Science.gov

Sample records for doped optical recording

  1. Optically recorded tunable microlenses based on dye-doped liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Lucchetti, Liana; Tasseva, Jordanka

    2012-04-01

    We report on optically recorded microlenses in conventional liquid crystal cells doped with the azo-dye methyl-red. The focal length can be tuned electrically and changed in a wide range with just a small variation of the applied dc voltage. No patterned electrodes, built-in polymeric lens, or patterned molecular reorientation are required.

  2. Methylene blue doped polymers: efficient media for optical recording

    NASA Astrophysics Data System (ADS)

    Ushamani, M.; Sreekumar, K.; Sudha Kartha, C.; Joseph, R.

    2004-05-01

    Polymer materials find application in optical storage technology, namely in the development of high information density and fast access type memories. A new polymer blend of methylene blue sensitized polyvinyl alcohol (PVA) and polyacrylic acid (PAA) in methanol is prepared and characterized and its comparison with methylene blue sensitized PVA in methanol and complexed methylene blue sensitized polyvinyl chloride (CMBPVC) is presented. The optical absorption spectra of the thin films of these polymers showed a strong and broad absorption region at 670-650 nm, matching the wavelength of the laser used. A very slow recovery of the dye on irradiation was observed when a 7:3 blend of polyvinyl alcohol/polyacrylic acid at a pH of 3.8 and a sensitizer concentration of 4.67 · 10-5 g/ml were used. A diffraction efficiency of up to 20% was observed for the MBPVA/alcohol system and an energetic sensitivity of 2000 mJ/cm2 was obtained in the photosensitive films with a spatial frequency of 588 lines/mm.

  3. Nonstationary amplification of the holographic recording in doped BSO crystals: a base for photorefractive incoherent-to-coherent optical conversion.

    PubMed

    Miteva, M; Dushkina, N; Gospodinov, M

    1995-07-10

    An effect of nonstationary amplification of the holographic recording in pure and transition-metal doped crystals of the sillenite type (Bi(12)SiO(20), or BSO), irradiated in advance with light from the red or near-infrared spectrum, is investigated. This amplification can serve as a base for incoherent-tocoherent optical conversion. It is found that BSO crystals doped with iron and cobalt have a highersensitivity and much wider spatial-frequency range, where the effect of the amplification can be observed,compared with nondoped crystals. PMID:21052232

  4. A new optical recording medium

    NASA Technical Reports Server (NTRS)

    Aronson, H.; Loiacono, G. M.

    1973-01-01

    Method has been developed for doping lithium niobiate crystals with transition metal to increase rate at which crystal can record optical data. Discovery may facilitate development of system for analog storage of TV frames, printed pages, photographs, and other visual information.

  5. Holography recording properties of new dye-doped ionic liquid crystals for use in optical switch applications

    NASA Astrophysics Data System (ADS)

    Klimusheva, Gertruda V.; Mirnaya, Tatyana A.; Bugaychuk, S. A.; Bezrodnui, Vladimir; Kolesnik, O.; Vakhnin, Alexander Y.; Sadovenko, A.

    2004-05-01

    For the first time the multi-gratings holographic recording has been obtained in novel class of liquid crystals namely in ionic lyotropic metal-organic smectics formed on the base of metal alkanoates. It was shown that alkali metal alkanoates form smectic structures. They self-organized in hydrophobic bi-layers of alkanoate chaines with electrostatic conductive layers. The gratings are recorded by the action of pulsed laser radiation both picosecond and nanosecond duration from double frequency Nd-YAG laser. The multi-gratings formation can be connected with the recording process in micro-domains of smectic matrix.

  6. Optical sedimentation recorder

    DOEpatents

    Bishop, James K.B.

    2014-05-06

    A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.

  7. The xanthene dyes doped PMMA microspheres for optical sensor applications

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr; Dorosz, Dominik; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Jan

    2015-12-01

    The numerous applications of luminescent glass and polymeric microspheres are well known. The polymeric structures are popular as they assure good processability (solid and porous structures) and high doping level. The article presents the suspension polymerization process of polymeric (PMMA) microspheres doped by xanthene dyes: Fluorescein (Fl) and Rhodamine B (RhB). The bright luminescence at wavelengths 510nm 595nm respectively was recorded. The shape and dimension distributions of fabricated microspheres were optically determined. The article presents also potential applications of fabricated luminescent microspheres.

  8. Nanoparticle-doped radioluminescent silica optical fibers

    NASA Astrophysics Data System (ADS)

    Mrazek, J.; Nikl, M.; Kasik, I.; Podrazky, O.; Aubrecht, J.; Beitlerova, A.

    2014-05-01

    This contribution deals with the preparation and characterization of the silica optical fibers doped by nanocrystalline zinc silicate. The sol-gel approach was employed to prepare colloidal solution of zinc silicate precursors. Prepared sol was thermally treated to form nanocrystalline zinc silicate disperzed inside amorphous silica matrix or soaked inside the porous silica frit deposed inside the silica substrate tube which was collapsed into preform and drawn into optical fiber. Single mode optical fiber with the core diameter 15 μm and outer diamer 125 μm was prepared. Optical and waveguiding properties of the fiber were analyzed. Concentration of the zinc silicate in the fiber was 0.93 at. %. Radioluminescence properties of nanocrystalline zinc silicate powder and of the prepared optical fiber were investigated. The nanoparticle doped samples appear a emission maximum at 390 nm.

  9. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  10. Suppression of optical damage at 532 nm in Holmium doped congruent lithium niobate.

    PubMed

    Barnes, Eftihia; O'Connell, Nathan H; Balli, Nicolas R; Pokhrel, Madhab; Movsesyan, Anush; Kokanyan, Edvard; Sardar, Dhiraj K

    2014-10-20

    Optical damage experiments were carried out in a series of Holmium doped congruent lithium niobate (Ho:cLN) crystals as a function of dopant concentration and laser intensity. The light induced beam distortion was recorded with a camera and a detector under the pseudo-Z-scan configuration. At 532 nm, strong suppression of the optical damage was observed for the 0.94 mol. % doped crystal. Increased resistance to optical damage was also observed at 488 nm. The suppression of the optical damage is predominantly attributed to the reduction of the Nb antisites due to the holmium doping. PMID:25401654

  11. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  12. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  13. Optical cooling of Nd-doped solids

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Al Saleh, Mohammed; Garcia-Revilla, Sara; Sola, Daniel; Fernández, Joaquín

    2012-03-01

    In this work we present a comprehensive review of recent work carried out by our group in the field of optical refrigeration of Nd-doped solids. Several infrared thermography measurements in Nd-doped KPb2Cl5 crystals and micro-powders both above and below the barycentre of the 4F3/2 are presented. These include some of our most recent ones obtained by employing a novel technique that allows one to perform differential temperature measurements. The role of both the direct anti-Stokes absorption processes and those assisted by either excited state absorption or energy transfer upconversion in the cooling process is discussed.

  14. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  15. Spaceflight optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  16. Compact All-Fiber Optical Faraday Components Using 65-wt%-Terbium-Doped Fiber with a Record Verdet Constant of -32 rad/(Tm)

    SciTech Connect

    Sun, L.; Jiang, S.; Maricante, J.R.

    2010-06-04

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.

  17. Silver-doped photopolymer media for holographic recording.

    PubMed

    Pramitha, V; Nimmi, K P; Subramanyan, N V; Joseph, Rani; Sreekumar, K; Kartha, C Sudha

    2009-04-20

    Incorporation of silver ions into a dye-sensitized poly(vinyl alcohol)/acrylamide photopolymer is observed to give better performance compared to other metal-ion-doped photopolymer holographic recording media. Plane-wave transmission gratings were recorded in the photopolymer films using a He-Ne laser, and various holographic parameters were optimized so as to explore maximum potential of the material for various holographic applications. Silver-doped films showed good energy sensitivity, and gratings recorded in optimized film exhibited a diffraction efficiency of more than 75%. The potential of the material for holographic data storage applications is also studied using peristrophic multiplexing. PMID:19381175

  18. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  19. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. PMID:26864876

  20. All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Lucchetta, D. E.; Vita, F.; Simoni, F.

    2010-12-01

    We report the realization and the characterization of an all-optical switching device based on a transmission grating recorded in a polymeric substrate infiltrated with a methyl red-doped liquid crystal. The properties of this highly nonlinear mixture are exploited to modulate the diffraction of the grating by a pump beam when a static electric field is applied. The behavior of the device is in agreement with the existing model for methyl red-doped liquid crystals.

  1. Digital optical recorder-reproducer system

    NASA Technical Reports Server (NTRS)

    Reddersen, Brad R. (Inventor); Zech, Richard G. (Inventor); Roberts, Howard N. (Inventor)

    1980-01-01

    A mass archival optical recording and reproduction system includes a recording light source such as a laser beam focussed and directed upon an acousto-optic linear modulator array (or page composer) that receives parallel blocks of data converted from a serial stream of digital data to be stored. The page composer imparts to the laser beam modulation representative of a plurality of parallel channels of data and through focussing optics downstream of the page composer parallel arrays of optical spots are recorded upon a suitable recording medium such as a photographic film floppy disc. The recording medium may be substantially frictionlessly and stably positioned for recording at a record/read station by an air-bearing platen arrangement which is preferably thermodynamically non-throttling so that the recording film may be positioned in the path of the information-carrying light beam in a static or dynamic mode. During readout, the page composer is bypassed and a readout light beam is focussed directly upon the recording medium containing an array of previously recorded digital spots, a sync bit, data positioning bits, and a tracking band. The readout beam which has been directed through the recording medium is then imaged upon a photodetector array, the output of which may be coupled to suitable electronic processing circuitry, such as a digital multiplexer, whereby the parallel spot array is converted back into the original serial data stream.

  2. OPTICAL AND ELECTRICAL PROPERTIES OF DOPED POLY-3-OCTYLTHIOPHENE FILMS

    EPA Science Inventory

    Results of optical absorption and electrical conductivity measurements of solution-doped poly-3-octylthiophene (P3OT) films were studied. hloroform solutions of P3OT were doped with the organic electron-acceptors, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and 7,7,8,8-tetracyanoqu...

  3. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  4. Optical recording in copper-silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Dmitruk, Igor; Blonskiy, Ivan; Korenyuk, Petro; Kadan, Viktor; Zubrilin, Mykola; Dmytruk, Andriy; Yeshchenko, Oleg; Alexeenko, Alexandr; Kotko, Andriy

    2014-05-01

    The application of field enhancement effect, which takes place when light, interacts with surface plasmon, for optical recording has been suggested. Copper-silica nanocomposite demonstrates possibility of optical writing and erasing under irradiation by second harmonic (400 nm) and fundamental wavelength (800 nm) of femtosecond titanium-sapphire laser, respectively.

  5. Optical and magneto-optical properties of the electron-doped and hole-doped C82 crystal

    NASA Astrophysics Data System (ADS)

    Rostampour, E.; Koohi, A.

    2015-01-01

    The optical and magnetic properties of the doped C82 crystal have been investigated by Su-Schrieffer-Heeger (SSH) model, which is based on the Ewald method. When the C82 molecule is doped with one electron (or hole), a single electron is remained in the energy level that affects the optical and magnetic properties of the C82 crystal. The lattice and electronic structures of C82 changed with doping electron (or hole) in the molecule of C82. Therefore, polarons are predicted in doped fullerenes. The obtained results showed that the dielectric tensor of the C82 crystal increased with doping electron (or hole) in the molecule of C82. The spectral shapes of the dielectric tensor, circular dichroism and birefringence coefficient of the C82 crystal turn out to be determined mainly by the geometrical distributions of the pentagons in the fullerene structures.

  6. Optical method for the screening of doping substances

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Shevtsova, J.; Patzelt, A.; Richter, H.; Gladkowa, N. D.; Gelikonov, V. M.; Gonchukov, S. A.; Sterry, W.; Blume-Peytavi, U.

    2008-12-01

    During the last years, an increased misuse of doping substances in sport has been observed. The action of doping substances characterized by the stimulation of blood flow and metabolic processes is also reflected in the hair structure. In the present study it was demonstrated that optical coherent tomography is well suited for the analysis of hair parameters influenced by doping. Analyzing 20 patients, systemically treated with steroids which also represent doping substances, it was found that in all cases a significant increase in the cross-section of the hairs could be detected. The results obtained in the study are not only important for the screening of doping substances but also for medical diagnostics and control of compliance of patients.

  7. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  8. Flat Ge-doped optical fibres for food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  9. Nonlinear optical properties of nitrogen-doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Anand, Benoy; Podila, Ramakrishna; Rao, Apparao M.; Philip, Reji; Sai, S. Siva Sankara

    2013-06-01

    The electronic properties of graphene can be controlled by substitutional doping to obtain p-type or n-type characteristics. To this end, bilayer graphene films are synthesized using CVD method and substitutionally doped with Nitrogen (N). Previously, XPS measurements done in tandem with Raman spectroscopy revealed that the rich chemistry between carbon and nitrogen can result in pyridinic, pyrrolic, or graphitic configurations. The nonlinear optical properties (NLO) of both pristine and N-doped graphene samples are studied in both nanosecond and femtosecond excitation regimes using open aperture Z-scan method. Similar to the previous observations with Raman spectroscopy, we see that the NLO properties are more sensitive to the local bonding environments which determine the defect density in the graphene lattice, rather than just the dopant percentage. Our results give more insights into the effect of defects on the NLO properties of doped graphene which help in tailor making graphene samples for applications like modelocking and optical switching.

  10. Thermo-optic quality assessment of doped optical ceramics

    NASA Astrophysics Data System (ADS)

    Willis, Christina C. C.; Bradford, Joshua D.; Maddox, Emily; Shah, Lawrence; Richardson, Martin

    2013-03-01

    The use of optical quality ceramics for laser applications is expanding, and with this expansion there is an increasing need for diagnostics to assess the quality of these materials. Ceramic material with flaws and contaminants yields significantly less efficient performance as laser gain media and can generate excessive amounts of waste heat. This is a concern that is especially relevant in high power laser applications where thermally induced damage can be catastrophic. In order to assess a set of ceramic and crystalline samples we induce and measure thermal lensing in order to produce a relative ranking based on the extent of the induced thermal lens. In these experiments thermal lensing is induced in a set of nine 10% Yb:YAG ceramic and single-crystal samples using a high power 940 nm diode, and their thermal response is measured using a Shack-Hartmann wavefront sensor. The materials are also ranked by their transmission in the visible region. Discrepancies between the two ranking methods reveal that transmission in the visible region alone is not adequate for an assessment of the overall quality of ceramic samples. The thermal lensing diagnostic technique proves to be a reliable and quick over-all assessment method of doped ceramic materials without requiring any a priori knowledge of material properties.

  11. Using optical metrology to reconstruct sound recordings

    NASA Astrophysics Data System (ADS)

    Cornell, E. W.; Fadeyev, V.; Haber, C.; Jin, J.; Nordmeyer, R.; Golden, M.

    2007-09-01

    Prior to 1950 nearly all sound recordings were made on mechanical media such as wax, foil, shellac, lacquer, and plastic. Some of these older recordings contain material of great historical value or interest but are damaged, decaying, or now considered too delicate to play. Archives seek to preserve and also create broad access to their collections. An ongoing effort at Berkeley Lab has applied methods of optical metrology and image processing to reconstruct sound stored on these mechanical carriers. This approach was inspired by the use of precision optical metrology to align and fabricate silicon tracking arrays for high-energy physics experiments and by track finding and fitting data analysis methods. The technology has matured to the point that an optical metrology system for sound restoration has been designed and built for the Library of Congress.

  12. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.; Kasap, S. O.

    2014-02-01

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm3+) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm3+-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm3+-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm2+ to Sm3+ reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm2+ to Sm3+ reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  13. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C. Kasap, S. O.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  14. Radiation effects on ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, Briana J.

    Assuming on-board satellite high-bandwidth communications will utilize passive optical fibers as a communication channel, this work focused on the impact of gamma and mixed gamma/neutron radiation on transmission through single-mode and multi-mode ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active ytterbium -doped double-clad fibers in the same radiation environment. Exposure times and signal transmission wavelength variations were used to investigate the degradation of the fibers exposed to total doses above 100 krad(Si). Further, the effect on the amplified signal gain was studied for the ytterbium -doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure, along with the effect that increased attenuation has on the actively pumped ytterbium -doped fiber amplifier performance was evaluated. Ytterbium-doped optical fibers demonstrate sensitivity to gamma and mixed neutron/gamma radiation exposures that is independent of the operational configuration of the fiber during irradiation. No identifiable dose rate damage production mechanism was encountered. However, fiber damage recovery following irradiation was found to be dependent on the radiation dose rate.

  15. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  16. Optical properties of laser-induced heavily doped Si

    NASA Astrophysics Data System (ADS)

    Ravindra, N. M.; Mhoronge, J. F.; Jouanne, M.

    1985-09-01

    An analysis of experimental studies (Slaoui et al., 1983) of the optical properties of laser-induced heavily doped Si layers is presented. The analysis has been made on the basis of models like those of Penn (1962) and Breckenridge et al. (1974). The calculations show that, in general, the effective number of electrons contributing to optically induced electronic transitions, increases as does the imaginary part of the complex dielectric constant. This reflects an increased absorption coefficient for these As-doped samples. These studies have been carried out on samples of Si heavily doped by ion-implantation followed by a laser-annealing process. The conclusions based on these studies are seen to be in accord with those of Aspnes et al. (1984) and Vina and Cardona (1984).

  17. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Bismuth-ring-doped fibres

    NASA Astrophysics Data System (ADS)

    Zlenko, Aleksandr S.; Akhmetshin, Ural G.; Dvoirin, Vladislav V.; Bogatyrev, Vladimir A.; Firstov, Sergei V.

    2009-11-01

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO2 content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications.

  18. Nonlinear photoluminescence of fullerene-doped optical glasses

    SciTech Connect

    Zeng, Heping; Sun, Zhenrong; Segawa, Yusaburo; Lin, Fucheng; Mao, Sen; Xu, Zhizhan

    2001-06-01

    Strong broadband white photoluminescence was observed in fullerene-doped phosphate and fluorophosphate optical glasses irradiated by an ultraviolet laser. Microphotoluminescence measurements demonstrated the existence of microislands in those amorphous glasses, where fullerene dopants provided high photosensitivity and optical nonlinearity. Nonlinear photoluminescence was observed under ultralow continuous-wave laser excitations. The photoluminescence peak wavelengths were demonstrated to depend nonlinearly on the laser excitation power. {copyright} 2001 American Institute of Physics.

  19. Electron beam recording of optical disc

    NASA Astrophysics Data System (ADS)

    Cartwright, Giles; Reynolds, Gerald; Baylis, Chris; Pearce, Adrian; Dix, Colin; Ogilvie, Nick

    2002-09-01

    The Nimbus Technology & Engineering e -Beam Mastering System was developed to gain a large improvement in optical disc and structured hard disc recording capacity, significantly more than is possible from deep UV and SIL mastering. The current electron beam recorder is essentially a production machine capable of making full-length exposures at capacities of up to 50 GB with a simple low-cost upgrade path to disc capacities of several hundred gigabytes and beyond and hard disk drives (HDD) with capacities of up to 1 tera bit per square inch.

  20. Photorefractivity and holographic applications of azo-dye doped PMMA recording materials

    NASA Astrophysics Data System (ADS)

    Pham, Vinh P.; Manivannan, Gurusamy; Lessard, Roger A.

    1995-09-01

    Azo-dye doped polymer (ADP) systems have been the focus of many research groups for realizing various holographic applications for the past twenty years due to their remarkable optical properties such as grainless media, real-time capabilities, dynamic polarization holographic recording, etc. In this paper, we are reporting the photorefractivity of azo-dye doped Poly(methyl methacrylate) (PMMA) films. Under actinic lighting (lambda equals 488 nm), real-time dynamic phase holograms resulting from a local change in refractive index, with reasonable high diffraction efficiency, have been recorded and a maximum of 10% has been achieved. The diffraction efficiency obtained is higher than the similar earlier reported systems. The real-time kinetics of photoreversibility (bleaching and evolution) of azo dyes in PMMA matrices has also been studied. Some interesting applications in optical processing have been realized, exploiting the special properties of ADP systems such as complete auto- reversibility, high rise and erase times, absence of memory effect, and uniform write/read/erase (WRE) cycles.

  1. NASA spaceborne optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Holloway, Reginald M.; Conway, Bruce A.

    1988-01-01

    Spaceflight application of a high performance (high rate, high capacity) erasable optical disk recorder is discussed. An expandable modular system concept is proposed consisting of multiple drive modules and a modular system controller. A drive contains two 14-inch magneto-optic disks and four electro-optic heads, each containing a nine-diode solid state laser array (eight data tracks, one pilot track). The performance goals of the drive module are 20 gigabyte capacity, 300 megabit per second transfer rate, 10x(Exp-10) corrected BER, and 100 millisecond access time. The system goals are 120 gigabyte capacity at up to 1.8 gigabits per second rate, concurrent 1/0, varying data rates, reconfigurable architecture, and 2 to 5 year operating life in orbit. The system environment and operational scenarios are presented.

  2. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  3. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  4. All-optical switching in semiconductor-doped nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Donkor, Eric

    1999-11-01

    Optical switching devices that can perform at picosecond to femtosecond speeds are on demand because of interest to develop multi-gigabit, multi-user, optical networks. Two fundamental design issues are the choice of nonlinear material as the active medium for the switch and the switching architecture. Wave guide based switches designed with silica fiber have demonstrated ultra-fast switching up to femtosecond speeds. Figure 1 shows the switching speed versus power-length product for different types of materials. At the two extremes are rare-earth doped, and silica. Rare-earth doped materials have the smallest power-length product of about 10 W-cm, but also have the least switching speed. At the other extreme, silica has the fastest switching speed of 1013 Hz but also has the largest power-length product of 6 kW-cm. Semiconductor-doped glasses (SDG) and metal-doped glasses appear to have a good compromise between switching speed and power-length product. There is therefore interest to research such optical materials, and novel switching architectures that can simultaneously down-scale device geometry, and power requirements for switching.

  5. Nonlinear optical responses of erbium-doped YAG ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Wangliang; Yi, Jun; Miao, Lili; Li, Jiang; Xie, Tengfei; Zhao, Chujun; Pan, Yubai; Wen, Shuangchun

    2016-07-01

    By performing the Z-scan measurements with ultrafast femtosecond laser centered at 800 nm wavelength, we can unambiguously distinguish the real and imaginary part of the third-order optical nonlinearity of the erbium-doped YAG ceramics. The reverse saturable absorption of the erbium-doped YAG ceramics has been observed experimentally, and the nonlinear refractive index of the ceramics is estimated to be about 10-21 m2/W. The experimental results may provide design guidelines for the high power laser design and its applications.

  6. Quantum-dot-doped polymer nanofibers for optical sensing.

    PubMed

    Meng, Chao; Xiao, Yao; Wang, Pan; Zhang, Lei; Liu, Yanxin; Tong, Limin

    2011-09-01

    High-quality quantum-dot/polystyrene nanofibers (QD/PS NFs) are synthesized by drawing solvated PS doped with CdSe/ZnS QDs. As-drawn QD/PS NFs offer ultra-long-term photostability, flexibility, and excellent optical properties for sensing applications. Based on these active NFs, optical humidity sensors with extremely low power consumption, fast response, and long-term stability are successfully demonstrated, which may lead to a new category of nanometer-scale optical sensors. PMID:21766349

  7. Remarkable effect of Ni2+doping on structural, second harmonic generation, optical, mechanical and dielectric properties of KDP single crystals

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Algarni, H.; Abutalib, M. M.; Yahia, I. S.

    2016-06-01

    The nonlinear optical single crystals of pure and Ni2+ doped potassium dihydrogen phosphate (KDP) were successfully grown by slow evaporation solution growth technique. The effects of the addition of Ni2+ with different molar concentration have been studied by powder X-ray diffraction, FT-Raman, second harmonic generation, microscopic and dielectric studies. Its crystallinity was assessed by the FT-Raman technique and its surface, structural imperfections were recorded using high resolution microscope, which clearly reveals that the doping is showing considerable effect on the samples. The SHG measurements also carried out on pure and doped samples, which reveal the relative SHG efficiency has been enhanced due to doping. The optical activities were studied by UV-vis-NIR technique and reveals high optical transparency in doped samples. The remarkable enhancement in mechanical strength was observed due to doping. The enhanced dielectric constant and low dielectric loss confirms that the grown crystals with doping are superior to pure crystals and may be used in optoelectronic devices.

  8. Compact Tb doped fiber optic current sensor with high sensitivity.

    PubMed

    Huang, Duanni; Srinivasan, Sudharsanan; Bowers, John E

    2015-11-16

    A highly sensitive fiber optic current sensor using terbium doped fiber is presented. The Verdet constant of the terbium doped fiber at 1300nm is found to be 19.5μrad/A using both a polarimetric and interferometric type sensor. Measurements on a Sagnac-loop sensor using 10cm of terbium doped fiber placed inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. Extrapolations of our measurements show that in a practical setup with Tb fiber wrapped around a current carrying wire, the optimal configuration is a 0.5m piece of Tb fiber with a noise limit of 22mA/√Hz. This sensor is promising for current sensing applications that require high sensitivity and small size, weight, and power. PMID:26698480

  9. Potassium doping: Tuning the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2016-07-01

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nm which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.

  10. Erbium-doped sol-gel materials for optical applications

    NASA Astrophysics Data System (ADS)

    Berni, Anette; Mennig, Martin; Schmidt, Helmut K.

    2003-04-01

    A new chemical nanotechnological route for the preparation of fully densified doped SiO2 coatings with thicknesses in the low ´m-range on Si- and SiO2-wafers has been developed. Beside pure SiO2 coatings, that might be useful as a buffer layer on silicon, silicate layers with increased refractive index are needed for planar waveguide application. Therefore, a synthesis for the preparation of nano particulate sols was developed, thus allowing the incorporation of dopands like Al2O3, PbO and Er2O3 for passive and active layers. Alumina was incorporated for the improvement of the Erbium solubility in active components. The coating sols consist of an organic binder, dissolved in a suspension of nanoscaled silica particles (10 nm in diameter) and dopands and were applied on Si- and SiO2-wafers by spin coating. After removal of the binder at 500 °C, investigated by IR-spectroscopy, highly porous (nD = 1.23) but transparent doped silica layers were obtained. The densification of the layers was examined by measuring the refractive index by ellipsometry as a function of the densification temperature. Completely densified layers with thicknesses between 1.7 ´m (doped SiO2) and 6.5 ´m (doped SiO2) were obtained at temperatures between 1000 °C (doped SiO2) and 1100 °C) (pure SiO2). The layer thickness and unevenness was determined by interferometric measurements. The optical loss of Al2O3 and PbO doped layers was measured by prism coupling, the Er2O3 doped layers with Er3+ concentrations of up to 2.5 mole % show fluorescence around 1500 nm with a fluorescence lifetime of about 3.6 ms.

  11. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1992-01-01

    The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).

  12. Photosensitivity of optical fibres doped with different impurities

    SciTech Connect

    Larionov, Yu V; Rybaltovsky, A A; Semenov, S L; Vartapetov, Sergei K; Kurzanov, M A; Obidin, Aleksei Z

    2004-02-28

    Photosensitivities of hydrogen-loaded silica fibres doped with germanium, phosphorus, antimony, and aluminium are estimated and compared. It is shown that although all the fibres can be pre-exposed, the degree of this effect is noticeably different for different fibres because the induction of the refractive index is determined by a combined contribution from a one-step photochemical reaction and a two-step reaction responsible for pre-exposure. One-step reactions dominate in more photosensitive optical fibres, while two-step reactions dominate in less photosensitive fibres. (optical fibres)

  13. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  14. Magnetic and Magneto-Optical Properties of Doped Oxides

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammed

    This thesis describes the growth, structural characterisation, magnetic and magneto-optics properties of lanthanum strontium manganite (LSMO), GdMnO3 and transition metal (TM)-doped In2O3 thin films grown under different conditions. The SrTiO3 has been chosen as a substrate because its structure is suitable to grow epitaxial LSMO and GdMnO3 films. However, the absorption of SrTiO3 above its band gap at about 3.26 eV is actually a limitation in this study. The LSMO films with 30% Sr, grown on both SrTiO3 and sapphire substrates, exhibit a high Curie temperature (Tc) of 340 K. The magnetic circular dichroism (MCD) intensity follows the magnetisation for LSMO on sapphire; however, the measurements on SrTiO3 were dominated by the birefringence and magneto-optical properties of the substrate. In the GdMnO3 thin films, there are two well-known features in the optical spectrum; the charge transfer transition between Mn d states at 2 eV and the band edge transition from the oxygen p band to d states at about 3 eV; these are observed in the MCD. This has been measured at remanence as well as in a magnetic field. The optical absorption at 3 eV is much stronger than at 2 eV, however, the MCD is considerably stronger at 2 eV. The MCD at 2 eV correlates well with the Mn spin ordering and it is very notable that the same structure appears in this spectrum, as is seen in LaMnO3. The results of the investigations of Co and Fe-doped In2O3 thin films show that TM ions in the films are TM2+ and substituted for In3+. The room temperature ferromagnetism observed in TM-doped In2O3 is due to the polarised electrons in localised donor states associated with oxygen vacancies. The formation of Fe3O4 nanoparticles in some Fe-doped films is due the fact that TM-doped In2O3 thin films are extremely sensitive to the growth method and processing condition. However, the origin of the magnetisation in these films is due to both the Fe-doped host matrix and also to the nanoparticles of Fe3O4.

  15. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  16. Mass Replication Of Optically Recorded Holographic Optical Elements

    NASA Astrophysics Data System (ADS)

    Rizzi, M. L.; Delvo, P.

    1987-01-01

    This paper deals with the application to HOE's of the experience acquired by CISE Holographic Labora-tory in the embossing technique of 3D or 2D images. The embossing of HOE's in plastic transparent materials is not able, up to this time, of performing the high diffraction efficiencies associated with HOE's recorded by DCG or photopolymers. However a large number of applications requires the production of great quantity, medium standard, low cost special optical elements to be used in rather complex instruments. Some notes about the embossing process and example of industrial components under development are reported.

  17. Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers.

    PubMed

    Zheng, Meiling; Xie, Xin; Zhang, Zhiying; Shi, Feng; Wang, Xiuli; Fu, Shencheng; Liu, Yichun

    2014-09-01

    Spirooxazine-doped polymers exhibit a fast photochromism response and high polarization sensitivity after irradiation in the short-wavelength range. Based on such properties, holographic grating recordings accompanying a linearly polarized blue-violet beam (405 nm) in a photochromic film were performed by two coherent green beams (532 nm) for s-s, p-p, s-p left-to-right circular polarization and right-to-right circular polarization. Under the biphotonic action of 405 and 532 nm, the temporal evolution of the diffraction efficiency was strongly dependent on the polarization configuration of the recording beams. It was found that the blue-violet irradiation plays a dual role in holographic recordings: generation of merocyanine aggregation and induction of anisotropy. The experimental results were precisely fitted with a phenomenological model, assuming the simultaneous formation of one absorption grating induced by the 532 nm light and two coupling phase gratings generated from the refractive index changes by recording and auxiliary beams. The existence of absorption and phase gratings was proved by observing the florescence emission of holographic gratings and testing the dependence of the diffraction efficiency on the reading beam polarization state, respectively. The results provided a good deal of insight into the photochromic behavior of spirooxazine in polymers and created a new range of applications in the field of high-density optical storage. PMID:25321382

  18. Optical Properties of Doped Cuprates and Related Materials

    NASA Astrophysics Data System (ADS)

    Yoon, Young-Duck

    1995-01-01

    The optical properties of cuprates, rm Nd_{2-it x}Ce_{it x}CuO_4 and rm La_ {2-it x}Sr_{it x}CuO _4, and the related materials, rm Ba_{1-it x}K_{it x}BiO_3 (BKBO) and rm BaPb_{1-it x}Bi_{1- it x}O_3 (BPBO), have been extensively investigated by doping- and temperature-dependent reflectance measurement of single crystal samples in the frequency range between 30 cm^{-1} (4 meV) and 40 000 cm^{-1} (5 eV). The rm Nd_{2-it x}Ce_{it x}CuO_4 system has been studied at Ce compositions in the range 0 <=q x <=q 0.2. rm La_{2-it x}Sr_{it x}CuO_4 has been studied in the spin glass doping regime, (x <=q 0.04). The two bismuthates have been investigated as superconducting materials with the maximum T_{c} . Our results for rm Nd_{2 -it x}Ce_{it x}CuO_4 show that doping with electrons induces a transfer of spectral weight from the high energy side above the charge transfer excitation band to the low energy side below 1.2 eV, similar to the results observed in hole-doped rm La_{2-it x}Sr_ {it x}CuO_4. However, the low frequency spectral weight grows slightly faster than 2x with doping x, as expected for the Mott-Hubbard model. We find very interesting results at low doping levels in rm La_{2-it x }Sr_{it x}CuO_4. Upon Sr doping the oscillator strength of the phonons is gradually reduced and doping induced modes (Raman modes and carrier-lattice interaction mode) appear in the far -infrared. We also find that the deformation potential by the dynamical tilting of CuO_6 octahedra induces a carrier-lattice interaction. The carrier -lattice interaction is characterized by strong infrared active modes and an appearance of the strong A _{g} Raman modes upon cooling. Finally, we present the normal and the superconducting properties of Bi-O superconductors. We conclude that the BKBO system is a weak- or moderate-coupling BCS-type superconductor in the dirty limit.

  19. High temperature stability testing of Ge-doped and F-doped Fabry-Perot fibre optical sensors

    NASA Astrophysics Data System (ADS)

    Polyzos, Dimitrios; Mathew, Jinesh; MacPherson, William N.; Maier, Robert R...

    2016-05-01

    We present high temperature (~1100°C) stability tests of, Ge-doped and F-doped, optical fibre sensors. Our analysis includes the variation in their behaviours within high temperature environments and how the dopant diffusion affects their long term stability.

  20. Optical properties of Li-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Valentini, Antonio; Quaranta, Fabio; Vasanelli, Lorenzo; Piccolo, R.

    1991-03-01

    The difficulty to achieve a refractive index matching between active substrate and active layer grown on, is one of the main problem in integrated optical devices based on gallium arsenide, because of its high refractive index value. One possible solution could be an active layer whose refractive index is variable during the grown. Zinc oxide is a very interesting material because of its electro-optic and acousto- optic properties. It has a low cost and can be prepared by a variety of techniques. In this paper deposition of lithium doped zinc oxide films by reactive sputtering has been investigated in order to study the dependence of optical properties on lithium content and deposition parameters. A ZnO:Li target was used. The film depositions were performed varying the oxygen content in sputtering gas. For comparison undoped ZnO films were also prepared. We have performed optical and electrical measurement on films relating the results to Li contents and O/Zn ratio obtained by nuclear reaction and Rutherford backscattering measurements respectively. The film analysis has shown that dopant concentration is mainly controlled by gas mixture. The optical properties are dependent on deposition conditions. Optical waveguides have been prepared and characterized. The results are presented and discussed.

  1. Optical properties of structurally modified glasses doped with gold ions.

    PubMed

    Qiu, Jianrong; Jiang, Xiongwei; Zhu, Congshan; Inouye, Hideyuki; Si, Jinhai; Hirao, Kazuyuki

    2004-02-15

    We report on the optical properties of a structurally modified silicate glass doped with Au ions. The area in the vicinity of the focal point of an 800-nm femtosecond laser in a glass sample became gray as a result of the formation of color centers after laser irradiation and turned red because of precipitation of Au nanoparticles after further annealing at 550 degrees C for 30 min. When the glass was excited by UV light at 365 nm, yellowish-white and orange-yellow emissions were observed in the laser-irradiated and the Au-nanoparticle-precipitated area, respectively. An optical Kerr shutter experiment showed that the Au nanoparticle-precipitated glass had an ultrafast nonlinear optical response, and the third-order nonlinear susceptibility was estimated to be approximately 10(-11) esu. PMID:14971756

  2. Optical properties of structurally modified glasses doped with gold ions

    NASA Astrophysics Data System (ADS)

    Qiu, Jianrong; Jiang, Xiongwei; Zhu, Congshan; Inouye, Hideyuki; Si, Jinhai; Hirao, Kazuyuki

    2004-02-01

    We report on the optical properties of a structurally modified silicate glass doped with Au ions. The area in the vicinity of the focal point of an 800-nm femtosecond laser in a glass sample became gray as a result of the formation of color centers after laser irradiation and turned red because of precipitation of Au nanoparticles after further annealing at 550 °C for 30 min. When the glass was excited by UV light at 365 nm, yellowish-white and orange-yellow emissions were observed in the laser-irradiated and the Au-nanoparticle-precipitated area, respectively. An optical Kerr shutter experiment showed that the Au nanoparticle-precipitated glass had an ultrafast nonlinear optical response, and the third-order nonlinear susceptibility was estimated to be ~10-11 esu.

  3. Erbium Doped Fiber Sources and Amplifiers for Optical Fiber Sensors.

    NASA Astrophysics Data System (ADS)

    Wagener, Jefferson L.

    1996-08-01

    This thesis explores the use of erbium-doped fiber in lasers, amplified spontaneous emission sources, and amplifiers with particular attention to applications involving fiber sensor technology. Erbium-doped fiber laser output power is shown to be strongly dependent on the erbium dopant concentration in a fiber. Using multiple fibers with various erbium ion concentrations, laser output powers are found to decrease as erbium concentration is increased. Upconversion in paired ions is successfully used to model the lasers, resulting in a better understanding of the loss mechanism involved. Further investigation shows that co-doping an erbium-doped fiber with aluminum helps eliminate upconversion in paired ions, and an optimum ratio of 20 aluminum ions for every erbium ion is established. Upconversion due to paired ions is also used to predict the behavior of erbium-doped fiber amplifiers as a function of the erbium ion concentration. With this knowledge of concentration dependence, a low doped, high output power fiber is chosen for use as an amplified spontaneous emission source in a fiber optic gyroscope. Used as a single pass broadband source in one propagation direction and as a signal amplifier in the other direction, this source is tested experimentally in a high quality fiber gyroscope. Experimental results reveal an unexpected dependence on the polarization states of the optical pump and the gyroscope output signal. A theory of polarization anisotropy in the erbium ions is developed in full and accurately models the experimental observations. Using this model to optimize the source, a fiber gyroscope output stability of 4 parts per million is obtained experimentally, approaching the requirements of inertial navigation. This model is also used to explore novel single polarization amplified spontaneous emission sources. Large scale amplified sensor arrays are examined theoretically to determine component and amplification requirements. For balanced gain and loss

  4. Nonlinear optical transmission of an integrated optical bent coupler in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Guntau, Matthias; Possner, Torsten; Braeuer, Andreas H.; Dannberg, Peter

    1991-08-01

    A technology for monomode slab and strip waveguide fabrication in semiconductor-doped glasses (SDG) is presented. On this basis, directional couplers consisting of both parallel (DC) and bent (BC) couplers of strip waveguides were realized. The optically linear and nonlinear behavior of these devices is described.

  5. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  6. Structural, optical and magnetic properties of ultrafine mono dispersed Co doped maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Gaur, Umesh Kumar; Priyadarshi, Himanshu; Kumar, Anil; Varma, G. D.

    2015-06-01

    Ultrafine Co doped γ- Fe2O3 nanoparticles have been synthesized by co-precipitation method and studied the effect of doping on structural, optical and magnetic properties. The XRD results confirm that synthesized material is γ- Fe2O3 nanoparticles, and the particle sizes are 10 and 3.6 nm for 5 and 10 % Co doped samples, respectively. FESEM, TEM and optical characterization reveal decrease in particle size and increase in band gap with increased doping level. Room temperature M-H plots indicate the increase in magnetization (63.7 emu/g for 10 % doped sample) with increasing doping. A small shift towards positive axis is observed in the M-H plots of doped sample. In this paper the correlation between the structural characteristics and observed optical and magnetic properties has been described and discussed.

  7. Optical properties and electronic structure of alkali doped SWNT

    NASA Astrophysics Data System (ADS)

    Nemes, Norbert M.; Fischer, John E.; Kamarás, Katalin; Borondics, Ferenc; Tanner, David B.; Rinzler, Andrew G.

    2003-03-01

    Alkali doped SWNT exhibit colors similar to alkali doped graphite (GIC). We study their electronic structure with IR reflectivity; the alkali dopants donate their valence electron to the SWNT host, so the free carrier concentration increases, shifting the Drude-edge into the visible spectral range. This is accompanied by a large shift of the Fermi-level, so the characteristic transitions between the 1D van Hove singularities of the undoped SWNT diminish. The presence of the alkali ions around the SWNT breaks the translational symmetry and increases coupling between parallel tubes within ropes. The momentum relaxation time shortens as the ropes become more three dimensional; alkali disorder contributes to the scattering. In p-type, HNO3 doped SWNT, the charge transfer is smaller; only the first subband of the semiconducting tubes gets depleted, shown by the disappearance of the first van Hove transition. This indicates a Fermi-level shift of ˜0.3 eV. The reflectivity has structure at low energy, which moves the Drude-peak to a sharp, intense peak at 0.1 eV in the optical conductivity, reminiscent of quasi-1D TTF-TCNQ.

  8. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation. PMID:23736401

  9. Semiconductor-doped liquid-core optical fiber.

    PubMed

    Hreibi, Ali; Gérôme, Frédéric; Auguste, Jean-Louis; Zhang, Yu; Yu, William W; Blondy, Jean-Marc

    2011-05-01

    A semiconductor liquid-core optical fiber has been made by simply filling the hollow core of a capillary waveguide with nanoparticles suspended in toluene media. Under a low continuous optical power excitation at 532 nm, the emission of PbSe particles was clearly demonstrated in the infrared region and then partially maintained in the core of the fiber by the total internal reflection mechanism. Finally, due to the guided propagation, which results in multiple absorption effects, a linear shift of the emission peak toward longer wavelengths was observed (~0.32 nm/cm). As a proof of concept, this original demonstration of visible-to-infrared conversion could lead to the development of active fibered devices at wavelengths not covered by the conventional rare-earth ion doping. PMID:21540972

  10. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-01

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases. PMID:26607270

  11. Superresolution Structure Optical Disk with Semiconductor-Doped Glass Mask Layer Containing CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Tung‑Ti; Wang, Jr‑Hau; Hsieh, Tsung‑Eong; Shieh, Han‑Ping D.

    2006-02-01

    In this work, we demonstrate a distinct superresolution phenomenon and signal properties of an optical disk with a semiconductor-doped glass (SDG) mask layer containing CdSe nanoparticles. It was found that the 69 nm marks could be consistently retrieved at reading power (Pr) = 4 mW with carrier-to-noise ratio (CNR) = 13.56 dB. The signals were clearly resolved with CNRs nearly equal to 40 dB at Pr=4 mW when the recorded marks were larger than 100 nm. The cyclability test indicated that the CdSe-SiO2 SDG layer might serve as a stable and reliable optical mask layer in 105 readout cycles.

  12. Legal and records management issue of Optical Disk Storage media

    SciTech Connect

    Nusbaum, A.

    1991-01-01

    The advent of optical storage has made the digital storage of documents a viable option from both a practical and legal perspective. However, the availability of Optical Disk Storage raises questions regarding the destruction of the stored records and standards of longevity, and the admissibility in court of records produced from optical storage has not been tested. This paper will attempt to address these issues. 6 refs.

  13. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Noel, J. L.; Udayabhaskar, R.; Renganathan, B.; Muthu Mariappan, S.; Sastikumar, D.; Karthikeyan, B.

    2014-11-01

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample.

  14. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles.

    PubMed

    Noel, J L; Udayabhaskar, R; Renganathan, B; Muthu Mariappan, S; Sastikumar, D; Karthikeyan, B

    2014-11-11

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample. PMID:24892544

  15. The Electrical and Optical Properties of Doped Yttrium Aluminum Garnets

    NASA Astrophysics Data System (ADS)

    Chen, Jimmy Kuo-Wei

    The electrical and optical properties of YAG, Nd:YAG, Ti:YAG, and Zr:YAG were studied and quantitatively correlated to determine defect models for the defect structure of these systems. Correlations of these independent measurements were essential, as defect models derived from electrical or optical measurements alone were inconclusive. The correlated defect model provided a new interpretation for the electrical and optical properties of Ti:YAG. This defect model was then tested by checking its predicted dependence of Ti:YAG's optical properties with PO_2. This prediction was experimentally verified. Most of the systems were found to have a defect structure controlled by inadvertent background acceptors compensated by oxygen vacancies. This structure led to a characteristic conductivity isotherm where the conductivity varied as PO_2^{-1/4} for reduced PO_2's, and approached PO_2 independence for oxidizing PO_2's. Only for a heavily doped Zr:YAG sample was a new defect structure encountered. For this sample, an extrinsically compensated defect structure was detected, with the Zr^{+4} ions compensating the background acceptors. The conductivity isotherm for this sample had a n-type like component that varied as PO_2^{ -1/6}.. Quantitative correlations of the electrical and optical properties also provided a deep insight into the nature of the optical properties, and how these properties change as a function of oxidizing and reducing anneals. Correlations of this type were used to locate the energy level positions of rm Fe^{+2}, Ti ^{+3}, Zr^{+3}, and rm V_{o}^ {cdotcdot} in the YAG bandgap. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  16. Electronic structures and optical properties of Zn-doped β-Ga2O3 with different doping sites

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yan, Jin-Liang; Zhang, Li-Ying; Zhao, Gang

    2012-12-01

    The electronic structures and optical properties of intrinsic β-Ga2O3 and Zn-doped β-Ga2O3 are investigated by first-principles calculations. The analysis about the thermal stability shows that Zn-doped β-Ga2O3 remains stable. The Zn doping does not change the basic electronic structure of β-Ga2O3, but only generates an empty energy level above the maximum of the valence band, which is shallow enough to make the Zn-doped β-Ga2O3 a typical p-type semiconductor. Because of Zn doping, absorption and reflectivity are enhanced in the near infrared region. The higher absorption and reflectivity of ZnGa(2) than those of ZnGa(1) are due to more empty energy states of ZnGa(2) than those of ZnGa(1) near Ef in the near infrared region.

  17. Physical and optical properties of lead doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Riyatun; Rahmasari, Lita; Marzuki, Ahmad

    2016-02-01

    Physical and optical properties of lead telluride (Pb:TZBN) glasses with composition 55TeO2-(41-x)ZnO-2Bi2O3-2Na2O-xPbO where x = 1.0, 1.5, 2.0, 2.5% mol are presented. UV-VIS-NIR spectra of the glasses in the range of 300 - 800 nm along with their densities and refractive indices at 746 nm were recorded at room temperature. The optical bandgap energy (Eg) has been calculated from the fitting of Tauc plot. On the basis of these results we found that with the increase of Pb2+ content, their refractive indices are increased while their optical bandgaps are decreased. From this experiment, no distinct relationship between the Pb2+ content variation and the electronic polarizability (αO2-) as well as their optical basicity values (A) were observed.

  18. Electro-optic properties of hybrid solgel doped with a nonlinear chromophore with large hyperpolarizability.

    PubMed

    Zhang, Hong Xi; Lu, Dong; Peyghambarian, Nasser; Fallahi, Mahmoud; Luo, Jing Dong; Chen, Bao Quan; Jen, Alex K Y

    2005-01-15

    We report the electro-optic properties of hybrid silica solgel doped with a nonlinear chromophore with large hyperpolarizability. Electro-optic coefficients of higher than 30 pm/V have been obtained. Moreover, the electro-optic coefficients have good temporal stability and show promise for the development of high-speed electro-optic devices. PMID:15675685

  19. Correlation between structural, optical and magnetic properties of Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Bipin K.; Pal, Bhola N.; Pandey, Praveen C.

    2016-08-01

    We have investigated the structural, optical and magnetic properties of Mn-doped ZnO nanoparticles with different doping concentrations (0, 2, 4 and 6 %) synthesised by sol-gel method. Lattice parameters, cell volume, atomic packing fraction, crystallite size and confirmation of hexagonal wurtzite crystal structure have been studied by X-ray diffraction data. Surface morphology as well as grain size and the presence of all the elements have been confirmed by scanning electron microscope and energy-dispersive X-ray spectroscopy, respectively. The decrease in lattice parameters ratio ( c/ a) with Mn concentration indicates lattice distortion with the incorporation of Mn2+ ions at Zn2+ site of ZnO structure, which has been confirmed by Raman analysis. It has been observed that microstructure defects induced some extra Raman vibration modes. Ultraviolet-visible analysis shows that absorption edge lies in visible region, and encroachment in visible region increases, while energy band gap decreases with the increase in Mn concentrations. We have recorded FTIR spectra at room temperature to study the vibrational bands present in Zn1- x Mn x O samples. The magnetic study of samples indicates ferromagnetic behaviour at room temperature. The magnetic properties increases with doping concentration due to small lattice distortion and defects.

  20. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. PMID:24530709

  1. Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Swapna, K.; Mahamuda, Sk.; Srinivasa Rao, A.; Shakya, S.; Sasikala, T.; Haranath, D.; Vijaya Prakash, G.

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm3+) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm3+ ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm3+ ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the 4G5/2 level of Sm3+ ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm3+ ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  2. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  3. Stable inverted small molecular organic solar cells using a p-doped optical spacer.

    PubMed

    Lee, Sang-Hoon; Seo, Ji-Won; Lee, Jung-Yong

    2015-01-01

    We report inverted small molecular organic solar cells using a doped window layer as an optical spacer. The optical spacer was used to shift the optical field distribution inside the active layers, generating more charge carriers from sunlight. In this report, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) was doped with 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ), a p-type dopant material. P-doped MeO-TPD was adopted as an optical spacer because it has a large energy band gap, and its conductivity can be increased by several orders of magnitude through a doping process. As a result, a power conversion efficiency of 4.15% was achieved with the doped window layer of optimized thickness. Lastly, we present significantly improved stability of the inverted devices with the MeO-TPD layer. PMID:25407588

  4. Magnetic and optical properties of Co-doped and Mn-doped ZnO nanocrystalline particles

    NASA Astrophysics Data System (ADS)

    Alsmadi, Abdel; Salameh, B.; Shatnawi, M.; Alnawashi, G.; Bsoul, I.

    We carried out a systematic study on the effect of Co doping and Mn doping on the structural, magnetic and optical properties of ZnO nanocrystalline particles, using x-ray diffraction, x-ray photoelectron spectroscopy (XPS), Quantum Design PPMS-9 magnetometry, and Ultra Violet-Visible spectroscopy. The Zn1- x CoxO and Zn1- x MnxO nanoparticles with 0 <= x <= 0 . 1 were successfully prepared by the formal solid-state reaction method. The XPS results and the XRD analysis with full structural Rietveld refinement reveal that both structures have hexagonal wurtzite structure. For all Co-doped ZnO nanoparticles under investigation, the field dependence of the magnetization curves exhibits ferromagnetic behavior with relatively small coercive fields at room temperature. In addition, we found a signature for antiferromagnetic ordering between the Co ions. For the Mn-doped ZnO nanoparticles, we observed ferromagnetic behavior only below 50 K. We also observed a strong correlation between the magnetic and optical behavior of the Co-doped ZnO nanoparticles. Optical diffuse reflectance and absorption spectra exhibit a red shift at room temperature in the absorption band edge with increasing Co-doping. The red shift is attributed to the sp-d exchange interaction between free charge carriers in ZnO band and the localized magnetic moments.

  5. Excitonic Effects and Optical Absorption Spectrum of Doped Graphene

    NASA Astrophysics Data System (ADS)

    Jornada, Felipe; Deslippe, Jack; Louie, Steven

    2012-02-01

    First-principles calculations based on the GW-Bethe-Salpeter Equation (GW-BSE) approach and subsequent experiments have shown large excitonic effects in the optical absorbance of graphene. Here we employ the GW-BSE formalism to probe the effects of charge carrier doping and of having an external electric field on the absorption spectrum of graphene. We show that the absorbance peak due to the resonant exciton exhibits systematic changes in both its position and profile when graphene is gate doped by carriers, in excellent agreement to very recent measurementsootnotetextTony F. Heinz, private communications.. We analyze the various contributions to these changes in the absorption spectrum, such as the effects of screening by carriers to the quasiparticle energies and electron-hole interactions. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the U.S. DOD - Office of Naval Research under RTC Grant No. N00014-09-1-1066. Computer time was provided by NERSC.

  6. Optical and scintillation properties of Nd-doped complex garnet

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Sato, Hiroki

    2014-12-01

    Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50-80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f-4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5-3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.

  7. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  8. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  9. Optical emission from erbium-doped silica nanowires

    NASA Astrophysics Data System (ADS)

    Elliman, R. G.; Wilkinson, A. R.; Kim, T.-H.; Sekhar, P. K.; Bhansali, S.

    2008-05-01

    Infrared optical emission from erbium-doped silica nanowires is shown to have property characteristic of the material nanostructure and to provide the basis for the fabrication of integrated photonic devices and biosensors. Silica nanowires of approximately 150 nm diameter were grown on a silicon wafer by metal-induced growth using a thin (20 nm) sputter-deposited palladium layer as a catalyst. The resulting wires were then ion implanted with 110 keV ErO- ions and annealed at 900 °C to optically activate the erbium. These wires exhibited photoluminescence emission at 1.54 μm, characteristic of the I415/2-I413/2 transition in erbium; however, comparison to similarly implanted fused silica layers revealed stronger thermal quenching and longer luminescence lifetimes in the nanowire samples. The former is attributed to an increase in defect-induced quenching partly due to the large surface-volume ratio of the nanowires, while the latter is attributed to a reduction in the optical density of states associated with the nanostructure morphology. Details of this behavior are discussed together with the implications for potential device applications.

  10. Ytterbium-doped glass-ceramics for optical refrigeration.

    PubMed

    Filho, Elton Soares de Lima; Krishnaiah, Kummara Venkata; Ledemi, Yannick; Yu, Ye-Jin; Messaddeq, Younes; Nemova, Galina; Kashyap, Raman

    2015-02-23

    We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements. PMID:25836500

  11. Volume holographic recording in nanoparticle-polymer composites doped with multifunctional chain transfer agents

    NASA Astrophysics Data System (ADS)

    Guo, Jinxin; Fujii, Ryuta; Tomita, Yasuo

    2015-10-01

    We report on an experimental investigation of the properties of volume holographic recording in photopolymerizable nanoparticle-polymer composites (NPCs) doped with chain transferring multifunctional di- and tri-thiols as chain transfer agents. It is shown that the incorporation of the multifunctional thiols into NPCs more strongly influences on volume holographic recording than that doped with mono-thiol since more chemical reactions involve in the polymer network formation. It is found that, as similar to the case of mono-thiol doping, there exist optimum concentrations of di- and tri-thiols for maximizing the saturated refractive index modulation. It is also seen that recording sensitivity monotonically decreases with an increase in multifunctional thiol concentration due to the partial inhibition of the photopolymerization event by excessive thiols.

  12. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  13. Optical Properties of Anatase Nanoparticles Doped with Tungsten

    NASA Astrophysics Data System (ADS)

    Karpovich, N. F.; Pyachin, S. A.; Pugachevskii, M. A.; Burkov, A. A.; Zaytsev, A. V.; Makarevich, K. S.; Ri, E. Kh.

    2015-11-01

    Thermostable monodisperse nanoparticles of anatase with a diameter of 35-50 nm doped with tungsten were obtained by the method of hydrothermal synthesis. It was found that the temperature of the phase transition from anatase to rutile decreases from 905 to 650°C with the increase in the content of tungsten oxide from 0.35 to 4% in the precursor. Diffuse reflection spectra of the synthesized nanoparticles were obtained, and the values of the band gap were determined. The band gap varies with changes in tungsten content from 3.15 eV for pure anatase to 2.91 eV for TiO2/WO3(4%), leading to an increase in the optical absorption in the visible and the ultraviolet regions.

  14. Capillary optical fibre with Sm3+ doped ribbon core

    NASA Astrophysics Data System (ADS)

    Baranowska, Agata; Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik

    2015-09-01

    The paper presents new construction of luminescent photonic sensor based on an optical fiber capillary with a side ribbon doped with Sm3+ ions. Samarium ions ensure efficient excitation at the wavelength of 405 nm and multi colour luminescence in visible spectrum (550-720 nm). This phenomenon was proposed to increase sensor accuracy by using measurements of certain wavelength. The luminescence and angular characteristics of developed optrode were characterized at the lateral and face excitation of special capillary fibre construction. Rhodamine B (RhB) was used as a test solution in designed optrode. The nearly linear characteristic of RhB concentration was obtained for up to 0.15 % (w/w). The results indicate that the designed optrode can be used for construction of compact luminescent sensor for measuring selected properties of the solutions.

  15. Optical recording properties of phthalocyanine copper as a write-once read-many recording medium

    SciTech Connect

    Chen, Q.; Gu, D.; Shu, J.; Tang, X.; Gan, F.

    1994-12-31

    The phthalocyanine compounds have received considerable attention because of their good thermal and chemical stability which ensure a long storage life and high readout times as optical storage media. In this paper, the optical spectra and the complex refractive index of phthalocyanine copper (CuPc) have been studied. The optical recording performances of multilayer films are reported.

  16. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    SciTech Connect

    Chu, J.; Peng, X.Y.; Dasari, K.; Palai, R.; Feng, P.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of band gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.

  17. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  18. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  19. DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Yao, Ying; Ma, Jun; Sun, Jinhe

    2012-12-01

    The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.

  20. Resolution-limited optical recording in 3D.

    PubMed

    Orlic, Susanna; Dietz, Enrico; Frohmann, Sven; Rass, Jens

    2011-08-15

    We present an optical write/read system for high density optical data storage in 3-D. The microholographic approach relies on submicron-sized reflection gratings that encode the digital data. As in conventional optical data storage, the physical limitations are imposed by both the diffraction of light and resolution of the recording material. We demonstrate resolution-limited volume recording in photopolymer materials sensitive in the green and violet spectral range. The volume occupied by a micrograting scales down by the transition in the write/read wavelength. Readout yields a micrograting width of 306 nm at 532 nm and 197 nm at 405 nm. To our knowledge these are the smallest volume holograms ever recorded. The recordings demonstrate the potential of the technique for volumetric optical structuring, data storage and encryption. PMID:21934972

  1. Polarization holographic optical recording of a new photochromic diarylethene

    NASA Astrophysics Data System (ADS)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  2. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  3. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles.

    PubMed

    Ramasamy, V; Praba, K; Murugadoss, G

    2012-10-01

    ZnS and transition metal (Mn, Co, Ni, Cu, Ag and Cd) doped ZnS were synthesized using chemical precipitation method in an air atmosphere. The structural and optical properties were studied using various techniques. The X-ray diffraction (XRD) analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 4-6.1 nm. Elemental dispersive (EDX) analysis of doped samples reveals the presence of doping ions. The scanning electron microscopic (SEM) and transmission electron microscopic (TEM) studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS. An optimum doping level of the transition metals for enhanced PL properties are found through optical study. PMID:22938741

  4. Optical Nonlinearities in Semiconductor Doped Glass Channel Waveguides.

    NASA Astrophysics Data System (ADS)

    Banyai, William Charles

    The nonlinear optical properties of a semiconductor -doped glass (SDG) channel waveguide were measured on a picosecond time-scale; namely, fluence-dependent changes in the absorption and the refractive index as well as the relaxation time of the nonlinearity. Slower, thermally -induced changes in the refractive index were also observed. The saturation of the changes in the absorption and the refractive index with increasing optical fluence is explained using a plasma model with bandfilling as the dominant mechanism. The fast relaxation time of the excited electron-hole plasma (20 ps) is explained using a surface-state recombination model. A figure of merit for a nonlinear directional coupler fabricated in a material with a saturable nonlinear refractive index is presented. The measured nonlinear change in the refractive index of the SDG saturates below the value required to effect fluence-dependent switching in a nonlinear directional coupler. Experiments with a channel-waveguide directional coupler support this prediction. However, absorption switching due to differential saturation of the absorption in the two arms of the directional coupler was observed.

  5. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  6. A study of the optical properties of metal-doped polyoxotitanium cages and the relationship to metal-doped titania.

    PubMed

    Lv, Yaokang; Cheng, Jun; Matthews, Peter D; Holgado, Juan Pedro; Willkomm, Janina; Leskes, Michal; Steiner, Alexander; Fenske, Dieter; King, Timothy C; Wood, Paul T; Gan, Lihua; Lambert, Richard M; Wright, Dominic S

    2014-06-21

    To what extent the presence of transition metal ions can affect the optical properties of structurally well-defined, metal-doped polyoxotitanium (POT) cages is a key question in respect to how closely these species model technologically important metal-doped TiO2. This also has direct implications to the potential applications of these organically-soluble inorganic cages as photocatalytic redox systems in chemical transformations. Measurement of the band gaps of the series of closely related polyoxotitanium cages [MnTi14(OEt)28O14(OH)2] (1), [FeTi14(OEt)28O14(OH)2] (2) and [GaTi14(OEt)28O15(OH)] (3), containing interstitial Mn(II), Fe(II) and Ga(III) dopant ions, shows that transition metal doping alone does not lower the band gaps below that of TiO2 or the corresponding metal-doped TiO2. Instead, the band gaps of these cages are within the range of values found previously for transition metal-doped TiO2 nanoparticles. The low band gaps previously reported for 1 and for a recently reported related Mn-doped POT cage appear to be the result of low band gap impurities (most likely amorphous Mn-doped TiO2). PMID:24763670

  7. High-Pressure Optical Studies of Doped Yttrium Aluminum Garnet

    NASA Astrophysics Data System (ADS)

    Wamsley, Paula

    This thesis demonstrates the application of high pressure spectroscopy to the study of doped insulator laser materials. We investigated transition metal ion and rare -earth ion doped yttrium aluminum garnet (YAG) crystals. Our goal was to explore the relationship between the local bonding environment of the dopant ion and the bulk optical properties of the crystals. Pressure is a useful probe for this type of investigation because pressure changes the local bonding environment of the dopant ion. We conducted laser induced fluorescence experiments and time-resolved laser induced fluorescence experiments on samples in modified Merrill-Basset style diamond anvil cells. We measured the effect of pressure on the laser induced emission of Cr^{3+} and Tm^{3+} in Cr ^{3+}:YAG and Tm^ {3+}:YAG. These experiments provided information about the energy level structure of Cr ^{3+} and Tm^{3+ } as a function of the crystal field strength. In Cr^{3+}:YAG we were able to correlate changes in the emission spectrum to pressure induced changes in the local site-symmetry of the Cr ^{3+} ions. In Tm^ {3+}:YAG we determined that several emission features were incorrectly assigned and observed previously unreported Tm^{3+} emission features. We also measured the time-resolved laser induced emission of Cr^{3+} in Cr^{3+}:YAG and Cr ^{3+}:Tm^{3+ }:YAG. With these measurements we were able to determine the effect of thermal and spin-orbit coupling on the fluorescence properties of Cr^{3+ }. In addition we determined that the fluorescence properties of Cr^{3+} strongly influence the rate of energy transfer and the efficiency of energy transfer from Cr^{3+ } to Tm^{3+} in Cr^{3+}:Tm ^{3+}:YAG.

  8. Optical Imaging versus Paper Records Storage.

    ERIC Educational Resources Information Center

    Baldygo, Robert

    1999-01-01

    States that the maintenance and storage of paper documents has many inherent weaknesses, including hidden costs and attached risks. Asserts that document imaging is a viable, up-to-date technology that could eliminate many of these costs and risks. Describes the system benefits, scope, requirements, and costs and the legality of optically stored…

  9. Optical and electrical characteristics of pure and doped potassium hydrogen tartrate single crystals

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Khosa, S. K.; Kotru, P. N.

    2009-08-01

    The optical and electrical characteristics of pure, sodium- and lithium-doped potassium hydrogen tartrate crystals grown by the gel technique are reported. An optical absorption study conducted in the UV-Vis range of 200-800 nm reveals the transparency of these crystals in the entire visible range but not in the ultraviolet range. The optical band gap of pure potassium hydrogen tartrate crystals is found to be dependent on doping by Na or Li ions. The non-linear optical behaviour of these crystals is reported and explained. The electrical properties of pure and doped potassium hydrogen tartrate crystals are studied by measuring electrical resistivity from 80 to 300 K. It is shown that while pure potassium hydrogen tartrate crystal is an insulator at room temperature (300 K), doping by Na or Li ions makes it a semiconductor. The results have been explained in terms of the variable range hopping model.

  10. Volume polarization holographic recording in thick photopolymer for optical memory.

    PubMed

    Lin, Shiuan Huei; Cho, Sheng-Lung; Chou, Shin-Fu; Lin, June Hua; Lin, Chih Min; Chi, Sien; Hsu, Ken Yuh

    2014-06-16

    Based on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated. It is found that the circular polarization holographic recording possesses better dynamic range and material sensitivity, and a uniform spatial frequency response over a wide range. The performance is comparable to that of the intensity holographic recording in PQ/PMMA. Based on theoretical analyses and the material properties, a polarization multiplexing holographic memory using circularly polarization recording configuration for increasing storage capacity has been designed and experimentally demonstrated. PMID:24977588

  11. Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

    SciTech Connect

    Alessi, A. Girard, S.; Di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Reghioua, I.; Fanetti, M.; Martin-Samos, L.; Agnello, S.; Cannas, M.; Marcandella, C.; Richard, N.

    2015-08-28

    We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.

  12. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    SciTech Connect

    Egorova, O N; Semenov, S L; Vel'miskin, V V; Dianov, Evgenii M; Salganskii, M Yu; Yashkov, M V; Gur'yanov, Aleksei N

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  13. Chalcogenide amorphous nanoparticles doped poly (methyl methacrylate) with high nonlinearity for optical waveguide

    NASA Astrophysics Data System (ADS)

    Xue, Xiaojie; Nagasaka, Kenshiro; Cheng, Tonglei; Deng, Dinghuan; Zhang, Lei; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2015-03-01

    Nonlinear optical polymers show promising potential applications in photonics, for example, electro-optical devices. Poly (methyl methacrylate) (PMMA) is widely used in optical waveguides, integrated optics and optical fibers. However, PMMA has not been used for nonlinear optical waveguides since it has a low nonlinear refractive index. We successfully prepared chalcogenide amorphous nanoparticles doped PMMA that had a high nonlinearity. The As3S7 bulk glass was dissolved in propylamine to form a cluster solution. Then the As3S7/propylamine solution was added into methyl methacrylate (MMA) containing photoinitiator Irgacure 184 about 0.5 wt%. After well mixing the As3S7 nanoparticle doped MMA was transparent. Under the irradiation by a 365 nm UV lamp, As3S7 nanoparticles doped PMMA was obtained with yellow color. The third-order nonlinear optical susceptibility of As3S7 nanoparticles doped PMMA was investigated. An optical waveguide array based on the As3S7 nanoparticles doped PMMA composite of high nonlinearity was fabricated.

  14. Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Horzum, S.; Torun, E.; Serin, T.; Peeters, F. M.

    2016-06-01

    Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/? method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.

  15. Nitrogen-doped ZnO shells: Studies on optical transparency and electrical conductivity

    SciTech Connect

    Gaikwad, Rajendra S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Ambade, Rohan B.; Ahn, Hee Joon; Han, Sung-Hwan; Joo, Oh-Shim

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Chemical spray growth of high quality zinc oxide nitrogen-doped films is explored. Black-Right-Pointing-Pointer Effect of nitrogen doping on crystallinity, surface morphology, and optical properties is comprehensively studied. Black-Right-Pointing-Pointer ZnO structural properties are optimized. Black-Right-Pointing-Pointer Effect of nitrogen doping on a gas sensing application of ZnO is investigated. -- Abstract: Studies on optical and electrical conductivity in nitrogen (N)-doped ZnO shells are explored. On incorporating low levels of nitrogen, the (0 0 2) X-ray diffraction (XRD) peak was found to be intensified significantly. Closely packed spherical crystallites of ZnO were transformed into flat-flakes during 0.1-0.3 M nitrogen doping and finally to shells, flattered at the center and tapered at ends, at 0.4 M. Both pristine and N-doped ZnO films show hydrophilic character. It was also found that the degree of transparency and the nature of conductivity as estimated by optical absorbance and Hall measurement, respectively, were strongly influenced by the levels of N-doping. Higher nitrogen doping led to decline in electrical resistivity and mobility due to an enhancement of free charge carriers. Presence of both (N{sub 2}){sub O} donor and (N){sub O} acceptor peaks in X-ray photoelectron spectroscopy could be responsible for the formation of higher carrier concentration in ZnO films.

  16. Optical properties of Yb-doped LaB6 from first-principles calculation

    NASA Astrophysics Data System (ADS)

    Chao, Luomeng; Bao, Lihong; Wei, Wei; Tegus, O.

    2016-03-01

    The optical properties of Yb-doped LaB6 have been investigated by first-principles calculations within the framework of density functional theory. The results show that the Yb 4f states at near Fermi surface affect their optical properties and the Yb-doping leads to a reduction of the plasmon energy of LaB6, i.e. a redshift of the position of transmission peak in the visible-near infrared region. This study offers a theoretical prediction for the design and application of Yb-doped LaB6 as an optoelectronic material.

  17. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Shao, Qingyi; Wang, Li; Deng, Feng

    2011-08-01

    We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.

  18. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  19. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites. PMID:22330481

  20. Optical and electrical properties of undoped and boron doped zinc oxide synthesized by chemical route

    SciTech Connect

    Bhattacharjee, Snigdha; Basu, Moumita; Roy, Asim

    2015-08-28

    We have synthesized and studied the boron doped ZnO nanostructure thin films. The crystallinity of undoped and boron (B) doped ZnO (BZO) has been studied from XRD results. Using the Debye-Scherrer Formula, the grain size has been evaluated, which was found to decrease with increased doping concentration. The optical and electrical properties of (1, 3, 5 wt%) B-doped ZnO (BZO) has been investigated with reference to the undoped counterpart. The UV-VIS spectroscopic analysis revealed that the transmittance for undoped ZnO is maximum and it decreases with doping up to 3% but increases for 5% BZO. The dark as well as photo current–voltage (I–V) characteristics have been investigated in details and the changes occurred in the I-V characteristics with doping concentration as well as under illumination are also quite significant.

  1. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  2. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    SciTech Connect

    Molli, Muralikrishna; Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  3. Optical and holographic storage properties of F3, Cu, and Mg-doped lithium niobate

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III; Meredith, B. D.

    1978-01-01

    Several samples of iron, copper, and magnesium doped lithium niobate were tested to determine their storage properties which would be applicable to an optical data storage system and an integrated optics data preprocessor which makes use of holographic storage techniques. The parameters of interest were the diffraction efficiency, write power, write time, erase time, erase energy, and write sensitivity. Results of these parameters are presented. It was found that iron doped lithium niobate samples yielded the best results in all parameters except for a few percent higher diffraction efficiency in copper doped samples. The magnesium doped samples were extremely insensitive and are not recommended for use in holographic optical data storage and processing systems.

  4. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  5. Thermomagnetic recording and magnetic-optic playback system

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1971-01-01

    A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.

  6. Quantum-dot based nanothermometry in optical plasmonic recording media

    SciTech Connect

    Maestro, Laura Martinez; Zhang, Qiming; Li, Xiangping; Gu, Min; Jaque, Daniel

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  7. Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    A. Saeed, M.; A. Fauzia, N.; Hossain, I.; T. Ramli, A.; A. Tahir, B.

    2012-07-01

    We present the characteristics of the thermoluminescence (TL) response of Ge-doped optical fibers with various energies and exposures of photon irradiation. To investigate the Ge-doped SiO2 as an efficient TL material, the TL responses are compared with commercially available standard TLD100 media. The Ge-doped optical fiber and TLD100 are placed in gelatin capsules and irradiated with x-ray using a Toshiba model KXO-15R x-ray generator. The Ge-doped fiber and TLD-100 show linear response as a function of current and time using x-ray photon of energy 60, 80 and 100 kV. When irradiated with 60, 80 and 100 kV x-ray energy at various currents (mA), tube distance (cm) and exposure time (second) ranges, TLD100 media provide a TL yield up to two times that of Ge-doped fibers. The energy response of the Ge-doped fibers is linear and similar over the 60-100 kV energy range, and its sensitivity is 0.39±0.05 of the TLD100 media. The glow curves of TLD 100 and doped optical fiber are also compared.

  8. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection. PMID:20862016

  9. Study of optical properties of cerium ion doped barium aluminate phosphor

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Omanwar, S. K.; Bajaj, N. S.; Belsare, P. D.

    2016-05-01

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl2O4 doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl2O4: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescent properties.

  10. influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer

    NASA Astrophysics Data System (ADS)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jinsong

    As the demand for ultrahigh density information storage continues to grow, recording mark size of several tens nanometer which is smaller than the optical diffraction limit is required in optical memory. Functional film super-resolution technique is one of practical approaches to overcome the optical diffraction limit. Optical constants are important parameters to optical films as super-resolution masks. In this paper, the influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer is investigated. The structure of the samples with different thickness was studied by X-ray diffraction. The transmission spectrum was measured by spectrophotometry. The optical constants of the films in the range of 300-800 nm were measured by spectroscopic ellipsometry. The results show that the structure of the film transforms from amorphous state to crystal state when the thickness increases from 7 nm to 300 nm. In the range of 300-800 nm, the refractive index and extinction coefficient increase with increasing wavelength. The transmission decreases rapidly when the thickness increases from 7 nm to 30 nm. The influences of film thickness on optical constants are more significant in the thickness range of 7-50 nm than that in the thickness above 50 nm.

  11. Analysis of optical gain threshold in n-doped and tensile-strained germanium heterostructure diodes

    NASA Astrophysics Data System (ADS)

    Prost, M.; El Kurdi, M.; Aniel, F.; Zerounian, N.; Sauvage, S.; Checoury, X.; BÅ`uf, F.; Boucaud, P.

    2015-09-01

    The optical emission of germanium-based luminescent and/or laser devices can be enhanced by tensile strain and n-type doping. In this work, we study by simulation the interplay between electrical transport and optical gain in highly n-doped and intrinsic germanium p-n heterostructure diodes under tensile strain. The effects of strain and doping on carrier mobilities and energy distribution are taken into account. Whereas the n-doping of Ge enhances the filling of the indirect L and Brillouin zone-center conduction band states, the n-doping also reduces the carrier injection efficiency, which is detrimental for the achievement of optical gain at reduced current densities. For applied biaxial strains larger than 1.25%, i.e., far before reaching the cross-over from indirect to direct band gap regime, undoped germanium exhibits a lower optical gain threshold as compared to doped germanium. We also show that the threshold current needed to reach transparency in germanium heterostructures has been significantly underestimated in the previous works.

  12. Optical information recording in biopolymer-based material

    NASA Astrophysics Data System (ADS)

    Mysliwiec, J.; Kochalska, A.; Miniewicz, A.

    2008-02-01

    In this paper we present results of possible applications of a modified DNA-dye system for dynamic processing of optical information like phase conjugation or optical correlation. The system consisted of bio-polymeric matrix made of deoxyribonucleic acid (DNA) substituted with cationic surfactant molecule cetyltrimethyl-ammonium chloride (CTMA) and doped with a photochromic Disperse Red 1 dye. Fast dynamics (a single millisecond rise and fall times) of diffraction grating formation were obtained in a typical degenerate two or four wave mixing experiments. For sample excitation we used a linearly polarized light of λ = 514.5 nm delivered by an argon ion (Ar +) laser. Complete reversibility of the signal generation with no residual light diffraction even after longer time exposures (up to few hours) was observed.

  13. Electrical and Optical Properties of Hydrogen Doped Aluminum-Doped Zinc Oxide Thin Films for Low Cost Applications.

    PubMed

    Park, Yong Seob; Park, Young; Kwon, Samyoung; Kim, Eung Kwon; Choi, Wonseok; Kim, Donguk; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were prepared on glass substrate using a magnetron sputtering system. In this work, a powder target was used as a source material for low cost applications, instead of a conventional sintered ceramic target. The effects of the hydrogen gas ratio on the electrical and optical properties of the AZO films. The hydrogen doped AZO (AZO:H) films had a hexagonal polycrystalline structure. A small amount of hydrogen gas deteriorated the electrical and optical properties of the AZO:H films. However, these properties improved, as the H2/(H2 + Ar) gas ratio increased. The AZO:H films grown at an H2/(H2+Ar) ratio of 10% showed good properties for low cost applications, such as a low resistivity of 1.35 x 10(-3) Ω-cm, high average transmittance of 83.1% in the visible range of light. PMID:27483879

  14. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  15. Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Velusamy, P.; Babu, R. Ramesh; Ramamurthi, K.

    2016-05-01

    In the present work, CdO and Li doped CdO thin films were deposited on microscopic glass substrates at 300˚C by a spray pyrolysis experimental setup. The deposited CdO and Li doped CdO thin films were subjected to XRD, SEM, UV-VIS spectroscopy and Hall measurement analyses. XRD studies revealed the polycrystalline nature of the deposited films and confirmed that the deposited CdO and Li doped CdO thin films belong to cubic crystal system. The Scanning electron microscopy analysis revealed the information on shape of CdO and Li doped CdO films. Electrical study reveals the n-type semiconducting nature of CdO and the optical band gap is varied between 2.38 and 2.44 eV, depending on the Li doping concentrations.

  16. Growth and optical characteristics of coumarin 6 doped potassium hydrogen phthalate (KAP) crystals

    NASA Astrophysics Data System (ADS)

    Enculescu, Monica

    2009-12-01

    Single-crystals of potassium hydrogen phthalate (KAP) doped with coumarin 6 (C6) were grown by solution evaporation technique. Powder X-ray diffraction, optical transmission and luminescence measurements were performed. The structure and morphology of the KAP crystals are not changed with the incorporation of the dye. Transparency of the dye-doped crystals is suited for non-linear optical (NLO) applications and UV cut-off is not changed when compared with the pure KAP crystals. The dye-doped crystals present an absorption band at 350 nm while the growth solution exhibits a peak at 400 nm. The doped crystals have a strong emission band at 450 nm that is excited at 350 nm and the second harmonic generating (SHG) properties are demonstrated using luminescence measurements.

  17. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Riscob, B.; Ganesh, V.; Vijayan, N.; Gupta, Rahul; Plaza, J. L.; Dieguez, E.; Bhagavannarayana, G.

    2013-10-01

    Sulfamic acid (SA) single crystals, both pure and doped with 1, 2.5 and 5 mol% Nd, were grown successfully in an aqueous solution by the slow cooling method. Powder X-ray diffraction patterns were recorded to check the variation in the lattice parameters and phase of the crystals. The optical transparency was found to be higProd. Type: FTPhest (∼80%) for the 1 mol% Nd3+ doped SA single crystal. The optical band gap was also calculated and found to be ∼4.31, 4.20 and 3.67 eV. The influence of Nd3+ doping on the crystalline perfection was assessed by a high resolution X-ray diffractometer (HRXRD) and shows that the grown crystals could accommodate Nd3+ at the interstitial positions in the crystalline matrix of SA up to some critical concentration without any deterioration in the crystalline perfection. The etching studies were carried out and the etch pits densities were calculated. The mechanical property of grown single crystals was also studied.

  18. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer.

    PubMed

    Lin, Shiuan Huei; Chen, Po-Lin; Chuang, Chun-I; Chao, Yu-Faye; Hsu, Ken Y

    2011-08-15

    Volume polarization holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer is obtained. Photoinduced birefringence in a 2 mm thick sample is measured by a phase-modulated ellipsometry. The birefringence induced in this material by linearly polarized beam at 514 nm reaches 1.2×10(-5). In addition, ability for recording volume polarization grating using two different polarization configurations is demonstrated and compared. The experimental results show that the diffraction efficiency of the hologram reaches to ∼40% by using two orthogonal circularly polarized beams. PMID:21847152

  19. Two diffusion photopolymer for sharp diffractive optical elements recording.

    PubMed

    Gallego, S; Fernández, R; Márquez, A; Ortuño, M; Neipp, C; Gleeson, M R; Sheridan, J T; Beléndez, A

    2015-07-15

    Photopolymers as recording media are widely used in optical applications. In such materials, changes in the phase of the transmittance function are generated during exposure due to refractive index and thickness modulations. These changes arise primarily as a consequence of photopolymerization and mass transport processes. Characterizing polymers' performance, for example, quantifying the value of monomer diffusion, is therefore very important. Applying index matching, the volume and surface optical effect are separated in an acrylamide/polyvinylalcohol (AA/PVA) material. Using a simplified model that includes the effects of the holes produced during polymerization, both hole and monomer diffusion are analyzed. The analysis presented indicates higher material sensitivity than previously estimated. The results also indicate the possibility of recording sharper diffractive optical elements profiles, like blazed gratings, having diffraction efficiencies higher than 80%. PMID:26176434

  20. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  1. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  2. Optical Properties of Co2+ Doped ZnS Nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Kumbhakar, P.; Mitra, A. K.

    2010-10-01

    ZnS nanocrystals with Co2+ doping have been prepared through a soft chemical route. The undoped ZnS and Co2+ doped ZnS:Co nanocrystals have been analyzed using X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and ultraviolet-visible (UV-VIS) spectrophotometer. Undoped sample exhibits room-temperature photoluminescence (PL) emission in the blue region with a broad spectral band peaked at ˜397 nm under UV excitation. But from the 1.5% Co2+ doped samples, a strong blue emission peaked at ˜470 nm is observed and further increase in doping leads to considerable blue shift and enhancement in intensity of the PL spectrum.

  3. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore.

    PubMed

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation. PMID:15751884

  4. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation.

  5. Frequency dependence of optical third-harmonic generation from doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-01-01

    In connection with the controversial question about the frequency dependence of the optical third-harmonic generation (THG) from doped graphene, which has recently been discussed in the literature, we develop an analytical theory for the THG susceptibility of doped graphene by using the original Genkin-Mednis nonlinear-conductivity-theory formalism including mixed intra- and interband terms. The theory is free of any nonphysical divergences at zero frequency, and it predicts the main resonant peak in the THG spectrum to be located at the photon energy ħω equal to two thirds of the Fermi energy EF of charge carriers in doped graphene.

  6. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation. PMID:25179434

  7. Enhanced nonlinear optical characteristics of copper-ion-doped double crossover DNAs

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Lee, Byung Jic; Dugasani, Sreekantha Reddy; Cho, Youngho; Kim, Chulki; Seo, Minah; Lee, Taikjin; Jhon, Young Min; Choi, Jaebin; Lee, Seok; Park, Sung Ha; Jun, Seong Chan; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jae Hun

    2015-10-01

    The modification of deoxyribonucleic acid (DNA) samples by sequencing the order of bases and doping copper ions opens the possibility for the design of novel nanomaterials exhibiting large optical nonlinearity. We investigated the nonlinear characteristics of copper-ion doped double crossover DNA samples for the first time to the best of our knowledge by using Z-scan and four-wave mixing methods. To accelerate the nonlinear characteristics, we prepared two types of unique DNA nanostructures composed of 148 base pairs doped with copper ions with a facile annealing method. The outstanding third-order nonlinear optical susceptibility of the copper-ion-doped DNA solution, 1.19 × 10-12 esu, was estimated by the conventional Z-scan measurement, whereas the four-wave mixing experiment was also investigated. In the visible spectral range, the copper-ion-doped DNA solution samples provided competent four-wave mixing signals with a remarkable conversion efficiency of -4.15 dB for the converted signal at 627 nm. The interactions between DNA and copper ions contribute to the enhancement of nonlinearity due to structural and functional changes. The present study signifies that the copper-ion-doped double crossover DNA is a potential candidate as a highly efficient novel material for further nonlinear optical applications.

  8. Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals

    NASA Astrophysics Data System (ADS)

    Roodenko, K.; Liao, P.-K.; Lan, D.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.

    2016-04-01

    Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 1016 cm-3 to 7 × 1017 cm-3) and the Te-doped p-type GaSb (4.6 × 1015 cm-3 to 1 × 1016 cm-3). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.

  9. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF6 crystal. Eu doped and Eu, Y co-doped LiCaAlF6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  10. Oxidation resistance of Pb-Te-Se optical recording film

    NASA Astrophysics Data System (ADS)

    Terao, Motoyasu; Horigome, Shinkichi; Shigematsu, Kazuo; Miyauchi, Yasushi; Nakazawa, Masatoshi

    1987-08-01

    The dependence of oxidation resistance of metal-Te-Se optical recording films on film composition is investigated, as well as the effects of oxidation on laser beam recorded hole shape. The films are deposited by vacuum evaporation on substrates with a glass/UV light curing resin/cellulose nitrate structure. The role of Se in the film is to inhibit the oxidation. With at least 14% Se addition, film oxidation is completely inhibited even at 60 °C, relative humidity 95%. Depth profiles of elements in the recording films are analyzed by Auger electron and x-ray photoelectron spectroscopy to clarify the mechanisms of oxidation inhibition by Se addition. A selenium condensed layer is found at the inner part of an oxidized surface layer. The surface Te oxide layer and the Se-rich layer should inhibit the film inside from oxidizing. The role of the metallic elements In, Pb, Sn, Bi, and Sb in the film is to inhibit cracking and to decrease noise in reproduced signals by decreasing the size of crystal grains. Lead is found to be the best among these metallic elements, because the recorded hole shape is clean even when recorded after 15 days accelerated oxidation at 60 °C, relative humidity 95%. A very long storage life is expected for the Pb-Te-Se optical recording film.

  11. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    SciTech Connect

    Kwang-Ohk Cheon

    2003-08-05

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  12. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating

    SciTech Connect

    Kurkov, Andrei S; Karpov, V I; Medvedkov, O I; Dianov, Evgenii M; Vasil'ev, Sergei A; Paramonov, Vladimir M; Protopopov, V N; Laptev, A Yu; Gur'yanov, A N; Umnikov, A A; Vechkanov, N I; Artyushenko, V G; Frahm, J

    1999-06-30

    Ytterbium-ion-doped double-clad optical fibres were developed. The differential quantum efficiency of a diode-pumped fibre laser, fabricated on the basis of such optical fibres with a fibre Bragg grating, was 90%. (lasers)

  13. Optical and Electronic Properties of doped-MoS2 : Joint Theoretical/Experimental Study

    NASA Astrophysics Data System (ADS)

    Eaton, Miller; Sirikumara, Hansika; Samassekou, Hassana; Mazumdar, Dipanjan; Jayasekera, Thushari; Liyanage, Laalitha; Buongiorno Nardelli, Marco

    Substitutional doping of transition metal dichalcogenides (TMDs) is an attractive way of engineering their electronic properties. The dependence of optoelectronic properties of TMDs on the dopant is largely under-explored. In this work, we will discuss how different species affect the optical properties of MoS2. The electronic structure calculations of doped TMDs are carried out using Density Functional Theory with the recently developed ACBN0 functional, a pseudo-hybrid Hubbard density functional that is a fast, accurate and parameter-free alternative to traditional DFT+U and hybrid exact exchange methods [L.A. Agapito, S. Curtarolo, and M. Buongiorno Nardelli, Phys. Rev. X 5, 011006 (2015)]. We compare our ACBN0 predictions with measurement of the electronic and optical properties of pristine and niobium doped MoS2 films synthesized via physical vapor deposition and characterized using spectroscopic ellipsometry and optical spectroscopy.

  14. Effects of induced optical tunable and ferromagnetic behaviors of Ba doped nanocrystalline LaB6.

    PubMed

    Bao, Lihong; Qi, Xiaoping; Tana; Chao, Lumen; Tegus, O

    2016-07-28

    Multiple nanocrystalline rare-earth hexaborides La1-xBaxB6 have been synthesized via a single step solid-state reaction. The Ba doping effects on crystal structure, grain morphology, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, SQUID magnetometry and optical measurements. The results show that all the Ba-doped hexaborides crystallize in the CsCl-type single phase, indicating the Ba atoms occupied the lattice sites of LaB6. The optical absorption results indicate that the absorption valleys of LaB6 are red-shifted from 622 nm to 780 nm when the Ba doping content increases to x = 0.8. The first-principle calculation results reveal that Ba doping reduces the total kinetic energy of the electrons of LaB6, which lead to the absorption valleys moving toward a higher wavelength. Meanwhile, the band gap of BaB6 obtained from optical absorption is in good agreement with the theoretical calculation results. The magnetic measurements results showed that Ba doping lead to room-temperature ferromagnetism of LaB6 due to the different ionic radii of La(3+) and Ba(2+) causing intrinsic crystal defects, which is directly observed experimentally by HRTEM. This is the first time that we have found the tunable optical and ferromagnetic behavior of Ba doped nanocrystalline LaB6. Thus, nanocrystalline La1-xBaxB6, as multi-functional materials, should open up a new route to extend the optical and magnetic applications of LaB6 nanopowder. PMID:27362626

  15. Optical spectroscopic properties of active nano-crystal doped transparent glass composites

    NASA Astrophysics Data System (ADS)

    Myint, Thandar

    Cr4+ and some Cr3+ ions doped tunable laser media operate in optical telecommunication bands. The tunability of some Cr 3+ doped media cover the telecom O,E,S,C and L bands while Er doped glass, widely used in optical amplifiers, covers only C bands. If the telecom utilizes Cr doped materials as the amplified media in fiber lasers and amplifiers, it can revolutionize the optical communications. But making Cr doped crystal in fiber form is difficult and expensive while the glass is the best material to make the fiber form. One solution to solve this problem is to synthesize the glass composites which have the good mechanical properties of glasses and perfect optical properties of bulk single crystals. In this thesis, synthesis and optical properties of chromium doped transparent glass-ceramics with the chemical composition similar to Cunyite(Cr4+:Ca2GeO 4) laser crystal are presented. Broadband structureless fluorescence and high quantum efficiency of new glass-ceramic make it the promising medium for fiber lasers and amplifiers. One barrier in synthesizing the glass ceramics is controlling the size of the nanocrystals inside the glass matrix. Since the glass composite is a two-phase (glass and crystal phase) system, the size of nano-crystals must be small to reduce the scattering and consequently produce the transparent sample. In order to produce smaller nano-crystals inside the glass matrix, porous glass with pore size of 4nm is also investigated. The optical properties of synthesized porous-glass show the crystal having a few lattice parameters in size can be grown inside the pore network.

  16. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    SciTech Connect

    Soni, S.; Dalela, S.; Kumar, Sudish; Meena, R. S.; Vats, V. S.

    2015-06-24

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  17. Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium.

    PubMed

    Starobor, Aleksey; Palashov, Oleg; Zhou, Shengming

    2016-04-01

    The Verdet constant and thermo-optical characteristics of a Si-doped and Ti-doped terbium aluminum garnet ceramics have been investigated. It is shown that the Verdet constant of the samples is ∼40% higher than that of TGG ceramics at 1064 nm. The best samples of Si:TAG have magneto-optical figures of merit more than 1.5 times greater than those of TGG ceramics. Si:TAG is better than TGG ceramics as a medium for high-power Faraday isolators. PMID:27192274

  18. Optical model of optical volume diffusion plate: polycarbonate plate doped with silicon dioxide micro particle

    NASA Astrophysics Data System (ADS)

    Lin, Che-Chu; Yu, Yeh-Wei; Chen, Yu-Heng; Le, Ming; Sun, Ching-Cherng; Chen, Jong-Wu; Cheng, Chih-Yuan

    2015-09-01

    High-efficiency diffusers play important roles in modern optical industry. The applications include back-light of television, uniform lighting, glare suppression, lighting decoration, and so on. In this paper, we develop optical volume diffusion plate using polycarbonate (PC) plate doped with silicon dioxide (SiO2) micro particle. The scattering distribution of diffusers is an important factor in the lighting design. Commercial detectors often measure the bidirectional scattering distribution function (BSDF) by a scanning and time-consuming method. We have proposed screen imaging synthesis (SIS) system in 2012, and it can easily measure the bidirectional transmittance distribution function (BTDF). In this paper, the optimized formula is presented to correct the vignetting effect and scattering effect caused by the screen. A quasi-Lambertian screen is made to enhance precision. Finally, we combine the SIS system with the rotation controller, and a semi-automatic measuring machine is built. The SIS generation can measure BSDF of the samples precisely and easily. In order to reduce glare problems and design a luminaire with uniform light distribution, we usually use diffusers to modulate the luminaire.

  19. Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Kapustianyk, V.; Figà, V.; Sahraoui, B.

    2016-06-01

    Pure and 7% MgO-doped lithium niobate (LiNbO3) single crystals were grown by the Czochralski technique. The shift of optical absorption edge in 7% MgO-doped crystal in direction of shorter wavelength compared to undoped crystal was observed. The second harmonic generation measurements of 7% MgO-doped LiNbO3 crystal were performed at room temperature by means of the rotational Maker fringe technique using Nd:YAG laser generating at 1064 nm in picoseconds regime. Experimentally obtained value of nonlinear optical coefficient d33 for 7% MgO-doped LiNbO3 was found to be less than for undoped crystal but higher than for 5% MgO-doped. I-type phase-matched second harmonic generation was achieved and the value of phase-matched angle was calculated. High quadratic nonlinearity together with tolerance to intensive laser irradiation makes 7% MgO-doped LiNbO3 crystal interesting for application in optoelectronics.

  20. Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Lei, Pei; Zhu, Jiaqi; Han, Jiecai

    2016-04-01

    The influences of indium doping and subsequent annealing in nitrogen and air atmospheres on the microstructure and optical properties of cadmium oxide films were studied in detail with the aid of various characterizations. X-ray photoelectronic spectroscopy analysis shows that indium atom forms chemically oxidized bonds in Cd-O matrix. X-ray diffraction results demonstrate that CdO structure remains FCC structure with indium doping, whereas the preferential orientation transforms from (222) into (200) orientation. Indium doping prevents the large crystalline growth, and this role still works under both nitrogen and air annealing processes. Similarly, CdO films show rough surface under annealing conditions, but the force has been greatly weakened at high doping level. It is clear that refractive index and extinction coefficient are closely correlated with crystalline size for undoped films, whereas it turns to the doping level for doped films, which can be performed by the mechanism of indium atom substitution. This work provides a very useful guild for design and application of optical-electronic devices.

  1. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  2. Structural, optical and ethanol sensing properties of Cu-doped SnO{sub 2} nanowires

    SciTech Connect

    Johari, Anima Sharma, Manish; Johari, Anoopshi; Bhatnagar, M. C.

    2014-04-24

    In present work, one-dimensional nanostructure of Cu-doped Tin oxide (SnO{sub 2}) was synthesized by using thermal evaporation method in a tubular furnace under Nitrogen (N{sub 2}) ambience. The growth was carried out at atmospheric pressure. SEM and TEM images reveal the growth of wire-like nanostructures of Cu-doped SnO{sub 2} on Si substrate. The XRD analysis confirms that the synthesized SnO{sub 2} nanowires have tetragonal rutile structure with polycrystalline nature and X-ray diffraction pattern also showed that Cu gets incorporated into the SnO{sub 2} lattice. EDX spectra confirm the doping of Cu into SnO{sub 2} nanowires and atomic fraction of Cu in nanowires is ∼ 0.5 at%. The Vapor Liquid Solid (VLS) growth mechanism for Cu-doped SnO{sub 2} nanowires was also confirmed by EDX spectra. The optical properties of as grown Cu-doped SnO{sub 2} nanowires were studied by using UV-vis spectra which concludes the band gap of about 3.7 eV. As synthesized single Cu-doped SnO{sub 2} nanowire based gas sensor exhibit relatively good performance to ethanol gas. This sensing behaviour offers a suitable application of the Cu-doped SnO{sub 2} nanowire sensor for detection of ethanol gas.

  3. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    SciTech Connect

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  4. Structural properties and optical characterization of flower-like Mg doped NiO

    SciTech Connect

    Allaedini, Ghazaleh Tasirin, Siti Masrinda; Aminayi, Payam

    2015-07-15

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX) confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.

  5. Structural, electrical and optical properties of TiO 2 doped WO 3 thin films

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Deshmukh, H. P.; Sadale, S. B.

    2005-12-01

    TiO 2 doped WO 3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH 4) 2WO 4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO 2 doped WO 3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO 2 doping concentration on structural, electrical and optical properties of TiO 2 doped WO 3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy ( Eg) were estimated. The films with 38% TiO 2 doping in WO 3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.

  6. Structural, optical and electrical properties of Zr-doped In₂O₃ thin films.

    PubMed

    Manoharan, C; Jothibas, M; Jeyakumar, S Johnson; Dhanapandian, S

    2015-06-15

    Undoped and zirconium doped indium oxide (ZrIO) thin films were deposited on glass substrate at a substrate temperature of 450°C by spray pyrolysis method. The effect of zirconium (Zr) dopant concentration (0-11 at.%) on the structural, morphological, optical and electrical properties of n-type ZrIO films were studied. X-ray diffraction (XRD) results confirmed the polycrystalline nature of the ZrIO thin film with cubic structure. The grain size was decreased from 25 to 15.75 nm with Zr doping. The scanning electron microscopy (SEM) showed that the surface morphology of the films were changed with Zr doping. The surface roughness of the films was investigated by atomic force microscopy (AFM) and was found to be increased with the increasing of Zr doping percentage. A blue shift of the optical band gap was observed. The optical band was gap decreased from 3.50 to 3.0eV with increase in Zr concentrations. Room temperature photoluminescence (PL) measurement of the deposited films indicated the incorporation of Zr in In2O3 lattice. The film had low resistivity of 6.4 × 10(-4)Ωcm and higher carrier concentration of 2.5 × 10(20) was obtained at a doping ratio of 7 at.%. PMID:25766478

  7. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  8. Structural, spectral, optical and dielectric properties of copper and glycine doped LAHCl single crystals

    NASA Astrophysics Data System (ADS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-09-01

    Cu 2+ and glycine doped L-arginine monohydrochloride monohydrate (LAHCl) single crystals were grown by slow solvent evaporation technique. The grown single crystals were confirmed by X-ray diffraction study and the interaction of dopants with LAHCl molecule was identified in Fourier transform infrared spectra. The crystalline perfection of pure and doped crystals was analyzed by high resolution X-ray diffraction studies. Vickers microhardness and UV-visible spectroscopy were carried out respectively to study the mechanical stability and optical transmittance of pure and doped LAHCl single crystals. He-Ne laser of wavelength 632.8 nm was used to measure refractive index and birefringence of grown crystals. The second harmonic generation efficiency was also measured for pure and doped LAHCl single crystals using Nd:YAG laser.

  9. Study of structural and optical properties of Al doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallika, A. N.; Ramachandra Reddy, A.

    2014-03-01

    This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in addition to this, the photoluminescence (PL) properties of Al doped ZnO nanoparticles were studied. This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in

  10. Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+U study

    NASA Astrophysics Data System (ADS)

    Mulwa, Winfred M.; Ouma, Cecil N. M.; Onani, Martin O.; Dejene, Francis B.

    2016-05-01

    Substitutional energies, thermodynamic charge transition levels and optical properties of lanthanide doped anatase TiO2 has been investigated using local density approximation with the Hubbard U correction (LDA+U) within the density functional theory formalism. All the lanthanides apart from La introduced impurity states in the host band gap on doping. The calculated substitutional energies indicate that it is possible to dope TiO2 with lanthanide ions. The optimal doping percentage was predicted to be ~3% and dopant levels resulting from Ce, Nd, Sm, Gd and Tm doping were found to possess negative U characteristics. In addition the calculated thermodynamic transition levels predicted Lu as not having any possible charge transitions within the host band gap. The calculated optical absorption coefficients indicate that lanthanide doping led to optical absorption in the visible regime.

  11. Optical net gain measurement in n-type doped germanium waveguides under optical pumping for silicon monolithic laser.

    PubMed

    Okumura, Tadashi; Oda, Katsuya; Kasai, Junichi; Sagawa, Misuzu; Suwa, Yuji

    2016-05-01

    Silicon (Si) monolithic lasers are key devices in large-scale, high-density photonic integrated circuits. Germanium (Ge) is promising as an active layer due to the complementary metal-oxide semiconductor process compatibility with Si. A net optical gain from Ge is essential to demonstrate lasing operation. We fabricated Ge waveguides and investigated the n-type doping effect on the net optical gain. The estimated net gain of the n-Ge waveguide increased from -2200 to -500/cm, namely reducing loss, under optically pumped condition. PMID:27137529

  12. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  13. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    NASA Astrophysics Data System (ADS)

    Suneetha, Sebastian; Ajina, C.; P. G Vallabhan, C.; P. N. Nampoori, V.; Radhakrishnan, P.; Kailasnath, M.

    2013-11-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber.

  14. Structural and nonlinear optical behavior of Ag-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Yue; Yao, Cheng-Bao; Yan, Xiao-Yan; Li, Jin; Qu, Shu-Yang; Hu, Jun-Yan; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    We present the structural and nonlinear optical behavior of Ag-doped ZnO (AZO) films prepared by magnetron sputtering. The structural of AZO films are systematically investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The results show that AZO films can still retain a wurtzite structure, although the c-axis as preferred orientation is decreased by Ag doping. As the amounts of the Ag dopant were increased, the crystallinity as well as the absorptivity and optical band gap were increased. Moreover, the nonlinear optical characterized of the AZO films was studied using Z-scan technique. These samples show self-defocusing nonlinearity and good nonlinear absorption behavior which increases with increasing Ag volume fraction. AZO is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

  15. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    NASA Astrophysics Data System (ADS)

    Salini, K.; Mathew, Thomas; Mathew, Vincent

    2016-05-01

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  16. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  17. Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers.

    PubMed

    Gilard, Olivier; Thomas, Jérémie; Troussellier, Laurent; Myara, Mikhael; Signoret, Philippe; Burov, Ekaterina; Sotom, Michel

    2012-05-01

    A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity. PMID:22614396

  18. Spectral separation of Cr3+ optical centers in stoichiometric magnesium-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Galutskii, V. V.; Stroganova, E. V.; Yakovenko, N. A.

    2011-03-01

    The broadband luminescence of chromium optical centers with strongly overlapping spectral lines and similar emission probabilities from excited 4 T 2 states of red and green Cr3+ centers in stoichiometric magnesium-doped lithium niobate crystals has been separated for the first time. The spectral-luminescence characteristics and parameters of intracenter interaction between red and green optical Cr3+ centers in stoichiometric lithium niobate have been calculated. The luminescence quantum efficiencies of red and green chromium centers are determined.

  19. Optical properties of IR-emitting centres in Pb-doped silica fibres

    SciTech Connect

    Zlenko, Alexander S; Firstov, Sergei V; Ryumkin, K E; Khopin, V F; Iskhakova, L D; Semenov, S L; Bufetov, Igor' A; Dianov, Evgenii M

    2012-04-30

    The first fibre preforms with a Pb-doped silica core, free of other dopants, have been produced using chemical vapour deposition. The preforms have been used to fabricate holey optical fibres. The spectroscopic properties of the fibres have been studied in detail in the range 400 - 1700 nm: we have measured the optical loss, constructed a three-dimensional luminescence excitation - emission graph and determined the decay time for the major luminescence peaks.

  20. All-Fiber Optical Faraday Mirror Using 56-wt%-Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-22

    An all-fiber optical Faraday mirror that consists of a fiber Faraday rotator and a fiber Bragg grating is demonstrated. The fiber Faraday rotator uses a 21-cm-long section of 56-wt%-terbium-doped silicate fiber. The polarization state of the reflected light is rotated 89 degrees +/- 2 degrees with a 16-dB polarization extinction ratio.

  1. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  2. Optical properties of bismuth-doped KCl and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Zhao, M.; Su, L.; Yang, Q.; Iskhakova, L. D.; Firstova, E. G.; Alyshev, S. V.; Riumkin, K. E.; Dianov, E. M.

    2016-09-01

    Structural and spectroscopic properties of the pristine and γ-irradiated Bi-doped KCl and SrF2 crystals grown by the Bridgman technique were studied. New emission bands in the visible and near IR regions from the irradiated crystals were observed. An origin of optical centers responsible for near IR luminescence is discussed.

  3. Arsenic complexes optical signatures in As-doped HgCdTe

    SciTech Connect

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  4. Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers.

    PubMed

    Dvoyrin, V V; Mashinsky, V M; Bulatov, L I; Bufetov, I A; Shubin, A V; Melkumov, M A; Kustov, E F; Dianov, E M; Umnikov, A A; Khopin, V F; Yashkov, M V; Guryanov, A N

    2006-10-15

    Optical fibers with bismuth-doped silicate and germanate glass cores were fabricated by the modified chemical vapor deposition technique (solution and vapor-phase Bi incorporation). The fibers revealed an efficient luminescence with a maximum in the 1050-1200 nm spectral range, FWHM up to 200 nm, and a lifetime of the order of 1 ms. PMID:17001368

  5. Effect of Substrate Temperature on The Structural and Optical Properties of Non-doped ZnO Thin Films

    SciTech Connect

    Ilican, Saliha; Caglar, Mujdat; Caglar, Yasemin

    2007-04-23

    Transparent conducting non-doped zinc oxide (ZnO) thin films have been deposited by the spray pyrolysis method at different substrate temperatures. X-ray diffraction spectra of the films have shown that the films are polycrystalline and hexagonal wurtzite in structure. From these spectra, grain size and texture coefficient (TC) are calculated. The analytical method for calculating lattice constants is used to calculate a and c for the films. The preferred orientation of non-doped ZnO thin films was changed with substrate temperature. The average optical transmittance of non-doped ZnO thin films was over 80% in the visible range. The optical band gap and optical constants of the non-doped ZnO thin films were evaluated as dependent on the substrate temperatures. The substrate temperature have a significant effect on structural and optical properties of the non-doped ZnO thin films.

  6. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  7. Optical Response of Shocked Cerium-Doped Lutetium Oxyorthosilicate

    SciTech Connect

    G. D. Stevens

    2003-03-01

    Shock experiments were performed in order to characterize the triboluminescent signature of cerium-doped lutetium oxyorthosilicate (LSO:Ce). This material shows prompt, nano-second timescale light emission when driven by explosive detonation. When properly applied to a surface, it may be used as a shock arrival sensor, and also for imaging the propagation of a shock front. Triboluminescent rise times, spectral content, and spatial resolution measurements are presented.

  8. Multiplexed neural recording along a single optical fiber via optical reflectometry

    NASA Astrophysics Data System (ADS)

    Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.

    2016-05-01

    We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100 μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found-possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.

  9. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  10. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO

    SciTech Connect

    Roy, B.; Chakrabarty, S.; Mondal, O.; Pal, M.; Dutta, A.

    2012-08-15

    In this paper, we report effect of Nd doping on structure, electrical and optical properties of nanocrystalline ZnO prepared through a modified ceramic route. The X-ray diffraction and transmission electron microscopy studies reveal that annealed samples are single phase, pure nanocrystalline ZnO. The optical band gap for different compositions, estimated from ultraviolet-visible spectroscopy study, shows a little increasing tendency while doped with Nd for the samples annealed at lower temperature. The dc electrical conductivity of the samples decreases with the increase in Nd concentration. The ac electrical measurements prove the hopping conduction as the dominant mechanism. The results are being explained on the basis of band structural change due to Nd doping in the host lattice and by Correlated Barrier Hopping model. - Highlights: Black-Right-Pointing-Pointer Particle size increases when it is doped (from XRD). Black-Right-Pointing-Pointer XRD peak shifted to lower angle when doped. Black-Right-Pointing-Pointer The dc conductivity decreases with the increase of Nd dopant concentrations. Black-Right-Pointing-Pointer The temperature dependent ac conductivity follows the universal power law.

  11. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  12. Optical gain in Coumarin 545T-doped Tris(8-hydroxy-chinolinato)aluminium thin films

    NASA Astrophysics Data System (ADS)

    Rabe, T.; Görrn, P.; Riedl, T.; Kowalsky, W.

    2007-09-01

    In this paper we investigate the optical gain in organic thin film waveguides using the variable stripe length method (VSL). As active medium the guest-host system containing Tris-(8-hydroxy-chinolinato)-aluminium (Alq3) doped by 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H- (1)-benzopyropyrano- (6,7-8-i,j)quinolizin-11-one (C545T) is studied. The doping concentration is varied over a wide range and the gain coefficient is measured at different excitation densities to analyze the behavior of the differential gain. The F¨orster energy transfer is responsible for the occupation of the exited state of the coumarin molecules. For low doping concentrations with an inefficient host-guest energy transfer a low stimulated cross section can be observed. At optimal doping concentrations (3.7-6.4 wt%) we obtain a cross section of σ =6.8x10 -17 cm2 and a high material gain of g mat ~500 cm -1 at an excitation density E ex of E ex ~300 μJ/cm2. A further increased doping concentration (15 wt%) leads to a reduced cross section, due the onset of concentration quenching in the guest-host system. Furthermore, at high excitation densities we observe a strong saturation effect of the maximum gain which depends strongly on the doping concentration.

  13. Optical and electrical properties of p-type Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sáaedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Khorsand Zak, A.; Huang, Nay Ming

    2013-09-01

    Undoped and Li-doped ZnO nanowires were grown on Si(1 1 1) substrates using a thermal evaporation method. Undoped and Li-doped ZnO nanoparticles, which were prepared using a sol-gel method, were used as material sources to grow the undoped and Li-doped ZnO nanowires, respectively. X-ray diffraction patterns clearly indicated hexagonal structures for all of the products. The nanowires were completely straight, with non-aligned arrays, and were tapered. Field emission Auger spectrometer indicated lithium element in the nanowires structures. Photoluminescence (PL) studies showed lower optical properties for the Li-doped ZnO nanowires compared to the undoped ZnO nanowires. Furthermore, the UV peak of the Li-doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. Two probe method results proved that the Li-doped ZnO nanowires exhibited p-type properties.

  14. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  15. Study on all-optical switching characteristics of ethyl orange-doped polymer film

    NASA Astrophysics Data System (ADS)

    Xu, Tang; Zhang, Chunping; Lin, Yu; Qi, Shengwen

    2008-10-01

    The all-optical switching polymer thin films with azobenzene dye ethyl orange as the guest material and polyvinyl alcohol (PVA) as the host material were prepared by adulteration and spin-coating methods. The all-optical switching characteristics of the samples were measured at different intensities and modulation frequencies of the pump beam (532 nm, CW); the influence of doping concentration on the all-optical switching effect of the films was studied. It is shown that, under room temperature conditions and with a low pump power of 6 mW, the all-optical switch has a response time of about 2 ms and a modulation depth of 45%, and the maximal modulation depth reaches 90%. In addition, it is found that samples with higher doping concentration show a stronger all-optical switching effect but a larger background signal, and good switching performance is obtained by choosing the doping concentrations from 0.8% to 2% of the sample.

  16. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  17. Electro-Optical Imaging Microscopy of Dye-Doped Artificial Lipidic Membranes

    PubMed Central

    Hajj, Bassam; De Reguardati, Sophie; Hugonin, Loïc; Le Pioufle, Bruno; Osaki, Toshihisa; Suzuki, Hiroaki; Takeuchi, Shoji; Mojzisova, Halina; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Artificial lipidic bilayers are widely used as a model for the lipid matrix in biological cell membranes. We use the Pockels electro-optical effect to investigate the properties of an artificial lipidic membrane doped with nonlinear molecules in the outer layer. We report here what is believed to be the first electro-optical Pockels signal and image from such a membrane. The electro-optical dephasing distribution within the membrane is imaged and the signal is shown to be linear as a function of the applied voltage. A theoretical analysis taking into account the statistical orientation distribution of the inserted dye molecules allows us to estimate the doped membrane nonlinearity. Ongoing extensions of this work to living cell membranes are discussed. PMID:19948120

  18. Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films.

    PubMed

    Ramana, C V; Baghmar, Gaurav; Rubio, Ernesto J; Hernandez, Manuel J

    2013-06-12

    We report on the optical constants and their dispersion profiles determined from spectroscopic ellipsometry (SE) analysis of the 20%-titanium (Ti) doped of tungsten oxide (WO3) thin films grown by sputter-deposition. The Ti-doped WO3 films grown in a wide range of temperatures (25-500 °C) are amorphous and optically transparent. SE data indicates that there is no significant interdiffusion at the film-substrate interface for a W-Ti oxide film growth of ~90 nm. The index refraction (n) at λ = 550 nm vary in the range of 2.17-2.31 with a gradual increase in growth temperature. A correlation between the growth conditions and optical constants is discussed. PMID:23682744

  19. ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Peter, Jaison; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.; Kailasnath, M.

    2014-11-01

    Three categories of polymer optical fibers viz., step index (SI), graded index (GI) and hollow types doped with Rhodamine 6G (Rh6G) at specific concentrations were fabricated to study their optical properties. Detailed measurements were made to understand the amplified spontaneous emission (ASE) and photodegradation phenomena in these polymer optic fiber (POF) systems. Rh6G doped hollow POF shows maximum line narrowing for a given pump power at 532 nm when side illumination technique is employed. A redshift in ASE has been observed when propagation length is increased allowing a limited range of tuning of emission wavelength. Photostability studies show that GI POF has the maximum endurance at a given pump power.

  20. Comparison of optical properties of pure and doped lithium tetraborate single crystals and glasses

    NASA Astrophysics Data System (ADS)

    Patra, G. D.; Singh, A. K.; Singh, S. G.; Tyagi, M.; Sen, S.; Tiwari, B.; Gadkari, S. C.

    2012-06-01

    High optical quality Li2B4O7 (LTB) single crystals and glassy phases of pure, doped (Cu, Ag) and co-doped with Cu+Ag have been grown by Czochralski crystal pulling and melt quenching techniques respectively. They were characterized through photoluminescence (PL), thermoluminescence (TL), and UV-VIS-NIR transmission measurements. The PL of glass phase shows light yield comparable to that of single crystal. 80-85 % optical transmission in the range 350-800 nm revealed good optical quality of the glasses which is comparable to the single crystals though the glasses have higher cut off wavelength (lower energy). TL glow peaks of Cu doped LTB single crystal at 200 °C and for Cu+Ag co-doped LTB single crystals at around 170°C and 240°C are useful for the dosimetry applications and found to be linear in the range from 1mGy to 1kGy. However, in glasses no TL was observed in spite of a good PL yield.

  1. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    NASA Astrophysics Data System (ADS)

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-06-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique.

  2. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band.

    PubMed

    Firstov, Sergei V; Alyshev, Sergey V; Riumkin, Konstantin E; Khopin, Vladimir F; Guryanov, Alexey N; Melkumov, Mikhail A; Dianov, Evgeny M

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems ("capacity crunch") because the operation of the EDFA is limited to a spectral region of 1530-1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150-1530 nm) and longer wavelength (1600-1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640-1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  3. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    PubMed Central

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  4. Image density property of optical information recording microcapsule material

    NASA Astrophysics Data System (ADS)

    Lai, Weidong; Li, Xiaowei; Li, Xinzheng; Fu, Guangsheng

    2009-05-01

    The microcapsules can act as novel optical functional material in which the optical recording substance such as color-forming substance, photoinitiator and prepolymer are encapsulated. In this paper, the microcapsules with average particle diameter of 300nm are prepared with interfacial polymerization method. The optical responding character of the microcapsule is analyzed based on IR spectra and image density technique. Results show that the microcapsule material encapsulated prepolymer TMPTA and photoinitiator Irgacure-ITX, TPO has thermal phase-change at 140°C, at which the penetrability of the microcapsule has the highest efficiency. With the increase of exposure time, the reduction in absorption intensities of the prepolymer TMPTA are observed at 1635cm-1 of C=C stretching and 898cm-1 of C-H stretching on the C=C molecular bond. Such a result can be ascribed to the double bond cleavage process of the prepolymer TMPTA is initiated by the optical-exposed photoinitiator, and superpolymer network is formed. The image density contrast between the unexposed and exposed microcapsule is enhanced with exposure time increased.

  5. Prospects and philosophy for high-density optical recording

    NASA Astrophysics Data System (ADS)

    Milster, Tom D.

    2014-09-01

    In recent years, the commercial impact of optical data storage systems has been displaced by new technologies. Historically, optical data storage displaced older technologies, like consumer magnetic tape, so it is not unexpected that the same fate could pass optical data storage technology into the "retro" domain. In this paper, the basic building blocks of optical data storage are discussed, and limits based on current understanding are presented. Then, conceptual and philosophical arguments are presented to direct intuition toward future possibilities that may provide avenues to develop displacement data storage technology. For example, current understanding puts minimum practical data mark transverse dimensions in the range of 10nm by 10nm, regardless of recording technology. At the conservative assignment of 1 bit per mark area, this mark size equates to about 6,500 Gb/in2 (109 bits per square inch) of surface area. In order to gain the attention of research investment, displacement technologies need to target a 100X improvement in data density or about 1nm by 1nm mark size, with an effective surface data density of over 650,000 Gb/in2. Research and engineering mindsets for displacement data storage technologies should address this goal to be considered significant. Otherwise, advancements in known technologies will probably evolve to satisfy demand.

  6. Electronic and optical properties of boron-doped nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Gajewski, W.; Achatz, P.; Williams, O. A.; Haenen, K.; Bustarret, E.; Stutzmann, M.; Garrido, J. A.

    2009-01-01

    We report on the electronic and optical properties of boron-doped nanocrystalline diamond (NCD) thin films grown on quartz substrates by CH4/H2 plasma chemical vapor deposition. Diamond thin films with a thickness below 350 nm and with boron concentration ranging from 1017 to 1021cm-3 have been investigated. UV Raman spectroscopy and atomic force microscopy have been used to assess the quality and morphology of the diamond films. Hall-effect measurements confirmed the expected p -type conductivity. At room temperature, the conductivity varies from 1.5×10-8Ω-1cm-1 for a nonintentionally doped film up to 76Ω-1cm-1 for a heavily B -doped film. Increasing the doping level results in a higher carrier concentration while the mobility decreases from 1.8 down to 0.2cm2V-1s-1 . For NCD films with low boron concentration, the conductivity strongly depends on temperature. However, the conductivity and the carrier concentration are no longer temperature dependent for films with the highest boron doping and the NCD films exhibit metallic properties. Highly doped films show superconducting properties with critical temperatures up to 2 K. The critical boron concentration for the metal-insulator transition is in the range from 2×1020 up to 3×1020cm-3 . We discuss different transport mechanisms to explain the influence of the grain boundaries and boron doping on the electronic properties of NCD films. Valence-band transport dominates at low boron concentration and high temperatures, whereas hopping between boron acceptors is the dominant transport mechanism for boron-doping concentration close to the Mott transition. Grain boundaries strongly reduce the mobility for low and very high doping levels. However, at intermediate doping levels where hopping transport is important, grain boundaries have a less pronounced effect on the mobility. The influence of boron and the effect of grain boundaries on the optoelectronic properties of the NCD films are examined using spectrally

  7. SBS slow light using a novel optical fiber doped with nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lang, Peilin; Zhang, Ru

    2008-11-01

    As the key of these all optical techniques which would be widely used in the future optical fiber communication, the stimulated Brillouin scattering (SBS) slow light draws a great of attention and shows several advantages over other slow light methods. With recent growth of nano-technology, researchers are hoping to improve the nonlinearity of the optical fiber by using the nano-technology. According to this current situation, a numerical model of the SBS slow light and three typical experiments are discussed. A novel optical fiber doped with nano material as InP is manufactured and introduced into the SBS slow light, serving as the nonlinear medium of SBS process. And the numerical simulations are performed to validate our method. The results show a considerable time delay of the optical light can be achieved through this novel optical fiber.

  8. The effects of impurity doping on the optical properties of biased bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Yarmohammadi, Mohsen

    2016-07-01

    We address the optical conductivity of doped AA-stacked bilayer graphene in the presence of a finite bias voltage at finite temperature. The effect of scattering by dilute charged impurities is discussed in terms of the self-consistent Born approximation. Green's function approach has been implemented to find the behavior of optical conductivity of bilayer graphene within linear response theory. We have found the frequency dependence of optical conductivity for different values of concentration and scattering strength of dopant impurity. Also the dependence of optical conductivity on the impurity concentration and bias voltage has been investigated in details. A peak appears in the plot of optical conductivity versus impurity concentration for different values of chemical potential. Furthermore we find optical conductivity reduces with frequency for any impurity concentration and scattering strength.

  9. Laser induced breakdown spectroscopy diagnosis of rare earth doped optical glasses

    SciTech Connect

    Dwivedi, Y.; Thakur, S. N.; Rai, S. B.

    2010-05-01

    In the present work, rare earth (Nd, Eu, Er, Ho) doped oxyfluoroborate glasses were studied using laser induced breakdown spectroscopy (LIBS) technique. It has been observed that rare earth elements other than the doped one also reveal their presence in the spectrum. In addition the spectral lines of elements constituting the glass matrix have also been observed. Different plasma parameters such as plasma temperature and electron density have been estimated. It is concluded that the LIBS is a potential technique to identify simultaneously the light elements (B, O, F) as well as the heavy elements (Fe, Ba, Ca, Eu, Nd, Ho, Er) present in optical glasses.

  10. Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties

    DOE PAGESBeta

    Nie, Xiliang; Zhuo, Shuping; Maeng, Gloria; Sohlberg, Karl

    2009-01-01

    Tmore » his paper reviews recent investigations of the influence of dopants on the optical properties of TiO 2 polymorphs.he common undoped polymorphs of TiO 2 are discussed and compared.he results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of the TiO 2 electronic structure, which is supported with first-principles calculations.« less

  11. Investigation on the optical properties of sulfur-doped diamond thin films

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Zhao, Qingxun; Yin, Zengqian; Zhao, Zhanlong

    2011-08-01

    Sulfur-doped diamond thin films have been synthesized using CH4/H2/Ar/H2S gas mixture by hot filament chemical vapor deposition (HFCVD) technique. The optical properties of the films are investigated by SEM and Raman spectra. The Gaussian line shape is used in the curve fitting for the Raman spectra. Results show that the ID/IG presents the trend of first increase and then decrease with the increase of S/C ratio, however, an upward shift of the diamond peak is observed. This implies residual stress in the sulfur-doped diamond thin films. Moreover, optimum experimental conditions are proposed.

  12. Recorder/processor apparatus. [for optical data processing

    NASA Technical Reports Server (NTRS)

    Shim, I. H.; Stelben, J. J. (Inventor)

    1973-01-01

    An apparatus is described for recording a data input on, a thermally processible storage medium. A light source, whose intensity is modulated in response to the incoming data input, generates a raster in conformance with incoming timing/control signals so as to expose a latent image of the input information on the storage medium. A rotating drum in conjunction with an incrementally driven lens carriage associated with the laser optical system provides the raster generation. The drum is automatically loaded with the storage medium from a supply means and automatically unloaded to a thermal processor upon completion of recording. The latent image is processed by the controlled application of heat so as to produce an actual displayable image corresponding to the data input at the output of the apparatus.

  13. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    SciTech Connect

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E; Bubnov, M M; Umnikov, A A; Yashkov, M V; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.

  14. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  15. Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers.

    PubMed

    Long, Weihong; Zou, Weiwen; Li, Xing; Jiang, Wenning; Li, Xinwan; Chen, Jianping

    2014-03-24

    We experimentally demonstrate the novel phenomena of photoluminescence (PL) and fluorescence resonance energy transfer (FRET) assisted three-color PL separating in DNA optical nanofibers consisting of the stretched and connected DNA-cetyltrimethyl ammonium wires. The PL experiments are performed to comparatively trace photon transmission between single dye-doped DNA-CTMA optical nanofiber and PMMA optical nanofiber. A cascade FRET including DNA minor groove binder and DNA intercalators is used to further trace photon transmission inside DNA-CTMA wire. These experimental results will help to intrigue the new applications of DNA-CTMA as molecular waveguide in optobioelectronics area. PMID:24663973

  16. Effect of doping on structural and optical properties of ZnO nanoparticles: study of antibacterial properties

    NASA Astrophysics Data System (ADS)

    Maddahi, P.; Shahtahmasebi, N.; Kompany, A.; Mashreghi, M.; Safaee, S.; Roozban, F.

    2014-06-01

    Sol-gel method was successfully used for synthesis of ZnO nanoparticles doped with 10 % Mg or Cu. The structure, morphology and optical properties of the prepared nanoparticles were studied as a function of doping content. The synthesized ZnO:(Mg/Cu) samples were characterized using XRD, TEM, FTIR and UV-Vis spectroscopy techniques. The samples show hexagonal wurtzite structure, and the phase segregation takes place for Cu doping. Optical studies revealed that Mg doping increases the energy band gap while Cu incorporation results in decrease of the band gap. The antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative bacteria) cultures. It was found that both pure and doped ZnO nanosuspensions show good antibacterial activity which increases with copper doping, and slightly decreases with adding Mg.

  17. Chromium Doped ZnS Nanostructures: Structural and Optical Characteristics

    NASA Astrophysics Data System (ADS)

    Gogoi, D. P.; Das, U.; Ahmed, G. A.; Mohanta, D.; Choudhury, A.; Stanciu, G. A.

    2009-06-01

    Chromium doped ZnS nanoparticles arranged in the form of fractals were fabricated by using inexpensive physico-chemical route. The Cr:ZnS samples were characterized by diffraction and spectroscopic techniques. Unexpected growth of fractals with several micrometer dimensions and of core size 1 μm (tip to tip) was confirmed through TEM micrographs. At higher magnification, we found that individual fractals consist of spherical nanoparticles of average size <30 nm. The mechanism leading to such organized structures describing fractal pattern is encountered in this work.

  18. Chipscale, single-shot gated ultrafast optical recorder.

    PubMed

    Shih, Ta-Ming; Sarantos, Chris H; Haynes, Susan M; Heebner, John E

    2012-01-01

    We introduce a novel, chipscale device capable of single-shot ultrafast recording with picosecond-scale resolution over hundreds of picoseconds of record length. The device consists of two vertically-stacked III-V planar waveguides forming a Mach-Zehnder interferometer, and makes use of a transient, optically-induced phase difference to sample a temporal waveform injected into the waveguides. The pump beam is incident on the chip from above in the form of a diagonally-oriented stripe focused by a cylindrical lens. Due to time-of-flight, this diagonal orientation enables the sampling window to be shifted linearly in time as a function of position across the lateral axis of the waveguides. This time-to-space mapping allows an ordinary camera to record the ultrafast waveform with high fidelity. We investigate the theoretical limits of this technique, present a simulation of device operation, and report a proof-of-concept experiment in GaAs, demonstrating picosecond-scale resolution over 140 ps of record length. PMID:22274365

  19. Recording of incoherent reflective volume Fourier holograms for optical correlators

    NASA Astrophysics Data System (ADS)

    Rodin, Vladislav G.; Starikov, Sergey N.

    2007-01-01

    The scheme of recording of reflective volume Fourier holograms in monochromatic light with partial spatial coherence is presented. The scheme contains posed on one optical axis an illuminated or self-luminous object, Fourier-objective, photosensitive medium and concave mirror. The light is proposed to be monochromatic with partial spatial coherence. The object is located in a front focal plane of the Fourier-objective. Photosensitive medium is placed in a back focal plane of the Fourier-objective, and the mirror is posed on a double focal length of the mirror from photosensitive medium. The light from input object is focused by the Fourier-objective in a volume of photosensitive medium, shaping a far field diffraction pattern of input object. This pattern is partial coherent analog of Fourier transform of input object. The light transmitted through the medium falls on the concave mirror and is reflected back, thus the mirror shapes the second copy of far field diffraction pattern of input object in the volume of photosensitive medium. Thus, these two light waves, propagating in the opposite directions, form the interference pattern in photosensitive medium, and a reflective volume Fourier hologram is recorded by monochromatic light with partial spatial coherence. The experiments on recording of these holograms and image reconstruction were realized. Patent by Russian Federation No2176099 on the device of recording of reflective volume holographic Fourier-filter in light with partial spatial coherence was taken out. Described reflective volume Fourier-holograms can be used in optical correlators as the spatial filters and spectral selectors at image recognition both in monochromatic and polychromatic light.

  20. Synthesis, structural, optical, and magnetic properties of Co doped, Sm doped and Co+Sm co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Poojitha, P. T.; Chalapathi, U.; Subramanyam, K.; Park, Si-Hyun

    2016-09-01

    The compositional, structural, optical and magnetic properties of ZnS, Zn0.98Co0.02S, Zn0.98Sm0.02S and Zn0.96Co0.02Sm0.02S nanoparticles synthesized by a hydrothermal method are presented and discussed. X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies revealed that all the samples exhibited cubic structure without any impurity phases. X-ray photoelectron spectroscopy (XPS) results revealed that the Co and Sm ions existed in +2 and +3 states in these samples. The photoluminescence (PL) spectra of all the samples exhibited a broad emission in the visible region. The room temperature magnetization versus applied magnetic field (M-H) curves demonstrated that the Sm+Co doped nanoparticles exhibited enhanced ferromagnetic behavior compare to Co and Sm individually doped ZnS nanoparticles, which is probably due to the exchange interaction between conductive electrons with local spin polarized electrons on the Co2+ or Sm3+ ions. This study intensifies the understanding of the novel performances of co-doped ZnS nanoparticles and also provides possibilities to fabricate future spintronic devices.

  1. Optical spectroscopy of the Ce-doped multicomponent garnets.

    PubMed

    Canimoglu, A; Karabulut, Y; Ayvacikli, M; Muresan, L E; Perhaita, I; Barbu-Tudoran, L; Garcia Guinea, J; Karali, T; Can, N

    2016-08-01

    Here, we report our results referring to the preparation of Ce doped Y2.22MgGa2Al2SiO12, Y1.93MgAl4SiO12 and Y2.22Gd0.75Ga2Al3O12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530nm assigned to 5d-4f transitions of the dopant Ce(3+) ions with a broad emission band in 400-700nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd)3Ga2Al3O12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312nm and 624nm corresponding to transition of (6)P7/2 →(8)S7/2 and (6)GJ→(6)PJ (Gd(3+)), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. PMID:27235885

  2. Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Jeong, J.-h.; Park, J. K.; Baik, Y. J.; Kim, I. H.; Seong, T.-Y.; Kim, W. M.

    2012-06-01

    The optical properties of impurity doped ZnO thin films were analyzed by taking into account the nonparabolicity in the conduction-band and the optically determined carrier concentration and mobility were correlated with those measured by Hall measurement. The Drude parameters obtained by applying a simple Drude model combined with the Lorentz oscillator model for the optical transmittance and reflectance spectrum were analyzed by using the carrier density dependent bare band effective mass determined by the first-order nonparabolicity approximation. The squared plasma energy multiplied by the carrier density dependent effective mass yielded fairly linear relationship with respect to the carrier concentration in wide carrier density range of 1019 - 1021 cm-3, verifying the applicability of the nonparabolicity parameter for various types of impurity doped ZnO thin films. The correlation between the optical and Hall analyses was examined by taking the ratios of optical to Hall measurements for carrier density, mobility, and resistivity by introducing a parameter, Rdl, which represents the ratio of the resistances to electron transport from the inside of the lattice and from the crystallographic defects. For both the carrier concentration and mobility, the ratios of optical to Hall measurements were shown to exhibit a monotonically decreasing function of Rdl, indicating that the parameter Rdl could be used as a yardstick in correlating the optically determined carrier density and mobility with those measured by Hall analysis.

  3. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  4. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  5. Characterization of dye-doped PMMA, CA, and PS films as recording materials

    NASA Astrophysics Data System (ADS)

    Lessard, Roger A.; Tork, Amir; Lafond, Christophe; Bolte, Michel; Ritcey, Anna-Marie R.

    2000-05-01

    The photoinduced reversible color change and in-situ recording of fulgide Aberchrome 670 doped polymethyl methacrylate (PMMA), cellulose acetate (CA) and polystyrene (PS) were investigated. Upon UV and visible exposure, closed-form absorbency followed first-order kinetic. The rate constants KUV and KVIS for respectively the coloring and bleaching process were determined. In PMMA matrix KUV equals 1.2 * 10-3 s-1 and KVIS equals 11.1 8 10-3 s-1, in CA matrix kUV equals 2.7 * 10-3 s-1 and kVIS equals 6.4 8 10-3 s-1 and in the case of PS film kUV equals 2.1 * 10-3 s-1 and kVIS equals 11.9 * 10-3 s-1 were obtained. These results show that, KVIS is much larger than KUV for all matrices. Photochemical fatigue resistance in different polymer matrices was investigated. We found a loss of 9, 11 and 13 percent in PS, CA and PMMA respectively, after 10 repeated UV and visible cycles. The real time holographic recording in fulgide doped PMMA films were studied. We have analyzed the effect of the photochromic concentration, the thickness of the film and the recording intensity on the diffraction efficiency. The highest diffraction efficiency is obtained for the concentration of 5 percent of the fulgide dye in PMMA film with an exposure energy of 10 mw/cm2. For the same sample we have not observed any diffraction beam when the sample was illuminated by an intensity of 3 mw/cm2.

  6. Observation of Amorphous Recording Marks Using Reflection-Mode Near-Field Scanning Optical Microscope Supported by Optical Interference Method

    NASA Astrophysics Data System (ADS)

    Sakai, Masaru; Mononobe, Shuji; Yusu, Keiichiro; Tadokoro, Toshiyasu; Saiki, Toshiharu

    2005-09-01

    A signal enhancing technique for a reflection-mode near-field scanning optical microscope (NSOM) is proposed. Optical interference between the signal light, from an aperture at the tip of a tapered optical fiber, and the reflected light, from a metallic coating around the aperture, enhances the signal intensity. We used a rewritable high-definition digital versatile disc (HD DVD) with dual recording layers as a sample medium, and demonstrated observation of amorphous recording marks on the semitransparent (the first) recording layer. In spite of low optical contrast between the crystal region and the amorphous region on this layer, we successfully observed recording marks with good contrast.

  7. Structural and optical properties of cobalt doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Meihui; Xu, Jianping; Chen, Ximing; Zhang, Xiaosong; Wu, Yanyu; Li, Ping; Niu, Xiping; Luo, Chengyuan; Li, Lan

    2012-10-01

    Zn1-xCoxO nanocrystals with nominal Co doping concentrations of x = 0-0.1 were synthesized through a simple solution route followed by a calcining process. The doping effects on the structural, morphological and optical properties were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman, absorption and luminescence spectroscopy. The results indicated that a small amount of Co ions were incorporated into ZnO lattice structure, whereas the secondary phase of Co3O4 was segregated and precipitated at high Co doping concentrations, the solid solubility of Co ions in ZnO nanocrystals could be lower than 0.05. The spectra related to transitions within the tetrahedral Co2+ ions in the ZnO host crystal were observed in absorption and luminescence spectra.

  8. Growth and optical properties of Nb-doped WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Sasaki, Shogo; Kobayashi, Yu; Liu, Zheng; Suenaga, Kazutomo; Maniwa, Yutaka; Miyauchi, Yuhei; Miyata, Yasumitsu

    2016-07-01

    We report the chemical vapor deposition growth of Nb-doped WS2 monolayers and their characterization. Electron microscopy observations reveal that the Nb atom was substituted at the W site at a rate of approximately 0.5%. Unlike Mo doping, Nb-doped samples have photoluminescence (PL) peaks at 1.4–1.6 eV at room temperature. The peak energies are lower than the optical bandgap of 1.8 eV, and a saturation behavior of PL intensity is observed with the increase in excitation power. These results indicate that the observed PL peaks are assignable to the emission from impurity states generated by the substitution of Nb.

  9. Study of structural and optical properties of Fe doped CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Gupta, Ankita; Kaur, Sarabjeet; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Iron doped Copper oxide nanoparticles were synthesized by the co-precipitation method at different concentration (3%, 6%, 9%) at 300-400° C with Copper Acetate and Ferric Chloride as precursors in presence of Polyethylene Glycol and Sodium Hydroxide as stabilizing agent. Effect of doping on the structural and optical properties is studied. The obtained nanoparticles were characterized by X-Ray Diffraction and UV-Visible Spectroscopy for examining the size and the band gap respectively. The X-Ray Diffraction plots confirmed the monoclinic structure of Copper oxide suggesting the Cu atoms replaced by Fe atoms and no secondary phase was detected. The indirect band gap of Fe doped CuO nanoparticles is 2.4eV and increases to 3.4eV as the concentration of dopant increases. The majority of particle size is in range 8 nm to 35.55 nm investigated by X-ray diffractometer.

  10. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium Trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renuka, N.; Ramesh Babu, R.; Vijayan, N.; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K.

    2015-02-01

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni2+ and Co2+ doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  11. Optical activation of Si nanowires using Er-doped, sol-gel derived silica

    SciTech Connect

    Suh, Kiseok; Shin, Jung H.; Park, Oun-Ho; Bae, Byeong-Soo; Lee, Jung-Chul; Choi, Heon-Jin

    2005-01-31

    Optical activation of Si nanowires (Si-NWs) using sol-gel derived Er-doped silica is investigated. Si-NWs of about 100 nm diameter were grown on Si substrates by the vapor-liquid-solid method using Au catalysts and H{sub 2} diluted SiCl{sub 4}. Afterwards, Er-doped silica sol-gel solution was spin-coated, and annealed at 950 deg. C in flowing N{sub 2}/O{sub 2} environment. Such Er-doped silica/Si-NWs nanocomposite is found to combine the advantages of crystalline Si and silica to simultaneously achieve both high carrier-mediated excitation efficiency and high Er{sup 3+} luminescence efficiency while at the same time providing high areal density of Er{sup 3+} and easy current injection, indicating the possibility of developing sol-gel activated Si-NWs as a material platform for Si-based photonics.

  12. Structural, functional and optical studies on the amino acid doped glycine crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Mahalingam, T.; Ravi, G.

    2012-06-01

    Single crystals of pure and amino acid (L-arginine) doped γ-glycine single crystals have been grown from aqueous solution by employing slow evaporation method. Morphological changes in different crystallographic planes were observed in the L-arginine doped γ-glycine crystals. Incorporation of L-arginine was confirmed qualitatively by FTIR spectroscopy. Powder X-ray diffraction was carried out to confirm γ-glycine and assess the single phase nature of the crystals. The lower cutoff wavelength was decreased by the influence of L-arginine in γ-glycine and this leads to an increase in the band gap. Nonlinear optical study revealed that L-arginine doping increases the SHG efficiency of the glycine crystal.

  13. Anomalous Magneto-Optical Behavior of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Helbers, Andrew; Mitchell, Brandon; Woodward, Nathaniel; Dierolf, Volkmar

    We have observed unusual magneto-optical properties in rare earth doped gallium nitride. Specifically, the reversal of a magnetic field applied parallel to the c-axis produces unexpected, marked differences in luminescence spectra in several of our samples. Notably, relative emission strengths of Zeeman-split lines from the rare earth ions appear to change when the field is reversed. These effects were not observed in rare earth doped lithium niobate and lithium tantalate, which are also hexagonal and polar. Measurements for erbium doped gallium nitride suggest that these asymmetries seem to be linked to the degree of ferromagnetism of the samples. Results are presented showing these differences. The symmetry of the observed effects requires a perturbation of the RE states with a screw like symmetry. We explore whether this may be accomplished by defects such as threading dislocations. The work related to ferroelectric materials was supported by NSF Grant (DMR-1008075).

  14. Thermoluminescence and optically stimulated luminescence in various phases of doped Na2SO4

    NASA Astrophysics Data System (ADS)

    Gaikwad, S. U.; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2016-02-01

    The dependence of optically stimulated luminescence (OSL) and thermoluminescence (TL) response due to crystal phase in Cu and Cu,Mg-doped Na2SO4 was studied. Study shows that the slowly cooled samples which crystallize in phase V show good OSL sensitivity whereas the quenched samples of Na2SO4 which crystallize in phase III irrespective of doping show no OSL sensitivity. However, during storage when phase III samples get converted to phase V, samples show OSL sensitivity comparable to freshly prepared samples in phase V. Hence, it is observed that TL-OSL properties of doped Na2SO4 are phase dependent .This study will be helpful in developing OSL phosphors in which phase plays an important role in deciding the desired properties.

  15. Ageing Characteristics Of Digital Optical Recording (DOR) Media

    NASA Astrophysics Data System (ADS)

    Huijser, A.; Jacobs, B.; Vriens, L.; Markvoort, J.; Spruijt, A.; Vromans, P.

    1983-01-01

    Accelerated ageing tests on discs with Te-alloy films for ablative digital optical recording show that these media meet the requirements for their applications in long-term data storage. In these tests, discs of the air-sandwich type with non-sealed (open) as well as sealed cavities were subjected to cyclic high temperatures (25-65°C) and high humidity (95% RH) conditions. "Open" discs incorporating pure Te as ablative material cannot with-stand such severe conditions for more than a few days whereas "open" discs applying Te-Se based alloys with 60 to 80% Te content have not reached end of life after 100 days storage under the same conditions. After such a period of accelerated ageing, hermetically sealed discs do not show any significant ageing effects at all. Ageing is defined in terms which are relevant to optical recording, such as sensitivity for writing, signal to noise ratio of written data and bit error rates and bit error distribution.

  16. Assessment of Ge-doped optical fibres subjected to x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Ibrahim, S. A.; Che Omar, S. S.; Hashim, S.; Mahdiraji, G. A.; Bradley, D. A.; Kadir, A. B.; Isa, N. M.

    2014-11-01

    We have reported the thermoluminescence (TL) response of five different diameters ~120, 241, 362, 483, and 604 μm of 6 mol percent Ge-doped optical fibres. The perfomance of the Ge-doped optical fibre are compared with commercially available TLD-100 chips (LiF:Mg,Ti) in terms of their sensitivity and minimum detectable dose (MDD). The irradiation was performed using X-ray machine (Model ISO 'Narrow Spectrum Series') provided by the Malaysian Nuclear Agency (MNA) at 60 kV X-ray irradiation in low doses ranging from 1-10 mGy. The results show the linear TL dose response from the fibres up to 10 mGy. The smallest diameter of 120 pm optical fibre shows the highest TL dose response compared to above mentioned fibres. The minimum detectable dose (MDD) is 0.82, 0.20, 0.14, 0.08, and 0.13 mGy for Ge-doped with diameters of 120, 241, 362, 483 and 604 μm. All TL materials show the MDD value within the delivered dose 0.01-1.00 mGy subjected to x-ray irradiation. The Ge-doped fibre with diameter of 483 pm was matched the MDD value of TLD-100 chips that equivalent to 0.08 mGy at the same irradiation. We have observed that among the five different diameters of optical fibre, 120 μm shows the best results and its better response than TLD-100 chips (by a factor of 5). The linear response at low dose levels makes this optical fibre most suitable for medical application.

  17. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  18. Optically stimulated luminescence in doped NaF.

    PubMed

    Gaikwad, S U; Patil, R R; Kulkarni, M S; Bhatt, B C; Moharil, S V

    2016-05-01

    OSL in doped NaF is studied. Study shows that NaF:Mg,Cu,P phosphor possess good OSL properties having sensitivity comparable to that of commercially available Al2O3:C (Landauer Inc.). For the luminescence averaged over 3s the obtained OSL is 37% of that commercial available Al2O3:C. Of the several phosphors investigated, phosphor with impurities concentration Mg(0.01mol%), Cu(0.2mol%), P(1mol%) shows good OSL sensitivity good linearity in the 10mGy to 1Gy dose range and negligible fading. This sample shows a intense single TL peak around 350°C which gets depleted by 14% after the OSL readout. This imply that maximum OSL is coming from deep traps giving stability to the signal. The ease of preparation along with other good OSL properties will make this phosphor suitable for radiation dosimetry applications using OSL. PMID:26926379

  19. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.

    PubMed

    Rezende, Marcos V Dos S; Montes, Paulo J R; Andrade, Adriano B; Macedo, Zelia S; Valerio, Mário E G

    2016-06-29

    This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence - XEOL) from synchrotron radiation. The material was prepared via a proteic sol-gel methodology. The X-ray absorption near edge structures (XANES) at the Ba LIII- and Eu LIII-edges exhibit typical absorption spectra. XEOL spectra recorded in energy ranges, either around the Ba LIII- or Eu LIII-edges, showed important differences concerning the intensity of the Eu(2+) or Eu(3+) emission bands. Nevertheless, the total area under the XEOL spectra increases as the energy of the X-ray photons increases in both ranges (Ba LIII- and Eu LIII-edges). PMID:27306425

  20. Thermo-optical and polarized light studies of MWCNT doped PDLCs

    NASA Astrophysics Data System (ADS)

    Mahajan, Jyoti; Gupta, Sureshchandra J.; Saxena, S.; Swati, K.

    2016-05-01

    Optical properties of liquid crystals (LCs) are very essential in an understanding of the technological applications of the LCs. Polymer Dispersed Liquid Crystals (PDLCs) are prepared by dispersing the liquid crystal droplets in polymer matrix. Experiments to study thermo-optical properties and polarized light studies are considered in the present work. PDLCs used in the present work are composed of poly (methyl methacrylate) and cholestric liquid crystal namely cholesteryl propionate. These are further doped with Multi-walled carbon Nanotubes (MWCNTs). Thermo-optical study reveals that there is decrease in the nematic-isotropic phase transition temperature (Clearing point temperature i.e. CPT) with increase in the concentration of MWCNTs. The effect of polarized light is studied by means of change in polarization which is characteristic of the material properties. The optical constants graphs obtained from ellipsometry provides the possibility of the use of composite material for optical switching systems.

  1. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  2. The optical and electrical properties of W-doping VOx thin film

    NASA Astrophysics Data System (ADS)

    Li, He-qin; He, Xiao-xiong; Shao, Lin-fei

    2010-11-01

    The thin films of W-doped VOx, were synthesized onto glass substrates using reactive DC magnetic co-sputtering deposition technique. The optimum synthetic process was obtained when the gas pressure was 2.0Pa , the ratio of O2/Ar was 1.0:15, the sputtering powers were 120W for vanadium target and 45W for tungsten target during 30minutes, and all W-doped VOx films were annealed in nitrogen atmosphere at 450°C for 2 hours. The structures of films were characterized by X-ray diffraction. The effects of W dopant on the semiconductor to metal phase transition of bare VOx were investigated with measuring the dependence of electrical resistance on temperature and the infrared transmittance spectra. Remarkably strong effects of W doping were observed on VOx films both the optical and electrical properties. The IR transmittance was decreased from 67.46% to 44.86%, while the transition temperature from monoclinic semiconductor to tetragonal metal was decreased from 68°C to 48°C through W-doped. In addition to, the temperature coefficient of resistance was changed from -1.48 %/ °C into -1.71 %/ °C for W-doped VOx film at corresponding transition temperature.

  3. Electrical and Optical Characterization of Cobalt Doped Nanostructured ZnO/p-Si Heterojunctions

    NASA Astrophysics Data System (ADS)

    Kaphle, Amrit; Smith, Echo Adcock; Hari, Parameswar; Crunkleton, Daniel; Johannes, Tyler; Otanicar, Todd; Roberts, Kenneth

    In this study we investigated electrical and optical properties of heterojunctions made of cobalt doped ZnO nanorods and Boron doped silicon (p-Si). ZnO nanorods were grown on a seed layer of Zn sputtered on p-Si using a chemical bath deposition technique. Cobalt percentage in the ZnO were varied from 0-20%. Scanning Electron Microscope (SEM) images indicate that the diameter of ZnO nanorods increased with higher cobalt doping. Room temperature photoluminescence shows an increase in the defect peak at 550 nm with increasing doping. Band gap was measured using UV-VIS spectroscopy. In addition, we also performed current-voltage (I-V), capacitance-voltage(C-V) measurements on ZnO/p-Si samples under both dark and illumination conditions. I-V characteristics show good rectifying behavior under dark and illumination conditions. The saturation current, diode ideality factor, carrier concentrations, built in potential, and barrier height were calculated from I-V and C-V measurements. We will discuss the implications of the band gap, I-V, and C-V measurements with variations in cobalt doping concentrations in ZnO/p-Si heterojunctions.

  4. Studies of structural, optical, dielectric relaxation and ac conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, J.; Kumar, A.

    2016-01-01

    Polypyrrole (PPy) nanofibers doped with alkylbenzenesulfonic acids (ABSA) have been synthesized using interfacial polymerization method. HRTEM studies confirm the formation of PPy nanofibers with average diameter ranging from 13 nm to 25 nm. Broad X-ray diffraction peak in 2 θ range 20-23.46° reveals amorphous structure of PPy nanofibers. The ordering or crystallinity of polymer chains increases, while their interplanar spacing (d) and interchain separation (R) decreases for short alkyl chain ABSA doped PPy nanofibers. FTIR studies reveal that short alkyl chain ABSA doped PPy nanofibers show higher value of "effective conjugation length". PPy nanofibers doped with short alkyl chain ABSA dopant exhibit smaller optical band gap. TGA studies show enhanced thermal stability of short alkyl chain ABSA doped PPy nanofibers. Decrease in dielectric permittivity ε ‧ (ω) with increasing frequency suggests presence of electrode polarization effects. Linear decrease in dielectric loss ε ″ (ω) with increasing frequency suggests dominant effect of dc conductivity process. Low value of non-exponential exponent β (<1) reveals non-Debye relaxation of charge carriers. Scaling of imaginary modulus (M ″) reveals that the charge carriers follow the same relaxation mechanism. Moreover, the charge carriers in PPy nanofibers follow the correlated barrier hopping (CBH) transport mechanism.

  5. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, J.; Chanda, A.; Gupta, S.; Shukla, P.; Chandra, V.

    2016-05-01

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl2 and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane. The absorption band at 857 cm-1 in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.

  6. Optical, electrochemical and thermal properties of Co2+-doped CdS nanoparticles using polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Muruganandam, S.; Anbalagan, G.; Murugadoss, G.

    2015-02-01

    Co2+ (1-5 and 10 %)-doped cadmium sulfide nanoparticles were synthesized by the chemical precipitation method using polyvinyl pyrrolidone (PVP) as a surfactant. The X-ray diffraction results showed that Co ions were successfully incorporated into the CdS lattice and the transmission electron microscopy results revealed that the synthesized particles were aligned as rod-like structures. The absorption spectra of all the prepared samples (undoped and doped) were significantly blue shifted (472-504 nm) from the bulk CdS (512 nm). However, the absorption spectra of the doped samples were red shifted (408-504 nm) with respect to the doping concentrations (1-5 and 10 %). Furthermore, a dramatic blue shift absorption is observed at 472 nm for PVP-capped CdS:Co2+ (4 %) nanoparticles. In the photoluminescence study, two emission peaks were dominated in the green region at 529 and 545 nm corresponding the CdS:Co2+ nanoparticles. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as both octahedral and tetrahedral. The presence of functional groups in the synthesized nanoparticles was identified by Fourier transform infrared spectroscopy. The thermal stability of the Co ions in CdS nanoparticles was studied by TG-DTA. In addition, an electrochemical property of the undoped and doped samples was studied by cyclic voltammetry for electrode applications.

  7. Investigation of the effect of Mg doping for improvements of optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Caglar, Mujdat; Caglar, Yasemin; Ilican, Saliha

    2016-03-01

    Sol-gel spin coating method was used for the deposition of nanostructured undoped and Mg doped ZnO films. The effects of magnesium incorporation on the crystalline structure were investigated by XRD measurements and the structural deterioration was observed in the crystalline quality of the films with respect to increasing in Mg doping. All the samples exhibited a wurtzite structure. From the scanning electron microscopy (SEM) images obtained to investigate the surface morphology it was detected that an increase in Mg doping caused an improvement on the surface roughness and a reduction in the number of voids on the surface. To evaluate the absorption edges of the produced samples depending on the Mg, different methods were used and according to the obtained results, a shifting towards to high energies for the optical band gap was observed in each method. By using the single oscillator model, developed by DiDomenico and Wemple, the refractive index dispersion of the films was analyzed. Eo and Ed values of the 5% Mg doped film were found to be 5.76 eV and 11.80 eV, respectively. Within the scope of electrical properties, from Hall effect measurements, it was determined that all the films exhibited n-type behavior and the carrier concentration increased from 1.49×1016 to 1.20×1017 cm-3 with increasing Mg doping.

  8. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  9. Optical, electrical, thermal properties of cadmium chloride doped PVA - PVP blend

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise

    2015-06-01

    Films of polyvinylalcohol (PVA) - polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl2) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl2). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.

  10. Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend

    SciTech Connect

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise

    2015-06-24

    Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl{sub 2}) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl{sub 2}). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.

  11. pH-indicators doped polysaccharide LbL coatings for hazardous gases optical sensing.

    PubMed

    Mironenko, A Yu; Sergeev, A A; Voznesenskiy, S S; Marinin, D V; Bratskaya, S Yu

    2013-01-30

    Sensitive layer-by-layer (LbL) coatings for optical detection of gaseous NH(3) and HCl were prepared by self-assembly of oppositely charged polysaccharides (chitosan and λ-carrageenan) followed by doping LbLs with pH-sensitive dyes - bromothymol blue (BTB) and Congo red (CR). It has been shown that CR, being an amphoteric dye, diffuses into LbL films regardless of the charge of the outermost polyelectrolyte layer, and the dye loading increases linearly with the LbL film thickness, whereas BTB diffuses into LbL films only when the outermost layer is positively charged, and linearity between dye loading and film thickness holds only up to 8-12 double layers (DLs) deposited. Formation of dye-doped LbL coatings at the surface of K(+)/Na(+) ion-exchanged glass has allowed fabrication of composite optical waveguide (OWG) gas sensor for detection of ammonia and hydrochloric acid vapors. The response time of BTB-doped composite OWG for ammonia detection was below 1s, and the detection limit was below 1 ppm. CR-doped OWG sensors have shown high sensitivity to HCl vapor but slow relaxation time (up to several hours for 12 DL LbL films). PMID:23218366

  12. Broadband optical amplification with water-free hexagonal double-clad Bi doped silica fiber

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Takahashi, M.; Ohara, M.; Kondo, I.; Fujii, Yusuke

    2016-03-01

    1.3 - 1.55 micron optical amplifiers for the long distance up-stream and down-stream networks for a future increase of fiber access networks in telecommunications are attractive. A bismuth-doped silica glass has a potential of the broadband spectrum as lasers and amplifier applications at 1.3 -1.55 micron. The bismuth-doped fiber lasers and amplifiers were discussed by the MOCVD method. In this report optical amplification characteristics at 1.3 - 1.55 micron are presented with the water free hexagonal double-clad bismuth-doped silica fiber (HDC-BDF) made by the vertical axial vapor-phase deposition (VAD) method. The bismuth and aluminum ions were vapor-phase doped into the silicon and germanium oxide. Pumping into the HDC-BDF was performed by using the tilt-polished fiber from the hexagonal surface with the multimode fiber pigtail of the pumping LD. 2 dB amplified gain was obtained with less than -40 dBm CW input signal power at 1310nm.

  13. Optical and electrical properties of TiOPc doped Alq3 thin films

    NASA Astrophysics Data System (ADS)

    Ramar, M.; Suman, C. K.; Tyagi, Priyanka; Srivastava, R.

    2015-06-01

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq3 and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10-5 cm2/Vs. The Cole-Cole plots shows that the TiOPc doped Alq3 thin film can be represented by a single parallel resistance RP and capacitance CP network with a series resistance RS (10 Ω). The value of RP and CP at zero bias was 1587 Ω and 2.568 nF respectively. The resistance RP decreases with applied bias whereas the capacitance CP remains almost constant.

  14. Optical and electrical properties of TiOPc doped Alq{sub 3} thin films

    SciTech Connect

    Ramar, M.; Suman, C. K. Tyagi, Priyanka; Srivastava, R.

    2015-06-24

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq{sub 3} and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10{sup −5} cm{sup 2}/Vs. The Cole-Cole plots shows that the TiOPc doped Alq{sub 3} thin film can be represented by a single parallel resistance R{sub P} and capacitance C{sub P} network with a series resistance R{sub S} (10 Ω). The value of R{sub P} and C{sub P} at zero bias was 1587 Ω and 2.568 nF respectively. The resistance R{sub P} decreases with applied bias whereas the capacitance C{sub P} remains almost constant.

  15. Optical and thermal properties of some indolenine cyanine dyes used as optical recording materials

    NASA Astrophysics Data System (ADS)

    Sun, Shuqing; Chen, Ping; Zheng, Deshui; Okasaki, Tsuneki; Hayami, Masaaki

    1998-08-01

    Compact Disc Recordable (CD-R) and Digital Versatile Disc Recordable (DVD-R) are discs where enormous mounts of digital data can be recorded. The reflection, absorption and transmission rate of laser beam in the layer of CD-R at 780 nm and DVD-R at 650 nm with no reflecting layer were numerically calculated and optical properties of a dye film was measured. The results indicate that it is preferable to use dye as the recording media with n and k value in the range of 2.0 to 2.8 and 0.02 to 0.22, respectively. Thermal properties of these dye materials were analyzed by Differential Scanning Calorie method. The decomposition temperature of dyes were varied from 200 to 300 degree(s)C resulted from different methine length, substitutes and counter anions. The optical recording mechanism of CD-R and DVD-R were also briefly discussed based on the above results.

  16. Hydrothermal synthesis and investigation of optical properties of Nb5+-doped lithium silicate nanostructures

    NASA Astrophysics Data System (ADS)

    Alemi, Abdolali; Khademinia, Shahin; Joo, Sang Woo; Dolatyari, Mahboubeh; Bakhtiari, Akbar; Moradi, Hossein; Saeidi, Sorayya; Esmaeilzadeh, Alireza

    2014-01-01

    The hydrothermal synthesis and optical properties of Nb5+-doped lithium metasilicate and lithium disilicate nanomaterials were investigated. The microstructures and morphologies of the synthesized Li2 -2 x Nb2 x SiO3 + δ and Li2 -2 x Nb2 x Si2O5 + δ nanomaterials were studied by powder X-ray diffraction and scanning electron microscopy techniques, respectively. The synthesized niobium-doped lithium metasilicate and lithium disilicate nanomaterials, respectively, are isostructural with the standard bulk Li2SiO3 (space group Cmc21) and Li2Si2O5 (space group Ccc2) materials. The photoluminescence spectra of the synthesized materials are studied. The measured optical properties show dependence of the dopant amounts in the structure.

  17. Hydrothermal synthesis and investigation of optical properties of Nb5+-doped lithium silicate nanostructures

    NASA Astrophysics Data System (ADS)

    Alemi, Abdolali; Khademinia, Shahin; Joo, Sang Woo; Dolatyari, Mahboubeh; Bakhtiari, Akbar; Moradi, Hossein; Saeidi, Sorayya; Esmaeilzadeh, Alireza

    2014-03-01

    The hydrothermal synthesis and optical properties of Nb5+-doped lithium metasilicate and lithium disilicate nanomaterials were investigated. The microstructures and morphologies of the synthesized Li2-2 x Nb2 x SiO3 + δ and Li2-2 x Nb2 x Si2O5 + δ nanomaterials were studied with powder X-ray diffraction and scanning electron microscopy techniques, respectively. The synthesized niobium-doped lithium metasilicate and lithium disilicate nanomaterials, respectively, are isostructural with the standard bulk Li2SiO3 (space group Cmc21) and Li2Si2O5 (space group Ccc2) materials. Photoluminescence spectra of the synthesized materials are studied. The measured optical properties show dependence on the dopant amounts in the structure.

  18. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    SciTech Connect

    Sushama, D.

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  19. Enzyme-Doped Thin Films and Optical Fiber Sensors for Glutamate

    NASA Astrophysics Data System (ADS)

    Rickus, Jenna L.; Tobin, Allan J.; Zink, Jeffrey I.; Dunn, Bruce S.

    2002-10-01

    Biomolecules encapsulated in porous silicate glass using the sol-gel process form optically transparent materials capable of biorecognition. We are working to design biosensors from these materials for the detection of glutamate, the major excitatory neurotransmitter in the central nervous system. Previously we demonstrated the ability of glutamate dehydrogenase (GDH)-doped sol-gel bulk materials to measure glutamate at varying concentrations. Here we show that GDH can be encapsulated in a thin film while retaining its enzymatic activity. The films are likely to be reaction limited rather than diffusion limited, as the reaction rate at saturating glutamate concentrations varies linearly with enzyme loading. At a given enzyme loading, the film reaction rate increases with increasing glutamate concentration, demonstrating its potential as a glutamate sensor material. In addition we have shown that the enzyme-doped sol-gel glass can be deposited onto the tip of an optical fiber. The fiber is active and responds to the presence of glutamate.

  20. Optical Poling of Phenyl-Silica Hybrid Thin Films Doped with Azo-Dye Chromophore

    NASA Astrophysics Data System (ADS)

    Kitaoka, Kenji; Matsuoka, Nobuaki; Si, Jinhai; Mitsuyu, Tsuneo; Hirao, Kazuyuki

    1999-09-01

    Azo-dye doped phenly group substituted silica films were prepared by a sol-gel method from a solution of triethoxyphenlysilane (TEPh), tetraethoxysilane (TEOS) and 4-[N-ethyl-N-(2-hydroxyethyl)]amino-4‧-nitro-azobenzene (DR1). The films were optically poled by the coherent superposition of 1064 nm and 532 nm beams from a Q-switched Nd:YAG laser. Second-order susceptibility χeff of a DR1 doped phenyl group substituted film induced by the optical poling was approximately four times as large as that of the phenyl-free film. The phenyl group in the silica matrix was found to be effective for increasing the second-order nonlinearity and increasing the thermal stability.

  1. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE PAGESBeta

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; Cao, Yue; Tong, Li -Min; Liu, Wei -Tao; Shen, Yuen -Ron

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse-1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-optical modulationmore » of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  2. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    SciTech Connect

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; Cao, Yue; Tong, Li -Min; Liu, Wei -Tao; Shen, Yuen -Ron

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse-1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-optical modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.

  3. Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. H.; Abbo, M.

    2013-12-01

    In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single - oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L*u*v* color space.

  4. Optical bandgap widening and phase transformation of nitrogen doped cupric oxide

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, Saeid; Radhakrishnan, K.; Kumar, Avishek; Wong, Ten It; Yi, Ren; Dalapati, Goutam Kumar

    2015-12-01

    The structural and optical properties of sputter deposited nitrogen (N) doped CuO (CuO(N)) thin films are systematically investigated. It is found that the incorporation of N into CuO causes an enlargement of optical bandgap and reduction in resistivity of the CuO(N) films. Furthermore, a gradual phase transformation from CuO to Cu2O is observed with the increase in N concentration. The effects of annealing temperature on the structural properties of CuO (N) and its dependence on N concentration are also investigated. It is observed that the phase transformation process from CuO to Cu2O significantly depends on the N concentration and the annealing temperature. Heterojunction solar cells of p-type CuO(N) on n-type silicon (Si) substrate, p-CuO(N)/n-Si, are fabricated to investigate the impact of N doping on its photovoltaic properties.

  5. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  6. Growth and nonlinear optical properties of Zn-doped LiB3O5 crystals

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yue, Yinchao; Mao, Qian; Li, Xiaomao; Hu, Zhanggui

    2015-05-01

    Zn-doped LiB3O5 (LBO) single crystals with high quality were successfully grown from the Li2O-MoO3-ZnF2 ternary system by the top-seeded solution growth method. The suitable region for LBO crystal growth was investigated by growth experiments, as well as viscosity and volatility measurements, which confirmed that the optimal molar ratio of Li2O:MoO3:ZnF2 was 1:1.5:0.2. The second-harmonic generation efficiency of Zn-doped LBO crystal increased by 16% compared with that of the LBO crystals grown from the MoO3 flux. The optical homogeneity was at 10-6 cm-1. Optical absorption at the critical wavelengths of 1064 nm was measured to be 15 and 18 ppm cm-1, respectively.

  7. High-bandwidth organic dye-doped polymer optical fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsuyoshi; Fujii, Kazuhito; Teramoto, Shigehiro; Tagaya, Akihiro; Nihei, Eisuke; Kinoshita, Takeshi; Koike, Yasuhiro; Sasaki, Keisuke

    1993-11-01

    An organic dye (Rhodamine B) doped polymer optical fiber amplifier (POFA) of the graded- index (GI) type was successfully prepared for the first time. The GI-POFA of only 500 mm in length gave 27 dB in gain at 591 nm of signal wavelength. Additionally, absorption cross section and emission cross section of Rhodamine B in PMMA matrix were estimated, which were required to analyze amplification mechanism in the POFA.

  8. Optical properties of rare-earth-metal-chelate-doped PMMA and DNA-CTMA films

    NASA Astrophysics Data System (ADS)

    Wada, Masahiro; Ishihara, Koki; Kagami, Yoshiharu; Horinouchi, Suguru; Ogata, Naoya

    2004-06-01

    We observed optical properties from several kinds of Eu-chelates doped DNA-CTMA and PMMA films. The lifetime in DNA-CTMA was longer than in PMMA, and the quantum yield in DNA-CTMA was also higher than in PMMA. Among them, we calculated each cross section because we compared laser properties of Eu-chelates by interacting DNA-CTMA with PMMA. We will discuss the lasing capability by interacting DNA-CTMA.

  9. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  10. Achievements in scientific photography. Volume 28 - The optical image and recording media

    NASA Astrophysics Data System (ADS)

    Chibisov, K. V.

    Papers are presented on such topics as the properties of optical data recording systems, image quality, image processing, and recording media. Particular consideration is given to mathematical models for the formation of optical images; trends in the development of quality criteria for photographic systems; hybrid optoelectronic systems of image processing; and photothermoplastic recording media.

  11. Rare-earth doped fibre optic devices and asymmetric fibre couplers

    NASA Astrophysics Data System (ADS)

    Sanaei, Farin

    The objective of the work reported in this thesis was to improve the quality and range of rare-earth doped fibre optic devices and asymmetric fibre couplers which can be fabricated for all-optical systems. This objective has been realised by improvements to the existing fibre fabrication processes and fused tapered coupler machine and by the generation of new fabrication techniques. An improved Flash-Condensation technique for the deposition of multi-layer highly-doped cladding fibre has been developed and tested. As a result a highly Yb-doped cladding fibre has been fabricated and characterised. It has been shown that up to 7wt% phosphorous pentoxide together with up to 1.4wt% lanthanide oxide can be doped into a multi-layer cladding fibre successfully. As far as it is known, no previous work on doping a thick cladding with Yb 3+ ions has been reported. We have shown experimentally that a 94% efficient superfluorescent fibre source in the 950-1150nm range using a highly doped cladding fibre can be designed and fabricated. This is the highest superfluorescent efficiency ever reported in the literature. By taking advantage of the superfluorescence of a large Yb-cladding doped fibre, we have demonstrated a singlemode fibre laser with a linewidth of 0.3nm and a slope efficiency of 79%. This means that by using a high pump power we can achieve many watts of laser power in the fibre very easily. Again, this is the highest slope efficiency ever reported. For the purpose of making application specific couplers, we have designed and improved the equipment control system for the fabrication of fused tapered fibre devices, and have developed various procedures for making better couplers. We have also successfully fabricated and analysed asymmetric fused fibre couplers, with the highest reported asymmetric coupling of 24:1. Using eight of these low loss asymmetric couplers, a prototype passive all-optical fibre data bus was constructed and analysed. Such data buses are very

  12. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  13. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  14. Spectroscopic Characterization of Thulium doped Potassium Lead Chloride for Potential Applications in Optical Cooling

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Brown, Herbert; Hommerich, Uwe; Bluiett, Althea; Trivedi, Sudhir

    2013-03-01

    Rare-earth doped solids have experienced increased attention for possible applications in anti-Stokes fluorescence cooling. Solid-state optical refrigeration offer several advantages over current bulky mechanical coolers including compact, lightweight, and vibration free. Most efforts have focused on optical cooling in Yb3+ doped solids and cooling down to ~155 K has been demonstrated. In this work, the optical properties of Tm3+ doped KPC were evaluated as a potential solid-state material for laser cooling applications. Following 1907 nm excitation, Tm:KPC exhibited infrared emission with a center wavelength of 1806 nm arising from the 3F4 --> 3H6 transition of Tm3+ ions. Under 1907nm pumping conditions, it was estimated that a quantum emission efficiency of at least 95% is required to achieve a net cooling effect in Tm:KPC. Based on temperature dependent decay time studies the emission quantum efficiency of Tm:KPC was estimated to be only ~75%. Employing the energy-gap law, non-radiative decay through multi-phonon relaxation is predicted to be negligibly small in Tm:KPC. Concentration quenching effects and/or energy transfer processes to other defects seems most likely to be responsible for the low quantum efficiency.

  15. Structural, optical properties and VCNR mechanisms in vacuum evaporated iodine doped ZnSe thin films

    NASA Astrophysics Data System (ADS)

    Venkatachalam, S.; Mangalaraj, D.; Narayandass, Sa. K.

    2007-03-01

    Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10 -5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I- V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI 0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10 -3 lin -2 m -4 and 9.55 × 10 14 lin/m 2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I- V characteristics and switching phenomena.

  16. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  17. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  18. Electrical and optical properties of Ti doped ZnO films grown on glass substrate by atomic layer deposition

    SciTech Connect

    Wan, Zhixin; Kwack, Won-Sub; Lee, Woo-Jae; Jang, Seung-II; Kim, Hye-Ri; Kim, Jin-Woong; Jung, Kang-Won; Min, Won-Ja; Yu, Kyu-Sang; Park, Sung-Hun; Yun, Eun-Young; Kim, Jin-Hyock; Kwon, Se-Hun

    2014-09-15

    Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electron microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.

  19. Diffractive optical element embedded in silver-doped nanocomposite glass.

    PubMed

    Fleming, Lauren A H; Wackerow, Stefan; Hourd, Andrew C; Gillespie, W Allan; Seifert, Gerhard; Abdolvand, Amin

    2012-09-24

    A diffractive optical element is fabricated with relative ease in a glass containing spherical silver nanoparticles 30 to 40 nm in diameter and embedded in a surface layer of thickness ~10 μm. The nanocomposite was sandwiched between a mesh metallic electrode with a lattice constant 2 μm, facing the nanoparticle containing layer and acting as an anode, and a flat metal electrode as cathode. Applying moderate direct current electric potentials of 0.4 kV and 0.6 kV at an elevated temperature of 200 °C for 30 minutes across the nanocomposites led to the formation of a periodic array of embedded structures of metallic nanoparticles. The current-time dynamics of the structuring processes, optical analyses of the structured nanocomposites and diffraction pattern of one such fabricated element are presented. PMID:23037407

  20. Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Malyarevich, A. M.; Denisov, I. A.; Yumashev, K. V.; Dymshits, O. S.; Zhilin, A. A.

    2002-08-01

    Linear and nonlinear optical properties of cobalt-doped magnesium aluminosilicate transparent glass ceramics that were prepared under different conditions have been studied. It has been shown that absorption and luminescence spectra and absorption bleaching of these glass ceramics are defined mainly by tetrahedrally coordinated Co 2+ ions located in magnesium aluminum spinel nanocrystals. The lifetimes of the 4 T 1 ( 4 F) and 4 T 2 ( 4 F) excited states of the tetrahedral Co 2+ ions were found to be in the ranges 2540 and 120450 ns, respectively, depending on the Co concentration. 2002 Optical Society of America

  1. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  2. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  3. Structural and optical properties of melt quenched barium doped bismuth vanadate

    NASA Astrophysics Data System (ADS)

    Gupta, Sakshi; Singh, K.

    2013-12-01

    Bi4BaxV2-xO11-δ (0.0 ≤ x ≤ 0.15) is synthesized by melt quench technique followed by sintering. The structural and optical properties of these samples are investigated using X-ray diffraction, Fourier transform infra-red (FTIR) spectroscopy and UV/vis spectroscopy. The γ-phase stabilization occurs at lower dopant concentration than as reported earlier for similar systems. The optical band gap is observed in the range of 1.5-2.0 eV. It shows decreasing trend with increasing dopant amount. FTIR bands become broader with respect to Ba2+ doping concentration.

  4. First-principles study on electronic structure and optical properties of Cu-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Yan, Huiyu; Guo, Yanrui; Song, Qinggong; Chen, Yifei

    2014-02-01

    The electronic and optical properties of the Cu-doped and intrinsic β-Ga2O3 are studied by using the first-principles calculation method. Results show that Cu-doped β-Ga2O3 can be fabricated in experiments. Two acceptor impurity levels are introduced near the top of the valence band by Cu dopant, indicating that Cu-doped gallium oxide is a promising p-type semiconductor. Cu-doped β-Ga2O3 can be used as intermediate band semiconductor in solar cell. Cu dopant induced 100% spin polarization near the Fermi level. The analysis results of optical properties reveal that Cu-doped β-Ga2O3 is a promising potential candidate for p-type ultraviolet (UV) transparent semiconductor.

  5. Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping

    NASA Astrophysics Data System (ADS)

    Singh, Budhendra; Shkir, Mohd.; AlFaify, S.; Kaushal, Ajay; Nasani, Narendar; Bdikin, Igor; Shoukry, H.; Yahia, I. S.; Algarni, H.

    2016-09-01

    Sulfamic acid is a potential material that exhibits excellent optical properties. A good quality, pure and dysprosium (Dy3+) doped (2.5 and 5 mol %) Sulfamic acid (SA) single crystals were grown successfully by slow cooling method. Structural study revealed a slight change in its lattice parameters and volume, suggesting the successful incorporation of Dy3+ in crystal system. The existence of dysprosium in the system was also confirmed. Presence of various vibrational modes was confirmed. Optical transparency was found to have a significant effect with variation in the doping concentration. Furthermore, a marked enhancement in its mechanical parameters with doping was also identified by nanoindentation technique. Etching study was also performed on the grown crystals to study the etch-pit formation and growth mechanism. Effect of doping on the thermal stability was analysed. All the results were compared and discussed in detail to get insight of the effect of doping concentration on Sulfamic acid crystal.

  6. Optical patterning of trapped charge in nitrogen-doped diamond.

    PubMed

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B; Albu, Remus; Doherty, Marcus W; Meriles, Carlos A

    2016-01-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories. PMID:27573190

  7. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos

    The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  8. Physiological parameter monitoring from optical recordings with a mobile phone.

    PubMed

    Scully, Christopher G; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M; Granquist-Fraser, Domhnull; Mendelson, Yitzhak; Chon, Ki H

    2012-02-01

    We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676

  9. A novel optical fibre doped with the nano-material as InP

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lee, Ly Guat; Zhang, Ru

    2007-11-01

    As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.

  10. Optical and Magneto-Optical Studies of Doped III -v Quantum Well Structures.

    NASA Astrophysics Data System (ADS)

    Fisher, Tracey Ann

    1992-01-01

    The main theme of this thesis is the optical study of strained semiconductor structures. This includes using photo-luminescence (PL) and photo-luminescence excitation (PLE), both with and without a magnetic field. The principal structures employed are a series of asymmetric modulation doped rm Al_{x}Ga_ {1-x}As-rm In_{y }Ga_{1-y}As-GaAs quantum wells (AMDQWs) in which a high density of electrons occupies up to two subbands (n = 1,2) in the strained In _{rm y}{Ga}_ {rm 1-y}As quantum well. Several interesting phenomena due principally to the high-electron density, are discussed (supported by self-consistent calculations). The first experimental evidence is reported for the indirect fundamental bandgap (in wave-vector space), developed when a magnetic field is applied parallel to the plane of the layers. The PL undergoes a large approximately quadratic shift. This is a consequence of the allowed transitions in an increasingly indirect gap band structure. Of particular interest is the Fermi Energy Edge Singularity (FEES) observed in AMDQWs with significant occupation of the second subband (n = 2). The FEES is a many body effect observed in PL and PLE as an excitonic enhancement near the Fermi energy (E_{rm F}). From the characteristic temperature dependent broadening and decrease of PLE peak height in a Schottky gated AMDQW, a minimum electron density in n = 2 of 0.4 x 10 ^{11} cm^{ -2} is established for the clear observation of FEES behaviour. In samples where E_ {rm F} is close to the subband separation E_2-E_1 magneto -oscillations in the PL intensity of E_2 , are observed; E_{21} is attributed to hybridisation of n = 1 electrons near E_{rm F}, with n = 2 states. It is shown that the E_{21 } oscillations can be accounted for in terms of oscillations in the occupation of n = 1 Landau level states near E_2. Other phenomena discussed include Resonant Polaron Coupling between occupied LLs and LO phonons. PL results are presented for a Double Barrier Resonant

  11. Optical and electronic properties of SO2 molecule adsorbed on Si-doped (8, 0) boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Shuang; Wei, Xiu-Mei; Zhang, Jian-Min; Zhu, Gang-Qiang; Guo, Wan-Jin

    2016-09-01

    The study of the optical properties of pristine BNNT, Si-doped BNNTs and SO2 molecule adsorption on Si-doped BNNTs is that, to our knowledge, few relevant research have ever been found. In this paper, the adsorption behaviors of Sulfur dioxide (SO2) molecule on Si-doped Boron nitride nanotubes (BNNTs) are investigated applying the first-principles calculations. The main contribution of this paper is that the foremost investigation for the optical properties of the pristine BNNT, Si-doped BNNTs and SO2 adsorption on Si-doped BNNTs. Additionally, the electronic properties and the structural properties are also presented. In our calculations of optical properties, the dielectric constant, the refractive index and the absorption coefficient are obtained. Comparing the pristine BNNT, our results indicate that, the blue-shifts (in the main peaks of the dielectric constant of SiB -BNNT and SO2-SiB -BNNT), and the red-shifts (in the main peaks of the refractive index of SiN -BNNT and SO2-SiN -BNNT) are appeared. Under these conditions, Si-doped BNNT and Si-doped BNNT with SO2 adsorption, the gaps are reduced both for the speculated optical band gaps and the electronic structure band gaps.

  12. Copper-Doped Inverted Core/Shell Nanocrystals with “Permanent” Optically Active Holes

    SciTech Connect

    Viswanatha, Ranjani; Brovelli, Sergio; Pandey, Anshu; Crooker, Scott A.; Klimov, Victor I.

    2011-09-23

    We have developed a new class of colloidal nanocrystals composed of Cu-doped ZnSe cores overcoated with CdSe shells. Via spectroscopic and magneto-optical studies, we conclusively demonstrate that Cu impurities represent paramagnetic +2 species and serve as a source of permanent optically active holes. This implies that the Fermi level is located below the Cu{sup 2+}/Cu{sup 1+} state, that is, in the lower half of the forbidden gap, which is a signature of a p-doped material. It further suggests that the activation of optical emission due to the Cu level requires injection of only an electron without a need for a valence-band hole. This peculiar electron-only emission mechanism is confirmed by experiments in which the titration of the nanocrystals with hole-withdrawing molecules leads to enhancement of Cu-related photoluminescence while simultaneously suppressing the intrinsic, band-edge exciton emission. In addition to containing permanent optically active holes, these newly developed materials show unprecedented emission tunability from near-infrared (1.2 eV) to the blue (3.1 eV) and reduced losses from reabsorption due to a large Stokes shift (up to 0.7 eV). These properties make them very attractive for applications in light-emission and lasing technologies and especially for the realization of novel device concepts such as “zero-threshold” optical gain.

  13. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  14. Anions (N,S) mono-doping and co-doping influences on electronic structures and optical properties of InNbO4

    NASA Astrophysics Data System (ADS)

    Shi, Haifeng; Zhou, Changping; Zhang, Chengliang; Ye, Enjia

    2016-04-01

    In this paper, the electronic structures and optical properties of N-doped, S-doped and N/S-codoped InNbO4 were systematically investigated by first-principles calculations based on density functional theory (DFT). As for N-doped InNbO4, the acceptor N-2p states would introduce on the upper edge of the valence band (O-2p). While S-3p states would mix with O-2p states when O atom was replaced by S atom in InNbO4. As for N/S-codoped InNbO4, N-2p states mixed with S-3p states above the valence band, resulting in the energy bandgap further narrower in contrast to those of the individual N(S)-doped InNbO4. The optical absorption edge of N/S-codoped InNbO4 displayed an obvious redshift and was successfully extended to visible light region due to the synergistic effect of N/S co-doping. This research proposed that N/S co-doping was a promising method to improve the photocatalytic properties of InNbO4.

  15. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    SciTech Connect

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.; Moura, Ana P. de; Freire, Poliana G.; Silva, Luis F. da; Longo, Elson; Munoz, Rodrigo A.A.; Lima, Renata C.

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  16. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  17. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  18. The structural, electrical, and optical properties of hydrogenated chromium-doped CdO films

    SciTech Connect

    Dakhel, A.A.; Hamad, H.

    2013-12-15

    Cadmium oxide thin films doped with different amounts of chromium and annealed in hydrogen atmosphere have been grown on glass substrates by means of physical vapour deposition (PVD) method. The structural, electrical, and optical properties of the prepared Cr-doped CdO (CdO:Cr–H) films were systematically studied. The structural investigations show that the incorporated Cr ions mainly occupied locations in interstitial positions of CdO lattice. The bandgap engineer by Cr incorporation and hydrogenation were studied. The variations of the electrical parameters of CdO:Cr–H films with Cr incorporation and hydrogenation were investigated. It was established that among the investigated samples, the largest mobility and conductivity were measured with 1.5%:Cr–H film. Therefore, hydrogenated CdO:Cr films can be effectively used in different applications of near infrared-transparent-conducting-oxide (NIR-TCO). - Graphical abstract: Optoelectronic properties of synthesised chromium-doped CdO thin films. It was established that the largest mobility (53.4 cm{sup 2}/V.s) and conductivity (2136.8 S/cm) were measured in 1.5%:Cr–H doped CdO film. Therefore, such films can be effectively used in near infrared-transparent-conducting-oxide (NIR-TCO). - Highlights: • The properties of CdO films annealed in H{sub 2} gas were systematically studied. • Cr{sup 3+} ions most likely occupied interstitial locations in CdO lattice and as donors. • Improvement of conductivity parameters with Cr doping and H annealing. • Bandgap narrowing observed with Cd-doping.

  19. Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films

    SciTech Connect

    Prajapati, C.S.; Kushwaha, Ajay; Sahay, P.P.

    2013-07-15

    Graphical abstract: All the films are found to be polycrystalline ZnO possessing hexagonal wurtzite structure. The intensities of all the peaks are diminished strongly in the Fe-doped films, indicating their lower crystallinity as compared to the undoped ZnO film. The average crystallite size decreases from 35.21 nm (undoped sample) to 15.43 nm (1 at% Fe-doped sample). - Highlights: • Fe-doped ZnO films show smaller crystallinity with crystallite size: 15–26 nm. • Optical band gap in ZnO films decreases on Fe doping. • Fe-doped films exhibit the normal dispersion for the wavelength range 450–600 nm. • PL spectra of the Fe-doped films show quenching of the broad green-orange emission. • Acetone response of the Fe-doped films increases considerably at 300 °C. - Abstract: The ZnO thin films (undoped and Fe-doped) deposited by chemical spray pyrolysis technique have been analyzed by X-ray powder diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results show that all the films possess hexagonal wurtzite structure of zinc oxide having crystallite sizes in the range 15–36 nm. On 1 at% Fe doping, the surface roughness of the film increases which favors the adsorption of atmospheric oxygen on the film surface and thereby increase in the gas response. Optical studies reveal that the band gap decreases due to creation of some defect energy states below the conduction band edge, arising out of the lattice disorder in the doped films. The refractive index of the films decreases on Fe doping and follows the Cauchy relation of normal dispersion. Among all the films examined, the 1 at% Fe-doped film exhibits the maximum response (∼72%) at 300 °C for 100 ppm concentration of acetone in air.

  20. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  1. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  2. The effects of doping layer location on the electronic and optical properties of GaN step quantum well

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, Hassen

    2016-09-01

    In the present work, the intersubband transition and the optical absorption coefficient between the ground and the first excited states in the Si-δ-doped step AlGaN/GaN quantum well were theoretically studied by solving Schrödinger-Poisson equations self-consistently within the framework of effective mass approximation. The delta-doped layer was inserted in three different locations (middle of the quantum well, middle of the step quantum well and middle of the left barrier). The obtained results show that the energy difference between the ground and the first excited state and the optical absorption depend not only on the doping layer concentration but also on its location. The shape of the confining potential and the wavefunctions were also changed depending on the doped layer location. It was found that doping in the middle quantum well is advantageous to obtain an optical absorption with a higher energy separation; however, doping in the left barrier gives us an optical absorption with a lower energy separation. The obtained results in optical absorption give us a new degree of freedom in optoelectronic devices based on intersubband transitions.

  3. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  4. Optical CO2 sensing with ionic liquid doped electrospun nanofibers.

    PubMed

    Aydogdu, Sibel; Ertekin, Kadriye; Suslu, Aslihan; Ozdemir, Mehtap; Celik, Erdal; Cocen, Umit

    2011-03-01

    The first use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based optical CO(2) sensors is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric materials. Sensing slides were fabricated by electrospinning technique. A fiber-optic bundle was used for the gas detection. CO(2) sensors based on the change in the fluorescence signal intensity of ion pair form of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The sensor slides showed high sensitivities due to the high surface area-to-volume ratio of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect CO(2) are 24 to 120 fold higher than those of the thin film based sensors. The response times of the sensing reagents were short and the signal changes were fully reversible. The stability of ion pair form of HPTS in the employed matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 7 months. Our stability tests are still in progress. PMID:20945079

  5. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  6. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. PMID:24326260

  7. Plasma synthesis of rare earth doped integrated optical waveguides

    SciTech Connect

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G.; Ivanov, I.C.

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  8. Electronic and optical properties of fluorine-doped tin oxide films

    NASA Astrophysics Data System (ADS)

    Rakhshani, A. E.; Makdisi, Y.; Ramazaniyan, H. A.

    1998-01-01

    Thin films of fluorine-doped SnO2 have been prepared by deposition on borosilicate glass using the spray-pyrolysis technique. The effect of doping on the concentration and mobility of the charge carriers (electrons) as well as the resistivity of the films has been studied. The undoped films had a resistivity of a few m Ω cm; this could be reduced by a factor of 10 by doping. The electron mobility in undoped films was about 3 cm2/Vs but could be improved by a factor of 5 to 6 by doping. The doping yield was about 2.3%. The high quality films which were deposited for photovoltaic applications had a sheet resistance of R□=2 Ω/sq and an average transmittance, in the visible region, of T=85% for a thickness of 1.1 μm. Their figure of merit is one of the highest values reported: φ=T10/R□≈0.1 S. The optical dispersion of our films can be explained perfectly by classical models. In the wavelength region of λ<0.580 μm, the refractive index, N, for undoped and doped films can be given by N=[1+λ2/(0.370λ2-0.0105)]1/2, where λ is in μm. From the study of dispersion and the plasma resonance frequency, the numerical values at optical frequencies of the dielectric constant, electron mobility, and electron effective mass were determined as 3.70, 9.3-11.8 cm2/Vs, and (0.26-0.45)m0, respectively, where m0 is the mass of free electrons. From the variation of direct and indirect optical transition energies with the carrier concentration, the density-of-states effective masses for electrons and holes were obtained as 0.85m0 and 0.78m0, respectively. These studies revealed a direct energy bandgap of 4.11 eV for SnO2 in addition to a defect band situated 0.45 eV above the valence band edge.

  9. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  10. Stable hole doping of graphene for low electrical resistance and high optical transparency.

    PubMed

    Tongay, S; Berke, K; Lemaitre, M; Nasrollahi, Z; Tanner, D B; Hebard, A F; Appleton, B R

    2011-10-21

    We report on the p doping of graphene with the polymer TFSA ((CF(3)SO(2))(2)NH). Modification of graphene with TFSA decreases the graphene sheet resistance by 70%. Through such modification, we report sheet resistance values as low as 129 Ω, thus attaining values comparable to those of indium-tin oxide (ITO), while displaying superior environmental stability and preserving electrical properties over extended time scales. Electrical transport measurements reveal that, after doping, the carrier density of holes increases, consistent with the acceptor nature of TFSA, and the mobility decreases due to enhanced short-range scattering. The Drude formula predicts that competition between these two effects yields an overall increase in conductivity. We confirm changes in the carrier density and Fermi level of graphene through changes in the Raman G and 2D peak positions. Doped graphene samples display high transmittance in the visible and near-infrared spectrum, preserving graphene's optical properties without any significant reduction in transparency, and are therefore superior to ITO films in the near infrared. The presented results allow integration of doped graphene sheets into optoelectronics, solar cells, and thermoelectric solar cells as well as engineering of the electrical characteristics of various devices by tuning the Fermi level of graphene. PMID:21934196

  11. Optical electron spin pumping in n-doped quantum wells.

    PubMed

    Ungier, W; Buczko, R

    2009-01-28

    A theoretical model for optical spin pumping of electrons in a quantum well with low intrinsic electron density is presented. A system of electrons under continuous-wave illumination by circularly polarized light tuned to the electron-trion resonance is considered. The simultaneous off-resonant creation of excitons is also taken into account. The spin flip of trions and their radiative decay as the basic processes which allow the electronic spin pumping, as well as other processes, such as the formation of trions from excitons and electrons, are accounted for in the appropriate kinetic equations. The results obtained for CdTe and GaAs quantum wells indicate that significant electron spin polarization can be achieved in a time range of a few nanoseconds. PMID:21715824

  12. Optical and electrical properties of undoped and doped Ge nanocrystals

    PubMed Central

    2012-01-01

    Size-dependent photoluminescence characteristics from Ge nanocrystals embedded in different oxide matrices have been studied to demonstrate the light emission in the visible wavelength from quantum-confined charge carriers. On the other hand, the energy transfer mechanism between Er ions and Ge nanocrystals has been exploited to exhibit the emission in the optical fiber communication wavelength range. A broad visible electroluminescence, attributed to electron hole recombination of injected carriers in Ge nanocrystals, has been achieved. Nonvolatile flash-memory devices using Ge nanocrystal floating gates with different tunneling oxides including SiO2, Al2O3, HfO2, and variable oxide thickness [VARIOT] tunnel barrier have been fabricated. An improved charge storage characteristic with enhanced retention time has been achieved for the devices using VARIOT oxide floating gate. PMID:22348653

  13. Optical Ceramics Based on Yttrium Oxide Doped with Tetravalent Ions

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Solomonov, V. I.; Shitov, V. A.; Maksimov, R. N.; Orlov, A. N.; Murzakaev, A. M.

    2015-05-01

    Optical ceramics activated by neodymium or ytterbium and based on Y2O3 with inclusions of CeO2 , ZrO2 , and HfO2 containing optical inhomogeneities in the form of an orange peel are investigated. It is indicated that in the ceramics with such inclusions not only the crystallite size and porosity, but also the transmission near the edge of the fundamental absorption band decrease, and the theoretically predicted transparency is not achieved (even in the infrared range). It is reported that in the ceramics containing Hf 4+ and Zr4+ , Hf 3+ and Zr3+ , additionally depopulating the 4 F 3/2 upper laser level of the Nd3+ ion activator, are also present. The dependences of the Nd:Y2O3 crystal lattice parameter on the Hf 4+ or Nd3+ content in it, constructed based on the results of x-ray diffraction analysis, are linear, that is, no peculiarities are observed for solid solutions of these compounds. Energy dispersion analysis with a resolution of about 1 μm also indicates the uniformity of the distribution of the chemical elements throughout the sample. At the same time, estimates based on the Rayleigh light scattering in the ceramics indicate that one of the additional phases must have sizes smaller than λ/20 = 20 nm. By the method of high-resolution transmission electron microscopy, particles with composition modulated on the nanolevel are detected in the 90(Nd0.01Y0.99)2O3 + 10HfO2 nanopowder from which the ceramics are synthesized given that the lattice period remains unchanged.

  14. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  15. Effect of ferromagnetic dopants on laser induced optical parameters of bismuth doped CaS phosphors

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Jeon, H. C.; Kang, T. W.; Devraj; Sekhon, Jaskanwal; Verma, N. K.; Bhatti, H. S.; Choubey, Ravi Kant

    2015-12-01

    The effect of ferromagnetic impurities (Fe, Co, and Ni) on the laser induced optical parameters of CaS:Bi phosphors has been studied. The studies were done for the Bismuth concentration of 0.4% in CaS phosphors due to the highest value of oscillator strength as reported earlier. The studies were conducted using nitrogen laser as a excitation source in a pulse excitation mode at room temperature. Appreciable changes in the optical properties have been detected after the addition of ferromagnetic impurities in the CaS phosphor doped with bismuth. The nature of the multiple exponential decays remains the same even after the addition of ferromagnetic impurities in the present case of bismuth-doped phosphors which is in agreement with the earlier work reported on other dopants in sulfide type phosphors. As ferromagnetic impurities enhanced the optical parameters of CaS phosphors appreciably, these studies shows that they can be used to control the transition probability and the corresponding optical parameters.

  16. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  17. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  18. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  19. Write-once recording for multilayered optical waveguide-type holographic cards

    NASA Astrophysics Data System (ADS)

    Mitasaki, Tokinobu; Senda, Masakatsu

    2006-03-01

    We propose a write-once recording technique for multilayered optical waveguide-type holographic cards. The card medium has a construction created by adding a recording layer and a holographic grating layer to the multilayered optical waveguide composed of core and cladding layers. Individual data for each medium were recorded as an arrangement of optically transparent holes formed in the recording layer. Holograms common to all media were designed in the holographic grating layer so that diffracted lights from the holograms could pass through the holes and focus on an image sensor. We succeeded in write-once recording with a memory capacity potential of more than 128 bits.

  20. Continuous tuning of W-doped VO{sub 2} optical properties for terahertz analog applications

    SciTech Connect

    Karaoglan-Bebek, G.; Hoque, M. N. F.; Fan, Z.; Bernussi, A. A.; Holtz, M.

    2014-11-17

    Vanadium dioxide (VO{sub 2}), with its characteristic metal-insulator phase transition, is a prospective active candidate to realize tunable optical devices operating at terahertz (THz) frequencies. However, the abrupt phase transition restricts its practical use in analog-like continuous applications. Incorporation of tungsten is a feasible approach to alter the phase transition properties of thin VO{sub 2} films. We show that amplitude THz modulation depth of ∼65%, characteristic phase transition temperature of ∼40 °C, and tuning range larger than 35 °C can be achieved with W-doped VO{sub 2} films grown on sapphire substrates. W-doped VO{sub 2} films can also be used to suppress Fabry-Perot resonances at THz frequencies but at temperatures much lower than that observed for undoped VO{sub 2} films. The gradual phase transition temperature window allows for precise control of the W-doped VO{sub 2} optical properties for future analog based THz devices.

  1. Electron paramagnetic resonance and optical spectroscopy of Er-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Guillot-Noël, O.; Binet, L.; Aschehoug, P.; Le Du, Y.; Beaudoux, F.; Goldner, P.

    2008-08-01

    Conducting β-Ga2O3 single crystals doped with Er3+ were grown using the floating zone method. Electron paramagnetic resonance (EPR) showed that conduction electrons can coexist with the Er3+ dopant. Optical and EPR characterizations of samples nominally doped with 0.5% and 1.5% were performed at low temperature showing that erbium substitution into β-Ga2O3 can only be achieved effectively at the lower concentration because of the appearance of an erbium gallium garnet phase when the erbium concentration is increased. Despite the existence of two cationic sites in β-Ga2O3, EPR measurements demonstrate that Er incorporation occurs at a single crystallographic position. Optical spectroscopy of 0.5% doped samples of the 1.5μm transition allowed us to determine some crystal field levels of the I15/24 and I13/24 multiplets. A lifetime of about 12ms was found for the 1.5μm emission, indicating a high quantum yield for the I13/24 multiplet.

  2. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  3. Magneto-Optical Studies of Rare Earth Doped III-V Nitrides

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Woodward, Nathaniel; Poplawsky, Jonathan; Dierolf, Volkmar; Jiang, H. X.

    2012-02-01

    We investigated the site selective optical and magneto-optical properties of Neodymium doped Gallium and Aluminum Nitride and Erbium doped Gallium Nitride. For our current study, we applied magnetic fields parallel and antiparallel to the C-axis of the crystals and observed the resulting Zeeman splitting both in excitation and emission transitions. On the basis of these measurements, we determined the effective g-factors of all the states involved in the Nd^3+ transitions. For erbium doping, we observed the Zeeman splitting of the ^4I13/2 and ^4I15/2 levels. Due to small crystal field splitting and large Zeeman splitting, the assignment of levels and corresponding g-factors is very complex. In addition, we observed unexpected asymmetries in the emission intensities when we compared the spectra obtained for fields parallel and antiparallel to the growth direction. The degree of this asymmetry depends on the substrate material and is unambiguously related to the strain and resulting internal fields that are induced by lattice mismatch. The asymmetry behavior parallels the ferromagnetic behavior that is induced by the rare earth ions in GaN and hence our observation suggests that magnetization can be controlled by strain.

  4. Linear and nonlinear optical properties of Mn doped benzimidazole thin films

    NASA Astrophysics Data System (ADS)

    Praveen, P. A.; Babu, R. Ramesh; Prabhakaran, S. P.; Ramamurthi, K.

    2014-04-01

    In the present work, the Mn doped benzimidazole (BMZ) thin films were prepared by simple chemical bath deposition technique. The material was directly deposited as thin film on glass substrates and the metal concentration in the solution was varied in weight percentage in order to investigate the dopant effect on the properties of thin films. Similarly, the Mn doped BMZ films were deposited in different solution temperature to study the effect of deposition temperature on the properties of thin films. The PXRD and FT-IR spectroscopy are used to study the structural and the presence of functional groups in the BMZ medium. Depending upon the solution temperature, thickness of the films varying from 0.6 to 1.2 μm and the optical transparency of the samples increases with the increasing temperature up to 50 °C. Second Harmonic Generation (SHG) efficiency of the films is measured for all the films. Third order nonlinear optical properties of the films were analyzed using Z-scan technique. The experimental results show that Mn doped BMZ films exhibits saturation absorption and negative nonlinearity.

  5. Broadband erbium-doped fiber sources for the fiber-optic gyroscope

    SciTech Connect

    Wysocki, P.F.

    1992-01-01

    The sensitivity of early fiber-optic gyroscopes (FOG) fell short of the theoretical limit. The use of certain configurations, fiber components, and well designed optical sources can help the FOG reach this limit. Sources for the FOG must be broadband, spatially coherent and high power. They must produce a mean wavelength which is stable with respect to temperature and feedback from system components. Additionally, they must emit at long wavelengths, where silica fibers are insensitive to radiation induced losses. Two approaches to broadband, 1.55 [mu]m, erbium-doped fiber sources for the FOG are considered. The most promising approach is the superfluorescent fiber source (SFS), which utilizes amplification of spontaneous emission in a single pass or in two passes through the fiber, without a resonant cavity. Such sources have produced more than 50% conversion of pump photons near 980 nm or 1.48 [mu]m to source photons. Laser diode pumping in these pump bands is explored in detail. Depending on fiber length, pump power, pump wavelength, and SFS configuration, emission bandwidths between 8 and 27 nm are measured. The thermal coefficient of the mean wavelength of the SFS is consistently below 10 ppm/[degrees]C, and near 0 ppm/[degrees]C for certain design choices. The detrimental effects of feedback are reduced through optical isolation and the proper choice of FOG configuration. Issues such as the effect of multiple pump modes and loss mechanisms are treated by use of computer simulations. The broadband Er-doped wavelength-swept fiber laser (WSFL) is presented as an alternative to the SFS. This source utilizes an intracavity acousto-optic modulator to sweep the emission of an Er-doped laser across the gain curve of erbium. Theoretical and measured characteristics of such sources are discussed. The dynamic response of the WSFL and its coherence in an integrating system has been measured.

  6. An all-fiber vacuum sensor based on thermo-optics' effect in vanadium-doped fiber

    NASA Astrophysics Data System (ADS)

    Matjasec, Ziga; Donlagic, Denis

    2014-05-01

    This paper introduces an all-optical, fiber-optics vacuum sensor, which takes advantage of the thermo-optic effect within vanadium-co-doped fiber. This sensor utilizes a 980 nm pump-diode and a short section of highly absorbing vanadiumco- doped fiber produced by the flash vaporization process. The 980 nm source operates in pulse mode therefore the vanadium-co-doped fiber is periodically heated and self-cooled. The 980 nm pump-light is fully absorbed within the codoped fiber's core and relaxed as a heat, which changes the fiber's core refractive index. The heat-transfer between the heated fiber and surrounding gas depends on the gas pressure. Further, the doped-fiber is inserted into a Fabry-Perot interferometer which forms, in combination with a DFB laser diode at 1550 nm, a high coherence interferometer for optical path-length measurement. The time constant and absolute modulated optical path of the step response can be directly correlated with the gas pressure. The time constant is independent of the pump-diode's optical power, while the absolute modulated optical path also depends on the pump-diode's output of optical power and should thus be compensated. The vacuum sensor allows for a remote and fully dielectric measurement of the gas pressure and can be used in various industrial applications.

  7. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Rasmussen, H K; Bang, O; Webb, D J

    2013-10-01

    In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2×10(-4) has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent. PMID:24081048

  8. Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping

    SciTech Connect

    Wang, Dong-Chen; Li, Yan-Li; Song, Sheng-Chi; Guo, Wen-Ping; Lu, Ming; Chen, Jia-Rong

    2014-07-28

    We report optical gain enhancements in Si nanocrystals (Si-NCs) via hydrogenation and Ce{sup 3+} ion doping. Variable stripe length technique was used to obtain gains. At 0.3 W/cm{sup 2} pumping power density of pulsed laser, net gains were observed together with gain enhancements after hydrogenation and/or Ce{sup 3+} ion doping; gains after loss corrections were between 89.52 and 341.95 cm{sup −1}; and the photoluminescence (PL) lifetime was found to decrease with the increasing gain enhancement. At 0.04 W/cm{sup 2} power density, however, no net gain was found and the PL lifetime increased with the increasing PL enhancement. The results were discussed according to stimulated and spontaneous excitation and de-excitation mechanisms of Si-NCs.

  9. Erbium doping of lithium niobate by the ion exchange process for high-gain optical amplifiers

    NASA Astrophysics Data System (ADS)

    Caccavale, Frederico; Fedorov, Vyacheslav A.; Korkishko, Yuri N.; Morozova, Tamara V.; Sada, Cinzia; Segato, Francesco

    2000-04-01

    The erbium-lithium ion exchange is presented as a method for the erbium local doping of lithium niobate crystals. Ion exchange process is performed immersing the LiNbO3 substrates in a liquid melt, containing erbium ions; due to their high mobility, the lithium ions migrate from the crystal to the melt, and are replaced by erbium ions. A systematic analysis of the doping process is performed, and the influence of the process parameters is investigated: exchange time and temperature, crystal cut direction, composition and chemical reactivity of the Er ions liquid source. By structural (X-Ray Diffraction and Rutherford Backscattering Spectrometry), compositional (Secondary Ion Mass Spectrometry) and spectroscopic techniques (optical spectroscopy and micro-luminescence), the formation of lithium deficient phases and the incorporation of the Er ions into the LiNbO3 matrix is studied.

  10. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  11. Isomerization and optical bistability of DR1 doped organic-inorganic sol-gel thin film

    NASA Astrophysics Data System (ADS)

    Gao, Tianxi; Que, Wenxiu; Shao, Jinyou

    2015-10-01

    To investigate the isomerization process of the disperse red 1 (DR1) doped TiO2/ormosil thin film, both the photo-isomerization and the thermal isomerization of the thin films were observed as a change of the absorption spectrum. Under a real-time heat treatment, the change of the linear refractive index shows a thermal stable working temperature range below Tg. The optical bistability (OB) effect of the DR1 doped thin films based on different matrices was studied and measured at a wavelength of 532 nm. Results indicate that the TiO2/ormosils based thin film presents a better OB-gain than that of the poly (methyl methacrylate) (PMMA) based thin film due to its more rigid network structure. Moreover, it is also noted that higher titanium content is helpful for enhancing the OB-gain of the as-prepared hybrid thin films.

  12. Thermo-optical effects in Tm-doped large mode area photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Molardi, Carlo; Coscelli, Enrico; Cucinotta, Annamaria; Selleri, Stefano

    2014-03-01

    Designs of Tm-doped photonic crystal fibers for laser operation must take in account the strong thermo-optical effects due to the Tm quantum defect and the consequent corruption of the single mode guiding properties. A new fiber design with a ˜ 80 μm core diameter, based on the cladding mirror symmetry reduction is proposed and analyzed using a full-vector FEM-based modal solver. The thermal effects are investigated using a computationally efficient model. A large pitch fiber with similar core diameter, which represents the actual state-of-art of Tm-doped laser technology, has been investigated in order to have a basis of comparison. Optimizing some key parameters of the new symmetry free fiber, the possibility to achieve a wide band single mode operation under an heavy heat load of over 300 W/m is demonstrated. In particular a very high modal discrimination value larger than 0.5 is obtained.

  13. Structural and optical properties of Pr doped BiFeO3 multiferroic ceramics

    NASA Astrophysics Data System (ADS)

    Singh, Vikash; Subhash, Dwivedi, R. K.; Kumar, Manoj

    2013-02-01

    Pure and Pr substituted BiFeO3 (BFO) ceramics were synthesized by solid state reaction method. X-ray analysis shows the formation of BFO rhombohedral phase with R3c space group. Photoluminescent spectra of pure BFO showed blue emission corresponding to band gap at 2.67 eV. In Pr doped samples in addition to blue emission (2.67eV), a broad weak yellow emission has also been observed due to electronic transitions of dopant Pr3+ states. FTIR spectra showed two broad absorption peaks due to overlapping of Fe-O and Bi-O groups in the region 700 - 400 cm-1. These interesting optical properties of Pr doped BFO samples in visible region may find potential applications in optoelectronic devices.

  14. Synthesis and optical properties of Y3+ doped BiFeO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Singh, Vikash; Sharma, Subhash; Kumar, Manoj; Dwivedi, R. K.

    2013-06-01

    Pure and Y3+ substituted BiFeO3 (BFO) ceramics were synthesized by solid state reaction method. X-ray diffraction patterns of these samples have shown distorted rhombohedral structure with R3c space group symmetry. Photoluminescent spectra of pure BFO show blue emission corresponding to band-edge emission at 2.53 eV. In Y3+ doped samples in addition to blue emission (2.58eV), a broad weak yellow emission has also been observed due to electronic transitions of dopant Y3+ states. FTIR spectra show two broad absorption peaks due to overlapping of Fe-O and Bi-O groups in the region 380 - 700 cm-1. These interesting optical properties of Y3+ doped BFO samples in visible region may find potential applications in optoelectronic devices.

  15. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light. PMID:26125397

  16. Optical and structural properties of sulfur-doped ELOG InP on Si

    SciTech Connect

    Sun, Yan-Ting Junesand, Carl; Metaferia, Wondwosen; Kataria, Himanshu; Lourdudoss, Sebastian; Julian, Nick; Bowers, John; Pozina, Galia; Hultman, Lars

    2015-06-07

    Optical and structural properties of sulfur-doped epitaxial lateral overgrowth (ELOG) InP grown from nano-sized openings on Si are studied by room-temperature cathodoluminescence and cross-sectional transmission electron microscopy (XTEM). The dependence of luminescence intensity on opening orientation and dimension is reported. Impurity enhanced luminescence can be affected by the facet planes bounding the ELOG layer. Dark line defects formed along the [011] direction are identified as the facet planes intersected by the stacking faults in the ELOG layer. XTEM imaging in different diffraction conditions reveals that stacking faults in the seed InP layer can circumvent the SiO{sub 2} mask during ELOG and extend to the laterally grown layer over the mask. A model for Suzuki effect enhanced stacking fault propagation over the mask in sulfur-doped ELOG InP is constructed and in-situ thermal annealing process is proposed to eliminate the seeding stacking faults.

  17. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  18. Physical and optical characterization of Er3+ doped lead-zinc-borate glass.

    PubMed

    Sooraj Hussain, N; Cardoso, P J; Hungerford, G; Gomes, M J M; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the systematic optical characterization of Er3+ (1.0%) doped lead-zinc-borate glass from the measured absorption, luminescence and fluorescence lifetime decay curve profiles. By the application of the Judd-Ofelt theory, spectral intensities of the absorption bands have been analysed and these absorption results have been used in evaluating the luminescence properties of the Er3+ doped lead-zinc-borate glass. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have been computed. Based on the measured glass density, and refractive indices, other related physical parameters have also been evaluated. Further, the structural and morphology of the glass material have also been investigated from X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. PMID:19504881

  19. Optical and electrical properties of laser doped Si:B in the alloy range

    NASA Astrophysics Data System (ADS)

    Bhaduri, A.; Kociniewski, T.; Fossard, F.; Boulmer, J.; Débarre, D.

    2012-09-01

    We have probed the dopant activity of silicon B-doped by Gas Immersion Laser Doping (GILD). Here, we report on the comparison of optical, electrical and structural properties of Si:B, over a wide concentration range, up to 1.5 × 1021 cm-3 by steps of 1.5 × 1019 cm-3. Data obtained by reflectance FTIR spectroscopy are used within a Drude model to extract concentration, thickness and mobility. Resulting carrier concentration and conductivity are checked with 4-point probe electrical and X-ray diffraction measurements. FTIR proved to be very sensitive to the dopant distribution inside the layer, despite its thinness. It clearly reveals a moderate dopant accumulation at the interfaces.

  20. Influence of Ce doping on optical and dielectric properties of TiO2

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Wasi; Naqvi, A. H.

    2016-05-01

    Rare earth ion (Ce) doped TiO2 and pure TiO2 nanostructured were prepared by sol gel acid modified technique and calcinated at 450°C. Microstructural studies and thermal analysis were carried by XRD and TGA respectively. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.04 eV and 3.14 eV for pure and Ce doped TiO2 respectively. Room temperature dielectric constant (ɛ') decreases abruptly at lower frequencies owing to the charge transport relaxation. The observed behavior of the dielectric properties can be attributed on the basis of Koop's theory based on Maxwell-Wagner's two layer model in studied nanoparticles.

  1. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators. PMID:27244419

  2. Dispersion-compensating dual-mode optical fibers desirable for erbium-doped-fiber-amplified systems

    SciTech Connect

    Eguchi, Masashi

    2001-06-01

    A broadband dispersion-compensating dual-mode optical fiber with a double-layer profile core is proposed to compensate for positive dispersion in conventional single-mode optical fibers operating near 1.55 {mu}m. This wavelength band is suitable for erbium-doped-fiber-amplified systems. It is known that the first higher-order mode of dual-mode fibers exhibits large negative waveguide dispersion, and double-layer profile core fibers are dispersion-shifted fibers whose transmission and bending losses are lower than those of simple core-cladding dispersion-shifted fibers. Such advantages are attractive for commercial devices or modules. Here, a dispersion-compensating dual-mode fiber with a double-layer profile core that satisfies both low bending loss and broadband dispersion compensation is proposed. {copyright} 2001 Optical Society of America

  3. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses

    SciTech Connect

    Sidebottom, D.L.; Hruschka, M.A.; Potter, B.G.; Brow, R.K.

    1997-10-01

    Zinc tellurite glasses appear to be excellent candidates for hosting rare earth ions since they provide a low phonon energy environment to minimize non-radiative losses as well as possess good chemical durability and optical properties. The optical behavior of the rare earth ion can be manipulated by modifying its local environment in the glass host. The authors report measurements of the emission lifetime, optical absorption, and vibrational density of states of the glass system (ZnO){sub x}(ZnF{sub 2}){sub y}(TeO{sub 2}){sub 1{minus}x{minus}y}doped (0.1 mol%) with a series of rare earths. Phonon sideband spectroscopy has been successfully employed to probe vibrational structure in the immediate vicinity of the rare earth ion. The authors observe a significant increase in the emission lifetime (from approximately 150 {mu}s to 250 {mu}s) of Nd{sup 3+} with increasing fluorine substitution.

  4. Optical properties of Tb3+ doped KLaF4 in cubic and hexagonal symmetries

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahzad; Das, Subrata; Nagarajan, R.; Vijaya Prakash, G.

    2013-12-01

    Tb3+ doped cubic and hexagonally ordered KLaF4 nano-sized crystals have been synthesized by solution based method with the simultaneous evaluation of their optical and magnetic properties. While higher amounts of Tb3+ (10%) can be doped in cubic KLaF4 lattice, only 3% of Tb3+ can be doped in hexagonal KLaF4 by this method. Cubic KLaF4:Tb3+ samples show a very strong green emission centered at 545 nm (5D4 → 7F5) on excitation with 337 nm laser, the intensity increases monotonically with Tb3+ content. The relative intensity of the excited state 5D3 violet emission is weaker than that of 5D4 emissions even at the low Tb3+ amounts. It is proposed that the 5D3 → 5D4 cross-relaxation may be responsible for the decrease in the 5D3 decay rate with increasing Tb3+ concentrations. The average emission decay lifetime of the green emission (545 nm; 5D4 → 7F5) of Tb3+ doped cubic KLaF4 samples are in the order of 1-3 ms. The absence of the characteristic emissions from 5D3 level in hexagonal KLaF4:Tb3+ phosphor suggests the pronounced non-radiative cross relaxation between the 5D3 to 5D4 energy levels. Further, these cubic KLaF4:Tb3+ samples show intense green upconversion emission when co-doped with moderate concentrations of sensitizer Yb3+ ions. Both cubic and hexagonal KLaF4:Tb3+ samples show paramagnetic behavior at room temperature with χg value ranging from 1.627 × 10-6 to 1.356 × 10-5 emu/g.

  5. Optical Features of Spherical Gold Nanoparticle-Doped Solid-State Dye Laser Medium

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Duong, V. T. T.; Duong, V.; An, N. T. M.

    2016-05-01

    The development of a new laser medium based on gold nanoparticle/dye-doped polymethylmethacrylate (PMMA) has been investigated. In particular, gold nanoparticles with small (16 nm diameter) spherical shape strongly influenced the absorption and fluorescence emission spectra of [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4 H-pyran-4-ylidene]-propanedinitrile (DCM) laser dye. Fluorescence quenching and enhancement of DCM emission were observed for various concentrations of gold nanoparticles (GNPs). Fluorescence intensity enhancement was recorded for the sample containing 1.5 × 1010 par/mL GNPs and doped with 3 × 10-5 mol/L DCM. Thermal photodegradation was significantly decreased by using low pump energy for laser emission.

  6. Measurement of birefringence for optical recording disk substrates

    NASA Technical Reports Server (NTRS)

    Fu, Hong; Sugaya, S.; Erwin, J. K.; Goodman, T.; Yan, Z.; Tang, W. J.; Mansuripur, M.

    1993-01-01

    The birefringence of bare and coated substrates for magneto-optical recording is experimentally investigated using ellipsometry at the wavelengths of 632.8 nm and 780 nm. The rotation and ellipticity of the polarization state of the reflected or transmitted light is measured for different incident angles and different orientations of the incident linear polarization. The measured data is then fitted by a computer program which solves the Maxwell equations for the plane-wave propagation in a multilayer structure and minimizes the error between the measured and calculated data by adjusting the unknown parameters of the multilayer. This approach enables us to determine orientations of the three principal axes in the substrate and the corresponding refractive indices. A special feature of our ellipsometers is that a glass hemisphere is placed in contact with the substrate, which eliminates the refraction of the incident light and enables a maximum propagation angle of 70 degrees (with respect to the normal) in the substrate. This increases the sensitivity of the measurement. Certain anomalies were observed, which we believe are associated with the presence of grooves on these substrates.

  7. Electrochemical doping and the optical properties of light-emitting polymer materials and devices

    NASA Astrophysics Data System (ADS)

    Leger, Janelle Maureen

    The first three chapters of this dissertation serve as an introduction to the field of light-emitting polymers and polymer-based devices including materials, device construction, and measurement techniques. In chapter one I discuss the physical models necessary to understand semiconductivity in conjugated polymers. Chapter two reviews the device physics of several important applications. In chapter three I introduce the experimental techniques used in the following studies. Two well established light-emitting polymer devices include the polymer LED and the polymer LEC. The LEC uses electrochemical doping to achieve the charge injection necessary for light emission, while the LED injects charge directly from contact electrodes. I use a technique employing simulations of interference effects in multilayered device structures, matching experimental device spectra to simulation in order to gain insight into the location of light emission within the device. In chapter four I use this technique to explore the thickness dependence of PLEDs. In chapter five I combine simulations of interference effects in LECs with studies of planar geometry devices, thereby providing information about the fundamental operating mechanism of these devices. Several polymer-based applications include light-emitting electrochemical cells (LEC), electrochromic devices (ECD), and actuators, for which the operating mechanism depends heavily on electrochemical doping. Unfortunately, the doping of light-emitting polymers is not well understood. In chapter six I study the basic electrochemical doping reactions of one common light-emitting polymer, MEH-PPV. I explore factors affecting the fundamental doping reaction through cyclic voltammetry. Further, I investigate the optical properties of doped films in order to gain insight into the structural changes and changes in the energy band structure induced by doping. Finally, I explore some unique functionalities of MEH-PPV, specifically electrochromic

  8. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  9. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  10. Low power optical limiting studies of copper doped lithium tetraborate nanoparticles.

    PubMed

    Dhanuskodi, S; Mohandoss, R; Vinitha, G; Pathinettam Padiyan, D

    2015-04-01

    The copper doped lithium tetraborate (LTB:Cu) nanoparticles were synthesized by sol-gel method and characterized by XRD (tetragonal structure) and by FESEM (sphere-like nanoparticle). UV-Vis studies show that there is no strong absorption in the visible region. In the luminescence spectrum, the emission peak at 370 nm reveals the presence of Cu+ in LTB lattice. The relative powder second harmonic generation efficiency of pure and doped LTB is equal to the standard NLO material, KDP. The nonlinear optical parameters of LTB:Cu nanoparticles say, nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear optical susceptibility were determined to be of the order of 10(-8)cm2/W, 10(-2) cm/W and 10(-5) esu, respectively. The optical power limiting behavior of the samples were studied by Z-scan technique with (532 nm, 50 mW) Nd:YAG laser and the limiting threshold values are found to be 22.7 mW for 0.01 M and 24.9 mW for 0.03 and 0.05 M LTB:Cu nanoparticles. PMID:25615676

  11. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Macfarlane, R. M.; Sun, Y.; Böttger, T.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-10-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3H6 to 3H4 optical transition of three thulium-doped crystals, Tm3+:YAG, Tm3+:LiNbO3 and Tm3+:YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm3+:YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material.

  12. Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Kumar, Melvin David; Park, Yun Chang; Kim, Joondong

    2015-06-01

    The distinguished transparent conductive oxide (TCO) layers like indium-doped-tin oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers were prepared in different combinations with and without thin Ni metal layer. The optical and electrical properties of prepared samples were analyzed and compared with the objective to understand the role and influence of the Ni layer in each TCO combination. The highest transmittance value of 91.49% was exhibited by prepared AZO layers. Even though if the transmittance of Ni inserting TCO layers was marginally reduced than that of the ordinary TCO samples, they exhibited balanced optical properties with enhanced electrical properties. Carrier concentration of indium doped tin-oxide and aluminum doped zinc oxide (ITO/AZO) bilayer sample is increased more than double the times when the Ni layer was inserted between ITO and AZO. Thin layer of Ni in between TCO layers reduced sheet resistance and offered substantial transmittance, so that the figure of merit (FOM) value of Ni embedding TCOs was greater than that of TCOs without Ni layer. The ITO/Ni/AZO combination provided optimum results in all the electrical properties. As compared to other TCO/metal combinations, the overall performance of ITO/Ni/AZO tri-layer combination was appreciable. These results show that the optical and electrical properties of TCO layers could be enhanced by inserting a Ni layer with optimum thickness in between them.

  13. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800  nm.

    PubMed

    Firstov, Sergei; Alyshev, Sergey; Melkumov, Mikhail; Riumkin, Konstantin; Shubin, Alexey; Dianov, Evgeny

    2014-12-15

    Bismuth-doped optical fibers and fiber lasers operating in 1625-1775 nm range have been developed for the first time to the best of our knowledge. Now the existing bismuth-doped lasers, including the result presented in this Letter, can cover O, E, S, C, L, and U telecommunication bands. In addition, new data on the nature of the bismuth-related active center were obtained and discussed. PMID:25503032

  14. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    NASA Astrophysics Data System (ADS)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene ("A-dye": hydrogen bond donor) and dimethyl-aminoazobenzene ("B-dye") dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  15. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  16. Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production

    SciTech Connect

    Major, Kyle D. Lien, Yu-Hung; Polisseni, Claudio; Grandi, Samuele; Kho, Kiang Wei; Clark, Alex S.; Hwang, J.; Hinds, E. A.

    2015-08-15

    Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few μm thick. We demonstrate control of the DBT concentration over the range 6–300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

  17. Doped, porous iron oxide films and their optical functions and anodic photocurrents for solar water splitting

    SciTech Connect

    Kronawitter, Coleman X.; Mao, Samuel S.; Antoun, Bonnie R.

    2011-02-28

    The fabrication and morphological, optical, and photoelectrochemical characterization of doped iron oxide films is presented. The complex index of refraction and absorption coefficient of polycrystalline films are determined through measurement and modeling of spectral transmission and reflection data using appropriate dispersion relations. Photoelectrochemical characterization for water photo-oxidation reveals that the conversion efficiencies of electrodes are strongly influenced by substrate temperature during their oblique-angle physical vapor deposition. These results are discussed in terms of the films' morphological features and the known optoelectronic limitations of iron oxide films for application in solar water splitting devices.

  18. Thulium-doped fiber amplifier for optical communications at 2 µm.

    PubMed

    Li, Z; Heidt, A M; Daniel, J M O; Jung, Y; Alam, S U; Richardson, D J

    2013-04-22

    We report the first experimental realization and detailed characterization of thulium doped fiber amplifiers (TDFAs) specifically designed for optical communications providing high gain (>35 dB), noise figure as low as 5 dB, and over 100 nm wide bandwidth around 2 µm. A maximum saturated output power of 1.2 W was achieved with a slope efficiency of 50%. The gain dynamics of the amplifier were also examined. Our results show that TDFAs are well qualified as high performance amplifiers for possible future telecommunication networks operating around 2 µm. PMID:23609639

  19. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  20. Nano-engineered optical properties of iodine doped poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mehta, Sheetal; Keller, Jag Mohan; Das, Kallol

    2016-05-01

    Poly (methyl methacrylate) (PMMA) and Iodine hybrid matrixes have been prepared and characterized. The optical properties of the prepared I-PMMA hybrid composites were characterized by linear absorption studies and these composites have been found to contain embedded Iodine nanoparticles. The size of the nanoparticles was found to be a function of the Iodine content of PMMA. Refractive index measurements were undertaken for different wavelengths. The results showed that the refractive index of the composite is dependent on thermal annealing and also varies nonlinearly with the doping concentration at low Iodine concentration or in the region of nanoparticles formation.

  1. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  2. Optical properties and laser potential of dysprosium doped YAl3(BO3)(4) (YAB) crystal

    NASA Astrophysics Data System (ADS)

    Dominiak-Dzik, G.; Solarz, P.; Ryba-Romanowski, W.; Beregi, E.; Hartmann, E.; Kovacs, L.

    The absorption and emission spectra were measured at 5 and 300 K. The positions of the selected Dy3+ levels and their Stark components, determined from optical spectra at 5K, are presented. In this work an attempt is made to assess the potential of dysprosium doped YAl3 (BO3 )(4) crystal as a laser active material operating near 570 nm. The emission cross-section of a potential laser line at 570 nm connected with F-4 (9/2) --> H-6(13/2) transition was estimated.

  3. Optical properties of Dy3+ doped bismuth zinc borate glass and glass ceramics

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Kanth Kumar, V. V. Ravi

    2012-06-01

    Dy3+ doped bismuth zinc borate transparent glasses were prepared by melt quenching technique and these glasses were used precursor to obtain transparent glass ceramics by heat treatment method. XRD pattern of the glass ceramic shows the formation of the β-BiB3O6 and Bi2ZnOB2O6 phases. The visible emission intensity of the glass ceramics is stronger than the glass. This can be due to the formation of nano nonlinear optical crystallites in glass matrix.

  4. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  5. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO₂ fiber.

    PubMed

    Katsumata, Toru; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-08-01

    Visible light thermal radiation from SiO2 glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO2 fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO2 fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO2 fibers are smaller than those from SiO2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO2 are potentially applicable for the fiber-optic thermometry above 900 K. PMID:25173299

  6. Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks

    NASA Astrophysics Data System (ADS)

    Lin, Shih Kai; Lin, I. Chun; Tsai, Din Ping

    2006-05-01

    Conductive-atomic force microscopy has been successfully used for characterizing recorded marks on commercial digital versatile disk and Blu-ray disk. Nano recorded marks beyond diffraction limit are imaged with high spatial resolution and excellent contrast of conductivity. The smallest mark size resolved is around 23.5 nm which is limited by background spots around 18.5 nm. The results of different optical power and writing strategy on the size, shape, and close packed writing process of recorded marks clearly show the opto-thermal response of phase-change recording layer.

  7. Novel method for fabrication of metal- or oxide-nanoparticle doped silica-based specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Lenardič, Borut; Kveder, Miha; Lisjak, Darja; Guillon, Herve; Bonnafous, Samuel

    2011-03-01

    Nanoparticle-doped optical fibers are causing significant scientific interest in different application fields. Nanoparticle-doping of silica glass layers during optical fiber preform fabrication was so far reported by sol-gel and solution doping processes, by flame hydrolysis spraying and by pulling hollow cylinders from nanoparticle suspensions. A new method for fabrication of high quality nanoparticle-doped fibers is suggested. Proposed method is based on "flash vaporization" deposition process, previously reported as method to fabricate rare earth- and metal ion-doped specialty optical fibers. Experiments were made where SiO2 layers were deposited using "flash vaporization"-equipped MCVD system, adding vapors carrying metal or oxide nanoparticles into deposition zone. Analysis of produced preforms confirms presence of nanoparticles in deposited layers, albeit with low deposition rate due to weak thermophoretic forces acting on very small particles or agglomerations. Based on results, a number of improvements were suggested and implemented in fabrication process, device design and choice of precursor materials. "Flash vaporization" method was demonstrated as suitable method for deposition of nanoparticles in silica layers, permitting in-situ fabrication of complete preforms, providing easy upgrade path for existing MCVD and OVD deposition systems and allowing simultaneous co-doping by a wide range of other co-dopants.

  8. Optical studies in Er3+ doped BaMoO4 downconverting phosphor for blue LEDs

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2016-04-01

    Erbium ion (Er3+) doped BaMoO4 phosphor has been synthesized via co-precipitation technique. Phase formation of the prepared phosphor has been recognized by powder X-ray diffraction analysis. The photoluminescence emission spectrum has been recorded in 400-800nm wavelength range under 380nm excitation. The observed photoluminescence peaks are explained with the help of energy level structure. The prepared phosphor seems capable to produce efficient blue colour emission which can be useful for making blue light emitting diodes (LEDs).

  9. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  10. Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; von Bardeleben, H. J.; Akaiwa, K.; Shigematsu, E.; Kaneko, K.; Fujita, S.; Dumont, Y.

    2016-07-01

    We investigated the effect of Sn doping on the optical, electrical, and magneto transport properties of epitaxial α-Ga2O3 thin films grown by mist-Chemical Vapour Deposition. Sn introduces a shallow donor level at ˜0.1 eV and has a high solubility allowing doping up to 1020 cm-3. The lowest obtained resistivity of the films is 2.0 × 10-1 Ω cm. The Sn doped films with a direct band gap of 5.1 eV remain transparent in the visible and UV range. The electrical conduction mechanism and magneto-transport have been investigated for carrier concentrations below and above the insulator-metal transition. The magnetic properties of the neutral Sn donor and the conduction electrons have been studied by electron spin resonance spectroscopy. A spin S = 1/2 state and C3V point symmetry of the neutral Sn donor is found to be in good agreement with the model of a simple SnGa center.

  11. Study on structural, optical properties of solvothermally synthesized Ni doped CdS nanorods

    SciTech Connect

    Kaur, Kamaldeep Verma, N. K.

    2015-05-15

    Undoped and alkali metal i.e Ni doped CdS nanorods (Cd{sub x}Ni{sub 1-x}S) with (x = 0.0, 0.3,) has been synthesized by using a convenient solvothermal technique. In order to confirm the structure of the synthesized nanorods X-ray diffraction (XRD) has been done which reveals the formation of hexagonal phase of the dilute magnetic semiconducting nanorods having size of undoped 27.79nm and doped 17.49nm. Energy dispersive X-ray analysis depicts the presence of elements Cd, Ni and S in their stoichiometric ratio. Optical behavior of undoped and doped nanorods has been investigated. UV-visible spectra show the blue shift in the band gap, as compared to the bulk CdS which may be due the quantum confinement occurs in the nanostructures. Morphological analysis has been done with the help of Transmission electron microscope which confirms the polycrystalline nature of the synthesized nanorods.

  12. Exploring electro-optic effect of impurity doped quantum dots in presence of Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ganguly, Jayanta; Saha, Surajit; Ghosh, Manas

    2016-01-01

    We explore the profiles of electro-optic effect (EOE) of impurity doped quantum dots (QDs) in presence and absence of noise. We have invoked Gaussian white noise in the present study. The quantum dot is doped with Gaussian impurity. Noise has been administered to the system additively and multiplicatively. A perpendicular magnetic field acts as a confinement source and a static external electric field has been applied. The EOE profiles have been followed as a function of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength possess different values. In addition, the role of mode of application of noise (additive/multiplicative) on the EOE profiles has also been scrutinized. The EOE profiles are found to be adorned with interesting observations such as shift of peak position and maximization/minimization of peak intensity. However, the presence of noise and also the pathway of its application bring about rich variety in the features of EOE profiles through some noticeable manifestations. The observations indicate possibilities of harnessing the EOE susceptibility of doped QD systems in presence of noise.

  13. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Jan, Tariq; Ul-Hassan, Sibt; Ahmed, Ishaq; Mansoor, Qaisar; Umair Ali, M.; Abbas, Fazal; Ismail, Muhammad

    2015-12-01

    ZnxCu1-xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  14. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    SciTech Connect

    Iqbal, Javed E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal; Ahmed, Ishaq; Mansoor, Qaisar; Ismail, Muhammad

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  15. Studies on thermal analysis and optical parameters of Cu doped poly(vinyl acetate)/polyindole composites

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Dhokane, G. R.

    2015-05-01

    This article reports investigation on optical parameters and thermal analysis of Cu doped poly(vinyl acetate)/polyindole composites using cupric chloride as an oxidant. The study's complex optical parameters were determined through ultraviolet-visible (UV-vis) spectroscopy. Thermal analysis was done through thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The optical band gap values were found in the range 3.4381-4.8646 eV that reflects that synthesized composites have the potential to have application in optical devices and solar cells. The optical conductivity of composites is calculated to be 1.608 × 107 S-1.

  16. Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.

    2015-06-01

    Different concentrations of europium (Eu), cerium (Ce) doped and co-doped ZnO:Eu (1%), Ce (1%) nanorods were successfully synthesized by chemical method using Polyvinylpyrrolidone as a surfactant. Crystalline phase, morphology, functional groups, optical absorption, emission and thermal properties of prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red (FT-IR), UV-visible, Photoluminescence (PL) spectrophotometer and thermogravimetry (TG) and differential thermal analysis (DTA) analysis. The XRD study showed high crystalline nature of the products with nanoscale regime. Optical study showed shifting the absorption and emission spectra toward higher wavelength side when increasing the doping concentrations. Mainly, this is first time observed a red emission peak at 660 nm for Ce (3%) doped ZnO. Additionally, co-doped ZnO:Eu (1%), Ce (1%) nanorods were synthesized and studied their optical properties. This work demonstrates that simply modified their optical absorption and emission of ZnO by introducing rare earth ions can be used as an effective electrode material in solar cell applications, optoelectronic devices and photocatalysis analysis.

  17. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices

    NASA Astrophysics Data System (ADS)

    Guili, Liu; Yan, Jiang; Yuanyuan, Song; Shuang, Zhou; Tianshuang, Wang

    2016-06-01

    As the era of nanoelectronics is dawning, CNT (carbon nanotube), a one-dimensional nano material with outstanding properties and performances, has aroused wide attention. In order to study its optical and electrical properties, this paper has researched the influence of tension-twisting deformation, defects, and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method. Our findings show that if tension-twisting deformation is conducted, then the geometric structure, bond length, binding energy, band gap and optical properties of B, N doped carbon nanotube superlattices with defects and mixed type will be influenced. As the degree of exerted tension-twisting deformation increases, B, N doped carbon nanotube superlattices become less stable, and B, N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations. Proper tension-twisting deformation can adjust the energy gap of the system; defects can only reduce the energy gap, enhancing the system metallicity; while the mixed type of 5% tension, twisting angle of 15° and atomic defects will significantly increase the energy gap of the system. From the perspective of optical properties, doped carbon nanotubes may transform the system from metallicity into semi-conductivity. Project supported by the National Natural Science Foundation of China (No. 51371049) and the Natural Science Foundation of Liaoning Province (No. 20102173).

  18. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  19. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    PubMed Central

    Avino, Saverio; D’Avino, Vittoria; Giorgini, Antonio; Pacelli, Roberto; Liuzzi, Raffaele; Cella, Laura; De Natale, Paolo; Gagliardi, Gianluca

    2015-01-01

    The measurement of ionizing radiation (IR) is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs) is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable. PMID:25686311

  20. Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities.

    PubMed

    Avino, Saverio; D'Avino, Vittoria; Giorgini, Antonio; Pacelli, Roberto; Liuzzi, Raffaele; Cella, Laura; De Natale, Paolo; Gagliardi, Gianluca

    2015-01-01

    The measurement of ionizing radiation (IR) is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs) is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable. PMID:25686311

  1. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  2. χ(3) Measurement and optical power limiting behavior of manganese doped lithium tetraborate nanoparticles.

    PubMed

    Mohandoss, R; Dhanuskodi, S; Vinitha, G

    2015-02-01

    Manganese doped Li2B4O7 nano crystallites were prepared by chemical method and characterized by XRD, FTIR, UV and fluorescence spectra. FESEM reveals that the particles are coagulated and the particle size is in the range of 50-107 nm. Bands appear at 682-769 cm(-1) corresponds to the bending of B-O linkage in borate network. Nonradiative energy transfer process is observed from fluorescence spectrum. UV-Vis studies show the samples are completely transparent in the visible region and having absorption peaks (234 and 276 nm) in UV regime. The measured second harmonic generation values are 0.9 times KDP. The nonlinear optical parameters such as nonlinear refractive index, n2 (10(-8) cm(2)/W), nonlinear absorption, β (10(-2) cm/W) and nonlinear optical susceptibility, χ(3) (10(-5) esu) are estimated using a Nd:YAG laser (532 nm, 50 mW). PMID:25459619

  3. χ(3) measurement and optical power limiting behavior of manganese doped lithium tetraborate nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohandoss, R.; Dhanuskodi, S.; Vinitha, G.

    2015-02-01

    Manganese doped Li2B4O7 nano crystallites were prepared by chemical method and characterized by XRD, FTIR, UV and fluorescence spectra. FESEM reveals that the particles are coagulated and the particle size is in the range of 50-107 nm. Bands appear at 682-769 cm-1corresponds to the bending of B-O linkage in borate network. Nonradiative energy transfer process is observed from fluorescence spectrum. UV-Vis studies show the samples are completely transparent in the visible region and having absorption peaks (234 and 276 nm) in UV regime. The measured second harmonic generation values are 0.9 times KDP. The nonlinear optical parameters such as nonlinear refractive index, n2 (10-8 cm2/W), nonlinear absorption, β (10-2 cm/W) and nonlinear optical susceptibility, χ(3) (10-5 esu) are estimated using a Nd:YAG laser (532 nm, 50 mW).

  4. Structural, photoluminescence and picosecond nonlinear optical effect of In-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yan; Yao, Cheng-Bao; Li, Jin; Hu, Jun-Yan; Li, Qiang-Hua; Yang, Shou-Bin

    2016-05-01

    In-doped ZnO (IZO) nanowires were grown using the chemical vapour deposition method. The IZO nanowires have been characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and UV-Visible spectroscopy. The PL results demonstrated a larger band-gap for the IZO nanowires in comparison to the undoped ZnO. Two major emission peaks were observed for the IZO nanowires, one originated from the free exciton recombination (ultraviolet emission) and another possibly related to the deep-level emission (visible emission). Furthermore, the nonlinear optical characteristic of the nanowires was studied using picosecond Z-scan technique. The experimental results show that the two and three-photon absorption coefficient of samples were able to be observed. These studies make the promising potential applications of the samples in the development of multifunctional all-optical devices.

  5. Molecular orbital model of optical centers in bismuth-doped glasses.

    PubMed

    Kustov, E F; Bulatov, L I; Dvoyrin, V V; Mashinsky, V M

    2009-05-15

    Spectroscopic properties of optical fibers with a bismuth-doped silicate glass core are explained on the basis of molecular orbital theory and a solution of the Schrödinger equation, which takes into account the exchange, the spin-orbital, and the glass field potential interactions of s, p, and d electron shells of bismuth with s(sigma), p(sigma), and p(pi) orbits of oxygen atoms. The approach can explain the IR luminescence properties of other optical centers formed by other atoms with the same structure of electron shells as the bismuth atom. The model of transitions based on intramolecular charge transfer between molecular orbital and metallic states is proposed. PMID:19448817

  6. Optical properties of planar polymer waveguides doped with organo-lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Moynihan, S.; Van Deun, R.; Binnemans, K.; Redmond, G.

    2007-08-01

    Lanthanide complexes, Eu(dbm)3(Phen), [Et4N][Eu(nta)4] and Er(dbm)3(Phen), are employed as luminescent dopants within planar waveguides based on a UV-processable fluorinated polymer material. Thin films doped with each of the complexes are fabricated and their spectroscopic properties investigated in detail. The films act as low loss multi-mode planar waveguides capable of guiding visible and near infrared light emitted following optical excitation of the lanthanide dopants. Judd-Ofelt parameters are calculated for the europium complex dopants and effects of the polymer host environment on the photophysical properties of the chelates are identified. The radiative properties of the europium complexes are also determined viz. their potential for use in optical amplification applications.

  7. Feasibility of constructing a UV fibre laser based on a nitrogen-doped silica optical fibre

    SciTech Connect

    Bufetov, Igor' A; Grekov, M V; Golant, K M; Dianov, Evgenii M; Khrapko, R R

    1998-04-30

    Nonlinear frequency conversion of neodymium laser ({lambda}= 1.06 {mu}m) radiation was observed when this radiation was injected into the core of a single-mode optical fibre made of nitrogen-doped silica. This resulted in generation of visible violet and near-ultraviolet radiation (355 - 430 nm). The conversion efficiency was up to 2 x 10{sup -4}. The observed UV radiation was the result of the following processes: generation of the third harmonic of the fundamental pump frequency, stimulated Raman scattering of the third harmonic, and generation of the third harmonics of the Raman-scattered components of the pump radiation. Lasing was also observed in the 380-430 nm wavelength range at colour centres associated with the presence of nitrogen in the silica core. (nonlinear optical phenomena and devices)

  8. Optical gain and laser generation in bismuth-doped silica fibers free of other dopants.

    PubMed

    Bufetov, Igor A; Melkumov, Mikhail A; Firstov, Sergey V; Shubin, Alexey V; Semenov, Sergey L; Vel'miskin, Vladimir V; Levchenko, Andrey E; Firstova, Elena G; Dianov, Evgeny M

    2011-01-15

    Luminescence emission and excitation spectra of bismuth-doped silica optical fibers free of other dopants have been obtained to construct an emission-excitation map in a wide wavelength range of 400-1600 nm. The main low-lying energy levels of the bismuth active centers in such fibers have been determined. For the first time (to our knowledge), optical gain and lasing have been obtained in such fibers. A gain of 8 dB has been achieved with a pump power of 340 mW, and a cw fiber laser emitting at 1460 nm with an output power of 40 mW and an efficiency of ≈3% has been created. PMID:21263488

  9. Optical charge transfer for the dope in GaAs

    SciTech Connect

    Vakulenko, O.V.; Skirda, A.S.; Skryshevskii, V.A.

    1984-05-01

    It is concluded that the chromium dope is amphoteric in behavior on the basis of the spectra, kinetics, and lux-ampere characteristics of the absorption and photoconductivity induced by 1.15-um IR laser radiation in high-resistance specimens of GaAs. It is assumed that the additional IR illumination produces optical charge transfer in the chromium in accordance with Cr/sup 3 +/3d/sup 3/ + h..nu.. ..-->.. Cr/sup 2 +/3d/sup 4/ + Cr/sup 4 +/3d/sup 2/. The photoneutralization of the Cr/sup 4 +/3d/sup 2/ centers is responsible for additional optical-absorption and photoconductivity bands appearing in the long-wave region. The kinetic equations for these centers are solved, which describes the experimental results satisfactorily. It is suggested that chromium may compensate not only shallow donors in GaAs but also shallow acceptors.

  10. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima; Tripathi, Shweta; Chakrabarti, P.

    2016-05-01

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application in optoelectronic and photonic devices.

  11. Axially substituted phthalocyanine/naphthalocyanine doped in glass matrix: an approach to the practical use for optical limiting material.

    PubMed

    Yuan, Hua; Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Yang, Guoqiang

    2016-05-01

    A novel glass matrix doped with phthalocyanine or naphthalocyanine is prepared by a modified sol-gel technique. The photophysical and optical limiting properties of the phthalocyanine compounds both in glass matrix and in THF solution were investigated. The obtained glass matrix is homogeneous and transparent, as well as mechanically and thermodynamically stable enough to withstand very high laser fluence; the optical limiting performances of these compound samples are better than that of benchmark materials like C60 in toluene, carbon black in water, and graphene oxide in water or ethanol under nanosecond pulsed laser at 532 nm. Two prototypes of optical limiters doped in the glass matrix have very good optical limiting performances, which may provide potential practical use for optical limiting materials in a near future. PMID:27137586

  12. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    SciTech Connect

    Cardillo, Dean; Konstantinov, Konstantin; Devers, Thierry

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  13. Holographic recording in a doubly doped lithium niobate crystal with two wavelengths: a blue laser diode and a green laser

    NASA Astrophysics Data System (ADS)

    Komori, Yuichi; Ishii, Yukihiro

    2010-08-01

    A doubly-doped LiNbO3 (LN) crystal has been well used as a nonvolatile two-wavelength recording material. By using two levels of the crystal, two-kind holograms can be recorded on one crystal; a hologram is recorded with a 405-nm blue laser diode (LD) for a deep Mn level, and another hologram is with a 532-nm green laser for a shallow Fe level. The recording capacity doubles. A 780-nm LD is non-volatile reconstructing source since the LD line is insensitive to both levels. Multiplexed reconstructed images are demonstrated by using a sharp angular selectivity of a volume LN crystal keeping Bragg condition with spherical reconstructions.

  14. Er/Yb co-doped oxy-fluoride glass-ceramics core/polymer cladding optical fibers

    NASA Astrophysics Data System (ADS)

    Czerska, E.; Świderska, M.

    2014-11-01

    Erbium/ytterbium co-doped glasses can be applied as NIR laser sources (1.55 μm) or optical amplifiers in this range. About hundred meters of Er/Yb co-doped oxy-fluoride glass-ceramics fibers have been drawn from a glass preform followed by controlled annealing. Processing temperatures (drawing and annealing) were selected upon thermal analysis results (DTA/DSC plots). Glass-ceramic structure was confirmed by the XRD measurements. Obtained fibers show good optical properties. As a cladding material polymer material (acrylic resin) is considered due to its low deposition temperature and suitable value of refractive index.

  15. Optical properties and radiation damages of cerium fluoride crystals doped with alkali-earth and rare-earth elements

    SciTech Connect

    Gusev, Y.I.; Melchakov, E.N.; Mironov, I.A.; Panteleev, L.A.; Reiterov, V.M.; Rodnyi, P.A.; Seliverstov, D.M.; Shchetkowsky, A.I.; Yazikov, D.M.; Zakharov, N.G.

    1994-12-31

    The most essential contribution in the investigation of CeF{sub 3} crystals having the goal to construct high precision electromagnetic calorimeters has been done by Crystal Clear Collaboration. Study of optical properties and radiation damages of Cerium Fluoride crystals doped with Ca, Ba, Sr, La, Nd, Zr and Hf in the wide range of concentrations has been performed with the goal to obtain high optical transparency of crystals at different cumulative doses under {gamma}-irradiation. Time decay curves and relative light yields of scintillators as a function of doping level were measured using X-ray excitation of samples and single photon counting method.

  16. Optical nonlinearity and structural phase-transition observation of organic dye-doped polymer silica hybrid material.

    PubMed

    Xu, L; Hou, Z; Liu, L; Xu, Z; Wang, W; Li, F; Ye, M

    1999-10-01

    The optical nonlinearity of organic dye-doped poly(methyl methacrylate) (PMMA)-silica-gel hybrid material was investigated by second-harmonic-generation measurement. We found that incorporation of in situ polymerized solgel precursors into the organic dye-doped PMMA significantly improved the nonlinear optical stability of the system. However, improvement of thermal stability occurred only when a sufficient amount of silica gel was incorporated. A structural phase transition from pure polymer to a hybrid system was found near a 10-mol.% silica-gel concentration. The optimum polymer/tetraethoxysilane molar ratio is 2:1 to 1:1. PMID:18079805

  17. EPR and optical absorption studies of Cu2+ doped lithium maleate dihydrate single crystal

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Pandey, Shri Devi

    Electron paramagnetic resonance (EPR) study of Cu2+ doped lithium maleate dihydrate single crystal is done at liquid nitrogen temperature (LNT). Four hyperfine lines are observed in all directions, i.e. only a single site is observed. The spin Hamiltonian parameters are determined from EPR spectra: gx=2.100±0.002, gy=2.162±0.002, gz=2.215±0.002, Ax=(55±5)×10-4 cm-1, Ay=(52±5)×10-4 cm-1, Az=(50±5)×10-4 cm-1. The results indicate that the copper ion enters the lattice interstitially. Using the spin Hamiltonian parameters obtained from EPR study the ground state wave function of Cu2+ ion in the lattice is determined. The optical absorption study of Cu2+ doped lithium maleate dihydrate at room temperature is also performed. With the help of optical and EPR data, the nature of bonding in the complex is discussed.

  18. Optical gain characterization of Perylene Red-doped PMMA for different pump configurations.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-01-01

    The optical gain is measured in Perylene Red (PR)-doped polymethyl methacrylate (PMMA) slabs for copropagating and transverse pumping configurations based on a single-pass pump-probe method where a small signal is used as a probe beam. The gain is characterized in terms of the stimulated gain coefficient (g(S)) for both pump configurations. This material property determines the strength of pump absorption and coupling to the probe signal beam through stimulated emission. For copropagating pumping, g(S) was found to be (3.05±0.17)×10(-3) m/W for ∼0.05  mM PR-doped PMMA using a 633 nm probe laser, pumping with a 532 nm CW laser. For transverse pumping, g(S) was found to be (3.28±0.09)×10(-3)  m/W for a ∼0.15  mM sample. The small difference in the gain coefficient is attributed to the difference in concentration. The stimulated gain coefficient, a material property of the gain medium independent of the pump configuration and experimental setup, offers a useful and convenient way to characterize the optical gain for solid-state lasers or amplifiers. PMID:26835639

  19. Optical and spectroscopic properties of Eu2O3 doped CaBAl glasses

    NASA Astrophysics Data System (ADS)

    Melo, G. H. A.; Dias, J. D. M.; Lodi, T. A.; Barboza, M. J.; Pedrochi, F.; Steimacher, A.

    2016-04-01

    Eu2O3 doped CaBAL glasses (x Eu2O3) - (25-x) CaO - (50) B2O3 - (15) Al2O3 - (10) CaF2 (x = 0, 5, 1, 2, 3, 4, 5, 10 wt%) were prepared by using conventional melt-quenching and studied by means of density measurements, refractive index, optical absorption, luminescence and radiative lifetime. The results are discussed in terms of Eu2O3 content. The incorporation of Eu2O3 leads to an increase in the electronic polarizability and the refractive index. A linear increase with Eu2O3 content was observed in the optical absorption coefficient at 394 nm. The luminescence spectra present typical Eu3+ emission and do not present quenching up to 10 wt%. The luminescence ratio R/O I(5D0 → 7F2)/I(5D0 → 7F1) presents an increase with Eu2O3 doping; it indicates a reduction in local symmetry around the Eu3+ ions. The CIE 1931 diagram presents a red shift and an increase of color purity with Eu2O3 addition. The luminescence as a function of temperature shows an increase of 25% in the luminescence intensity for the Eu0.5 sample, at 592 nm. The radiative lifetime at 614 nm shows an exponential decay due to the reduction of the interionic distance Eu3+ - Eu3+ and the increase of the ion-ion interaction.

  20. Photomechanical actuator device based on disperse red 1 doped poly(methyl methacrylate) optical fiber

    NASA Astrophysics Data System (ADS)

    Ye, Xianjun

    The photomechanical effect is the phenomenon involving any mechanical property change of a material induced by light exposure. Photomechanical devices can be built with superior performance over traditional devices and offer versatile control tactics. Previous experiments show that disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has a fast photomechanical response upon asymmetrical 633nm laser irradiation originating in photoisomerization of the dopants between the cis and trans forms, which causes an elongation of the polymer fiber. In this work, laser light of 355nm wavelength is used to investigate the dynamics of the trans to cis photoisomerization process, which should result in length contraction of the DR1 doped PMMA polymer fiber. A three-point-contact optically-actuated beam controlling tilt mount is made and used as the measurement apparatus to study this process. The photomechanical fiber is observed to elongate upon UV irradiation. Numerical simulations, which take into account the coupled effect between the laser-induced temperature increase and population density change of the dye molecules, show that contraction of the fiber due to direct trans-cis photoisomerization is overwhelmed by elongation due to the photo-thermally-stimulated cis-trans isomerization under high intensity. An ink coated entrance face of the fiber is placed in the measurement tilt mount and is found to exhibit contraction in the fast process under low intensity without sacrificing the good signal to noise ratio enjoyed in the high intensity case.

  1. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    SciTech Connect

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic. Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.

  2. Fabrication and mechanical behavior of dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.

    2002-07-01

    The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.

  3. Ge-doped optical fibres as thermoluminescence dosimeters for kilovoltage X-ray therapy irradiations

    NASA Astrophysics Data System (ADS)

    Issa, Fatma; Latip, Nur Atiqah Abd; Bradley, David A.; Nisbet, Andrew

    2011-10-01

    We investigate key dosimetric parameters for the thermoluminescence (TL) of Ge-doped silica optical fibres irradiated by X-rays generated at 90 and 300 kVp. The parameters include dose response, reproducibility and fading. Relative dose measurements were performed, obtaining central axis percentage depth dose (PDD) values, use being made of doped fibres irradiated in water and solid water phantoms. TL yields were compared with published data and ionisation chamber measurements. Linearity to dose was demonstrated over the investigated range (0.1-6 Gy), with reproducibility to within±2%. TL fading was found to be minimal, at <1.5% over a 12 h period. The RMI 457 solid water phantom correction factor was found to be 1.155±0.152 and 0.955±0.221 at 90 and 300 kVp, respectively. The maximum discrepancy between PDD values obtained using optical fibres and ionisation chamber measurements was 2.1% at 90 kVp, while the maximum discrepancy between tabulated data and measurements was 1.1% at 300 kVp.

  4. Characterization of Ge-doped optical fibres for MV radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Noor, Noramaliza M.; Hussein, M.; Kadni, T.; Bradley, D. A.; Nisbet, A.

    2014-05-01

    Ge-doped optical fibres offer promising thermoluminescence (TL) properties together with small physical size and modest cost. Their use as dosimeters for postal radiotherapy dose audits of megavoltage photon beams has been investigated. Key dosimetric characteristics including reproducibility, linearity, dose rate, temperature and angular dependence have been established. A methodology of measuring absorbed dose under reference conditions was developed. The Ge-doped optical fibres offer linearity between TL yield and dose, with a reproducibility of better than 5%, following repeated measurements (n=5) for doses from 5 cGy to 1000 cGy. The fibres also offer dose rate, angular and temperature independence, while an energy-dependent response of 7% was found over the energy range 6 MV to 15 MV (TPR20,10 of 0.660, 0.723 and 0.774 for 6, 10 and 15 MV respectively). The audit methodology has been developed with an expanded uncertainty of 4.22% at 95% confidence interval for the photon beams studied.

  5. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  6. Optical Properties of Eu3+ Doped Lead Borate Tellurite and Zinc Borate Tellurite Glasses

    NASA Astrophysics Data System (ADS)

    Shigihalli, N. B.; Rajaramakrishna, R.; Anavekar, R. V.

    2011-07-01

    This paper describes the synthesis and optical absorption studies of the glass system 20PbO-20TeO2-(60-x)B2O3-x Eu2O3 (x = 0,1 mol %) and 20ZnO-20TeO2-(60-x)B2O3-xEu2O3 (x = 0,1 mol %). These glass systems have been successfully prepared by the melt quenching technique. The X-ray diffractograms show broad peaks indicating glasses are amorphous. DSC thermograms show glass transition temperatures around 655K for PbO content and around 675 K for ZnO content glass samples. In the UV-Visible spectra, several absorption lines are observed. The absorption peaks are around 362, 375, 393 and 464 nm for both Eu3+ doped PbO and ZnO content glass systems. These correspond to transitions from ground state of 7F0 to the excited state of 5D4, 5G4, 5L6 and 5D2 respectively for both Eu3+ doped PbO and ZnO content glass systems. These glasses are expected to give interesting applications in the area of optical devices.

  7. S+C+L broadband source based on semiconductor optical amplifiers and erbium-doped fiber for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carrion, L.; Beitel, D.; Lee, K. L.; Jain, A.; Chen, L. R.; Maciejko, R.; Nirmalathas, A.

    2007-06-01

    Broadband sources (BBSs) are commonly used in a wide range of applications in optical communication systems and biophotonics. They are particularly useful tools for Optical Coherence Tomography (OCT), which is a biomedical imaging technique that uses low-coherence light sources. In order to obtain high image quality, we have developed a novel, spectrally-flat S+C+L band source with > 120 nm bandwidth and more than 4 mW output power based on two cascaded semiconductor optical amplifiers (SOA) mixed with an Erbium-doped fiber (EDF) amplifier. Bandwidth and output power improvements are achieved by modifying the former configuration and mixing the EDF with the first SOA before amplification in the second SOA. This configuration results in bandwidth and output power enhancements of up to 146 nm and 8 mW, respectively. The source was then tested in an OCT system. It gives a 10 μm FWHM, low sidelobe OCT autocorrelation trace. Images and OCT autocorrelation traces were compared for the two aforementioned (which two; you mentioned one?) configurations. Images of miscellaneous samples made with the BBS show an image aspect and sharpness that is comparable with more expensive sources such as Ti:Sapphire lasers.

  8. Comparison of selected optical properties of oxyfluoride glass fibers doped with Er3+ and co-doped with Er3+ Yb3+

    NASA Astrophysics Data System (ADS)

    Augustyn, E.; Stremplewski, P.; Rozanski, M.; Koepke, C.; Dominiak-Dzik, G.; Kępińska, M.; Żelechower, M.

    2011-12-01

    The method of manufacturing and spectroscopic evaluation of the Er3+ ions doped and Er3+-Yb3+co-doped SiO2-Al2O3-Na2CO3-CaO-PbO-PbF2 oxyfluoride glass fibers is presented in the paper. Both optically active elements erbium and ytterbium were introduced into the batch in the form of fluorides. The X-ray diffraction (XRD) technique was applied at each stage of fibers manufacturing in order to control an amorphous structure of the preforms and fibers. Optical studies of glass preforms and fibers (reflection/transmission, absorption, emission, and excited state absorption (ESA)) were directed to examine their suitability as fiber amplifiers at 1.55 μm band.

  9. TiO 2 thin films doped with Pd and Eu for optically and electrically active TOS-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Danuta; Domaradzki, Jaroslaw; Prociow, Eugeniusz L.; Berlicki, Tadeusz; Prociow, Krystyna

    2009-07-01

    In this work, optical and electrical characterization of transparent Eu and Pd-doped TiO 2 thin films has been presented. Thin films of TiO 2 doped with Eu (0.9 at.%) and Pd (5.8 at.%) were deposited on silicon and glass substrates from Ti-Eu-Pd mosaic target using modified magnetron sputtering method. X-ray diffraction measurements revealed nanocrystalline structure with the only rutile phase of TiO 2 in prepared thin films. Pd-doping, through formation of discontinuous paths for charge carriers brings the enhanced electrical conductivity and makes prepared thin films oxide semiconductors. It has been shown, that Eu dopant acts as an optical activator of light conversion from UV to the red-visible, corresponding to the optical working range of standard silicon devices. From electrical measurements it was found out that Eu-doping of TiO 2 results in the n-type of electrical conduction. From optical transmission spectroscopy measurements position of the fundamental absorption edge and optical band-gap energy have been determined. The current to voltage dependence and photovoltage observations confirmed the formation of heterojunction at thin film-silicon interface.

  10. Electrical and optical properties of gallium-doped magnesium zinc oxide system

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    The primary aim in this thesis is to investigate Ga-doped Mg1-x ZnxO, as well as undoped Mg1-xZnxO for the application of transparent conducting oxide. For this thesis work, the films have been grown on sapphire using pulsed laser deposition technique. The films were grown under various deposition conditions in order to understand the effect of processing on the film properties. The grown films have been characterized using various techniques, including XRD, TEM, XPS, 4-probe resistivity measurements, Hall measurements and absorption/transmission spectroscopy. Undoped Mg1-xZnxO films have been grown at several temperatures between room temperature and 750°C. Photoluminescence was correlated with Urbach energy values which were determined from absorption spectrum. The film grown at 350°C exhibited lowest band-tail parameter values and highest photoluminescence values than the other films. The optical and electrical properties of heavily Ga-doped MgxZn 1-xO thin films were investigated. The film transparency is greater than 90% in the visible spectrum range. The absorption can be extended to lower wavelength range with higher magnesium concentration, which can improve the transparency in the ultraviolet wavelength range; however, conductivity is decreased. The optimum Ga concentration was found to be 0.5 at.%. At this Ga concentration, the film resistivity increased from 1.9x10 -3 to 3.62x10-2 O·cm as the magnesium concentration increased from 5 at.% to 15 at.%. The optical and electrical properties of Ga-doped MgxZn 1-xO thin films were investigated systematically. In these films, the Ga content was varied from 0.05 at.% to 7 at.% and the Mg content was varied from 5 at.% to 15 at.%. X-ray diffraction showed that the solid solubility limit of Ga in MgxZn1-xO is less than 3 at.%. The absorption spectra were fitted to examine Ga doping effects on bandgap and band tail characteristics. Distinctive trends in fitted bandgap and band tail characteristics were

  11. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy

    NASA Astrophysics Data System (ADS)

    Guipeng, Sun; Jinliang, Yan; Peijiang, Niu; Delan, Meng

    2016-02-01

    The electronic structures and optical properties of intrinsic SnO2, Zn-doped SnO2, SnO2 with Sn vacancy (VSn) and Zn-doped SnO2 with Sn vacancy are explored by using first-principles calculations. Zn-doped SnO2 is a p-type semiconductor material, whose Fermi level shifts into the valence band when Zn atoms substitute Sn atoms, and the unoccupied states on the top of the valence band come from Zn 3d and O 2p states. Sn vacancies increase the relative hole number of Zn-doped SnO2, which results in a possible increase in the conductivity of Zn-doped SnO2. The Zn-doped SnO2 shows distinct visible light absorption, the increased absorption can be seen apparently with the presence of Sn vacancies in the crystal, and the blue-shift of optical spectra can be observed. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  12. Effect of S-doping on structural, optical and electrochemical properties of vanadium oxide thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-12-01

    In this research, S-doped vanadium oxide thin films, with doping levels from 0 to 40 at.%, are prepared by spray pyrolysis technique on glass substrates. For electrochemical measurements, the films were deposited on florin-tin oxide coated glass substrates. The effect of S-doping on structural, electrical, optical and electrochemical properties of vanadium oxide thin films was studied. The x-ray diffractometer analysis indicated that most of the samples have cubic β-V2O5 phase structure with preferred orientation along [200]. With increase in the doping levels, the structure of the samples tends to be amorphous. The scanning electron microscopy images show that the structure of the samples is nanobelt-shaped and the width of the nanobelts decreases from nearly 100 to 40 nm with increase in the S concentration. With increase in the S-doping level, the sheet resistance and the optical band gap increase from 940 to 4015 kΩ/square and 2.41 to 2.7 eV, respectively. The cyclic voltammogram results obtained for different samples show that the undoped sample is expanded and the sample prepared at 20 at.% S-doping level has sharper anodic and cathodic peaks.

  13. Study on optical properties of L-valine doped ADP crystal

    NASA Astrophysics Data System (ADS)

    Shaikh, R. N.; Anis, Mohd.; Shirsat, M. D.; Hussaini, S. S.

    2015-02-01

    Single crystal of L-valine doped ammonium dihydrogen phosphate has been grown by slow evaporation method at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction technique. The different functional groups of the grown crystal were identified using Fourier transform infrared analysis. The UV-visible studies were employed to examine the high optical transparency and influential optical constants for tailoring materials suitability for optoelectronics applications. The cutoff wavelength of the title crystal was found to be 280 nm with wide optical band gap of 4.7 eV. The dielectric measurements were carried to determine the dielectric constant and dielectric loss at room temperature. The grown crystal has been characterized by thermogravimetric analysis. The second harmonic generation efficiency of the grown crystal was determined by the classical Kurtz powder technique and it is found to be 1.92 times that of potassium dihydrogen phosphate. The grown crystal was identified as third order nonlinear optical material employing Z-scan technique using He-Ne laser operating at 632.8 nm.

  14. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    NASA Astrophysics Data System (ADS)

    Zongo, S.; Kerasidou, A. P.; Sone, B. T.; Diallo, A.; Mthunzi, P.; Iliopoulos, K.; Nkosi, M.; Maaza, M.; Sahraoui, B.

    2015-06-01

    Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10-21 m2 V-2 or 0.72 × 10-13 esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  15. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity

    PubMed Central

    SUMIKURA, HISASHI; KURAMOCHI, EIICHI; TANIYAMA, HIDEAKI; NOTOMI, MASAYA

    2014-01-01

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access. PMID:24853336

  16. Optical Control of Ferromagnetism in a Magnetically-Doped Topological Insulator

    NASA Astrophysics Data System (ADS)

    Yeats, Andrew L.; Mintun, Peter J.; Pan, Yu; Richardella, Anthony; Samarth, Nitin; Awschalom, David D.

    Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate micron-scale optical control of both magnetization and chemical potential in thin films of Cr-doped (Bi,Sb)2Te3. By optically modulating the coercivity of the films, we write and erase arbitrary spatial configurations of their magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we can control the local chemical potential of the films. This allows us to write and erase p- n junctions in the films, which we image with photocurrent microscopy. Both effects persist for > 16 hours. We will present systematic Kerr microscopy, photocurrent microscopy, and electrical transport studies of these materials and various electronic and magnetic structures patterned on them. We will discuss the prospects for using these optical phenomena to study and control the unique physics of TIs, such as edge-state transport in the quantum anomalous Hall regime. This work is supported by ONR, AFOSR-MURI, ARO, and NSF.

  17. Physical and optical properties of magnesium sulfoborate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dalhatu, S. A.; Deraman, Karim; Hussin, R.

    2016-04-01

    The optical properties of alkaline earth borate glasses doped with rare earth are attractive field of research due to many optical applications. We have concentrated on the physical and optical properties of MgO-SO4-B2O3 glass with different concentrations of Dy3+ ions. The samples of glass were prepared using the melting quenching technique. The physical parameter and optical properties of the prepared glass were determined. It was observed that the density of the glass samples increased and the molar volume reduced with respect to Dy3+ ions content. Dy3+: MgO-SO4-B2O3 glass displayed 10 absorption bands with hypersensitive transition around 1265 nm (6H15/6 →6F11/2). Two intense luminescence emissions were observed at 482 nm (4F9/2 →6H15/2: blue) and 573 nm (4F9/2 →6H13/2: yellow) and weak band at 662 nm (4F9/2 →6H11/2: red) with excitation wavelength 380 nm. A strong enhancement in the emission peaks at 573 nm in the yellow region was observed with the 0.07 mol% concentration of dysprosium oxide, which may assign to the energy transfer from Mg2+ to Mg3+ ions. Beyond the optimum concentration, contrary result was observed.

  18. Two-photon induced fluorescence and other optical effects in irradiated and doped fused silica

    SciTech Connect

    Kramer, S.D.

    1986-07-01

    The objective of this program was to assess and identify irradiation techniques which could be used to modify the optical charactistics of doped fused silica. Primary emphasis was placed on determining if gamma ray or neutron bombardment of the glass would enhance certain Raman and nonlinear optical effects. In particular, the effect of irradiation on optical two photon induced fluorescence was studied in detail. The maximum radiation exposures used were 10/sup 6/ rads (Si) of gamma rays and neutron fluences of 1 x 10/sup 14/ neutrons/cm/sup 2/. The optical measurements were made at room temperature between one and four months after irradiation. The maximum input light intensity was 10/sup 9/ watts/cm/sup 2/ at a near infrared (1.06 ..mu..) input wavelength which was chosen to lie in a transparent spectral region of the glass. Under these experimental conditions a careful search revealed no detectable two-photon induced fluorescence in the region from 550 to 900 nm. The upper limit for the photon efficiency of this process was determined to be less than 1 x 10/sup -10/%. 89 refs., 12 figs.

  19. Phosphorus Doping in Si Nanocrystals/SiO2 msultilayers and Light Emission with Wavelength compatible for Optical Telecommunication

    PubMed Central

    Lu, Peng; Mu, Weiwei; Xu, Jun; Zhang, Xiaowei; Zhang, Wenping; Li, Wei; Xu, Ling; Chen, Kunji

    2016-01-01

    Doping in semiconductors is a fundamental issue for developing high performance devices. However, the doping behavior in Si nanocrystals (Si NCs) has not been fully understood so far. In the present work, P-doped Si NCs/SiO2 multilayers are fabricated. As revealed by XPS and ESR measurements, P dopants will preferentially passivate the surface states of Si NCs. Meanwhile, low temperature ESR spectra indicate that some P dopants are incorporated into Si NCs substitutionally and the incorporated P impurities increase with the P doping concentration or annealing temperature increasing. Furthermore, a kind of defect states will be generated with high doping concentration or annealing temperature due to the damage of Si crystalline lattice. More interestingly, the incorporated P dopants can generate deep levels in the ultra-small sized (~2 nm) Si NCs, which will cause a new subband light emission with the wavelength compatible with the requirement of the optical telecommunication. The studies of P-doped Si NCs/SiO2 multilayers suggest that P doping plays an important role in the electronic structures and optoelectronic characteristics of Si NCs. PMID:26956425

  20. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mansoor, Qaisar; Mahmood, Arshad; Ahmad, Amaar

    2014-07-01

    In this paper, ZnO nanorods doped with varying amounts of Ni have been prepared by chemical co-precipitation technique. Structural investigations provide the evidence that Ni is successfully doped into ZnO host matrix without having any secondary phases. Scanning electron microscopy (SEM) images reveal the formation of rodlike structure of undoped ZnO with average length and diameter of 1 μm and 80 nm, respectively. Raman spectroscopy results show that the E1LO phonons mode band shifts to the higher values with Ni doping, which is attributed to large amount of crystal defects. Ni doping is also found to greatly influence the optical properties of ZnO nanorods. The influence of Ni doping on antibacterial characteristics of ZnO nanorods have been studied by measuring the growth curves of Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria in the presence of prepared nanorods. ZnO nanorods antibacterial potency is found to increase remarkably with Ni doping against S. aureus and P. aeruginosa microbials, which might possibly be due to the increase in reactive oxygen species (ROS) generation. Interestingly, it is observed that Ni doped ZnO nanorods completely eradicates these multi-drug resistant bacteria.

  1. Phosphorus Doping in Si Nanocrystals/SiO2 msultilayers and Light Emission with Wavelength compatible for Optical Telecommunication

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Mu, Weiwei; Xu, Jun; Zhang, Xiaowei; Zhang, Wenping; Li, Wei; Xu, Ling; Chen, Kunji

    2016-03-01

    Doping in semiconductors is a fundamental issue for developing high performance devices. However, the doping behavior in Si nanocrystals (Si NCs) has not been fully understood so far. In the present work, P-doped Si NCs/SiO2 multilayers are fabricated. As revealed by XPS and ESR measurements, P dopants will preferentially passivate the surface states of Si NCs. Meanwhile, low temperature ESR spectra indicate that some P dopants are incorporated into Si NCs substitutionally and the incorporated P impurities increase with the P doping concentration or annealing temperature increasing. Furthermore, a kind of defect states will be generated with high doping concentration or annealing temperature due to the damage of Si crystalline lattice. More interestingly, the incorporated P dopants can generate deep levels in the ultra-small sized (~2 nm) Si NCs, which will cause a new subband light emission with the wavelength compatible with the requirement of the optical telecommunication. The studies of P-doped Si NCs/SiO2 multilayers suggest that P doping plays an important role in the electronic structures and optoelectronic characteristics of Si NCs.

  2. Influence of magnesium concentration on the optical properties of ytterbium and holmium co-doped lithium niobate crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Jiao, Shanshan; Yan, Zhehua; Dai, Ping; Lui, Gang; Xu, Yuheng

    2016-01-01

    In this paper, a series of Yb (0.5mol.%):Ho (0.5mol.%):LiNbO3 crystals doped with various concentration of Mg2+ (1, 3, 5 and 7mol.%) were grown by the Czochralski technique. The ability of optical damage resistance of Mg:Yb:Ho:LiNbO3 crystals increases with increasing the Mg2+ doping concentration. The optical homogeneity of Mg:Yb:Ho:LiNbO3 crystals doped with different concentration of Mg2+ was detected using the birefringence gradient method. The results demonstrated that the optical homogeneity is getting better with the increase of the Mg2+ doping concentration. The studies on the infrared transmission spectra indicated that Mg2+ ions first replaces anti-site NbLi4+ in the form of MgLi+ defect, once the concentration of Mg2+ reaches or exceeds the threshold concentration, it begins to substitute Li-site and Nb-site of normal lattice and form defect of MgNb3--3MgLi+. Therefore, the change of Mg2+ doping concentration is the fundamental reason leading to a violet shift of the OH- absorption peak.

  3. Effects of N concentration on electronic and optical properties of N-doped PbTiO3

    NASA Astrophysics Data System (ADS)

    Yinnü, Zhao; Jinliang, Yan

    2015-09-01

    The p-type N-doped PbTiO3 with different doping concentrations have been studied by first-principles calculations. The charge density differences, band structures, density of states and optical properties have been investigated. After an oxygen atom is substituted by a nitrogen atom in the crystals, the valance bands move to high energy levels and the Fermi energy level gets into the top of the valance bands. Results show that the values of the band gaps are decreased and the stability is weakened when the N concentration increases. The 2.5 at% N-doped PbTiO3 shows the best p-type conductivity and the visible-light absorption can be enhanced most at this doping concentration, which is necessary in semiconductors or photocatalysts. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  4. Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion

    NASA Astrophysics Data System (ADS)

    Mohanapriya, P.; Pradeepkumar, R.; Victor Jaya, N.; Natarajan, T. S.

    2014-07-01

    Cerium doped SnO2 hollow nanofibers were synthesized by electrospinning. High resolution scanning electron microscope (HRSEM) and transmission electron microscopy (TEM) analysis showed hollow nanofibers with diameters around ˜200 nm. The optimized substitution of Ce ion into SnO2 lattices happened above 6 mol. % doping as confirmed by Powder X-ray diffraction (XRD) studies. Optical band gap was decreased by the doping confirming the direct energy transfer between f-electrons of rare earth ion and the SnO2 conduction or valence band. The compound also exhibited room temperature ferromagnetism with the saturation magnetization of 19 × 10-5 emu/g at 6 mol. %. This study demonstrates the Ce doped SnO2 hollow nanofibers for applications in magneto-optoelectronic devices.

  5. Magnetic and optical properties of electrospun hollow nanofibers of SnO{sub 2} doped with Ce-ion

    SciTech Connect

    Mohanapriya, P.; Victor Jaya, N.; Pradeepkumar, R.; Natarajan, T. S.

    2014-07-14

    Cerium doped SnO{sub 2} hollow nanofibers were synthesized by electrospinning. High resolution scanning electron microscope (HRSEM) and transmission electron microscopy (TEM) analysis showed hollow nanofibers with diameters around ∼200 nm. The optimized substitution of Ce ion into SnO{sub 2} lattices happened above 6 mol. % doping as confirmed by Powder X-ray diffraction (XRD) studies. Optical band gap was decreased by the doping confirming the direct energy transfer between f-electrons of rare earth ion and the SnO{sub 2} conduction or valence band. The compound also exhibited room temperature ferromagnetism with the saturation magnetization of 19 × 10{sup −5} emu/g at 6 mol. %. This study demonstrates the Ce doped SnO{sub 2} hollow nanofibers for applications in magneto-optoelectronic devices.

  6. Dielectric and electro-optical studies of a nickel-ferrite-nanoparticle- doped ferroelectric liquid crystal mixture

    NASA Astrophysics Data System (ADS)

    Khushboo; Sharma, Puneet; Malik, Praveen; Raina, K. K.

    2016-02-01

    Effect of magnetic nanoparticles (nickel ferrite) doping on the dielectric and electro-optical properties of a ferroelectric liquid crystal mixture has been studied. In a doped ferroelectric liquid crystal mixture, dispersion of a small amount (0.25 wt.%) of nickel ferrite nanoparticles decreases the polarization and improves the response time compared to an undoped mixture. The significant changes in the polarization and response time are explained on the basis of dipole-dipole interaction and anchoring phenomena. Dielectric permittivity also increases with increasing the temperature of the SmC* phase and shows a reduction in dielectric loss in a doped sample. A Goldstone mode is clearly observed at ∼200 and ∼500 Hz in an undoped and a doped sample, respectively.

  7. Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-04-01

    The aim of this paper is to expand the body of knowledge about the silicon doped gallium nitride thin films deposited on different substrates. The physical properties of the Si doped GaN thin films deposited on the glass and polyethylene terephthalate substrates by thermionic vacuum arc which is plasma production technique were investigated. Thermionic vacuum arc method is a method of producing pure material plasma. The Si doped GaN thin films were analyzed using the following methods and the devices: atomic force microscopy, x-ray diffraction device, spectroscopic ellipsometer and energy dispersive x-ray spectroscopy detector. The produced Si doped GaN thin films are in the (113) orientation. The thicknesses and refractive index were determined by using Cauchy dispersion model. Surface morphologies of produced thin films are homogenous and low roughness. Our analysis showed that the thermionic vacuum arc method present important advantages for optical and industrial applications.

  8. Optical and structural properties of Fe-doped SnO2 nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Kaur, Navneet; Abhinav, Singh, Gurwinder Pal; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today nanomaterials plays important role in every field, due to their unique mechanical, chemical and electrical properties which are completely different from the bulk materials. With reduction in the size of material its properties are dynamically changed. Semiconductor materials are widely used in electronic devices but in the field of optoelectronic these materials have some limitations. Tin oxide could be the material which could be used in these applications without limitations. Doped Tin Oxide is an oxygen deficient material which could be beneficial for transparent conducting oxide. Iron doped SnO2 prepared by co-precipitation method. Studies on structural properties of undoped and doped SnO2 were done by X-ray diffraction. The XRD results have shown that the size of the nanoparticles decreases with Fe doping down to 53nm. Optical Properties were studied by UV-visible spectroscopy. Band gap was found to decrease with increase in iron content in samples.

  9. Structural, optical and dielectric property of Co doped Bi{sub 2}Fe{sub 4}O{sub 9}

    SciTech Connect

    Swain, Smita Mohapatra, S. R. Sahoo, B. Singh, A. K.

    2014-04-24

    Multiferroic Bi{sub 2}Fe{sub 4}O{sub 9} and Co doped Bi{sub 2}Fe{sub 4}O{sub 9} are prepared by solid state route reaction method using bismuth oxide(Bi{sub 2}O{sub 3}), iron oxide(Fe{sub 2}O{sub 3}) and cobalt oxide (Co{sub 3}O{sub 4}). Their structural optical and dielectric properties are studied and compared. X-ray diffraction (XRD) results confirm that there is no change in crystal structure due to Co doping. From dielectric constant measurement we conclude that dielectric constant increases due to Co doping. UV-Visible plot shows due to Co doping bang gap energy increases.

  10. Enhanced optical, dielectric and piezoelectric behavior in dye doped zinc tris-thiourea sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Bhandari, Sonia; Sinha, Nidhi; Ray, Geeta; Kumar, Binay

    2014-01-01

    Pure and 0.1 mol% amaranth dye doped zinc tris-thiourea sulphate (ZTS) crystals were grown by slow evaporation technique. Orthorhombic structures with changed morphology were observed. Various functional groups present were identified by FTIR and Raman analysis. UV-Vis spectra shows wide transmittance and increased optical band gap from 4.54 to 4.59 eV, with lower extinction coefficient in doped case. In photoluminescence measurement, an intense peak at 416 nm was observed for doped ZTS. Dielectric constant value increases from 3.28 to 9.40 at 1 kHz with doping. Piezoelectric coefficient d33 is also enhanced from 0.24 to 3 pC/N.

  11. Design of pitch conversion component for formation of multibeam optical recording head

    NASA Astrophysics Data System (ADS)

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-01

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams.

  12. Design of pitch conversion component for formation of multibeam optical recording head.

    PubMed

    Sasaki, Kentaro; Kawamura, Norikazu; Tokumaru, Haruki

    2008-04-10

    We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams. PMID:18404179

  13. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.

    PubMed

    Wang, Guofeng; Peng, Qing; Li, Yadong

    2011-05-17

    Because of the potential applications of lanthanide-doped nanocrystals in display devices, optical communication, solid-state lasers, catalysis, and biological labeling, the controlled synthesis of these new nanomaterials has sparked considerable interest. Nanosized phosphorescent or optoelectronic devices usually exhibit novel properties, depending on their structures, shapes, and sizes, such as tunable wavelengths, rapid responses, and high efficiencies. Thus, the development of facile synthetic methods towards high-quality lanthanide-doped nanocrystals with uniform size and shape appears to be of key importance both for the exploration of their materials properties and for potential applications. This Account focuses on the recent development in our laboratory of the synthesis and applications of lanthanide-doped nanocrystals. Since 2005, when we proposed a general strategy for nanocrystal synthesis via a liquid-solid-solution process, a range of monodisperse and colloidal lanthanide-doped fluoride, oxide, hydroxide, orthovanadate, thiooxide, borate, and phosphate nanocrystals have been successfully prepared. By rationally tuning the reaction conditions, we have readily synthesized nanostructures, such as hollow microspheres, nanorods, nanowires, hexagonal nanoplates, and nanobelts. By adjusting the different colloidal nanocrystal mixtures, we fabricated unique binary nanostructures with novel dual-mode luminescence properties through a facile ultrasonic method. By tridoping with lanthanide ions that had different electronic structures, we successfully achieved β-NaYF(4) nanorods that were paramagnetic with tuned upconversion luminescence. We have also used NaYF(4):Yb(3+)/Er(3+) conbined with magnetite nanoparticles as a sensitive detection system for DNA: NaYF(4):Yb(3+)/Er(3+) and Fe(3)O(4) nanoparticles were modified with two different DNA sequences. Then, the modified NaYF(4):Yb(3+)/Er(3+) nanoparticles were conjugated to the modified Fe(3)O(4) nanoparticles

  14. Tailoring complex optical fields via anisotropic microstructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Qing; Hu, Wei; Cui, Guo-Xin

    2015-10-01

    In recent years, complex optical fields with spatially inhomogeneous phases, polarizations and optical singularities have drawn many research interests. Many novel effects have been predicted and demonstrated for light beams with these unconventional states in both linear and nonlinear optics regimes. Although local optical phase could be controlled directly or through hologram structures in isotropic materials such as glasses, optical anisotropy is still required for manipulating polarization states and wavelengths. The anisotropy could be either intrinsic such as in crystals/liquid crystals (LCs) or the induced birefringence from dielectric or metallic structures. In this talk, we will briefly review some of our attempts in tailoring complex optical fields via anisotropic microstructures. We developed a micro-photo-patterning system that could generate complex micro-images then further guides the arbitrary local LC directors. Due to the electro-optically (EO) tunable anisotropy of LC, various reconfigurable complex optical fields such as optical vortices (OVs), multiplexed OVs, OV array, Airy beams and vector beams are obtained. Different LC modes such as homogeneous alignment nematic, hybrid alignment nematic and even blue phase LCs are adopted to optimize the static and dynamic beam characteristics depending on application circumstances. We are also trying to extend our approaches to new wavelength bands, such as mid-infrared and even THz ranges. Some preliminary results are obtained. In addition, based on our recently developed local poling techniques for ferroelectric crystals, we will also discuss and demonstrate the nonlinear complex optical field conversion in Lithium Niobate wafers with patterned ferroelectric domain structures.

  15. Optical Storage Systems for Records and Information Management: Overview, Recommendations and Guidelines for Local Governments. Local Government Records Technical Information Series. Number 45.

    ERIC Educational Resources Information Center

    Schwartz, Stanley F.

    This publication discusses optical storage, a term encompassing technologies that use laser-produced light to record and store information in digital form. The booklet also discusses how optical storage systems relate to records management, in particular to the management of local government records in New York State. It describes components of…

  16. Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation.

    PubMed

    Park, Hyung-Youl; Lim, Myung-Hoon; Jeon, Jeaho; Yoo, Gwangwe; Kang, Dong-Ho; Jang, Sung Kyu; Jeon, Min Hwan; Lee, Youngbin; Cho, Jeong Ho; Yeom, Geun Young; Jung, Woo-Shik; Lee, Jaeho; Park, Seongjun; Lee, Sungjoo; Park, Jin-Hong

    2015-03-24

    Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices. PMID:25692499

  17. Optical absorption of Bi/sub 12/SiO/sub 20/ single crystals doped with chromium or nickel

    SciTech Connect

    Orlov, V.M.; Kolosov, E.E.; Shilova, M.V.

    1986-08-01

    In the present work on Bi/sub 12/SiO/sub 20/ single crystals (BSO) undoped and doped with Cr or Ni, the authors studied the room-temperature optical absorption in the range 0.4-1.2 micrometers during emission of the photochromic effect and determined the impurity level energies due to Cr or Ni. The crystals studied were grown by the Czochralski method. In study of the photochromic effect, the authors used ultraviolet radiation from a mercury lamp and radiation from a He-Ne laser. The optical absorption spectral dependences are shown. It is confirmed that observation of photochromic effect in chromium-doped BSO crystals is encumbered by relaxation of their optical transmission. The extent of optical excitation in these sample depends substantially on the time elapsed after irradiation.

  18. Colossal optical transmission through buried metal gratings (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher M.; Liu, Runyu; Zhao, Xiang; Yu, Lan; Li, Xiuling; Wasserman, Daniel M.; Podolskiy, Viktor A.

    2015-09-01

    In Extraordinary Optical Transmission (EOT), a metallic film perforated with an array of [periodic] apertures exhibits transmission over 100% normalized to the total aperture area, at selected frequencies. EOT devices have potential applications as optical filters and as couplers in hybrid electro-optic contacts/devices. Traditional passive extraordinary optical transmission structures, typically demonstrate un-normalized transmission well below 50%, and are typically outperformed by simpler thin-film techniques. To overcome these limitations, we demonstrate a new breed of extraordinary optical transmission devices, by "burying" an extraordinary optical transmission grating in a dielectric matrix via a metal-assisted-chemical etching process. The resulting structure is an extraordinary optical transmission grating on top of a dielectric substrate with dielectric nano-pillars extruded through the grating apertures. These structures not only show significantly enhanced peak transmission when normalized to the open area of the metal film, but more importantly, peak transmission greater than that observed from the bare semiconductor surface. The structures were modeled using three-dimensional rigorous coupled wave analysis and characterized experimentally by Fourier transform infrared reflection and transmission spectroscopy, and the good agreement between the two has been demonstrated. The drastic enhancement of light transmission in our structures originates from structuring of high-index dielectric substrate, with pillars effectively guiding light through metal apertures.

  19. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  20. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    SciTech Connect

    Montero, J. Granqvist, C. G.; Niklasson, G. A.; Guillén, C.; Herrero, J.

    2014-04-21

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

  1. The optical polarization properties of phenanthrenequinone-doped Poly(methyl methacrylate) photopolymer materials for volume holographic storage

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Li, Zhenzhen; Zang, Jinliang; Wu, An'an; Wang, Jue; Lin, Xiao; Tan, Xiaodi; Barada, Daisuke; Shimura, Tsutomu; Kuroda, Kazuo

    2015-10-01

    We present an experimental study on the optical polarization properties of the phenanthrenequinone-doped poly(methyl methacrylate) photopolymer materials. We discuss the diffraction efficiency with different weight ratios of phenanthrenequinone that was dissolved in the materials. In addition, we observe the diffraction efficiency difference between polarization holography and traditional holography.

  2. Optical detection of folded mini-zone-edge coherent acoustic modes in a doped GaAs/AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Beardsley, R.; Akimov, A. V.; Glavin, B. A.; Maryam, W.; Henini, M.; Kent, A. J.

    2010-07-01

    A coherent phonon mode with frequency corresponding to the first mini Brillouin-zone edge stop gap is observed in ultrafast pump-probe measurements on a doped semiconductor superlattice structure. It is proposed that the optical detection of the mode is facilitated by interactions with the free carriers present in the superlattice.

  3. Research Studies on Advanced Optical Module/Head Designs for Optical Disk Recording Devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.; Seery, Bernard D.

    1993-01-01

    The Annual Report of the Optical Data Storage Center of the University of Arizona is presented. Summary reports on continuing projects are presented. Research areas include: magneto-optic media, optical heads, and signal processing.

  4. Linearity in the response of photopolymers as optical recording media.

    PubMed

    Gallego, Sergi; Marquez, Andrés; Guardiola, Francisco J; Riquelme, Marina; Fernández, Roberto; Pascual, Inmaculada; Beléndez, Augusto

    2013-05-01

    Photopolymer are appealing materials for diffractive elements recording. Two of their properties when they are illuminated are useful for this goal: the relief surface changes and the refractive index modifications. To this goal the linearity in the material response is crucial to design the optimum irradiance for each element. In this paper we measured directly some parameters to know how linear is the material response, in terms of the refractive index modulation versus exposure, then we can predict the refractive index distributions during recording. We have analyzed at different recording intensities the evolution of monomer diffusion during recording for photopolymers based on PVA/Acrylamide. This model has been successfully applied to PVA/Acrylamide photopolymers to predict the transmitted diffracted orders and the agreement with experimental values has been increased. PMID:23669956

  5. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-01

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. PMID:25049172

  6. Optical processes in (Y,Bi)VO4 doped with Eu3+ or Pr3+.

    PubMed

    Boutinaud, Philippe

    2014-10-01

    Zircon and fergusonite-type vanadates either undoped or doped with Eu(3+) or Pr(3+) are synthesized in the system (Y,Bi)2O3-V2O5 by solid state and coprecipitation procedures. Their optical properties are investigated at 300 and 77 K and the luminescence mechanisms are discussed on the basis of energy level schemes that combine the host and the dopant states. Fergusonite BiVO4 is shown to glow in the deep red region at 77 K upon excitation at 450 nm and shorter wavelengths. Host sensitization is demonstrated in Eu(3+)-doped fergusonite BiVO4 and zircon BiVO4 at 77 K, but lost as temperature is raised to 300 K. The origin of this effect is addressed by considering the nature of the host-band edge states and self-quenching processes. The near-UV excited luminescence in the system (Y, Bi)VO4:Pr(3+) (zircon) consists of the yellow bandlike emission of the zircon host and of the characteristic red (1)D2 → (3)H4 emission lines of Pr(3+) in vanadates. The relative contribution of these features can be fine-tuned at room temperature by adjusting the composition of the materials or the excitation wavelength. PMID:25219414

  7. Effects of doping and epitaxy on optical behavior of NaNbO3 films

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Inkinen, S.; Pacherova, O.; Chernova, E.; Potucek, Z.; Yao, L. D.; Jelinek, M.; Dejneka, A.; van Dijken, S.; Tyunina, M.

    2015-10-01

    Cube-on-cube epitaxy of perovskite sub-cell of Pr-doped and undoped NaNbO3 is obtained in 130-nm-thick films on top of (La0.18Sr0.82)(Al0.59Ta0.41)O3 (001) substrates. Experimental studies show that the edge of optical absorption red-shifts and some interband transitions change in the films compared to crystals. Bright red luminescence is achieved at room-temperature under ultraviolet excitation in the Pr-doped film. An interband mechanism of luminescence excitation is detected in the film, which is in contrast to the intervalence charge transfer mechanism in the crystal. The results are discussed in terms of epitaxially induced changes of crystal symmetry and ferroelectric polarization in the films. It is suggested that the band structure and interband transitions in NaNbO3 and the transition probabilities in the Pr ions can be significantly modified by these changes.

  8. Optical detection of strain and doping inhomogeneities in single layer MoS2

    NASA Astrophysics Data System (ADS)

    Michail, A.; Delikoukos, N.; Parthenios, J.; Galiotis, C.; Papagelis, K.

    2016-04-01

    Van der Waals single-layer materials are characterized by an inherent extremely low bending rigidity and therefore are prone to nanoscale structural modifications due to substrate interactions. Such interactions can induce excess charge concentration, conformational ripples, and residual mechanical strain. In this work, we employed spatially resolved Raman and photoluminescence (PL) images to investigate strain and doping inhomogeneities in a single layer exfoliated molybdenum disulphide crystal. We have found that correlations between the spectral parameters of the most prominent Raman bands A1' and E' enable us to decouple and quantify strain and charge doping effects. In comparison with Atomic Force Microscopy (AFM) topography, we show that the spatial distribution of the position of the A- -trion PL peak is strain sensitive and its linewidth can capture features smaller than the laser spot size. The presented optical analysis may have implications in the development of high-quality devices based on two-dimensional materials since structural and electronic modifications affect considerably their carrier mobility and conductivity.

  9. Optical initialization and dynamics of spin in a remotely doped quantum well

    SciTech Connect

    Kennedy, T. A.; Scheibner, M.; Efros, Al. L.; Bracker, A. S.; Gammon, D.; Shabaev, A.

    2006-01-15

    The excitation of electron spin polarization and coherence by picosecond light pulses and their dynamics in a wide remotely doped quantum well are studied theoretically and experimentally. Assuming that all electrons in the quantum well are localized, the theory considers the resonant interaction of light pulses with the four-level system formed by the electron spins of the ground state and the hole spins of the trion excited state. The theory describes the effects of spontaneous emission, a transverse magnetic field and hole spin relaxation on the dynamics detected by the Kerr rotation of a probe pulse. Time resolved Kerr rotation experiments were carried out on a remotely doped 14 nm GaAs quantum well in the frequency range of optical transitions to the heavy hole (HH) trion and to the light-hole (LH) trion degenerate with the HH exciton. The experiments on the resonant excitation of the HH trion show a very slow heavy hole spin relaxation and, consequently, a weak electron spin polarization after the trion relaxation. In contrast, the resonant excitation of the LH trion/HH exciton results in a fast hole spin relaxation that increases electron spin polarization.

  10. Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Meredith, Gerald; Jiang, Shibin; Peng, Xiang; Luo, Tao; Peyghambarian, Nasser; Pun, Edwin Yue-Bun

    2003-01-01

    Er3+ doped Nb2O5-TeO2 (NT) glass suitable for developing optical fiber laser and amplifier has been fabricated and characterized. Intense and broad 1.53 μm infrared fluorescence and visible upconversion luminescence were observed under 975 nm diode laser and 798 nm laser excitation. For 1.53 μm emission band, the full width at half-maximum is 51 nm, the fluorescence lifetime is 2.6 ms, and the quantum efficiency is ˜100%. The maximum emission cross section is 8.52×10-21 cm2 at 1.532 μm, and is higher than the values in silicon and phosphate glasses. Under 798 nm excitation, efficient 531, 553, and 670 nm upconversion emissions are due to two-photon absorption processes. The "standardized" efficiency for the green upconversion light is 9.5×10-4, and this value is comparable to that reported for Er3+/Yb3+ codoped fluoride glasses. Intense visible upconversion fluorescence in Er3+ doped NT glass can be used in color display, undersea communication, and infrared sensor.

  11. Synthesis and optical properties of CsC1-doped gallium-sodium-sulfide glasses

    SciTech Connect

    Hehlen, Markus P; Bennett, Bryan L; Williams, Darrick J; Muenchausen, Ross E; Castro, Alonso; Tornga, Stephanie C

    2009-01-01

    Ga{sub 2}S{sub 3}-Na{sub 2}S (GNS) glasses doped with CsCl were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass transition temperatures, refractive index dispersions, and band edge energies were measured for four GNS:CsCl glasses, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. The refractive index dispersion measurements indicate that the Cs{sup +} and Cl{sup -} radii are 16% larger in GNS:CsCl glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in GNS glass to 3.32 eV in GNS glass doped with 20 mol% CsCl as a result of introducing Cl{sup -} ions having a large optical electronegativity. The large bandgap of 3.32 eV and the low (450 cm{sup -1}) phonon energy make GNS:20%CsCl an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  12. Power and length requirements for all-optical switching in semiconductor-doped glass waveguides

    NASA Astrophysics Data System (ADS)

    Mayweather, Derek T.; Digonnet, Michel J. F.; Pantell, Richard H.; Shaw, H. J.

    1994-10-01

    We present a theoretical model that computes the nonlinear index (n2) of semiconductor- doped glasses (SDG), based on the material's properties, and predicts the power and length requirements, as well as the optimum operating wavelengths, for an all-optical SDG waveguide switch. The main conclusions are that (1) n2 depends strongly on pump intensity, which partly explains the large disparity in reported values of n2, (2) the pump and signal wavelengths should be in specific and different ranges to minimize switching power and signal loss, (3) for CdSSe- and CdTe-doped glasses, n2 is relatively small, and the switching power requirement for these two SDGs is consequently quite high (2 - 16 W). We provide evidence that this weak nonlinearity, compared to that of similar semiconductors in bulk, is due to the strong nonradiative recombination of carriers arising from the small size of the semiconductor microcrystallites. Projections indicate that the switching power would be reduced by up to three orders of magnitude by increasing the microcrystallite size, thus producing a slower (ns) but more power-efficient switch.

  13. Optical spectroscopy of Pr3+-doped γ-BiB3O6 crystals

    NASA Astrophysics Data System (ADS)

    Yelisseyev, A.; Isaenko, L.; Korolev, V.; Stoyanovsky, V.; Gets, V.; Naumov, D.; Ilyina, O.

    2013-12-01

    Single crystals of Pr3+-doped γ-BiB3O6 of optical quality were grown. Band gap is 4.16 eV at 80 K, which differs only slightly from that for undoped samples. Pr concentration is 2 × 1020 cm-3 and the dopant is distributed uniformly along the crystal. Absorption cross-section for Pr3+ was estimated to be ˜1 × 10-20 cm2. At X-ray and UV, band-to-band excitation the Pr:γ-BiB3O6 crystals demonstrate an intense emission in the 450 nm broad band, which is related mainly to recombination of self-trapped excitons (STE). A part of energy is transferred radiatively to Pr3+ ions. The STE emission quenches as temperature increases to 250 K with simultaneous decrease of the decay time from 11 μs to 17 ns. Intensity and decay time of the Pr3+ intracenter luminescence with τ ˜ 50 μs at 450 nm excitation do not depend on temperature. Intensity of thermoluminescence in the 150-400 K range quenches 2 orders at Pr doping, and parameters of the traps were estimated. As a result of relatively narrow band gap in γ-BiB3O6:Pr3+, there is no cascade luminescence typical of many wide-band-gap matrices.

  14. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications.

    PubMed

    Liu, Yongsheng; Tu, Datao; Zhu, Haomiao; Chen, Xueyuan

    2013-08-21

    Lanthanide-doped inorganic nanoparticles possess superior physicochemical features such as long-lived luminescence, large antenna-generated Stokes or anti-Stokes shifts, narrow emission bands, high resistance to photobleaching and low toxicity, and thus are regarded as a new generation of luminescent bioprobes as compared to conventional molecular probes like organic dyes and lanthanide chelates. These functional nanoparticles, although most of their bulk counterparts were well studied previously, have attracted renewed interest for their biomedical applications in areas as diverse as biodetection, bioimaging, and disease diagnosis and therapeutics. In this review, we provide a comprehensive survey of the latest advances made in developing lanthanide-doped inorganic nanoparticles as potential luminescent bioprobes, which covers areas from their fundamental chemical and physical features to bioapplications including controlled synthesis methodology, surface modification chemistry, optical spectroscopy, and their promising applications in diverse fields, with an emphasis on heterogeneous and homogeneous in vitro biodetection of tumor markers and multimodal bioimaging of various tumor tissues. Some future prospects and challenges in this rapidly growing field are also summarized. PMID:23775339

  15. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  16. Optical, structural and microhardness properties of KDP crystals grown from urea-doped solutions

    SciTech Connect

    Pritula, I. Kosinova, A.; Kolybayeva, M.; Puzikov, V.; Bondarenko, S.; Tkachenko, V.; Tsurikov, V.; Fesenko, O.

    2008-10-02

    Potassium dihydrophosphate single crystals were grown from aqueous solutions onto a point seed using temperature reduction method by doping with different molar values of urea. The characterization of the grown crystals was made by visible and Fourier transform infrared spectroscopy, Vicker's hardness studies, X-ray powder diffraction, non-linear optical and laser damage threshold measurements. By comparing these crystals with the ones grown from the pure solution, it is shown that 0.2-2.0 M of the urea additive enhances the laser damage threshold and the second harmonic efficiency more than by 25 and 20%, respectively. By means of the Bond method using a multipurpose three-crystal X-ray diffractometer it is shown that the presence of urea additive increases the crystal lattice parameter c of the grown crystals, whereas the lattice parameter a is by an order less sensitive to the changing urea concentration in the solution. The Vicker's hardness studies at room temperature carried out on (1 0 0) and (0 0 1) crystallographic planes show an increased hardness of the doped crystals (grown in the presence of urea additive) on the plane (0 0 1) in comparison with that of pure potassium dihydrophosphate crystal.

  17. Optical and spectroscopic characterization of Er3+-Yb3+co-doped tellurite glasses and fibers

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; Chillcce, E. F.; Barbosa, L. C.; Rodriguez, E.; De la Rosa, E.

    2014-04-01

    Optical and spectroscopic properties of Er3+-Yb3+ co-doped TeO2-WO3-Nb2O5-Na2O-Al2O3 glasses and fibers were investigated. Emission spectra and fluorescence lifetimes of 4I13/2 level of Er3+ion as a function of rare earth concentration and fiber length were measured in glasses. Results show that the self-absorption effect broadens the spectral bandwidth of 4I13/2→4I15/2 transition and lengthens the lifetime significantly from 3.5 to 4.6 ms. Fibers were fabricated by the rod-in-tube technique using a Heathway drawing tower. The emission power of these Er3+-Yb3+ co-doped Step Index Tellurite Fibers (SITFs; lengths varying from 2 to 60 cm) were generated by a 980 nm diode laser pump and then the emission power spectra were acquired with an OSA. The maximum emission power spectra, within the 1530-1560 nm region, were observed for fiber lengths ranging from 3 to 6 cm. The highest bandwidth obtained was 108 nm for 8 cm fiber length around 1.53 µm.

  18. Novel nanostructures and optical properties of silver doped sodium phosphate thin films.

    PubMed

    Singh, Punita; Deepa, M; Srivastava, A K; Sood, K N; Kar, M

    2009-11-01

    (50-x)Na2O-50P2O5-xAgCl (x = 0 to 15 mol%) glasses in bulk form were synthesized using melt-quenching technique. Thin films of these silver doped sodium phosphate glasses were deposited by thermal evaporation process. The influence of deposition of these glasses in thin film form and subsequent annealing at 600 degrees C on the structure and optical properties such as transmittance, reflectance, refractive index and band gap have been investigated in detail. X-ray diffraction studies of the as-deposited films show the films to be amorphous whereas annealed films show existence of orthorhombic and monoclinic phase of NaPO3 along with crystalline cubic phase of AgCl in doped glasses. Structural investigations of these annealed films show unique morphologies (needle-like and granular) at nano-scale. Both as-fabricated and annealed films are poor reflectors but show high transmittance in the entire spectral region under consideration, which is a direct consequence of particle size effects. Indirect band gap narrowing and variation in refractive index upon annealing is consistent with nanostructural transformations in these samples. PMID:19908577

  19. Electronic and Optical Properties of Nitrogen Doped SiC Nanocrystals: First Principles Study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2013-05-01

    A typical nitrogen doped spherical SiC nanocrystal with a diameter of 1.2 nm (Si43C44H76) using linear combination atomic orbital (LCAO) in combination with pseudopotential density functional calculation have been studied. Our selected SiC nanocrystal has been modeled taking all the cubic bulk SiC atoms contained within a sphere of a given radius and terminating the surface dangling bonds with hydrogen atoms. We have examined nine possible situations in which nitrogen has a high probability for replacement in the lattice or placed between atoms in the nanocrystal. We have found that the silicone can substitute with a nitrogen atom in each layer as the constructed nanocrystals remain thermodynamically stable. Also the nitrogen atom can be placed between the free atomic spaces as the more thermodynamically stable position of the nitrogen is between the topmost layers. Also the optical absorption and refractive index energy dispersions of the pure and various stable doped SiC nanocrystals were studied.

  20. Optical Properties of Cu-Doped ZnO Films Prepared by Cu Solution Coating.

    PubMed

    Allabergenov, Bunyod; Chung, Seok-Hwan; Kim, Sungjin; Choi, Byeongdae

    2015-10-01

    This work demonstrates the fabrication of Cu-doped ZnO films by Cu solution coating method. Cu ink was spin coated on ZnO thin films prepared by e-beam deposition. After curing and annealing at high temperatures, structural, morphological and optical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrofluorometer, respectively. The XRD results showed that ZnO films formed polycrystalline with a hexagonal wurtzite structure, and the grain size increased with increasing the annealing temperature from 500 to 850 °C. The changes in lattice parameters were caused by grain size, strain, and residual stress. Morphological analysis have revealed that the Cu-doped ZnO film after annealing at 500 °C has flat surface with uniformly distributed grain size, which became porous after higher temperature annealing process. Energy dispersive spectroscopy (EDS) and photoluminescence spectras have shown the presence of Zn, Cu, and O elements, and combined violet, blue, green and weak red emissions between 350 and 650 nm in the ZnO films, respectively. PMID:26726392

  1. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  2. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device.

    PubMed

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 V(rms). This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  3. Synthesis and optical characterization of lanthanide-doped colloidal Ga2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wawrzynczyk, Dominika; Nyk, Marcin; Samoc, Marek

    2015-07-01

    We demonstrate the use of thermal decomposition reaction to obtain Ga2O3 nanoparticles with average size around 5 nm. The obtained nanoparticles presented a good colloidal stability and high optical transparency. We were also able to incorporate Eu3+ and Tb3+ ions inside the crystal host. The synthesized nanomaterials exhibited dual mode emission upon UV excitation, consisting of a broad band in the blue region and a characteristic series of sharp lines. The former resulted from donor-acceptor pairs recombination in Ga2O3 host, while the latter from 4f-4f electronic transitions in lanthanide ions. For fuller optical characterization of the obtained nanoparticles, we have performed wide wavelength range Z-scan studies, and calculated the values of nonlinear absorption cross-sections. Gallium (III) oxide nanoparticles showed two-photon absorption in the range between 500 nm and 700 nm, with molecular weight scaled nonlinear optical parameters exceeding the values for other lanthanide-doped nanoparticles of similar size.

  4. Optical properties of vanadium-doped ZnTe thin cermet films for selective surface applications

    NASA Astrophysics Data System (ADS)

    Hossain, M. S.; Islam, R.; Khan, K. A.

    2007-06-01

    ZnTe:V thin cermet films (containing 0 to 10wt% V in ZnTe matrix) were prepared onto glass substrate by e-beam evaporation in vacuum at ~10 -6 torr. The deposition rate of the films was at about 2.05 nms -1. The effects of various deposition conditions on the electrical and optical properties of the cermet films have been studied in detail. The structure analysis of the film was performed by X-ray diffraction technique and it was found that the films are amorphous in nature. The optical properties of both the as-deposited and annealed films were studied in the wavelength range 300<λ<2500 nm, respectively. The special feature of transmittance spectra is that as the doping vanadium is increased to a concentration of 2.5wt% V, the transmittance value is increased in the entire visible & infra-red up to λ=1600 nm and beyond that concentration value, the transmittance is decreased. Similar behavior has also been observed in annealed films. For both types of cermet sample, the values of Urbach tail, optical band gap, refractive index and dielectric constants were evaluated for different compositions and thicknesses, respectively. Evaluation of these parameters may help in view of their technological applications in selective surface as well as in optoelectronic devices.

  5. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  6. Optically Encoded Second-Harmonic Generation in Semiconductor Microcrystallite-Doped Glass: Physics and Applications.

    NASA Astrophysics Data System (ADS)

    MacDonald, Robert Lawrence

    Semiconductor microcrystallite-doped glasses (SDG) are presented as a new class of materials for optically encoded second harmonic generation. The encoding and readout behavior of SDG is compared with that observed in homogeneous glass. An encoding model for SDG, based on directional trapping of electrons at the semiconductor-glass interface, is developed and shown to be consistent with the observed behavior and with known properties of SDG. Measured optical erasure rates of the encoded SDG provide evidence for the microscopic details of the encoding, and above bandgap erasure is used to observe charge screening in the semiconductor nanocrystals. Quantum confinement effects are observed in the intensity dependence of the encoding efficiency. Ion -exchanged ridge and channel waveguides in SDG are fabricated and encoded with as little as 2 mW average power. The measured readout wavelength dependence in bulk homogeneous glass is consistent with encoding of a chi ^{(2)} grating having a period slightly shifted from that required for quasi-phasematched second harmonic generation at the encoded wavelength. Multiple wavelength encoding is demonstrated and proposed as a new technique for optical storage and readout of information.

  7. Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Suresh, P.

    2012-09-01

    Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and 'c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.

  8. Optically detected cyclotron resonance in heavily boron-doped silicon nanostructures on n-Si (100)

    SciTech Connect

    Bagraev, N. T. Kuzmin, R. V.; Gurin, A. S.; Klyachkin, L. E.; Malyarenko, A. M.; Mashkov, V. A.

    2014-12-15

    Electron and hole cyclotron resonance at a frequency of 94 GHz is detected by a change in the intensity of photoluminescence lines whose positions are identical to those of dislocation luminescence lines D1 and D2 in single-crystal silicon and in heavily boron-doped silicon nanostructures on the Si (100) surface. The angular dependence of the spectrum of the optically detected cyclotron resonance corresponds to the tensor of the electron and hole effective mass in single-crystal silicon, and the resonance-line width indicates long carrier free-path times close to 100 ps. The results obtained are discussed within the framework of the interrelation of the electron-vibration coupling to charge and spin correlations in quasi-one-dimensional chains of dangling bonds in silicon.

  9. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  10. The relationship between magnetism and magneto-optical effects in rare earth doped aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Valeanu, M.; Sofronie, M.; Galca, A. C.; Tolea, F.; Elisa, M.; Sava, B.; Boroica, L.; Kuncser, V.

    2016-02-01

    Aluminophosphate glasses from the Li2O-BaO-Al2O3-P2O5 system with the addition of nonmagnetic and paramagnetic rare earth ions, were prepared using a wet nonconventional method to process the raw materials, followed by a melting-quenching procedure. The glasses obtained were characterized with respect to their magnetic and magneto-optical properties using superconducting quantum interference device magnetometry and spectroscopic ellipsometry. The assumption of a linear dependence of the Verdet constant on the magnetic susceptibility, with a proportionality constant dependent on the type of vitreous matrix and doping ion, is critically discussed. The diamagnetic and paramagnetic contributions to the Faraday rotation were separately analyzed and specific designs for optimal active and passive elements are proposed.

  11. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    SciTech Connect

    Naseem, Swaleha; Khan, Wasi Singh, B. R.; Naqvi, A. H.

    2015-06-24

    Strontium and nickel doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ε’) decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner’s two layer model in studied nanoparticles.

  12. Accelerated two-wave mixing response in erbium-doped fibers with saturable optical absorption

    NASA Astrophysics Data System (ADS)

    Hernandez, Eliseo; Stepanov, Serguei; Plata Sanchez, Marcos

    2016-08-01

    The contribution of the spatially uniform variation of average optical absorption to the dynamics of the transient two-wave mixing (TWM) response is considered. It is shown theoretically and confirmed experimentally that this transient effect, via dynamic population gratings in erbium-doped fibers (EDFs) can ensure a response nearly two times faster in such gratings as compared to the growth rate of fluorescence uniformly excited under similar conditions, and can also result in an additional overshot in the tail of the TWM response. This additional ‘accelerating’ contribution is of even type, and does not influence the odd transient TWM response for the refractive index component of such gratings in the EDFs reported earlier. It is also shown that this effect can be utilized to monitor the formation of the dynamic grating with an auxiliary probe wave of the essentially different non-Bragg wavelength.

  13. Synthesis, effect of capping agents and optical properties of manganese-doped zinc sulphide nanoparticles.

    PubMed

    Murugadoss, G; Ramasamy, V

    2013-01-01

    Mn(2+)-doped ZnS nanoparticles have been successfully synthesized by a chemical precipitation method, using non-ionic surfactants such as PMMA and PEG. The particles were prepared in an air atmosphere at 80 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible and photoluminescence (PL) studies were used to investigate the effect of the capping agent on the size, morphology and optical properties of the ZnS-Mn(2+) nanoparticles. Enhanced PL was observed from the surfactant-capped ZnS-Mn(2+) nanoparticles. The PL spectra showed a broad blue emission band in the range 460-445 nm and a Mn(2+)-related yellow-orange emission band in the range 581-583 nm. PMID:22730304

  14. Triphenylmethane dye-doped gelatin films for low-power optical phase-conjugation

    NASA Astrophysics Data System (ADS)

    Geethakrishnan, T.; Sakthivel, P.; Palanisamy, P. K.

    2015-01-01

    We have studied degenerate four-wave mixing (DFWM) based optical phase-conjugation (OPC) in few triphenylmethane (Acid blue 7, Acid blue 9, Acid blue 1 and Methyl green) dye-doped gelatin films using a 633 nm He-Ne laser radiation of total power 35 mW. Phase-conjugate (PC) reflectivity from the dye films was measured by varying the experimental parameters such as incident angle between the pump-probe beams in the DFWM geometry, dopant concentrations of the gelatin film, probe beam intensity and read-out beam intensity. The maximum PC reflectivity was observed in the Acid blue 7, Acid blue 9, Acid blue 1 and Methyl green sensitized gelatin films were 0.22%, 0.24%, 0.07% and 0.13%, respectively. The origin of the mechanism of the PC wave generation from these dye films is also reported.

  15. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Wasi; Singh, B. R.; Naqvi, A. H.

    2015-06-01

    Strontium and nickel doped lanthanum ferrite (LaFeO3) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ɛ') decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop's theory based on Maxwell-Wagner's two layer model in studied nanoparticles.

  16. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  17. Room temperature optical and dielectric properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2016-05-01

    The citrate sol gel combustion method has been used to synthesize (Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19 hexaferrites. Microstructural analyses were carried out by XRD and FTIR. Optical properties were studied by UV-visible technique in the range of 300-800 nm. The energy band gap was calculated with the help of Tauc relationship shows increases in band gap. Ca and Ni doped barium ferrite annealed at 850°C exhibit significant dispersion in complex permeability. The dispersion in complex dielectric constant can be explained on the basis of Koop's theory based on Maxwell-Wagner two layer models in studied nanoparticles.

  18. Optical properties of Pr-doped BaY{sub 2}F{sub 8}

    SciTech Connect

    Andrade, Adriano B. Mello, Ana C. S. de; Valerio, Mário E. G.; Rezende, Marcos V. dos S.; Baldochi, Sonia L.

    2014-08-07

    Crystalline samples of Pr-doped BaY{sub 2}F{sub 8} (BaYF) were prepared by zone melting technique. The pure phase obtained was identified by X-ray diffraction measurement. Optical absorption result was evaluated and it showed that the formation of the absorption bands can be connected to color centers generated by radiation in the matrix. Radioluminescence emission measurements after excitation by X-ray showed that the material exhibited components responsible for long lasting phosphorescence. Short decay times were also evaluated, the measurements showed a fast component around 70 ns associated to the 4f{sup 1}5d{sup 1} → 4f{sup 2} transition of the Pr{sup 3+} ion. The Thermoluminescence (TL) results indicate the presence of two trapping centers.

  19. Physical, thermal, infrared and optical properties of Nd3+ doped lithium-lead-germanate glasses

    NASA Astrophysics Data System (ADS)

    Veeranna Gowda, V. C.

    2015-01-01

    The structure-property relationships of neodymium doped lithium-lead-germanate glasses were investigated. The density was found to increase with the increase of Nd2O3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV-visible spectroscopy. The refractive index values varied nonlinearly with Nd2O3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO4/2], [GeO6/2] and [PbO4/2] structural units.

  20. Growth and optical properties of Mg, Fe Co-doped LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Fang, Shuangquan; Ma, Decai; Zhang, Tao; Ling, Furi; Wang, Biao

    2006-02-01

    Mg, Fe double-doped LiTaO3 and LiNbO3 crystals have been grown by Czochralski method. The optical properties were measured by two-beam coupling experiments and transmitted facula distortion method. The results showed that the photorefractive response speed of Mg:Fe:LiTaO3 was about three times faster than that of Fe:LiTaO3, whereas the photo-damage resistance was two orders of magnitude higher than that of Fe:LiTaO3. In this paper, site occupation mechanism of impurities was also discussed to explain the high photo-damage resistance and fast response speed in Mg:Fe:LiTaO3 crystal.

  1. Structural and optical characterization of Er3+ doped zinc telluroborate glasses for green laser applications

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Ravindran, T. R.; Murthy, N. Suriya; Marimuthu, K.

    2015-06-01

    A new series of Erbium doped Zinc telluroborate glasses were prepared by melt quenching technique. The stretching and bending vibrations of the B-O and Te-O bonds in the prepared glass network were explored through Raman spectra. The nature of the metal-ligand bond was determined using optical absorption spectra through Nephelauxetic ratio (β) and Bonding parameter (δ) studies. The Judd-Ofelt (JO) parameters (Ω2, Ω4, Ω6) and the oscillator strengths were calculated following JO theory. The relatively higher Ω2 values reveal the higher asymmetry nature. The green emission corresponding to the 2H11/2+4S3/2→4I15/2 transition was observed at around 550 nm and the luminescence quenching occurs beyond 1.0 wt% of Erbium ion concentration. Radiative properties for the 1.0EZTB glass are found to be higher and its suitability towards green laser applications were discussed and reported.

  2. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  3. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  4. The influence of diffusion temperature on the structural, optical and magnetic properties of manganese-doped zinc oxysulfide thin films

    NASA Astrophysics Data System (ADS)

    Polat, İ.; Aksu, S.; Altunbaş, M.; Yılmaz, S.; Bacaksız, E.

    2011-10-01

    We investigated the structural, optical and magnetic properties of Mn-doped zinc oxysulfide films. Zn(O,S) films were deposited by a spray pyrolysis method on glass substrate. A thin Mn layer evaporated on these films served as the source for the diffusion doping. The XRD pattern of undoped films revealed the presence of two wurtzite phases corresponding to ZnS and ZnO with a strong preferred orientation along the ZnS (0 0 2) hexagonal plane direction. SEM showed a similar surface morphology for the undoped and Mn-doped films, displaying regular arrays of hexagonal micro-rods perpendicular to the substrate. The optical transmission measurements showed that both undoped and Mn diffusion-doped films had a low average transmittance less than about 10%. The gap energy is decreased from 3.42 to 3.33 eV upon annealing at 400 °C. Photoluminescence studies at 300 K show that the incorporation of manganese leads to a decrease of deep level band intensity compared to undoped sample. Clear ferromagnetic loops were observed for the Mn-doped Zn(O,S) films, which might be due to the presence of point defects.

  5. Optical properties of undoped and tin-doped nanostructured In2O3 thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Fellahi, Nabil; Addou, Mohammed; Kachouane, Amina; El Jouad, Mohamed; Sofiani, Zouhair

    2016-05-01

    Tin-doped indium oxide (In2O3:Sn) thin films in different concentrations (Sn = 0, 3, 5, 8 at.%) were deposited by reactive chemical pulverisation spray pyrolysis on heated glass substrates at 500 °C. The effect of the tin dopant on the nonlinear optical properties was investigated using X-ray diffraction, transmission, electrical resistivity and third harmonic generation (THG). All films were polycrystalline, and crystallised in a cubic structure with a preferential orientation along the (400) direction. The Sn (5 at.%) doped In2O3 thin films exhibited a lower resistivity of 3 × 10-4 Ω cm, and higher transmission in the visible region of about 94%. Optical parameters, such as the extinction coefficient (k), refractive index (n) and energy band gap (Eg), were also studied to show the composition-dependence of tin-doped indium oxide films. The nonlinear properties of the In2O3:Sn thin films have been found to be influenced by doping concentration, and the best value of χ(3) = 3 × 10-11 (esu) was found for the 5 at.% doped sample. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    NASA Astrophysics Data System (ADS)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  7. New Optical Card for Sneaker’s Network in Place of Electronic Clinical Record

    NASA Astrophysics Data System (ADS)

    Goto, Kenya; Satsukawa, Takatoshi; Chiba, Seisho; Ohmori, Takaaki

    2006-02-01

    In order to solve problems in electronic medical records, a new optical card of the digital versatile disk (DVD) type with higher capacity and lower cost than conventional compact disc recording (CD-R)-type cards has been developed, which is thinner, stronger and wearable like a credit card.

  8. Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    Hu, Shuanglin; Li, S.-Y.; Ahuja, R.; Granqvist, C. G.; Hermansson, K.; Niklasson, G. A.; Scheicher, R. H.

    2012-11-01

    Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < ħω < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  9. Optical properties of Eu2O3 doped lead fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Mahato, K. K.; Lakshmikanth, R.; Rajaramakrishna, R.; Kamath, Sudha D.

    2012-06-01

    A series of Lead Fluoroborate glasses having composition (mol%) 20 PbF2 - 20 TeO2 - (60-x) B2O3 - xEu2O3 were prepared by doping with different concentration of rare earth element Europium (Eu3+) using the normal melt-quench technique (with x = 0.0, 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%). The physical parameters like mass density, refractive index, number density, molar refraction, electronic polarizability of theses glasses were found as a function of dopant concentration. The absorption spectra of these glasses were recorded in the UV-VIS range. No sharp edges were found in the spectra, which verify the amorphous nature of theses glasses.

  10. Optical properties of Mg-doped VO{sub 2}: Absorption measurements and hybrid functional calculations

    SciTech Connect

    Hu Shuanglin; Li, S.-Y.; Granqvist, C. G.; Niklasson, G. A.; Ahuja, R.; Scheicher, R. H.; Hermansson, K.

    2012-11-12

    Mg-doped VO{sub 2} thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < h{omega} < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  11. A high transmittance optical recording material with long-term reliability for super-multilayer discs

    NASA Astrophysics Data System (ADS)

    Shimomai, Kenichi; Asano, Sho; Oshita, Junji; Matsuda, Isao; Kojo, Shinichi; Murai, Wakaaki; Hattori, Masashi; Shimizu, Atsuo; Fujii, Toru

    2015-09-01

    As a means of increasing data capacity, the multilayer optical disc is a promising approach. Because the recording layers in multilayer optical discs must have a high transmittance, they are commonly made of transparent oxide films. Moreover, the recording layer must have sufficient long-term reliability for data archival. In this work, a recording material with high transmittance and long-term reliability for use in super-multilayer discs was investigated. This paper clarifies the recording mechanism of GeBi oxide material and proposes a suitable material design that satisfies the abovementioned characteristics. Furthermore, experimental results of recording on super-multilayer discs based on GeBi oxide recording material are presented.

  12. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations

    NASA Astrophysics Data System (ADS)

    Jinliang, Yan; Chong, Qu

    2016-04-01

    The effects of F-doping concentration on geometric structure, electronic structure and optical property of β-Ga2O3 were investigated. All F-doped β-Ga2O3 with different concentrations are easy to be formed under Ga-rich conditions, the stability and lattice parameters increase with the F-doping concentration. F-doped β-Ga2O3 materials display characteristics of the n-type semiconductor, occupied states contributed from Ga 4s, Ga 4p and O 2p states in the conduction band increase with an increase in F-doping concentration. The increase of F concentration leads to the narrowing of the band gap and the broadening of the occupied states. F-doped β-Ga2O3 exhibits the sharp band edge absorption and a broad absorption band. Absorption edges are blue-shifted, and the intensity of broad band absorption has been enhanced with respect to the fluorine content. The broad band absorption is ascribed to the intra-band transitions from occupied states to empty states in the conduction band. Project supported by the Innovation Project of Shandong Graduate Education, China (No. SDYY13093) and the National Natural Science Foundation of China (No. 10974077).

  13. Effect of Fe-doping on nonlinear optical responses and carrier trapping dynamics in GaN single crystals

    SciTech Connect

    Fang, Yu; Yang, Junyi; Yang, Yong; Zhou, Feng; Wu, Xingzhi; Xiao, Zhengguo; Song, Yinglin

    2015-08-03

    We presented a quantitative study on the Fe-doping concentration dependence of optical nonlinearities and ultrafast carrier dynamics in Fe-doped GaN (GaN:Fe) single crystals using picosecond Z-scan and femtosecond pump-probe with phase object techniques under two-photon excitation. In contrast to the two-photon absorption that was found to be independent on the Fe-doping, the nonlinear refraction decreased with the Fe concentration due to the fast carrier trapping effect of Fe{sup 3+}/Fe{sup 2+} deep acceptors, which simultaneously acted as an efficient non-radiative recombination channels for excess carriers. Remarkably, compared to that of Si-doped GaN bulk crystal, the free-carrier refraction effect in GaN:Fe crystals was found to be enhanced considerably since Fe-doping and the effective carrier lifetime (∼10 ps) could be tuned over three orders of magnitude at high Fe-doping level of 1 × 10{sup 19 }cm{sup −3}.

  14. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles

    NASA Astrophysics Data System (ADS)

    Shujuan, Jiao; Jinliang, Yan; Guipeng, Sun; Yinnü, Zhao

    2016-07-01

    The n-type Nb-doped SrTiO3 with different doping concentrations were studied by first principles calculations. The effects of Nb concentration on the formation enthalpy, electronic structure and optical property were investigated. Results show that Nb preferentially enters the Ti site in SrTiO3, which is in good agreement with the experimental observation. The Fermi level of Nb-doped SrTiO3 moves into the bottom of the conduction band, and the system becomes an n-type semiconductor. The effect of Nb-doping concentration on the conductivity was discussed from the microscopic point of view. Furthermore, the 1.11 at% Nb-doped SrTiO3 shows strong absorption in the visible light and becomes a very useful material for photo-catalytic activity. The 1.67 at% and 2.5 at% Nb-doped models will be potential transparent conductive materials. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  15. Effect of boron doping on optical properties of sol-gel based nanostructured zinc oxide films on glass

    SciTech Connect

    Jana, Sunirmal; Vuk, Angela Surca; Mallick, Aparajita; Orel, Boris; Biswas, Prasanta Kumar

    2011-12-15

    Graphical abstract: Room temperature fine structured UV-vis PL emissions (a) as phonon replicas in 1 at.% boron doped film originated from LO phonon evidenced from Near Grazing Incidence Angle (NGIA) IR spectral study (b). Highlights: Black-Right-Pointing-Pointer Sol-gel based boron doped nanostructured ZnO thin films deposited on pure silica glass using crystalline boric acid as boron source. Black-Right-Pointing-Pointer Observed first time, room temperature fine structured PL emissions in 1 at.% doped film as phonon replicas originated from LO phonon (both IR and Raman active). Black-Right-Pointing-Pointer Boron doping controls the LO phonon energy in addition to visible reflection, band gap and grain size. Black-Right-Pointing-Pointer The films possessed mixed crystal phases with hexagonal as major phase. -- Abstract: Boron doped zinc oxide thin films ({approx}80 nm) were deposited onto pure silica glass by sol-gel dip coating technique from the precursor sol/solution of 4.0 wt.% equivalent oxide content. The boron concentration was varied from 0 to 2 at.% w.r.t. Zn using crystalline boric acid. The nanostructured feature of the films was visualized by FESEM images and the largest cluster size of ZnO was found in 1 at.% boron doped film (B1ZO). The presence of mixed crystal phases with hexagonal as major phase was identified from XRD reflections of the films. Particle size, optical band gap, visible specular reflection, room temperature photoluminescence (PL) emissions (3.24-2.28 eV), infra-red (IR) and Raman active longitudinal optical (LO) phonon vibration were found to be dependent on dopant concentration. For the first time, we report the room temperature fine structured PL emissions as phonon replicas originated from the LO phonon (both IR and Raman active) in 1 at.% boron doped zinc oxide film.

  16. Synthesis, structural and optical properties of Sm{sup 3+} and Nd{sup 3+} doped cadmium sulfide nanocrystals

    SciTech Connect

    L, Saravanan; R, Jayavel; A, Pandurangan; Jih-Hsin, Liu; Hsin-Yuan, Miao

    2014-04-01

    Graphical abstract: Samarium (Sm{sup 3+}) and neodymium (Nd{sup 3+}) doped cadmium sulfide nanocrystals have been prepared via precipitation method. The structural and the luminescent properties of the as-synthesised nanocrystals have been discussed. - Highlights: • Cubic phase lanthanide ion doped cadmium sulfide nanocrystals were prepared by co-precipitation method. • HRTEM displays randomly aggregated nanoparticles with well-defined lattice fringes. • Energy gap and optical properties were affected by the different doping ions. • Effect of Sm and Nd ion doping on photo-emission of CdS nanocrystals was clarified. - Abstract: Cubic phase samarium (Sm{sup 3+}) and neodymium (Nd{sup 3+}) doped cadmium sulfide nanocrystals were synthesized through the chemical co-precipitation method. The crystallite size computed with high intense (1 1 1) peak using Scherrer formula was ∼3 nm. Morphology was examined with scanning electron microscopy (SEM). The transmission electron microscopy (TEM) images further established the formation of nanoclusters and EDAX spectra confirms the presence of cadmium, sulphide and rare earth elements in the sample. SAED pattern shows the crystallinity of the synthesized sample. Blue shift in the bandgap energy in the reflectance UV spectra, illustrates size quantization effect and dopant ion incorporation into the host lattice. The effect of doping concentrations of Sm{sup 3+} and Nd{sup 3+} on the luminescence spectra of CdS was studied. The emission spectra revealed that the intensity increased considerably in the presence of dopant ions. The variation in the optical properties and the enhancement in the luminescence were discussed for different doping levels.

  17. Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique

    NASA Astrophysics Data System (ADS)

    Matsuoka, Nobuaki; Kitaoka, Kenji; Si, Jinhai; Fujita, Koji; Hirao, Kazuyuki

    2000-11-01

    4-[ N-ethyl- N-(2-hydroxyethyl)]amino-4 '-nitro-azobenzene (DR1)-doped phenyl group substituted silica films were prepared by a sol-gel method. The films were optically poled by the coherent superposition of 1064 and 532 nm beams from a Q-switched Nd:YAG laser. To discuss the effects of the modifier group, interaction between DR1 molecules and the matrix was investigated. The delocalization of π electrons occurred between DR1 molecules and the phenyl-silica hybrid matrix, and that consequently the polarized DR1 molecules could be stabilized. By use of the optimized optical poling technique, optical storage was successfully demonstrated for a phenyl-silica hybrid film doped with DR1.

  18. KDP crystal doped with L-arginine amino acid: growth, structure perfection, optical and strength characteristics

    NASA Astrophysics Data System (ADS)

    Pritula, I. M.; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Kolybaeva, M. I.; Sofronov, D. S.; Dolzhenkova, E. F.; Kanaev, A.; Tsurikov, V.

    2016-07-01

    Potassium Dihydrogen Phosphate (KDP) crystal doped with L-arginine (L-arg) amino acid with 1.4 wt% concentration in the solution was grown onto a point seed by the method of temperature reduction. For the first time an attempt was made to grow large-size (7 × 6 × 8 cm3) optically transparent crystals, which allowed to analyze the effect of L-arg additive on the physical properties of the different growth sectors ({100} and {101}) of KDP. The incorporation of L-arg into both growth sectors of the crystal was confirmed by the methods of optical and IR spectroscopy and found to be caused by the ability of the amino acid to form hydrogen bonds with the face {100} and electrostatically interact with the positively charged face {101} of KDP crystal. A slight variation in the unit cell parameters was reported, the elementary cell volume of KDP:L-arg crystal increased in comparison with the one of pure KDP by 2·10-2 and 2.07·10-2 Å3 in the sectors {100} and {101}, respectively. It was found that the doping of L-arg enhanced the SHG efficiency of KDP and depended on the crystal growth sectors. The SHG efficiency of KDP:L-arg was by a factor 2.53 and 3.95 higher in comparison with those of pure KDP for {101} and {100} growth sector, respectively. The doping was found to lead to softening of both faces by ∼3-10% and ∼14-17% in the sectors {101} and {100}, respectively. Investigation of the influence of L-arg molecules on the bulk laser damage threshold of the crystals showed that the bulk laser damage threshold of the samples of KDP:L-arg crystal was higher than the one of the pure crystal in the sector {101} and lower in the sector {100}. The correlation between microhardness and laser damage threshold were discussed. The study is helpful for further searching, designing and simulation of hybrid NLO materials.

  19. Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Zhao, Hua; Zou, Yingyin K.; Chen, Xuesheng; Bartolo, Baldassare Di; Zhang, Jingwen W.

    2011-08-01

    Optical amplification was observed in electro-optic (EO) ceramic plates of neodymium doped lanthanum-modified lead zirconate titanate (Nd3+:PLZT), when the pumping and seeding beams are not overlapped temporarily. This striking feature in the gain measurement and the accompanying slowly trailing-off both seen in the optical amplification as well as in the lasing action are satisfactorily explained by electron releasing from the rich vacancy-based carrier traps in the intrinsically disordered ceramics, i.e., the consecutively optical, thermal stimuli are found responsible for the long persistent optoenergy storage, and consequently the slow response of the gain dynamics. These findings in optical amplification, the slowly trailing-off, and the underlying mechanism have opened a new way of developing novel controllable optical devices. The model thus established could serve as a guide in design and refinement of a new generation of products out of this excellent, well commercialized EO PLZT ceramics family and similar others.

  20. Ultrahigh-Density Storage Media for Near-Field Optical Recording

    NASA Astrophysics Data System (ADS)

    Hieda, Hiroyuki; Naito, Katsuyuki; Ishino, Takashi; Tanaka, Kuniyoshi; Sakurai, Masatoshi; Kamata, Yoshiyuki; Morita, Seiji; Kikitsu, Akira; Asakawa, Koji

    Two types of recording media possessing nano-dot structures were investigated. The media were prepared by an artificially assisted (or aligned) self-assembling (AASA) method, which includes simple nano-patterning using a nano-imprint and fine nano-patterning using self-assembling organic molecules. The AASA method were successfully applied to fabricate magnetic patterned media for opto-magnetic hybrid recordings and fluorescent organic dye media for near-field optical recording.