Science.gov

Sample records for doppler velocity measurements

  1. Laser Doppler Velocimeter particle velocity measurement system

    SciTech Connect

    Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

    1993-10-01

    This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

  2. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  3. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  4. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  5. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  6. Influence of speckle effect on doppler velocity measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  7. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Philip H.; SDO HMI Team

    2016-05-01

    The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) measures sets of filtergrams which are converted into velocity and magnetic field maps each 45-seconds with its front camera and each 12 minutes with its side camera. In addition to solar phototspheric motions the velocity measurements include a direct component from the line-of-sight component of the SDO orbit. Since the magnetic field is computed as the difference between the velocity measured in left and right circular polarization the orbit velocity is canceled only if the celocity is properly calibrated. When the orbit component of the velocity is subtracted for each pixel the remaining "solar" velocity shows a residual signal which is equal to about 2% of the c. +- 3000 m/s orbit velocity in a nearly linear relationship. This implies an error in our knowledge of some of the details of as-built filter components. The model instrument transmission profile is required for calibration of all HMI level 1.5 “observable” quantities. This systematic error is very likely the source of 12- and 24-hour variations in most HMI data products. Over the years since launch a substantial effort has been dedicated to understanding the origin of this problem. While the instrument as presently calibrated (Couvidat et al. 2012 and 2016) meets all of the “Level-1” mission requirements it fails to meet the stated goal of 10 m/s accuracy for velocity data products and some not stated but generally assumed goals for other products. For the velocity measurements this has not been a significant problem since the prime HMI goals of obtaining data for helioseismology are not affected by this systematic error. However the orbit signal leaking into the magnetograms and vector magnetograms degrades the ability to accomplish some of the mission science goals at the expected levels of accuracy. This poster presents the current state of understanding of the source of this systematic error and

  8. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  9. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  10. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler.

    PubMed

    Brunker, Joanna; Beard, Paul

    2016-07-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  11. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  12. Laser Doppler velocity measurements of swirling flows with upstream influence

    NASA Technical Reports Server (NTRS)

    Rloff, K. L.; Bossel, H. H.

    1973-01-01

    Swirling flow in a rotating tube is studied by flow visualization at a moderate Reynolds number, and its velocity field is measured by laser-Doppler anemometry. The tube has constant diameter, and approximately uniform initial rigid rotation of the flow is assured by passing the flow through a rotating plug of porous metal before it enters the test section. At moderate swirl values, an object mounted on the tube centerline causes a closed bubble to form upstream of the obstacle, with a clearly defined stagnation point on the axis, and recirculating flow inside the bubble. The bubble length grows upstream as the swirl is increased, until it breaks up into a Taylor column reaching all the way upstream and downstream at swirl values above a certain critical value. A vortex jump (in the sense of Benjamin) occurs downstream of the obstacle except when the Taylor column is present. Using a laser-Doppler anemometer, axial and swirl velocity profiles are obtained at several stations upstream and downstream of the bubble, and in and around the bubble.

  13. Optical and acoustical measuring techniques. [for Doppler measurement of flow velocities

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1977-01-01

    The paper reviews the techniques of laser and acoustic Doppler measurement of fluid velocities in confined and free flows. The main mathematical relations are presented, and some systems are studied. Resolution properties of coaxial, bistatic, and pulsed CO2 laser Doppler velocimeter systems are compared. Schematics for pulsed and continuous wave acoustic Doppler systems are discussed. Both of these types of systems benefit from using a bistatic configuration instead of a coaxial system. The pulsed systems avoid contamination of source noise by not sampling until after the source noise has passed the receiver. Comparison of wind velocity measured with a pulsed acoustic Doppler and with a boundary layer profile is made.

  14. Effect of tank liquid acoustic velocity on Doppler string phantom measurements.

    PubMed

    Goldstein, A

    1991-03-01

    The quantitative effects of degassed water in string phantom tank Doppler measurements are derived theoretically. The Doppler parameter measurements considered are range gate registration, range gate profile, image flow angle measurements, and velocity calculation. The equipment velocity calculation is demonstrated to have an appreciable error which is due to the water acoustic velocity and the transducer acquisition geometry. A velocity calibration technique is proposed that only needs a simple multiplicative factor to compensate for the water in the tank. PMID:2027185

  15. Ultrasonic distance and velocity measurement using a pair of LPM signals for cross-correlation method: improvement of Doppler-shift compensation and examination of Doppler velocity estimation.

    PubMed

    Hirata, Shinnosuke; Kurosawa, Minoru Kuribayashi

    2012-09-01

    Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140μm in the previous method to approximately within ±10μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471mm/s and ±13.87μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9mm/s. PMID:22560801

  16. Theoretical analysis of the ultrasonic Doppler flowmeter for measurements of high flow velocities

    NASA Astrophysics Data System (ADS)

    Tabin, Jozef

    1987-07-01

    A geometric approach is used to analyze the ultrasonic Doppler flowmeter for measurements of flow velocities that are high but yet much smaller than the ultrasound velocity. The approach is based on the calculation of the transit time difference between the ultrasonic waves that are reflected from a moving particle at its various positions. Beam divergence is taken into account, and each path of the ultrasonic wave propagation is approximated by two rectilinear components. It is shown that the Doppler frequency shift is influenced not only by the suspended particle velocity, but also by the mean flow velocity of the fluid. This influence is of second order in the flow velocity.

  17. The experimental study on Doppler echo signals with different scattering surfaces for velocity measurement

    NASA Astrophysics Data System (ADS)

    Wang, Leng-ping; Feng, Di; Ou, Pan; Yang, De-zhao

    2011-06-01

    Laser Doppler velocimetry has the ability to measure speed and surface vibrations non-intrusively with high precision. In this study the Doppler spectrum shift and spectrum broadening of echo signals by moving targets are investigated. The interaction between moving object and the laser beam of laser Doppler velocimetry have been described by varying rotating velocity, the angular velocity, distance and incident facula. By using different scattering surfaces, such as Polytetrafluoroethylene (PTFE) and sandpaper with different grain sizes, the characteristics of echo signals' Doppler spectra have been studied experimentally in detail. The results show that Doppler spectrum distribution is changed with different scattering surfaces. Meanwhile, in order to get a high measuring accuracy, the moving object's scattering characteristics must be considered carefully.

  18. Implementation and characterization of phase-resolved Doppler optical coherence tomography method for flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Pongchalee, Pornthep; Palawong, Kunakorn; Meemon, Panomsak

    2014-06-01

    In this work, the system implementation and characterization of a Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) is presented. The phase-resolved Doppler technique was implemented on a custom built Frequency Domain OCT (FD-OCT) that was recently developed at Suranaree University of Technology. Utilizing Doppler phase changed relation in a complex interference signal caused by moving samples, PR-DOCT can produce visualization and characterization of flow activity such as blood flow in biological samples. Here we report the performance of the implemented PR-DOCT system in term of the Velocity Dynamic Range (VDR), which is defined by the range from the minimum to the maximum detectable axial velocity. The minimum detectable velocity was quantified from a histogram distribution of phase difference between consecutive depth-scan signals when performing Doppler imaging of a stationary mirror. By applying a Gaussian curve fitting to the histogram, the Full Width at Half Maximum (FWHM) of the fitted curve was measured to represent the detectable minimum flow velocity of the system. The maximum detectable velocity was limited by the phase wrapping of the Doppler signal, which is governed by the acquisition speed of the system. We demonstrate the 3D Doppler imaging and velocity measurement of feed flow phantom using 100% milk pumped through a microfluidic chip by using a syringe pump system.

  19. Doppler shift and ambiguity velocity caused by relative motion in quantum-enhanced measurement.

    PubMed

    Shen, Yanghe; Xu, Luping; Zhang, Hua; Yang, Peng

    2015-07-13

    We study the effect of relative motion on a frequency-entangled-based ranging scheme. Two major puzzles arise, i.e., Doppler shift and ambiguity velocity. During condition of rapid relative motion, Doppler shift invalidates the measurement result of this scheme; while during condition of slow relative motion, the ambiguity velocity turns into a major limitation. If relative speed between targets and measurement platform exceeds the ambiguity velocity, an accumulated profile obtained by the coincidence measurement will be distorted, which causes a lower ranging accuracy. Theoretical analysis shows a time-varying delay can be introduced to solve the two major puzzles. PMID:26191903

  20. Measurement of the velocities in the transient acceleration process using all-fiber photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wu, Chong-qing; Song, Hong-wei; Yu, Tao; Xu, Jing-jing

    2011-05-01

    Based on analysis of basic photonic Doppler velocimetry (PDV), a formula to measure velocity variation in a single cycle is put forward. PDV has been improved in three aspects, namely, the laser, the detector and the data processing. A measurement system for velocity of the initial stage of a shock motion has been demonstrated. Instantaneous velocity measurements have been performed. The experimental results have a good agreement with the values obtained from the accelerometer. Compared with the traditional fringe method, the proposed method in this paper can identify instantaneous velocity variation. So it is particularly suitable for measuring the velocity in the transient acceleration process of shock waves and detonation waves.

  1. Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range.

    PubMed

    Xu, Yang; Darga, Donald; Smid, Jason; Zysk, Adam M; Teh, Daniel; Boppart, Stephen A; Scott Carney, P

    2016-09-01

    In this Letter, we report the first application of two phase denoising algorithms to Doppler optical coherence tomography (DOCT) velocity maps. When combined with unwrapping algorithms, significantly extended fluid velocity dynamic range is achieved. Instead of the physical upper bound, the fluid velocity dynamic range is now limited by noise level. We show comparisons between physical simulated ideal velocity maps and the experimental results of both algorithms. We demonstrate unwrapped DOCT velocity maps having a peak velocity nearly 10 times the theoretical measurement range. PMID:27607963

  2. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    PubMed

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  3. Feasibility of using a reliable automated Doppler flow velocity measurements for research and clinical practices

    NASA Astrophysics Data System (ADS)

    Zolgharni, Massoud; Dhutia, Niti M.; Cole, Graham D.; Willson, Keith; Francis, Darrel P.

    2014-03-01

    Echocardiographers are often unkeen to make the considerable time investment to make additional multiple measurements of Doppler velocity. Main hurdle to obtaining multiple measurements is the time required to manually trace a series of Doppler traces. To make it easier to analyse more beats, we present an automated system for Doppler envelope quantification. It analyses long Doppler strips, spanning many heartbeats, and does not require the electrocardiogram to isolate individual beats. We tested its measurement of velocity-time-integral and peak-velocity against the reference standard defined as the average of three experts who each made three separate measurements. The automated measurements of velocity-time-integral showed strong correspondence (R2 = 0.94) and good Bland-Altman agreement (SD = 6.92%) with the reference consensus expert values, and indeed performed as well as the individual experts (R2 = 0.90 to 0.96, SD = 5.66% to 7.64%). The same performance was observed for peak-velocities; (R2 = 0.98, SD = 2.95%) and (R2 = 0.93 to 0.98, SD = 2.94% to 5.12%). This automated technology allows <10 times as many beats to be acquired and analysed compared to the conventional manual approach, with each beat maintaining its accuracy.

  4. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  5. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  6. Multifrequency measurements of HF Doppler velocity in the auroral E region

    NASA Astrophysics Data System (ADS)

    Makarevitch, R. A.; Koustov, A. V.; Sofko, G. J.; André, D.; Ogawa, T.

    2002-08-01

    HF measurements in Prince George, British Columbia (Canada), at five radar frequencies between 9.3 and 15.7 MHz are considered to study the Doppler velocity of E region coherent echoes. One event showing a regular variation of velocity with radar frequency, slant range, and azimuth of observations is analyzed in detail. For this event, plasma drifts were in access of 700 m s-1, but the observed velocities were below 250 m s-1 since measurements were performed at large flow angles (L shell angles 45°< φ< 100°). We show that measured Doppler velocity depends on irregularity scale but only within the Farley-Buneman (F-B) instability cone (45°< φ< 75°). We demonstrate that maximum velocities measured at the highest radar frequency are ~1.3 times larger than those at the lowest frequency. We also show that for observations inside the instability cone, the velocity magnitude strongly decreases with aspect angle and the rate of the decrease is scale sensitive. The effect can be described by the fluid theory formula if the nominal electron collision frequencies are replaced by anomalous collision frequencies that are ~5 times larger. However, for observations outside the F-B instability cone (75°< φ< 100°), the Doppler velocity does not show significant variation with aspect angle. For these directions, velocity change with flow angle was insignificant, very similar at all radar frequencies, and not consistent with the expected ``cosine'' law. The implications of the measurements on the theory of electrojet instabilities and the processes of coherent echo formation are discussed.

  7. Multi-frequency Measurements of Hf Doppler Velocity In The Auroral E Region

    NASA Astrophysics Data System (ADS)

    Makarevitch, R. A.; Koustov, A. V.; Sofko, G. J.; Andre, D.; Ogawa, T.

    HF measurements in Prince George, British Columbia (Canada) at 5 radar frequencies between 9.3 and 15.7 MHz are considered to study the Doppler velocity of E-region coherent echoes. One event showing a regular variation of velocity with radar fre- quency, slant range and azimuth of observations is analyzed in detail. For this event, plasma drifts were in access of 700 ms-1, but the observed velocities were below 250 ms-1 since measurements were performed at large flow angles (L-shell angles 45 < <100). We show that measured Doppler velocity depends on irregular- ity scale but only within the Farley-Buneman instability cone (45 < <75). We demonstrate that maximum velocities measured at the highest radar frequency are about 1.3 times larger than those at the lowest frequency. We also show that, for ob- servations inside the instability cone, the velocity magnitude strongly decreases with aspect angle and the rate of the decrease is scale sensitive. The effect can be described by the fluid theory formula if the nominal electron collision frequencies are replaced by anomalous collision frequencies that are 5 times larger. However, for observa- tions outside the F-B instability cone (75 < <100), the Doppler velocity does not show significant variation with aspect angle. For these directions, velocity change with flow angle was insignificant, very similar at all radar frequencies, and not consistent with the expected "cosine" law. The implications of the measurements on the theory of electrojet instabilities and the processes of coherent echo formation are discussed.

  8. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    NASA Astrophysics Data System (ADS)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  9. Absolute velocity measurement using three-beam spectral-domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Verma, Y.; Kumar, S.; Gupta, P. K.

    2015-09-01

    We report the development of a three-beam spectral-domain Doppler optical coherence tomography setup that allows single interferometer-based measurement of absolute flow velocity. The setup makes use of galvo-based phase shifting to remove complex conjugate mirror artifact and a beam displacer in the sample arm to avoid cross talk image. The results show that the developed approach allows efficient utilization of the imaging range of the spectral-domain optical coherence tomography setup for three-beam-based velocity measurement.

  10. Errors in acoustic doppler profiler velocity measurements caused by flow disturbance

    USGS Publications Warehouse

    Mueller, D.S.; Abad, J.D.; Garcia, C.M.; Gartner, J.W.; Garcia, M.H.; Oberg, K.A.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5cm from the transducers to less than 1% at about 50cm from the transducers for the scenarios simulated. ?? 2007 ASCE.

  11. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time. PMID:23927110

  12. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    SciTech Connect

    Zhang, Y; Stekel, S; Tradup, D; Hangiandreou, N

    2014-06-15

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

  13. Aircraft wake vortex velocity measurements using a scanning CO2 laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Sonnenschein, C. M.; Jeffreys, H. B.

    1975-01-01

    A CO2 laser Doppler velocimeter was employed in the study of pairs of counterrotating vortices trailing aircraft in an airport air space. A laser positioned on an extended runway centerline scans a vertical plane perpendicular to the centerline. Vortex location, measurement of vortex transport, and measurement of the properties of aircraft wake vortex flow fields are achieved via spectral analysis of the data. Highest amplitude in the spectrum, the associated maximum velocity, the highest velocity above the amplitude threshold, and the total number of frequency (velocity) cells above thresholds are studied as parameters in analysis of the vortex-associated flow field. The profile of the radial variation of tangential velocity is studied, and two special problems are examined: location of the vortex center and error introduced by crosswind.

  14. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  15. Relationship of spaced antenna and Doppler techniques for velocity measurements (keynote paper), part 3

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1984-01-01

    The Doppler, spaced-antenna and interferometric methods of measuring wind velocities all use the same basic information, the Doppler shifts imposed on backscattered radio waves, but they process it in different ways. The Doppler technique is most commonly used at VHF since the narrow radar beams are readily available. However, the spaced antenna (SA) method has been successfully used with the SOUSY and Adelaide radars. At MF/HF the spaced antenna method is widely used since the large antenna arrays (diameter 1 km) required to generate narrow beams are expensive to construct. Where such arrays of this size are available then the Doppler method has been successfully used (e.g., Adelaide and Brisbane). In principle, the factors which influence the choice of beam pointing angle, the optimum antenna spacing will be the same whether operation is at MF or VHF. Many of the parameters which govern the efficient use of wind measuring systems have been discussed at previous MST workshops. Some of the points raised by these workshops are summarized.

  16. Measurement of velocities in gas-liquid two-phase flow using Laser Doppler Velocimetry

    SciTech Connect

    Vassallo, P.F.; Trabold, T.A.; Moore, W.E.; Kirouac, G.J.

    1992-09-01

    Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. This work was performed in a 6.4 by 11.1 mm vertical duct using known air/water mixtures. A standard LDV fiber optic probe was used to measure the bubble velocity, using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. The bubble velocity was confirmed by independent measurements with a high-speed video system. The liquid velocity was confirmed by demonstrating the dominance of the liquid seed data rate in the forward-scatter measurement. Experimental data are presented to demonstrate the accuracy of the technique for a wide range of flow conditions, from bubbles as small as 0.75-mm-diam to slugs as large as 10-mm wide by 30-mm long. In the slug regime, the LDV technique performed velocity measurements for both phases, for void fractions up to 50%, which was the upper limit of our experimental investigation.

  17. Fiber-Based Doppler Lidar for Vector Velocity and Altitude Measurements

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn; Petway, Larry; Barnes, Bruce

    2015-01-01

    A coherent Doppler lidar capable of providing accurate velocity and altitude data has been developed and demonstrated for future NASA missions to the solar system bodies requiring precision navigation and controlled soft landing.

  18. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  19. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  20. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  1. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement

    PubMed Central

    Li, Yanlu; Segers, Patrick; Dirckx, Joris; Baets, Roel

    2013-01-01

    Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement. PMID:23847745

  2. Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measurement of Local Blood Velocity

    NASA Astrophysics Data System (ADS)

    Tajikawa, Tsutomu; Takeshige, Mitsuhiko; Ishihara, Wataru; Kohri, Shimpei; Ohba, Kenkichi

    A new miniaturized fiber-optic laser Doppler velocimetry (LDV) sensor has been developed, which is capable of measuring the local velocity in various semi-opaque and opaque fluid flows, particularly whole blood velocity in vessels. The sensor has a convex lens-like fiber tip as a pickup and an improved optical transmission system with markedly decreased stray light. This paper describes methods for fabricating fiber tips like concave and convex lens and the characteristics of the optical sensor system equipped with the fabricated fiber tip. Conventional fiber-optic LDV sensors developed up to now have not been capable of measuring such opaque fluids because scattered light from scattering particles as erythrocytes has very low intensity, which makes signal-to-noise ratio of Doppler signal received by a sensor pickup significantly decreased. To overcome these problems, convex lens-like fiber tips have been fabricated by chemical etching, in which quartz fibers of multimode graded refractive index have been etched in aqueous solutions of hydrogen fluoride and ammonium fluoride under the appropriately controlled condition of the concentration of the solution, the etching duration time and the etchant temperature to obtain the desired curvature radius of the lens-like surface of the fiber tip. In this fiber-optic sensor, a laser beam emitted from the fiber tip can be focused at any position from about 0.1 to 0.5 mm distant from the fiber tip according to its curvature radius. The convex lens-like etched tip totally reduced the intensity of undesired reflecting light at the fiber end by 1/2 to 1/6 compared with normal cut fiber tip. Consequently, this fiber-optic LDV sensor system is capable of measuring the local flow velocity in semi-opaque and opaque fluids, whose turbidity was about five times higher than by any kinds of previous sensors.

  3. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  4. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  5. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  6. Coherent Doppler Lidar for Measuring Altitude, Ground Velocity, and Air Velocity of Aircraft and Spaceborne Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)

    2015-01-01

    A Doppler lidar sensor system includes a laser generator that produces a highly pure single frequency laser beam, and a frequency modulator that modulates the laser beam with a highly linear frequency waveform. A first portion of the frequency modulated laser beam is amplified, and parts thereof are transmitted through at least three separate transmit/receive lenses. A second portion of the laser beam is used as a local oscillator beam for optical heterodyne detection. Radiation from the parts of the laser beam transmitted via the transmit/receive lenses is received by the respective transmit/receive lenses that transmitted the respective part of the laser beam. The received reflected radiation is compared with the local oscillator beam to calculate the frequency difference there between to determine various navigational data.

  7. Laser Doppler velocity measurements in a transferred-arc plasma torch

    SciTech Connect

    Norton, O.P.; Okhuysen, W.P.

    1995-12-31

    Laser Doppler velocimetry (LDV) is a nonintrusive method of measuring velocity. The measurement volume formed by the intersection of the two laser beams is compact, thus the method provides excellent spatial resolution. Furthermore, aside from the requirement that the flow contain scattering particles, the method is nonintrusive. Thus, no probe disturbs the flow and measurements can be made in extremely high temperature and hostile environments. Here, the LDV technique has been used to map the velocity field in the plasma jet issuing from a transferred-arc, reverse polarity plasma torch. This gas flow field is important in understanding the physics of the plasma torch. The torch was operated with nitrogen at a fixed distance of 5 inches from the graphite billet. Velocity measurements were made for combinations of current at 125 and 175 A and pressure at 22 and 55 psig. Results are presented for the high current/high pressure condition. Since the test procedure involves reestablishing the same flow conditions after swapping graphite billets, it is instructive to see how closely the torch operating variables were reproduced. The average current varied from 175.2 to 175.8 A over the eight separate time periods. The nitrogen supply pressure varied from 52.5 to 53.9 psi. The torch voltage drop ranged from 430.6 to 436.1 V, and the nitrogen flow rate from 4.8 to 5.4 scfm.

  8. Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector

    SciTech Connect

    Forsman, A. C.; Kyrala, G. A.

    2001-05-01

    Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers , Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.

  9. Correlation of laser-Doppler-velocity measurements and endothelial cell shape in a stenosed dog aorta.

    PubMed

    Liepsch, D W; Levesque, M; Nerem, R M; Moravec, S T

    1988-01-01

    Laser-Doppler-velocity measurements were carried out in an elastic 1:1 true-to-scale silicone rubber model of a dog aorta with stenosis. The model was constructed from a cast of a severely stenosed dog aorta (71% of its area). The stenosis in the dog aorta was prepared by wrapping a cotton band around the aorta. This band was tightened until the presence of a thrill or a bruit was felt distal to the band. Twelve weeks later the animal was sacrificed and a cast was prepared from the aorta. From this vascular cast, the cross-sectional area was calculated. Endothelial cell geometry and orientation was studied using computerized analysis to determine the cell area and shape index. An elastic silicone rubber model was prepared from the cast to measure the velocity profiles and to estimate the local wall shear stress. Velocity measurements were done at steady and pulsatile flow using a Newtonian aqueous-glycerol solution and a non-Newtonian blood-like fluid. From those velocity measurements the velocity gradients near the wall were determined and the shear stress calculated. The flow distal to the stenosis separates from the wall at physiological conditions. The endothelial cells are smaller and more elongated in the throat; distal to the stenosis they are larger and rounder. The shape index distribution along the stenosed aorta is correlated with the level of wall shear stress. It is shown that even low changes in the wall shear stress have an influence on the orientation of the endothelial cells. PMID:2977525

  10. Elasticity Evaluation of Regenerating Cartilage Sample Based on Laser Doppler Measurement of Ultrasonic Particle Velocity

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Misawa, Masaki; Homma, Kazuhiro; Shiina, Tsuyoshi

    2012-07-01

    It is important for regenerative medicine to evaluate the maturity of regenerating tissue. In the maturity evaluation of regenerating cartilage, it is useful to measure the temporal change of elasticity because the maturity of regenerating tissue is closely related to its elasticity. In this study, an elasticity evaluation method for the extracted regenerating cartilage sample, which is based on the laser Doppler measurement of ultrasonic particle velocity, was experimentally investigated using agar-based phantoms with different elastic moduli and the regenerating cartilage samples extracted from beagles in animal experiments. In addition, the experimentally-obtained elasticity was compared with the result of a static compression test. These results verified the feasibility of the proposed method in the elasticity evaluation of regenerating cartilage samples.

  11. Intraoperative Doppler velocity measurements to locate patent ITA grafts at reoperation.

    PubMed

    Lotto, Attilio A; Owens, W Andrew

    2006-09-01

    We are reporting a case of a patient who underwent an aortic valve replacement with previous coronary artery bypass grafting. During the operation we used a Doppler velocity probe to locate the exact position of the bilateral internal thoracic arteries. Once the vessels were identified, a suture was passed widely around each internal thoracic artery and a snare was positioned. With the aid of the Doppler velocity probe, we achieved a gentle occlusion of the vessels, applying enough traction on the snares to abolish the flow through the internal thoracic arteries. PMID:16928554

  12. Measurement of blood velocity using laser Doppler method for the designing module

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Liang; Lee, Jen-Ai; Lu, Tung-Wu; Chen, Zhao-Cheng; Chen, Chien-Ming

    2005-04-01

    We built the Dual Beam Mode of the LDA (Laser Doppler Anemometry) frame, set the photodetector at the same side with light source which collect the scattering light of blood cell. It's proper to reduce LDA optical path and convenient for our designing module. The concentration of chicken blood in this study is about 1% and we measured the relations actually between flood velocity and the angle of beams cross on particles, temperature, and the diameter of aqueduct. We found better results while the cross angle was less than 38.8 degree, diameter of aqueduct was 6 mm, and temperature of blood was set to 36 . These parameters can also provide important basis for the LDA module kit that we are designing.

  13. ALADIN: an atmosphere laser doppler wind lidar instrument for wind velocity measurements from space

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rodolphe; Ghibaudo, Jean-Bernard; Labandibar, Jean-Yves; Willetts, David V.; Vaughan, M.; Pearson, G.; Harris, M. R.; Flamant, Pierre H.; Salamitou, P.; Dabas, Alain; Charasse, R.; Midavaine, Thierri; Royer, Michel; Heimel, H.

    1995-12-01

    AEROSPATIALE, leading a European team, has just conducted a successful study, under ESA contract, to demonstrate the feasibility of a spaceborne Doppler wind lidar instrument meeting the scientific requirements of wind velocity measurements from space with high spatial resolution. A first parametric investigation, based upon the initial set of mission requirements, and supported by dedicated models and detailed trade-off studies, took account of capabilities of the most promising signal processing algorithms and calibration/validation constrains: it yielded a large conically scanned instrument deemed technologically risky. A risk analysis was then carried out to propose a less challenging instrument meeting most key mission requirements. The fixed line-of-sight concept with return signal accumulation appeared as most attractive. A second set of requirements agreed upon by scientific users was therefore issued, with relaxed constraints mainly on horizontal resolution, keeping roughly the same level of wind velocity measurement accuracy. A second instrument and subsystem trade- off was then performed to eventually produce an attractive instrument concept based upon a pair of small diameter telescopes each one associated to one scanning mirror rotating stepwise around the telescope axis, which drastically reduces the detection bandwidth. Following the main contract, studies of accommodation on the International Space Station have been performed, confirming the interest of such an instrument for wind measurements from space.

  14. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rodolphe; Ghibaudo, Jean-Bernard; Labandibar, Jean-Yves; Willetts, David V.; Vaughan, M.; Pearson, G.; Harris, M. R.; Flamant, Pierre H.; Salamitou, P.; Dabas, Alain; Lieutaud, F.; Charasse, R.; Midavaine, Thierri; Royer, Michel; Heimel, H.

    1996-10-01

    AEROSPATIALE, leading a European team, has just conducted a successful study, under ESA contract, to demonstrate the feasibility of a spaceborne Doppler wind lidar instrument meeting the scientific requirements of wind velocity measurements from space with high spatial resolution. A first parametric investigation, based upon the initial set of mission requirements, and supported by dedicated models and detailed trade-off studies, took account of capabilities of most promising signal processing algorithms and calibration/validation constraints: it yielded a large conically scanned instrument deemed technologically risky. A risk analysis was then carried out to propose a less challenging instrument meeting most key mission requirements. The fixed line-of-sight concept with return signal accumulation appeared as most attractive. A second set of requirements agreed upon by scientific users was therefore issued, with relaxed constraints mainly on horizontal resolution, keeping roughly the same level of wind velocity measurement accuracy. A second instrument and subsystem trade-off was then performed to eventually produce an attractive instrument concept based upon a pair of small diameter telescopes each one associated to one scanning mirror rotating stepwise around the telescope axis, which drastically reduces the detection bandwidth. Following the main contract, studies of accommodation on the International Space Station have been performed, confirming the interest of such an instrument for wind measurements from space.

  15. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  16. Development of a laser-Doppler system for measurement of velocity fields in PVT crystal growth systems

    NASA Technical Reports Server (NTRS)

    Jones, O. C.; Glicksman, M. E.; Lin, J. T.; Kim, G. T.; Singh, N. B.

    1991-01-01

    A laser-Doppler velocimetry (LDV) system capable of measuring velocities as low as 10 exp -5 m/s is presented, and a calibration system for determining the accuracy of the LDV system at these velocities is described. The results obtained in mercurous chloride crystal grown in cylindrical ampoules at 300 C, using physical vapor transport (PVT) methods, are presented. It is concluded that the overall flow pattern observed is a unicellular, asymmetric pattern between Rayleigh number of 125 and 250.

  17. Results from 1984 airborne Doppler lidar wind measurement program. Flight 6: Analysis of line-of-sight elevation angle errors and apparent Doppler velocities

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1987-01-01

    During the summer of 1984 the Marshall Space Flight Center's Airborne Doppler Lidar System (ADLS) made a series of wind measurements in the California Central Valley. This study quantifies the lidar beam angle errors and velocity errors through analysis of ground return signals. Line-of-sight elevation (LOSE) angle errors are under 1 deg. Apparent Doppler ground velocities, as large as 2m/s, are considerably less than in a previous flight experiment in 1981. No evidence was found of a Schuler resonance phenomenon common to inertial navigation systems (INS), however the aperiodic nature of the apparent velocities implies an error in the INS-derived ground speeds. Certain features and subtleties in the ground returns are explained in terms of atmospheric structure and characteristics of the ADLS hardware and software. Finally, least squares and low-pass filtering techniques are suggested for eliminating errors during post-processing.

  18. Doppler Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Lenschow, Donald H.; Mayor, Shane D.

    2009-08-01

    We utilized a Doppler lidar to measure spectra of vertical velocity w from 390m above the surface to the top of the daytime convective boundary layer (CBL). The high resolution 2μm wavelength Doppler lidar developed by the NOAA Environmental Technology Laboratory was used to detect the mean radial velocity of aerosol particles. It operated continuously during the daytime in the zenith-pointing mode for several days in summer 1996 during the Lidars-in-Flat-Terrain experiment over level farmland in central Illinois, U.S.A. The temporal resolution of the lidar was about 1 s, and the range-gate resolution was about 30m. The vertical cross-sections were used to calculate spectra as a function of height with unprecedented vertical resolution throughout much of the CBL, and, in general, we find continuity of the spectral peaks throughout the depth of the CBL. We compare the observed spectra with previous formulations based on both measurements and numerical simulations, and discuss the considerable differences, both on an averaged and a case-by-case basis. We fit the observed spectra to a model that takes into account the wavelength of the spectral peak and the curvature of the spectra across the transition from low wavenumbers to the inertial subrange. The curvature generally is as large or larger than the von Kármán spectra. There is large case-to-case variability, some of which can be linked to the mean structure of the CBL, especially the mean wind and the convective instability. We also find a large case-to-case variability in our estimates of normalized turbulent kinetic energy dissipation deduced from the spectra, likely due for the most part to a varying ratio of entrainment flux to surface flux. Finally, we find a relatively larger contribution to the low wavenumber region of the spectra in cases with smaller shear across the capping inversion, and suggest that this may be due partly to gravity waves in the inversion and overlying free atmosphere.

  19. Three-component planar velocity measurements using Mach-Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV)

    NASA Astrophysics Data System (ADS)

    Lu, Z.-H.; Charrett, T. O. H.; Tatam, R. P.

    2009-03-01

    Interferometric filter-based planar Doppler velocimetry is used in conjunction with imaging fibre bundles to make time-averaged three-component velocity measurements using a single imaging head. The Doppler frequency shifts of light scattered by particles entrained into the flow to be measured are transduced to intensity variations using a Mach-Zehnder interferometer. The free spectral range of the filter can be selected by adjusting the optical path difference of the interferometer. This allows the velocity measurement range, sensitivity and resolution to be varied. Three-component measurements are made possible by porting different views of the measurement plane to a single imaging head using the imaging fibre bundles. A comparison of three different image-processing techniques is presented and analysed with the aid of modelled images. Results are presented here for time-averaged measurements of a rotating disc with maximum velocities of ~ ±34 m s-1 in the field of view with the computed measurement error in the orthogonal velocity components being (0.89, 0.68, 1.42) m s-1 for the measurement geometry used. Three-component velocity measurements were also made on a seeded air jet with a nozzle diameter of 20 mm and an exit velocity of ~85 m s-1.

  20. Repeatability of non-invasive measurement of intracerebral pulse wave velocity using transcranial Doppler.

    PubMed

    Gladdish, Sarah; Manawadu, Dulka; Banya, Winston; Cameron, James; Bulpitt, Christopher J; Rajkumar, Chakravarthi

    2005-05-01

    In the present study, the repeatability of three techniques for measuring peripheral PWV (pulse wave velocity) has been studied. A transcranial Doppler provided a wave reading from the middle cerebral artery. Using the transit time between the R-wave of an ECG and the 'foot' of this wave we were able to calculate a PWV (PWV-brain). An ear clip transducer provided a pressure wave reading (PWV-ear). A third pressure reading came from a Finapres transducer on the left middle finger (PWV-finger). The PWV was calculated as distance between two points/transit time of the pulse wave. Eleven volunteers had three sets of readings averaged for each technique taken in two separate sessions. There was good agreement between observers for the mean PWV values, and good agreement for mean results in different sessions. The RC%s (repeatability coefficient percentages) for between-observer repeatability in each session were good and approximately equivalent for PWV-finger (5-7%) and PWV-brain (5-7%). The repeatability of the PWV-ear measurement was less satisfactory (8-18%). The RC% for the same observer between sessions was less good, being 11% for the PWV-finger, 16-17% for PWV-brain and 11-19% for PWV-ear. The RC%s for the inter-session inter-observer measurements were between 10.7-12.1% for the PWV-finger, 14.7-19.5% for PWV-brain and 8.3-15% for PWV-ear. The transit time RC%s were lower in most measurements. The between-observer repeatability of all measures was satisfactory. Owing to the less good repeatability on different occasions, the use of PWV-brain and PWV-ear will depend on the magnitude of differences to be expected. PMID:15656782

  1. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple

  2. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  3. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography

    PubMed Central

    Blatter, Cedric; Meijer, Eelco F. J.; Nam, Ahhyun S.; Jones, Dennis; Bouma, Brett E.; Padera, Timothy P.; Vakoc, Benjamin J.

    2016-01-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels. PMID:27377852

  4. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Meijer, Eelco F. J.; Nam, Ahhyun S.; Jones, Dennis; Bouma, Brett E.; Padera, Timothy P.; Vakoc, Benjamin J.

    2016-07-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels.

  5. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography.

    PubMed

    Blatter, Cedric; Meijer, Eelco F J; Nam, Ahhyun S; Jones, Dennis; Bouma, Brett E; Padera, Timothy P; Vakoc, Benjamin J

    2016-01-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels. PMID:27377852

  6. Laser Doppler measurement of relative blood velocity in the human optic nerve head

    SciTech Connect

    Riva, C.E.; Grunwald, J.E.; Sinclair, S.H.

    1982-02-01

    The Doppler shift frequency spectrum (DSFS) of laser light scattered from red blood cells (RBCs) moving in the microcirculation of the optic nerve head has been recorded in normal volunteers by means of a fundus camera laser Doppler velocimeter. The width of the DSFS, which varies in proportion to the speed of the RBCs, has been characterized by a parameter alpha. With the use of a model for the scattering of light by tissue and RBCs and for the RBC velocity distribution, values of alpha recorded at normal intraocular pressure (IOP) suggest that the RBCs that contribute to the Doppler signal are flowing in capillaries. The parameter alpha was found to vary markedly with the IOP and with the phase of the ocular pressure pulse at elevated IOP. The return of the speed of RBCs toward normal, which is observed after a step increase of IOP above normal and after a step decrease below normal, has been attributed to an autoregulatory response of the optic nerve circulation.

  7. Doppler measurements of the H2O(+) ion velocity in the plasma tail of Comet Levy 1990c

    NASA Astrophysics Data System (ADS)

    Rauer, H.; Jockers, K.

    1993-03-01

    2D ion velocity fields have been obtained for the first time from measurements of the Doppler shift of ion emission lines in the plasma tail of the Comet Levy 1990c. Images of the comet obtained alternating with interferograms show the appearance of the plasma tail. Velocities from about 10 to 70 km/s are measured. The velocity fields show variations in speed and distribution of velocity values during the observing period. A clear correlation of velocity and ion distribution, as expected from momentum exchange with a stationary solar wind, could not be found in most cases. The flux of H2O(+) ion in the tail is calculated and shows variations from night to night. The mean production rate of 1.5 x 10 exp 27/s corresponds to only 18 percent of the expected value assuming photoionization to be the main ionization process.

  8. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A; Holzäpfel, F; Rahm, S

    2015-09-21

    The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-µm PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-µm PCDL. The domain of applicability of the RV method is determined. PMID:26406749

  9. Velocity surveys in a turbine stator annular-cascade facility using laser Doppler techniques. [flow measurement and flow characteristics

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Seasholtz, R. G.; Mclallin, K. L.

    1976-01-01

    A laser Doppler velocimeter (LDV) was used to determine the flow conditions downstream of an annular cascade of stator blades operating at an exit critical velocity ratio of 0.87. Two modes of LDV operation (continuous scan and discrete point) were investigated. Conventional pressure probe measurements were also made for comparison with the LDV results. Biasing errors that occur in the LDV measurement of velocity components were also studied. In addition, the effect of pressure probe blockage on the flow conditions was determined with the LDV. Photographs and descriptions of the test equipment used are given.

  10. Noninvasive transthoracic and transesophageal Doppler echocardiographic measurements of human coronary blood flow velocity: In vitro flow phantom validation.

    PubMed

    Greene, E R

    2010-01-01

    Coronary angiography is limited in assessing the hemodynamic significance of a coronary lesion or the state of the coronary microcirculation. Noninvasive transthoracic (TTE) and transesophageal (TEE) Doppler echocardiography have been used to measure coronary blood flow velocity and coronary flow reserve and thus the physiology of the coronary vasculature (normal, stable or unstable lesions). A fundamental, in vitro validation of these methods with a tissue and blood mimicking flow phantom has not been reported. Accordingly, Bland-Altman 95% confidence levels for precision (repeated measures) and accuracy (comparison with time collection) were determined for both TTE and TEE measurements of simulated coronary diastolic blood velocities in 2 mm and 4 mm vessels at the normal in vivo depths of 40 mm and 60 mm. The Doppler angle was set at 45 degrees and flow velocities were varied within a normal in vivo range of 0- 150 cm/s. Confidence levels for precisions and accuracies were similar between TTE and TEE and ranged from ± 6 cm/s to ± 13 cm/s or approximately 10-15% over the range of the measured velocities. These in vitro results in a controlled flow phantom suggest that technically adequate TTE and TEE can be used to reliably measure epicardial coronary conduit artery blood flow velocities. PMID:21096876

  11. Autonomic nervous system regulation of epicardial coronary vein systolic and diastolic blood velocity as measured by a laser Doppler velocimeter.

    PubMed

    Hellenbrand, W K; Klassen, G A; Armour, J A; Sezerman, O; Paton, B

    1986-12-01

    The velocity of blood in a major epicardial coronary vein accompanying the left anterior descending coronary artery of dogs was measured by means of a 140-micron fiber optic probe connected to a laser Doppler velocimeter. Right atrial pressure, left ventricular intramyocardial and cavity pressures, aortic pressure, as well as peripheral and central coronary venous pressures were compared with the velocity of blood measured in the epicardial coronary vein midway between the sites of the catheters measuring proximal and distal coronary vein pressures. During control conditions, coronary vein velocity was 14-18 cm/s during systole and 1.0-2.1 cm/s during diastole. Right stellate ganglion stimulation, norepinephrine or isoproterenol increased diastolic coronary vein velocity significantly, whereas left stellate ganglion stimulation did not. Average peak systolic velocity was not affected by these interventions. During these positive inotropic interventions, the peak coronary vein velocity usually occurred later in the cardiac cycle than during control conditions. Positive inotropic interventions appeared to decrease coronary vein velocity during systole and increase it during diastole. Left vagosympathetic trunk stimulation decreased diastolic but not systolic coronary vein velocity and usually caused peak coronary vein velocity to occur earlier in the cardiac cycle than during control states. Changes induced by vagosympathetic trunk stimulation usually occurred within one cardiac cycle. It is concluded that coronary vein blood velocity can be influenced by the autonomic nervous system. PMID:2435386

  12. Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

    SciTech Connect

    Hare, D E; Holtkamp, D B; Strand, O T

    2010-03-02

    Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.

  13. Measuring Solar Doppler Velocities in the He ii 30.38 nm Emission Using the EUV Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Chamberlin, P. C.

    2016-08-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradiance as a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He ii 30.38 nm emission at a velocity of almost 120 km s^{-1} along the line-of-sight.

  14. A study of the geographic coverage properties of a satellite borne Doppler lidar wind velocity measuring system

    NASA Technical Reports Server (NTRS)

    Pate, T. H.

    1982-01-01

    Geographic coverage frequency and geographic shot density for a satellite borne Doppler lidar wind velocity measuring system are measured. The equations of motion of the light path on the ground were derived and a computer program devised to compute shot density and coverage frequency by latitude-longitude sections. The equations for the coverage boundaries were derived and a computer program developed to plot these boundaries, thus making it possible, after an application of a map coloring algorithm, to actually see the areas of multiple coverage. A theoretical cross-swath shot density function that gives close approximations in certain cases was also derived. This information should aid in the design of an efficient data-processing system for the Doppler lidar.

  15. Resonant Doppler velocimeter. Ph.D. Thesis. Final Report, 1 Jul. 1974 - 31 Oct. 1979; [velocity, temperature, and pressure measurement

    NASA Technical Reports Server (NTRS)

    Zimmermann, M.

    1980-01-01

    A technique is presented for visualizing and quantitatively measuring velocity, temperature, and pressure by shining a single frequency laser beam into a gaseous flow which is seeded with an atomic species. The laser is tuned through the absorption frequencies of the seeded species and the absorption profile is detected by observing fluorescence as the atoms relax back to the ground state. The flow velocity is determined by observing the Doppler shift in the absorption frequency. Spectroscopic absorption line broadening mechanisms furnish information regarding the static temperature and pressure of the moving gas. Results of experiments conducted in the free stream and in the bow shock of a conical model mounted in a hypersonic wind tunnel indicate that the experimental uncertainties in the measurement of average values for the velocity, temperature and pressure of the flow are 0.1, 5 and 10 percent respectively.

  16. An improved instantaneous laser Doppler velocity system

    NASA Astrophysics Data System (ADS)

    Desio, Charles V.; Olcmen, Semih; Schinetsky, Philip

    2016-02-01

    In this paper, improvements made on a single velocity component instantaneous laser Doppler velocimetry (ILDV) system are detailed. The ILDV system developed in this research effort is capable of measuring a single velocity component at a rate as high as two megahertz. The current system accounts for the effects of the laser intensity variation on the measured velocity and eliminates the use of a Pockels cell used in previous ILDV systems. The system developed in the current effort was tested using compressible, subsonic jet flows. The ILDV system developed would be most beneficial where a high data capture rate is needed such as in shock tubes, and high-speed wind tunnels.

  17. Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza; Bonito, Rosaria; Orlando, Salvatore; Miceli, Marco; Peres, Giovanni

    2015-09-01

    High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and averaged these velocities to obtain an accurate estimate of the global velocity of the X-ray emitting plasma. After correcting for Earth's motion, we compared this observed velocity with the photospheric radial velocity. In order to check this procedure we applied the same technique to other Chandra/HETGS spectra of single stars, whose X-rays are due only to coronal plasma. While spectra of pure coronal sources provide Doppler shifts in agreement with the known stellar radial velocity, we found that the X-ray spectrum of TW Hya is red-shifted by ~30-40 km/s with respect to the stellar photosphere. This proves that the X-ray emitting plasma on TW Hya is moving with respect to the stellar surface, definitively confirming that it originates in the accretion-shock region. The observed velocity suggests that the base of the accretion region is located at low latitudes of the stellar surface.

  18. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    SciTech Connect

    Welsch, Brian T.; Fisher, George H.; Sun, Xudong

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  19. Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins.

    PubMed

    Aschinger, Gerold C; Schmetterer, Leopold; Doblhoff-Dier, Veronika; Leitgeb, Rainer A; Garhöfer, Gerhard; Gröschl, Martin; Werkmeister, René M

    2015-05-01

    In this paper, we demonstrate the possibility to reconstruct the actual blood flow velocity vector field in retinal microvessels from dual-beam bidirectional Doppler optical coherence tomography measurements. First, for a better understanding of measured phase patterns, several flow situations were simulated on the basis of the known dual beam measurement geometry. We were able to extract the vector field parameters that determine the measured phase pattern, allowing for the development of an algorithm to reconstruct the velocity vector field from measured phase data. In a next step, measurements were performed at a straight vessel section and at a venous convergence; the obtained phase data were evaluated by means of the new approach. For the straight vessel section, the reconstructed flow velocity vector field yielded a parabolic flow. For the venous convergence, however, the reconstructed vector field deviated from a parabolic profile, but was in very good accordance with the simulated vector field for the given vessel geometry. The proposed algorithm allows predictions of the velocity vector field. Moreover, the algorithm is also sensitive to directional changes of the flow velocity as small as <1°, thereby offering insight in the flow characteristics of the non-Newtonian fluid blood in microvessels. PMID:26137367

  20. Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins

    PubMed Central

    Aschinger, Gerold C.; Schmetterer, Leopold; Doblhoff-Dier, Veronika; Leitgeb, Rainer A.; Garhöfer, Gerhard; Gröschl, Martin; Werkmeister, René M.

    2015-01-01

    In this paper, we demonstrate the possibility to reconstruct the actual blood flow velocity vector field in retinal microvessels from dual-beam bidirectional Doppler optical coherence tomography measurements. First, for a better understanding of measured phase patterns, several flow situations were simulated on the basis of the known dual beam measurement geometry. We were able to extract the vector field parameters that determine the measured phase pattern, allowing for the development of an algorithm to reconstruct the velocity vector field from measured phase data. In a next step, measurements were performed at a straight vessel section and at a venous convergence; the obtained phase data were evaluated by means of the new approach. For the straight vessel section, the reconstructed flow velocity vector field yielded a parabolic flow. For the venous convergence, however, the reconstructed vector field deviated from a parabolic profile, but was in very good accordance with the simulated vector field for the given vessel geometry. The proposed algorithm allows predictions of the velocity vector field. Moreover, the algorithm is also sensitive to directional changes of the flow velocity as small as <1°, thereby offering insight in the flow characteristics of the non-Newtonian fluid blood in microvessels. PMID:26137367

  1. Selection effects in Doppler velocity planet searches

    NASA Astrophysics Data System (ADS)

    O'Toole, Simon; Tinney, Chris; Jones, Hugh

    2008-05-01

    The majority of extra-solar planets have been discovered by measuring the Doppler velocities of the host star. Like all exoplanet detection methods, the Doppler method is rife with observational biases. Before any robust comparison of mass, orbital period and eccentricity distributions can be made with theory, a detailed understanding of these selection effects is required, something which up to now is lacking. We present here a progress report on our analysis of the selection effects present in Anglo-Australian Planet Search data, including the methodology used and some preliminary results.

  2. Use of 'velocity projection' to estimate the variation of sea-surface height from HF Doppler radar current measurements

    NASA Astrophysics Data System (ADS)

    Marmorino, G. O.; Shen, C. Y.; Evans, T. E.; Lindemann, G. J.; Hallock, Z. R.; Shay, L. K.

    2004-02-01

    The technique of 'velocity projection' (J. Geophys. Res. 106 (2001) 6973) is used to estimate the sea-surface height field and its change over time from measurements of surface velocity made using a shore-based HF Doppler radar over a 30×30-km region of the continental shelf located near the mouth of the Chesapeake Bay (USA). Projected current profiles are compared with measured currents from an array of acoustic Doppler current profilers, and the consistency and sensitivity of the projections to model assumptions are also examined. Using projected values of the local surface slope, a model sea-surface η( x, y) is least-squares fit over the study region at each measurement time. The error associated with these fits provides an internal check on the validity of the projection results. The slope of the model sea-surface shows a set-up toward the mouth of the Chesapeake Bay during downwelling-favorable winds and a counterclockwise rotation over the tidal cycle that is consistent with linear, shallow-water dynamics. A time series of sea-level difference extracted from the η maps shows a dominant M 2 tidal signal that compares well with measurements of bottom pressure made at two moorings. With proper attention to limits of applicability, such projection-based sea-surface slope fields (as well as other projection results) may be useful in diagnostic calculations or as nowcasts for use with prognostic models.

  3. Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Büttner, Lars; Czarske, Jürgen; Eggert, Michael; Müller, Harald

    2009-10-01

    Measuring velocity spectra in turbulent flows requires methods providing a high temporal resolution and a low measurement uncertainty. Hot-wire anemometry is often used, but it is intrusive. Laser Doppler anemometry is non-intrusive, but due to the statistical arrival of individual tracers provides no constant measurement rate. We therefore propose the use of Doppler global velocimetry (DGV), which is a contactless method allowing temporally equidistant measurements of continuous signals. Additionally, 2d measurements are possible instead of single point measurements. The commonly applied slow cameras are substituted by a fibre coupled detector array consisting of 25 avalanche photo diodes, which increases temporal resolution up to 10 μs. Contrarily to conventional DGV, a sinusoidal laser frequency modulation enables omitting the reference detector array. A correction of beam splitting and image misalignment errors is thus not necessary, but disturbances due to temporal fluctuations of the scattered light can occur and have to be reduced by increasing the modulation frequency. We validate the proposed system capability of synchronously measuring velocity spectra at multiple points in turbulent flows by presenting experimental results. The acquired velocity spectra in a wind tunnel experiment show good agreement with hot-wire comparison measurements within 0.1 m/s. An uncertainty analysis is given, which allows the achievable measurement uncertainty to be estimated as a function of the desired temporal resolution. An uncertainty down to 0.2 m/s can, for example, be achieved assuming a desired temporal resolution of 1 ms. These promising results open new perspectives for turbulence and correlation studies in flows such as to investigate the turbulence characteristics behind a truncated cylinder attached to a plate or the inlet of an aircraft turbine for flow characterisation in industry.

  4. Vertical velocities within a Cirrus cloud from Doppler lidar and aircraft measurements during FIRE: Implications for particle growth

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, Andrew J.

    1990-01-01

    A large and comprehensive data set taken by the NOAA CO2 Doppler lidar, the NCAR King Air, and rawinsondes on 31 October 1986 during the FIRE (First ISCCP Regional Experiment) field program which took place in Wisconsin are presented. Vertical velocities are determined from the Doppler lidar data, and are compared with velocities derived from the aircraft microphysical data. The data are used for discussion of particle growth and dynamical processes operative within the cloud.

  5. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow

    NASA Astrophysics Data System (ADS)

    Jiang, Jingfeng; Strother, Charles; Johnson, Kevin; Baker, Sara; Consigny, Dan; Wieben, Oliver; Zagzebski, James

    2011-03-01

    Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm. The method was tested in a canine aneurysm model by determining velocities in small arteries (3-4 mm diameter) near the aneurysm where there was moderately disturbed flow. Doppler results were compared to velocity measurements in the same arteries acquired with a rapid volumetric phase contrast MR angiography technique named phase contrast vastly undersampled isotropic projection reconstruction magnetic resonance angiography (PC-VIPR MRA). After correcting for intrinsic spectral broadening, there was a high degree of correlation between velocities obtained by the real-time UD and the accelerated PC-MRA technique. The peak systolic velocity yielded a linear correlation coefficient of r = 0.83, end diastolic velocity resulted in r = 0.81, and temporally averaged mean velocity resulted in r = 0.76. The overall velocity waveforms obtained by the two techniques were also highly correlated (r = 0.89 ± 0.06). There were, however, only weak correlations for the pulsatility index (PI: 0.25) and resistive index (RI: 0.14) derived from the two techniques. Results demonstrate that to avoid overestimations of peak systolic velocities, the results for UD must be carefully corrected to compensate for errors caused by intrinsic spectral broadening.

  6. Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport

    NASA Astrophysics Data System (ADS)

    Nord, Guillaume; Gallart, Francesc; Gratiot, Nicolas; Soler, Montserrat; Reid, Ian; Vachtman, Dina; Latron, Jérôme; Martín-Vide, Juan Pedro; Laronne, Jonathan B.

    2014-02-01

    Acoustic Doppler devices (Unidata Starflow) have been deployed for velocity measurements and discharge estimates in five contrasted open-channel flow environments, with particular attention given to the influence of sediment transport on instrument performance. The analysis is based on both field observations and flume experiments. These confirm the ability of the Starflow to provide reliable discharge time-series, but point out its limitations when sediment is being transported. (i) After calibration of the instrument by the Index Velocity Method, the deviation from reference discharge measurements was < 20% at the 95% confidence level. (ii) In ungauged conditions at high flows, the Starflow was particularly useful in providing velocity data for approximating measurements of discharge. (iii) However, channel and flume experiments revealed the effects of mobilised sediment on velocity estimates: coarse particles (⩾ 150 μm) transported by way of saltation or as bedload caused a significant underestimation of velocity by as much as 50%; a slight underestimation (10-15%) was also observed when significant quantities of fine particles (⩽150 μm) were transported in suspension; this underestimation was shown to reach 20-30% when suspended sediment concentrations were very high (c. 50-100 g L-1).

  7. Feasibility Study of Velocity and Temperature Measurements of an Arcjet Flow using Laser Resonance Doppler Velocimetric (LRDV) Technique

    NASA Technical Reports Server (NTRS)

    Rob, Mohammad A.

    1996-01-01

    Thermal Protection System (TPS) materials are used in space vehicles to shield from high heating environment encountered during their atmospheric reentry. Arcjet wind tunnels are used to simulate the flowfield encountered by the spacecrafts, and are used for testing TPS materials. How well these tests simulate the actual heating environment encountered by space vehicles depends on the characteristics of the simulated flow. The flow characterization requires the determination of temperature, concentration, and velocity of the various atomic and molecular species present in the flow. However, determining these parameters requires a complex set of both analytical and experimental procedures. The ability to properly simulate the flight environment is directly related to the accuracy with which these techniques can be used to define the arcjet Laser Resonance Doppler Velocimetric (LRDV) technique can be used to accurately determine the velocity and temperature of a gaseous species. In this technique, the medium is probed with a laser beam that is in resonance with an absorbing transition of the species. The absorption lineshape is Doppler-shifted due to the flow velocity of the species, and the frequency shift is detected as the variation in intensity of the fluorescence emitted by the species. Thus a measurement of the Doppler shift and the width of a spectral line can give both the temperature and the velocity of the flowfield. This summer, our project was to make a feasibility study to set up an experimental arrangement for the laser resonance Doppler velocimetric technique using a ring dye laser. Experiments required troubleshooting, cleaning, testing, and alignment of two lasers and several diagnostics instruments. All instruments and lasers necessary for the project worked well, but the output power of the broadband fundamental dye laser was limited to about 20 mW. This was quite low as compared to that necessary to obtain second harmonic oscillation at 327.49 nm

  8. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  9. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Chan, V. S. S.; Turner, J. T.

    2000-10-01

    A three-component laser Doppler anemometry (LDA) system has been employed to investigate the structure of the flow inside the cylinder of a motored internal combustion engine. This model engine was reasonably representative of a typical, single cylinder, spark ignition engine although it did not permit firing. It was equipped with overhead valve gear and optical access was provided in the top and side walls of the cylinder. A principal objective was to study the influence of the inlet port design on the flow within the cylinder during the induction and compression strokes of the engine. Here, it can be noted that results obtained in an unfired engine are believed to be representative of the flow behaviour before combustion occurs in a fired engine (see P.O. Witze, Measurements of the spatial distribution and engine speed dependence of turbulent air motion in an i.c. engine, SAE Paper No. 770220, 1977; Witze, Sandia Laboratory Energy Report, SAND 79-8685, Sandia Laboratories, USA, 1979). Experimental data presented for an inclined inlet port configuration reveal the complex three-dimensional nature of the flow inside the model engine cylinder. Not surprisingly, the results also show that the inclined inlet port created flow conditions more favourable to mixing in the cylinder. Specifically, the inclined inlet flow was found to generate a region with a relatively high shear and strong recirculation zones in the cylinder. Inclining the inlet port also produced a more nearly homogeneous flow structure at top dead centre during the compression stroke. The paper identifies the special difficulties encountered in making the LDA measurements. The experimental findings are examined and the problems that arise in presenting time-varying three-dimensional data of this type are discussed. Finally, the future potential of this experimental approach is explored.

  10. Myocardial Tissue Doppler Velocity in Child Growth

    PubMed Central

    Choi, Sun-Ha; Kim, Nam Kyun; Jung, Jo Won; Choi, Jae Young

    2016-01-01

    Background In adults, tissue Doppler imaging (TDI) is a recommended component of routine echocardiography. However, TDI velocities are less accepted in pediatrics, due to their strong variability and age dependence in children. This study examines the distribution of myocardial tissue Doppler velocities in healthy children to assess the effect of age with cardiac growth on the various echocardiographic measurements. Methods Total 144 healthy children were enrolled in this study. They were recruited from the pediatric outpatient clinic for routine well-child visits. The statistical relationships between age and TDI values were analyzed. Also, the statistical relationships between body surface area (BSA) and TDI values, left ventricle end-diastolic dimension (LVEDD) and TDI values were analyzed. Also, we conducted multivariate analysis of cardiac growth parameters such as, age, BSA, LVEDD and TDI velocity data. Results All of the age, BSA, and LVEDD had positive correlations with deceleration time (DT), pressure half-time (PHT), peak early diastolic myocardial velocity, peak systolic myocardial velocity, and had negative correlations with peak late diastolic velocity (A) and the ratio of trans-mitral inflow velocity to early diastolic velocity of mitral annulus (E/E'). In the multivariate analysis, all of the age, BSA, and LVEDD had positive correlations with DT, PHT, and negative correlations with A and E/E'. Conclusion The cardiac growth parameters related alterations of E/E' may suggest that diastolic myocardial velocities are cardiac growth dependent, and diastolic function has positive correlation with cardiac growth in pediatric group. This cardiac growth related myocardial functional variation would be important for assessment of cardiac involvement either in healthy and sick child. PMID:27081443

  11. An experimental investigation of throughflow velocities in two-dimensional fluidized bed bubbles: Laser Doppler anemometer measurements

    SciTech Connect

    Gautam, M. . Dept. of Mechanical and Aerospace Engineering); Jurewicz, J.T. ); Kale, S.R. . Dept. of Mechanical Engineering)

    1994-09-01

    Detailed nonintrusive measurements have been made to determine the throughflow velocity in isolated fluidized bed bubbles. In air-fluidized beds, the throughflow component has been rather neglected and measurements of the visible bubbleflow alone have, therefore, failed to clarify the overall distribution of gas flow between the phases. A single component fiber optic laser Doppler anemometer was used to map the fluid flow through a bubble rising in a two-dimensional bed. The bed was fluidized at a superficial velocity slightly than incipient. The conditioned sampling technique developed to characterize the periodic nature of the bubble phase flow revealed that the throughflow velocity in two-dimensional beds increases linearly with increasing distance from the distributor, thereby enhancing the convective component in the interphase mass transfer process. Bubble growth was accounted for and the end-effects were minimized. Dependence of the bubble throughflow on the elongation of the bubble was observed thus confirming the theoretical analysis of some previous investigators. However, experimental evidence presented in this paper showed that the existing models fail to accurately predict the convective component in the bubble phase of two-dimensional fluidized beds.

  12. Phase/doppler spray analyzer for simultaneous measurements of drop size and velocity distributions

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. The instrument response function was determined to be linear with drop size. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward-scatter and back-scatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. An instrument based on the concept has been developed.

  13. First Scientific Working Group Meeting of Airborne Doppler Lidar Wind Velocity Measurement Program

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Editor)

    1980-01-01

    The purpose of the first scientific working group meeting was fourfold: (1) to identify flight test options for engineering verification of the MSFC Doppler Lidar; (2) to identify flight test options for gathering data for scientific/technology applications; (3) to identify additional support equipment needed on the CV 990 aircraft for the flight tests; and (4) to identify postflight data processing and data sets requirements. The working group identified approximately ten flight options for gathering data on atmospheric dynamics processes, including turbulence, valley breezes, and thunderstorm cloud anvil and cold air outflow dynamics. These test options will be used as a basis for planning the fiscal year 1981 tests of the Doppler Lidar system.

  14. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2008-06-06

    A new type of X-ray imaging crystal spectrometer has been implemented on Alcator CMod for Doppler measurements of ion temperature and plasma rotation velocity profiles. The instrument consists of two spherically bent (102)-quartz crystals with radii of curvature of 1444 and 1385 mm and four 'PILATUS II' detector modules. It records spectra of He-like argon from the entire, 72 cm high, elongated plasma cross-section and spectra of H-like argon from a 20 cm high, central region of the plasma, with a spatial resolution of 1.3 cm and a time resolution of less than 20 ms. The new spectrometer concept is also of interest for the diagnosis of burning plasmas on future machines. This paper presents recent experimental results from Aclator C-Mod and discusses challenges in X-ray spectroscopy for the diagnosis of fusion plasmas on future machines.

  15. Label-free in-vivo measurement of lymph flow velocity using Doppler optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Meijer, Eelco F. J.; Nam, Ahhyun S.; Jones, Dennis; Padera, Timothy P.; Vakoc, Benjamin J.

    2016-03-01

    Alterations in lymphatic network function contribute to the lymphedema development, cancer progression and impairment in regional immune function. However, there are limited tools available to directly measure lymphatic vessel function and transport in vivo. Existing approaches such as fluorescence recovery after photo-bleaching (FRAP) require injection of exogenous labels which intrinsically alter the physiology of the local lymphatic network. A label-free approach to imaging lymph flow in vivo would provide direct and unaltered measurements of lymphatic vessel transport and could catalyze research in lymphatic biology. Here, we demonstrate and validate the use of Doppler optical coherence tomography (DOCT) to measure lymph flow in vivo at speeds as low as 50µm/s. Compared to blood, lymph is relatively acellular (under normal conditions), but contains similar soluble components to blood plasma. We demonstrate that the small but detectable scattering signal from lymph can be used to extract fluid velocity using a dedicated algorithm optimized for Doppler analysis in low signal-to-noise settings (0 to 6 dB typical). We demonstrate the accuracy of this technique by comparing DOCT to FRAP measurements, using an intralipid lymph proxy in microfluidic devices and in vivo in the mouse ear. Finally, we demonstrate the label free measurement of lymph speed in the hind-limb of mice with a temporal resolution of 0.25s that agree well with prior literature reports. We anticipate that DOCT can become a powerful new tool in preclinical lymphatic biology research—including the relationship between lymphatic function and metastasis formation—with the potential to later expand also to clinical settings.

  16. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    NASA Astrophysics Data System (ADS)

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  17. Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets

    SciTech Connect

    Zepf, M.; Castro-Colin, M.; Chambers, D.; Preston, S.G.; Wark, J.S.; Zhang, J.; Danson, C.N.; Neely, D.; Norreys, P.A.; Dangor, A.E.; Dyson, A.; Lee, P.; Fews, A.P.; Gibbon, P.; Moustaizis, S.

    1996-09-01

    The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be {ital v}/{ital c}=0.015 at an irradiance of 1.0{times}10{sup 19} Wcm{sup {minus}2} at a wavelength of 1.05 micron, in quantitative agreement with modeling. {copyright} {ital 1996 American Institute of Physics.}

  18. Cause and solution for false upstream boat velocities measured with a StreamPro acoustic doppler current profiler

    USGS Publications Warehouse

    Mueller, David S.; Rehmel, Mike S.; Wagner, Chad R.

    2007-01-01

    In 2003, Teledyne RD Instruments introduced the StreamPro acoustic Doppler current profiler which does not include an internal compass. During stationary moving-bed tests the StreamPro often tends to swim or kite from the end of the tether (the instrument rotates then moves laterally in the direction of the rotation). Because the StreamPro does not have an internal compass, it cannot account for the rotation. This rotation and lateral movement of the StreamPro on the end of the tether generates a false upstream velocity, which cannot be easily distinguished from a moving-bed bias velocity. A field test was completed to demonstrate that this rotation and lateral movement causes a false upstream boat velocity. The vector dot product of the boat velocity and the unit vector of the depth-averaged water velocity is shown to be an effective method to account for the effect of the rotation and lateral movement.

  19. Noninvasive Method for Measuring Local Pulse Wave Velocity by Dual Pulse Wave Doppler: In Vitro and In Vivo Studies

    PubMed Central

    Wang, Zhen; Yang, Yong; Yuan, Li-jun; Liu, Jie; Duan, Yun-you; Cao, Tie-sheng

    2015-01-01

    Objectives To evaluate the validity and reproducibility of a noninvasive dual pulse wave Doppler (DPWD) method, which involves simultaneous recording of flow velocity of two independent sample volumes with a measurable distance, for measuring the local arterial pulse wave velocity (PWV) through in vitro and in vivo studies. Methods The DPWD mode of Hitachi HI Vision Preirus ultrasound system with a 5–13MHz transducer was used. An in vitro model was designed to compare the PWV of a homogeneous rubber tubing with the local PWV of its middle part measured by DPWD method. In the in vivo study, local PWV of 45 hypertensive patients (25 male, 49.8±3.1 years) and 45 matched healthy subjects (25 male, 49.3±3.0 years) were investigated at the left common carotid artery (LCCA) by DPWD method. Results In the in vitro study, the local PWV measured by DPWP method and the PWV of the homogeneous rubber tubing did not show statistical difference (5.16 ± 0.28 m/s vs 5.03 ± 0.15 m/s, p = 0.075). The coefficient of variation (CV) of the intra- and inter- measurements for local PWV were 3.46% and 4.96%, for the PWV of the homogeneous rubber tubing were 0.99% and 1.98%. In the in vivo study, a significantly higher local PWV of LCCA was found in the hypertensive patients as compared to that in healthy subjects (6.29±1.04m/s vs. 5.31±0.72m/s, P = 0.019). The CV of the intra- and inter- measurements in hypertensive patients were 2.22% and 3.94%, in healthy subjects were 2.07% and 4.14%. Conclusions This study demonstrated the feasibility of the noninvasive DPWD method to determine the local PWV, which was accurate and reproducible not only in vitro but also in vivo studies. This noninvasive echocardiographic method may be illuminating to clinical use. PMID:25786124

  20. The effect of oral nitroglycerin on portal blood velocity as measured by ultrasonic Doppler. A double blind, placebo controlled study.

    PubMed

    Yang, S S; Ralls, P W; Korula, J

    1991-04-01

    We studied the effect of oral nitroglycerin on portal blood velocity (PBV) in 20 cirrhotic patients by a double blind, placebo controlled method using noninvasive Doppler sonography. After we obtained baseline Doppler in the fasting state, 0.6 mg nitroglycerin or placebo was given orally and the mean of 3 s averaged mean PBVs was repeated at 5 min intervals for 60 min. Ten patients each received nitroglycerin or placebo. Portal vein flows were antegrade in all. Of the 10 patients receiving nitroglycerin, seven (P = 0.002) showed a greater than 10% fall in the mean PBVs for at least 15 min. Of these seven "responders," five patients had a 10% decrease in mean systemic blood pressure for at least 15 min. None of the "nonresponders" had systemic hypotension. Our study suggests that the PBV-reducing effect of nitroglycerin in cirrhotics may be explained in part by systemic hypotension. PMID:1903409

  1. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  2. Peak Systolic Velocity Measurements with Transcranial Doppler Ultrasound Is a Predictor of Incident Stroke among the General Population in China

    PubMed Central

    Wang, Hai-Bo; Laskowitz, Daniel T.; Dodds, Jodi A.; Xie, Gao-Qiang; Zhang, Pu-Hong; Huang, Yi-Ning; Wang, Bo; Wu, Yang-Feng

    2016-01-01

    Background and Objective It is necessary to develop an effective and low-cost screening tool for identifying Chinese people at high risk of stroke. Transcranial Doppler ultrasound (TCD) is a powerful predictor of stroke in the pediatric sickle cell disease population, as demonstrated in the STOP trial. Our study was conducted to determine the prediction value of peak systolic velocities as measured by TCD on subsequent stroke risk in a prospective cohort of the general population from Beijing, China. Methods In 2002, a prospective cohort study was conducted among 1392 residents from 11 villages of the Shijingshan district of Beijing, China. The cohort was scheduled for follow up with regard to incident stroke in 2005, 2007, and 2012 by a study team comprised of epidemiologists, nurses, and physicians. Univariate and multivariate Cox proportional hazard regression models were used to determine the factors associated with incident stroke. Results Participants identified by TCD criteria as having intracranial stenosis had a 3.6-fold greater risk of incident stroke (hazard ratio (HR) 3.57, 95% confidence interval (CI) 1.86–6.83, P<0.01) than those without TCD evidence of intracranial stenosis. The association remained significant in multivariate analysis (HR 2.53, 95% CI 1.31–4.87) after adjusting for other risk factors or confounders. Older age, cigarette smoking, hypertension, and diabetes mellitus remained statistically significant as risk factors after controlling for other factors. Conclusions The study confirmed the screening value of TCD among the general population in urban China. Increasing the availability of TCD screening may help identify subjects as higher risk for stroke. PMID:27513983

  3. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  4. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices. PMID:22913101

  5. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography.

    PubMed

    Trasischker, Wolfgang; Werkmeister, René M; Zotter, Stefan; Baumann, Bernhard; Torzicky, Teresa; Pircher, Michael; Hitzenberger, Christoph K

    2013-11-01

    We developed a three-beam Doppler optical coherence tomography (OCT) system that enables measurement of the velocity vector of moving particles in three-dimensions (3-D). The spatial orientation as well as the magnitude of motion can be determined without prior knowledge of the geometry of motion. The system combines three spectral-domain OCT interferometers whose sample beams are focused at the sample by a common focusing lens at three different angles. This provides three spatially independent velocity components simultaneously from which the velocity vector can be reconstructed. We demonstrate the system in a simple test object (rotating disc), a flow phantom, and for blood flow measurements in the retina of a healthy human subject. Measurements of blood flow at a venous bifurcation achieve a good agreement between in- and outflow and demonstrate the reliability of the method. PMID:24247747

  6. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  7. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  8. Simultaneous three-dimensional velocity and mixing measurements by use of laser Doppler velocimetry and fluorescence probes in a water tunnel

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.

    1994-01-01

    A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.

  9. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams. PMID:11368866

  10. Doppler Global Velocimetry: A New Way to Look at Velocity

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Komine, Hiroshi

    1991-01-01

    A new laser velocimetry technique, Doppler global velocimetry, is described. This technique is capable of simultaneously measuring in real time the three components of velocity of an entire particle field illuminated by a laser light sheet. A prototype one-component velocimeter is described along with the signal processing electronics. The system was tested by measuring the velocity field from a rotating wheel and a small subsonic jet flow in the laboratory. The first wind tunnel test measured the vortical velocity field above a delta wing. The results are presented and compared with fringe-type laser velocimeter and five-hole probe data.

  11. Doppler global velocimetry - A new way to look at velocity

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Komine, Hiroshi

    1991-01-01

    A new laser velocimetry technique, Doppler global velocimetry, is described. This technique is capable of simultaneously measuring in real time the three components of velocity of an entire particle field illuminated by a laser light sheet. A prototype one-component velocimeter is described along with the signal processing electronics. The system was tested by measuring the velocity field from a rotating wheel and a small subsonic jet flow in the laboratory. The first wind tunnel test measured the vortical velocity field above a delta wing. The results are presented and compared with fringe-type laser velocimeter and five-hole probe data.

  12. Measurements in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow. Part 2: Laser-Doppler Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Dimotakis, P. E.; Collins, D. J.; Lang, D. B.

    1979-01-01

    A description of both the mean and the fluctuating components of the flow, and of the Reynolds stress as observed using a dual forward scattering laser-Doppler velocimeter is presented. A detailed description of the instrument and of the data analysis techniques were included in order to fully document the data. A detailed comparison was made between the laser-Doppler results and those presented in Part 1, and an assessment was made of the ability of the laser-Doppler velocimeter to measure the details of the flows involved.

  13. Laser Doppler velocimeter measurements of boundary layer velocity and turbulent intensities in Mach 2.5 flow

    NASA Technical Reports Server (NTRS)

    Sewell, Jesse; Chew, Larry

    1994-01-01

    In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.

  14. Chaotic system for self-synchronizing Doppler measurement.

    PubMed

    Carroll, Thomas L

    2005-03-01

    In a radar system, it is necessary to measure both range and velocity of a target. The movement of the target causes a Doppler shift of the radar signal, and the size of the Doppler shift is used to measure the velocity of the target. In this work, a chaotic drive-response system is simulated that detects a Doppler shift in a chaotic signal. The response system can detect Doppler shifts in more than one signal at a time. PMID:15836263

  15. Some experiments in swirling flows: Detailed velocity measurements of a vortex breakdown using a laser Doppler anemometer. Ph.D. Thesis - Cornell Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Faler, J. H.

    1976-01-01

    The results of an experimental study of spiraling flows in a slightly diverging, circular duct are reported. Seven types of flow disturbances were observed. In addition to the spiral and axisymmetric vortex breakdowns and the double helix mode, four other forms were identified and are reported. The type and axial location of the disturbance depended on the Reynolds and circulation numbers of the flow. Detailed velocity measurements were made by using a laser Doppler anemometer. Measurements made far upstream of any disturbance showed that the introduction of swirl resulted in the formation of a high axial velocity jet centered around the vortex center. A mapping of the velocity field of a so-called axisymmetric breakdown, formed at a Reynolds number of 2560, revealed that the recirculation zone is a two-celled structure, with four stagnation points on the vortex axis marking the axial extremes of the concentric cells. The dominant feature of the flow inside the bubble was the strong, periodic velocity fluctuations. Existing theoretical models do not predict the two-celled structure and the temporal velocity fluctuations that were observed.

  16. Self-mixing detection of backscattered radiation in a single-mode erbium fibre laser for Doppler spectroscopy and velocity measurements

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. K.; Konovalov, A. N.; Ul'yanov, V. A.

    2014-04-01

    We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with a high signal-to-noise ratio (above 102) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues.

  17. Self-mixing detection of backscattered radiation in a single-mode erbium fibre laser for Doppler spectroscopy and velocity measurements

    SciTech Connect

    Dmitriev, A K; Konovalov, A N; Ul'yanov, V A

    2014-04-28

    We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with a high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)

  18. Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.

    2008-01-01

    A combined frequency-time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second. The present CFT spectral moment estimation technique includes coherent processing of a series of Doppler spectra generated in a standard manner from data over measurement volumes that are partially overlapping in the along-track direction. Performance simulation of this technique using high-resolution data from an airborne rain-mapping radar shows that a spaceborne Ku-band Doppler radar operating at signal-to-noise ratios greater than 10 dB can achieve root-mean-square accuracy between 0.5 and 0.6 m/s in vertical-velocity estimates.

  19. Ground and space based cloud-top wind velocities using CFHT/ESPaDOnS (Doppler velocimetry) and VEx/VIRTIS (cloud tracking) coordinated measurements

    NASA Astrophysics Data System (ADS)

    Machado, Pedro; Widemann, Thomas; Peralta, Javier; Gonçalves, Rúben; Donati, Jean-François; Luz, David

    2016-04-01

    We will present wind velocity results based in the measurements of the horizontal wind field at the cloud top level of the atmosphere of Venus, near 70 km altitude. Our aim is contribute to the characterisation of the zonal and meridional wind latitudinal profiles on hour and day-timescales. This will be done by tracking Doppler shift of solar and CO2 lines over the dayside hemisphere in coordination with ESA's Venus Express orbiter. Our observations measured winds at cloud tops at latitudes 60°S-60°N, while Vex/VIRTIS privileged southern latitudes poleward of 45°S. This coordination effort intended to provide a combined monitoring of short-term changes of wind amplitude and directions with extensive spatial coverage. We present results based on inter comparison of ground-based Doppler velocimetry of cloud-top winds and cloud tracking measurements from the Venus Express spacecraft. Doppler wind velocimetry obtained with the 3.60 m Canada-France-Hawaii telescope (CFHT) and the Visible Spectrograph ESPaDOnS in April 2014 consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the wind velocity using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction. The complete optical spectrum was collected at a phase angle Φ = (76 ± 0.3)°, at a resolution of about 80000. Both ground-based and Venus Express measurements show considerable day-to-day variability revealing wave propagation and angular momentum transport in latitude which needs to be carefully assessed. ESPaDOnS and the sequential technique of visible Doppler velocimetry has proven a reference technique to measure instantaneous winds. These measurements are necessary to help validating Global Circulation Models (GCMs), to extend the temporal coverage of available datasets. The ground-based observations in the base of this project are critical in their complementarity with Venus Express, which was recently

  20. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  1. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  2. The delta Doppler technique for LDV measurements at long distances

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1976-01-01

    A technique for measuring velocity, referred to as a Delta Doppler technique, was presented. This technique determines scattering source velocities by measuring the difference in Doppler shifts of two different frequencies. By transmitting the two frequencies along the same path, a moving fringe pattern is established such that a nonmoving scatterer at the sensing volume would see an intensity variation exactly equal to the difference in the transmitted frequencies. If the particle has a velocity component along an axis which bisects the angle formed by the transmitter and receiver axes, a Doppler shift in the difference frequency can be measured and the velocity component computed. The frequency measured would correspond to the difference in Doppler frequencies that two laser Doppler velocimeters using separate frequencies (the same frequencies as used previously) would have measured, thus the term Delta Doppler.

  3. Conduct overall test operations and evaluate two Doppler systems to detect, track and measure velocities in aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Craven, C. E.; Edwards, B. B.; Coffey, E. W.; Huang, C. C.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A program plan for system evaluation of the two-dimensional Scanning Laser Doppler System (SLDS) is presented. In order to meet system evaluation and optimization objectives the following tests were conducted: (1) noise tests; (2) wind tests; (3) blower flowfield tests; (4) single unit (1-D) flyby tests; and (5) dual unit (2-D) flyby tests. Test results are reported. The final phase of the program included logistics preparation, equipment interface checkouts, and data processing. It is concluded that the SLDS is capable of accurately tracking aircraft wake vortices from small or large aircraft, and in any type of weather.

  4. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  5. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  6. Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Cohn, Stephen A.; Goodrich, R. Kent

    2002-12-01

    The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler lidar over 2.3 h. The lidar resolution volume was much narrower than the profiler volume, but the samples were well matched in range and time. The wind profiler radial velocity was computed using two common algorithms [profiler online program (POP) and National Center for Atmospheric Research improved moments algorithm (NIMA)]. The squared correlation between radial velocities measured with the two instruments was R2 = 0.99, and the standard deviation of the difference was about r = 0.20-0.23 m s1 for radial velocities of greater than 1 m s1 and r = 0.16-0.35 m s1 for radial velocities of less than 1 m s1. Small radial velocities may be treated differently in radar wind profiler processing because of ground-clutter mitigation strategies. A standard deviation of r = 0.23 m s1 implies an error in horizontal winds from turbulence and noise of less than 1 m s1 for a single cycle through the profiler beam directions and of less than 0.11-0.27 m s1 for a 30-min average measurement, depending on the beam pointing sequence. The accuracy of a wind profiler horizontal wind measurement will also depend on assumptions of spatial and temporal inhomogeneity of the atmosphere, which are not considered in this comparison. The wind profiler radial velocities from the POP and NIMA are in good agreement. However, the analysis does show the need for improvements in wind profiler processing when radial velocity is close to zero.

  7. Instrument remotely measures wind velocities

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Mccleese, D. J.; Seaman, C. H.; Shumate, M. S.

    1980-01-01

    Doppler-shift spectrometer makes remote satellite measurements of atmospheric wind velocity and temperature at specified altitudes. As in correlation spectrometer, spectrum of gas in reference cell and spectrum of same gas in atmosphere are correlated both in emission and absorption.

  8. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  9. Doppler effects on velocity spectra observed by MST radars

    NASA Technical Reports Server (NTRS)

    Scheffler, A. O.; Liu, C. H.

    1986-01-01

    Recently, wind data from mesophere-stratosphere-troposphere (MST) radars have been used to study the spectra of gravity waves in the atmosphere (Scheffler and Liu, 1985; VanZandt et al., 1985). Since MST radar measures the line-of-sight Doppler velocities, it senses the components of the wave-associated velocities along its beam directions. These components are related through the polarization relations which depend on the frequency and wave number of the wave. Therfore, the radar-observed velocity spectrum will be different from the original gravity-wave spectrum. Their relationship depends on the frequency and wave number of the wave as well as the propagation geometry. This relation can be used to interpret the observed data. It can also be used to test the assumption of gravity-wave spectrum (Scheffler and Liu, 1985). In deriving this relation, the background atmosphere has been assumed to be motionless. Obviously, the Doppler shift due to the background wind will change the shape of the gravity-wave power spectrum as well as its relation with the radar-observed spectrum. Here, researcher's investigate these changes.

  10. Directional acoustic measurements by laser Doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) are used as velocity microphones to measure sound pressure level in the range from 90 to 130 dB, spectral components, and two-point correlation functions for acoustic-noise source identification. Close agreement between LDV and microphone data is observed. Directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet noise.

  11. Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography

    PubMed Central

    Hendargo, Hansford C.; McNabb, Ryan P.; Dhalla, Al-Hafeez; Shepherd, Neal; Izatt, Joseph A.

    2011-01-01

    Recent advances in Doppler techniques have enabled high sensitivity imaging of biological flow to measure blood velocities and vascular perfusion. Here we compare spectrometer-based and wavelength-swept Doppler OCT implementations theoretically and experimentally, characterizing the lower and upper observable velocity limits in each configuration. We specifically characterize the washout limit for Doppler OCT, the velocity at which signal degradation results in loss of flow information, which is valid for both quantitative and qualitative flow imaging techniques. We also clearly differentiate the washout effect from the separate phenomenon of phase wrapping. We demonstrate that the maximum detectable Doppler velocity is determined by the fringe washout limit and not phase wrapping. Both theory and experimental results from phantom flow data and retinal blood flow data demonstrate the superiority of the swept-source technique for imaging vessels with high flow rates. PMID:21833356

  12. Blood flow velocity in monocular retinoblastoma assessed by color doppler

    PubMed Central

    Bonanomi, Maria Teresa B C; Saito, Osmar C; de Lima, Patricia Picciarelli; Bonanomi, Roberta Chizzotti; Chammas, Maria Cristina

    2015-01-01

    OBJECTIVE: To analyze the flow of retrobulbar vessels in retinoblastoma by color Doppler imaging. METHODS: A prospective study of monocular retinoblastoma treated by enucleation between 2010 and 2014. The examination comprised fundoscopy, magnetic resonance imaging, ultrasonography and color Doppler imaging. The peak blood velocities in the central retinal artery and central retinal vein of tumor-containing eyes (tuCRAv and tuCRVv, respectively) were assessed. The velocities were compared with those for normal eyes (nlCRAv and nlCRVv) and correlated with clinical and pathological findings. Tumor dimensions in the pathological sections were compared with those in magnetic resonance imaging and ultrasonography and were correlated with tuCRAv and tuCRVv. In tumor-containing eyes, the resistivity index in the central retinal artery and the pulse index in the central retinal vein were studied in relation to all variables. RESULTS: Eighteen patients were included. Comparisons between tuCRAv and nlCRAv and between tuCRVv and nlCRVv revealed higher velocities in tumor-containing eyes (p<0.001 for both), with a greater effect in the central retinal artery than in the central retinal vein (p=0.024). Magnetic resonance imaging and ultrasonography measurements were as reliable as pathology assessments (p=0.675 and p=0.375, respectively). A positive relationship was found between tuCRAv and the tumor volume (p=0.027). The pulse index in the central retinal vein was lower in male patients (p=0.017) and in eyes with optic nerve invasion (p=0.0088). CONCLUSIONS: TuCRAv and tuCRVv are higher in tumor-containing eyes than in normal eyes. Magnetic resonance imaging and ultrasonography measurements are reliable. The tumor volume is correlated with a higher tuCRAv and a reduced pulse in the central retinal vein is correlated with male sex and optic nerve invasion. PMID:26735219

  13. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  14. Wing tip vortex measurements with laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III

    1973-01-01

    The vortex velocity field produced by a rectangular wing in a subsonic wind tunnel was measured using two laser Doppler velocimeter systems. One system made three dimensional mean velocity measurements and the other made one dimensional turbulence measurements. The systems and test procedures are described and comparisons of the measurements are made. The data defined a strong spiral motion in the vortex formation process.

  15. Normal Echocardiographic Measurements in a Korean Population Study: Part II. Doppler and Tissue Doppler Imaging

    PubMed Central

    Choi, Jin-Oh; Shin, Mi-Seung; Kim, Mi-Jeong; Jung, Hae Ok; Park, Jeong Rang; Sohn, Il Suk; Kim, Hyungseop; Park, Seong-Mi; Yoo, Nam Jin; Choi, Jung Hyun; Kim, Hyung-Kwan; Cho, Goo-Yeong; Lee, Mi-Rae; Park, Jin-Sun; Shim, Chi Young; Kim, Dae-Hee; Shin, Dae-Hee; Shin, Gil Ja; Shin, Sung Hee; Kim, Kye Hun; Park, Jae-Hyeong; Lee, Sang Yeub; Kim, Woo-Shik

    2016-01-01

    Background Hemodynamic and functional evaluation with Doppler and tissue Doppler study as a part of comprehensive echocardiography is essential but normal reference values have never been reported from Korean normal population especially according to age and sex. Methods Using Normal echOcaRdiographic Measurements in a KoreAn popuLation study subjects, we obtained normal reference values for Doppler and tissue Doppler echocardiography including tricuspid annular velocities according to current guidelines and compared values according to gender and age groups. Results Mitral early diastolic (E) and late diastolic (A) velocity as well as E/A ratio were significantly higher in women compared to those in men. Conversely, mitral peak systolic and late diastolic annular velocity in both septal and lateral mitral annulus were significantly lower in women compared to those in men. However, there were no significant differences in both septal and lateral mitral early diastolic annular (e') velocity between men and women. In both men and women, mitral E velocity and its deceleration time as well as both E/A and E/e' ratio considerably increased with age. There were no significant differences in tricuspid inflow velocities and tricuspid lateral annular velocities between men and women except e' velocity, which was significantly higher in women compared to that in men. However, changes in both tricuspid inflow and lateral annular velocities according to age were similar to those in mitral velocities. Conclusion Since there were significant differences in Doppler and tissue Doppler echocardiographic variables between men and women and changes according to age were even more considerable in both gender groups, normal Doppler echocardiographic values should be differentially applied based on age and sex. PMID:27358707

  16. Effect of window reflections on photonic Doppler velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Ao, T.; Dolan, D. H.

    2011-02-01

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  17. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  18. A Doppler dimming determination of coronal outflow velocity

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Kohl, John L.; Weiser, Heinz; Withbroe, George L.; Munro, Richard H.

    1993-01-01

    Outflow velocities in a polar coronal hole are derived from observations made during a 1982 sounding rocket flight. The velocity results are derived from a Doppler dimming analysis of resonantly scattered H I Ly-alpha. This analysis indicates radial outflow velocities of 217 km/s at 2 solar radii from sun-center with an uncertainty range of 153 to 251 km/s at a confidence level of 67 percent. These results are best characterized as strong evidence for supersonic outflow within 2 solar radii of sun-center in a polar coronal hole. Several means for obtaining improved accuracy in future observations are discussed.

  19. Evaluation of the MV (CAPON) Coherent Doppler Lidar Velocity Estimator

    NASA Technical Reports Server (NTRS)

    Lottman, B.; Frehlich, R.

    1997-01-01

    The performance of the CAPON velocity estimator for coherent Doppler lidar is determined for typical space-based and ground-based parameter regimes. Optimal input parameters for the algorithm were determined for each regime. For weak signals, performance is described by the standard deviation of the good estimates and the fraction of outliers. For strong signals, the fraction of outliers is zero. Numerical effort was also determined.

  20. Technique for measuring the Cooper-pair velocity, density, and mass using Doppler splitting of the plasmon resonance in low-dimensional superconductor microstructures

    SciTech Connect

    Mishonov, T.M. )

    1994-08-01

    The creation of a Cooper-pair mass spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in the dielectric background) are theoretically considered for this purpose. The Cooper-pair mass [ital m][sup *] (the parameter [ital m][sup *] in London electrodynamics) can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency [omega] lower than the superconducting gap 2[Delta] can be detected by the same far-infrared absorption technique and grating coupling used previously for investigation of two-dimensional plasmons in semiconductor microstructures and polaritons in condensed-matter physics.

  1. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    NASA Astrophysics Data System (ADS)

    Bühl, J.; Leinweber, R.; Görsdorf, U.; Radenz, M.; Ansmann, A.; Lehmann, V.

    2015-08-01

    Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that this combination of instruments can up-value the measurement values of each single instrument and may allow the simultaneous sensing of atmospheric targets and the motion of clear air.

  2. Doppler Wind Measurements of Mars Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Sandor, B. J.; Moriarty-Schieven, G. H.

    2003-05-01

    The late August 2003 opposition of Mars, which occurs very near Mars perihelion, presents its largest angular diameter (25 arcsec) over the previous and subsequent 20 years. Sub-millimeter observations from the James Clerk Maxwell Telescope (JCMT) on August 27 (also scheduled for September 3) will provide 345 Ghz CO line integrations at five beam positions on the Mars disk. Differencing spectral line absorptions observed at east, west, south, and north offset positions from a disk center spectrum yields highly accurate measurements of projected doppler velocities relative to the disk center. As demonstrated in similar Venus mesospheric (90-110 km altitude) wind measurements obtained from JCMT in March 2001 and November 2002 (Clancy et al., 2002), this method provides excellent sensitivity (5 m/sec at 40-80 km altitudes) for short integration periods (10-15 minutes). Systematic uncertainties associated with the absorption lineshape and spectrometer baseline and channel characteristics are minimized, and the steep sub-millimeter line core shapes provide improved doppler shift sensitivity relative to millimeter measurements. Direct wind measurements for the Mars atmosphere are extremely important for validation of Mars general circulation models (GCM, e.g. Forget et al., 1999), yet remain beyond current spacecraft mission capabilities. Lellouch et al. (1993) obtained equinoctial (Ls=200) wind determinations in significant disagreement with Mars GCM predictions, employing 230 Ghz CO doppler line shifts from IRAM. JCMT sub-millimeter CO doppler shifts observed during the August 2003 Mars opposition should be much more accurate, with critical zonal and meridional resolution during the key southern summer season. Atmospheric pressure-temperature profiles (0-75km) will also be retrieved from each disk position 12CO spectrum, complementing the Ls dependence of disk average measurements obtained from previous whole disk JCMT Mars 12CO observations. In addition to doppler

  3. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  4. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  5. Can one distinguish between Doppler shifts due to source-only and detector-only velocities?

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar; Ambroselli, Michael

    2013-10-01

    between the two galaxies is a noncausal model and hence can lead to erroneous physical conclusions like Expanding Universe, which may not be true. It is more likely that the distance dependent Hubble redshift is due to a distant dependent frequency (energy) loss of photon wave packets engendered by very weak dissipative property of the CTF, like the postulate of Tired Light, or something else. We support our model by analyzing the origin of multi-longitudinal modes in He-Ne lasers. Light emitting and absorbing atoms in distant galaxies follow the same set of QM rules as those in our laboratory. We can safely assume that the physical properties of the free space between distant galaxies and that between the atoms trapped in a low pressure He-Ne laser tube are one and the same. Then we analyze the spontaneous and stimulated emission characteristics of Ne-atoms in a population inverted laser tube. The spectral line broadening measured in emission and absorption spectrometry is due to Doppler broadening introduced due to the statistical Maxwellian velocity distribution of the atoms; which is determined by the mean temperature of the surrounding of the atoms. Again, our assumption is that this Maxwellian Doppler broadening process is the same in the earth-based discharge tube and in the corona of distant stars. Both classical physics (Doppler and Maxwell) and quantum physics (emission and absorption) are same here as in the distant galaxies. And these two branches of physics are complementary, not discordant with each other.

  6. Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles

    NASA Astrophysics Data System (ADS)

    Phillips, D. B.; Lee, M. P.; Speirits, F. C.; Barnett, S. M.; Simpson, S. H.; Lavery, M. P. J.; Padgett, M. J.; Gibson, G. M.

    2014-07-01

    Laser Doppler velocimetry is a technique used to measure linear velocity, ranging from that of exhaust gases to blood flow. A rotational analog of laser Doppler velocimetry was recently demonstrated, using a rotationally symmetric interference pattern to probe the angular velocity of a spinning object. In this work, we demonstrate the use of a diffraction-limited structured illumination pattern to measure the angular velocity of a micron-sized particle trapped and spinning at tens of Hz in an optical trap. The technique requires no detailed knowledge of the shape of the particle, or the distribution of scatterers within it, and is independent of the particle's chirality, transparency, and birefringence. The particle is also subjected to Brownian motion, which complicates the signal by affecting the rotation rate and the rotation axis. By careful consideration of these influences, we show how the measurement is robust to both, representing a technique with which to probe the rotational motion of microscale particles.

  7. A comparison study of zonal drift velocities measurements as seen by MF spaced antenna and HF Doppler radar in the Indian dip equatorial mesospheric and lower thermospheric (80-100 km) region

    NASA Astrophysics Data System (ADS)

    Ramkumar, T. K.; Gurubaran, S.; Rajaram, R.; Tiwari, D.; Viswanathan, K. S.

    2010-02-01

    The simultaneous measurements of zonal drift velocities, observed in the heights of 84-98 km in the Indian geomagnetic dip equatorial region by an medium frequency (MF, 1.98 MHz) spaced antenna and a high-frequency (HF, 18 MHz) Doppler radars, are compared on selected few days in the solar maximum years of 1998, 1999, and 2000. The agreement between the two radar measurements is found to be good below about 88 km, where the neutral turbulence induced ionospheric irregularities are more predominant. Above 90 km, however, the agreement becomes poor and at the highest height of 98 km it becomes the least. At this height, more often the HF Doppler radar shows a westward drift of about 200 m/s whereas the MF spaced antenna radar values lie within ±10 m/s and sometimes attain maximum values of ±50 m/s. Detailed discussions are made on the possible sources of underestimation of the drift velocities measured by the MF radar and the nature of scattering irregularities that are produced because of large neutral turbulences and plasma instabilities. It is suggested that these neutral and plasma turbulences (particularly type II plasma irregularities) contribute in a different manner to different radar frequencies and techniques and hence very different drift velocities in the heights of 90-100 km particularly in the geomagnetic dip equatorial region. Discussions are also made on (1) the real atmospheric and ionospheric physical process prevailing in the 90-100 km region and (2) the technical aspects of the radars that limits them to measure only particular types of motion in this region.

  8. Micrometeor Observations Using the Arecibo 430 MHz Radar. I. Determination of the Ballistic Parameter from Measured Doppler Velocity and Deceleration Results

    NASA Astrophysics Data System (ADS)

    Janches, D.; Mathews, J. D.; Meisel, D. D.; Zhou, Q.-H.

    2000-05-01

    We present a sample of radar meteors detected during the November 1997 Leonids shower period using the narrow-beam, high-power Arecibo Observatory 430-MHz radar. During this period ˜7700 events were detected over 73 h of observations that included six mornings. Near apex-crossing, 6-10 events per minute were observed in the ˜300-m diameter beam. From these events a total of 390 meteors are characterized by a clear linear deceleration as derived from the radial Doppler speed determined from the meteor-echo leading-edge (head-echo). We interpret our results in terms of the meteor ballistic parameter—the ratio of the meteoroid mass to cross-sectional area—yielding a physical characterization of these particles prior to any assumptions regarding meteoroid shape and mass density. In addition, we compare these measurements with the results of a numerical solution of the meteor deceleration equation and find them in good agreement. The size and dynamical mass of the meteoroids are estimated considering these particles to be spheres with densities of 3 g/cm 3. We also discuss atmospheric energy-loss mechanisms of these meteroids. We believe these are the first radar meteor decelerations detected since those ones reported by J. V. Evans (1966, J. Geophys. Res. 71, 171-188) and F. Verniani (1966, J. Geophys. Res. 71, 2749-2761; 1973, J. Geophys. Res. 78, 8429-8462) and the first ones for meteors of this size.

  9. A beamforming method for plane wave Doppler imaging of high flow velocities

    NASA Astrophysics Data System (ADS)

    Mansour, Omar; Poepping, Tamie L.; Lacefield, James C.

    2016-04-01

    Plane wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events, and continuous Doppler data. In most implementations of plane-wave imaging, multiple low resolution image (LRI) frames from different plane wave tilt angles are compounded to form a single high resolution image (HRI) frame, thereby reducing the frame rate. Compounding is a low-pass mean filter that causes attenuation and aliasing to signals with high Doppler shifts. On the other hand, the lateral beam profile and hence the quality of the HRI frames is improved by increasing the number of compounded frames. Therefore, a tradeoff exists between the Doppler limits and beam profile. In this paper, we present a method that eliminates this tradeoff and produces high resolution images without the use of compounding. The method suppresses the off-focus (clutter) signal by spreading its spectrum, while keeping the spectrum of the in-focus signal intact. The spreading is achieved by using a random sequence of tilt angles, as opposed to a linear sweep. Experiments performed using a carotid vessel phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and in particular outperforms conventional plane-wave Doppler at higher flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  10. Modelling nonstationary Doppler noise in exoplanetary radial velocity data

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.

    2015-08-01

    We construct a new class of analytic nonstationary noise models for exoplanetary Doppler data. The observable correlated noise is represented as a convolution of a parent activity process with a given memory function. The model honours the casuality principle, meaning that only past values of the activity may affect the observable value. This model does not approximate detailedly any real stellar activity phenomena, but it becomes mathematically simple, simultaneously satisfying the basic natural principles of physical sensibility and self-consistency.Additionally, we develop a new type of periodograms that can be used to detect periodic modulations in the Doppler noise characteristics, rather than in the observed radial velocity curve itself. We present first results of applying this technique to public Doppler time series available for a set of planet-hosting stars.This work was supported by the Russian Foundation for Basic Research (project No. 14-02-92615 KO_a), the UK Royal Society International Exchange grant IE140055, by the President of Russia grant for young scientists (No. MK-733.2014.2), by the programme of the Presidium of Russian Academy of Sciences P21, and by the Saint Petersburg State University research grant 6.37.341.2015.

  11. Potential for coherent Doppler wind velocity lidar using neodymium lasers

    NASA Technical Reports Server (NTRS)

    Kane, T. J.; Byer, R. L.; Zhou, B.

    1984-01-01

    Existing techniques for the frequency stabilization of Nd:YAG lasers operating at 1.06 micron, and the high-gain amplification of radiation at that wavelength, make possible the construction of a coherent Doppler wind velocity lidar using Nd:YAG. Velocity accuracy and range resolution are better at 1.06 micron than at 10.6 microns at the same level of the SNR. Backscatter from the atmosphere at 1.06 micron is greater than that at 10.6 microns by about 2 orders of magnitude, but the quantum-limited noise is higher by 100 also. Near-field attenuation and turbulent effects are more severe at 1.06 micron. In some configurations and environments, the 1.06-micron wavelength may be the better choice, and there may be technological advantages favoring the use of solid-state lasers in satellite systems.

  12. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  13. Influence of Doppler-tipped guidewire position in coronary artery on blood flow velocity

    NASA Astrophysics Data System (ADS)

    Melnik, Ivan S.; Dupouy, Patrick J.; Kvasnicka, Jan; Geschwind, Herbert J.

    1995-05-01

    A pulsatile blood flow model was used to estimate the influence of position of Doppler guide wires with 12 MHz forward looking ultrasound transducers on the average spectral peak velocity. Three 0.014-inch and three 0.018-inch Doppler guide wires were positioned in plastic tubes ranging from 1.7 mm to 8.0 mm internal diameter. Blood flow of 50, 100 and 200 ml/min was adjusted using a roller-pump. The flow velocity was lower by 54% near the wall than in the center of large tubes (diameter 8.0 mm). In tubes of 2.9 mm and 4.2 mm in diameter the maximum variations were 11% and 22.5% for the 0.014-inch guide wire and 7.5% and 20% for the 0.018-inch guide wire, respectively. No variance in velocity related to wire position was observed in small (1.7 mm) tubes. The system was not sensitive to angular displacement of the guide wire in the range of +/- 30 degree(s). These results demonstrate that intravascular Doppler ultrasound flowmeter may be accurately utilized for measurements of blood flow velocity in small coronary arteries without any need to reposition the guidewire.

  14. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  15. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    PubMed

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  16. Miniature Laser Doppler Velocimeter for Measuring Wall Shear

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza; Modarress, Darius; Forouhar, Siamak; Fourguette, Dominique; Taugwalder, Federic; Wilson, Daniel

    2005-01-01

    A miniature optoelectronic instrument has been invented as a nonintrusive means of measuring a velocity gradient proportional to a shear stress in a flow near a wall. The instrument, which can be mounted flush with the wall, is a variant of a basic laser Doppler velocimeter. The laser Doppler probe volume can be located close enough to the wall (as little as 100 micron from the surface) to lie within the viscosity-dominated sublayer of a turbulent boundary layer. The instrument includes a diode laser, the output of which is shaped by a diffractive optical element (DOE) into two beams that have elliptical cross sections with very high aspect ratios.

  17. Vertical Velocity Measurements in Warm Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2013-12-01

    Measurements of vertical air motion in warm boundary layer clouds are key for quantitatively describing cloud-scale turbulence and for improving our understanding of cloud and drizzle microphysical processes. Recently, a new technique that produces seamless measurements of vertical air velocity in the cloud and sub-cloud layers for both drizzling and non-drizzling stratocumulus clouds has been developed. The technique combines radar Doppler spectra-based retrievals of vertical air motion in cloud and light drizzle conditions with a novel neural network analysis during heavily drizzling periods. Observations from Doppler lidars are used to characterize sub-cloud velocities and to evaluate the performance of the technique near the cloud base. The technique is applied to several cases of stratiform clouds observed by the ARM Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign in Cape Cod. The observations clearly illustrate coupling of the sub-cloud and cloud layer turbulent structures.

  18. Assessing the Capability of Doppler Global Velocimetry To Measure Vortical Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Usry, Jimmy W.; Miller, L. Scott

    1994-01-01

    A new nonintrusive flow diagnostics instrumentation system, Doppler global velocimetry, is presented. The system is capable of making simultaneous, three-component velocity measurements within a selected measurement plane at video camera rates. These velocity images can provide the researcher with spatial and temporal information about the flow field in a global sense. The investigation of a vortical flow above a 75-degree delta wing comparing standard three-component, fringe-type laser velocimetry measurements with Doppler global velocimetry measurements is presented.

  19. Dual measurement terminal fall speeds and multiple Doppler winds

    NASA Technical Reports Server (NTRS)

    Grosh, R. C.

    1983-01-01

    It is shown that radar-derived terminal fall speed measurements can be useful in determining vertical air velocity in the middle troposphere by means of a network of Doppler radars. The theoretical principles of the dual measurement technique are described, and the relationship between measurement accuracies and theoretical estimates of terminal fall speeds is discussed. It is demonstrated that the use of differential reflectivity to estimate terminal fall speeds can reduce the standard error of vertical velocity estimates by 40-50 percent.

  20. Straylight correction to Doppler rotation measurements

    NASA Astrophysics Data System (ADS)

    Andersen, B. N.

    1985-07-01

    The correction of the Pierce and LoPresto (1984) Doppler data on the plasma rotation rate for stray light increases the observed equatorial rotation velocity from 1977 to 2004 m/sec. This correction has an uncertainty of approximately 10 m/sec, because the accurate form of the stray light function is not available. The correction is noted to be largest for the blue lines, in virtue of increased scattering, and for the weak lines, due to the limb effect.

  1. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  2. Accuracy of velocity and power determination by the Doppler method

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1984-01-01

    When designing a Mesosphere-Stratosphere-Troposphere (MST) radar antenna one has to trade between the choices to optimize the effective aperture or to optimize the sidelobe suppression. An optimization of the aperture increases the sensitivity. Suppression of side-lobes by tapering attenuates undesirable signals which spoil the estimates of reflectivity and velocity. Generally, any sidelobe effects are equivalent to a broadening of the antenna beam. The return signal is due to a product of the antenna pattern with the varying atmospheric reflectivity structures. Thus, knowing the antenna pattern, it is in principle possible to find the signal spectra, which, however, may be a tedious computational and ambiguous procedure. For vertically pointing main beams the sidelobe effects are efficiently suppressed because of the aspect sensitivity. It follows that sidelobes are a minor problem for spaced antenna methods. However, they can be crucial for Doppler methods, which need off-vertical beams. If a sidelobe is pointing towards the zenith a larger power may be received from the vertical than off-vertical directions, but quantitative estimates of this effect are not yet known. To get an error estimate of sidelobe effects with an off-vertical main beam a 1-dimensional example is considered.

  3. Power spectral density of velocity fluctuations estimated from phase Doppler data

    NASA Astrophysics Data System (ADS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  4. A comparison of a coaxial focused laser Doppler system in atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Karaki, S.

    1973-01-01

    Measurements of atmospheric velocities and turbulence with the laser Doppler system were obtained, and the results compared with cup anemometer and hot-wire measurements in the same wind field. The laser Doppler velocimeter (LDV) is described along with the test procedures. It was found that mean values determined from the LDV data are within 5% of other anemometer data for long time periods, and the LDV measures higher velocities.

  5. Solar Doppler-shift measurements in the Ne VII 465 A emission line

    NASA Technical Reports Server (NTRS)

    Mariska, John T.; Dowdy, James F., Jr.

    1992-01-01

    Using a Dopplergram obtained with the Naval Research Laboratory extreme ultraviolet spectrograph on Skylab, we have searched for Doppler shifts in the Ne VII 465 A emission line, which is formed at a temperature of about 500,000 K. In the quiet sun we find no measurable average Doppler shift to a measurement accuracy of +/- 18 km/s. Small regions of the quiet sun do, however, display measurable Doppler shifts. In active regions, we measure Doppler shifts indicating downflow velocities of up to 70 km/s.

  6. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  7. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  8. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  9. Analysis of Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.

    1986-01-01

    Doppler lidar and multiple Doppler radar data were obtained in a convectively mixed planetary boundary layer. The lidar measurements were possible due to scattering from existing aerosols; radar reflecting chaff was released in the atmosphere to make it visible to the multiple Doppler radar network. The data were analyzed to obtain detailed horizontal wind structures. The divergence of the horizontal wind was calculated and the anelastic continuity equation integrated to obtain vertical air motions. Differences between the areally averaged quantities and the grid point values provided a measure of the fluctuations in the wind components or the turbulent wind fluctuations. Vertical profiles of the mean winds and quantities related to the turbulent kinetic energy components and the turbulent momentum transfers were also calculated.

  10. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  11. Remote intensity fluctuation measurements with a laser Doppler radar

    NASA Technical Reports Server (NTRS)

    Kennedy, L. Z.; Bilbro, J. W.

    1976-01-01

    A coaxial focused CW scanning laser Doppler velocimeter (SLDV) radar equipment applying heterodyne detection at 10.6 microns can measure intensity fluctuations under field conditions. The set includes a 20 W CO2 laser, a coaxial Cassegrainian telescope, standard heterodyne equipment, and a SAW spectrum analyzer with 100 kHz signal resolution. Operation of the equipment and techniques for taking remote measurements are described briefly. Applications to remote measurements of transverse component of wind speed, as a complement to the traditional Doppler method of determining axial velocity, are under study. SLDV equipment has been used in detection, tracking, and measurements of atmospheric turbulence associated with aircraft wing-tip vortices or with dust devils, and in measurement of general atmospheric wind profiles.

  12. Evaluation of gridded Scanning ARM Cloud Radar reflectivity observations and vertical Doppler velocity retrievals

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2013-11-01

    The Scanning ARM Cloud Radars (SACR's) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a common scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range Height Indicator - CWRHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Oklahoma (SGP) and Cape-Cod (PVC) sites are post-processed (detection mask, velocity de-aliasing and gaseous attenuation correction). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimension. The Cartesian-gridded Doppler velocity fields are next decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D clouds dynamical representations up to 25-30° off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics, anisotropy and lead to more realistic 3-D radiative transfer calculations.

  13. Wave heave spectra from radar Doppler velocities at extreme low grazing angles

    NASA Astrophysics Data System (ADS)

    Flampouris, Stylianos; Seemann, Joerg; Ziemer, Friedwart

    2013-04-01

    The ground based microwaves radar systems are used for the measurement of the sea surface phenomena for more than three decades. By calibrating the radar cross section, the extraction of the wave spectral characteristics is a well established empirical methodology (Ziemer et al. 1993) with theoretical background (Alpers et al. 1978) and commercial applications (Nieto et al. 2004), which provides comparable measurements with wave buoys. The transfer function is necessary mainly due to the imaging mechanisms, like shadowing and or tilt modulation (Seemann 1997). To avoid the obligatory use of a transfer function, instead of the radar cross section, the Doppler velocity, which is a direct measurement of the sea surface, could be used. In this poster, a methodology for the determination of heave spectra based on time series of Doppler velocity acquired under extreme low grazing angle conditions, is presented. We prove that for the determination of the peak frequency the analysis of the binary shadow mask is sufficient, but for the calculation of the spectral density, a transfer function is necessary because of the gaps of the time series due to the shadowing. The physical and technical limitations are discussed and the algorithm is tested with in situ measurements from the coastal area of German Bight. Both properties, peak frequency and significant wave height from radar, have significant correlation with buoy measurements.

  14. Doppler and Reflectivity Measurements at Two Closely-Spaced Frequencies

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Bidwell, S.; Liao, L.; Heymsfield, G.; Rincon, R.; Tokay, A.; Hildebrand, Peter (Technical Monitor)

    2001-01-01

    Spaceborne and airborne radars are limited with a respect to the mass and size of the instrument and the power available to operate it. As a consequence, dual-wavelength radars that require separate antennas and power amplifiers are expensive and often impractical. However, if the frequency difference can be reduced so that a single antenna and the same radio-frequency subsystem can be used for both frequencies, dual- wavelength Doppler measurements can be made with a radar of about the same size and mass as its single-frequency counterpart. In the first part of the paper we present calculations of the reflectivity factor differences as functions of the center frequency from 10 to 35 GHz and for frequency differences between -10% and 10% of the center frequency. The results indicate that differential-frequency operation at Ka-band frequencies (26.5 - 40 GHz) provides relatively strong differential signals if the frequencies can be separated by at least 5%. Unlike lower frequency operation, the differential signals at Ka-band (both reflectivity and Doppler) are directly related to the median mass diameter. An important feature of the differential mean Doppler is that it depends only on the drop-size dependent part of the radial velocity. In principle, the mean and mean differential Doppler data from a nadir-looking platform can be used to infer vertical air motion and characteristics of the particle size distribution. To test the instrument concept, the ER-2 Doppler radar was modified for differential frequency operation. Measurements by the modified radar, operating at frequencies of 9.1 GHz and 10 GHz, were made using an 8 degree zenith-pointing offset parabolic antenna. Simultaneous data were taken with an optical rain gauge and an impact disdrometer. Measured and DSD-estimated values of the differential dBZ mean Doppler are presented.

  15. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2000-11-01

    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  16. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Kim, D.; Winkler, M.; Muste, M.

    2015-06-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats.

  17. Transcranial doppler assessment of cerebral flow velocity during perception and recognition of melodies.

    PubMed

    Matteis, M; Silvestrini, M; Troisi, E; Cupini, L M; Caltagirone, C

    1997-07-01

    The role of each cerebral hemisphere in the perception and recognition of musical information is not yet well understood. We studied cerebral blood flow changes during a melody perception task and a melody recognition task. Blood flow velocity in the two middle cerebral arteries of twenty right-handed musically naif volunteers were simultaneously measured by means of bilateral transcranial Doppler ultrasonography during two minutes of passive melody listening and two minutes of a melody recognition task. With respect to baseline values, a bilateral increase of flow velocity occurred in the middle cerebral arteries with a non-significant trend for the right artery during the melody perception task. During the melody recognition task, a significant increase in flow velocity was recorded on the right side with respect to the left side, where a slight simultaneous decrease was found. Our data suggest that melody perception requires bilateral activation of hemispheres and melody recognition mainly an activation of the right hemisphere. This study confirms the ability of transcranial Doppler ultrasonography to correlate artery flow dynamics with selective cerebral activation. PMID:9168166

  18. Continuous cardiac output measurement - Aspects of Doppler frequency analysis

    NASA Technical Reports Server (NTRS)

    Mackay, R. S.; Hechtman, H. B.

    1975-01-01

    From the suprasternal notch blood flow velocity in the aorta can be measured non-invasively by a Doppler probe. Integration over systole after frequency analysis gives a measure of stroke volume if a separate diameter observation is incorporated. Frequency analysis by a zero crossing counter or by a set of parallel phaselock loops was less effective than a set of bandpass filters. Observations on dogs, baboons and humans before and after exercise or surgery suggest the indications to be useful. Application to judging heart failure by the effect of introducing a volume load is indicated. Changes in output also are measured in freely moving subjects.

  19. Evaluation of metered dose inhaler spray velocities using phase Doppler anemometry (PDA).

    PubMed

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2012-02-28

    Droplet velocity is an important parameter which can significantly influence inhalation drug delivery performance. Together with the droplet size, this parameter determines the efficiency of the deposition of MDI products at different sites within the lungs. In this study, phase Doppler anemometry (PDA) was used to investigate the instantaneous droplet velocity emitted from MDIs as well as the corresponding droplet size distribution. The nine commercial MDI products surveyed showed significantly different droplet velocities, indicating that droplet velocity could be used as a discriminating parameter for in vitro testing of MDI products. The droplet velocity for all tested MDI products decreased when the testing distance was increased from 3 cm to 6 cm from the front of mouthpiece, with CFC formulations showing a larger decrease than HFA formulations. The mean droplet diameters of the nine MDIs were also significantly different from one-another. Droplet size measurements made using PDA (a number-based technique) could not be directly compared to results obtained using laser light scattering measurements (a volume-based technique). This work demonstrates that PDA can provide unique information useful for characterizing MDI aerosol plumes and evaluating MDI drug delivery efficiency. PDA could also aid the evaluation of in vitro equivalence in support of formulation or manufacturing changes and in evaluation of abbreviated new drug applications (ANDAs) for MDIs. PMID:22183132

  20. Noninvasive microstructural and velocity imaging in humans by color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash

    The objective of this dissertation is to develop the optical instrumentation, electronics, and signal processing for high-resolution blood flow imaging using optical coherence tomography (OCT) in human subjects. In particular, in vivo OCT blood flow imaging, termed color Doppler OCT (CDOCT), is applied for the first time to measurements in human vasculature of the retina and skin. CDOCT is similar to color Doppler ultrasound, whereas depth-resolved flow information is extracted from reflectivity profiles obtained from phase-sensitive, low-coherence interferometry. Although CDOCT has been demonstrated in tissue-mimicking phantoms and in living animal models, the technique has not yet been extended to blood flow imaging in humans. In this project, CDOCT was integrated with a modified slit lamp biomicroscope for imaging of retinal blood flow, and additional technical requirements necessary for retinal flow imaging were met. This system was used to acquire the first high resolution, cross-sectional images of blood flow with OCT in humans. The image acquisition rate was increased to examine retinal hemodynamics in normal subjects. A method was introduced for improving the velocity resolution by approximately two orders of magnitude, down to ˜1 micrometer/sec, by calculating the change in the phase across sequential scans. This technique was used to achieve the highest velocity resolution to date in scattering media, and applied to imaging the human microvasculature down to the capillary level. Finally, a modification of CDOCT based on differential phase contrast was introduced for high resolution imaging in the presence of motion artifact. This technique measures the differential Doppler frequency between two beams of orthogonal polarization states that are laterally displaced on the sample. Using polarization diversity detection, the common-mode noise was removed, enabling the measurement of flow in scattering media down to the theoretical frequency resolution.

  1. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel

  2. Droplet sizes and velocities in vaporizing sprays. [using laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ereaut, P. R.; Ungut, A.

    1983-01-01

    A pulse height laser Doppler anemometer particle sizing technique has been refined to permit simultaneous particle size and velocity measurements in sprays. The improvements include (1) the use of a specially tailored 'top hat' light distribution, to provide unambiguous particle diameter-signal amplitude relations, (2) the use of back scattered light collection, and (3) the utilization of Mie theory to compute the relations between signal amplitude and particle diameter, in the backscatter mode. Twin-fluid atomized kerosene sprays have been investigated using the new technique. In these sprays distributions have been mapped of mean droplet diameters, droplet size distributions, and the local correlations between droplet diameters and velocities. The data show the variation of spray structure with atomizer input parameters, the preferential vaporization of smaller droplets, and the differing trajectories of the large and small droplets.

  3. Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity

    NASA Technical Reports Server (NTRS)

    Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.

    2013-01-01

    A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.

  4. Estimating Discharge using Multi-level Velocity Data from Acoustic Doppler Instruments

    NASA Astrophysics Data System (ADS)

    Bang Poulsen, J.; Rømer Rasmussen, K.; Bering Ovesen, N.

    2010-12-01

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness and therefore imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations and thus remove or limit such influences. Hence, estimation of the hydrograph is based on continuous stream gauging combined with monthly control measurements of discharge and assuming linear variation of bed roughness between the monthly measurements. As a result, any non-linear drift in weed density or structure which affect the frictional characteristics of the stream during both normal and peak flows are ignored. The present investigation studies if such temporal variation in the conveyance may be detected and eventually compensated for when estimating the hydrograph. Therefore acoustic Dopplers have been placed at the main discharge station in one of the largest Danish catchments (the Skjern). The instruments were set out in early February 2010 during the winter season and have been running since then. The long term average discharge at the station is near 14 m3/s and the cross sectional profile is roughly trapezoidal having width about 15 m., but slightly skew so that the stream is about 0.5 m. deeper off the right than off the left bank. During winter, the depths are typically near 2 m. while during summer they are about 1.5 m. During peak flows, when the discharge exceeds 35 m3/s, the depth increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m. off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth, the Doppler sensor records 10 minute average stream velocities in the central 10 m. section of the stream. During summer periods with low flow, stream velocity has only

  5. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  6. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  7. Estimation of two-dimensional intraventricular velocity and pressure maps by digital processing conventional color-Doppler sequences

    NASA Astrophysics Data System (ADS)

    Garcia, Damien; Del Alamo, Juan C.; Tanne, David; Cortina, Cristina; Yotti, Raquel; Fernandez-Aviles, Francisco; Bermejo, Javier

    2008-11-01

    Clinical echocardiographic quantification of blood flow in the left ventricle is limited because Doppler methods only provide one velocity component. We developed a new technique to obtain two-dimensional flow maps from conventional transthoracic echocardiographic acquisitions. Velocity and pressure maps were calculated from color-Doppler velocity (apical long-axis view) by solving the continuity and Euler equations under the assumptions of zero transverse fluxes of mass and momentum. This technique is fast, clinically-compliant and does not require any specific training. Particle image velocimetry experiments performed in an atrioventricular duplicator showed that the circulation and size of the diastolic vortex was quantified accurately. Micromanometer measurements in pigs showed that apex-base pressure differences extracted from two-dimensional maps qualitatively agreed with micromanometer data. Initial clinical measurements in healthy volunteers showed a large prograde vortex. Additional retrograde vortices appeared in patients with dilated cardiomyopathy and left ventricular hypertrophy.

  8. Coastal salinity measurement using a Doppler Radiometer

    NASA Astrophysics Data System (ADS)

    Schwarz, Benjamin S.; Tatnall, Adrian R. L.; Lewis, Hugh G.

    2012-10-01

    Coastal salinity is characterised by large and variable salinity contrasts on relatively small scales. Measurements of salinity at a resolution compatible with these coastal regions on a regular basis would provide a rich source of information that could be used for a number of applications that have a fundamental bearing on the world's lifestyle. Doppler radiometry offers an approach to capture such measurements, as it reduces the number of required antennas needed to form an image, compared with an Interferometer type instrument. In this work, a Doppler Radiometer type instrument on free-flying satellites is introduced. This approach removes the need for a physical connection between all the antennas, affords the system a degree of reconfigurability, yet is still able to provide data of sufficient resolution. A Y-shaped central hub (similar to the SMOS configuration) is employed with additional antennas mounted on free flying platforms surrounding the central hub. The additional baselines formed between the antennas of the free flying satellites and central hub as well as between the free flying satellites extend the u-v coverage beyond that of just the central hub. The spatial resolution of a Doppler Radiometer system with a Y-shaped hub with a SMOS configuration of antennas, with each arm extended by five 6 m spaced free flying antennas would be of the order of 5 km, when imaging from 800 km. This paper will present some initial results from a study into an instrument concept that could provide coastal salinity measurements at microwave wavelengths. The study focuses on antenna array design and on quantifying the improvement in spatial resolution available by using this method, and includes an investigation into the effects of the relative motion between the hub and the free flying satellites on the imaging. Further, whilst this paper focuses on the application of the Doppler Radiometer to salinity measurement, the techniques described are applicable to other

  9. Estimating hurricane vertical velocity from Doppler radar for high-resolution hurricane model initialization

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2013-12-01

    A mesoscale vorticity method derives the hurricane inner-core vertical velocity from the vorticity variations in space and in time estimated from a deep layer of wind measurements obtained from Doppler radar. The vorticity method derives the hurricane inner core vertical velocity and thus, the divergent wind based on the mesoscale vorticity equation. The inner-core divergent wind inferred dynamically and rotational wind estimated from radar data form the total horizontal wind which is dynamically balanced with the derived vertical velocity. The derived high-resolution balance wind field is suitable for high resolution hurricane models initialization. The vorticity method is tested using a high-resolution non-hydrostatic hurricane model with radar data from Hurricane Danny which made landfall along the Alabama coast in 1997. Numerical experiments with a high resolution non-hydrostatic hurricane model show positive radar data impacts on track and intensity forecasts, in particular, substantial improvements on the hurricane inner core velocity field, can be obtained with the vertical velocity and thus inner-core divergent wind inferred from the mesoscale vorticity method.

  10. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  11. A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. I. Theory.

    PubMed

    Vaitkus, P J; Cobbold, R C

    1998-01-01

    A significant improvement in blood velocity estimation accuracy can be achieved by simultaneously processing both temporal and spatial information obtained from a sample volume. Use of the spatial information becomes especially important when the temporal resolution is limited. By using a two-dimensional sequence of spatially sampled Doppler signal "snapshots" an improved estimate of the Doppler correlation matrix can be formed. Processing Doppler data in this fashion addresses the range-velocity spread nature of the distributed red blood cell target, leading to a significant reduction in spectral speckle. Principal component spectral analysis of the "snapshot" correlation matrix is shown to lead to a new and robust Doppler mode frequency estimator. By processing only the dominant subspace of the Doppler correlation matrix, the Cramer-Rao bounds on the estimation error of target velocity is significantly reduced in comparison to traditional narrowband blood velocity estimation methods and achieves almost the same local accuracy as a wideband estimator. A time-domain solution is given for the velocity estimate using the root-MUSIC algorithm, which makes the new estimator attractive for real-time implementation. PMID:18244249

  12. SIRHEN : a data reduction program for photonic Doppler velocimetry measurements.

    SciTech Connect

    Dolan, Daniel H., III; Ao, Tommy

    2010-06-01

    SIRHEN (Sandia InfraRed HEtrodyne aNalysis) is a program for reducing data from photonic Doppler velocimetry (PDV) measurements. SIRHEN uses the short-time Fourier transform method to extract velocity information. The program can be run in MATLAB (2008b or later) or as a Windows executable. This report describes the new Sandia InfraRed HEtrodyne aNalysis program (SIRHEN; pronounced 'siren') that has been developed for efficient and robust analysis of PDV data. The program was designed for easy use within Sandia's dynamic compression community.

  13. Results from 1984 airborne Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1986-01-01

    Observations made with the revised Airborne Doppler Lidar System (ADLS) during research flights in the summer of 1984 are described. The functioning of the ADLS system is described. The research flights measured the flow around Mt. Shasta about 3 km above the surrounding terrain as well as the flow in the area of the Carquenez Strait in the Sacramento River Valley. The flight tracks are described and the resulting scan radial velocities are shown and discussed. The results demonstrate the success of the modifications made in order to correct major error sources present in the 1981 flights of the ADLS system.

  14. Shipboard acoustic Doppler profiler velocity observations near Point Conception: Spring 1983

    NASA Astrophysics Data System (ADS)

    Barth, J. A.; Brink, K. H.

    1987-04-01

    During April 1983, shipboard Doppler acoustic log current profiles were collected in an effort to characterize the flow field near points Conception and Arguello, California. Subsurface velocity maps derived from these profiles have been used to describe spatial flow structures both on and off the shelf and to investigate flow variability as a function of time and of wind stress. Persistent westward flow out of the northern half of the Santa Barbara Channel and eastward flow into its southern half were observed regardless of the direction of the local wind stress. During one well-documented upwelling-favorable wind event, currents responded in the form of an energetic (maximum 21-m speeds of >60 cm s-1) offshore squirt of cold water. During weak or downwelling-favorable winds, currents continuous with the Santa Barbara Channel outflow were observed flowing to the northwest following the local isobaths before turning offshore west of Point Arguello. Evidence for wind forcing of current fluctuations nearshore between the points and north of Point Arguello was found. Lack of a thermal wind balance between directly measured velocity shear and horizontal density gradient was explained by the presence of large accelerations in the momentum equations. Lack of a consistent relation between velocity and temperature gradient illustrates the difficulty in estimating velocity from temperature information alone in this area.

  15. Using embedded fibers to measure explosive detonation velocities

    SciTech Connect

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  16. Estimating Radar Velocity using Direction of Arrival Measurements

    SciTech Connect

    Doerry, Armin Walter; Horndt, Volker; Bickel, Douglas Lloyd; Naething, Richard M.

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  17. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  18. Estimating the instantaneous velocity of randomly moving target swarms in a stratified ocean waveguide by Doppler analysis.

    PubMed

    Bertsatos, Ioannis; Makris, Nicholas C

    2011-07-01

    Doppler analysis has been extensively used in active radar and sonar sensing to estimate the speed and direction of a single target within an imaging system resolution cell following deterministic theory. For target swarms, such as fish and plankton in the ocean, and raindrops, birds and bats in the atmosphere, multiple randomly moving targets typically occupy a single resolution cell, making single-target theory inadequate. Here, a method is developed for simultaneously estimating the instantaneous mean velocity and position of a group of randomly moving targets within a resolution cell, as well as the respective standard deviations across the group by Doppler analysis in free-space and in a stratified ocean waveguide. While the variance of the field scattered from the swarm is shown to typically dominate over the mean in the range-velocity ambiguity function, cross-spectral coherence remains and maintains high Doppler velocity and position resolution even for coherent signal processing algorithms such as the matched filter. For pseudo-random signals, the mean and variance of the swarms' velocity and position can be expressed in terms of the first two moments of the measured range-velocity ambiguity function. This is shown analytically for free-space and with Monte-Carlo simulations for an ocean waveguide. PMID:21786880

  19. Quantitative imaging of red blood cell velocity invivo using optical coherence Doppler tomography

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Du, Congwu; Park, Kicheon; Volkow, Nora D.; Pan, Yingtian

    2012-06-01

    We present particle counting ultrahigh-resolution optical Doppler tomography (pc-μODT) that enables accurate imaging of red blood cell velocities (νRBC) of cerebrovascular networks by detecting the Doppler phase transients induced by the passage of a RBC through a capillary. We apply pc-μODT to image the response of capillary νRBC to mild hypercapnia in mouse cortex. The results show that νRBC in normocapnia (νN = 0.72 ± 0.15 mm/s) increased 36.1% ± 5.3% (νH = 0.98 ± 0.29 mm/s) in response to hypercapnia. Due to uncorrected angle effect and low hematocrit (e.g., ˜10%), νRBC directly measured by μODT were markedly underestimated (νN ≈ 0.27 ± 0.03 mm/s, νH ≈ 0.37± 0.05 mm/s). Nevertheless, the measured νRBC increase (35.3%) matched that (36.1% ± 5.3%) by pc-μODT.

  20. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  1. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  2. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  3. Vocal fold vibration measurements using laser Doppler vibrometry

    PubMed Central

    Chan, Alfred; Mongeau, Luc; Kost, Karen

    2013-01-01

    The objective of this study was to measure the velocity of the superior surface of human vocal folds during phonation using laser Doppler vibrometry (LDV). A custom-made endoscopic laser beam deflection unit was designed and fabricated. An in vivo clinical experimental procedure was developed to simultaneously collect LDV velocity and video from videolaryngoscopy. The velocity along the direction of the laser beam, i.e., the inferior-superior direction, was captured. The velocity was synchronous with electroglottograph and sound level meter data. The vibration energy of the vocal folds was determined to be significant up to a frequency of 3 kHz. Three characteristic vibrational waveforms were identified which may indicate bifurcations between vibrational modes of the mucosal wave. No relationship was found between the velocity amplitude and phonation frequency or sound pressure level. A correlation was found between the peak-to-peak displacement amplitude and phonation frequency. A sparse map of the velocity amplitudes on the vocal fold surface was obtained. PMID:23464036

  4. Vocal fold vibration measurements using laser Doppler vibrometry.

    PubMed

    Chan, Alfred; Mongeau, Luc; Kost, Karen

    2013-03-01

    The objective of this study was to measure the velocity of the superior surface of human vocal folds during phonation using laser Doppler vibrometry (LDV). A custom-made endoscopic laser beam deflection unit was designed and fabricated. An in vivo clinical experimental procedure was developed to simultaneously collect LDV velocity and video from videolaryngoscopy. The velocity along the direction of the laser beam, i.e., the inferior-superior direction, was captured. The velocity was synchronous with electroglottograph and sound level meter data. The vibration energy of the vocal folds was determined to be significant up to a frequency of 3 kHz. Three characteristic vibrational waveforms were identified which may indicate bifurcations between vibrational modes of the mucosal wave. No relationship was found between the velocity amplitude and phonation frequency or sound pressure level. A correlation was found between the peak-to-peak displacement amplitude and phonation frequency. A sparse map of the velocity amplitudes on the vocal fold surface was obtained. PMID:23464036

  5. Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity

    SciTech Connect

    Yu, Hoon; Kim, Kwan Su; Kim, Jung Dong; Lee, Hyun Kyung; Kim, Jung Bog

    2011-11-15

    We observed an electromagnetically induced transparency signal in a four-level system with optically selected rubidium atoms at specific velocities in a room-temperature vaporized cell. Since the atoms behave like cold atoms in the selected atomic view, the observed signals coincide with a trapped atomic system. According to this result, we can observe Doppler-free signals, which correspond from 1.2 to 1.0 K in a Doppler-broadened medium. And the selected atoms have velocity components of {+-}(131 {+-} 3) MHz per wave number. Our experimental results can provide insight for research in cold media.

  6. TURBULENCE SPECTRA FROM DOPPLER-BROADENED SPECTRAL LINES: TESTS OF THE VELOCITY CHANNEL ANALYSIS AND VELOCITY COORDINATE SPECTRUM TECHNIQUES

    SciTech Connect

    Chepurnov, A.; Lazarian, A.

    2009-03-10

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques, velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  7. Particle size and velocity measurement in flames by laser anemometer

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.; Ungut, A.; Yule, A. J.

    1979-01-01

    Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.

  8. Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Watanabe, Kento

    2014-05-01

    This paper proposes a non-mechanical axial scanning laser Doppler velocimeter (LDV) with sensitivity to the direction of the transverse velocity component using optical serrodyne frequency shifting. Serrodyne modulation via the electro-optic effect of a LiNbO3 (LN) phase shifter is employed to discriminate the direction of the transverse velocity component. The measurement position is scanned without any moving mechanism in the probe by changing the wavelength of the light input to the probe. The experimental results using a sensor probe setup indicate that both the scan of the measurement position and the introduction of directional sensitivity are successfully demonstrated.

  9. Effect of heart rate on left ventricular diastolic transmitral flow velocity patterns assessed by Doppler echocardiography in normal subjects.

    PubMed

    Harrison, M R; Clifton, G D; Pennell, A T; DeMaria, A N

    1991-03-15

    Although a number of factors, including age and ventricular loading, are known to influence the pattern of left ventricular (LV) filling as depicted by Doppler echocardiographic transmitral flow velocities, few and conflicting data are available regarding the influence of heart rate (HR). Therefore, 20 volunteers (mean age 30 years) were evaluated with pulsed-wave Doppler echocardiography, performed with the sample volume placed at the mitral anulus level in the apical 4-chamber projection. Transmitral flow measurements comprised peak and integrated early passive (E) and late atrial (A) filling velocities and the slope of velocity decline from peak E filling. Measurements were recorded during baseline (sinus rhythm, mean 70 beats/min) and during transesophageal atrial pacing (mean 88 beats/min). LV end-diastolic dimension, mean arterial pressure and PR interval (corrected for pacing-induced delay in interatrial conduction time) were unchanged during pacing versus baseline measurements. Peak and integrated E filling velocities averaged 0.59 +/- 0.09 m/s and 6 +/- 1 cm, respectively, at baseline and were not significantly greater at the higher HR. In contrast, baseline peak and integrated A velocities averaged 0.37 +/- 0.06 m/s and 2.3 +/- 0.7 cm, respectively, but were significantly greater at the higher HR (0.5 +/- 0.07 m/s and 3.2 +/- 1.1 cm, respectively [p less than 0.003 vs baseline for each]). Further analysis of a subgroup of 9 subjects for whom Doppler measurements were available at 3 HRs (sinus 70; pacing 80 and 90) yielded strong evidence for a linear relation between HR and peak A velocity (A = 0.008 HR - 0.21, with p less than 0.0001 for significance of the linear trend).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2000796

  10. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to Multifrequency HF Doppler Radar. I. Method of Calculation and Its Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-10-01

    The method of calculating the total drift velocity vector of small-scale artificial ionospheric irregularities as measured by the effective Doppler frequency shift of aspect-scattered signals from several diagnostic illumination transmitters operated at different frequencies is discussed. The technique of adaptive simulation of decameter radio waves propagating in an inhomogeneous magnetized ionosphere with allowance for the aspect scattering effects due to small-scale field-aligned irregularities is developed. A multifrequency HF Doppler radar for simultaneous measurement of the Doppler spectra of radio signals at a set of frequencies is described.

  11. Intensity and Doppler Velocity Oscillations in Pore Atmospheres

    NASA Astrophysics Data System (ADS)

    Cho, K.-S.; Bong, S.-C.; Nakariakov, V. M.; Lim, E.-K.; Park, Y.-D.; Chae, J. C.; Yang, H.-S.; Park, H.-M.; Yurchyshyn, V.

    2015-03-01

    We have investigated chromospheric traveling features running across two merged pores from their centers at speeds of about 55 km s‑1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high-time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope. We infer a line-of-sight (LOS) velocity by applying the lambdameter method to the Ca ii 8542 Å band and Hα band, and investigate intensity and LOS velocity changes at different wavelengths and different positions at the pores. We find that they have three-minute oscillations, and the intensity oscillation from the line center (0.0 \\overset{\\circ}A ) is preceded by that from the core (‑0.3 \\overset{\\circ}A ) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from the near core spectra ({Δ }λ =0.10-0.21 \\overset{\\circ}A ) is greater than that from the far core spectra ({Δ }λ =0.24-0.36 \\overset{\\circ}A ). These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy structure. We conclude that the observed wave properties of the pores are quite similar to those from the sunspot observations.

  12. Baseband velocity estimation for second-harmonic signals exploiting the invariance of the Doppler equation.

    PubMed

    Verbeek, X A; Ledoux, L A; Brands, P J; Hoeks, A P

    1998-10-01

    All Doppler systems, whether conventional Doppler domain or radio frequency (RF) processing is employed, relate the temporal frequency characteristics of the signal at a certain point in depth as function of time to the spatial frequency characteristics of the received signal as function of depth. The mean frequency of the latter may change as a result of depth-dependent attenuation, nonlinear scattering mechanisms, as in harmonic imaging of ultrasound contrast agents, or RF signal demodulation. For all these cases, the relationship between spatial and temporal mean frequency and target velocity is still governed by the familiar Doppler expression if the signal modifications have been properly accounted for. A major drawback of RF signal processing to extract the target velocity is the large number of data points to consider. The computational complexity increases further for harmonic imaging. It is shown conceptually, and demonstrated by signal simulations, that prior to velocity estimation RF demodulation followed by decimation 1) does not affect the Doppler equation, 2) enhances the information content of the samples, 3) reduces the computational load by a factor of four and for harmonic signals by a higher factor, and 4) while demodulation does not have to be actually performed, but can be accounted for by a scaling factor in the cross-correlation function. It is concluded that decimation hardly affects the precision of the velocity estimate if possible frequency aliasing is maintained within bounds, suggesting that the decimation factor is not critical. PMID:9775535

  13. Easy-to-use blood velocity measurement instruments

    NASA Astrophysics Data System (ADS)

    Vilkomerson, David H. R.; Chilipka, Thomas

    2003-05-01

    This paper describes a new kind of clinical instrument designed to allow non-specialists to quantitatively measure blood velocity. The instrument's design utilizes vector continuous-wave (CW) Doppler. Vector CW Doppler insonates a volume with simultaneous multiple-angle beams that define a measurement region; within that region, the velocity vector of the blood can be measured independently of the probe orientation. By eliminating the need for simultaneous imaging and the specially trained technician required for the complicated instrument needed for such imaging, easy and inexpensive blood velocity measurements becomes possible. A prototype for a CW vector Doppler instrument has been used to measure blood velocity in several clinically important arteries: the radial and ulnar in the arm, the femoral in the leg, and the carotid in the neck. We report here on its first clinical use -- monitoring the flow in dialysis access grafts to prevent graft thrombosis. These early clinical results show accuracy and rapid learning of proper instrument use. The design approach presented shows much promise in creating instruments that will provide simple and low-cost-of-use procedures for measurement of blood velocity.

  14. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  15. On the Positive Bias of Peak Horizontal Velocity from an Idealized Doppler Profiler

    NASA Technical Reports Server (NTRS)

    Short, David A.; Merceret, Francis J.

    2004-01-01

    In the presence of 3-D turbulence, peak horizontal velocity estimates from an idealized Doppler profiler are found to be positively biased due to an incomplete specification of the vertical velocity field. The magnitude of the bias was estimated by assuming that the vertical and horizontal velocities can be separated into average and perturbation values and that the vertical and horizontal velocity perturbations are normally distributed. Under these assumptions, properties of the Type-I Extreme Value Distribution for maxima, known as the Gumbel distribution, can be used to obtain an analytical solution of the bias. The bias depends on geometric properties of the profiler configuration, the variance in the horizontal velocity, and the unresolved variance in the vertical velocity. When these variances are normalized by the average horizontal velocity, the bias can be mapped as a simple function of the normalized variances.

  16. Measurement of surface velocity fields

    NASA Technical Reports Server (NTRS)

    Mann, J. A., Jr.

    1979-01-01

    A new technique for measuring surface velocity fields is briefly described. It determines the surface velocity vector as a function of location and time by the analysis of thermal fluctuations of the surface profile in a small domain around the point of interest. The apparatus now being constructed will be used in a series of experiments involving flow fields established by temperature gradients imposed along a surface.

  17. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  18. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  19. Choroidal imaging by one-micrometer dual-beam Doppler optical coherence angiography with adjustable velocity range

    NASA Astrophysics Data System (ADS)

    Jaillon, Franck; Makita, Shuichi; Yasuno, Yoshiaki

    2012-03-01

    Ability of a new version of one-micrometer dual-beam optical coherence angiography (OCA) based on Doppler optical coherence tomography (OCT), is demonstrated for choroidal vasculature imaging. A particular feature of this system is the adjustable time delay between two probe beams. This allows changing the measurable velocity range of moving constituents such as blood without alteration of the scanning protocol. Since choroidal vasculature is made of vessels having blood flows with different velocities, this technique provides a way of discriminating vessels according to the velocity range of their inner flow. An example of choroid imaging of a normal emmetropic eye is here given. It is shown that combining images acquired with different velocity ranges provides an enhanced vasculature representation. This method may be then useful for pathological choroid characterization.

  20. Doppler cooling with coherent trains of laser pulses and a tunable velocity comb

    SciTech Connect

    Ilinova, Ekaterina; Ahmad, Mahmoud; Derevianko, Andrei

    2011-09-15

    We explore the possibility of decelerating and Doppler cooling an ensemble of two-level atoms by a coherent train of short, nonoverlapping laser pulses. We derive analytical expressions for mechanical force exerted by the train. In frequency space the force pattern reflects the underlying frequency comb structure. The pattern depends strongly on the ratio of the atomic lifetime to the repetition time between the pulses and pulse area. For example, in the limit of short lifetimes, the frequency-space peaks of the optical force wash out. We propose to tune the carrier-envelope offset frequency to follow the Doppler-shifted detuning as atoms decelerate; this leads to compression of atomic velocity distribution about comb teeth and results in a ''velocity comb''--a series of narrow equidistant peaks in the velocity space.

  1. Estimation of neutral wind velocity in the ionospheric heights by HF-Doppler technique

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Takefu, M.; Hiroshige, N.

    1985-01-01

    Three net stations located about 100 kilometers apart were set up around the station of the standard frequency and time signals (JJY) in central Japan and measurements of atmospheric gravity waves in the ionospheric heights (F-region, 200 to 400 km) were made by means of the HF-Doppler technique during the period of February 1983 to December 1983. The frequencies of the signals received are 5.0, 8.0 and 10.0 MHz, but only the 8.0 MHz signals are used for the present study, because no ambiguities due to the interference among other stations such as BPM, BSF, etc. exist by the use of 8.0 MHz. Two main results concerning the horizontal phase velocity of the atmospheric gravity waves with periods of 40 to 70 min may be summarized as follows: (1) the value of the phase velocity ranges from 50 m/s to 300 m/s; (2) the direction of the gravity wave propagation shows a definite seasonal variation. The prevailing direction of the gravity waves in winter is from north to south, which is consistent with the results obtained from other investigations. On the other hand, the two directions, from northeast to southwest and from southeast to northeast, dominate in summer.

  2. Coronal Outflow Velocities in a 3D Coronal Model Determined from UVCS Doppler Dimming Observations

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Panasyuk, A. V.; Dobrzycka, D.; Gibson, S.; Biesecker, D. A.; Ko, Y.-K.; Galvin, A. B.; Romoli, M.; Kohn, J. L.

    1998-04-01

    We constrain coronal outflow velocity solutions, resolved along the line-of-sight, by using Doppler dimming models of H I Lyman alpha and O VI 1032/1037 Angstrom emissivities obtained with data from the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO. The local emissivities, from heliocentric heights of 1.5 to 3.0 radii, were determined from 3-D reconstructions of line-of-sight intensities obtained during the Whole Sun Month Campaign (10 Aug. -- 8 Sep. 1996). The models use electron densities derived from polarized brightness measurements made with the visible light coronagraphs on UVCS and LASCO, supplemented with data from Mark III at NCAR/MLSO. Electron temperature profiles are derived from `freezing-in' temperatures obtained from an analysis of charge state data from SWICS/Ulysses. The work concentrates on O5+ outflow velocities which are determined from an analysis of the the O VI line ratios. This analysis is less sensitive to the uncertainties in the electron density and independent of the ionization balance and elemental abundance than the analyses which use individual spectral lines. This work is supported in part by NASA under grant NAG-3192 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by Swiss funding agencies.

  3. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  4. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  5. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGESBeta

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  6. Ionospheric Doppler and electron velocities in the presence of ULF waves

    SciTech Connect

    Sutcliffe, P.R. ); Poole, A.W.V. )

    1989-10-01

    In this paper we refine the earlier work (Poole et al., 1988) in which we derived three mechanisms relating geomagnetic pulsations to simultaneous Doppler velocity oscillations in a vertically incident, ionospherically reflected radio wave. We show that the generally held belief that field-aligned electron velocities associated with the corresponding currents can be ignored is unfounded in the case of magnetic pulsations. These field-aligned velocities contribute significantly to two of the three mechanisms identified in the earlier work. Diagrams are presented to compare our results with those previously obtained by us and other workers using various simplifying assumptions. {copyright} American Geophysical Union 1989

  7. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  8. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    NASA Astrophysics Data System (ADS)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  9. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  10. An inertial velocity reference for the NASA airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Keck, Thomas S.; Telford, James W.

    1988-01-01

    The following four tasks were studied: (1) modification of the calibration routines to calibrate the Inertial Measurement Unit gyroscope drifts with fixed platform heading; (2) modification of the calibration routines to calibrate the Inertial Measurement Unit accelerometers; (3) checking overall software again for errors; and (4) providing documentation on the above work describing changes to the present software, results of these changes and future operating procedures.

  11. Application of acoustic doppler velocimeters for streamflow measurements

    USGS Publications Warehouse

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  12. Characterization of measurement error sources in Doppler global velocimetry

    NASA Astrophysics Data System (ADS)

    Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.

    2001-04-01

    Doppler global velocimetry uses the absorption characteristics of iodine vapour to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development programme that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapour calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m s-1. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.

  13. Characterization of Measurement Error Sources in Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.

    2001-01-01

    Doppler global velocimetry uses the absorption characteristics of iodine vapor to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development program that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapor calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m/s. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.

  14. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  15. Horizontal velocities of MSTIDs over Taiwan observed by continuous HF Doppler sounding

    NASA Astrophysics Data System (ADS)

    Fišer, Jiří; Chum, Jaroslav

    2016-04-01

    Medium scale traveling ionospheric disturbances (MSTIDs) are signatures of gravity waves (GWs) which propagatein the termosphere. Since GWs play an important role in the coupling between the lower atmospheric layers and the thermosphere it is important to study their properties and source mechanisms. In this contribution we present an experimental study focused on horizontal velocities of MSTIDs over Taiwan in the nearly two year long period starting in April 2014. We observe MSTIDs by multipath continuous HF Doppler sounding system. The movement of ionospheric plasma induced via collisions by gravity waves is detected as Doppler shift of the sounding radio signal. We investigate seasonal and diurnal variations of MSTIDs horizontal propagation parameters and compare them with horizontal wind model (HWM) and also compare them with results obtained in other locations in middle a low latitudes where similar HF Doppler sounding systems are installed.

  16. Linking water surface roughness to velocity patterns using terrestrial laser scanning and acoustic doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Heritage, George; Milan, David; Entwistle, Neil

    2010-05-01

    There are well established links between water surface characteristics and hydraulics. Biotope identification is currently an important part of the River Habitat Survey in England and Wales. Their differentiation is based upon recognition of a family of flow features exhibited on the water surface. Variability in this water surface ‘roughness' is dependent upon the interaction of flow with boundary roughness and flow depth. Past research that has attempted to differentiate biotopes based upon differences in Froude number (Fr) and Reynolds number (Re), however this linkage has only been limited to local analysis between flow velocity, depth and roughness. Milan et al. (2010) have recently demonstrated that terrestrial laser scanning (TLS) can be applied to produce fully quantitative maps of hydraulic habitat, based upon defined water surface roughness delimeters. However the nature of the linkages between water surface roughness, flow velocity and depth are still poorly understood, particularly at the reach-scale. This study attempts to provide a full spatial picture of the links between water surface roughness, flow depth and velocity. A Sontek Acoustic Doppler Velocity Profiler (ADVP) was used to provide detailed information on vertical velocity and water depth for a 300 m reach of the gravel-bed River Wharfe, Yorkshire, UK. Simultaneous to the ADVP measurements, a Riegl LMS-Z210 TLS was used to take a series of first return scans of the water surface. Categorisation of the point cloud elevation data for the water surface was achieved through the allocation of moving window standard deviation values to a regular grid, thus defining water surface roughness. The ADVP data demonstrate gross reach-scale variation in velocity and depth linked to bedforms, and more localised spatial and temporal variation within biotope units. The ADVP data was used to produce reach-scale maps of Fr and Re. The extent to which water surface roughness defined biotopes mapped onto these

  17. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  18. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  19. Forebody and leading edge vortex measurements using planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Beutner, Thomas J.; Elliott, Gregory S.; Williams, Glenn W.; Baust, Henry D.; Crafton, Jim; Carter, Campbell D.

    2001-04-01

    The planar Doppler velocimetry (PDV) technique has been demonstrated by employing it in a large-scale wind tunnel to record velocity fields surrounding a model of a generic fighter plane. The PDV instrument employed here included the following: (i) a frequency monitoring system for measuring the laser frequency corresponding to each set of scattering images; (ii) two detector systems (each composed of two 16-bit CCD cameras), one viewing the model from the top of the wind tunnel and the second from the side; (iii) iodine vapour cells based on the starved-cell design, which eliminated the need for separate temperature control of the iodine reservoir; iv) a vibration-isolated, injection-seeded, Q-switched Nd:YAG laser and (v) custom data acquisition software for linking the four cameras, the laser and the frequency monitor. The PDV instrument was validated by comparing the PDV-derived velocity to the known value in the empty wind tunnel. An error of about 1 m s-1 out of an 18.9 m s-1 velocity component was found; the image noise component (resulting primarily from the speckle effect) was found to be about 1 m s-1. In addition, as a result of laser-sheet impingement on the model surface, velocities near the model surfaces are biased by background scattering effects. Nonetheless, it has been shown that PDV can be used effectively to map velocity fields with high spatial resolution over complex model geometries. Frame-averaged velocity images recorded at four axial stations along the model have shown the formation of forebody and leading-edge vortices and their complex interaction in the presence of the wing flow field.

  20. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  1. Advance particle and Doppler measurement methods

    NASA Technical Reports Server (NTRS)

    Busch, C.

    1985-01-01

    Particle environments, i.e., rain, ice, and snow particles are discussed. Two types of particles addressed are: (1) the natural environment in which airplanes fly and conduct test flights; and (2) simulation environments that are encountered in ground-test facilities such as wind tunnels, ranges, etc. There are characteristics of the natural environment that one wishes to measure. The liquid water content (LWC) is the one that seems to be of most importance; size distribution may be of importance in some applications. Like snow, the shape of the particle may be an important parameter to measure. As one goes on to environment in simulated tests, additional parameters may be required such as velocity distribution, the velocity lag of the particle relative to the aerodynamic flow, and the trajectory of the particle as it goes through the aerodynamic flow and impacts on the test object.

  2. Use of High Sensitivity GNSS Receiver Doppler Measurements for Indoor Pedestrian Dead Reckoning

    PubMed Central

    He, Zhe; Renaudin, Valérie; Petovello, Mark G.; Lachapelle, Gérard

    2013-01-01

    Dead-reckoning (DR) algorithms, which use self-contained inertial sensors combined with gait analysis, have proven to be effective for pedestrian navigation purposes. In such DR systems, the primary error is often due to accumulated heading drifts. By tightly integrating global navigation satellite system (GNSS) Doppler measurements with DR, such accumulated heading errors can usually be accurately compensated. Under weak signal conditions, high sensitivity GNSS (HSGNSS) receivers with block processing techniques are often used, however, the Doppler quality of such receivers is relatively poor due to multipath, fading and signal attenuation. This often limits the benefits of integrating HSGNSS Doppler with DR. This paper investigates the benefits of using Doppler measurements from a novel direct vector HSGNSS receiver with pedestrian dead-reckoning (PDR) for indoor navigation. An indoor signal and multipath model is introduced which explains how conventional HSGNSS Doppler measurements are affected by indoor multipath. Velocity and Doppler estimated by using direct vector receivers are introduced and discussed. Real experimental data is processed and analyzed to assess the veracity of proposed method. It is shown when integrating HSGNSS Doppler with PDR algorithm, the proposed direct vector method are more helpful than conventional block processing method for the indoor environments considered herein. PMID:23539033

  3. Use of high sensitivity GNSS receiver Doppler measurements for indoor pedestrian dead reckoning.

    PubMed

    He, Zhe; Renaudin, Valérie; Petovello, Mark G; Lachapelle, Gérard

    2013-01-01

    Dead-reckoning (DR) algorithms, which use self-contained inertial sensors combined with gait analysis, have proven to be effective for pedestrian navigation purposes. In such DR systems, the primary error is often due to accumulated heading drifts. By tightly integrating global navigation satellite system (GNSS) Doppler measurements with DR, such accumulated heading errors can usually be accurately compensated. Under weak signal conditions, high sensitivity GNSS (HSGNSS) receivers with block processing techniques are often used, however, the Doppler quality of such receivers is relatively poor due to multipath, fading and signal attenuation. This often limits the benefits of integrating HSGNSS Doppler with DR. This paper investigates the benefits of using Doppler measurements from a novel direct vector HSGNSS receiver with pedestrian dead-reckoning (PDR) for indoor navigation. An indoor signal and multipath model is introduced which explains how conventional HSGNSS Doppler measurements are affected by indoor multipath. Velocity and Doppler estimated by using direct vector receivers are introduced and discussed. Real experimental data is processed and analyzed to assess the veracity of proposed method. It is shown when integrating HSGNSS Doppler with PDR algorithm, the proposed direct vector method are more helpful than conventional block processing method for the indoor environments considered herein. PMID:23539033

  4. An Acoustic Doppler Current Profiler Survey of Flow Velocities in Detroit River, a Connecting Channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  5. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  6. Phase relationships between total electron content variations, Doppler velocity oscillations and geomagnetic pulsations

    SciTech Connect

    Liu, J.Y.; Berkey, F.T.

    1994-09-01

    The phase relationship between variations of ionospheric total electron content (TEC) and ground-level ULF geomagnetic pulsations has been examined for the advection and compression mechanisms. To determine the causal mechanism several earlier studies have examined the phase difference between oscillations of Doppler velocity in ionospherically reflected radio waves and simultaneous ULF geomagnetic pulsations. In most instances it was found that the phase relation varied from event to event. With the application of Euler`s formula this study shows that in low geomagnetic and midgeomagnetic latitudes the phase differences between variations of TEC and ULF pulsations in the northward component of the geomagnetic field due to the advection and compression mechanisms are 0{degrees} and 180{degrees}, respectively. The authors also found that TEC variations tend to lead ionospheric Doppler velocity oscillations by 90{degrees}. Furthermore, it is shown that the phase relationship between ionospheric Doppler velocity oscillations and ULF pulsations of the northward component of the geomagnetic field, caused by the advection and compression mechanisms, are functions of the scale length, frequency of ULF waves, and geomagnetic dip. 25 refs., 4 figs.

  7. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  8. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  9. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P. V.; St-Maurice, J.-P.; Waters, C. L.; Gillies, R. G.; Koustov, A. V.

    2009-11-01

    Ionospheric E×B plasma drift velocities derived from the Super Dual Auroral Radar Network (SuperDARN) Doppler data exhibit systematically smaller (by 20-30%) magnitudes than those measured by the Defence Meteorological Satellites Program (DMSP) satellites. A part of the disagreement was previously attributed to the change in the E/B ratio due to the altitude difference between the satellite orbit and the location of the effective scatter volume for the radar signals. Another important factor arises from the free-space propagation assumption used in converting the measured Doppler frequency shift into the line-of-sight velocity. In this work, we have applied numerical ray-tracing to identify the location of the effective scattering volume of the ionosphere and to estimate the ionospheric refractive index. The simulations show that the major contribution to the radar echoes should be provided by the Pedersen and/or escaping rays that are scattered in the vicinity of the F-layer maximum. This conclusion is supported by a statistical analysis of the experimental elevation angle data, which have a signature consistent with scattering from the F-region peak. A detailed analysis of the simulations has allowed us to propose a simple velocity correction procedure, which we have successfully tested against the SuperDARN/DMSP comparison data set.

  10. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.