measurements revealed that the electron mobility in the topmost layer of both samples was similar, but that the sample without the Fe-doped buffer layer was affected by parallel conduction through underlying layers with lower electron mobility.

  7. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  8. Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers.

    PubMed

    Yu, Sunmoon; Kim, Jaehoon; Yoon, Ki Ro; Jung, Ji-Won; Oh, Jihun; Kim, Il-Doo

    2015-12-30

    To exploit the benefits of nanostructuring for enhanced hydrogen evolution reaction (HER), we employed coaxial electrospinning to synthesize single-layered WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers (WS2@HNCNFs) as efficient electrocatalysts. For comparison, bulk WS2 powder and single layers of WS2 embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) were synthesized and electrochemically tested. The distinctive design of the WS2@HNCNFs enables remarkable electrochemical performances showing a low overpotential with reduced charge transfer resistance, a small Tafel slope, and excellent durability. The experimental results highlight the importance of nanostructure engineering in electrocatalysts for enhanced HER. PMID:26654256

  9. AlO x /LiF composite protection layer for Cr-doped (Bi,Sb)2Te3 quantum anomalous Hall films

    NASA Astrophysics Data System (ADS)

    Ou, Yunbo; Feng, Yang; Feng, Xiao; Hao, Zhenqi; Zhang, Liguo; Liu, Chang; Wang, Yayu; He, Ke; Ma, Xucun; Xue, Qikun

    2016-08-01

    We have realized robust quantum anomalous Hall samples by protecting Cr-doped (Bi,Sb)2Te3 topological insulator films with a combination of LiF and AlO x capping layers. The AlO x /LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped (Bi,Sb)2Te3 films and effectively prevent them from degradation induced by ambient conditions. The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system. Project supported by the National Natural Science Foundation of China (Grant No. 11325421).

  10. Possible Deviation from the well-known Threshold Behavior of Field-Effect Doping Phenomenon in Extremely Thin Organic Semiconductor Layer

    NASA Astrophysics Data System (ADS)

    Ikegami, Keiichi

    2004-05-01

    Field-effect doping in a metal/insulator/semiconductor/metal four-layer model indicates that the well-known threshold behavior Q\\propto(VG-Vth), where Q is the induced charge and VG and Vth are the bias voltage and its threshold value, respectively, should be realized even when the thickness of the semiconductor layer (ds) is on the 10 nm scale. At the same time, however, this model suggests that the doping phenomenon deviates from this simple threshold behavior when the density of states is small and ds is on the 1 nm scale.

  11. Optical and electrical characterization of aluminium doped ZnO layers

    NASA Astrophysics Data System (ADS)

    Major, C.; Nemeth, A.; Radnoczi, G.; Czigany, Zs.; Fried, M.; Labadi, Z.; Barsony, I.

    2009-08-01

    Al doped ZnO (ZAO) thin films (with Al-doping levels 2 at.%) were deposited at different deposition parameters on silicon substrate by reactive magnetron sputtering for solar cell contacts, and samples were investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry (SE). Specific resistances were measured by the well known 4-pin method. Well visible columnar structure and in most cases voided other regions were observed at the grain boundaries by TEM. EELS measurements were carried out to characterize the grain boundaries, and the results show spacing voids between columnar grains at samples with high specific resistance, while no spacing voids were observed at highly conductive samples. SE measurements were evaluated by using the analytical expression suggested by Yoshikawa and Adachi [H. Yoshikawa, S. Adachi, Japanese Journal of Applied Physics 36 (1997) 6237], and the results show correlation between specific resistance and band gap energy and direct exciton strength parameter.

  12. Structural transformation and photoluminescence behavior during calcination of the layered europium-doped yttrium hydroxide intercalate with organic-sensitizer

    SciTech Connect

    Sun, Yahong; Pan, Guohua; Gu, Qingyang; Li, Xinxin; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2013-11-15

    Graphical abstract: Calcination of organic sensitizer intercalated layered europium-doped yttrium hydroxide displayed tunable luminescent performance dependent on calcined temperatures. The 200 °C-calcined sample revealed an optimal fluorescence behavior with respect to TA-LYH:Eu composite and the as-transformed oxide. - Highlights: • We report the calcinations process of organic/LYH:Eu nanocomposite materials. • We study structural transformation and fluorescence behavior of the calcined samples. • Calcined samples displayed tunable luminescent performance dependent on temperatures. • The optimal fluorescence was found in 200 °C-calcined sample. • This material can provide valuable guide for developing tunable luminescent materials. - Abstract: We report, for the first time, structural transformation and photoluminescence behavior by calcination of layered europium-doped yttrium hydroxide (LYH:Eu) intercalate with organic sensitizer terephthalate (TA). The calcined samples displayed tunable luminescent performance dependent on calcined temperatures. Calcination under low temperatures (200 and 300 °C) retained layered structure, while high temperatures (>400 °C) yielded oxide phase. The optimal fluorescence occurred in 200 °C-calcination, possibly resulting from an optimal arrangement of TA. Above 200 °C, the luminescence intensity was first weakened and then enhanced, due to gradual departure of TA and following occurrence of oxide phase. The energy transfer presented an intrinsic transition from TA-to-Eu{sup 3+} in the organic intercalate to O{sup 2−}-to-Eu{sup 3+} charge transfer in as-transformed oxide. The predominant luminescence property of the hybrid material can provide valuable guide for developing tunable luminescent materials, especially flexible materials resulting from the containing organic component.

  13. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  14. Molecular doping of regioregular poly(3-hexylthiophene) layers by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane investigated by infrared spectroscopy and electrical measurements

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Niwano, Michio

    2015-09-01

    Molecular doping is a charge-transfer process intended to improve the performance of organic electronic devices such as organic transistors. We have investigated molecular doping of regioregular poly(3-hexylthiophene) (P3HT) layers by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) using infrared absorption spectroscopy in the multiple internal reflection geometry (MIR-IRAS) and conductivity measurements. IRAS data confirm that F4-TCNQ acts as an effective p-type dopant for P3HT; highly doped P3HT displayed an intense, broad absorption band due to polaron (“polaron band”) and a high carrier (hole) density which are indicative of the charge transfer between F4-TCNQ and P3HT. We demonstrate that the charge (hole) transferred from the dopant molecule is distributed along the P3HT polymer chain and spreads over at least 10 thiophene monomer units on the chain. From a comparison of the measured conductivity of F4-TCNQ-doped P3HT layers with the carrier density, we show that the carrier mobility is proportional to the concentration of carriers (holes), which suggests that F4-TCNQ doping induces the conformational change of P3HT polymer chains to enhance the mobility of holes in the films of the doped P3HTs.

  15. Effects of pentacene-doped PEDOT:PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells.

    PubMed

    Kim, Hyunsoo; Lee, Jungrae; Ok, Sunseong; Choe, Youngson

    2012-01-01

    We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis. PMID:22221320

  16. New Insight into an Under-doped Regime of High Tc Superconductivity - NMR Studies of Multi-layered Cuprates

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yoshio

    2007-03-01

    High-temperature superconductivity (HTSC) has not been fully understood yet despite 20 year's intensive research. In particular, a possible interplay between antiferromagnetism (AFM) and HTSC remains as a most interesting problem. It is believed that they all fit into a universal phase diagram which suggests a competition between AFM and HTSC. Recently, however, through the systematic Cu-NMR studies on the Hg-, Tl- and Cu-based five-layered HTSC, we propose a novel phase diagram [1-3], which differs from the generic phase diagram of the HTSC reported so far, for instance, such as LSCO. The multi-layered HTSC compounds include two types of CuO2 planes, an outer CuO2 plane (OP) in a pyramidal coordination and an inner CuO2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered HTSC is the presence of ideally flat CuO2 planes that are homogeneously doped, which is ensured by the narrowest NMR spectral width among the various HTSC compounds with very high quality to date. It should be noted that the nearly non-doped AFM in the IP and the IP* takes place, whereas inhomogeneous magnetic phases such as spin-glass phase or stripe phase are not observed at both the IP's and the OP's. Instead, the existence of the doped AFM metallic (AFMM) phase at the IP and the IP* is remarkable at the boundary between AFM insulating (AFMI) phase and SC. This differs from the case of LSCO where the disorder-driven magnetic phases exist between the AFMI phase in Nh< 0.02 and the SC phase in Nh> 0.05. In an underlying phase diagram, the AFMM is extended to a higher hole density due to the flatness of CuO2 plane with no apical oxygen and the homogeneous distribution of carrier density. By contrast, the prototype phase diagrams reported thus far are under the inevitable disorder effect associated with the chemical substitution introduced into the CuO2 out-of-planes as corroborated by the observation of a disorder-driven transition from AFMM phase to AFMI

  17. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-09-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al3+ films. The electrochromic performance of the films were evaluated by means of UV-vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni3+/Ni2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film.

  18. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties.

    PubMed

    Ju, Zhicheng; Zhang, Shuai; Xing, Zheng; Zhuang, Quanchao; Qiang, Yinghuai; Qian, Yitai

    2016-08-17

    Heteroatom-doped graphene is considered a potential electrode materials for lithium-ion batteries (LIBs). However, potassium-ion batteries (PIBs) systems are possible alternatives due to the comparatively higher abundance. Here, a practical solid-state method is described for the preparation of few-layer F-doped graphene foam (FFGF) with thickness of about 4 nm and high surface area (874 m(2)g(-1)). As anode material for LIBs, FFGF exhibits 800 mAh·g(-1) after 50 cycles at a current density of 100 mA·g(-1) and 555 mAh·g(-1) after 100 cycles at 200 mA·g(-1) as well as remarkable rate capability. FFGF also shows 165.9 mAh·g(-1) at 500 mA·g(-1) for 200 cycles for PIBs. Research suggests that the multiple synergistic effects of the F-modification, high surface area, and mesoporous membrane structures endow the ions and electrons throughout the electrode matrix with fast transportation as well as offering sufficient active sites for lithium and potassium storage, resulting in excellent electrochemical performance. Furthermore, the insights obtained will be of benefit to the design of reasonable electrode materials for alkali metal ion batteries. PMID:27467782

  19. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  20. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation. PMID:22966566

  1. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  2. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2016-06-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL.

  3. Photovoltaic response in pristine WSe{sub 2} layers modulated by metal-induced surface-charge-transfer doping

    SciTech Connect

    Wi, Sungjin; Chen, Mikai; Li, Da; Nam, Hongsuk; Meyhofer, Edgar; Liang, Xiaogan

    2015-08-10

    We obtained photovoltaic response in pristine multilayer WSe{sub 2} by sandwiching WSe{sub 2} between top and bottom metals. In this structure, the work-function difference between the top metal and WSe{sub 2} plays a critical role in generating built-in potentials and photovoltaic responses. Our devices with Zn as top metal exhibit photo-conversion efficiencies up to 6.7% under 532 nm illumination and external quantum efficiencies in the range of 40%–83% for visible light. This work provides a method for generating photovoltaic responses in layered semiconductors without detrimental doping or exquisite heterostructures, and also advances the physics for modulating the band structures of such emerging semiconductors.

  4. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    PubMed Central

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2016-01-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388

  5. Red-Light-Emitting Diodes with Site-Selective Eu-Doped GaN Active Layer

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hiroto; Takagi, Yasufumi; Otani, Tatsuki; Matsumura, Ryota; Okada, Hiroshi; Wakahara, Akihiro

    2013-08-01

    Mg codoping into Eu-doped GaN (GaN:Eu) changed the dominant optical site and increased the photoluminescence (PL) intensity at room temperature (RT). From the ratio of PL integrated intensity at 25 K to that at 300 K, PL efficiency of the GaN:Eu,Mg layer was evaluated to be as high as 77%. On the basis of this experiment, GaN:Eu-based LEDs grown by NH3 MBE were fabricated. Clear rectification characteristics with a turn-on voltage of 3.2 V were observed and a pure red emission was observed by the naked eye at RT. For the electroluminescence (EL) spectra, two predominant peaks of higher-efficiency optical sites A and C were selectively enhanced and the EL intensity was improved. This result suggests that GaN:Eu was very effective for realizing red-light-emitting devices using the nitride semiconductor.

  6. Enhanced Luminescence Efficiency of InGaN/GaN Multiple Quantum Wells by a Strain Relief Layer and Proper Si Doping

    NASA Astrophysics Data System (ADS)

    Tsai, Ping-Chieh; Su, Yan-Kuin; Chen, Wen-Ray; Huang, Chun-Yuan

    2010-04-01

    The effects of a strain relief layer (SRL) employed in the InGaN/GaN light-emitting diodes (LEDs) was demonstrated. The wavelength shift was reduced to as small as 2.5 nm by inserting a SRL between n-GaN and InGaN/GaN multiple quantum wells (MQWs). For the improvement of optical properties, a proper Si-doped layer was simultaneously added in the last several barriers of In0.08Ga0.92N/GaN SRL. It can be found that the output power was increased more than 25% as the Si doping level was increased up to 5 times in the last three barriers of SRL at an injection current of 20 mA. Furthermore, the forward voltages at 20 mA were almost the same for all LEDs with different doping levels and positions.

  7. Investigation of Diffusion Barrier Layers for Bi-Doped Mg2(Si,Ge) Thermoelectric Legs

    NASA Astrophysics Data System (ADS)

    Prahoveanu, Codrin; Laversenne, Laetitia; de Vaulx, Cédric; Bès, Alexandre; Azzouz, Kamel; Lacoste, Ana

    2016-08-01

    The performance of thermoelectric (TE) modules is governed not only by the thermoelectric materials whose properties are capitalized, but also on the quality of the electrical contacts which are ubiquitous in the design of the device. To ensure the necessary stability of the interfaces between the TE materials and the electrodes, diffusion barriers are generally used. In this study, attempts are presented in finding diffusion barriers that would be suitable for Mg2(Si,Ge) TE materials. These involved the deposition by microwave plasma-assisted co-sputtering of intermediate gradient layers starting from Mg and Si, ending up with a Ni layer, or the deposition of metallic layers (Ti, Cr, W and Ta). The effectiveness of the deposited layers as diffusion barriers is assessed after the legs were subjected to a brazing process, with the results favoring the use of gradient layers with a thick Ni layer and metallic layers based on Ta and Cr, despite some adherence issues for the latter.

  8. Doped TiO2 anodic layers of enhanced antibacterial properties.

    PubMed

    Arenas, María A; Pérez-Jorge, Concepción; Conde, Ana; Matykina, Endzhe; Hernández-López, Juan M; Pérez-Tanoira, Ramón; de Damborenea, Juan J; Gómez-Barrena, Enrique; Esteba, Jaime

    2013-05-01

    Ti-6Al-4V joint replacement implants foster uncemented fixation in orthopaedic surgery. However, bacterial colonization competes with host cells and ultimately may produce implant-related difficult-to-treat infections, justifying the efforts to obtain infection-resistant materials. In a previous work, the authors demonstrated the antibacterial properties of anodic fluoride-TiO2 nanostructured layers on Ti-6Al-4V alloy. In this work, the anodizing bath has been modified in order to grow fluoride-TiO2 barrier layers (FBL). A bacterial adherence protocol, run with reference and six different clinical strains of Staphylococcus aureus and Staphylococcus epidermidis, showed a statistically significant decrease in the percentage of covered surface (p<0.0001, Kruskal-Wallis test) for FBL specimens when compared with non fluoride-containing specimens, i.e. chemically polished Ti-6Al-4V and F-free TiO2 barrier layers. The results obtained on the F-barrier layers allowed discrimination between the effects of the presence of fluoride in the layer and the layer nanostructure on bacterial adhesion. PMID:23357736

  9. Zirconium doped TiO2 thin films: A promising dielectric layer

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2016-05-01

    In the present work, we have fabricated the zirconium doped TiO2 thin (ZTO) films from a facile spin - coating method. The addition of Zirconium in TiO2 offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO2 thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ˜10-8 A/cm2. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compact and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.

  10. Examination of Na-Doped Mo Sputtering for CIGS Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-375

    SciTech Connect

    Repins, I.

    2012-01-01

    This work has investigated the use of Na doped Mo (MONA) sputtering targets for use in preparing CIGS devices. The Mo:Na material is doped to about 3% Na by weight, implying that a 40 nm layer on top of the standard Mo contact contains sufficient Na to dope a 2.5 ..mu..m CIGS film. The ability to control Na doping independent of both CIGS processing conditions and adhesion is an important gain for industry and research. Manufacturers gain a route to increased manufacturability and performance, while NREL researchers gain a tightened performance distribution of devices and increased process flexibility. Our immediate partner in this work, the Climax Molybdenum Technology Center, gains validation of their product.