Science.gov

Sample records for doppler ultrasound scan

  1. Long-term effects of in utero Doppler ultrasound scanning--a developmental programming perspective.

    PubMed

    Aiken, C E; Lees, C C

    2012-04-01

    Ultrasound scanning has been used as a diagnostic and screening tool in obstetric practice for over 50 years. There is no evidence of immediate or long-term harm to the developing fetus from exposure to B mode ultrasound. However, exposure to high levels of Doppler ultrasound during early development is increasingly common, and the full safety implications of this exposure are not clear. Doppler ultrasound exposure in utero gives rise to increased apoptosis in animal models, and there is evidence of the effects of exposure to Doppler ultrasound persisting throughout life, with increased non-right-handedness observed in human epidemiological studies. We consider the idea that there may be long-term developmental implications for fetuses exposed to Doppler ultrasound early in gestation. These effects may be mediated via thermal or mechanical disruption to the developing conceptus, giving rise to free radical damage. Excess free radical exposure early in gestation is a strong candidate for the final common pathway underlying developmental programming effects, and gives rise to concern that fetuses exposed to high levels of ultrasound are at risk of a developmental programming effect. It is suggested that there is a need for animal studies of developmental programming using exposure to Doppler ultrasound scanning as the exposure of interest, and for more observational data to be collected in the clinical setting. While these data are collected, it seems prudent to continue to adhere to the principle of 'as low as reasonably achievable' (ALARA) when exposing first-trimester fetuses to Doppler ultrasound. PMID:22325988

  2. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  3. Doppler ultrasound--basics revisited.

    PubMed

    Eagle, Mary

    Palpation of pedal pulses alone is known to be an unreliable indicator for the presence of arterial disease. Using portable Doppler ultrasound to measure the resting ankle brachial pressure index is superior to palpation of peripheral pulses as an assessment of the adequacy pf the arterial supply in the lower limb. Revisiting basics, this article aims to aid the clinician to understand and perform hand-held Doppler ultrasound effectively while involving the client or patient in the process. The author describes the basics of Doppler ultrasound, how to select correct equipment for the process, and interpretation of results to further enhance clinicians' knowledge. PMID:16835512

  4. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  5. Doppler ultrasound studies in pelvic inflammatory disease.

    PubMed

    Tinkanen, H; Kujansuu, E

    1992-01-01

    Ten women with tubo-ovarian abscess caused by pelvic inflammatory disease (PID) were investigated by transvaginal Doppler ultrasound during the acute and healing phases of the infection. The pulsatility index (PI) of the uterine arteries was measured and compared with the values obtained from 19 healthy women. Each control patient was investigated three times during a single menstrual cycle. In PID patients, the PI values were significantly lower than in controls in the same phase of the menstrual cycle. When C-reactive protein was > 50, the PI values were lowest and reverted to normal values when the infection subsided. In a case of chronic infection, the PI did not rise to normal despite normal infection parameters. Doppler ultrasound seems to offer a new method of assessing PID. PMID:1487185

  6. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  7. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  8. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  9. Computer vision approach for ultrasound Doppler angle estimation.

    PubMed

    Saad, Ashraf A; Loupas, Thanasis; Shapiro, Linda G

    2009-12-01

    Doppler ultrasound is an important noninvasive diagnostic tool for cardiovascular diseases. Modern ultrasound imaging systems utilize spectral Doppler techniques for quantitative evaluation of blood flow velocities, and these measurements play a crucial rule in the diagnosis and grading of arterial stenosis. One drawback of Doppler-based blood flow quantification is that the operator has to manually specify the angle between the Doppler ultrasound beam and the vessel orientation, which is called the Doppler angle, in order to calculate flow velocities. In this paper, we will describe a computer vision approach to automate the Doppler angle estimation. Our approach starts with the segmentation of blood vessels in ultrasound color Doppler images. The segmentation step is followed by an estimation technique for the Doppler angle based on a skeleton representation of the segmented vessel. We conducted preliminary clinical experiments to evaluate the agreement between the expert operator's angle specification and the new automated method. Statistical regression analysis showed strong agreement between the manual and automated methods. We hypothesize that the automation of the Doppler angle will enhance the workflow of the ultrasound Doppler exam and achieve more standardized clinical outcome. PMID:18488268

  10. Detection of microemboli by transcranial Doppler ultrasound.

    PubMed Central

    Grosset, D G; Georgiadis, D; Kelman, A W; Cowburn, P; Stirling, S; Lees, K R; Faichney, A; Mallinson, A; Quin, R; Bone, I; Pettigrew, L; Brodie, E; MacKay, T; Wheatley, D J

    1996-01-01

    Doppler ultrasound detection of abnormally high-pitched signals within the arterial waveform offers a new method for diagnosis, and potentially for prediction, of embolic complications in at-risk patients. The nature of Doppler "microembolic" signals is of particular interest in patients with prosthetic heart valves, where a high prevalence of these signals is observed. Monitoring the middle cerebral artery with 2-MHz transcranial Doppler ultrasound (TC-2000, Nicolet Biomedical; Warwick, UK), we looked for microemboli signals in 150 patients (95 women and 55 men), and found 1 or more signals during a 30-min recording in 89% of 70 patients with Bjork-Shiley valves (principally monostrut), 54% of 50 patients with Medtronic-Hall valves, and 50% of 30 patients with Carpentier-Edwards valves (p < 0.001, chi 2). In the patients with Bjork-Shiley valves, the mean number of signals per hour was 59 (range, 42-86; 95% confidence interval), which was significantly higher than the mean in patients with Medtronic-Hall and Carpentier-Edwards valves (1.5[range, 0.5-2.5] and 1 [range, 0-5.3], respectively; both p < 0.04, multiple comparisons. Bonferroni correction). In the patients undergoing serial pre- and postoperative studies, the causative role of the valve implant was emphasized. There was no correlation between the number of emboli signals and a prior history of neurologic deficit, cardiac rhythm, previous cardiac surgery, or the intensity of oral anticoagulation, in patients with prosthetic heart valves. In Bjork-Shiley patients, dual (mitral and aortic) valves were associated with more signals than were single valves. In Medtronic-Hall patients, the signal count was greater for valves in the aortic position than it was for valves in the mitral position. Comparative studies of Doppler emboli signals in other clinical settings suggest a difference in composition or size of the underlying maternal between prosthetic valve patients and patients with carotid stenosis. These

  11. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  12. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  13. Doppler ultrasound signal denoising based on wavelet frames.

    PubMed

    Zhang, Y; Wang, Y; Wang, W; Liu, B

    2001-05-01

    A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694

  14. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  15. A Digital Multigate Doppler Method for High Frequency Ultrasound

    PubMed Central

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  16. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  17. The role of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the diagnosis of childhood febrile urinary tract infections

    PubMed Central

    İlarslan, Nisa Eda Çullas; Fitöz, Ömer Suat; Öztuna, Derya Gökmen; Küçük, Nuriye Özlem; Yalçınkaya, Fatma Fatoş

    2015-01-01

    Aim: This study assessed the ability of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the detection of childhood febrile urinary tract infections in comparison with the gold standard reference method: Tc-99m dimercaptosuccinicacid renal cortical scintigraphy. Material and Methods: This prospective study included 60 patients who were hospitalized with a first episode of febrile urinary tract infections. All children were examined with dimercaptosuccinicacid scan and tissue harmonic imaging ultrasound combined with power Doppler ultrasound within the first 3 days of admission. Results: Signs indicative of acute infection were observed in 29 patients according to the results of tissue harmonic imaging ultrasound combined with power Doppler ultrasound while dimercaptosuccinicacid scan revealed abnormal findings in 33 patients. The sensitivity, specificity, positive predictive value and negative predictive value of tissue harmonic imaging combined with power Doppler ultrasound using dimercaptosuccinicacid scintigraphy as the reference method in patients diagnosed with first episode febrile urinary tract infections were calculated as 57.58% (95% confidence interval: 40.81%–72.76%); 62.96% (95% confidence interval: 44.23%–78.47%); 65.52% (95% confidence interval: 52.04%–77%); 54.84% (95% confidence interval: 41.54%–67.52%); respectively. Conclusions: Although current results exhibit inadequate success of power Doppler ultrasound, this practical and radiation-free method may soon be comprise a part of the routine ultrasonographic evaluation of febrile urinary tract infections of childhood if patients are evaluated early and under appropriate sedation. PMID:26265892

  18. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    PubMed Central

    Ozawa, Hideo; Watanabe, Toyohiko; Uematsu, Katsutoshi; Sasaki, Katsumi; Inoue, Miyabi; Kumon, Hiromi

    2009-01-01

    Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect) caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1) and the sphincteric urethra (V2) were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1), calculated by Qmax/V1, was lower in the group of bladder outlet obstruction (BOO) vs. control group. Velocity ratio (VR), which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS) will dramatically expand the information on voiding function. PMID:19468440

  19. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation. PMID:20350689

  20. Can Doppler ultrasound-guided oocyte retrieval improve IVF safety?

    PubMed

    Rísquez, Francisco; Confino, Edmond

    2010-10-01

    Transvaginal ultrasound-guided oocyte retrieval has gained universal acceptance with an excellent safety record overall. However, even with contemporary ultrasound resolution, the aspiration needle can injure adjacent pelvic organs and blood vessels and result in external and internal bleeding. Although the idea that Doppler ultrasound might reduce the risk of blood vessel injury during follicular aspiration seems to be plausable, measurement of peritoneal blood loss and the validity of this opinion has never been appropriately tested. Using a proposed classification method in an IVF programme, it was estimated that a significant peritoneal bleeding occurred in 56/898 (6%) of IVF patients. Although Doppler ultrasound was routinely used in all patients, it did not predict 24/53 (45%) of the patients with moderate peritoneal bleeding. In 8/53 cases (15%) with moderate peritoneal bleeding, vaginal bleeding was also detected and correctly predicted during oocyte aspiration using colour Doppler vaginal vessel imaging. Colour Doppler ultrasound guidance is an easily accessible technology with a theoretical promise to improve IVF safety and, with proper usage, has the potential to reduce haemorrhagic complications. PMID:20800546

  1. Duplex Doppler ultrasound study of the temporomandibular joint

    PubMed Central

    Stagnitti, A.; Marini, A.; Impara, L.; Drudi, F.M.; Lo mele, L.; Lillo Odoardi, G.

    2012-01-01

    Introduction The anatomy and physiology of the temporomandibular joint can be studied clinically and by diagnostic imaging. Magnetic resonance imaging (MRI), radiography (X-ray) and computed tomography (CT) have thus for many years contributed to the study of the kinetics in the mandibular condyle. However, also duplex Doppler ultrasound (US) examination is widely used in the study of structures during movement, particularly vascular structures. Materials and methods A total of 30 patients were referred by the Department of Orthodontics to the Department of Radiological, Oncological and Pathological Sciences, University of Rome “La Sapienza”. All patients underwent duplex Doppler ultrasound (US) examination of the temporomandibular joint using Toshiba APLIO SSA-770A equipment and duplex Doppler multi-display technique, which allows simultaneous display of US images and color Doppler signals. A linear phased array probe with crystal elements was used operating at a basic frequency of 6 MHz during pulsed Doppler spectral analysis and 7.5 MHz during US imaging. Results In normal patients a regular alternation in the spectral Doppler waveforms was obtained, while in patients with temporomandibular joint meniscus dysfunction there was no regularity in the sum of the Fourier series with an unsteady waveform pattern related to irregular movements of the temporomandibular joint. Conclusions In all cases duplex Doppler US examination proved able to differentiate between normal and pathological patients and among the latter this technique permitted identification of the most significant aspects of the dysfunctional diseases. PMID:23397016

  2. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  3. Pediatric imaging/doppler ultrasound of the chest: Extracardiac diagnosis

    SciTech Connect

    Huhta, J.C.

    1986-01-01

    In this book the author spells out new diagnostic applications in pediatrics for high resolution cross-sectional ultrasonography, and demonstrates the ways in which Doppler techniques complement the cross-sectional method. This reference presents practical, step-by-step methods for non-invasive ultrasound examination of extra-cardiac anatomy and assessment of vascular blood flow.

  4. Fetal and umbilical Doppler ultrasound in high-risk pregnancies

    PubMed Central

    Alfirevic, Zarko; Stampalija, Tamara; Gyte, Gillian ML

    2014-01-01

    Background Abnormal blood flow patterns in fetal circulation detected by Doppler ultrasound may indicate poor fetal prognosis. It is also possible false positive Doppler ultrasound findings could encourage inappropriate early delivery. Objectives The objective of this review was to assess the effects of Doppler ultrasound used to assess fetal well-being in high-risk pregnancies on obstetric care and fetal outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009) and the reference lists of identified studies. Selection criteria Randomised and quasi-randomised controlled trials of Doppler ultrasound for the investigation of umbilical and fetal vessels waveforms in high-risk pregnancies compared to no Doppler ultrasound. Data collection and analysis Two authors independently assessed the studies for inclusion, assessed risk of bias and carried out data extraction. Data entry was checked. Main results Eighteen completed studies involving just over 10,000 women were included. The trials were generally of unclear quality with some evidence of possible publication bias. The use of Doppler ultrasound in high-risk pregnancy was associated a reduction in perinatal deaths (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.52 to 0.98, 16 studies, 10,225 babies, 1.2% versus 1.7 %, numbers needed to treat = 203; 95%CI 103 to 4352). There were also fewer inductions of labour (average RR 0.89, 95% CI 0.80 to 0.99, 10 studies, 5633 women, random effects) and fewer caesarean sections (RR 0.90, 95% CI 0.84 to 0.97, 14 studies, 7918 women). No difference was found in operative vaginal births (RR 0.95, 95% CI 0.80 to 1.14, four studies, 2813 women) nor in Apgar scores less than seven at five minutes (RR 0.92, 95% CI 0.69 to 1.24, seven studies, 6321 babies). Authors’ conclusions Current evidence suggests that the use of Doppler ultrasound in high-risk pregnancies reduced the risk of perinatal deaths and resulted in less

  5. Improving cranial ultrasound scanning strategy in neonates

    PubMed Central

    Bray, Lisa

    2016-01-01

    Cranial ultrasound scans are undertaken in this tertiary neonatal intensive care unit by the doctors within the department. A quality improvement project was undertaken by means of two PDSA cycles to determine adherence to neonatal cranial ultrasound scanning schedule, assess the quality of scan reporting, and formulate a comprehensive guideline outlining best practice. The baseline measurements assessed 93 scans of preterm infants and 9 of term infants. The results of this prompted intradepartmental education (PDSA cycle 1) then creation and implementation of a documentation template, a local guideline, and education via presentations, posters, and email (PDSA cycle 2). These encompassed 77 preterm and 5 term scans. In our baseline measurements, 52% of preterm infant scans and 44% of term infant scans were performed to schedule. Of premature baby scan reports, 75% had the time documented and 92% the name of the scanning doctor. After implementing changes PDSA cycle 2 data showed that 74% of preterm infant scans and all term infant scans were performed according to schedule, with 100% having the doctor's name and time of scan documented. We successfully introduced a guideline and documentation template, improving performance to schedule and documentation in most areas. It remains an ongoing challenge to adhere to basic standards of documentation; a template can assist in achieving this. Rotating trainees may offer insight into areas that could benefit from quality improvement. This enthusiasm can be successfully harnessed to implement changes to improve quality of patient care. PMID:27096095

  6. Improving cranial ultrasound scanning strategy in neonates.

    PubMed

    Bray, Lisa

    2016-01-01

    Cranial ultrasound scans are undertaken in this tertiary neonatal intensive care unit by the doctors within the department. A quality improvement project was undertaken by means of two PDSA cycles to determine adherence to neonatal cranial ultrasound scanning schedule, assess the quality of scan reporting, and formulate a comprehensive guideline outlining best practice. The baseline measurements assessed 93 scans of preterm infants and 9 of term infants. The results of this prompted intradepartmental education (PDSA cycle 1) then creation and implementation of a documentation template, a local guideline, and education via presentations, posters, and email (PDSA cycle 2). These encompassed 77 preterm and 5 term scans. In our baseline measurements, 52% of preterm infant scans and 44% of term infant scans were performed to schedule. Of premature baby scan reports, 75% had the time documented and 92% the name of the scanning doctor. After implementing changes PDSA cycle 2 data showed that 74% of preterm infant scans and all term infant scans were performed according to schedule, with 100% having the doctor's name and time of scan documented. We successfully introduced a guideline and documentation template, improving performance to schedule and documentation in most areas. It remains an ongoing challenge to adhere to basic standards of documentation; a template can assist in achieving this. Rotating trainees may offer insight into areas that could benefit from quality improvement. This enthusiasm can be successfully harnessed to implement changes to improve quality of patient care. PMID:27096095

  7. Live ultrasound volume reconstruction using scout scanning

    NASA Astrophysics Data System (ADS)

    Meyer, Amelie; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2015-03-01

    Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

  8. [Ultrasound and color Doppler in nephrology. Physical and technical principles].

    PubMed

    Meola, Mario; Petrucci, Ilaria

    2012-01-01

    Sonography is an imaging technique that generates tomographic images using ultrasound. The sound constitutes mechanical energy transmitted in a medium by pressure waves. Sound waves with frequencies greater than 20 kHz are called ultrasounds. Diagnostic ultrasounds use frequencies from 1 to 20 MHz. Ultrasound equipment is composed of a scanner, an image monitor, and different transducers that transform acoustic energy into electrical signals and electrical energy into acoustic energy (piezoelectric effect). The spatial resolution defines the minimum distance between two reflectors or echogenic regions that can be imaged as separate reflectors. The spatial resolution is mainly determined by the array design (linear, curved and sectorial) and by the operative system of the transducer. Modern ultrasound machines are very sophisticated medical devices that often support many transducers, imaging modes and display devices. The scan converter memory is the device in which images are formed and then presented to the monitor and to the hard copy devices. PMID:22388909

  9. Scanning phononic lattices with ultrasound

    SciTech Connect

    Vines, R.E.; Wolfe, J.P.; Every, A.V.

    1999-11-01

    A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}

  10. Are Prenatal Ultrasound Scans Associated with the Autism Phenotype? Follow-Up of a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Stoch, Yonit K.; Williams, Cori J.; Granich, Joanna; Hunt, Anna M.; Landau, Lou I.; Newnham, John P.; Whitehouse, Andrew J. O.

    2012-01-01

    An existing randomised controlled trial was used to investigate whether multiple ultrasound scans may be associated with the autism phenotype. From 2,834 single pregnancies, 1,415 were selected at random to receive ultrasound imaging and continuous wave Doppler flow studies at five points throughout pregnancy (Intensive) and 1,419 to receive a…

  11. Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2008-01-01

    The implementation of probabilistic neural networks (PNNs) with the Lyapunov exponents for Doppler ultrasound signals classification is presented. This study is directly based on the consideration that Doppler ultrasound signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making was performed in two stages: computation of Lyapunov exponents as representative features of the Doppler ultrasound signals and classification using the PNNs trained on the extracted features. The present research demonstrated that the Lyapunov exponents are the features which well represent the Doppler ultrasound signals and the PNNs trained on these features achieved high classification accuracies. PMID:17709103

  12. Detection of deeply implanted impedance-switching devices using ultrasound doppler.

    PubMed

    Mari, Jean Martial; Lafon, Cyril; Chapelon, Jean Yves

    2013-06-01

    Communication with and transmission of energy to remote devices, such as deeply-implanted physiological recorders, using ultrasound presents several technical problems. In particular, device detection and piezoelectric sensor targeting remains difficult. Both tasks require differentiating the device from the surrounding fully passive tissues. Like radiofrequency identification devices, ultrasonic transponders have the capacity to rapidly change the impedance of their piezoelectric elements, which modulates their backscattering coefficient and allows the device to "flash" periodically at a very low energy cost, and, in particular situations, to communicate with an external device. A method for localizing the device by interpreting this flashing as movement is presented here. An ultrasound Doppler scan sequence is implemented using a programmable scanner, and radio-frequency data are collected and processed. The data are then analyzed for different excitation lengths and flashing frequencies to determine the optimum detection parameters. Measurements show that 1) detection can be achieved and is maximal when the excitation length reaches that of the Doppler processing window, and 2) when the flashing frequency is in a specific range. A study of the incidence angle also showed that 3) the sensor of the device can be detected over a given angular window. The conclusion is that by using ultrasound color Doppler sequences, impedance-switching piezoelectric devices can be detected under the conditions provided in the present study, and can be distinguished from fully passive structures. PMID:25004471

  13. A New Approach to Teaching Human Cardiovascular Physiology Using Doppler Ultrasound.

    ERIC Educational Resources Information Center

    Looker, T.

    1985-01-01

    Explains the principles of the Doppler ultrasound technique and reviews its potential applications to the teaching of cardiovascular physiology. Identifies the instrumentation needed for this technique; provides examples and illustrations of the waveforms from the ultrasound blood velocimeter. (ML)

  14. Embolic Doppler ultrasound signal detection using discrete wavelet transform.

    PubMed

    Aydin, Nizamettin; Marvasti, Farokh; Markus, Hugh S

    2004-06-01

    Asymptomatic circulating emboli can be detected by Doppler ultrasound. Embolic Doppler ultrasound signals are short duration transient like signals. The wavelet transform is an ideal method for analysis and detection of such signals by optimizing time-frequency resolution. We propose a detection system based on the discrete wavelet transform (DWT) and study some parameters, which might be useful for describing embolic signals (ES). We used a fast DWT algorithm based on the Daubechies eighth-order wavelet filters with eight scales. In order to evaluate feasibility of the DWT of ES, two independent data sets, each comprising of short segments containing an ES (N = 100), artifact (N = 100) or Doppler speckle (DS) (N = 100), were used. After applying the DWT to the data, several parameters were evaluated. The threshold values used for both data sets were optimized using the first data set. While the DWT coefficients resulting from artifacts dominantly appear at the higher scales (five, six, seven, and eight), the DWT coefficients at the lower scales (one, two, three, and four) are mainly dominated by ES and DS. The DWT is able to filter out most of the artifacts inherently during the transform process. For the first data set, 98 out of 100 ES were detected as ES. For the second data set, 95 out of 100 ES were detected as ES when the same threshold values were used. The algorithm was also tested with a third data set comprising 202 normal ES; 198 signals were detected as ES. PMID:15217263

  15. /sup 201/Tl perfusion study of ''ischemic'' ulcers of the leg: prognostic ability compared with Doppler ultrasound

    SciTech Connect

    Siegel, M.E.; Stewart, C.A.; Kwong, P.; Sakimura, I.

    1982-04-01

    Thallium 201 perfusion analysis was compared with Doppler ultrasound as a means of determining the healing potential of an ischemic ulcer of the leg in 27 patients. The degree of hyperemia was determined by comparative point counting of the 201Tl distribution in and about the ulcer. Using established Doppler criteria and a hyperemia ratio greater than 1.5:1, ultrasound alone correctly predicted healing in 15 out of 23 cases and 201Tl in 20 out of 23. Ultrasound correctly predicted non-healing in 3 out of 6 cases, compared with 5 out of 6 for 201Tl. The positive predictive value of the 201Tl study was 63%, versus 27% for ultrasound, and the negative predictive value was 95% for 201Tl and 83% for ultrasound. The accuracy of 201Tl and ultrasound was 86% and 62%, respectively. This limited study suggests that 201Tl perfusion scanning is a useful noninvasive test of ulcer healing potential and may be more sensitive than Doppler ultrasound.

  16. Breast ultrasound scans – surgeons’ expectations

    PubMed Central

    Bednarski, Piotr; Chrapowicki, Eryk; Jakubowski, Wiesław

    2015-01-01

    Recent years have witnessed a dynamic development of mammary gland imaging techniques, particularly ultrasonography and magnetic resonance imaging. A challenge related to these studies is the increase in the precision of the anatomical assessment of breast, particularly for early detection of subclinical lesions, performance of ultrasound-guided biopsy procedures, and accurate preoperative location of pathological lesions so as to optimize the surgical treatment. Ultrasound imaging is a primary and baseline diagnostic procedure the patient with suspected pathological lesions within breast is referred to by the surgeon. Lesions visualized in ultrasound scans are classified according to the BI-RADS US assessment categories. The successive categories (2 through 6) encompass individual pathological lesions, estimating the risk of malignancy and provide guidelines for further diagnostic and therapeutic management. This article described the important aspects of ultrasonographic imaging of focal lesions within the breasts as significant from the standpoint of surgical treatment of patients falling within BI-RADS US categories 3, 4, 5, and 6. Attention is drawn to the importance of ultrasound scans in the assessment of axillary fossa lymph nodes before the decision regarding the surgical treatment. PMID:26675118

  17. Doppler ultrasound and renal artery stenosis: An overview

    PubMed Central

    Granata, A.; Fiorini, F.; Andrulli, S.; Logias, F.; Gallieni, M.; Romano, G.; Sicurezza, E.; Fiore, C.E.

    2009-01-01

    Renovascular disease is a complex disorder, most commonly caused by fibromuscular dysplasia and atherosclerotic diseases. It can be found in one of three forms: asymptomatic renal artery stenosis (RAS), renovascular hypertension, and ischemic nephropathy. Particularly, the atherosclerotic form is a progressive disease that may lead to gradual and silent loss of renal function. Thus, early diagnosis of RAS is an important clinical objective since interventional therapy may improve or cure hypertension and preserve renal function. Screening for RAS is indicated in suspected renovascular hypertension or ischemic nephropathy, in order to identify patients in whom an endoluminal or surgical revascularization is advisable. Screening tests for RAS have improved considerably over the last decade. While captopril renography was widely used in the past, Doppler ultrasound (US) of the renal arteries (RAs), angio-CT, or magnetic resonance angiography (MRA) have replaced other modalities and they are now considered the screening tests of choice. An arteriogram is rarely needed for diagnostic purposes only. Color-Doppler US (CDUS) is a noninvasive, repeatable, relatively inexpensive diagnostic procedure which can accurately screen for renovascular diseases if performed by an expert. Moreover, the evaluation of the resistive index (RI) at Doppler US may be very useful in RAS affected patients for predicting the response to revascularization. However, when a discrepancy exists between clinical data and the results of Doppler US, additional tests are mandatory. PMID:23397022

  18. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams. PMID:11368866

  19. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects.

    PubMed

    Topcuoglu, M Akif

    2012-11-01

    Albeit no direct anatomical information can be obtained, neurosonological methods provide real-time determination of velocity, and spectral waveform of blood flow in basal intracranial arteries adds significant benefit to the care of the patients with neurovascular diseases. Several features, such as relative simplicity in terms of interpretation and performance, significantly low cost, totally non-invasiveness, portability, and excellent temporal resolution, make neurosonology increasingly popular tool for evaluation, planning, and monitoring of treatment, and for determining prognosis in various neurovascular diseases. Usefulness of transcranial Doppler in diagnosing/monitoring subarachnoid hemorrhage related vasospasm and sickle cell vasculopathy is already well known. Utility in diagnosis of intracranial arterial stenosis, acute occlusion and recanalization, intracranial hemodynamic effect of the cervical arterial pathologies, intracranial pressure increase, and cerebral circulatory arrest are also well established. Neurosonological determination of vasomotor reactivity, cerebral autoregulation, neurovascular coupling, and micro-embolic signals detection are useful in the assessment of stroke risk, diagnosis of right-to-left shunting, and monitoring during surgery and interventional procedures. Transcranial Doppler is also an evolving ultrasound method with a therapeutic potential such as augmentation of clot lysis and cerebral delivery of thrombolytic or neuroprotective agent loaded nanobubbles in neurovascular diseases. The aim of this study is to give an overview of current usage of the different ultrasound modalities in different neurovascular diseases. PMID:23050641

  20. [Discordant growth in twin pregnancy--value of Doppler ultrasound].

    PubMed

    Grab, D; Hütter, W; Haller, T; Sterzik, K; Terinde, R

    1993-01-01

    A 4 MHz continuous-wave Doppler device was used to study uterine and umbilical arterial wave forms in 91 pairs of twins between 18th and 40th week of gestation. Biometry and cord localisation were effected by real-time ultrasound. The results of 182 Doppler flow examinations showed that umbilical flow velocimetry may prove relevant for early identification of twin pregnancies with discordant growth. Depending on the interval between examination and delivery, sensitivity and specificity values between 44% and 66%, and 66% and 73%, respectively, were obtained. A high resistance index in umbilical arteries was indicative of intrauterine growth retardation, at a specificity of 69% and a sensitivity of 44%. For uteroplacental as well as foetoplacental flow velocity waveform assessment, singleton reference values may be used, whereas, by reason of its low sensitivity, Doppler flow velocimetry does not lend itself as a primary diagnostic tool for intrauterine growth retardation. It can signal pathologic blood flow profiles, which are often associated with added risks, such as pregnancy-induced hypertension, foetal acidosis and stillbirth and can contribute to early detection of twin pregnancies that require close clinical and cardiotocographic surveillance. PMID:8440457

  1. Comparison of angiography with continuous wave Doppler ultrasound in the assessment of extracranial arterial disease

    PubMed Central

    Hames, T K; Humphries, K N; Powell, T V; McLellan, D L

    1981-01-01

    Extracranial arterial disease was assessed using non-invasive continuous wave Doppler ultrasound. The results of the Doppler study were compared with those of angiography. There was a positive correlation between the results of angiography and the shape of the Doppler waveform, but the correlation was improved by adding a compression manceuvre to the procedure. Images PMID:7299405

  2. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  3. Renal Doppler ultrasound in patients with hypertension and metabolic syndrom.

    PubMed

    Lubomirova, Mila; Djerassi, Regina; Kiperova, Boryana; Boyanov, Mihail; Christov, Vladimir

    2007-01-01

    Evaluation of the renal changes by conventional and Doppler ultrasound (US) was performed in patients with hypertension and obesity. 67 persons were examined and divided in 3 groups. Group I includes 27 patients--15 M and 12 F, average age 52+/-4.87 with well controlled diabetes mellitus type II and hypertension, Ccr.--139+/-1.31. Group II includes 20 patients--9 M and 11 F, average age 53+/-7 with well controlled hypertension without diabetes, with Ccr 128+/-7.8. Group III--20) pts. 8 F and 12 M, average age 54+/-5 with uncontrolled hypertension without diabetes, with Ccr 128+/-7.8. All examined pts. were with BMI>30 and hyperlipidemia--total cholesterol>6.5 mmol/l. Tests for microalbuminuria were negative in all 3 groups. In all three groups, using conventional US, the following parameters were detected by Aloca 4000 machine: renal (RV) and parenchyma (PV) volumes as well as Doppler parameters RI, PI, Vmax, Vmin, and Vmean. There were no significant differences between RV and PV of all examined groups: Group I--254+/-53, Group II--238+/-38, Group III--263+/-38, p=0.1. The strong correlation between renal volumes and BMI was found (Pearson's r 0.58). There were no significant differences between Vmax, Vmin, Vmean in all three groups. RI is normal <0.7 in all examined patients: Group I--0.63+/-0.06, Group II--0.61+/-0.02, Group III--0.66+/-0.03. RI in group III was significantly higher, p<0.05 compared to RI indices detected in other two groups but remains at normal levels. Intrarenal hemodynamics exhibited no difference in all examined groups. Analysis of the Doppler spectrum of the intrarenal arteries provides an accurate information about renal vascular changes but has no significant advantages in patients with hypertension and obesity with normal renal function and signs of hypertensive nephropathy "benign nephrosclerosis". Nevertheless Duplex Doppler Ultrasound is a noninvasive method which is an important part of the diagnostic algorithm in patients with

  4. Doppler ultrasound study and venous mapping in chronic venous insufficiency.

    PubMed

    García Carriazo, M; Gómez de las Heras, C; Mármol Vázquez, P; Ramos Solís, M F

    2016-01-01

    Chronic venous insufficiency of the lower limbs is very prevalent. In recent decades, Doppler ultrasound has become the method of choice to study this condition, and it is considered essential when surgery is indicated. This article aims to establish a method for the examination, including venous mapping and preoperative marking. To this end, we review the venous anatomy of the lower limbs and the pathophysiology of chronic venous insufficiency and explain the basic hemodynamic concepts and the terminology required to elaborate a radiological report that will enable appropriate treatment planning and communication with other specialists. We briefly explain the CHIVA (the acronym for the French term "cure conservatrice et hémodynamique de l'insuffisance veineuse en ambulatoire"=conservative hemodynamic treatment for chronic venous insufficiency) strategy, a minimally invasive surgical strategy that aims to restore correct venous hemodynamics without resecting the saphenous vein. PMID:26655801

  5. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    SciTech Connect

    Zhang, Y; Stekel, S; Tradup, D; Hangiandreou, N

    2014-06-15

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

  6. Intraobserver variation in Doppler ultrasound assessment of pulmonary artery pressure.

    PubMed

    Subhedar, N V; Shaw, N J

    1996-07-01

    Intraobserver variation associated with the non-invasive assessment of pulmonary artery pressure (PAP), using measurement of pulmonary artery Doppler derived systolic time intervals, was investigated. Forty pairs of independent ultrasound examinations of the pulmonary artery were performed by a single observer in 20 preterm infants, median gestation 27 weeks (range 24-31 weeks). Median age at study was 17 days (range 1-47 days). paired measurements of acceleration time (AT), ratio between acceleration time and right ventricular ejection time (AT:RVET), corrected AT, and corrected AT:RVET were compared to assess intraobserver agreement. For the corrected AT:RVET ratio, the mean percentage difference between observations was -0.9% (95% confidence intervals -5.0 to 3.1%). The limits of agreement for the two measurements were -26.3 to 24.5%. The coefficient of repeatability was 25.4%. Variation for other indices was similar. Non-invasive assessment of PAP using Doppler derived systolic time intervals is associated with considerable intraobserver variation. PMID:8795360

  7. Evaluation of Post Wall Filter for Doppler Ultrasound Systems

    NASA Astrophysics Data System (ADS)

    Baba, T.

    Recent advances in digital devices permit high-performance signal processing to be performed with ease. In conventional Doppler ultrasound examinations, the weak blood flow signals are separated from clutter signals, such as those from the cardiac valves and walls, using a time domain pre wall filter in order to avoid saturation of the subsequent frequency analyzer. At this time, due to the expanded dynamic range in signal processing, we have conducted investigations to determine whether it is possible to eliminate the pre wall filter and replace it with a post wall filter after the frequency analyzer. The results of these investigations showed that it is possible to obtain frequency characteristics equivalent to those obtained with a pre wall filter by compensating for the sampling function in frequency analysis processing and simplifying Doppler signal processing. Moreover, it was found that both blood inflow signals and mitral valve motion in the left ventricle can be observed without saturation, confirming the feasibility of real-time simultaneous display using a post wall filter.

  8. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.

    PubMed

    Demené, Charlie; Deffieux, Thomas; Pernot, Mathieu; Osmanski, Bruno-Félix; Biran, Valérie; Gennisson, Jean-Luc; Sieu, Lim-Anna; Bergel, Antoine; Franqui, Stéphanie; Correas, Jean-Michel; Cohen, Ivan; Baud, Olivier; Tanter, Mickael

    2015-11-01

    Ultrafast ultrasonic imaging is a rapidly developing field based on the unfocused transmission of plane or diverging ultrasound waves. This recent approach to ultrasound imaging leads to a large increase in raw ultrasound data available per acquisition. Bigger synchronous ultrasound imaging datasets can be exploited in order to strongly improve the discrimination between tissue and blood motion in the field of Doppler imaging. Here we propose a spatiotemporal singular value decomposition clutter rejection of ultrasonic data acquired at ultrafast frame rate. The singular value decomposition (SVD) takes benefits of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters based on high pass temporal filtering. Whereas classical clutter filters operate on the temporal dimension only, SVD clutter filtering provides up to a four-dimensional approach (3D in space and 1D in time). We demonstrate the performance of SVD clutter filtering with a flow phantom study that showed an increased performance compared to other classical filters (better contrast to noise ratio with tissue motion between 1 and 10mm/s and axial blood flow as low as 2.6 mm/s). SVD clutter filtering revealed previously undetected blood flows such as microvascular networks or blood flows corrupted by significant tissue or probe motion artifacts. We report in vivo applications including small animal fUltrasound brain imaging (blood flow detection limit of 0.5 mm/s) and several clinical imaging cases, such as neonate brain imaging, liver or kidney Doppler imaging. PMID:25955583

  9. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  10. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    PubMed

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing. PMID:17348511

  11. Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2008-05-01

    A new approach based on the implementation of the automated diagnostic systems for Doppler ultrasound signals classification with the features extracted by eigenvector methods is presented. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the Doppler ultrasound signals. Decision making was performed in two stages: feature extraction by the eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the Doppler ultrasound signals by the combination of eigenvector methods and the classifiers. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the Doppler ultrasound signals and the probabilistic neural networks (PNNs), recurrent neural networks (RNNs) trained on these features achieved high classification accuracies. PMID:18358461

  12. Measurement of Thermal Effects of Doppler Ultrasound: An In Vitro Study

    PubMed Central

    Helmy, Samir; Bader, Yvonne; Koch, Marianne; Tiringer, Denise; Kollmann, Christian

    2015-01-01

    Objective Ultrasound is considered a safe imaging modality and is routinely applied during early pregnancy. However, reservations are expressed concerning the application of Doppler ultrasound in early pregnancy due to energy emission of the ultrasound probe and its conversion to heat. The objective of this study was to evaluate the thermal effects of emitted Doppler ultrasound of different ultrasound machines and probes by means of temperature increase of in-vitro test-media. Methods We investigated the energy-output of 5 vaginal and abdominal probes of 3 ultrasound machines (GE Healthcare, Siemens, Aloka). Two in-vitro test objects were developed at the Center for Medical Physics and Biomedical Engineering, Medical University Vienna (water bath and hydrogel bath). Temperature increase during Doppler ultrasound emission was measured via thermal sensors, which were placed inside the test objects or on the probes’ surface. Each probe was emitting for 5 minutes into the absorbing test object with 3 different TI/MI settings in Spectral Doppler mode. Results During water bath test, temperature increase varied between 0.1 and 1.0°C, depending on probe, setting and focus, and was found highest for spectral Doppler mode alone. Maximum temperature increase was found during the surface heating test, where values up to 2.4°C could be measured within 5 minutes of emission. Conclusions Activation of Doppler ultrasound in the waterbath model causes a significant increase of temperature within one minute. Thermally induced effects on the embryo cannot be excluded when using Doppler ultrasound in early pregnancy. PMID:26302465

  13. Segmental Comparison of Peripheral Arteries by Doppler Ultrasound and CT Angiography

    PubMed Central

    Swaminathan, Ram Kumar; Ganesan, Prakash; Mayavan, Manibharathi

    2016-01-01

    Introduction Diseases of peripheral arterial system are one of the common causes of limb pain, especially in elderly patients. Here we analyse non invasive imaging of peripheral arterial segments. Aim Aim of the study was to compare arterial diseases of extremities using Doppler ultrasound and CT angiography, and to find the better non-invasive modality of choice. Materials and Methods Fifty patients {14 patients with upper limb complaints (15 upper limbs) and 36 patients with lower limb complaints (72 lower limbs)} of peripheral arterial disease underwent Doppler ultrasound (USG) and CT Angiogram (CTA). Arterial systems divided into anatomic segments and luminal narrowing were compared using gray scale Doppler ultrasound and axial images of arterial phase of CT angiogram. Using statistical methods, sensitivity, specificity and accuracy of Doppler ultrasound and CT angiography were determined. Results Six hundred and nineteen arterial segments were studied with CT angiography and Doppler ultrasound. Of which 226 diseased segments were identified in CT angiography. Doppler overestimated narrowing by one grade in 47 segments, by two grade in 11 segments, by three grades in 30 segments and by four grades in 22 segments; underestimated by one grade in 28 segments, by two grades in 9 segments, by three grades in 5 segments and by four grades in 3 segments. Significant statistical difference exists between Doppler USG and CT angiography. Doppler showed good correlation with CT angiography in 74%, but, Doppler overestimated stenosis grade in a significant percentage. The sensitivity, specificity and accuracy of Doppler USG compared with CT angiography was 93.36%, 82.44%, and 86.42%. Conclusion Duplex Doppler can be the first investigation in excluding peripheral arterial disease, especially for evaluation of infra inguinal region of lower limbs and from second part of the subclavian artery in upper limbs. PMID:27042556

  14. Shigeo Satomura: 60 years of Doppler ultrasound in medicine.

    PubMed

    Coman, Ioan M; Popescu, Bogdan A

    2015-01-01

    This year we celebrate 60 years since Shigeo Satomura published the first measurements of the Doppler shift of ultrasonic signals from a beating heart. He demonstrated that Doppler signals can be retrieved from heart movements when insonated with 3 MHz ultrasonic waves. Later, togheter with Ziro Kaneko, he constructed the first Doppler flowmeter to measure the blood flow velocities in peripheral and extracranial brain-supplying vessels using ultrasounds. They proved that ultrasonic Doppler signals from arteries and veins can be recorded from the surface of the skin and pioneered transcutaneous flow analysis in systole and diastole in both normal and diseased blood vessels. These were the first medical applications of Doppler sonography and impressive technologic innovations have been continuing ever since. Over time, Doppler techniques became a key player in diagnostic ultrasound for hemodynamic assessment, replacing cardiac catheterization in many clinical settings. PMID:26699126

  15. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery.

    PubMed

    Tikku, Aseem P; Kumar, Sunil; Loomba, Kapil; Chandra, Anil; Verma, Promila; Aggarwal, Renu

    2010-09-01

    This study evaluated the effectiveness of ultrasound, color Doppler imaging and conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. Fifteen patients who underwent periapical surgery for endodontic pathology were randomly selected. In all patients, periapical lesions were evaluated preoperatively using ultrasound, color Doppler imaging and conventional radiography, to analyze characteristics such as size, shape and dimensions. On radiographic evaluation, dimensions were measured in the superoinferior and mesiodistal direction using image-analysis software. Ultrasound evaluation was used to measure the changes in shape and dimensions on the anteroposterior, superoinferior, and mesiodistal planes. Color Doppler imaging was used to detect the blood-flow velocity. Postoperative healing was monitored in all patients at 1 week and 6 months by using ultrasound and color Doppler imaging, together with conventional radiography. The findings were then analyzed to evaluate the effectiveness of the 3 imaging techniques. At 6 months, ultrasound and color Doppler imaging were significantly better than conventional radiography in detecting changes in the healing of hard tissue at the surgical site (P < 0.004). This study demonstrates that ultrasound and color Doppler imaging have the potential to supplement conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. PMID:20881334

  16. Measurement of mitral valve area in mitral stenosis by Doppler ultrasound.

    PubMed

    Robson, D J; Rodman, M; Flaxman, J C; Mayhew, F A

    1985-09-01

    The mitral valve area in mitral stenosis was determined from Doppler velocity recordings and by cross-sectional echocardiography. There was good agreement (r = 0.93) between the two methods in 18 adult patients with mitral stenosis. The results confirm that the non-invasive continuous wave Doppler ultrasound technique is of diagnostic value in the assessment of mitral stenosis. PMID:4076215

  17. Towards an ideal blood analogue for Doppler ultrasound phantoms.

    PubMed

    Oates, C P

    1991-11-01

    If a phantom is to produce Doppler spectral waveforms accurately matching those that would be obtained in vivo, it is necessary to use a fluid that behaves like blood in vivo, both acoustically and rheologically. The use of blood itself is undesirable and an analogue is required. Blood exhibits non-Newtonian behaviour as a result of aggregation of erythrocytes at low shear rates. This behaviour affects flow not only in sub-millimetre diameter vessels, but also in large scale structures. An alternative to blood is described that uses finely powdered nylon suspended in a mixture of glycerol and water. The nylon particles used have dimensions and density close to those of erythrocytes and they aggregate at low shear rates to give non-Newtonian behaviour. Viscosity may be varied over a wide range by the addition of liquid detergent. Consideration is given to the importance of haematocrit in modelling pulsatile and disturbed flows as it affects the haemodynamics of flow and the backscattered power of an ultrasound beam. This adaptable blood analogue is suitable for use in models of both large structures and fine vessels. PMID:1754614

  18. Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA

    PubMed Central

    Hu, Chang-hong; Zhou, Qifa; Shung, K. Kirk

    2009-01-01

    The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and real-time processing capability is achieved. PMID:18986909

  19. A framework for guiding learning in ultrasound scanning

    PubMed Central

    2014-01-01

    Ultrasound scanning is provided by a range of health professionals who need to be trained to a proficient level. In respect of education and training in ultrasound scanning, little attention has been given to how scanning skills are acquired and what assists and hinders the learning process. This study aims to develop a framework for guiding learning in ultrasound scanning. Overt participant observation and semi-structured interviews generated data on four learners undertaking a 12-month postgraduate ultrasound programme. Narrative analysis of the interview data was used to reveal dominant themes related to stages in learning to scan. Dominant themes associated with learning to scan were communication with the patient, navigation skills, image interpretation skills, observation of expert practice, feedback on performance and random practise. Detailed interpretation of the themes through narrative analysis provided characteristics of learning for each stage of a four staged process. This study provides an insight into the key features of scan performance and how scanning skills are acquired over a four-staged approach. These themes and characteristics are presented in a framework for guiding learning in ultrasound scanning.

  20. Development of a fast-scanning combined ultrasound-photoacoustic biomicroscope

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Lu, Huihong; Mathewson, Kory; Ranasinghesagara, Janaka; Jiang, Yan; Walsh, Andrew; Chen, Xuhui

    2009-02-01

    Recently a realtime photoacoustic microscopy system has been demonstrated. Unfortunately, however, displayed B-scan images were sometimes difficult to interpret as there was little structural context. In this work, we provide structural context for photoacoustic microscopy images by adding ultrasound biomicroscopy as a complementary and synergistic modality. Our system uses a voice-coil translation stage capable of 1" lateral translation, and can operate in excess of 15 Hz for 1-cm translations, providing up to 30 ultrasound frames per second. The frame-rate of the photoacoustic acquisitions is limited by the 20-Hz pulse-repetition rate of the laser, but can be increased with a faster-repetition-rate laser. Data from the system is streamed in real time from a 2GS/s PCI data acquisition card to the host PC at rates as high as 200 MB/s. The system should prove useful for various in vivo studies, including combined ultrasound Doppler and photoacoustic imaging.

  1. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  2. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGESBeta

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  3. [Ultrasound and color Doppler applications in chronic kidney disease].

    PubMed

    Meola, Mario; Petrucci, Ilaria

    2012-01-01

    Chronic kidney disease (CKD) encompasses all clinical features and complications during the progression of various kidney conditions towards end-stage renal disease. These conditions include immune and inflammatory diseases such as primary and HCV-related glomerulonephritis; infectious diseases such as pyelonephritis with or without reflux and tuberculosis; vascular diseases such as chronic ischemic nephropathy; hereditary and congenital diseases such as polycystic disease and congenital cystic dysplasia; metabolic diseases including diabetes and hyperuricemia; and systemic diseases (collagen disease, vasculitis, myeloma). During the progression of CKD, ultrasound imaging can differentiate the nature of the renal damage in only 50-70% of cases. Infact, the end-stage kidney appears shrunken, reduced in volume (Ø <9 cm), unstructured, amorphous, with acquired cystic degeneration (small and multiple cysts involving the cortex and medulla) or nephrocalcinosis, but there are rare exceptions, such as polycystic kidney disease, diabetic nephropathy, and secondary inflammatory nephropathies. The main difficulties in the differential diagnosis are encountered in multifactorial CKD, which is commonly presented to the nephrologist at stage 4-5, when the kidney is shrunken, unstructured and amorphous. As in acute renal injury and despite the lack of sensitivity, ultrasonography is essential for assessing the progression of the renal damage and related complications, and for evaluating all conditions that increase the risk of CKD, such as lithiasis, recurrent urinary tract infections, vesicoureteral reflux, polycystic kidney disease and obstructive nephropathy. The timing and frequency of ultrasound scans in CKD patients should be evaluated case by case. In this review we will consider the morphofunctional features of the kidney in all nephropathies that may lead to progressive CKD. PMID:23229668

  4. Ultrasound and Doppler US in Evaluation of Superficial Soft-tissue Lesions

    PubMed Central

    Toprak, Huseyin; Kiliç, Erkan; Serter, Asli; Kocakoç, Ercan; Ozgocmen, Salih

    2014-01-01

    Improved developments in digital ultrasound technology and the use of high-frequency broadband transducers make ultrasound (US) imaging the first screening tool in investigating superficial tissue lesions. US is a safe (no ionizing radiation), portable, easily repeatable, and cheap form of imaging compared to other imaging modalities. US is an excellent imaging modality to determine the nature of a mass lesion (cystic or solid) and its anatomic relation to adjoining structures. Masses can be characterized in terms of their size, number, component, and vascularity with US and Doppler US especially with power Doppler US. US, however, is operator dependent and has a number of artifacts that can result in misinterpretation. In this review, we emphasize the role of ultrasound, particularly power Doppler, in superficial soft-tissue lesions. PMID:24744969

  5. Combining eigenvector methods and support vector machines for detecting variability of Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2007-05-01

    In this paper, the multiclass support vector machines (SVMs) with the error correcting output codes (ECOC) were presented for detecting variabilities of the multiclass Doppler ultrasound signals. The ophthalmic arterial (OA) Doppler signals were recorded from healthy subjects, subjects suffering from OA stenosis, subjects suffering from ocular Behcet disease. The internal carotid arterial (ICA) Doppler signals were recorded from healthy subjects, subjects suffering from ICA stenosis, subjects suffering from ICA occlusion. Methods of combining multiple classifiers with diverse features are viewed as a general problem in various application areas of pattern recognition. Because of the importance of making the right decision, better classification procedures for Doppler ultrasound signals are searched. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the SVMs trained on the extracted features. The research demonstrated that the multiclass SVMs trained on extracted features achieved high accuracy rates. PMID:17289211

  6. Estimation of flow in aortocoronary grafts with a pulsed ultrasound Doppler meter.

    PubMed

    Segadal, L; Matre, K; Engedal, H; Resch, F; Grip, A

    1982-10-01

    A newly developed pulsed ultrasound Doppler meter was used for measurement of blood flow in aortocoronary vein grafts during operation. The results were compared with measurements obtained with conventional electromagnetic flowmetry. In 27 grafts, excellent agreement was found between electromagnetic flow probes thoroughly calibrated for varying hematocrit on fresh veins in vitro, and a clip-on type of Doppler probe (r = 0.86). In vitro calibration showed a close correspondence (r = 0.98) with the Doppler technique with no dependency on hematocrit and no need for zero calibration. The use of a conventional electromagnetic flowmeter showed strong dependency on recent calibration, both for saline and for varying hematocrit. Zero-calibration was necessary for every single graft measurement. The application of ultrasound Doppler meters of high quality together with clip-on probes of proper design proved to be superior to electromagnetic flowmetry for intraoperative blood flow measurements. PMID:6183771

  7. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  8. Sensitivity evaluation of DSA-based parametric imaging using Doppler ultrasound in neurovascular phantoms

    NASA Astrophysics Data System (ADS)

    Balasubramoniam, A.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2016-03-01

    An evaluation of the relation between parametric imaging results obtained from Digital Subtraction Angiography (DSA) images and blood-flow velocity measured using Doppler ultrasound in patient-specific neurovascular phantoms is provided. A silicone neurovascular phantom containing internal carotid artery, middle cerebral artery and anterior communicating artery was embedded in a tissue equivalent gel. The gel prevented movement of the vessels when blood mimicking fluid was pumped through it to obtain Colour Doppler images. The phantom was connected to a peristaltic pump, simulating physiological flow conditions. To obtain the parametric images, water was pumped through the phantom at various flow rates (100, 120 and 160 ml/min) and 10 ml contrast boluses were injected. DSA images were obtained at 10 frames/sec from the Toshiba C-arm and DSA image sequences were input into LabVIEW software to get parametric maps from time-density curves. The parametric maps were compared with velocities determined by Doppler ultrasound at the internal carotid artery. The velocities measured by the Doppler ultrasound were 38, 48 and 65 cm/s for flow rates of 100, 120 and 160 ml/min, respectively. For the 20% increase in flow rate, the percentage change of blood velocity measured by Doppler ultrasound was 26.3%. Correspondingly, there was a 20% decrease of Bolus Arrival Time (BAT) and 14.3% decrease of Mean Transit Time (MTT), showing strong inverse correlation with Doppler measured velocity. The parametric imaging parameters are quite sensitive to velocity changes and are well correlated to the velocities measured by Doppler ultrasound.

  9. Investigation of a scanned cylindrical ultrasound system for breast hyperthermia

    NASA Astrophysics Data System (ADS)

    Ju, Kuen-Cheng; Tseng, Li-Te; Chen, Yung-Yaw; Lin, Win-Li

    2006-02-01

    This paper investigates the feasibility of a scanned cylindrical ultrasound system for producing uniform heating from the central to the superficial portions of the breast or localized heating within the breast at a specific location. The proposed system consists of plane ultrasound transducer(s) mounted on a scanned cylindrical support. The breast was immersed in water and surrounded by this system during the treatment. The control parameters considered are the size of the transducer, the ultrasound frequency, the scan angle and the shifting distance between the axes of the breast and the system. Three-dimensional acoustical and thermal models were used to calculate the temperature distribution. Non-perfused phantom experiments were performed to verify the simulation results. Simulation results indicate that high frequency ultrasound could be used for the superficial heating, and the scan angle of the transducer could be varied to obtain an appropriate high temperature region to cover the desired treatment region. Low frequency ultrasound could be used for deep heating and the high temperature region could be moved by shifting the system. In addition, a combination of low and high frequency ultrasound could result in a portion treatment from the central to the superficial breast or an entire breast treatment. Good agreement was obtained between non-perfused experiments and simulation results. The findings of this study can be used to determine the effects of the control parameters of this system, as well as to select the optimal parameters for a specific treatment.

  10. The effect of foot position on Power Doppler Ultrasound grading of Achilles enthesitis.

    PubMed

    Zappia, Marcello; Cuomo, Giovanna; Martino, Maria Teresa; Reginelli, Alfonso; Brunese, Luca

    2016-06-01

    The aim of this study was to determine whether foot position could modify power Doppler grading in evaluation of the Achilles enthesis. Eighteen patients with clinical Achilles enthesitis were studied with power Doppler ultrasound (PDUS) in five different positions of the foot: active and passive dorsiflexion, neutral position, active and passive plantar flexion. The Doppler signal was graded in any position and compared with the others. The Doppler signal was higher with the foot in plantar flexion and decreased gradually, sometimes till to disappear, while increasing dorsiflexion. The Doppler signal was always less during the active keeping of the position of the joint, than during the passive. The PDUS examination of the Achilles enthesis should be performed also with the foot in passive plantar flexion, in order not to underestimate the degree of vascularization. PMID:27002715

  11. Time-resolved volumetric MRI blood flow: a Doppler ultrasound perspective

    NASA Astrophysics Data System (ADS)

    van Pelt, Roy; Oliván Bescós, Javier; Nagel, Eike; Vilanova, Anna

    2014-03-01

    Hemodynamic information is increasingly inspected to assess cardiovascular disease. Abnormal blood-flow patterns include high-speed jet flow and regurgitant flow. Such pathological blood-flow patterns are nowadays mostly inspected by means of color Doppler ultrasound imaging. To date, Doppler ultrasound has been the prevailing modality for blood-flow analysis, providing non-invasive and cost-effective blood-flow imaging. Since recent years, magnetic resonance imaging (MRI) is increasingly employed to measure time-resolved blood-flow data. Albeit more expensive, MRI enables volumetric velocity encoding, providing true vector-valued data with less noise. Domain experts in the field of ultrasound and MRI have extensive experience in the interpretation of blood-flow information, although they employ different analysis techniques. We devise a visualization framework that extends on common Doppler ultrasound visualizations, exploiting the added value of MRI velocity data, and aiming for synergy between the domain experts. Our framework enables experts to explore the advantages and disadvantages of the current renditions of their imaging data. Furthermore, it facilitates the transition from conventional Doppler ultrasound images to present-day high-dimensional velocity fields. To this end, we present a virtual probe that enables direct exploration of MRI-acquired blood-flow velocity data using user-friendly interactions. Based on the probe, Doppler ultrasound inspired visualizations convey both in-plane and through-plane blood-flow velocities. In a compound view, these two-dimensional visualizations are linked to state-of-the-art three-dimensional blood-flow visualizations. Additionally, we introduce a novel volume rendering of the blood-flow velocity data that emphasizes anomalous blood-flow patterns. The visualization framework was evaluated by domain experts, and we present their feedback.

  12. Atypical Cerebral Lateralisation in Adults with Compensated Developmental Dyslexia Demonstrated Using Functional Transcranial Doppler Ultrasound

    ERIC Educational Resources Information Center

    Illingworth, Sarah; Bishop, Dorothy V. M.

    2009-01-01

    Functional transcranial Doppler ultrasound (fTCD) is a relatively new and non-invasive technique that assesses cerebral lateralisation through measurements of blood flow velocity in the middle cerebral arteries. In this study fTCD was used to compare functional asymmetry during a word generation task between a group of 30 dyslexic adults and a…

  13. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.

    PubMed

    Zhang, Yufeng; Wang, Le; Gao, Yali; Chen, Jianhua; Shi, Xinling

    2007-07-01

    A novel de-noising method for improving the signal-to-noise ratio (SNR) of Doppler ultrasound blood flow signals, called the matching pursuit method, has been proposed. Using this method, the Doppler ultrasound signal was first decomposed into a linear expansion of waveforms, called time-frequency atoms, which were selected from a redundant dictionary named Gabor functions. Subsequently, a decay parameter-based algorithm was employed to determine the decomposition times. Finally, the de-noised Doppler signal was reconstructed using the selected components. The SNR improvements, the amount of the lost component in the original signal and the maximum frequency estimation precision with simulated Doppler blood flow signals, have been used to evaluate a performance comparison, based on the wavelet, the wavelet packets and the matching pursuit de-noising algorithms. From the simulation and clinical experiment results, it was concluded that the performance of the matching pursuit approach was better than those of the DWT and the WPs methods for the Doppler ultrasound signal de-noising. PMID:16996774

  14. Real-time digital processing of Doppler ultrasound signals and calculation of flow parameters.

    PubMed

    Schlindwein, F S; Vieira, M H; Vasconcelos, C F; Simpson, D M

    1994-01-01

    Vascular diseases and their complications are responsible for around 27% of deaths in Brazil. Doppler ultrasound is a non-invasive technique that has been used to study blood flow in intact blood vessels since Satomura first reported the potential of the technique in 1959. Because it is non-invasive it makes sequential studies and those in normals feasible. Whereas in contrast angiography only vessel anatomy is displayed, Doppler ultrasound produces dynamic information on blood-flow. It may be used to estimate flow-rates, to image regions of blood flow (colour Doppler), and to help in locating sites of arterial disease, thus complementing X-ray examinations. This paper describes a system based on a Digital Signal Processor for real-time spectrum analysis of Doppler ultrasound signals, real-time display of sonograms, and calculation and analysis of three parameters of clinical interest derived from the Doppler signal. The system comprises a TMS320C25 development board, which acquires the signal and performs spectrum analysis, and a microcomputer, which reads the spectral estimates, displays them as a sonogram in real-time and calculates a set of spectral parameters proposed in the literature. The system permits a maximum sampling frequency of 40.96 kHz, and in the sonogram, 80 power spectra per second (each with 128 frequency bins) are displayed. In a preliminary study, the stability of the haemodynamic parameters and their dependence on a user-defined threshold value is investigated. PMID:7968870

  15. Detection of a lumbar foraminal venous varix by Color Doppler Ultrasound.

    PubMed

    Darrieutort-Laffite, Christelle; Desal, Hubert; Berthelot, Jean-Marie; Le Goff, Benoît

    2016-07-01

    Ultrasonography is currently widely used in the rheumatology practice. Although mainly performed to study peripheral joint, several articles have underlined its interest to study spinal anatomy. However, its ability to provide diagnostic features is unknown. We studied the case of a 25-year-old woman having low back pain. Three different imaging modalities (Computed Tomography [CT], Magnetic Resonance Imaging [MRI] and Ultrasound) were used to explore it. CT and MRI showed a foraminal dilation of the lombo-ovarian vein at the L3-L4 level with a scalloping of the lateral edge of L3. We were able to detect it with Color Doppler Ultrasound and a malformation of the inferior vena cava was also found. We showed for the first time that Color Doppler Ultrasound can detect venous malformation of the spine. This imaging modality could help us in the diagnosis of atypical lesions of the spine to confirm their vascular origin. PMID:27068620

  16. Doppler Scanning of Sediment Cores: A Useful Method for Studying Sedimentary Structures and Defining the Cutting Angle for Half Cores

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Biltekin, Demet; Eris, Kadir; Albut, Gulum; Ogretmen, Nazik; Arslan, Tugce; Sari, Erol

    2014-05-01

    We tested the doppler ultrasound scanning of sediment cores in PVC liners using 8 megahertz ultrasonic waves for detection of angular laminations. The method was tested with artificially prepared cores as well as marine and lake sediment cores, and proven to be a useful and fast technique for imaging and determining the vertical angularity of sedimentary structures, such as laminations and beddings. Random cutting axes provide two angularities on X and Y dimensions. In this study, the main scientific problem is 'sequential angular disconformity'. Importance of detection of these anomalies on whole cores before dividing into half cores based on determining the right cutting axes. Successful imaging was obtained from top three centimeter depth of the sediments below the PVC liner, using a linear Doppler probe. Other Doppler probes (e.g., convex probe) did not work for core scanning because of their wave-form and reflection characteristics. Longitudinal and rotational scanning with gap filler and ultrasonic wave conductive gel material for keeping energy range of wave is necessary for detecting the variation in the dip of the bedding and laminae in the cores before separation. Another angular reasoned problem is about horizontal surface and can be easily solved with adjustable position of sensor or ray source placement. Border of sampling points between two different lithology must be stay with regard to neighbour sediment angles. Vertical angularity correction is not easy and its effect on signal propagation, detection biases and effectible to mixed samples contamination during physical sampling (particle size analyzing). Determining the attitude of angled bedding before core splitting is important for further core analyses such as elemental analysis and digital X-ray radiography. After Doppler scanning, the splitting direction (i.e., vertical to bedding and lamination) can be determined. The method is cheap, quick and non- hazardous to health, unlike the x

  17. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  18. Validation of Doppler ultrasound measurements using particle, image velocimetry in a flow phantom

    NASA Astrophysics Data System (ADS)

    Cosgrove, John; Meagher, Siobhan; Hoskins, Peter; Greated, Clive; Black, Richard

    2001-05-01

    Cardiovascular disease is responsible for over 50% of all deaths in the world and there is a substantial amount of evidence which suggests that abnormal vessel wall shear stress is correlated with the development of atherosclerosis. Wall shear stress is calculated from wall shear rates, the measurement of which is a technically challenging problem for ultrasound. In this study a flow phantom consisting of a meshed-gear pump and corresponding control electronics is used to generate a range of flow waveforms in a straight tube. These flows are measured using Doppler ultrasound and compared to corresponding particle image velocimetry (PIV) measurements and to analytical solutions of the flow equations for a range of Wormersley parameters. Although previous studies have been undertaken calibrating Doppler ultrasound in straight tubes, they have not used PIV. This study serves as a prelude to investigations using PIV to assess the accuracy of Doppler ultrasound in phantoms with anatomically realistic geometries for which there are no analytical solutions to the flow. [Research funded by the Engineering and Physical Sciences Research Council UK.

  19. Cerebral blood flow in the newborn infant: comparison of Doppler ultrasound and /sup 133/xenon clearance

    SciTech Connect

    Greisen, G.; Johansen, K.; Ellison, P.H.; Fredriksen, P.S.; Mali, J.; Friis-Hansen, B.

    1984-03-01

    Two techniques of Doppler ultrasound examination, continuous-wave and range-gated, applied to the anterior cerebral artery and to the internal carotid artery, were compared with /sup 133/xenon clearance after intravenous injection. Thirty-two sets of measurements were obtained in 16 newborn infants. The pulsatility index, the mean flow velocity, and the end-diastolic flow velocity were read from the Doppler recordings. Mean cerebral blood flow was estimated from the /sup 133/Xe clearance curves. The correlation coefficients between the Doppler and the /sup 133/Xe measurements ranged from 0.41 to 0.82. In the subset of 16 first measurements in each infant, there were no statistically significant differences between the correlation coefficients of the various Doppler ultrasound variables, but the correlation coefficients were consistently lower for the pulsatility index than for mean flow velocity or end-diastolic flow velocity, and they were consistently higher for the range-gated than for the continuous-wave Doppler technique.

  20. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  1. Scanning laser ultrasound and wavenumber spectroscopy for in-process inspection of additively manufactured parts

    NASA Astrophysics Data System (ADS)

    Koskelo, EliseAnne C.; Flynn, Eric B.

    2016-04-01

    We present a new in-process laser ultrasound inspection technique for additive manufacturing. Ultrasonic energy was introduced to the part by attaching an ultrasonic transducer to the printer build-plate and driving it with a single-tone, harmonic excitation. The full-field response of the part was measured using a scanning laser Doppler vibrometer after each printer layer. For each scan, we analyzed both the local amplitudes and wavenumbers of the response in order to identify defects. For this study, we focused on the detection of delamination between layers in a fused deposition modeling process. Foreign object damage, localized heating damage, and the resulting delamination between layers were detected in using the technique as indicated by increased amplitude and wavenumber responses within the damaged area.

  2. Neural migration disorders studied by cerebral ultrasound and colour Doppler flow imaging.

    PubMed Central

    Pellicer, A.; Cabañas, F.; Pérez-Higueras, A.; García-Alix, A.; Quero, J.

    1995-01-01

    Cerebral ultrasound and colour Doppler flow imaging (CDFI) were used to diagnose a wide spectrum of anomalies of cell migration (17 patients): presumed lissencephaly (n = 12); schizencephaly of both fused (n = 2) and open lips (n = 2); hemimegalencephaly (n = 1); and subependymal type grey matter heterotopia (n = 12). The patients with grey matter heterotopia had irregular ventricular margins (n = 10), periventricular hyperechogenic bands (n = 12), and/or periventricular hyperechogenic nodules (n = 7). Some patients had more than one type of migration disorder as well as other central nervous system malformations. Cerebral ultrasound diagnoses were confirmed by magnetic resonance imaging (MRI) or necropsy. It is concluded that colour Doppler flow imaging is a worthwhile addition to the assessment of brain surface anomalies. Images Figure 7 Figure 1 Figures 5 and 6 Figures 3 and 4 Figure 2 PMID:7583607

  3. Duplex ultrasound

    MedlinePlus

    ... ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound records sound waves reflecting off moving objects, such as blood, to ...

  4. Feature extraction from Doppler ultrasound signals for automated diagnostic systems.

    PubMed

    Ubeyli, Elif Derya; Güler, Inan

    2005-11-01

    This paper presented the assessment of feature extraction methods used in automated diagnosis of arterial diseases. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Different feature extraction methods were used to obtain feature vectors from ophthalmic and internal carotid arterial Doppler signals. In addition to this, the problem of selecting relevant features among the features available for the purpose of classification of Doppler signals was dealt with. Multilayer perceptron neural networks (MLPNNs) with different inputs (feature vectors) were used for diagnosis of ophthalmic and internal carotid arterial diseases. The assessment of feature extraction methods was performed by taking into consideration of performances of the MLPNNs. The performances of the MLPNNs were evaluated by the convergence rates (number of training epochs) and the total classification accuracies. Finally, some conclusions were drawn concerning the efficiency of discrete wavelet transform as a feature extraction method used for the diagnosis of ophthalmic and internal carotid arterial diseases. PMID:16278106

  5. Doppler ultrasound in the fetus: a review of current applications.

    PubMed

    De Vore, G R; Brar, H S; Platt, L D

    1987-01-01

    With the recent introduction of Doppler pulsed and continuous wave as well as color-flow mapping, assessment of blood velocity in the human fetus has added a new dimension to fetal assessment. Although investigators initially examined blood flow in the descending aorta and umbilical vein, there was a wide variation in normal values because of the difficulty of accurately measuring the area of the vessels, a requirement for computation of blood volume. Using duplex sector scanners, velocity and blood flow have been obtained from the right and left ventricular chambers and aortic and pulmonic outflow tracts. At the present time the clinical application of the latter measurements is still under investigation. Doppler color-flow mapping appears to be promising for elucidation of abnormal flow in fetuses suspected of having structural and/or functional cardiovascular disease. Because of the difficulty in computing volume flow due to the above mentioned factors, more recently investigators have examined angle independent parameters of blood velocity from the aorta, carotid and umbilical arteries in an attempt to quantify peripheral resistance. This latter technique appears to be promising for elucidation of placental pathology as is found in a number of fetal and placental diseases. PMID:3119673

  6. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  7. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    PubMed Central

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2012-01-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  8. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound.

    PubMed

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R(2)=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R(2)=0.67) and BV/TV (R(2)=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R(2)=0.92 for BV/TV and R(2)=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity. PMID:23976803

  9. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  10. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  11. Gastroduodenal artery steal syndrome during liver transplantation: intraoperative diagnosis with Doppler ultrasound and management.

    PubMed

    Nishida, Seigo; Kadono, Jun; DeFaria, Werviston; Levi, David M; Moon, Jang I; Tzakis, Andreas G; Madariaga, Juan R

    2005-03-01

    Arterial steal syndrome (ASS) after liver transplantation has been reported. ASS causes arterial hypo-perfusion of the graft liver and devastating consequences. However, the diagnosis tends to be delayed. We present the recognized case of a gastroduodenal artery (GDA) steal syndrome that was diagnosed with intraoperative Doppler ultrasound and treated with GDA ligation during the liver transplantation. The patient had variation of hepatic artery anatomy (low bifurcation of the hepatic artery). Graft liver had the common hepatic artery and aberrant left hepatic artery. Doppler ultrasound of the liver was performed after the arterial reconstruction between the donor common hepatic artery and recipient right hepatic artery. It showed low hepatic arterial flow. There is no backflow bleeding from the donor aberrant left hepatic artery stump. After ligating big GDA, hepatic arterial waveform inside the liver drastically improved and strong backflow bleeding was recognized from the donor left aberrant hepatic artery stump. The current case should show the efficacy of intraoperative Doppler ultrasound of the liver on ASS and alert clinician to ligate GDA to prevent ASS if hepatic arterial flows are suboptimal. PMID:15730497

  12. [Digital scanning converter for medical endoscopic ultrasound imaging].

    PubMed

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result. PMID:19334546

  13. Measurement of normal portal venous blood flow by Doppler ultrasound.

    PubMed

    Brown, H S; Halliwell, M; Qamar, M; Read, A E; Evans, J M; Wells, P N

    1989-04-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the supine position was 864 (188)ml/min (mean 1SD). When standing, the mean volume blood flow was significantly reduced by 26% to 662 (169)ml/min. There was, however, no significant difference between flow when supine and when tilted head down at 20 degrees from the horizontal. PMID:2653973

  14. On the synthesis of sample volumes for real-time spectral Doppler ultrasound simulation.

    PubMed

    Aguilar, Luis A; Steinman, David A; Cobbold, Richard S C

    2010-12-01

    A variety of methods for simulating the ultrasound field produced by transducers are currently used in ultrasound imaging system design. However, simulations can be time-consuming, making them difficult to apply in real-time environments when the observation field changes rapidly with time. This is particularly true for interactive real-time Doppler and B-mode ultrasound simulators designed for use as training tools. In this paper, it is demonstrated that the use of a distribution of monopole sources can be used to simulate the field from a phased linear array and the accuracy should be sufficient for simulating pulsed spectral Doppler. Very good agreement can be achieved in comparison with that obtained by a more exact method and, because of the simplicity of the calculations, real-time simulations of flow in the arterial system becomes possible. Specifically, quantitative measurements were made and compared against an analytic solution for the case of a piston transducer and against Field II for the phased array. The root-mean-square error shows that it is possible to achieve 10% or less error for the latter case. For comparable conditions, the computational speed for the transmit field of phased array using the Field II method as compared with the monopole approach was found to be at least an order of magnitude faster. It is pointed out that the simplicity of the monopole approach provides the opportunity for a further order of magnitude gain. Our findings can have direct application on the simulation of spectral Doppler and other ultrasound techniques for the purpose of teaching and training. PMID:20950935

  15. Cervical tumor characterization by transvaginal color flow Doppler ultrasound.

    PubMed

    Carter, J. R.

    1999-07-01

    The aim of the study was to investigate the blood flow characteristics of benign cervical lesions and invasive cervical tumors and to determine if invasive cervical tumors can be predicted by transvaginal sonography (TVS) and color flow Doppler (CFD). The study design incorporated an open prospective collection of data from patients attending the Women's Cancer Center, University of Minnesota and the Sydney Women's Cancer Center. Inclusion criteria included patients with known benign or malignant cervical pathology. The study group of 66 patients comprised 32 patients with invasive cervical cancer and 34 patients with benign cervical lesions. Benign cervixes were significantly more likely to have absent or normal flow whereas malignant lesions were significantly more likely to have abnormal or increased flow (P < 0.0001). No differences in the uterine or intratumor systolic, diastolic, or mean velocity were found between the two groups. A reduction in the uterine artery pulsatility index (PI) and resistance index (RI) from 1.84 to 1.55 and 0.73 to 0.71, respectively, and also in the intracervical PI from 1.5 to 1.1, in the benign compared to invasive group was found, none of which reached statistical significance. However the intracervical RI was statistically lower (0.62) in malignant tumors compared to patients with benign lesions (0.71) (P = 0.03). The effect of menopause on blood flow characteristics was variable and overall not significant. While the uterine artery systolic velocity was significantly higher in premenopausal women, no such effect was found for the diastolic or mean velocity or the PI and RI. In postmenopausal women, the intratumor PI and RI were higher compared to premenopausal women. In conclusion, transvaginal CFD analysis of the uterine arterial or intratumor bed does not appear to be beneficial in attempting to distinguish benign from malignant cervical tumors. PMID:11240780

  16. Quantitative Doppler flowmetry. I. Construction and testing of a duplex scanning system.

    PubMed

    Smith, H J

    1984-01-01

    With the aim of designing a duplex scanner especially suited for flow estimation in abdominal vessels, a mechanical coupling device was constructed, combining a real time sector scanner and a pulsed Doppler velocity meter. The possible error in estimation of vessel cross-sectional area by means of ultrasound measured diameters, was studied through diameter measurements of blood-filled plastic tubes. In conclusion, the ultrasound measured outer-inner diameter seemed to be the most accurate estimation of true inner diameter. The accuracy and reproducibility of flow estimation was tested under optimum in vitro conditions, with special reference to the ability of the mechanical coupling device in giving the correct angle between Doppler beam and blood-filled tube. Ninety blood flow estimates with varying angle of insonation were all within +/- 10 per cent of true flow. PMID:6237551

  17. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  18. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  19. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  20. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  1. Use of Doppler ultrasound in the management of uteroplacental perfusion during cardiopulmonary bypass in pregnancy.

    PubMed

    Mandel, D C; Pryde, P G; Shah, D M; Iruretagoyena, J I

    2016-08-01

    Cardiopulmonary bypass, the extreme of non-obstetric surgery during pregnancy, presents unique challenges to minimize maternal and fetal risk. We present our experience with a woman who was diagnosed with a left atrial myxoma following an ischemic cerebrovascular accident. We discuss clinical management specific to cardiopulmonary bypass during pregnancy and delivery in the context of a multidisciplinary team approach. We recommend using intermittent Doppler ultrasound as a non-invasive real-time assessment of uteroplacental perfusion during non-obstetric surgery in pregnancy. Monitoring of perfusion facilitates active feedback for appropriate in utero resuscitation in these cases. PMID:27021885

  2. Is transabdominal ultrasound scanning of cervical measurement in mid-trimester pregnancy a useful alternative to transvaginal ultrasound scan?

    PubMed Central

    Chaudhury, Kalyansree; Ghosh, Mrinalkanti; Halder, Atin; Senapati, Sourav; Chaudhury, Sudeshna

    2013-01-01

    Objective The aim of this study is to assess the correlation between transabdominal and transvaginal ultrasound measurements of the cervix in pregnancy. If transabdominal ultrasound measurement of cervical length is found to provide effective information, it could be used in patient counselling and when making clinical decisions. Material and Methods One hundred and twenty seven pregnant patients between 18–26 weeks of pregnancy were enrolled in this prospective study for measuring cervical length, both by transabdominal and transvaginal ultrasound scan after bladder emptying. Transabdominal and transvaginal measurements were compared and correlated. Results In patients with transvaginal ultrasound scan (TVS) cervical length ≤32 mm, TVS cervical length was found to be shorter than by transabdominal ultrasound scan (TAS). Most of these patients needed >3 cm of vertical pocket of urine in the bladder for adequate visualisation of the cervix. In patients with TVS cervical length >32 mm, the TVS measurement of the cervix was longer than the TAS measurement of the cervix. In these patients, the cervix could be seen by TAS when there was either ≤3 cm vertical pocket of urine in the bladder or an empty bladder. Statistical tests showed that there is a significant difference between TAS and TVS cervical measurements and that there is a significant association between these two measurements. Conclusion Most of the patients needed variable degrees of bladder filling for adequate visualisation of the cervix. Although minimal bladder filling does not influence TAS measurements of cervical length, moderate fullness of the bladder does cause an apparent increase in TAS measurements of cervical length. If the cervical length is ≥30 mm by TAS, regardless of urine content in the bladder, the patient can be assured vis a vis their risk of preterm labour as far as cervical length is concerned. However, in patients with TAS cervical measurement <30 mm and where the bladder

  3. Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 1: Dorsal wrist

    PubMed Central

    Łasecki, Mateusz; Zaleska-Dorobisz, Urszula

    2015-01-01

    Ultrasound imaging of the musculoskeletal system is superior to other imaging methods in many aspects, such as multidimensional character of imaging, possibility of dynamic evaluation and precise assessment of soft tissues. Moreover, it is a safe and relatively inexpensive method, broadly available and well-tolerated by patients. A correctly conducted ultrasound examination of the wrist delivers detailed information concerning the condition of tendons, muscles, ligaments, nerves and vessels. However, the knowledge of anatomy is crucial to establish a correct ultrasound diagnosis, also in wrist assessment. An ultrasound examination of the wrist is one of the most common US examinations conducted in patients with rheumatological diseases. Ultrasonographic signs depend on the advancement of the disease. The examination is equally frequently conducted in patients with pain or swelling of the wrist due to non-rheumatological causes. The aim of this publication was to present ultrasound images and anatomic schemes corresponding to them. The correct scanning technique of the dorsal part of the wrist was discussed and some practical tips, thanks to which highly diagnostic images can be obtained, were presented. The following anatomical structures should be visualized in an ultrasound examination of the dorsal wrist: distal radio-ulnar joint, radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament, compartments of extensor tendons, radial artery, cephalic vein, two small branches of the radial nerve: superficial and deep, as well as certain midcarpal ligaments, particularly the scapholunate ligament and lunotriquetral ligament. The paper was distinguished in 2014 as the “poster of the month” (poster number C-1896) during the poster session of the European Congress of Radiology in Vienna. PMID:26675810

  4. Wrist ultrasound examination - scanning technique and ultrasound anatomy. Part 1: Dorsal wrist.

    PubMed

    Olchowy, Cyprian; Łasecki, Mateusz; Zaleska-Dorobisz, Urszula

    2015-06-01

    Ultrasound imaging of the musculoskeletal system is superior to other imaging methods in many aspects, such as multidimensional character of imaging, possibility of dynamic evaluation and precise assessment of soft tissues. Moreover, it is a safe and relatively inexpensive method, broadly available and well-tolerated by patients. A correctly conducted ultrasound examination of the wrist delivers detailed information concerning the condition of tendons, muscles, ligaments, nerves and vessels. However, the knowledge of anatomy is crucial to establish a correct ultrasound diagnosis, also in wrist assessment. An ultrasound examination of the wrist is one of the most common US examinations conducted in patients with rheumatological diseases. Ultrasonographic signs depend on the advancement of the disease. The examination is equally frequently conducted in patients with pain or swelling of the wrist due to non-rheumatological causes. The aim of this publication was to present ultrasound images and anatomic schemes corresponding to them. The correct scanning technique of the dorsal part of the wrist was discussed and some practical tips, thanks to which highly diagnostic images can be obtained, were presented. The following anatomical structures should be visualized in an ultrasound examination of the dorsal wrist: distal radio-ulnar joint, radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament, compartments of extensor tendons, radial artery, cephalic vein, two small branches of the radial nerve: superficial and deep, as well as certain midcarpal ligaments, particularly the scapholunate ligament and lunotriquetral ligament. The paper was distinguished in 2014 as the "poster of the month" (poster number C-1896) during the poster session of the European Congress of Radiology in Vienna. PMID:26675810

  5. Quantifying the Effects of Radiation on Tumour Vasculature with High-Frequency Three-Dimensional Power Doppler Ultrasound

    NASA Astrophysics Data System (ADS)

    Hupple, Clinton

    Recent evidence suggests that radiation may have a significant effect on tumour vasculature in addition to damaging tumour cell DNA. It is well established that endothelial cells are among the first cells to respond after administration of ionizing radiation in both normal and tumour tissues. It has also been suggested that microvascular dysfunction may regulate tumour response to radiotherapy at high doses. However, due to limitations in imaging the microcirculation this response is not well characterized. Advances in high-frequency ultrasound and computation methods now make it possible to acquire and analyze 3-D ultrasound data of tumour blood flow in tumour microcirculation. This thesis outlines the work done to test the hypothesis that single dose 8 Gy radiotherapy produces changes in tumour blood vessels which can be quantified using high-frequency power Doppler ultrasound. In addition, the issue of reproducibility of power Doppler measurements and the relationship between histopathology and power Doppler measurements have been examined.

  6. [Transanal Doppler ultrasound for prevention of colonic ischemia following abdominal aortic reconstruction].

    PubMed

    Sakurazawa, K

    1991-10-01

    Colonic gangrene is a fatal complication following aorto-iliac reconstruction. Preservation of a sufficient blood flow through both the inferior mesenteric artery (IMA) and the internal iliac artery (IIA) is believed to be important in its prevention. The transanal Doppler ultrasound technique is a new method to explore intraoperative pelvic hemodynamic changes. After identifying the artery responsible for rectal perfusion and then estimating the collateral rectal blood supply which was derived from the superior mesenteric artery (SMA) after aortic clamping, the treatment for the IMA and the IIA was determined. Out of 49 cases of abdominal aortic aneurysm (AAA), 43 cases (88%) were considered to be SMA-dominant, with ligation of the IMA and the IIA being feasible. The IMA and bilateral IIAs could be ligated uneventfully in 14 AAA cases. And, in fact, the reconstruction of the IMA was performed in only 2 cases (4%). Among 21 cases of aorto-iliac occlusive disease (AIOD), 8 cases (38%) were found to be SMA-non-dominant, which suggests a greater importance in the preservation of intrapelvic circulation in AIOD than in AAA. Adequate intraoperative monitoring, by the transanal Doppler ultrasound technique, is essential for the successful prevention of postoperative colonic ischemia. PMID:1961189

  7. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro.

    PubMed

    Barannik, E A; Girnyk, A; Tovstiak, V; Marusenko, A I; Emelianov, S Y; Sarvazyan, A P

    2002-05-01

    In shear wave elasticity imaging (SWEI), mechanical excitation within the tissue is remotely generated using radiation force of focused ultrasound. The induced shear strain is subsequently detected to estimate visco-elastic properties of tissue and thus aid diagnostics. In this paper, the mechanical response of tissue to radiation force was detected using a modified ultrasound Doppler technique. The experiments were performed on tissue mimicking and tissue containing phantoms using a commercial diagnostic scanner. This scanner was modified to control both the pushing and probing beams. The pushing beam was fired repetitively along a single direction while interlaced probing beams swept the surrounding region of interest to detect the induced motion. The detectability of inhomogeneous inclusions using ultrasonic Doppler SWEI method has been demonstrated in this study. The displacement fields measured in elastic phantoms clearly reveal the oscillatory nature of the mechanical relaxation processes in response to impulsive load due to the boundary effects. This relaxation dynamics was also present in cooked muscle tissue, but was not detected in more viscous and less elastic phantom and raw muscles. Presence of a local heterogeneity in the vicinity of the focal region of the pushing beam results in generation of a standing wave field pattern which is manifested in the oscillatory response of the excited region of the tissue. There has been made an assumption that dynamic characteristics of the relaxation process may be used for visualization of inhomogeneities. PMID:12160057

  8. Microscopic observation of glass bead movement in soft tissue-mimicking phantom under ultrasound PW mode scanning.

    PubMed

    Liu, Lei; Funamoto, Kenichi; Tanabe, Masayuki; Hayase, Toshiyuki

    2015-01-01

    Previous studies have demonstrated that stones and calcification in soft tissue show special enhancement in response to color flow (CF) or pulse Doppler (PW) mode ultrasound scan. This phenomenon is known as the "twinkling sign (TS)". The authors conducted an in vitro experiment to investigate the mechanism of TS occurrence by observing a glass bead in a transparent PVA-H soft tissue-mimicking phantom. The TS in PW mode showed a low-power and slow-velocity spectrum. At the same time, analysis of images by high-speed camera showed that the glass bead in the phantom oscillated following the pulse repetition frequency (PRF) of the PW mode ultrasound scan. The harmonic oscillations were confirmed, as well. The ultrasound radiation force-driven micro-oscillation possibly affects the ultrasound propagation around the scatterer and triggers random signals in the received echo signals. The results indicate that TS is a phenomenon based on complicated acoustic-mechanical interaction of multiple mechanisms. Further investigation is required for gaining a full understanding of the mechanism of TS occurrence and its clinical application. PMID:26578491

  9. Diagnostic efficacy of color Doppler ultrasound in evaluation of cervical lymphadenopathy

    PubMed Central

    Misra, Deepankar; Panjwani, Sapna; Rai, Shalu; Misra, Akansha; Prabhat, Mukul; Gupta, Prashant; Talukder, Subrata K.

    2016-01-01

    Background: To evaluate the efficacy of color Doppler ultrasound (CDUS) in differentiating benign and malignant cervical lymph nodes by detecting differences in blood flow patterns. Materials and Methods: In this cross-sectional prospective study, 25 untreated patients with clinical evidence of cervical lymphadenopathy were evaluated. CDUS was performed for 80 cervical lymph nodes. The gray scale parameters of the lymph node and intranodal perfusion sites were the key CDUS features used to differentiate between reactive and metastatic lymph nodes. Histopathological confirmations were obtained and compared with the results of CDUS. Results: Initially, 53 cervical lymph nodes were evaluated by clinical examination. Twenty-seven additional lymph nodes (53 + 27 = 80) were discovered by CDUS evaluation. Gray scale parameters for lymph nodes such as size of lymph node, shape of lymph node, and presence or absence of hilum revealed highly significant results (P < 0.0001). Color Doppler flow signals revealed that central/hilar flow was characteristic for benign nodes whereas peripheral/mixed flow was characteristic for malignant nodes, the findings were highly significant (P < 0.0001). Gray scale and color Doppler features are used to differentiate benign and malignant nodes. Conclusion: Within the limitations of this study, CDUS evaluation was found to be highly significant with a high sensitivity and specificity over clinical evaluation CDUS examination provides a prospect to reduce the need for biopsy/fine needle aspiration cytology in reactive nodes. PMID:27274341

  10. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom

    PubMed Central

    Kenwright, David A.; Anderson, Tom; Moran, Carmel M.; Hoskins, Peter R.

    2015-01-01

    Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam–target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam–target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound. PMID:25957754

  11. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  12. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  13. Metrological capabilities of Scanning Long Range Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Loaec, Sophie; Boquet, Matthieu; Cariou, Jean-Pierre

    2013-04-01

    Many application areas are interested in getting wind measurements within the Planetary Boundary Layer (PBL) height, and with a relatively high accuracy. These applications include meteorology like PBL studies, air traffic safety like aircraft induced wake vortices and wind shears detection or wind farming like wind resources assessment. In order to answer these demands there are recent developments and deployments of long-range vertical profiler or fully hemispherical scanning wind lidars. To validate the measurements provided by such a system, it is possible to make inter-comparisons with a met mast at short distance and with wind profilers radar or sodar at longer distance. But, there are difficulties that may arise from the implementation of this kind of methodology because of the uncertainty related to the campaign set-up and the instruments used as reference. In that perspective Leosphere is developing a method to assess the accuracy of the Leosphere's lidars. In this presentation, we will give a detail description of the method and its results.

  14. THE INFLUENCE OF TEMPERATURE VARIATION UPON VASCULAR DYNAMICS IN CATTLE AS MEASURED BY DOPPLER-IMAGE ULTRASOUND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two preliminary studies were performed to determine if Doppler-image ultrasound can be used to document the vascular changes of cattle under hot and cold conditions. At the Brody Environmental Center located at the University of Missouri, three calves per study (320 ± 38 kg) were acclimated to ther...

  15. Survey of current practice in clinical transvaginal ultrasound scanning in the UK

    PubMed Central

    Shaw, Adam; Lees, Christoph

    2015-01-01

    During transvaginal ultrasound scanning, the fetus and other sensitive tissues are placed close to the transducer. Heating of these tissues occurs by direct conduction from the transducer and by absorption of ultrasound in the tissue. The extent of any heating will depend on the equipment and settings used, the duration of the scan, imaging modes and other aspects of scanning practice. To ensure that scans are performed with minimum risk, staff should have an appropriate knowledge of safety and follow guidelines issued by professional bodies. An online survey aiming to document current practice in transvaginal ultrasound in the UK was created and distributed to individuals performing this type of scanning. The survey posed questions about the respondents, the departments where scans were performed, the equipment used, knowledge of ultrasound safety, scanning practice and the frequency, duration and mode of transvaginal ultrasound scans for gynaecology, obstetrics and fertility applications. In all, 294 responses were obtained, mostly from sonographers (94%). From the analysis of the responses, it was clear that there was a good understanding of the general meaning of thermal and mechanical index and high awareness of guidelines issued by professional bodies. However, 40% of respondents stated that they rarely or never monitor Thermal or Mechanical indices during scanning. Scanning practice was consistent in terms of the duration of scans, scan protocols followed and use of imaging modes. The results highlight the importance of continued ultrasound safety training and promotion of safety guidelines to users. PMID:27433250

  16. Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis?

    PubMed

    Escudero, D; Otero, J; Quindós, B; Viña, L

    2015-05-01

    Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation. PMID:25583044

  17. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  18. Ultrasound Color Doppler Image Segmentation and Feature Extraction in MCP and Wrist Region in Evaluation of Rheumatoid Arthritis.

    PubMed

    Snekhalatha, U; Muthubhairavi, V; Anburajan, M; Gupta, Neelkanth

    2016-09-01

    The present study focuses on automatically to segment the blood flow pattern of color Doppler ultrasound in hand region of rheumatoid arthritis patients and to correlate the extracted the statistical features and color Doppler parameters with standard parameters. Thirty patients with rheumatoid arthritis (RA) and their total of 300 joints of both the hands, i.e., 240 MCP and 60 wrists were examined in this study. Ultrasound color Doppler of both the hands of all the patients was obtained. Automated segmentation of color Doppler image was performed using color enhancement scaling based segmentation algorithm. The region of interest is fixed in the MCP joints and wrist of the hand. Features were extracted from the defined ROI of the segmented output image. The color fraction was measured using Mimics software. The standard parameters such as HAQ score, DAS 28 score, and ESR was obtained for all the patients. The color fraction tends to be increased in wrist and MCP3 joints which indicate the increased blood flow pattern and color Doppler activity as part of inflammation in hand joints of RA. The ESR correlated significantly with the feature extracted parameters such as mean, standard deviation and entropy in MCP3, MCP4 joint and the wrist region. The developed automated color image segmentation algorithm provides a quantitative analysis for diagnosis and assessment of RA. The correlation study between the color Doppler parameters with the standard parameters provides moral significance in quantitative analysis of RA in MCP3 joint and the wrist region. PMID:27449351

  19. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    NASA Technical Reports Server (NTRS)

    Krause, M. C.; Wilson, D. J.; Howle, R. E.; Edwards, B. B.; Craven, C. E.; Jetton, J. L.

    1976-01-01

    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week.

  20. Detecting shallow mixing heights in two coastal locations with a scanning Doppler lidar

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; O'Connor, Ewan J.; Nisantzi, Argyro; Mamouri, Rodanthi E.; Hadjimitsis, Diofantos Gl.

    2015-04-01

    Turbulent mixing is one of the most important processes in the lower troposphere for climate, weather and air quality. A key parameter describing turbulent mixing in atmosphere is mixing height, i.e. the height of the layer that is constantly in contact with the surface. Doppler lidar offers a way to observe the vertical wind velocity profile with a high enough time resolution to retrieve information on turbulent mixing. However, Doppler lidars cannot retrieve wind velocity measurements below an instrument-specific threshold, typically 100 - 200 metres. Here, we introduce a method for identifying mixing heights below the vertical minimum range of a scanning Doppler lidar. The new method for detecting shallow mixing height is based on velocity variance in low elevation angle conical scanning, i.e. vertical azimuth display (VAD) scanning, which provides simultaneously the horizontal wind profile. This method is applied to measurements in two very different coastal environments: Limassol, Cyprus during summer; and Loviisa, Finland during winter. At Limassol the measurements were carried out from 22 August to 15 October 2013 at the Cyprus University of Technology campus, 600 metres NE from the Mediterranean Sea shoreline. At Loviisa, the measurement campaign took place from 10 December 2013 to 17 March 2014 on a 2000 m long, 500 m wide island in the Baltic Sea archipelago. At both locations, the new method agrees well with mixing heights derived from turbulent kinetic energy dissipation rate profiles obtained from vertically-pointing Doppler lidar measurements. Furthermore, when the vertically pointing measurements indicated the mixing height to be below the Doppler lidar minimum range, the VADs indicated a shallow mixing height on 87 % of the time at Loviisa and on 58 % of the time at Limassol. At Limassol such low mixing heights occurred only during the night; at Loviisa very low mixing heights were also common during the day.

  1. [Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology - part 2: color and spectral Doppler artifacts].

    PubMed

    Jenssen, C; Tuma, J; Möller, K; Cui, X W; Kinkel, H; Uebel, S; Dietrich, C F

    2016-06-01

    Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues of the body and with foreign materials. On the one hand, they may be diagnostically helpful. On the other hand, they may be distracting and may lead to misdiagnosis. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review commented on the physics of artifacts and described the most important B-mode artifacts. Part 2 focuses on the clinically relevant artifacts in Doppler and color-coded duplex sonography. Problems and pitfalls of interpretation arising from artifacts, as well as the diagnostic use of Doppler and colour-coded duplex sonography, are discussed. PMID:27284933

  2. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  3. The performance and reliability of wavelet denoising for Doppler ultrasound fetal heart rate signal preprocessing.

    PubMed

    Papadimitriou, S; Papadopoulos, V; Gatzounas, D; Tzigounis, V; Bezerianos, A

    1997-01-01

    The present paper deals with the performance and the reliability of a Wavelet Denoising method for Doppler ultrasound Fetal Heart Rate (FHR) recordings. It displays strong evidence that the denoising process extracts the actual noise components. The analysis is approached with three methods. First, the power spectrum of the denoised FHR displays more clearly an 1/fa scaling law, i.e. the characteristic of fractal time series. Second, the rescaled scale analysis technique reveals a Hurst exponent at the range of 0.7-0.8 that corresponds to a long memory persistent process. Moreover, the variance of the Hurst exponent across time scales is smaller at the denoised signal. Third, a chaotic attractor reconstructed with the embedding dimension technique becomes evident at the denoised signals, while it is completely obscured at the unfiltered ones. PMID:10179728

  4. Physical activity and maternal-fetal circulation measured by Doppler ultrasound

    PubMed Central

    Nguyen, Nghia C.; Evenson, Kelly R.; Savitz, David A.; Chu, Haitao; Thorp, John M.; Daniels, Julie L.

    2012-01-01

    Objective To examine the association of physical activity on maternal-fetal circulation measured by uterine and umbilical artery Doppler flow velocimetry waveforms. Study Design Participants included 781 pregnant women with Doppler ultrasounds of the uterine and umbilical artery and who self-reported past week physical activity. Linear and generalized estimating equation regression models were used to examine these associations. Results Moderate-to-vigorous total and recreational activity were associated with higher uterine artery pulsatility index (PI) and an increased risk of uterine artery notching as compared to reporting no total or recreational physical activity, respectively. Moderate-to-vigorous work activity was associated with lower uterine artery PI and a reduced risk of uterine artery notching as compared to no work activity. No associations were identified with the umbilical circulation measured by the resistance index. Conclusion In this epidemiologic study, recreational and work activity were associated with opposite effects on uterine artery PI and uterine artery notching, though associations were modest in magnitude. PMID:22678142

  5. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  6. Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows.

    PubMed

    Franke, S; Lieske, H; Fischer, A; Büttner, L; Czarske, J; Räbiger, D; Eckert, S

    2013-03-01

    We present a novel pulsed-wave ultrasound Doppler system for fluid flow investigations being able to determine two-dimensional vector fields of flow velocities. Electromagnetically-driven liquid metal flows appear as an attractive application field for such a measurement system. Two linear ultrasound transducer arrays each equipped with 25 transducer elements are used to measure the flow field in a square plane of 67×67 mm(2). The application of advanced processing methods as a multi-beam operation, an interlaced echo signal acquisition and a segmental array technique enable high data acquisition rates and concurrently a high spatial resolution, which have not been obtained so far for flow measurements in liquid metals. The extended pulsing strategy and essential operation principles such as the multiplexing electronic concept will be presented within this paper. The capabilities of the measuring system make it suitable for investigations of non-transparent, turbulent flows. Here, we present measurements of liquid metal flows driven by a rotating magnetic field for demonstration purposes. The measuring setup realized here reveals details of the swirling fluid motion in a horizontal section of a cube. Frame acquisition rates up to 30 fps were achieved for a complete two-dimensional flow mapping. PMID:23186828

  7. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  8. The remote measurement of tornado-like flows employing a scanning laser Doppler system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.

    1977-01-01

    The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.

  9. Surface wave measurements using a single continuously scanning laser Doppler vibrometer: application to elastography.

    PubMed

    Salman, Muhammad; Sabra, Karim G

    2013-03-01

    A continuous scanning laser Doppler vibrometry (CSLDV) obtained sweeping a single laser beam along a periodic scan pattern allows measuring surface vibrations at many points simultaneously by demultiplexing the CSLDV signal. This known method fundamentally differs from conventional scanning laser vibrometry techniques in which the laser beam is kept at a fixed point during each measurement and then moved to a new position prior to the next measurement. This article demonstrates the use of a CSLDV for measuring in a non-contact fashion the velocity of low-frequency surface waves (f < 100 Hz) propagating over soft materials, namely here gel surfaces-mimicking human body soft tissues-and skeletal muscles, to develop an affordable and noninvasive elastography modality. The CSLDV vibration measurements obtained with a single laser beam, linearly scanned over the test surface at 200 Hz over lengths up to 6 cm, were validated using an array of three fixed laser Doppler vibrometers distributed along the same scan line. Furthermore, this CSLDV setup was used to measure the increase in surface wave velocity over the biceps brachii muscle which was directly correlated to the actual stiffening of the biceps occurring while a subject was performing voluntary contractions at an increasing level. PMID:23463997

  10. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, R.; Boquet, M.; Osler, E.

    2016-06-01

    Scanning Doppler Lidars have become more prominent in the wind energy industry for a variety of applications. Scanning Lidar's provide spatial variation of winds and direction over a large area, which can be used to assess the spatial uncertainty of winds and analyze complex flows. Due to the recent growth in wind energy, wind farms are being built in complex terrain areas and fine tuning of the existing wind farms for optimized performance have gained significant interest. Scanning Lidar is an ideal tool for improved assessment of flow over complex terrains and wake characterization of large wind farms. In this article, the various applications of Lidar in the wind industry are discussed and results from several campaigns conducted in US and Europe is presented. The conglomeration of results provided in this article would assist wind energy developers and researchers in making improved decisions about their wind farm operations and pre-construction analysis using scanning Lidar's.

  11. A novel two-axis micromechanical scanning transducer for handheld 3D ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    This paper reports the development of a new two-axis micromechanical scanning transducer for handheld 3D ultrasound imaging. It consists of a miniaturized single-element ultrasound transducer driven by a unique 2-axis liquid-immersible electromagnetic microactuator. With a mechanical scanning frequency of 19.532 Hz and an ultrasound pulse repetition rate of 5 kHz, the scanning transducer was scanned along 60 concentric paths with 256 detection points on each to simulate a physical 2D ultrasound transducer array of 60 × 256 elements. Using the scanning transducer, 3D pulse-echo ultrasound imaging of two silicon discs immersed in water as the imaging target was successfully conducted. The lateral resolution of the 3D ultrasound image was further improved with the synthetic aperture focusing technique (SAFT). The new two-axis micromechanical scanning transducer doesn't require complex and expensive multi-channel data acquisition (DAQ) electronics. Therefore, it could provide a new approach to achieve compact and low-cost 3D ultrasound and photoacoustic imaging systems, especially for handheld operations.

  12. Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nihanth Wagmi; Calhoun, Ronald; Lehner, Manuela; Hoch, Sebastian W.; Whiteman, C. David

    2015-01-01

    The second Meteor Crater Experiment (METCRAX II) was designed to study downslope-windstorm-type flows occurring at the Barringer Meteorite Crater in Arizona. Two Doppler wind lidars were deployed to perform a coplanar dual-Doppler lidar analysis to capture the two-dimensional (2-D) vertical structure of these flows in the crater basin. This type of analysis allows the flow to be resolved on a 2-D Cartesian grid constructed in the range height indicator scan overlap region. Previous studies have shown that the dominant error in the coplanar dual-Doppler analysis mentioned above is due to the under sampling of radial velocities. Hence, it is necessary to optimize the setup and choose a scan strategy that minimizes the under sampling of radial velocities and provides a good spatial as well as temporal coverage of these short-lived events. A lidar simulator was developed using a large Eddy simulation wind field to optimize the lidar parameters for METCRAX II field experiment. A retrieval technique based on the weighted least squares technique with weights calculated based on the relative location of the lidar range gate centers to the grid intersection point was developed. The instrument configuration was determined by comparing the simulator retrievals to the background wind field and taking into account the limitations of commercially available lidars.

  13. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  14. Use of ultrasound scanning and body condition score to evaluate composition traits in mature beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The experiment was designed to validate the use of ultrasound to evaluate body composition in mature beef cows. Both precision and accuracy of measurement were assessed. Cull cows (n = 87) selected for highly variable fatness were used. Two experienced ultrasound technicians scanned and assigned ...

  15. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients.

    PubMed

    Hashmi, Faiz R; Elfandi, Khaled O

    2016-06-27

    Osteoporosis is the most common metabolic disease with significant impact on the morbidity and mortality of affected patients. Osteoporosis has a significant impact on the economy worldwide. The aim of this study was to find out whether heel ultrasound is as good as central bone densitometry scanning in diagnosing osteoporosis in patients who are at high risk of osteoporosis. This was a prospective study of patients comparing heel ultrasound to central bone densitometry scanning (dual X-ray absorptiometry, DEXA) in patients. The recruited patients attended for a DEXA scan of the left hip and lumbar spine. All subjects had an ultrasound of the left heel using the quantitative heel ultrasound machine. The results of DEXA scan were blinded from the results of ultrasound and vice versa. There were 59 patients who took part in the study, 12 men and 47 women. The mean age was 66 years (SD 11.9) and mean weight was 62.5 kg (SD 10.7). The sensitivity and specificity of the ultrasound heel test to predict osteoporosis were 53% (95%CI: 29-77) and 86% (95%CI: 75-96) respectively. Specificity for predicting bone mineral density (BMD)-defined osteoporosis was high (86%), but sensitivity was low (53%). A heel ultrasound result in the osteoporotic range was highly predictive of BMD-defined osteoporosis. A positive ultrasound heel test in high risk patients is more useful in ruling in osteoporosis than a negative test to rule out osteoporosis. PMID:27433300

  16. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients

    PubMed Central

    Hashmi, Faiz R.; Elfandi, Khaled O.

    2016-01-01

    Osteoporosis is the most common metabolic disease with significant impact on the morbidity and mortality of affected patients. Osteoporosis has a significant impact on the economy worldwide. The aim of this study was to find out whether heel ultrasound is as good as central bone densitometry scanning in diagnosing osteoporosis in patients who are at high risk of osteoporosis. This was a prospective study of patients comparing heel ultrasound to central bone densitometry scanning (dual X-ray absorptiometry, DEXA) in patients. The recruited patients attended for a DEXA scan of the left hip and lumbar spine. All subjects had an ultrasound of the left heel using the quantitative heel ultrasound machine. The results of DEXA scan were blinded from the results of ultrasound and vice versa. There were 59 patients who took part in the study, 12 men and 47 women. The mean age was 66 years (SD 11.9) and mean weight was 62.5 kg (SD 10.7). The sensitivity and specificity of the ultrasound heel test to predict osteoporosis were 53% (95%CI: 29-77) and 86% (95%CI: 75-96) respectively. Specificity for predicting bone mineral density (BMD)-defined osteoporosis was high (86%), but sensitivity was low (53%). A heel ultrasound result in the osteoporotic range was highly predictive of BMD-defined osteoporosis. A positive ultrasound heel test in high risk patients is more useful in ruling in osteoporosis than a negative test to rule out osteoporosis. PMID:27433300

  17. Relationship between loss of echogenicity and cavitation emissions from echogenic liposomes insonified by spectral Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Kirthi

    Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial

  18. PE-CMOS based C-scan ultrasound for foreign object detection in soft tissue.

    PubMed

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T; Lasser, Marvin E; Kula, John; Sarcone, Anita; Wang, Yue

    2010-01-01

    In this paper, we introduce a C-scan ultrasound prototype and three imaging modalities for the detection of foreign objects inserted in porcine soft tissue. The object materials include bamboo, plastics, glass and aluminum alloys. The images of foreign objects were acquired using the C-scan ultrasound, a portable B-scan ultrasound, film-based radiography, and computerized radiography. The C-scan ultrasound consists of a plane wave transducer, a compound acoustic lens system, and a newly developed ultrasound sensor array based on the complementary metal-oxide semiconductor coated with piezoelectric material (PE-CMOS). The contrast-to-noise ratio (CNR) of the images were analyzed to quantitatively evaluate the detectability using different imaging modalities. The experimental results indicate that the C-scan prototype has better CNR values in 4 out of 7 objects than other modalities. Specifically, the C-scan prototype provides more detail information of the soft tissues without the speckle artifacts that are commonly seen with conventional B-scan ultrasound, and has the same orientation as the standard radiographs but without ionizing radiation. PMID:20036873

  19. Reference range for uterine artery Doppler pulsatility index using transvaginal ultrasound at 20–24w6d of gestation in a low-risk Brazilian population

    PubMed Central

    Peixoto, Alberto Borges; Da Cunha Caldas, Taciana Mara Rodrigues; Tonni, Gabriele; De Almeida Morelli, Priscilla; Santos, Larissa D’amico; Martins, Wellington P.; Júnior, Edward Araujo

    2016-01-01

    Objective To establish reference range for uterine artery (UtA) Doppler pulsatility index (PI) using transvaginal ultrasound at 20–24w6d of gestation in a Brazilian population. Material and Methods A retrospective cross-sectional study in 847 low-risk pregnant women undergoing routine second trimester ultrasound examination was conducted from February 2012 through March 2015. The mean UtA PI was calculated using color Doppler ultrasound with UtA gated at the level of the internal os. Mean±standard deviation and ranges for UtA Doppler PI in relation to gestational age (GA) are reported. Polynomial regression was used to obtain the best fit using mean UtA Doppler PI and GA (weeks) with adjustments performed using determination coefficient (R2). The 5th, 50th, and 95th percentiles for the mean UtA Doppler PI in relation to GA were determined. Results The mean UtA Doppler PI ranged from 1.14 at 20 weeks to 0.95 at 24 weeks of gestation. The best-fit curve of mean UtA Doppler PI as a function of GA was a first-degree polynomial regression: mean UtA Doppler PI=1.900−0.038×GA (R2=0.01). Conclusion In summary, when the mean UtA PI Doppler values were measured by transvaginal ultrasound at 20–24w6d of gestation, decrease in UtA Doppler PI values with advancing GA was observed. Reference range for the mean UtA Doppler PI at 20–24w6d of gestation using the transvaginal ultrasound in a low-risk Brazilian population was established. We believe that this reference range may be of clinical value in daily obstetric practice. PMID:27026774

  20. Noninvasive measurement of acoustic field inside mother's uterus generated by ultrasound scanning

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2015-07-01

    Sounds in the audible range arising in mother's uterus during conventional ultrasound scanning were recorded noninvasively for the first time. It was found that their level is comparable with the level of spoken language.

  1. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  2. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography

    PubMed Central

    Owen, Joshua M; Gaba, Ron Charles

    2016-01-01

    Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance. PMID:27563495

  3. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  4. Doppler Ultrasound Detection of Preclinical Changes in Foot Arteries in Early Stage of Type 2 Diabetes

    PubMed Central

    Leoniuk, Jolanta; Łukasiewicz, Adam; Szorc, Małgorzata; Sackiewicz, Izabela; Janica, Jacek; Łebkowska, Urszula

    2014-01-01

    Summary Background There are few reports regarding the changes within the vessels in the initial stage of type 2 diabetes. The aim of this study was to estimate the hemodynamic and morphological parameters in foot arteries in type 2 diabetes subjects and to compare these parameters to those obtained in a control group of healthy volunteers. Material/Methods Ultrasound B-mode, color Doppler and pulse wave Doppler imaging of foot arteries was conducted in 37 diabetic patients and 36 non-diabetic subjects to determine their morphological (total vascular diameter and flow lumen diameter) and functional parameters (spectral analysis). Results In diabetic patients, the overall vascular diameter and wall thickness were statistically significantly larger when compared to the control group in the right dorsalis pedis artery (P=0.01; P=0.001), left dorsalis pedis artery (P=0.007; P=0.006), right posterior tibial artery (P=0.005; P=0.0005), and left posterior tibial artery (P=0.007; P=0.0002). No significant differences were observed in both groups in flow lumen diameters and blood flow parameters (PSV, EDV, PI, RI). In the diabetic group, the level of HbA1c positively correlated with flow resistance index in the right dorsalis pedis artery (r=0.38; P=0.02), right posterior tibial artery (r=0.38; P=0.02) and left posterior tibial artery (r=0.42; P=0.009). The pulsatility index within the dorsalis pedis artery decreased with increased trophic skin changes (r=–0.431, P=0.009). Conclusions In the diabetic group, overall artery diameters larger than and flow lumina comparable to the control group suggest vessel wall thickening occurring in the early stage of diabetes. Doppler flow parameters are comparable in both groups. In the diabetic group, the level of HbA1c positively correlated with flow resistance index and negative correlation was observed between the intensity of trophic skin changes and the pulsatility index. PMID:25202434

  5. A Method for Characteristic Extraction of Ultrasound Doppler Signal with Peak-valley Relationship under Heavy Noise.

    PubMed

    Lin, Zhang; Liu Dong, C; Jiliu, Zhou

    2005-01-01

    This paper proposes a real-time algorithm estimating clinical useful parameters from the maximum frequency curve of ultrasound Doppler spectrum. Traditional methods always apply some pre-calculations to the frequency waveform, for instance, filtering or scaling transformation, which have limitations on real-time features detection and waveform display. In this paper, we propose and maintain a process unit as a section of the waveform with the help of its phase information and the idea of the changeable scaling in the wavelet, to determine the Doppler waveform parameters in real time. From a set of in vivo Doppler waveforms, our proposed algorithm can pick up right parameters even in very noisy environment. PMID:17282933

  6. Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.

    PubMed

    Greer, Joseph D; Adebar, Troy K; Hwang, Gloria L; Okamura, Allison M

    2014-01-01

    This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71 ± 0.55 mm in needle tip location and 0.38 ± 0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity. PMID:25485402

  7. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation?

    PubMed Central

    Zeisbrich, Markus; Kihm, Lars P.; Drüschler, Felix; Zeier, Martin; Schwenger, Vedat

    2015-01-01

    Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function. PMID:26413289

  8. Evaluation of gridded Scanning ARM Cloud Radar reflectivity observations and vertical Doppler velocity retrievals

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2013-11-01

    The Scanning ARM Cloud Radars (SACR's) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a common scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range Height Indicator - CWRHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Oklahoma (SGP) and Cape-Cod (PVC) sites are post-processed (detection mask, velocity de-aliasing and gaseous attenuation correction). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimension. The Cartesian-gridded Doppler velocity fields are next decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D clouds dynamical representations up to 25-30° off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics, anisotropy and lead to more realistic 3-D radiative transfer calculations.

  9. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  10. Personalized peer-comparison feedback and its effect on emergency medicine resident ultrasound scan numbers

    PubMed Central

    2014-01-01

    Background Clinician-performed ultrasound has become a widely utilized tool in emergency medicine and is a mandatory component of the residency curricula. We aimed to assess the effect of personalized peer-comparison feedback on the number of ultrasound scans performed by emergency medicine residents. Findings A personalized peer-comparison feedback was performed by sending 44 emergency medicine residents a document including personally identified scan numbers and class averages. The number of ultrasound scans per clinical shift for a 3-month period before and after the feedback intervention was calculated. The average number of ultrasound exams per shift improved from 0.39 scans/shift before to 0.61 scans/shift after feedback (p = 0.04). Among the second year residents, the scans/shift ratio improved from 0.35 to 0.87 (p = 0.07); for third year residents, from 0.51 to 0.58 (p = 0.46); and from 0.33 to 0.41 (p = 0.21) for the fourth year residents before and after the intervention, respectively. Conclusions A personalized peer-comparison feedback provided to emergency medicine residents resulted in increased ultrasound scan numbers per clinical shift. Incorporating this method of feedback may help encourage residents to scan more frequently. PMID:24422791

  11. Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Weekes, Ben; Ewins, David

    2015-06-01

    Continuous scan laser Doppler vibrometry (CSLDV) is a technique which has been described and explored in the literature for over two decades, but remains niche compared to SLDV inspection by a series of discrete-point measurements. This is in part because of the unavoidable phenomenon of laser speckle, which deteriorates signal quality when velocity data is captured from a moving spot measurement. Further, applicability of CSLDV has typically been limited to line scans and rectangular areas by the application of sine, step, or ramp functions to the scanning mirrors which control the location of the measurement laser spot. In this paper it is shown that arbitrary functions to scan any area can easily be derived from a basic calibration routine, equivalent to the calibration performed in conventional discrete-point laser vibrometry. This is extended by performing the same scan path upon a test surface from three independent locations of the laser head, and decomposing the three sets of one-dimensional deflection shapes into a single set of three-dimensional deflection shapes. The test was performed with multi-sine excitation, yielding 34 operating deflection shapes from each scan.

  12. An online three-class Transcranial Doppler ultrasound brain computer interface.

    PubMed

    Goyal, Anuja; Samadani, Ali-Akbar; Guerguerian, Anne-Marie; Chau, Tom

    2016-06-01

    Brain computer interfaces (BCI) can provide communication opportunities for individuals with severe motor disabilities. Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocities and can be used to develop a BCI. A previously implemented TCD BCI system used verbal and spatial tasks as control signals; however, the spatial task involved a visual cue that awkwardly diverted the user's attention away from the communication interface. Therefore, vision-independent right-lateralized tasks were investigated. Using a bilateral TCD BCI, ten participants controlled online, an on-screen keyboard using a left-lateralized task (verbal fluency), a right-lateralized task (fist motor imagery or 3D-shape tracing), and unconstrained rest. 3D-shape tracing was generally more discernible from other tasks than was fist motor imagery. Verbal fluency, 3D-shape tracing and unconstrained rest were distinguished from each other using a linear discriminant classifier, achieving a mean agreement of κ=0.43±0.17. These rates are comparable to the best offline three-class TCD BCI accuracies reported thus far. The online communication system achieved a mean information transfer rate (ITR) of 1.08±0.69bits/min with values reaching up to 2.46bits/min, thereby exceeding the ITR of previous online TCD BCIs. These findings demonstrate the potential of a three-class online TCD BCI that does not require visual task cues. PMID:26795195

  13. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  14. Comparison of vortical structures induced by arteriovenous grafts using vector Doppler ultrasound.

    PubMed

    Kokkalis, Efstratios; Cookson, Andrew N; Stonebridge, Peter A; Corner, George A; Houston, J Graeme; Hoskins, Peter R

    2015-03-01

    Arteriovenous prosthetic grafts are used in hemodialysis. Stenosis in the venous anastomosis is the main cause of occlusion and the role of local hemodynamics in this is considered significant. A new spiral graft design has been proposed to stabilize the flow phenomena in the host vein. Cross-flow vortical structures in the outflow of this graft were compared with those from a control device. Both grafts were integrated in identical in-house ultrasound-compatible flow phantoms with realistic surgical configurations. Constant flow rates were applied. In-plane 2-D velocity and vorticity mapping was developed using a vector Doppler technique. One or two vortices were detected for the spiral graft and two to four for the control, along with reduced stagnation points for the former. The in-plane peak velocity and circulation were calculated and found to be greater for the spiral device, implying increased in-plane mixing, which is believed to inhibit thrombosis and neo-intimal hyperplasia. PMID:25683221

  15. The key role of color Doppler ultrasound in the work-up of hemodialysis vascular access.

    PubMed

    Lomonte, Carlo; Meola, Mario; Petrucci, Ilaria; Casucci, Francesco; Basile, Carlo

    2015-01-01

    Vascular access (VA) is the lifeline for the hemodialysis patient and the native arterio-venous fistula (AVF) is the first-choice access. Among the different tests used in the VA domain, color Doppler ultrasound (CD-US) plays a key role in the clinical work-up. At the present time, three are the main fields of CD-US application: (i) evaluation of forearm arteries and veins in surgical planning; (ii) testing of AVF maturation; (iii) VA complications. Specifically, during the AVF maturation, CD-US allows to measure the diameter and flow volume in the brachial artery and calculate the peak systolic velocity (PSV) of the arterial axis, anastomosis and efferent vein, to detect critical stenosis. The borderline stenosis, revealed by the discrepancies between access flow rate and PSV, should be followed up with subsequent tests to detect progression of stenosis; the cases with significant changes in brachial flow should be referred to angiography. In conclusion, clinical monitoring remains the backbone of any VA program. CD-US is of utmost importance in a patient-centered VA evaluation, because it allows the appropriate management of all aspects of VA care. These are the main reasons why we strongly advocate the adoption of a VA surveillance program based on CD-US. PMID:25264303

  16. Effect of low level laser therapy on revascularization of free gingival graft using ultrasound Doppler flowmetry

    PubMed Central

    Arunachalam, Lalitha T.; Sudhakar, Uma; Janarthanam, Akila Sivaranjani; Das, Nimisha Mithra

    2014-01-01

    Low level laser therapy (LLLT) is widely used during the post-operative period to accelerate the healing process. It promotes beneficial biological action on neovascularization with anti-inflammatory and analgesic effects. Two systemically healthy patients with Miller's grade II recession on 33 and 41, respectively, were treated with free gingival graft. After surgery, second patient received LLLT using a 830 nm diode laser, with output power of 0.1 W on the first day half hour following surgery, on the third day, seventh day, and lastly on the ninth day. Both the patients were asked to assess the pain on second, fourth and tenth day using a Numerical Rating Scale and revascularization of the grafted area was assessed using a color Doppler ultrasound imaging on the fourth and the ninth day. Neovascularization was noted in both the patients but the second patient elicited marked increase in vascularity on the fourth as well as the tenth day and drastic reduction in pain on day four, with no change on the tenth day. The results showed that LLLT was an effective adjunctive treatment in promoting reevascularization and pain control during early healing of free gingival graft. PMID:25024560

  17. Role of ultrasound and color doppler in diagnosis of periapical lesions of endodontic origin at varying bone thickness

    PubMed Central

    Tikku, Aseem P; Bharti, Ramesh; Sharma, Neha; Chandra, Anil; Kumar, Ashutosh; Kumar, Sunil

    2016-01-01

    Aims: To access the role of ultrasound and color doppler in diagnosing periapical lesions of maxilla and mandible. Settings and Design: This study was conducted in the Department of Conservative Dentistry and Endodontics (Faculty of Dental Sciences), Department of Radiotherapy, and Department of Pathology. Materials and Methods: The study group comprised 30 patients with periapical lesions of endodontic origin in maxilla and mandible requiring endodontic surgery. After thorough clinical and radiographic examination patients were subjected to ultrasound and color doppler examination, where the lesions were assessed for their contents as to cystic or solid. Following which periapical surgery was done and the pathological tissue obtained was subjected to histopathological examination. The results of the ultrasound examination were correlated with histopathological features. The diagnostic validity of ultrasound was assessed by calculating the sensitivity, specificity, positive predictive value, and negative predictive value. Statistical Analysis Used: The statistical analysis was done using statistical package for social sciences (SPSS) version 15.0 statistical analysis software. The values were represented in number (%). Results: Within the limitations of the current study it can be stated that although ultrasound may not establish the definitive diagnosis, it can facilitate the differential diagnosis between cystic and solid granulomatous lesions. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. Conclusion: Ultrasound can routinely be recommended as a complimentary method for the diagnosis of periapical lesions of endodontic origin. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. PMID:27099421

  18. Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Revel, G. M.; Martarelli, M.

    2015-11-01

    The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.

  19. Scanning Laser Doppler Vibrometry Application to Artworks: New Acoustic and Mechanical Exciters for Structural Diagnostics

    NASA Astrophysics Data System (ADS)

    Agnani, A.; Esposito, E.

    After first attempts some years ago, the scanning laser Doppler vibrometer has become an effective way of diagnosing different types of artworks; successful applications regard frescoes, icons, mosaics, ceramic artefacts and wood inlays. Also application to historical bridges has been successfully developed and a recently approved European Commission project will see the employment of scanning laser Doppler Vibrometry (SLDV) for the dynamical characterization of ancient buildings. However, a critical issue consists in the adequate excitation of the structure under test. Moreover different types of defects and different kinds of artworks require different types of excitation, so this topic needs a deep consideration. In this work we will present two new types of exciters developed at our Department, namely an acoustic exciter and a mechanical one. Acoustic exciters allow remote non-invasive loading but are limited in the lower frequency range and in the amount of vibrational energy input into the structure. The proposed automatic tapping device based on a commercial impact hammer overcomes these problems. Also another acoustic exciter, a HyperSonic Sound (HSS) source has been evaluated, showing interesting features as regards sound radiation.

  20. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. PMID:23273891

  1. Why do women seek ultrasound scans from commercial providers during pregnancy?

    PubMed

    Roberts, Julie; Griffiths, Frances E; Verran, Alice; Ayre, Catherine

    2015-05-01

    The commercial availability of ultrasound scans for pregnant women has been controversial yet little is known about why women make use of such services. This article reports on semi-structured interviews with women in the UK who have booked a commercial scan, focusing on the reasons women gave for booking commercially provided ultrasound during a low-risk pregnancy. Participants' reasons for booking a scan are presented in five categories: finding out the sex of the foetus; reassurance; seeing the baby; acquiring keepsakes and facilitating bonding. Our analysis demonstrates that women's reasons for booking commercial scans are often multiple and are shaped by experiences of antenatal care as well as powerful cultural discourses related to 'good' parenting and the use of technology in pregnancy. Sociological and public debate about the availability of commercial ultrasound and its social and personal impacts should consider the wider sociocultural context that structures women's choices to make use of such services. PMID:26094706

  2. Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

    PubMed

    Salman, Muhammad; Sabra, Karim G

    2012-09-01

    A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues. PMID:22978867

  3. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    PubMed Central

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills. PMID:26579054

  4. Validation of a hybrid Doppler ultrasound vessel-based registration algorithm for neurosurgery

    PubMed Central

    Chen, Sean Jy-Shyang; Reinertsen, Ingerid; Coupé, Pierrick; Yan, Charles X B; Mercier, Laurence; Del Maestro, D Rolando; Collins, D Louis

    2012-01-01

    Purpose We describe and validate a novel hybrid non-linear vessel registration algorithm for intraoperative updating of preoperative magnetic resonance (MR) images using Doppler ultrasound (US) images acquired on the dura for the correction of brain-shift and registration inaccuracies. We also introduce an US vessel appearance simulator that generates vessel images similar in appearance to that acquired with US from MR angiography data. Methods Our registration uses the minimum amount of preprocessing to extract vessels from the raw volumetric images. This prevents the removal of important registration information and minimizes the introduction of artifacts that may affect robustness, while reducing the amount of extraneous information in the image to be processed, thus improving the convergence speed of the algorithm. We then completed 3 rounds of validation for our vessel registration method for robustness and accuracy using (i)a large number of synthetic trials generated with our US vessel simulator, (ii)US images acquired from a real physical phantom made from polyvinyl alcohol cryogel (PVAc), and (iii)real clinical data gathered intraoperatively from 3 patients. Results Resulting target registration errors (TRE) of less than 2.5mm are achieved in more than 90% of the synthetic trials when the initial TREs are less than 20mm. TREs of less than 2mm were achieved when the technique was applied to the physical phantom, and TREs of less than 3mm were achieved on clinical data. Conclusions These test trials show that the proposed algorithm is not only accurate but also highly robust to noise and missing vessel segments when working with US images acquired in a wide range of real-world conditions. PMID:22447435

  5. The yield of early postnatal ultrasound scan in neonates with documented antenatal hydronephrosis.

    PubMed

    Maayan-Metzger, Ayala; Lotan, Danny; Jacobson, Jeffrey M; Raviv-Zilka, Lisa; Ben-Shlush, Aviva; Kuint, Jacob; Mor, Yoram

    2011-09-01

    We retrospectively assessed the yield of early postnatal ultrasound scans in neonates with documented antenatal hydronephrosis. We reviewed recording data of prenatal renal ultrasound for 178 newborn infants and the results of renal ultrasound performed during the first days of life. Of 119 infants with prenatal diagnosis of mild hydronephrosis (renal pelvic diameter <10 mm), 116 (97.5%) had postnatal ultrasound results showing normal or mild hydronephrosis. Prenatal diagnosis of severe hydronephrosis (renal pelvic diameter >20 mm; 10 infants) was correlated with high incidence (90%) of moderate and severe postnatal hydronephrosis. Prenatal diagnosis of moderate hydronephrosis (renal pelvic diameter 10 to 20 mm) resulted in moderate postnatal hydronephrosis in 20% and improvement in 80% of the newborn infants. Our evidence supports the option of delaying postnatal renal ultrasound in infants with prenatal diagnosis of mild hydronephrosis (renal pelvic diameter <10 mm). This strategy can safely reduce the number of early postnatal studies and consequently significantly decrease hospitals' inpatient workload. PMID:21494995

  6. Fibroid-associated heavy menstrual bleeding: correlation between clinical features, Doppler ultrasound assessment of vasculature, and tissue gene expression profiles.

    PubMed

    Tsiligiannis, Sophia E; Zaitseva, Marina; Coombs, Peter R; Shekleton, Paul; Olshansky, Moshe; Hickey, Martha; Vollenhoven, Beverley; Rogers, Peter A W

    2013-04-01

    Despite the prevalence of uterine fibroids (Fs), few studies have investigated the links between clinical features and the cellular or molecular mechanisms that drive F growth and development. Such knowledge will ultimately help to differentiate symptomatic from asymptomatic Fs and could result in the development of more effective and individualized treatments. The aim of this study was to investigate the relationship between ultrasound appearance, blood flow, and angiogenic gene expression in F, perifibroid (PM), and distant myometrial (DM) tissues. We hypothesized that angiogenic gene expression would be increased in tissues and participants that showed increased blood flow by Doppler ultrasound. The study was performed using Doppler ultrasound to measure blood flow prior to hysterectomy, with subsequent tissue samples from the F, PM, and DM being investigated for angiogenic gene expression. Overall, PM blood flow (measured as peak systolic velocity [PSV]) was higher than F blood flow, although significant heterogeneity was seen in vascularity and blood flow between different Fs and their surrounding myometrium. We did not find any correlation between PSV and any other clinical or molecular parameter in this study. We identified 19 angiogenesis pathway-related genes with significant differences in expression between F and DM, and 2 genes, matrix metalloproteinase 9 (MMP9) and Neuropilin 2 (NRP2), that were significantly different between F and PM. These results are consistent with subtle differences between PM and DM. Understanding the differences between symptomatic versus asymptomatic Fs may eventually lead to more effective treatments that directly target the source of heavy menstrual bleeding. PMID:22995988

  7. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  8. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  9. Measurement of coronary flow using high-frequency intravascular ultrasound imaging and pulsed Doppler velocimetry: in vitro feasibility studies.

    PubMed

    Grayburn, P A; Willard, J E; Haagen, D R; Brickner, M E; Alvarez, L G; Eichhorn, E J

    1992-01-01

    The recent development of intravascular ultrasound imaging offers the potential to measure blood flow as the product of vessel cross-sectional area and mean velocity derived from pulsed Doppler velocimetry. To determine the feasibility of this approach for measuring coronary artery flow, we constructed a flow model of the coronary circulation that allowed flow to be varied by adjusting downstream resistance and aortic driving pressure. Assessment of intracoronary flow velocity was accomplished using a commercially available end-mounted pulsed Doppler catheter. Cross-sectional area of the coronary artery was measured using a 20 MHz mechanical imaging transducer mounted on a 4.8 F catheter. The product of mean velocity and cross-sectional area was compared with coronary flow measured by timed collection in a graduated cylinder by linear regression analysis. Excellent correlations were obtained between coronary flow calculated by the ultrasound method and measured coronary flow at both ostial (r = 0.99, standard error of the estimate [SEE] = 13.9 ml/min) and distal (r = 0.98, SEE = 23.0 ml/min) vessel locations under steady flow conditions. During pulsatile flow, calculated and measured coronary flow also correlated well for ostial (r = 0.98, SEE = 12.7 ml/min) and downstream (r = 0.99, SEE = 9.3 ml/min) locations. That the SEE was lower for pulsatile as compared with steady flow may be explained by the blunting of the flow profile across the vessel lumen by the acceleration phase of pulsatile flow. These data establish the feasibility of measuring coronary artery blood flow using intravascular ultrasound imaging and pulsed Doppler techniques. PMID:1531416

  10. Measurements of Wind and Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

    SciTech Connect

    Frehlich, R.; Kelley, N.

    2008-03-01

    High-quality profiles of mean and turbulent statistics of the wind field upstream of a wind farm can be produced using a scanning Doppler lidar. Careful corrections for the spatial filtering of the wind field by the lidar pulse produce turbulence estimates equivalent to point sensors but with the added advantage of a larger sampling volume to increase the statistical accuracy of the estimates. For a well-designed lidar system, this permits accurate estimates of the key turbulent statistics over various subdomains and with sufficiently short observation times to monitor rapid changes in conditions. These features may be ideally suited for optimal operation of wind farms and also for improved resource assessment of potential sites.

  11. Aircraft wake vortex velocity measurements using a scanning CO2 laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Sonnenschein, C. M.; Jeffreys, H. B.

    1975-01-01

    A CO2 laser Doppler velocimeter was employed in the study of pairs of counterrotating vortices trailing aircraft in an airport air space. A laser positioned on an extended runway centerline scans a vertical plane perpendicular to the centerline. Vortex location, measurement of vortex transport, and measurement of the properties of aircraft wake vortex flow fields are achieved via spectral analysis of the data. Highest amplitude in the spectrum, the associated maximum velocity, the highest velocity above the amplitude threshold, and the total number of frequency (velocity) cells above thresholds are studied as parameters in analysis of the vortex-associated flow field. The profile of the radial variation of tangential velocity is studied, and two special problems are examined: location of the vortex center and error introduced by crosswind.

  12. Conformal scanning laser Doppler vibrometer measurement of tenor steelpan response to impulse excitation.

    PubMed

    Ryan, Teresa; O'Malley, Patrick; Glean, Aldo; Vignola, Joseph; Judge, John

    2012-11-01

    A conformal scanning laser Doppler vibrometer system is used in conjunction with a mechanical pannist to measure the surface normal vibration of the entire playing surface of a C-lead tenor steelpan. The mechanical pannist is a device designed to deliver controlled, repeatable strikes that mimic a mallet during authentic use. A description of the measurement system is followed by select examples of behavior common to the results from three different excitation notes. A summary of observed response shapes and associated frequencies demonstrates the concerted placement of note overtones by the craftsmen who manufacture and tune the instruments. The measurements provide a rich mechanical snapshot of the complex motion that generates the distinctive sound of a steelpan. PMID:23145629

  13. Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging.

    PubMed

    Makita, Shuichi; Jaillon, Franck; Yamanari, Masahiro; Yasuno, Yoshiaki

    2012-01-30

    Dual-beam-scan Doppler optical coherence angiography (DB-OCA) enables high-speed, high-sensitivity blood flow imaging. However, birefringence of biological tissues is an obstacle to vasculature imaging. Here, the influence of polarization and birefringence on DB-OCA imaging was analyzed. A DB-OCA system without birefringence artifact has been developed by introducing a Faraday rotator. The performance was confirmed in vitro using chicken muscle and in vivo using the human eye. Birefringence artifacts due to birefringent tissues were suppressed. Micro-vasculatures in the lamina cribrosa and nerve fiber layer of human eyes were visualized in vivo. High-speed and high-sensitivity micro-vasculature imaging involving birefringent tissues is available with polarization multiplexing DB-OCA. PMID:22330505

  14. Doppler Ultrasound and Magnetic Resonance Imaging Findings of Penile Mondor’s Disease: Case Report and Literature Review

    PubMed Central

    Kantarcı, Umut Hasan; Dirik, Alper; Öztürk, Yasemin Erdem; Kiriş, İlker; Duymuş, Mahmut

    2016-01-01

    Summary Background Penile involvement is a rare, self-limiting, benign genital condition. In Mondor’s disease the underlying pathology is thrombophlebitis of a superficial vein. Case Report In this case report, we want to present a rare Penile Mondor’s disease with literature review. Conclusions While the diagnosis can be based on history, physical examination and Doppler ultrasound, the necessity of both MRI, MR angiography and intracavernosal vasoactive agent administration can be questioned. Both MRI and intravenous vasoactive agent administration may be helpful in suspicious cases for differential diagnosis and to eliminate other etiologies like pelvic mass or thrombosis. PMID:26893793

  15. Utilization of antenatal ultrasound scan and implications for caesarean section: a cross-sectional study in rural Eastern China

    PubMed Central

    2012-01-01

    Background Antenatal ultrasound scan is a widely accepted component of antenatal care. Studies have looked at the relationship between ultrasound scanning and caesarean section (CS) in certain groups of women in China. However, there are limited data on the utilization of antenatal ultrasound scanning in the general population, including its association with CS. The purpose of this study is to describe the utilization of antenatal ultrasound screening in rural Eastern China and to explore the association between antenatal ultrasound scan and uptake of CS. Methods Based on a cluster randomized sample, a total of 2326 women with childbirth participated in the study. A household survey was conducted to collect socio-economic information, obstetric history and utilization of maternal health services. Results Coverage of antenatal care was 96.8% (2251/2326). During antenatal care, 96.1% (2164/2251) women received ultrasound screening and the reported average number was 2.55. 46.8% women received at least 3 ultrasound scans and the maximum number reached 11. The CS rate was found to be 54.8% (1275/2326). After adjusting for socio-demographic and clinical variables, it showed a statistically significant association between antenatal ultrasound scans and uptake of CS by multivariate logistic regression model. High husband education level, high maternal age, having previous adverse pregnant outcome and pregnancy complications during the index pregnancy were also found to be risk factors of choosing a CS. Conclusions A high use of antenatal ultrasound scan in rural Eastern China is found and is influenced by socio-demographic and clinical factors. Evidence-based guidelines for antenatal ultrasound scans need to be developed and disseminated to clinicians including physicians, nurses and sonographers. Guidance about the appropriate use of ultrasound scans should also be shared with women in order to discourage unreasonable expectations and demands. It is important to monitor

  16. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices. PMID:22913101

  17. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features.

    PubMed

    Papini, Enrico; Guglielmi, Rinaldo; Bianchini, Antonio; Crescenzi, Anna; Taccogna, Silvia; Nardi, Francesco; Panunzi, Claudio; Rinaldi, Roberta; Toscano, Vincenzo; Pacella, Claudio M

    2002-05-01

    The aim of the study was to correlate the sonographic [ultrasound (US)] and color-Doppler (CFD) findings with the results of US-guided fine needle aspiration biopsy (FNA) and of pathologic staging of resected carcinomas to establish: 1) the relative importance of US features as risk factors of malignancy; and 2) a cost-effective management of nonpalpable thyroid nodules. Four hundred ninety-four consecutive patients with nonpalpable thyroid nodules (8-15 mm) were evaluated by US, CFD, and US-FNA. Ninety-two patients with inadequate cytology were excluded from the study. All patients with suspicious or malignant cytology underwent surgery, whereas subjects with benign cytology had clinical and US control 6 months later. Thyroid malignancies were observed in 18 of 195 (9.2%) solitary thyroid nodules and in 13 of 207 (6.3%) multinodular goiters. Cancer prevalence was similar in nodules greater or smaller than 10 mm (9.1 vs. 7.0%). Extracapsular growth (pT(4)) was present in 35.5%, and nodal involvement in 19.4% of neoplastic lesions, with no significant differences between tumors greater or smaller than 10 mm. At US cancers presented a solid hypoechoic appearance in 87% of cases, irregular or blurred margins in 77.4%, an intranodular vascular pattern in 74.2%, and microcalcifications in 29.0%. Irregular margins (RR 16.83), intranodular vascular spots (RR 14.29), and microcalcifications (RR 4.97) were independent risk factors of malignancy. FNA performed on hypoechoic nodules with at least one risk factor was able to identify 87% of the cancers at the expence of cytological evaluation of 38.4% of nonpalpable lesions. The majority of nonpalpable thyroid tumors can be identified by cytological evaluation of lesions presenting hypoechoic appearance in conjunction with one independent risk factor. Due to the nonnegligible prevalence of extracapsular growth and nodal metastasis, US-FNA should be performed on all 8-15 mm hypoechoic nodules with irregular margins

  18. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work. PMID:19175196

  19. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  20. Focal bowel wall changes detected with colour Doppler ultrasound: diagnostic value in acute non-diverticular diseases of the colon.

    PubMed

    Danse, E M; Jamart, J; Hoang, P; Laterre, P F; Kartheuser, A; Van Beers, B E

    2004-11-01

    We performed a study to determine if colour Doppler findings may help to identify the cause of wall thickening in acute non-diverticular diseases of the colon. The study group included 66 patients admitted to the emergency department with a final diagnosis of infectious colitis (n=23), inflammatory colitis (n=10), ischaemic colitis (n=23) and malignant tumours (n=10). The following ultrasound features were assessed: maximal wall thickness, wall stratification, arterial flow in the colonic wall and arteriolar resistive index. Higher values of wall thickness were observed in malignant tumour (18.2+/-6.2 mm, p<0.001). Moderately thickened wall (6.6+/-1.3 mm, p< or =0.06), preserved stratification (90% versus 46% in the remainder of the study population) and lower resistive index (0.51+/-0.10, p< or =0.05) were significantly related to inflammatory colitis. Absence of arterial flow was more frequently observed in ischaemia (43% versus 12% in the remainder of the study population). In conclusion, despite some overlap, both ultrasound and colour Doppler features are helpful in the differential diagnosis of colonic thickening related to non-diverticular colonic lesions. PMID:15507414

  1. Successful stent implantation guided by intravascular ultrasound and a Doppler guidewire without contrast injection in a patient with allergy to iodinated contrast media.

    PubMed

    Okura, Hiroyuki; Nezuo, Shintaro; Yoshida, Kiyoshi

    2011-07-01

    Presence of allergy to iodinated contrast may prevent percutaneous coronary intervention (PCI) to be performed. We present a 76-year-old male with a history of allergic reaction to iodinated contrast who successfully underwent intravascular ultrasound (IVUS) and a Doppler guidewire-guided PCI. Stent size was determined based on IVUS. After PCI, stent expansion and a lack of edge dissection or incomplete apposition were confirmed by IVUS and a good antegrade coronary flow was confirmed by a Doppler guidewire. Thus, PCI without contrast injection under IVUS and a Doppler guidewire-guidance may be feasible in selected patients with allergy to iodinated contrast. PMID:21725127

  2. Measurements of hindlimb blood flow recorded using Doppler ultrasound during administration of vasoactive agents in halothane-anesthetized horses.

    PubMed

    Raisis, A L; Young, L E; Meire, H B; Taylor, P M; Blissitt, K J; Marlin, D; Lekeux, P

    2000-01-01

    The purpose of the study was to determine the ability of Doppler ultrasound to detect changes in femoral blood flow during pharmacologic manipulation of arterial blood pressure. Doppler ultrasonography was performed in the femoral vessels of six halothane-anesthetized horses before and during administration of phenylephrine HCI and sodium nitroprusside. The time-averaged mean velocity and volumetric flow were calculated. The contour of the velocity waveform was assessed, and the early diastolic deceleration slope (EDDS) and pulsatility index (PI) were calculated. Administration of phenylephrine HCI resulted in increased mean aortic blood pressure (MABP) by 40% (29.3-53.0%). This caused significant decrease in cardiac output (26.8 to 13.5 l/min), femoral arterial velocity (left artery 7.20 to 4.00 cm/s; right artery 5.01 to 3.39 cm/s) and volumetric flow (left artery 556 to 221 ml/min; right artery 397 to 193 ml/min) in the femoral vessels and significant increase in systemic vascular resistance (163 to 433 dyn-s/cm5), EDDS (1a: 285 to 468: ra: 250 to 481) and PI (1a: 9.38 to 20.4; ra 17.1 to 29.1). Administration of sodium nitroprusside resulted in a decreased MABP of 27.2% (22.5-33%). This increased cardiac output (20.8 to 32.4 L/min), however, no significant changes were observed in femoral blood flow. Despite obvious changes in the waveform contour, no significant change occurred in EDDS or PI. These results suggest that Doppler ultrasound may be useful for measuring femoral blood flow in anesthetized horses. However, waveform analysis appears to be limited when multiple changes occur in central and peripheral haemodynamics. PMID:10695883

  3. The development of a combined b-mode, ARFI, and spectral Doppler ultrasound imaging system for investigating cardiovascular stiffness and hemodynamics

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.

    2011-03-01

    The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.

  4. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  5. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States. PMID:19377577

  6. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-06-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  7. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    SciTech Connect

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  8. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    NASA Astrophysics Data System (ADS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  9. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  10. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  11. Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Watanabe, Kento

    2014-05-01

    This paper proposes a non-mechanical axial scanning laser Doppler velocimeter (LDV) with sensitivity to the direction of the transverse velocity component using optical serrodyne frequency shifting. Serrodyne modulation via the electro-optic effect of a LiNbO3 (LN) phase shifter is employed to discriminate the direction of the transverse velocity component. The measurement position is scanned without any moving mechanism in the probe by changing the wavelength of the light input to the probe. The experimental results using a sensor probe setup indicate that both the scan of the measurement position and the introduction of directional sensitivity are successfully demonstrated.

  12. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  13. Identification of pavement material properties using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Navid; Vuye, Cedric; Van den Bergh, Wim; Dirckx, Joris; Leysen, Jari; Sels, Seppe; Vanlanduit, Steve

    2016-06-01

    This paper presents an inverse modeling approach to estimate mechanical properties of asphalt concrete (i.e. Young's modulus E, Poisson ratio ν and damping coefficients). Modal analysis was performed on an asphalt slab using a shaker to excite the specimen and an optical measurement system (a Scanning Laser Doppler Vibrometer or SLDV) to measure the velocity of a measurement grid on the surface of the slab. The SLDV has the ability to measure the vibration pattern of an object with high accuracy, short testing time and without making any contact. The measured data were used as inputs for a frequency domain model parameter estimation method (the Polymax estimator). Meanwhile, natural frequencies and damping ratios of the system were calculated using a Finite Element Modeling (FEM) method. Then, the Modal Assurance Criterion (MAC) was used to pair the mode shapes of the structure determined by measurements and estimated by FEM. By changing the inputs of the FEM analysis (E, ν and damping coefficients of the material) iteratively and minimizing the discrepancy between paired natural frequencies and damping ratios of the system estimated using the Polymax estimator and calculated by FEM, the Young's modulus, Poisson ratio and damping coefficients of the asphalt slab were estimated.

  14. A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. I. Theory.

    PubMed

    Vaitkus, P J; Cobbold, R C

    1998-01-01

    A significant improvement in blood velocity estimation accuracy can be achieved by simultaneously processing both temporal and spatial information obtained from a sample volume. Use of the spatial information becomes especially important when the temporal resolution is limited. By using a two-dimensional sequence of spatially sampled Doppler signal "snapshots" an improved estimate of the Doppler correlation matrix can be formed. Processing Doppler data in this fashion addresses the range-velocity spread nature of the distributed red blood cell target, leading to a significant reduction in spectral speckle. Principal component spectral analysis of the "snapshot" correlation matrix is shown to lead to a new and robust Doppler mode frequency estimator. By processing only the dominant subspace of the Doppler correlation matrix, the Cramer-Rao bounds on the estimation error of target velocity is significantly reduced in comparison to traditional narrowband blood velocity estimation methods and achieves almost the same local accuracy as a wideband estimator. A time-domain solution is given for the velocity estimate using the root-MUSIC algorithm, which makes the new estimator attractive for real-time implementation. PMID:18244249

  15. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  16. Linking water surface roughness to velocity patterns using terrestrial laser scanning and acoustic doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Heritage, George; Milan, David; Entwistle, Neil

    2010-05-01

    There are well established links between water surface characteristics and hydraulics. Biotope identification is currently an important part of the River Habitat Survey in England and Wales. Their differentiation is based upon recognition of a family of flow features exhibited on the water surface. Variability in this water surface ‘roughness' is dependent upon the interaction of flow with boundary roughness and flow depth. Past research that has attempted to differentiate biotopes based upon differences in Froude number (Fr) and Reynolds number (Re), however this linkage has only been limited to local analysis between flow velocity, depth and roughness. Milan et al. (2010) have recently demonstrated that terrestrial laser scanning (TLS) can be applied to produce fully quantitative maps of hydraulic habitat, based upon defined water surface roughness delimeters. However the nature of the linkages between water surface roughness, flow velocity and depth are still poorly understood, particularly at the reach-scale. This study attempts to provide a full spatial picture of the links between water surface roughness, flow depth and velocity. A Sontek Acoustic Doppler Velocity Profiler (ADVP) was used to provide detailed information on vertical velocity and water depth for a 300 m reach of the gravel-bed River Wharfe, Yorkshire, UK. Simultaneous to the ADVP measurements, a Riegl LMS-Z210 TLS was used to take a series of first return scans of the water surface. Categorisation of the point cloud elevation data for the water surface was achieved through the allocation of moving window standard deviation values to a regular grid, thus defining water surface roughness. The ADVP data demonstrate gross reach-scale variation in velocity and depth linked to bedforms, and more localised spatial and temporal variation within biotope units. The ADVP data was used to produce reach-scale maps of Fr and Re. The extent to which water surface roughness defined biotopes mapped onto these

  17. Proof-of-Concept Studies for Marker-Based Ultrasound Doppler Analysis of Microvascular Anastomoses in a Modified Large Animal Model.

    PubMed

    Coon, Devin; Chen, Lei; Boctor, Emad M; Prince, Jerry L; Bojovic, Branko

    2016-05-01

    Background Despite attempts to solve the problem of flap monitoring, assessing the patency of vascular anastomoses postoperatively remains challenging. In addition, experimental data suggest that near-total vessel occlusion is necessary to produce significant changes in clinical appearance or monitoring devices. We sought to develop an ultrasound-based system that would provide definitive data on anastomotic function. Methods A system was developed consisting of a resorbable marker made from poly-lactic-co-glycolic acid (PLGA) implanted during the time of surgery coupled with ultrasound software to detect the anastomotic site and perform Doppler flow analysis. Surgical procedures consisting of microvascular free tissue transfer or femoral vessel cutdown were performed followed by marker placement, closure, and ultrasound monitoring. Transient vascular occlusion was produced via vessel-loop constriction. Permanent thrombosis was induced via an Arduino-controlled system applying current to the vessel intima. Results Four surgeries (one femoral vessel cutdown and three microvascular tissue transfer) were successfully performed in Yorkshire swine. The markers were readily visualized under ultrasound and provided a bounding area for Doppler analysis as well as orientation guidance. Transient spasm and partial occlusion were detected based on changes in Doppler data, while complete occlusion was evident as the total loss of color Doppler. Conclusion In this preliminary report, we have conceptualized and developed a novel system that enables the real-time visualization of vascular pedicle flow at the bedside using Doppler ultrasound and a surgically implanted marker. In a large animal model, use of the system allowed identification of the anastomosis, flow analysis, and real-time detection of flow loss. PMID:26645155

  18. Multiple-Site Hemodynamic Analysis of Doppler Ultrasound with an Adaptive Color Relation Classifier for Arteriovenous Access Occlusion Evaluation

    PubMed Central

    Wu, Jian-Xing; Du, Yi-Chun; Wu, Ming-Jui; Li, Chien-Ming; Lin, Chia-Hung; Chen, Tainsong

    2014-01-01

    This study proposes multiple-site hemodynamic analysis of Doppler ultrasound with an adaptive color relation classifier for arteriovenous access occlusion evaluation in routine examinations. The hemodynamic analysis is used to express the properties of blood flow through a vital access or a tube, using dimensionless numbers. An acoustic measurement is carried out to detect the peak-systolic and peak-diastolic velocities of blood flow from the arterial anastomosis sites (A) to the venous anastomosis sites (V). The ratio of the supracritical Reynolds (Resupra) number and the resistive (Res) index quantitates the degrees of stenosis (DOS) at multiple measurement sites. Then, an adaptive color relation classifier is designed as a nonlinear estimate model to survey the occlusion level in monthly examinations. For 30 long-term follow-up patients, the experimental results show the proposed screening model efficiently evaluates access occlusion. PMID:24892039

  19. Preoperative CT angiography versus Doppler ultrasound mapping of abdominal perforator in DIEP breast reconstructions: A randomized prospective study.

    PubMed

    Klasson, S; Svensson, H; Malm, K; Wassélius, J; Velander, P

    2015-06-01

    Is there a difference in surgery time and complication rate when Doppler ultrasound (US) is used for the preoperative mapping of perforators in comparison with computer tomography angiography (CTA)? Women who were candidates for breast reconstruction using the deep inferior epigastric perforator (DIEP) free flap were enrolled in a prospective randomized study. The operating time was 249 ± 62 min (mean ± SD) in the CTA group (n = 32) and 255 min ± 75 in the US group (n = 31)--hence a difference of 6 min on average. No flaps were lost. Sixteen complications occurred in 15 patients: seven in the CTA group and nine in the US group. Complications were remedied without delay and all patients came through with a favorable reconstruction. Preoperative mapping of perforators with US is satisfactory enough provided the microsurgery team has proper experience in breast reconstruction with the DIEP flap. PMID:25824193

  20. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. PMID:27117631

  1. Very different performance of the power Doppler modalities of several ultrasound machines ascertained by a microvessel flow phantom

    PubMed Central

    2013-01-01

    Introduction In many patients with rheumatoid arthritis (RA) subclinical disease activity can be detected with ultrasound (US), especially using power Doppler US (PDUS). However, PDUS may be highly dependent on the type of machine. This could create problems both in clinical trials and in daily clinical practice. To clarify how the PDUS signal differs between machines we created a microvessel flow phantom. Methods The flow phantom contained three microvessels (150, 1000, 2000 microns). A syringe pump was used to generate flows. Five US machines were used. Settings were optimised to assess the lowest detectable flow for each US machine. Results The minimal detectable flow velocities showed very large differences between the machines. Only two of the machines may be able to detect the very low flows in the capillaries of inflamed joints. There was no clear relation with price. One of the lower-end machines actually performed best in all three vessel sizes. Conclusions We created a flow phantom to test the sensitivity of US machines to very low flows in small vessels. The sensitivity of the power Doppler modalities of 5 different machines was very different. The differences found between the machines are probably caused by fundamental differences in processing of the PD signal or internal settings inaccessible to users. Machines considered for PDUS assessment of RA patients should be tested using a flow phantom similar to ours. Within studies, only a single machine type should be used. PMID:24286540

  2. Do Regular Ultrasound Scans Reduce the Incidence of Stillbirth in Women with Apparently Normal Pregnancies?

    PubMed Central

    Toner, Brenda; Mone, Fionnuala

    2015-01-01

    Objective To determine the incidence of stillbirth in women who have regular ante-natal ultrasound compared to those that have infrequent scans in a low risk population. Study Design A retrospective observational study was performed in a tertiary center with 5,700 deliveries per annum. Data on all deliveries was collected via the Northern Ireland Maternity System Database. Only women with an apparently low risk pregnancy were included. Women who had private antenatal care often had frequent scans in the third trimester. Women who did not have private antenatal care often had scans infrequently. The still birth rate was calculated for both groups of women from 2007 to 2011 and compared using a Chi-squared analysis Results Our study included 23,519 ‘low-risk’ deliveries spanning 2007-2011. This included 2,088 (9%) patients who had frequent ultrasound surveillance and delivery at term and 21,431 (91%) patients who did not. The overall stillbirth rate was 0.34% and 0.20% respectively which was not statistically different (p=0.31). Conclusion There is no difference in the rate of stillbirth between patients who have more frequent ante-natal ultrasound surveillance compared with those who do not in a low risk population. PMID:26170484

  3. Multigate transcranial Doppler ultrasound system with real-time embolic signal identification and archival.

    PubMed

    Fan, Lingke; Boni, Enrico; Tortoli, Piero; Evans, David H

    2006-10-01

    An integrated system for acquisition and processing of intracranial and extracranial Doppler signals and automatic embolic signal detection has been developed. The hardware basis of the system is a purpose-built acquisition/processing board that includes a multigate Doppler unit controlled through a computer. The signal-processing engine of the system contains a fast Fourier transform (FFT)-based, spectral-analysis unit and an embolic signal-detection unit using expert system reasoning theory. The system is designed so that up to four receive gates from a single transducer can be used to provide useful reasoning information to the embolic signal-detection unit. Alternatively, two transducers can be used simultaneously, either for bilateral transcranial Doppler (TCD) investigations or for simultaneous intra- and extracranial investigation of different arteries. The structure of the software will allow the future implementation of embolus detection algorithms that use the information from all four channels when a single transducer is used, or of independent embolus detection in two sets of two channels when two transducers are used. The user-friendly system has been tested in-vitro, and it has demonstrated a 93.6% sensitivity for micro-embolic signal (MES) identification. Preliminary in-vivo results also are encouraging. PMID:17036793

  4. Effects of Position and Operator on High-frequency Ultrasound Scan Quality

    PubMed Central

    Burk, Ruth S.; Parker, Angela; Sievers, Lisa; Rooney, Melissa B.; Pepperl, Anathea; Schubert, Christine M.; Grap, Mary Jo

    2015-01-01

    Objectives High-frequency ultrasound may evaluate those at risk for pressure ulcers. Images may be obtained by clinicians with limited training. The prone position is recommended for obtaining sacral scans but may not be feasible in the critically ill. This study investigated image quality using multiple operators and a variety of patient positions. Research Methodology Sacral scans were performed in three randomized positions in 50 volunteers by three different investigators using a 20 MHz ultrasound system. General linear models and ANOVA random effects models were used to examine the effects of operator and position on image quality rating, and measures of dermal thickness, and dermal density. Results The best scan for each position and operator was used for analysis (N=447 images). Image rating varied by operator (p=0.0004), although mean ratings were 3.5 or above for all operators. Dermal thickness was less for the prone position than in 90° or 60° side-lying positions (p=0.0137, p=0.0003). Dermal density was lower for the prone position than for the 90° or 60° positions (p<0.0001 for both). Conclusions These data show that overall scan quality was acceptable in all positions with all operators. However, differences were found between side-lying positions and the prone for dermal thickness and dermal density measures. PMID:25636253

  5. A scanned focused ultrasound device for hyperthermia: numerical simulation and prototype implementation

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Raynolds, Timothy; Geimer, Shireen D.; Potwin, Lincoln; Paulsen, Keith D.

    2004-07-01

    We are developing a scanned focused ultrasound system for hyperthermia treatment of breast cancer. Focused ultrasound has significant potential as a therapy delivery device because it can focus sufficient heating energy below the skin surface with minimal damage to intervening tissue. However, as a practical therapy system, the focal zone is generally quite small and requires either electronic (in the case of a phased array system) or mechanical steering (for a fixed bowl transducer) to cover a therapeutically useful area. We have devised a simple automated steering system consisting of a focused bowl transducer supported by three vertically movable rods which are connected to computer controlled linear actuators. This scheme is particularly attractive for breast cancer hyperthermia where the support rods can be fed through the base of a liquid coupling tank to treat tumors within the breast while coupled to our noninvasive microwave thermal imaging system. A MATLAB routine has been developed for controlling the rod motion such that the beam focal point scans a horizontal spiral and the subsequent heating zone is cylindrical. In coordination with this effort, a 3D finite element thermal model has been developed to evaluate the temperature distributions from the scanned focused heating. In this way, scanning protocols can be optimized to deliver the most uniform temperature rise to the desired location.

  6. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to ... no known risks for ultrasound at present, it is highly recommended that pregnant women consult their physician ...

  7. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  8. A Minicomputer Based Scheme for Turbulence Measurements with Pulsed Doppler Ultrasound

    PubMed Central

    Craig, J. I.; Saxena, Vijay; Giddens, D. P.

    1979-01-01

    The present paper describes the design and performance of a digital-based Doppler signal processing system that is currently being used in hemodynamics research on arteriosclerosis. The major emphasis is on the development of the digital signal processing technique and its implementation in a small but powerful minicomputer. The work reported on here is part of a larger ongoing effort that the authors are undertaking to study the structure of turbulence in blood flow and its relation to arteriosclerosis. Some of the techniques and instruments developed are felt to have a broad applicability to fluid mechanics and especially to pipe flow fluid mechanics.

  9. Measurement and Visualization of Three-Dimensional Vertebra Shape by Freehand Ultrasound Scanning

    NASA Astrophysics Data System (ADS)

    Kohyama, Kazuhiro; Yasumuro, Yoshihiro; Imura, Masataka; Manabe, Yoshitsugu; Oshiro, Osamu; Moroi, Keishichiro; Chihara, Kunihiro

    2005-06-01

    Paracentesis is a common operation for pain clinics and spinal anesthetics administration and requires empirical training and flexible skills to cope with the various cases of individual patients. We propose a method of measuring and visualizing three-dimensional vertebra shapes for assisting anesthesiologists, by an ultrasound imaging technique that is prevalent in many hospitals and has no harmful risks to the human body. The proposed system enables anesthesiologists to investigate vertebra shapes by freehand probing. Three-dimensional reconstruction and graphical rendering can be performed by monitoring the motion of the ultrasound probe and registering the scanned echography into the identical three-dimensional space. Considering the echography imaging features, volume rendering of hard tissue surfaces is achieved and interactive measurement is possible. This paper describes the practicability of the proposed method based on experimental measurement of both phantom and real lumbar vertebre and sacra.

  10. [Doppler ultrasound studies before and following short-term maternal stress in late pregnancy].

    PubMed

    Drack, G; Kirkinen, P; Baumann, H; Müller, R; Huch, R

    1988-01-01

    Ten gravidae with normal course of pregnancy in the third trimester underwent a bicycle stress test (semi-supine, 75 W, 3 min). By means of pulsed Doppler sonography, a lowering of the resistance index (RI) in the maternal femoral artery from 93% to 69% was ascertained, though also a rise in maximum systolic velocity (VMAX (syst)) from 73 cm/sec to 194 cm/sec, in maximum diastolic velocity (VMAX diast)) from 5 cm/sec to 61 cm/sec, and in the time-averaged maximum velocity (TAVMAX) from 20 cm/sec to 101 cm/sec. These changes are statistically significant. In the maternal common carotid artery these parameters remained stable or changed little, for example VMAX (diast), which dropped from 24 cm/sec before to 19 cm/sec after exercise, and the RI, which rose from 77% to 84%. Neither in the uteroplacental vessels nor in the umbilical artery were any changes in the RI found (40% to 42% and 58% to 57%, respectively). The fetal cardiotachograms were normal in all cases, while not all cases manifested a rise in fetal heart rate following maternal stress. These results indicate that uteroplacental perfusion and the umbilical circulation remain constant. Doppler sonography thus demonstrates directly and noninvasively that provided placental function is normal the uteroplacental and fetoplacental circulation are not influenced by moderate physical exertion. PMID:3055722

  11. Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals.

    PubMed

    Serbes, G; Aydin, N

    2011-01-01

    Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity. PMID:22255416

  12. Differential atrial filling after Mustard and Senning repairs. Detection by transcutaneous Doppler ultrasound.

    PubMed Central

    Wyse, R K; Macartney, F J; Rohmer, J; Ottenkamp, J; Brom, A G

    1980-01-01

    The dominance of Mustard's operation for transposition of the great arteries has been challenged by the recent revival of Senning's repair because it promises better long-term results in terms of venous obstruction and atrial haemodynamics. These hypotheses were tested by recording jugular venous flow waveforms transcutaneously in 24 postoperative patients with simple complete transposition using a bidirectional Doppler blood velocimeter. Eight patients had undergone Mustard's operation and 16 the Senning alternative; all had previously had a postoperative cardiac catheterisation. Both groups of patients had similar left ventricular, pulmonary arterial, and systemic venous atrial pressures. No child showed any evidence at catheterisation of either mitral regurgitation or of superior vena caval pathway obstruction. These two findings were endorsed by the transcutaneous Doppler recordings. Jugular venous flow in normal children exhibits two maxima, one of atrial filling during ventricular systole, the other of ventricular filling occurs once the tricuspid valve has opened. Both operative procedures diminished the size of the former phase, but the Mustard did so more. After Mustard's operation forward flow during the atrial filling phase was absent in approximately half the cardiac cycles recorded, and severely diminished in the rest. By contrast, there was approximately a 90 per cent appearance of atrial filling waves after Senning's operation which also provided significantly better atrial function than Mustard's procedure in terms of peak velocity of blood entering the atrium and total atrial filling. It is therefore concluded that both procedures compromise atrial volume and compliance but Senning's repair to a much lesser extent. PMID:7459153

  13. Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?

    PubMed

    Minhas, Jatinder S; Syed, Nazia F; Haunton, Victoria J; Panerai, Ronney B; Robinson, Thompson G; Mistri, Amit K

    2016-05-01

    Reliability of cerebral blood flow velocity (CBFV) and dynamic cerebral autoregulation estimates (expressed as autoregulation index: ARI) using spontaneous fluctuations in blood pressure (BP) has been demonstrated. However, reliability during co-administration of O2 and CO2 is unknown. Bilateral CBFV (using transcranial Doppler), BP and RR interval recordings were performed in healthy volunteers (seven males, four females, age: 54  ±  10 years) on two occasions over 9  ±  4 d. Four 5 min recordings were made whilst breathing air (A), then 5%CO2 (C), 80%O2 (O) and mixed O2  +  CO2 (M), in random order. CBFV was recorded; ARI was calculated using transfer function analysis. Precision was quantified as within-visit standard error of measurement (SEM) and the coefficient of variation (CV). CBFV and ARI estimates with A (SEM: 3.85 & 0.87; CV: 7.5% & 17.8%, respectively) were comparable to a previous reproducibility study. The SEM and CV with C and O were similar, though higher values were noted with M; Bland-Altman plots indicated no significant bias across all gases for CBFV and ARI (bias  <0.06 cm s(-1) and  <0.05, respectively). Thus, transcranial-Doppler-ultrasound-estimated CBFV and ARI during inhalation of O2 and CO2 have acceptable levels of reproducibility and can be used to study the effect of these gases on cerebral haemodynamics. PMID:27093290

  14. A scanning laser source and a microcantilever ultrasound receiver for detection of surface flaws in microdevices

    NASA Astrophysics Data System (ADS)

    Sohn, Younghoon; Krishnaswamy, Sridhar

    2005-05-01

    In recent work at Northwestern University, we have shown that near-field scattering of ultrasound generated by a Scanning Laser Source (SLS) can be used to effectively identify surface flaws in macroscale structures. In past work, the laser ultrasound source was in the near-field of a scatterer and a piezoelectric detector was used to measure the ultrasound in the far field. It was observed that distinct variations are observed in the far-field signals as the SLS scans past surface-breaking flaws. These changes were attributed to the near-field scatterer redirecting parts of the ultrasonic beam (which might otherwise have gone into the bulk of the object) towards the far-field detector. We now propose an extension of the SLS approach to map defects in microdevices by bringing both the generator and the receiver to the near-field scattering region of the defects. For the purpose of near-field ultrasound measurement, the receiving transducer has to be made very small as well. To facilitate this, silicon microcantilever probes are fabricated and their acoustical characteristics are first investigated. Silicon cantilevers with tip and chip body are fabricated using isotropic reactive ion etching and anisotropic KOH etching. To characterize the free cantilever vibration, the chip body with the microcantilever is excited by an ultrasonic transducer and a Michelson interferometer is used to monitor the cantilever motion. The fundamental frequency of the microcantilever is measured and compared with analytically calculated fundamental frequency assuming the cross sections of the cantilevers are rectangular. Next, the performance of the fabricated microcantilevers as ultrasound detectors is investigated. The microcantilever is used essentially as a profilometer by contacting it to the specimen surface. Surface and bulk acoustic waves are generated with specific narrowband frequencies and the surface ultrasonic displacements are detected using the microcantilever probe. Next

  15. Feasability of a ARFI/B-mode/Doppler system for real-time, freehand scanning of the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Dumont, Douglas M.; Lee, Seung-Yun; Doherty, Joshua R.; Trahey, Gregg E.

    2011-03-01

    Acoustic radiation force impulse (ARFI) imaging has been previously described for the visualization of the cardiovascular system, including assessment of cerebral and lower-limb vascular disease, myocardial function, and cardiac RF ablation monitoring. Given that plaque imposes a 3-dimensional burden on the artery and that accurate visualization of all lesion borders are important for ablation guidance, it would be convenient if an entire plaque or lesion volume could be acquired, either using a 3D system or 2D freehand scanning. Currently, ARFI imaging uses single-frame acquisition, with acquisition times ranging from 100-200ms. Such a system would be cumbersome for real-time, freehand scanning. In this work, we evaluate the feasibility of using ARFI for freehand, real-time scanning of the cardiovascular system. New techniques are presented which acquire B-mode / ARFI/ and Color-flow Doppler (BACD) information in less than 50 ms. Freehand feasibility is evaluated by sweeping the BACD system across lesion phantoms and vascular phantoms modeling a thin-cap fibroatheroma at sweep rates currently utilized in conventional B-mode systems. Stationary in vivo BACD images were then formed from the carotid artery of a canine model, demonstrating the system's potential. The results suggest that little loss in either ARFI or Doppler quality occurs during translational-stage controlled, quasi-freehand sweeps.

  16. Image analysis for beef quality prediction from serial scan ultrasound images

    NASA Astrophysics Data System (ADS)

    Zhang, Hui L.; Wilson, Doyle E.; Rouse, Gene H.; Izquierdo, Mercedes M.

    1995-01-01

    The prediction of intramuscular fat (or marbling) of live beef animals using serially scanned ultrasound images was studied in this paper. Image analysis, both in gray scale intensity domain and in frequency spectrum domain, were used to extract image features of tissue characters to get useful parameters for prediction models. One, 2 and 3 order multi-variable prediction models were developed from randomly selected data sets and tested using the remained data sets. The comparisons of prediction results between using serially scanned images and only final scanned ones showed good improvement of prediction accuracy. The correlation of predicted percent fat and actual percent fat increase from .68 to .80 and from .72 to .76 separately for two groups of data, the R squares increase from .65 to .68 and from .68 to .72, and the root of mean square errors decrease from 1.70 to 1.52 and from 1.22 to 1.12 separately. This study indicates that serially obtained ultrasound images from live beef animals have good potential for improving the prediction accuracy of percent fat.

  17. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  18. Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative.

    PubMed

    Damodaran, Nedumaran; Ramamurthy, Sivakumar; Velusamy, Sekar; Manickam, Gayathri Kanakaraj

    2012-02-01

    Over three decades, several despeckling techniques have been developed by researchers to reduce the speckle noise inherently present in ultrasound B-scan images without losing the diagnostic information. The topological derivative (TD) is the recently adopted technique in the area of biomedical image processing. In this work, we computed the topological derivative for an appropriate function associated to the ultrasound B-scan image gradient by assigning a diffusion factor k, which indicates the cost endowed to that particular image. In this article, a novel image denoising approach, called discrete topological derivative (DTD) has been implemented. The algorithm has been developed in MATLAB7.1 and tested over 200 ultrasound B-scan images of several organs such as the liver, kidney, gall bladder and pancreas. Further, the performance of the DTD algorithm has been estimated by calculating important performance metrics. A comparative study was carried out between the DTD and the traditional despeckling techniques. The calculated peak signal-to-noise ratio (PSNR) (the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation) value of the DTD despeckled liver image is found to be 28 which is comparable with the outperformed speckle reducing anisotropic diffusion (SRAD) filter. SRAD filter is an edge-sensitive diffusion method for speckled images of ultrasonic and radar imaging applications. Canny edge detection and visual inspection of DTD filtered images by the trained radiologist found that the DTD algorithm preserves the hypoechoic and hyperechoic regions resulting in improved diagnosis as well as tissue characterization. PMID:22230135

  19. Using Doppler shift induced by Galvanometric mirror scanning to reach shot noise limit with laser optical feedback imaging setup.

    PubMed

    Jacquin, O; Lacot, E; Hugon, O; Guillet de Chatelus, H

    2015-03-10

    This paper proposes what we believe is a new method to remove the contribution of parasitic reflections in the images of the laser optical feedback imaging (LOFI) technique. This simple method allows us to extend the LOFI technique to long-distance applications, as imaging through a fog or a smoke. The LOFI technique is an ultrasensitive imaging technique that is interesting for imaging objects through a scattering medium. However, the LOFI sensitivity can be dramatically limited by parasitic optical feedback occurring in the experimental setup. In previous papers [Appl. Opt.48, 64 (2009)10.1364/AO.48.000064APOPAI1559-128X, Opt. Lett.37, 2514 (2012)10.1364/OL.37.002514OPLEDP0146-9592], we already have proposed methods to filter a parasitic optical feedback, but they are not well suited to metric working distances. This new method uses a Doppler frequency shift induced by the moving mirror used to scan the object to be imaged. Using this Doppler frequency shift, we can distinguish the photons reflected by the target and the parasitic photons reflected by the optical components in the experimental setup. In this paper, we demonstrated theoretically and experimentally the possibility to filter the parasitic reflection in LOFI images using the Doppler frequency shift. This method significantly improves the signal-to-noise ratio by a factor 15 and we can obtain a shot noise limited image through a scattering medium of an object at 3 m from the detector. PMID:25968374

  20. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    NASA Astrophysics Data System (ADS)

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  1. Reduced cerebral embolic signals in beating heart coronary surgery detected by transcranial Doppler ultrasound.

    PubMed

    Watters, M P; Cohen, A M; Monk, C R; Angelini, G D; Ryder, I G

    2000-05-01

    Cerebral emboli detected by transcranial Doppler imaging were recorded in 20 patients undergoing multiple-vessel coronary artery bypass surgery, either with or without cardiopulmonary bypass, in a prospective unblinded comparative study. Emboli were recorded continuously from the time of pericardial incision until 10 min after the last aortic instrumentation. The numbers of coronary grafts and of aortic clampings were also documented. Patients undergoing revascularization with cardiopulmonary bypass had more emboli (median 79, range 38-876) per case compared with patients having off-pump surgery (median 3, range 0-18). No clinically detectable neurological deficits were seen in either group. Beating heart surgery is associated with fewer emboli than coronary surgery with cardiopulmonary bypass. Further research is necessary to determine whether a smaller number of emboli alters the incidence of neurological deficit after cardiac surgery. PMID:10844840

  2. Practical Use of Ultrasound Scan in Small Ruminant Medicine and Surgery.

    PubMed

    Scott, Phil

    2016-03-01

    Modern portable ultrasound scan machines provide the veterinary clinician with an inexpensive and noninvasive method to further examine sheep on farms, which should take no more than 5 minutes with the results available immediately. Repeat examinations allow monitoring of the disease process and assessment of therapy. 5 MHz linear array scanners can be used for most organs except the heart and right kidney. Transthoracic ultrasonography is particularly useful for critical evaluation of lung and pleural pathologies. Transabdominal ultrasonographic examination can readily identify distended urinary bladder and advanced hydronephrosis. PMID:26922119

  3. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-01

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km. PMID:25321553

  4. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study

    PubMed Central

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-01-01

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561

  5. A-scan ultrasound system for real-time puncture safety assessment during percutaneous nephrolithotomy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.

    2015-03-01

    Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.

  6. Turbulence in wind turbine wakes under different atmospheric conditions from static and scanning Doppler LiDARs

    NASA Astrophysics Data System (ADS)

    Kumer, Valerie; Reuder, Joachim

    2016-04-01

    Wake characteristics are of great importance for wind park performances and turbine loads. Wind tunnel experiments helped to validate wake model simulations under neutral atmospheric conditions. However, recent studies show strongest wake characteristics and power losses in stable atmospheric conditions. Considering all three occurring atmospheric conditions this study presents a turbulence analysis of wind turbine wake flows measured by static and scanning Doppler LiDARs at the coast of the Netherlands. We use data collected by three Windcubes v1, a scanning Windcube 100S and sonic anemometers during the Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W). Turbulence parameters such as Turbulence Intensity (TI) and turbulent kinetic energy (TKE) are retrieved from the collected raw data. Results show highest turbulence on the flanks of the wake where strong wind shear dominates. On average the spatial turbulence distribution becomes more homogeneous with conical areas of enhanced TI. Highest turbulence and strongest wind deficits occur during stable weather conditions. Despite the ongoing research on the reliability of turbulence retrievals of Doppler LiDAR data, the results are consistent with sonic anemometer measurements and show promising opportunities for a qualitative study of wake characteristics such as wake strength and wake peak frequencies.

  7. New applications of scanning laser Doppler vibrometry (SLDV) to nondestructive diagnosis of artwork: mosaics, ceramics, inlaid wood, and easel painting

    NASA Astrophysics Data System (ADS)

    Castellini, Paolo; Esposito, Enrico; Marchetti, Barbara; Paone, Nicola; Tomasini, Enrico P.

    2001-10-01

    During the last years the growing importance of the correct determination of the state of conservation of artworks has been stated by all personalities in care of Cultural Heritage. There exist many analytical methodologies and techniques to individuate the physical and chemical characteristics of artworks, but at present their structural diagnostics mainly rely on the expertise of the restorer and the typical diagnostic process is accomplished mainly through manual and visual inspection of the object surface. The basic idea behind the proposed technique is to substitute human senses with measurement instruments: surfaces are very slightly vibrated by mechanical actuators, while a laser Doppler vibrometer scans the objects measuring surface velocity and producing 2D or 3D maps. Where a defect occurs velocity is higher than neighboring areas so defects can be easily spotted. Laser vibrometers also identify structural resonance frequencies thus leading to a complete characterization of defects. This work will present the most recent results coming out of the application of Scanning Laser Doppler Vibrometers (SLDV) to different types of artworks: mosaics, ceramics, inlaid wood and easel painting. Real artworks and samples realized on purpose have been studied using the proposed technique and different measuring issues resulting from each artwork category will be described.

  8. Lumbar neuraxial anatomical changes throughout pregnancy: a longitudinal study using serial ultrasound scans.

    PubMed

    Keplinger, M; Marhofer, P; Eppel, W; Macholz, F; Hachemian, N; Karmakar, M K; Marhofer, D; Klug, W; Kettner, S C

    2016-06-01

    This observational study was designed to investigate the anatomical changes of the lumbar spine over the course of pregnancy using serial ultrasound scans. We performed paramedian scans on 58 women at the L2-3, L3-4 and L4-5 levels; these were done at four periods of 11+0-13+6, 19+0-23+0, 28+0-32+0 and 38+0-40+0 weeks gestation. At each intervertebral level, the length of the interlaminar space, length of the visible intervertebral posterior dura and depth of the posterior dura mater from the skin were measured. The length of the interlaminar space and length of the visible intervertebral posterior dura mater were longer, and the depth of the posterior dura mater was shallower, with ascending spinal interspace. The depth of the posterior dura mater increased during pregnancy, although it plateaued between the third and fourth measurement periods. The other spinal measurements were not affected by gestation. These findings indicate that the L2-3 level is the most appropriate puncture site for epidural anaesthesia in pregnant women. Our results ought to be embraced as a departure point towards developing neuraxial insertion techniques guided or aided by ultrasound. PMID:26843146

  9. Use of Transcranial Doppler Ultrasound for Diagnosis of Brain Death in Patients with Severe Cerebral Injury.

    PubMed

    Li, Yuequn; Liu, Shangwei; Xun, Fangfang; Liu, Zhan; Huang, Xiuying

    2016-01-01

    BACKGROUND The aim of this study was to investigate the use of transcranial Doppler (TCD) for diagnosis of brain death in patients with severe cerebral injury. MATERIAL AND METHODS This retrospective study enrolled 42 patients based on inclusion and exclusion criteria. All patients were divided into either the brain death group or the survival group according to prognosis. Blood flow of the brain was examined by TCD and analyzed for spectrum changes. The average blood flow velocity (Vm), pulse index (PI), and diastolic blood flow in reverse (RDF) were recorded and compared. RESULTS The data demonstrated that the average speed of bilateral middle cerebral artery blood flow in the brain death group was significantly reduced (P<0.05). However, the PI of the brain death group increased significantly. Moreover, RDF spectrum and nail-like sharp peak spectrum of the brain death group was higher than in the survival group. CONCLUSIONS Due to its simplicity, high repeatability, and specificity, TCD combined with other methods is highly valuable for diagnosis of brain death in patients with severe brain injury. PMID:27264088

  10. Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models.

    PubMed

    Ubeyli, Elif Derya; Güler, Inan

    2005-07-01

    There are a number of different quantitative models that can be used in a medical diagnostic decision support system including parametric methods (linear discriminant analysis or logistic regression), nonparametric models (k nearest neighbor or kernel density) and several neural network models. The complexity of the diagnostic task is thought to be one of the prime determinants of model selection. Unfortunately, there is no theory available to guide model selection. This paper illustrates the use of combined neural network models to guide model selection for diagnosis of ophthalmic and internal carotid arterial disorders. The ophthalmic and internal carotid arterial Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the diagnosis of ophthalmic and internal carotid arterial disorders using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. The combined neural network models achieved accuracy rates which were higher than that of the stand-alone neural network models. PMID:15780863

  11. Evaluation of the effects of acupuncture on blood flow in humans with ultrasound color Doppler imaging.

    PubMed

    Takayama, Shin; Watanabe, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA) during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture. PMID:22778772

  12. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    PubMed Central

    Jang, Jaeseong

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  13. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  14. Use of Transcranial Doppler Ultrasound for Diagnosis of Brain Death in Patients with Severe Cerebral Injury

    PubMed Central

    Li, Yuequn; Liu, Shangwei; Xun, Fangfang; Liu, Zhan; Huang, Xiuying

    2016-01-01

    Background The aim of this study was to investigate the use of transcranial Doppler (TCD) for diagnosis of brain death in patients with severe cerebral injury. Material/Methods This retrospective study enrolled 42 patients based on inclusion and exclusion criteria. All patients were divided into either the brain death group or the survival group according to prognosis. Blood flow of the brain was examined by TCD and analyzed for spectrum changes. The average blood flow velocity (Vm), pulse index (PI), and diastolic blood flow in reverse (RDF) were recorded and compared. Results The data demonstrated that the average speed of bilateral middle cerebral artery blood flow in the brain death group was significantly reduced (P<0.05). However, the PI of the brain death group increased significantly. Moreover, RDF spectrum and nail-like sharp peak spectrum of the brain death group was higher than in the survival group. Conclusions Due to its simplicity, high repeatability, and specificity, TCD combined with other methods is highly valuable for diagnosis of brain death in patients with severe brain injury. PMID:27264088

  15. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  16. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  17. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  18. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  19. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  20. Novel automatic detection of pleura and B-lines (comet-tail artifacts) on in vivo lung ultrasound scans

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller Sørensen, Hasse; Hemmsen, Martin Christian; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without fading to the edge of the screen. An increase in their number is associated with presence of edema. All the scans used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound, Denmark) driving a 192-element 5:5 MHz wide linear transducer (10L2W, BK Ultrasound). The dynamic received focus technique was employed to generate the sequences. Six subjects, among those three patients after major surgery and three normal subjects, were scanned once and Six ultrasound sequences each containing 50 frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung ultrasound images. The pleural line is first segmented on each image and then the B-line artifacts spreading down from the pleural line are detected and overlayed on the image. The resulting 300 images showed that the mean lateral distance between B-lines detected on images acquired from patients decreased by 20% in compare with that of normal subjects. Therefore, the method can be used as the basis of a method of automatically and qualitatively characterizing the distribution of B-lines.

  1. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  2. Ultrasound

    MedlinePlus

    Ultrasound uses high-frequency sound waves to make images of organs and structures inside the body. ... An ultrasound machine makes images so that organs inside the body can be examined. The machine sends out high- ...

  3. The Foetal 'Mind' as a Reflection of its Inner Self: Evidence from Colour Doppler Ultrasound of Foetal MCA.

    PubMed

    Kachewar, Sushil Ghanshyam; Gandage, Siddappa Gurubalappa

    2012-01-01

    The unborn healthy foetus is looked upon as a blessing by one and all. A plethora of thoughts arise in the brains of expectant parents. But what goes on in the brain of the yet unborn still remains a mystery. 'Foetal mind' is a reflection of functions of its organs of sense, an instrument of knowledge that may even be reduced to machine to demonstrate the effect of sense organs and brain contact. Testimony to this fact are the various waveform patterns obtained non-invasively from the foetal Middle Cerebral Artery (MCA) by using Colour Doppler Ultrasound. Our study, conducted for evaluating the foetal MCA in a rural obstetric population in Maharashtra, India, explains how the MCA - a major artery supplying foetal brain, can give abundant information about foetal heart and foetal stress. When only the foetal heart is stressed by the presence of arrhythmias or ectopic beats, these changes are manifest in the foetal MCA velocity waveform pattern as seen on Colour Doppler study. When the entire foetus is under stress, as in cases of intra uterine growth retardation (IUGR), changes again manifest in the foetal MCA velocity waveform pattern and are designated as the foetal Brain Sparing Effect. Thus scientific evaluation of foetal MCA waveform can objectively demonstrate that the overtly non-communicating foetal brain indeed remains an internal organ of sense and a vital instrument of knowledge to clarify the various effects of sense organs and brain contact. Although the brain parenchyma or cerebral metabolism has not been studied here, cerebral vessels serve as a window to cerebral metabolism, as auto regulatory function of brain leads to changes in haemodynamics of cerebral vessels. Also, like other vessels, MCA mirrors foetal distress and IUGR; but unlike other vessels, e.g. the umbilical or uterine artery, which show these changes in the form of reduction or even reversal of diastolic flow, MCA shows an increase in diastolic component due to brain sparing effect

  4. The Foetal ‘Mind’ as a Reflection of its Inner Self: Evidence from Colour Doppler Ultrasound of Foetal MCA

    PubMed Central

    Kachewar, Sushil Ghanshyam; Gandage, Siddappa Gurubalappa

    2012-01-01

    The unborn healthy foetus is looked upon as a blessing by one and all. A plethora of thoughts arise in the brains of expectant parents. But what goes on in the brain of the yet unborn still remains a mystery. ‘Foetal mind’ is a reflection of functions of its organs of sense, an instrument of knowledge that may even be reduced to machine to demonstrate the effect of sense organs and brain contact. Testimony to this fact are the various waveform patterns obtained non-invasively from the foetal Middle Cerebral Artery (MCA) by using Colour Doppler Ultrasound. Our study, conducted for evaluating the foetal MCA in a rural obstetric population in Maharashtra, India, explains how the MCA - a major artery supplying foetal brain, can give abundant information about foetal heart and foetal stress. When only the foetal heart is stressed by the presence of arrhythmias or ectopic beats, these changes are manifest in the foetal MCA velocity waveform pattern as seen on Colour Doppler study. When the entire foetus is under stress, as in cases of intra uterine growth retardation (IUGR), changes again manifest in the foetal MCA velocity waveform pattern and are designated as the foetal Brain Sparing Effect. Thus scientific evaluation of foetal MCA waveform can objectively demonstrate that the overtly non-communicating foetal brain indeed remains an internal organ of sense and a vital instrument of knowledge to clarify the various effects of sense organs and brain contact. Although the brain parenchyma or cerebral metabolism has not been studied here, cerebral vessels serve as a window to cerebral metabolism, as auto regulatory function of brain leads to changes in haemodynamics of cerebral vessels. Also, like other vessels, MCA mirrors foetal distress and IUGR; but unlike other vessels, e.g. the umbilical or uterine artery, which show these changes in the form of reduction or even reversal of diastolic flow, MCA shows an increase in diastolic component due to brain sparing effect

  5. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan

    2012-04-01

    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  6. Spatial filtering and proper orthogonal decomposition of scanning laser Doppler vibrometry data for the nondestructive evaluation of frescoes

    NASA Astrophysics Data System (ADS)

    Prazenica, Richard J.; Kurdila, Andrew J.; Vignola, Joseph F.

    2007-07-01

    Recently, scanning laser Doppler vibrometry experiments have been conducted in order to identify structural faults in frescoes at the US Capitol. In these experiments, the artwork is subjected to force excitations over a range of frequencies and a laser vibrometer is used to measure the velocity response of the structure over an array of spatial locations. At each frequency, a two-dimensional spatial image of the force-velocity transfer function is obtained. Spatial locations that consistently exhibit large responses are indicative of potential regions of delamination. In this paper the use of proper orthogonal decomposition, also known as principle component analysis, to identify coherent features in the structural response and obtain a succinct representation of the data is described. It is shown that, for the fresco studied in this paper, the response can be characterized in terms of only a few proper orthogonal decomposition modes. Unfortunately, these modes are corrupted by spatially varying noise. This noise is a result of surface irregularities that affect the direction in which the incident laser beam is reflected, which in turn corrupts the measured response at those locations. Therefore, the use of spatial filtering techniques is also explored for removing this "speckle noise" from the measured force-velocity transfer functions prior to performing the proper orthogonal decomposition analysis. Wavelets are particularly well suited for this application because they decompose images into functions that are localized in the spatial and frequency domains. In this paper, several wavelet bases with differing properties are used to filter the scanning laser Doppler vibrometry images. In addition, wavenumber filters, which essentially act as low-pass filters, are also employed. While the results do not definitively show which filtering technique is most effective for this application, it is clear that both wavelet processing and wavenumber filtering can reduce

  7. Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study

    PubMed Central

    Yang, Runze; Brugniaux, Julien; Dhaliwal, Harinder; Beaudin, Andrew E; Eliasziw, Misha; Poulin, Marc J; Dunn, Jeff F

    2015-01-01

    Caffeine is one of the most widely consumed psycho-stimulants in the world, yet little is known about its effects on brain oxygenation and metabolism. Using a double-blind, placebo-controlled, randomized cross-over study design, we combined transcranial Doppler ultrasound (TCD) and near-infrared spectroscopy (NIRS) to study caffeine's effect on middle cerebral artery peak blood flow velocity (Vp), brain tissue oxygenation (StO2), total hemoglobin (tHb), and cerebral oxygen metabolism (CMRO2) in five subjects. Hyperventilation-induced hypocapnia served as a control to verify the sensitivity of our measurements. During hypocapnia (∼16 mmHg below resting values), Vp decreased by 40.0 ± 2.4% (95% CI, P < 0.001), while StO2 and tHb decreased by 2.9 ± 0.3% and 2.6 ± 0.4%, respectively (P = 0.003 and P = 0.002, respectively). CMRO2, calculated using the Fick equation, was reduced by 29.3 ± 9% compared to the isocapnic-euoxia baseline (P < 0.001). In the pharmacological experiments, there was a significant decrease in Vp, StO2, and tHb after ingestion of 200 mg of caffeine compared with placebo. There was no significant difference in CMRO2 between caffeine and placebo. Both showed a CMRO2 decline compared to baseline showing the importance of a placebo control. In conclusion, this study showed that profound hypocapnia impairs cerebral oxidative metabolism. We provide new insight into the effects of caffeine on cerebral hemodynamics. Moreover, this study showed that multimodal NIRS/TCD is an excellent tool for studying brain hemodynamic responses to pharmacological interventions and physiological challenges. PMID:25907789

  8. Peak Systolic Velocity Measurements with Transcranial Doppler Ultrasound Is a Predictor of Incident Stroke among the General Population in China

    PubMed Central

    Wang, Hai-Bo; Laskowitz, Daniel T.; Dodds, Jodi A.; Xie, Gao-Qiang; Zhang, Pu-Hong; Huang, Yi-Ning; Wang, Bo; Wu, Yang-Feng

    2016-01-01

    Background and Objective It is necessary to develop an effective and low-cost screening tool for identifying Chinese people at high risk of stroke. Transcranial Doppler ultrasound (TCD) is a powerful predictor of stroke in the pediatric sickle cell disease population, as demonstrated in the STOP trial. Our study was conducted to determine the prediction value of peak systolic velocities as measured by TCD on subsequent stroke risk in a prospective cohort of the general population from Beijing, China. Methods In 2002, a prospective cohort study was conducted among 1392 residents from 11 villages of the Shijingshan district of Beijing, China. The cohort was scheduled for follow up with regard to incident stroke in 2005, 2007, and 2012 by a study team comprised of epidemiologists, nurses, and physicians. Univariate and multivariate Cox proportional hazard regression models were used to determine the factors associated with incident stroke. Results Participants identified by TCD criteria as having intracranial stenosis had a 3.6-fold greater risk of incident stroke (hazard ratio (HR) 3.57, 95% confidence interval (CI) 1.86–6.83, P<0.01) than those without TCD evidence of intracranial stenosis. The association remained significant in multivariate analysis (HR 2.53, 95% CI 1.31–4.87) after adjusting for other risk factors or confounders. Older age, cigarette smoking, hypertension, and diabetes mellitus remained statistically significant as risk factors after controlling for other factors. Conclusions The study confirmed the screening value of TCD among the general population in urban China. Increasing the availability of TCD screening may help identify subjects as higher risk for stroke. PMID:27513983

  9. Is There Subclinical Synovitis in Early Psoriatic Arthritis? A Clinical Comparison With Gray-Scale and Power Doppler Ultrasound

    PubMed Central

    Freeston, Jane E; Coates, Laura C; Nam, Jackie L; Moverley, Anna R; Hensor, Elizabeth M A; Wakefield, Richard J; Emery, Paul; Helliwell, Philip S; Conaghan, Philip G

    2014-01-01

    Objective Arthritis activity assessments in psoriatic arthritis (PsA) have traditionally relied on tender and swollen joint counts, but in rheumatoid arthritis, multiple studies have demonstrated subclinical inflammation using modern imaging. The aim of this study was to compare clinical examination and ultrasound (US) findings in an early PsA cohort. Methods Forty-nine disease-modifying antirheumatic drug–naive patients with recent-onset PsA (median disease duration 10 months) underwent gray-scale (GS) and power Doppler (PD) US of 40 joints plus tender and swollen joint counts of 68/66 joints. GS and PD were scored on a 0–3 semiquantitative scale for each joint. Clinically active joints were defined as tender and/or swollen and US active joints were defined as a GS score ≥2 and/or a PD score ≥1. Results The most common sites for subclinical synovitis were the wrist (30.6%), knee (21.4%), metatarsophalangeal (MTP) joints (26.5–33.7%), and metacarpophalangeal joints (10.2–19.4%). Excluding MTP joints and ankles, 37 (75.5%) of 49 patients had subclinical synovitis with a median of 3 (interquartile range [IQR] 1–4) joints involved. In contrast, clinical overestimation of synovitis occurred most commonly at the shoulder (38%) and ankle (28.6%). Twelve of 49 patients were classified clinically as having oligoarthritis; of these, subclinical synovitis identified 8 (75%) as having polyarthritis with an increase in their median joint count from 3 (IQR 1–4) to 6 (IQR 5–7). Conclusion This study has demonstrated that subclinical synovitis, as identified by US, is very common in early PsA and led to the majority of oligoarthritis patients being reclassified as having polyarthritis. Further research is required into the relationship of such subclinical synovitis to structural progression. PMID:24022986

  10. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-01-01

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design. PMID:26287197