Science.gov

Sample records for dorsal premotor cortex

  1. Reference frames for reach planning in macaque dorsal premotor cortex.

    PubMed

    Batista, Aaron P; Santhanam, Gopal; Yu, Byron M; Ryu, Stephen I; Afshar, Afsheen; Shenoy, Krishna V

    2007-08-01

    When a human or animal reaches out to grasp an object, the brain rapidly computes a pattern of muscular contractions that can acquire the target. This computation involves a reference frame transformation because the target's position is initially available only in a visual reference frame, yet the required control signal is a set of commands to the musculature. One of the core brain areas involved in visually guided reaching is the dorsal aspect of the premotor cortex (PMd). Using chronically implanted electrode arrays in two Rhesus monkeys, we studied the contributions of PMd to the reference frame transformation for reaching. PMd neurons are influenced by the locations of reach targets relative to both the arm and the eyes. Some neurons encode reach goals using limb-centered reference frames, whereas others employ eye-centered reference fames. Some cells encode reach goals in a reference frame best described by the combined position of the eyes and hand. In addition to neurons like these where a reference frame could be identified, PMd also contains cells that are influenced by both the eye- and limb-centered locations of reach goals but for which a distinct reference frame could not be determined. We propose two interpretations for these neurons. First, they may encode reach goals using a reference frame we did not investigate, such as intrinsic reference frames. Second, they may not be adequately characterized by any reference frame. PMID:17581846

  2. Dorsal premotor cortex is involved in switching motor plans

    PubMed Central

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  3. Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex.

    PubMed

    Dekleva, Brian M; Ramkumar, Pavan; Wanda, Paul A; Kording, Konrad P; Miller, Lee E

    2016-01-01

    Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys' behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions. PMID:27420609

  4. Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex

    PubMed Central

    Dekleva, Brian M; Ramkumar, Pavan; Wanda, Paul A; Kording, Konrad P; Miller, Lee E

    2016-01-01

    Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions. DOI: http://dx.doi.org/10.7554/eLife.14316.001 PMID:27420609

  5. Repetitive TMS Suggests a Role of the Human Dorsal Premotor Cortex in Action Prediction

    PubMed Central

    Stadler, Waltraud; Ott, Derek V. M.; Springer, Anne; Schubotz, Ricarda I.; Schütz-Bosbach, Simone; Prinz, Wolfgang

    2012-01-01

    Predicting the actions of other individuals is crucial for our daily interactions. Recent evidence suggests that the prediction of object-directed arm and full-body actions employs the dorsal premotor cortex (PMd). Thus, the neural substrate involved in action control may also be essential for action prediction. Here, we aimed to address this issue and hypothesized that disrupting the PMd impairs action prediction. Using fMRI-guided coil navigation, rTMS (five pulses, 10 Hz) was applied over the left PMd and over the vertex (control region) while participants observed everyday actions in video clips that were transiently occluded for 1 s. The participants detected manipulations in the time course of occluded actions, which required them to internally predict the actions during occlusion. To differentiate between functional roles that the PMd could play in prediction, rTMS was either delivered at occluder-onset (TMS-early), affecting the initiation of action prediction, or 300 ms later during occlusion (TMS-late), affecting the maintenance of an ongoing prediction. TMS-early over the left PMd produced more prediction errors than TMS-early over the vertex. TMS-late had no effect on prediction performance, suggesting that the left PMd might be involved particularly during the initiation of internally guided action prediction but may play a subordinate role in maintaining ongoing prediction. These findings open a new perspective on the role of the left PMd in action prediction which is in line with its functions in action control and in cognitive tasks. In the discussion, the relevance of the left PMd for integrating external action parameters with the observer’s motor repertoire is emphasized. Overall, the results are in line with the notion that premotor functions are employed in both action control and action observation. PMID:22363279

  6. Information Analysis on Neural Tuning in Dorsal Premotor Cortex for Reaching and Grasping

    PubMed Central

    Cao, Yan; Hao, Yaoyao; Liao, Yuxi; Xu, Kai; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Previous studies have shown that the dorsal premotor cortex (PMd) neurons are relevant to reaching as well as grasping. In order to investigate their specific contribution to reaching and grasping, respectively, we design two experimental paradigms to separate these two factors. Two monkeys are instructed to reach in four directions but grasp the same object and grasp four different objects but reach in the same direction. Activities of the neuron ensemble in PMd of the two monkeys are collected while performing the tasks. Mutual information (MI) is carried out to quantitatively evaluate the neurons' tuning property in both tasks. We find that there exist neurons in PMd that are tuned only to reaching, tuned only to grasping, and tuned to both tasks. When applied with a support vector machine (SVM), the movement decoding accuracy by the tuned neuron subset in either task is quite close to the performance by full ensemble. Furthermore, the decoding performance improves significantly by adding the neurons tuned to both tasks into the neurons tuned to one property only. These results quantitatively distinguish the diversity of the neurons tuned to reaching and grasping in the PMd area and verify their corresponding contributions to BMI decoding. PMID:23781275

  7. Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (macaca mulatta).

    PubMed

    Distler, Claudia; Hoffmann, Klaus-Peter

    2015-11-01

    The dorsal premotor cortex (PMd) is part of the cortical network for arm movements during reach-related behavior. Here we investigate the neuronal projections from the PMd to the midbrain superior colliculus (SC), which also contains reach-related neurons, to investigate how the SC integrates into a cortico-subcortical network responsible for initiation and modulation of goal-directed arm movements. By using anterograde transport of neuronal tracers, we found that the PMd projects most strongly to the deep layers of the lateral part of the SC and the underlying reticular formation corresponding to locations where reach-related neurons have been recorded, and from where descending tectofugal projections arise. A somewhat weaker projection targets the intermediate layers of the SC. By contrast, terminals originating from prearcuate area 8 mainly project to the intermediate layers of the SC. Thus, this projection pattern strengthens the view that different compartments in the SC are involved in the control of gaze and in the control or modulation of reaching movements. The PMD-SC projection assists in the participation of the SC in the skeletomotor system and provides the PMd with a parallel path to elicit forelimb movements. PMID:25921755

  8. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    NASA Astrophysics Data System (ADS)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  9. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    PubMed Central

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  10. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex.

    PubMed

    Stephan, Marianne A; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  11. Involvement of the human dorsal premotor cortex in unimanual motor control: an interference approach using transcranial magnetic stimulation.

    PubMed

    Cincotta, Massimo; Borgheresi, Alessandra; Balestrieri, Fabrizio; Giovannelli, Fabio; Rossi, Simone; Ragazzoni, Aldo; Zaccara, Gaetano; Ziemann, Ulf

    2004-09-01

    Unilateral movements are enabled through a distributed network of motor cortical areas but the relative contribution from the parts of this network is largely unknown. Failure of this network potentially results in mirror activation of the primary motor cortex (M1) ipsilateral to the intended movement. Here we tested the role of the right dorsal premotor cortex (dPMC) in 11 healthy subjects by disrupting its activity with 20 Hz repetitive transcranial magnetic stimulation (rTMS) whilst the subjects exerted a unilateral contraction of the left first dorsal interosseous (FDI). We found that disruption of right dPMC enhanced mirror activation of the ipsilateral left M1, as probed by motor evoked potential (MEP) amplitude to the right FDI. This was not the case with sham rTMS, when rTMS was directed to the right M1, or with rTMS of the right dPMC but without contraction of the left FDI. Findings suggest that activity in the dPMC contributes to the suppression of mirror movements during intended unilateral movements. PMID:15331150

  12. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. PMID:24388976

  13. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    PubMed Central

    Ward, Nick S.; Bestmann, Sven; Hartwigsen, Gesa; Weiss, Michael M.; Christensen, Lars O.D.; Frackowiak, Richard S.J.; Rothwell, John C.; Siebner, Hartwig R.

    2013-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals we applied 30 minutes of low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented one second before the target. On 20% of trials the cue was invalid requiring subjects to re-adjust their motor plan according to the target location. Compared to sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute towards dynamic control of actions, and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance. PMID:20610756

  14. Motor and non-motor projections from the cerebellum to rostrocaudally distinct sectors of the dorsal premotor cortex in macaques.

    PubMed

    Hashimoto, Masashi; Takahara, Daisuke; Hirata, Yoshihiro; Inoue, Ken-ichi; Miyachi, Shigehiro; Nambu, Atsushi; Tanji, Jun; Takada, Masahiko; Hoshi, Eiji

    2010-04-01

    In the caudal part of the dorsal premotor cortex of macaques (area F2), both anatomical and physiological studies have identified two rostrocaudally separate sectors. The rostral sector (F2r) is located medial to the genu of the arcuate sulcus, and the caudal sector (F2c) is located lateral to the superior precentral dimple. Here we examined the sites of origin of projections from the cerebellum to F2r and F2c. We applied retrograde transsynaptic transport of a neurotropic virus, CVS-11 of rabies virus, in macaque monkeys. Three days after rabies injections into F2r or F2c, neuronal labeling was found in the deep cerebellar nuclei mainly of the contralateral hemisphere. After the F2r injection, labeled cells were distributed primarily in the caudoventral portion of the dentate nucleus, whereas cells labeled after the F2c injection were distributed in the rostrodorsal portion of the dentate nucleus, and in the interpositus and fastigial nuclei. Four days after rabies injections, Purkinje cells were densely labeled in the lateral part of the cerebellar cortex. After the F2r injection, Purkinje cell labeling was confined to Crus I and II, whereas the labeling seen after the F2c injection was located broadly from lobules III to VIII, including Crus I and II. These results have revealed that F2c receives inputs from broader areas of the cerebellum than F2r, and that distinct portions of the deep cerebellar nuclei and the cerebellar cortex send major projections to F2r and F2c, suggesting that F2c and F2r may be under specific influences of the cerebellum. PMID:20384784

  15. Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades.

    PubMed

    Cieslik, Edna C; Seidler, Isabelle; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2016-09-01

    The antisaccade task has been widely used to investigate cognitive action control. While the general network for saccadic eye movements is well defined, the exact location of eye fields within the frontal cortex strongly varies between studies. It is unknown whether this inconsistency reflects spatial uncertainty or is the result of different involvement of subregions for specific aspects of eye movement control. The aim of the present study was to examine functional differentiations within the frontal cortex by integrating results from neuroimaging studies analyzing pro- and antisaccade behavior using meta-analyses. The results provide evidence for a differential functional specialization of neighboring oculomotor frontal regions, with lateral frontal eye fields (FEF) and supplementary eye field (SEF) more often involved in prosaccades while medial FEF and anterior midcingulate cortex (aMCC) revealed consistent stronger involvement for antisaccades. This dissociation was furthermore mirrored by functional connectivity analyses showing that the lateral FEF and SEF are embedded in a motor output network, while medial FEF and aMCC are integrated in a multiple demand network. PMID:27211526

  16. Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey.

    PubMed

    Burman, Kathleen J; Bakola, Sophia; Richardson, Karyn E; Reser, David H; Rosa, Marcello G P

    2014-11-01

    Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal-directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys. PMID:24888737

  17. Abnormal dorsal premotor-motor inhibition in writer's cramp.

    PubMed

    Pirio Richardson, Sarah; Beck, Sandra; Bliem, Barbara; Hallett, Mark

    2014-05-01

    The authors hypothesized that a deficient premotor-motor inhibitory network contributes to the unwanted involuntary movements in dystonia. The authors studied nine controls and nine patients with writer's cramp (WC). Dorsal premotor-motor cortical inhibition (dPMI) was tested by applying conditioning transcranial magnetic stimulation (TMS) to the dorsal premotor cortex and then a test pulse to the ipsilateral motor cortex at an interval of 6 ms. The authors used an H-reflex in flexor carpi radialis paired with TMS over the premotor cortex to assess for spinal cord excitability change. Finally, the authors interrupted a choice reaction time task with TMS over dorsal premotor cortex to assess performance in a nondystonic task. The results showed that WC patients exhibited dPMI at rest (88.5%, the ratio of conditioned to unconditioned test pulse), in contrast to controls, who did not show dPMI (109.6%) (P = 0.0198). This difference between patients and controls persisted during contraction (100% vs. 112%) and pen-holding (95.6% vs. 111%). The H-reflex in the arm was not modulated by the premotor cortex stimulation. The WC patients made more errors, and the error rate improved with TMS over the premotor cortex. These results suggest that abnormal premotor-motor interactions may play a role in the pathophysiology of focal dystonia. The dPMI was not modulated by task in either group, but was constantly greater in the patients. The significance of the increased inhibition is likely to be compensatory. It appears to be a robust finding and, in combination with other features, could be further explored as a biomarker. PMID:24710852

  18. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations.

    PubMed

    Wise, S P; Boussaoud, D; Johnson, P B; Caminiti, R

    1997-01-01

    The dorsal premotor cortex is a functionally distinct cortical field or group of fields in the primate frontal cortex. Anatomical studies have confirmed that most parietal input to the dorsal premotor cortex originates from the superior parietal lobule. However, these projections arise not only from the dorsal aspect of area 5, as has long been known, but also from newly defined areas of posterior parietal cortex, which are directly connected with the extrastriate visual cortex. Thus, the dorsal premotor cortex receives much more direct visual input than previously accepted. It appears that this fronto-parietal network functions as a visuomotor controller-one that makes computations based on proprioceptive, visual, gaze, attentional, and other information to produce an output that reflects the selection, preparation, and execution of movements. PMID:9056706

  19. Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence

    PubMed Central

    Coallier, Émilie; Michelet, Thomas

    2015-01-01

    We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1. PMID:25787952

  20. Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence.

    PubMed

    Coallier, Émilie; Michelet, Thomas; Kalaska, John F

    2015-06-01

    We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1. PMID:25787952

  1. Abnormal Dorsal Premotor-Motor Inhibition in Writer’s Cramp

    PubMed Central

    Richardson, Sarah Pirio; Beck, Sandra; Bliem, Barbara; Hallett, Mark

    2014-01-01

    Background We hypothesize that a deficient premotor-motor inhibitory network contributes to the unwanted involuntary movements in dystonia. Methods We studied nine controls and nine patients with writer’s cramp (WC). Dorsal premotor-motor cortical inhibition (dPMI) was tested by applying conditioning transcranial magnetic stimulation (TMS) to the dorsal premotor cortex and then a test pulse to the ipsilateral motor cortex at an interval of 6ms. We used an H-reflex in flexor carpi radialis paired with TMS over the premotor cortex to assess for spinal cord excitability change. Finally, we interrupted a choice reaction time task with TMS over dorsal premotor cortex to assess performance in a non-dystonic task. Results Our results showed that WC patients exhibited dPMI at rest (88.5%, the ratio of conditioned to unconditioned test pulse) in contrast to our controls who did not show dPMI (109.6%) (p=0.0198). This difference between patients and controls persisted during contraction (100% vs. 112%) and pen-holding (95.6% vs. 111%). The H-reflex in the arm was not modulated by the premotor cortex stimulation. WC patients made more errors and the error rate improved with TMS over the premotor cortex. Conclusions These results suggest that abnormal premotor-motor interactions may play a role in the pathophysiology of focal dystonia. dPMI was not modulated by task in either group, but was constantly greater in the patients. The significance of the increased inhibition is likely to be compensatory. It appears to be a robust finding and, in combination with other features, could be further explored as a biomarker. PMID:24710852

  2. Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action

    PubMed Central

    Calzavara, Roberta; Mailly, Philippe; Haber, Suzanne N

    2007-01-01

    Our previous data indicate that there are specific features of the corticostriatal pathways from the prefrontal cortex. First, corticostriatal pathways are composed of focal, circumscribed projections and of diffuse, widespread projections. Second, there is some convergence between terminal fields from different functional regions of the prefrontal cortex. Third, anterior cingulate projections from area 24b occupy a large region of the rostral striatum. The goal of this study was to determine whether these features are also common to the corticostriatal projections from area 8A (including the frontal eye field; FEF), the supplementary eye field (SEF), dorsal and rostral premotor cortex (PMdr) and area 24c. Using a new approach of three-dimensional reconstruction of the corticostriatal pathways, along with dual cortical tracer injections, we mapped the corticostriatal terminal fields from areas 9 and 46, 8A-FEF, SEF, PMdr and 24b and c. In addition, we placed injections of retrogradely transported tracers into key striatal regions. The results demonstrated that: (i) a diffuse projection system is a common feature of the corticostriatal projections from different frontal regions; (ii) key striatal regions receive convergent projections from areas 9 and 46 and from areas 8A-FEF, SEF, PMdr and 24c, suggesting a potential pivotal role of these striatal regions in integrating cortical information; (iii) projections from area 24c, like those from area 24b, terminate widely throughout the striatum, interfacing with terminals from several frontal areas. These features of the corticostriatal frontal pathways suggest a potential integrative striatal network for learning. PMID:17892479

  3. Robust neuronal dynamics in premotor cortex during motor planning.

    PubMed

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-04-28

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in the mouse premotor cortex to probe the robustness of persistent neural representations during motor planning. We show that preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of the premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in the premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  4. Heterogeneous attractor cell assemblies for motor planning in premotor cortex.

    PubMed

    Mattia, Maurizio; Pani, Pierpaolo; Mirabella, Giovanni; Costa, Stefania; Del Giudice, Paolo; Ferraina, Stefano

    2013-07-01

    Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computational strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of both upward and downward STs in other modules. Such web of "flip-flops" rapidly converged to a stereotyped distributed representation of the motor program, as prescribed by the long-standing theory of associative networks. PMID:23825419

  5. A Mediating Role of the Premotor Cortex in Phoneme Segmentation

    ERIC Educational Resources Information Center

    Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.

    2009-01-01

    Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…

  6. Inactivation of the Dorsal Premotor Area Disrupts Internally Generated, But Not Visually Guided, Sequential Movements

    PubMed Central

    Ohbayashi, Machiko; Picard, Nathalie

    2016-01-01

    As skill on a sequence of movements is acquired through practice, each movement in the sequence becomes seamlessly associated with another. To study the neural basis of acquired skills, we trained two monkeys (Cebus apella) to perform two sequential reaching tasks. In one task, sequential movements were instructed by visual cues, whereas in the other task, movements were generated from memory after extended practice. Then, we examined neural activity in the dorsal premotor area (PMd) and the effects of its local inactivation during performance of each task. Comparable numbers of neurons in the PMd were active during the two tasks. However, inactivation of the PMd had a marked effect only on the performance of sequential movements that were guided by memory. These results emphasize the importance of the PMd in the internal generation of sequential movements, perhaps through maintaining arbitrary motor–motor associations. SIGNIFICANCE STATEMENT The dorsal premotor cortex (PMd) has long been thought to be a critical node in the cortical networks responsible for visually guided reaching. Here we show that PMd neurons are active during both visually guided and internally generated sequential movements. In addition, we found that local inactivation of the PMd has a marked effect only on the performance of sequential movements that were internally generated. These observations suggest that, although the PMd may participate in the generation of visually guided sequences, it is more important for the generation of internally guided sequences. PMID:26865620

  7. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex.

    PubMed

    Callan, Daniel E; Jones, Jeffery A; Callan, Akiko

    2014-01-01

    Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action ("Mirror System" properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with

  8. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex

    PubMed Central

    Callan, Daniel E.; Jones, Jeffery A.; Callan, Akiko

    2014-01-01

    Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action (“Mirror System” properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with

  9. Transcallosal connection patterns of opposite dorsal premotor regions support a lateralized specialization for action and perception.

    PubMed

    van der Hoorn, Anouk; Potgieser, Adriaan R E; de Jong, Bauke M

    2014-09-01

    Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal-directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole-brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills. PMID:24945328

  10. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  11. Dorsal premotor activity and connectivity relate to action selection performance after stroke.

    PubMed

    Stewart, Jill Campbell; Dewanjee, Pritha; Shariff, Umar; Cramer, Steven C

    2016-05-01

    Compensatory activation in dorsal premotor cortex (PMd) during movement execution has often been reported after stroke. However, the role of PMd in the planning of skilled movement after stroke has not been well studied. The current study investigated the behavioral and neural response to the addition of action selection (AS) demands, a motor planning process that engages PMd in controls, to movement after stroke. Ten individuals with chronic, left hemisphere stroke and 16 age-matched controls made a joystick movement with the right hand under two conditions. In the AS condition, participants moved right or left based on an abstract, visual rule; in the execution only condition, participants moved in the same direction on every trial. Despite a similar behavioral response to the AS condition (increase in reaction time), brain activation differed between the two groups: the control group showed increased activation in left inferior parietal lobule (IPL) while the stroke group showed increased activation in several right/contralesional regions including right IPL. Variability in behavioral performance between participants was significantly related to variability in brain activation. Individuals post-stroke with relatively poorer AS task performance showed greater magnitude of activation in left PMd and dorsolateral prefrontal cortex (DLPFC), increased left primary motor cortex-PMd connectivity, and decreased left PMd-DLPFC connectivity. Changes in the premotor-prefrontal component of the motor network during complex movement conditions may negatively impact the performance and learning of skilled movement and may be a prime target for rehabilitation protocols aimed at improving the function of residual brain circuits after stroke. Hum Brain Mapp 37:1816-1830, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876608

  12. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    PubMed Central

    Zanon, Marco; Battaglini, Piero P.; Jarmolowska, Joanna; Pizzolato, Gilberto; Busan, Pierpaolo

    2013-01-01

    The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans. PMID:24324426

  13. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  14. Point-light biological motion perception activates human premotor cortex.

    PubMed

    Saygin, Ayse Pinar; Wilson, Stephen M; Hagler, Donald J; Bates, Elizabeth; Sereno, Martin I

    2004-07-01

    Motion cues can be surprisingly powerful in defining objects and events. Specifically, a handful of point-lights attached to the joints of a human actor will evoke a vivid percept of action when the body is in motion. The perception of point-light biological motion activates posterior cortical areas of the brain. On the other hand, observation of others' actions is known to also evoke activity in motor and premotor areas in frontal cortex. In the present study, we investigated whether point-light biological motion animations would lead to activity in frontal cortex as well. We performed a human functional magnetic resonance imaging study on a high-field-strength magnet and used a number of methods to increase signal, as well as cortical surface-based analysis methods. Areas that responded selectively to point-light biological motion were found in lateral and inferior temporal cortex and in inferior frontal cortex. The robust responses we observed in frontal areas indicate that these stimuli can also recruit action observation networks, although they are very simplified and characterize actions by motion cues alone. The finding that even point-light animations evoke activity in frontal regions suggests that the motor system of the observer may be recruited to "fill in" these simplified displays. PMID:15240810

  15. Inhibition of contralateral premotor cortex delays visually guided reaching movements in men but not in women.

    PubMed

    Gorbet, Diana J; Staines, W Richard

    2011-07-01

    The premotor-parietal network for preparation of visually guided reaching demonstrates activity mainly contralateral to the reaching arm in men but bilaterally in women. These sex differences are most prominent in the dorsal premotor cortex (PMd); however, the functional implications of these differences remain unclear. Therefore, in the experiments described here, we used continuous theta burst stimulation (cTBS) to test hypotheses regarding the roles of PMd both contralateral and ipsilateral to the reaching arm in men and in women. Inhibitory cTBS of the ipsilateral PMd did not have a significant effect on reaction time in either men or women. However, cTBS of the contralateral PMd resulted in a slowed mean reaction time in men but not in women. Movement times were unaffected by stimulation applied to either hemisphere. These results suggest the presence of sex differences in processing within the left PMd during visually guided reaching movements using the right arm. Further, when taken together, the results suggest that ipsilateral PMd activity in women may not be functionally necessary for reaching movements. Rather, this ipsilateral activity may provide a protective redundancy that can compensate for decreased activity from the contralateral PMd. The observation of sex differences in reaction times but not in movement times following cTBS to the contralateral hemisphere suggests that these sex differences are more strongly associated with movement planning than with motor execution. PMID:21607701

  16. A role for the ventral premotor cortex beyond performance monitoring

    PubMed Central

    Pardo-Vazquez, Jose L.; Leboran, Victor; Acuña, Carlos

    2009-01-01

    Depending on the circumstances, decision making requires either comparing current sensory information with that showed recently or with that recovered from long-term memory (LTM). In both cases, to learn from past decisions and adapt future ones, memories and outcomes have to be available after the report of a decision. The ventral premotor cortex (PMv) is a good candidate for integrating memory traces and outcomes because it is involved in working-memory, decision-making, and encoding the outcomes. To test this hypothesis we recorded the extracellular unit activity while monkeys performed 2 variants of a visual discrimination task. In one task, the decision was based on the comparison of the orientation of a current stimulus with that of another stimulus recently shown. In the other task, the monkeys had to compare the current orientation of the stimulus with the correct one retrieved from LTM. Here, we report that when the task required retrieval of the stimulus and its use in the following trials, the neurons continue encoding this internal representation together with the outcomes after the monkey has emitted the motor response. However, this codification did not occur when the stimulus was shown recently and updated every trial. These results suggest that the PMv activity represents the information needed to evaluate the consequences of a decision. We interpret these results as evidence that the PMv plays a role in evaluating the outcomes that can serve to learn and thus adapt future decision to environmental demands. PMID:19846763

  17. Reputation in an economic game modulates premotor cortex activity during action observation.

    PubMed

    Farmer, Harry; Apps, Matthew; Tsakiris, Manos

    2016-09-01

    Our interactions with other people - and our processing of their actions - are shaped by their reputation. Research has identified an Action Observation Network (AON) which is engaged when observing other people's actions. Yet, little is known about how the processing of others' actions is influenced by another's reputation. Is the response of the AON modulated by the reputation of the actor? We developed a variant of the ultimatum game in which participants watched either the visible or occluded actions of two 'proposers'. These actions were tied to decisions of how to split a pot of money although the proposers' decisions on each trial were not known to participants when observing the actions. One proposer made fair offers on the majority of trials, establishing a positive reputation, whereas the other made predominantly, unfair offers resulting in a negative reputation. We found significant activations in two regions of the left dorsal premotor cortex (dPMC). The first of these showed a main effect of reputation with greater activation for the negative reputation proposer than the positive reputation proposer. Furthermore individual differences in trust ratings of the two proposers covaried with activation in the right primary motor cortex (M1). The second showed an interaction between visibility and reputation driven by a greater effect of reputation when participants were observing an occluded action. Our findings show that the processing of others' actions in the AON is modulated by an actor's reputation, and suggest a predictive role for the PMC during action observation. PMID:27364606

  18. Prediction of switching time between movement preparation and execution by neural activity in monkey premotor cortex.

    PubMed

    Li, Hongbao; Liao, Yuxi; Wang, Yiwen; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-01-01

    Premotor cortex is a higher level cortex than primary motor cortex in movement controlling hierarchy, which contributes to the motor preparation and execution simultaneously during the planned movement. The mediation mechanism from movement preparation to execution has attracted many scientists' attention. Gateway hypothesis is one possible explanation that some neurons act as "gating" to release the movement intention at the "on-go" cue. We propose to utilize a local-learning based feature extraction method to target the neurons in premotor cortex, which functionally contribute mostly to the discrimination between motor preparation and execution without tuning information to either target or movement trajectory. Then the support vector machine is utilized to predict the single trial switching time. With top three functional "gating" neurons, the prediction accuracy rate of the switching time is above 90%, which indicates the potential of asynchronous BMI control using premotor cortical activity. PMID:26736827

  19. Effector selection precedes reach planning in the dorsal parietofrontal cortex

    PubMed Central

    Cieslak, Matthew; Grafton, Scott T.

    2012-01-01

    Experimental evidence and computational modeling suggest that target selection for reaching is associated with the parallel encoding of multiple movement plans in the dorsomedial posterior parietal cortex (dmPPC) and the caudal part of the dorsal premotor cortex (PMdc). We tested the hypothesis that a similar mechanism also accounts for arm selection for unimanual reaching, with simultaneous and separate motor goal representations for the left and right arms existing in the right and left parietofrontal cortex, respectively. We recorded simultaneous electroencephalograms and functional MRI and studied a condition in which subjects had to select the appropriate arm for reaching based on the color of an appearing visuospatial target, contrasting it to a condition in which they had full knowledge of the arm to be used before target onset. We showed that irrespective of whether subjects had to select the arm or not, activity in dmPPC and PMdc was only observed contralateral to the reaching arm after target onset. Furthermore, the latency of activation in these regions was significantly delayed when arm selection had to be achieved during movement planning. Together, these results demonstrate that effector selection is not achieved through the simultaneous specification of motor goals tied to the two arms in bilateral parietofrontal cortex, but suggest that a motor goal is formed in these regions only after an arm is selected for action. PMID:22457458

  20. The Importance of Premotor Cortex for Supporting Speech Production after Left Capsular-Putaminal Damage

    PubMed Central

    Bagdasaryan, Juliana; Jung, Dorit E.; Price, Cathy J.

    2014-01-01

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. PMID:25339747

  1. The importance of premotor cortex for supporting speech production after left capsular-putaminal damage.

    PubMed

    Seghier, Mohamed L; Bagdasaryan, Juliana; Jung, Dorit E; Price, Cathy J

    2014-10-22

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. PMID:25339747

  2. Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    PubMed Central

    Kornysheva, Katja; Schubotz, Ricarda I.

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  3. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys.

    PubMed

    Kurata, K; Hoshi, E

    1999-04-01

    A small amount of muscimol (1 microl; concentration, 5 microg/microl) was injected into the ventral and dorsal premotor cortex areas (PMv and PMd, respectively) of monkeys, which then were required to perform a visually guided reaching task. For the task, the monkeys were required to reach for a target soon after it was presented on a screen. While performing the task, the monkeys' eyes were covered with left 10 degrees, right 10 degrees, or no wedge prisms, for a block of 50-100 trials. Without the prisms, the monkeys reached the targets accurately. When the prisms were placed, the monkeys initially misreached the targets because the prisms displaced the visual field. Before the muscimol injection, the monkeys adapted to the prisms in 10-20 trials, judging from the horizontal distance between the target location and the point where the monkey touched the screen. After muscimol injection into the PMv, the monkeys lost the ability to readapt and touched the screen closer to the location of the targets as seen through the prisms. This deficit was observed at selective target locations, only when the targets were shifted contralaterally to the injected hemisphere. When muscimol was injected into the PMd, no such deficits were observed. There were no changes in the reaction and movement times induced by muscimol injections in either area. The results suggest that the PMv plays an important role in motor learning, specifically in recalibrating visual and motor coordinates. PMID:10200227

  4. Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys.

    PubMed

    Lebedev, M A; Wise, S P

    2000-01-01

    We examined single-unit activity in the dorsal premotor cortex for evidence of fast neuronal oscillations. Four rhesus monkeys performed a task in which visuospatial instruction stimuli indicated the direction of forelimb movement to be executed on each trial. After an instructed delay period of 1.5-3 s, movements to either the right or left of a central origin were triggered by a second visuospatial stimulus. From a database of 579 single units, 78 units (13%) contained periodic peaks in their autocorrelation histograms (ACHs), with oscillation frequencies typically 20-30 Hz (mean 27 Hz). An additional 26 units (5%) had oscillatory features that were identified in joint interspike-interval (ISI) plots. Three observations, taken together, suggest entrainment by rhythmic drive extrinsic to these neurons: shuffling ISIs attenuated ACH peaks, indicating a dependency on serial-order effects; oscillation frequency did not change during either increases or decreases in firing rate; and joint ISI plots contained features consistent with a rhythmicity interrupted by intervening discharges. In some cells, oscillations occurred for only one of the two directions of movement. During the delay period, such directional selectivity was observed in 37 units (60% of delay-period oscillators). For at least 17 of these units, we could exclude the possibility that oscillatory directional selectivity resulted from the difficulty in detecting oscillations due to low discharge rates (for one of the two movement directions). Directional selectivity in fast oscillations shows that they can reflect specific aspects of an intended action. PMID:10672473

  5. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.

    PubMed

    de Manzano, Örjan; Ullén, Fredrik

    2012-10-15

    Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands. PMID:22732560

  6. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    ERIC Educational Resources Information Center

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  7. Rewiring the Brain: Potential Role of the Premotor Cortex in Motor Control, Learning, and Recovery of Function Following Brain Injury

    PubMed Central

    Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.

    2016-01-01

    The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382

  8. Decreased Premotor Cortex Volume in Victims of Urban Violence with Posttraumatic Stress Disorder

    PubMed Central

    Rocha-Rego, Vanessa; Pereira, Mirtes G.; Oliveira, Leticia; Mendlowicz, Mauro V.; Fiszman, Adriana; Marques-Portella, Carla; Berger, William; Chu, Carlton; Joffily, Mateus; Moll, Jorge; Mari, Jair J.; Figueira, Ivan; Volchan, Eliane

    2012-01-01

    Background Studies addressing posttraumatic stress disorder (PTSD) have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? Methodology/Principal Findings Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. Conclusions Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events. PMID:22952599

  9. Neuronal activity related to eye-hand coordination in the primate premotor cortex.

    PubMed

    Jouffrais, C; Boussaoud, D

    1999-09-01

    To test the functional implications of gaze signals that we previously reported in the dorsal premotor cortex (PMd), we trained two rhesus monkeys to point to visual targets presented on a touch screen while controlling their gaze orientation. Each monkey had to perform four different tasks. To initiate a trial, the monkey had to put his hand on a starting position at the center of the touch screen and fixate a fixation point. In one task, the animal had to make a reaching movement to a peripheral target randomly presented at one of eight possible locations on a circle while maintaining fixation at the center of this virtual circle (central fixation + reaching). In the second task, the monkey maintained fixation at the location of the upcoming peripheral target and, later, reached to that location. After a delay, the target was turned on and the monkey made a reaching arm movement (target fixation + reaching). In the third task, the monkey made a saccade to the target without any arm movement (saccade). Finally, in the fourth task, the monkey first made a saccade to the target, then reached to it after a delay (saccade + reaching). This design allowed us to examine the contribution of the oculomotor context to arm-related neuronal activity in PMd. We analyzed the effects of the task type on neuronal activity and found that many cells showed a task effect during the signal (26/60; 43%), set (16/49; 33%) and/or movement (15/54; 28%) epochs, depending on the oculomotor history. These findings, together with previously published data, suggest that PMd codes limb-movement direction in a gaze-dependent manner and may, thus, play an important role in the brain mechanisms of eye-hand coordination during visually guided reaching. PMID:10473760

  10. Neural representation of observed actions in the parietal and premotor cortex.

    PubMed

    Ogawa, Kenji; Inui, Toshio

    2011-05-15

    We investigated the neural representation of observed actions in the human parietal and premotor cortex, which comprise the action observation network or the mirror neuron system for action recognition. Participants observed object-directed hand actions, in which action as well as other properties were independently manipulated: action (grasp or touch), object (cup or bottle), perspective (1st or 3rd person), hand (right or left), and image size (large or small). We then used multi-voxel pattern analysis to determine whether each feature could be correctly decoded from regional activities. The early visual area showed significant above-chance classification accuracy, particularly high in perspective, hand, and size, consistent with pixel-wise dissimilarity of stimuli. In contrast, the highest decoding accuracy for action was observed in the anterior intraparietal sulcus (aIPS) and the ventral premotor cortex (PMv). Moreover, the decoder for action could be correctly generalized for images with high dissimilarity in the parietal and premotor region, but not in the visual area. Our study indicates that the parietal and premotor regions encode observed actions independent of retinal variations, which may subserve our capacity for invariant action recognition of others. PMID:20974271

  11. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy.

    PubMed

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  12. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy

    PubMed Central

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  13. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    PubMed Central

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  14. TMS-induced modulation of action sentence priming in the ventral premotor cortex.

    PubMed

    Tremblay, Pascale; Sato, Marc; Small, Steven L

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of the left ventral premotor cortex (PMv) can interfere with the comprehension of sentences describing manual actions, visual properties of manipulable and non-manipulable objects, and actions of the lips and mouth. Using a primed semantic decision task, sixteen participants were asked to determine for a given sentence whether or not an auditorily presented target word was congruent with the sentence. We hypothesized that if the left PMv is contributing semantic information that is used to comprehend action and object related sentences, then TMS applied over PMv should result in a disruption of semantic priming. Our results show that TMS reduces semantic priming, induces a shift in response bias, and increases response sensitivity, but does so only during the processing of manual action sentences. This suggests a preferential contribution of PMv to the processing of sentences describing manual actions compared to other types of sentences. PMID:22178233

  15. Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance.

    PubMed

    Marcos, Encarni; Pani, Pierpaolo; Brunamonti, Emiliano; Deco, Gustavo; Ferraina, Stefano; Verschure, Paul

    2013-04-24

    In the study of decision making, emphasis is placed on different forms of perceptual integration, while the influence of other factors, such as memory, is ignored. In addition, it is believed that the information underlying decision making is carried in the rate of the neuronal response, while its variability is considered unspecific. Here we studied the influence of recent experience on motor decision making by analyzing the activity of neurons in the dorsal premotor area of two monkeys performing a countermanding arm task. We observe that the across-trial variability of the neural response strongly correlates with trial history-dependent changes in reaction time. Using a theoretical model of decision making, we show that a trial history-monitoring signal can explain the observed behavioral and neural modulation. Our study reveals that, in the neural processes that culminate in motor plan maturation, the evidence provided by perception and memory is reflected in mean rate and variance respectively. PMID:23622062

  16. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  17. The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex

    PubMed Central

    Pardo-Vazquez, Jose L.; Acuña, Carlos; Deco, Gustavo

    2015-01-01

    Estimating the difficulty of a decision is a fundamental process to elaborate complex and adaptive behaviour. In this paper, we show that the movement time of behaving monkeys performing a decision-making task is correlated with decision difficulty and that the activity of a population of neurons in ventral Premotor cortex correlates with the movement time. Moreover, we found another population of neurons that encodes the discriminability of the stimulus, thereby supplying another source of information about the difficulty of the decision. The activity of neurons encoding the difficulty can be produced by very different computations. Therefore, we show that decision difficulty can be encoded through three different mechanisms: 1. Switch time coding, 2. rate coding and 3. binary coding. This rich representation reflects the basis of different functional aspects of difficulty in the making of a decision and the possible role of difficulty estimation in complex decision scenarios. PMID:26556807

  18. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception.

    PubMed

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-04-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as inferior frontal gyrus (IFG) and motor cortices, even in the absence of an explicit task. To investigate this, we applied spectral mixes of a flute sound and either vowels or specific music instrument sounds (e.g. trumpet) in an fMRI study, in combination with three different instructions. The instructions either revealed no information about stimulus features, or explicit information about either the music instrument or the vowel features. The results demonstrated that, besides an involvement of posterior temporal areas, stimulus expectancy modulated in particular a network comprising IFG and premotor cortices during this passive listening task. PMID:22377261

  19. Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

    PubMed Central

    Franquemont, Lachlan; Black, Michael J.; Donoghue, John P.

    2015-01-01

    Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. SIGNIFICANCE STATEMENT The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way. PMID:26224870

  20. Independent premotor encoding of the sequence and structure of birdsong in avian cortex.

    PubMed

    Basista, Mark J; Elliott, Kevin C; Wu, Wei; Hyson, Richard L; Bertram, Richard; Johnson, Frank

    2014-12-10

    How the brain coordinates rapid sequences of learned behavior, such as human speech, remains a fundamental problem in neuroscience. Birdsong is a model of such behavior, which is learned and controlled by a neural circuit that spans avian cortex, basal ganglia, and thalamus. The songs of adult male zebra finches (Taeniopygia guttata), produced as rapid sequences of vocal gestures (syllables), are encoded by the cortical premotor region HVC (proper name). While the motor encoding of song within HVC has traditionally been viewed as unitary and distributed, we used an ablation technique to ask whether the sequence and structure of song are processed independently within HVC. Results revealed a functional topography across the medial-lateral axis of HVC. Bilateral ablation of medial HVC induced a positive disruption of song (increase in atypical syllable sequences), whereas bilateral ablation of lateral HVC induced a negative disruption (omission of individual syllables). Bilateral ablation of central HVC either had no effect on song or induced syllable omission, similar to lateral HVC ablation. We then investigated HVC connectivity and found parallel afferent and efferent pathways that transit medial and lateral HVC and converge at vocal motor cortex. In light of recent evidence that syntactic and lexical components of human speech are processed independently by neighboring regions of cortex (Menenti et al., 2012), our demonstration of anatomically distinct pathways that differentially process the sequence and structure of birdsong in parallel suggests that the vertebrate brain relies on a common approach to encode rapid sequences of vocal gestures. PMID:25505334

  1. Functional significance of the electrocorticographic auditory responses in the premotor cortex.

    PubMed

    Tanji, Kazuyo; Sakurada, Kaori; Funiu, Hayato; Matsuda, Kenichiro; Kayama, Takamasa; Ito, Sayuri; Suzuki, Kyoko

    2015-01-01

    Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI) studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS). The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the "sensory theory of speech production," in which it was proposed that sensory representations are used to guide motor-articulatory processes. PMID:25852457

  2. Functional significance of the electrocorticographic auditory responses in the premotor cortex

    PubMed Central

    Tanji, Kazuyo; Sakurada, Kaori; Funiu, Hayato; Matsuda, Kenichiro; Kayama, Takamasa; Ito, Sayuri; Suzuki, Kyoko

    2015-01-01

    Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI) studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS). The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the “sensory theory of speech production,” in which it was proposed that sensory representations are used to guide motor-articulatory processes. PMID:25852457

  3. Gateways of ventral and dorsal streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Gao, Enquan; Burkhalter, Andreas

    2011-01-01

    It is widely held that the spatial processing functions underlying rodent navigation are similar to those encoding human episodic memory (Doeller et al, 2010). Spatial and nonspatial information are provided by all senses including vision. It has been suggested that visual inputs are fed to the navigational network in cortex and hippocampus through dorsal and ventral intracortical streams (Whitlock et al, 2008), but this has not been shown directly in rodents. We have used cyto- and chemoarchitectonic markers, topographic mapping of receptive fields and pathway tracing to determine in mouse visual cortex whether the lateromedial (LM) and the anterolateral fields (AL), which are the principal targets of primary visual cortex (V1) (Wang and Burkhalter, 2007) specialized for processing nonspatial and spatial visual information (Gao et al, 2006), are distinct areas with diverse connections. We have found that the LM/AL border coincides with a change in type 2 muscarinic acetylcholine receptor (m2AChR) expression in layer 4 and with the representation of the lower visual field periphery. Our quantitative analyses further show that LM strongly projects to temporal cortex as well as the lateral entorhinal cortex, which has weak spatial selectivity (Hargreaves et al, 2005). In contrast, AL has stronger connections with posterior parietal cortex, motor cortex and the spatially selective medial entorhinal cortex (Haftig et al, 2005). These results support the notion that LM and AL are architecturally, topographically and connectionally distinct areas of extrastriate visual cortex and that they are gateways for ventral and dorsal streams. PMID:21289200

  4. "How Did I Make It?": Uncertainty about Own Motor Performance after Inhibition of the Premotor Cortex.

    PubMed

    Bolognini, Nadia; Zigiotto, Luca; Carneiro, Maíra Izzadora Souza; Vallar, Giuseppe

    2016-07-01

    Optimal motor performance requires the monitoring of sensorimotor input to ensure that the motor output matches current intentions. The brain is thought to be equipped with a "comparator" system, which monitors and detects the congruence between intended and actual movement; results of such a comparison can reach awareness. This study explored in healthy participants whether the cathodal transcranial direct current stimulation (tDCS) of the right premotor cortex (PM) and right posterior parietal cortex (PPC) can disrupt performance monitoring in a skilled motor task. Before and after tDCS, participants underwent a two-digit sequence motor task; in post-tDCS session, single-pulse TMS (sTMS) was applied to the right motor cortex, contralateral to the performing hand, with the aim of interfering with motor execution. Then, participants rated on a five-item questionnaire their performance at the motor task. Cathodal tDCS of PM (but not sham or PPC tDCS) impaired the participants' ability to evaluate their motor performance reliably, making them unconfident about their judgments. Congruently with the worsened motor performance induced by sTMS, participants reported to have committed more errors after sham and PPC tDCS; such a correlation was not significant after PM tDCS. In line with current computational and neuropsychological models of motor control and awareness, the present results show that a mechanism in the PM monitors and compares intended versus actual movements, evaluating their congruence. Cathodal tDCS of the PM impairs the activity of such a "comparator," disrupting self-confidence about own motor performance. PMID:26967945

  5. Anticipating action effects recruits audiovisual movement representations in the ventral premotor cortex.

    PubMed

    Bischoff, Matthias; Zentgraf, Karen; Pilgramm, Sebastian; Stark, Rudolf; Krüger, Britta; Munzert, Jörn

    2014-10-29

    When table tennis players anticipate the course of the ball while preparing their motor responses, they not only observe their opponents striking the ball but also listen to events such as the sound of racket-ball contact. Because visual stimuli can be detected more easily when accompanied by a sound, we assumed that complementary sensory audiovisual information would influence the anticipation of biological motion, especially when the racket-ball contact is not presented visually, but has to be inferred from continuous movement kinematics and an abrupt sound. Twenty-six observers were examined with fMRI while watching point-light displays (PLDs) of an opposing table tennis player. Their task was to anticipate the resultant ball flight. The sound was presented complementary to the veracious event or at a deviant time point in its kinematics. Results showed that participants performed best in the complementary condition. Using a region-of-interest approach, fMRI data showed that complementary audiovisual stimulation elicited higher activation in the left temporo-occipital middle temporal gyrus (MTGto), the left primary motor cortex, and the right anterior intraparietal sulcus (aIPS). Both hemispheres also revealed higher activation in the ventral premotor cortex (vPMC) and the pars opercularis of the inferior frontal gyrus (BA 44). Ranking the behavioral effect of complementary versus conflicting audiovisual information over participants revealed an association between the complementary information and higher activation in the right vPMC. We conclude that the recruitment of movement representations in the auditory and visual modalities in the vPMC can be influenced by task-relevant cross-modal audiovisual interaction. PMID:25463138

  6. The Organization of Dorsal Frontal Cortex in Humans and Macaques

    PubMed Central

    Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.

    2013-01-01

    The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933

  7. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  8. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

    PubMed

    Marins, Theo F; Rodrigues, Erika C; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  9. Patterns of neural activity in the human ventral premotor cortex reflect a whole-body multisensory percept

    PubMed Central

    Gentile, Giovanni; Björnsdotter, Malin; Petkova, Valeria I.; Abdulkarim, Zakaryah; Ehrsson, H. Henrik

    2015-01-01

    Previous research has shown that the integration of multisensory signals from the body in fronto-parietal association areas underlies the perception of a body part as belonging to one's physical self. What are the neural mechanisms that enable the perception of one's entire body as a unified entity? In one behavioral and one fMRI multivoxel pattern analysis experiment, we used a full-body illusion to investigate how congruent visuo-tactile signals from a single body part facilitate the emergence of the sense of ownership of the entire body. To elicit this illusion, participants viewed the body of a mannequin from the first-person perspective via head-mounted displays while synchronous touches were applied to the hand, abdomen, or leg of the bodies of the participant and the mannequin; asynchronous visuo-tactile stimuli served as controls. The psychometric data indicated that the participants perceived ownership of the entire artificial body regardless of the body segment that received the synchronous visuo-tactile stimuli. Based on multivoxel pattern analysis, we found that the neural responses in the left ventral premotor cortex displayed illusion-specific activity patterns that generalized across all tested pairs of body parts. Crucially, a tripartite generalization analysis revealed the whole-body specificity of these premotor activity patterns. Finally, we also identified multivoxel patterns in the premotor, intraparietal, and lateral occipital cortices and in the putamen that reflected multisensory responses specific to individual body parts. Based on these results, we propose that the dynamic formation of a whole-body percept may be mediated by neuronal populations in the ventral premotor cortex that contain visuo-tactile receptive fields encompassing multiple body segments. PMID:25583608

  10. Seeing or moving in parallel: the premotor cortex does both during bimanual coordination, while the cerebellum monitors the behavioral instability of symmetric movements.

    PubMed

    Christensen, Mark Schram; Ehrsson, H Henrik; Nielsen, Jens Bo

    2013-09-01

    The underlying neural mechanisms of a perceptual bias for in-phase bimanual coordination movements are not well understood. In the present study, we measured brain activity with functional magnetic resonance imaging in healthy subjects during a task, where subjects performed bimanual index finger adduction-abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral cerebellum during the symmetric movements. These findings suggest the presence of different error-monitoring mechanisms for symmetric and parallel movements. The results indicate that separate areas within PMd and SMA are responsible for both perception and performance of ongoing movements and that the cerebellum supports symmetric movements by monitoring deviations from the stable coordination pattern. PMID:23839488

  11. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging

    PubMed Central

    Mayka, Mary A.; Corcos, Daniel M.; Leurgans, Sue E.; Vaillancourt, David E.

    2007-01-01

    The mesial premotor cortex (pre-supplementary motor area and supplementary motor area proper), lateral premotor cortex (dorsal premotor cortex and ventral premotor cortex), and primary sensorimotor cortex (primary motor cortex and primary somatosensory cortex) have been identified as key cortical areas for sensorimotor function. However, the three-dimensional (3-D) anatomic boundaries between these regions remain unclear. In order to clarify the locations and boundaries for these six sensorimotor regions, we surveyed 126 articles describing pre-supplementary motor area, supplementary motor area proper, dorsal premotor cortex, ventral premotor cortex, primary motor cortex, and primary somatosensory cortex. Using strict inclusion criteria, we recorded the reported normalized stereotaxic coordinates (Talairach and Tournoux or MNI) from each experiment. We then computed the probability distributions describing the likelihood of activation, and characterized the shape, extent, and area of each sensorimotor region in 3-D. Additionally, we evaluated the nature of the overlap between the six sensorimotor regions. Using the findings from this meta-analysis, along with suggestions and guidelines of previous researchers, we developed the Human Motor Area Template (HMAT) that can be used for ROI analysis. PMID:16571375

  12. The neural correlates of velocity processing during the observation of a biological effector in the parietal and premotor cortex.

    PubMed

    Di Dio, Cinzia; Di Cesare, Giuseppe; Higuchi, Satomi; Roberts, Neil; Vogt, Stefan; Rizzolatti, Giacomo

    2013-01-01

    While there have been several studies investigating the neural correlates of action observation associated with hand grasping movements, comparatively little is known about the neural bases of observation of reaching movements. In two experiments, using functional magnetic resonance imaging (fMRI), we defined the cortical areas encoding reaching movements and assessed their sensitivity to biological motion and to movement velocity. In the first experiment, participants observed video-clips showing either a biological effector (an arm) or a non-biological object (rolling cylinder) reaching toward a target with a biological and a non-biological motion, respectively. In the second experiment, participants observed video-clips showing either a biological effector (an arm) or a non-biological object (an arrow) reaching toward a target with the same biological motion profiles. The results of the two experiments revealed activation of superior parietal and dorsal premotor sites during observation of the biological motion only, independent of whether it was performed by a biological effector (reaching arm) or a non-biological object (reaching arrow). These areas were not activated when participants observed the non-biological movement (rolling cylinder). To assess the responsiveness of parietal and frontal sites to movement velocity, the fMRI repetition-suppression (RS) technique was used, in which movement was shown with same or different velocities between consecutive videos, and observation of identical stimuli was contrasted with observation of different stimuli. Regions of interest were defined in the parietal and frontal cortices, and their response to stimulus repetition was analyzed (same vs. different velocities). The results showed an RS effect for velocity only during the observation of movements performed by the biological effector and not by the non-biological object. These data indicate that dorsal premotor and superior parietal areas represent a neural

  13. The Dorsal Anterior Cingulate Cortex Modulates Dialectical Self-Thinking

    PubMed Central

    Wang, Fei; Peng, Kaiping; Bai, Yang; Li, Rui; Zhu, Ying; Sun, Pei; Guo, Hua; Yuan, Chun; Rotshtein, Pia; Sui, Jie

    2016-01-01

    Dialectical self-thinking involves holding the view that one can possess contradictory traits such as extraverted and introverted. Prior work has demonstrated that the dorsal part of anterior cingulate cortex (dACC) plays a crucial role in conflict monitoring as well as self-related processing. Here, we tested the function of dACC in dialectical self-thinking using a modified classical self-referential paradigm (self- vs. other-referential thinking), in which participants had to make a judgment whether a simultaneously presented pair of contradictory or non-contradictory traits properly described them while brain activity was recording using functional magnetic resonance imaging (fMRI). The data showed that activity in the dACC during the processing of self-relevant conflicting information was positively correlated with participants’ dispositional level of naïve dialecticism (measured with the Dialectical Self Scale). Psychophysiological interaction (PPI) analyses further revealed increased functional connectivity between the dACC and the caudate, middle temporal gyrus and hippocampus during the processing of self-relevant conflicting information for dialectical thinkers. These results support the hypothesis that the dACC has a key role in dialectical self-thinking. PMID:26903940

  14. The Dorsal Anterior Cingulate Cortex Modulates Dialectical Self-Thinking.

    PubMed

    Wang, Fei; Peng, Kaiping; Bai, Yang; Li, Rui; Zhu, Ying; Sun, Pei; Guo, Hua; Yuan, Chun; Rotshtein, Pia; Sui, Jie

    2016-01-01

    Dialectical self-thinking involves holding the view that one can possess contradictory traits such as extraverted and introverted. Prior work has demonstrated that the dorsal part of anterior cingulate cortex (dACC) plays a crucial role in conflict monitoring as well as self-related processing. Here, we tested the function of dACC in dialectical self-thinking using a modified classical self-referential paradigm (self- vs. other-referential thinking), in which participants had to make a judgment whether a simultaneously presented pair of contradictory or non-contradictory traits properly described them while brain activity was recording using functional magnetic resonance imaging (fMRI). The data showed that activity in the dACC during the processing of self-relevant conflicting information was positively correlated with participants' dispositional level of naïve dialecticism (measured with the Dialectical Self Scale). Psychophysiological interaction (PPI) analyses further revealed increased functional connectivity between the dACC and the caudate, middle temporal gyrus and hippocampus during the processing of self-relevant conflicting information for dialectical thinkers. These results support the hypothesis that the dACC has a key role in dialectical self-thinking. PMID:26903940

  15. Dorsal Anterior Cingulate Cortex: A Bottom-Up View.

    PubMed

    Heilbronner, Sarah R; Hayden, Benjamin Y

    2016-07-01

    The dorsal anterior cingulate cortex (dACC) has attracted great interest from neuroscientists because it is associated with so many important cognitive functions. Despite, or perhaps because of, its rich functional repertoire, we lack a single comprehensive view of its function. Most research has approached this puzzle from the top down, using aggregate measures such as neuroimaging. We provide a view from the bottom up, with a focus on single-unit responses and anatomy. We summarize the strengths and weaknesses of the three major approaches to characterizing the dACC: as a monitor, as a controller, and as an economic structure. We argue that neurons in the dACC are specialized for representing contexts, or task-state variables relevant for behavior, and strategies, or aspects of future plans. We propose that dACC neurons link contexts with strategies by integrating diverse task-relevant information to create a rich representation of task space and exert high-level and abstract control over decision and action. PMID:27090954

  16. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex

    PubMed Central

    Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional

  17. Stimulus Expectancy Modulates Inferior Frontal Gyrus and Premotor Cortex Activity in Auditory Perception

    ERIC Educational Resources Information Center

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-01-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…

  18. The selective role of premotor cortex in speech perception: a contribution to phoneme judgements but not speech comprehension.

    PubMed

    Krieger-Redwood, Katya; Gaskell, M Gareth; Lindsay, Shane; Jefferies, Elizabeth

    2013-12-01

    Several accounts of speech perception propose that the areas involved in producing language are also involved in perceiving it. In line with this view, neuroimaging studies show activation of premotor cortex (PMC) during phoneme judgment tasks; however, there is debate about whether speech perception necessarily involves motor processes, across all task contexts, or whether the contribution of PMC is restricted to tasks requiring explicit phoneme awareness. Some aspects of speech processing, such as mapping sounds onto meaning, may proceed without the involvement of motor speech areas if PMC specifically contributes to the manipulation and categorical perception of phonemes. We applied TMS to three sites-PMC, posterior superior temporal gyrus, and occipital pole-and for the first time within the TMS literature, directly contrasted two speech perception tasks that required explicit phoneme decisions and mapping of speech sounds onto semantic categories, respectively. TMS to PMC disrupted explicit phonological judgments but not access to meaning for the same speech stimuli. TMS to two further sites confirmed that this pattern was site specific and did not reflect a generic difference in the susceptibility of our experimental tasks to TMS: stimulation of pSTG, a site involved in auditory processing, disrupted performance in both language tasks, whereas stimulation of occipital pole had no effect on performance in either task. These findings demonstrate that, although PMC is important for explicit phonological judgments, crucially, PMC is not necessary for mapping speech onto meanings. PMID:23937689

  19. Ventral premotor-motor cortex interactions in the macaque monkey during grasp: response of single neurons to intracortical microstimulation.

    PubMed

    Kraskov, Alexander; Prabhu, Gita; Quallo, Marsha M; Lemon, Roger N; Brochier, Thomas

    2011-06-15

    Recent stimulation studies in monkeys and humans have shown strong interactions between ventral premotor cortex (area F5) and the hand area of primary motor cortex (M1). These short-latency interactions usually involve facilitation from F5 of M1 outputs to hand muscles, although suppression has also been reported. This study, performed in three awake macaque monkeys, sought evidence that these interactions could be mediated by short-latency excitatory and inhibitory responses of single M1 neurons active during grasping tasks. We recorded responses of these M1 neurons to single low-threshold (≤40 μA) intracortical microstimuli delivered to F5 sites at which grasp-related neurons were recorded. In 29 sessions, we tested 232 M1 neurons with stimuli delivered to between one and four sites in F5. Of the 415 responses recorded, 142 (34%) showed significant effects. The most common type of response was pure excitation (53% of responses), with short latency (1.8-3.0 ms) and brief duration (∼1 ms); purely inhibitory responses had slightly longer latencies (2-5 ms) and were of small amplitude and longer duration (5-7 ms). They accounted for 13% of responses, whereas mixed excitation then inhibition was seen in 34%. Remarkably, a rather similar set of findings applied to 280 responses of 138 F5 neurons to M1 stimulation; 109 (34%) responses showed significant effects. Thus, with low-intensity stimuli, the dominant interaction between these two cortical areas is one of short-latency, brief excitation, most likely mediated by reciprocal F5-M1 connections. Some neurons were tested with stimuli at both 20 and 40 μA; inhibition tended to dominate at the higher intensity. PMID:21677165

  20. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

    PubMed

    Takemura, Hiromasa; Rokem, Ariel; Winawer, Jonathan; Yeatman, Jason D; Wandell, Brian A; Pestilli, Franco

    2016-05-01

    Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information. PMID:25828567

  1. Increased ventral premotor cortex recruitment after arm training in an fMRI study with subacute stroke patients.

    PubMed

    Horn, Ulrike; Roschka, Sybille; Eyme, Katharina; Walz, Andrea-Daniela; Platz, Thomas; Lotze, Martin

    2016-07-15

    To investigate therapy associated changes in the cerebral representation of movement after stroke, we used functional magnetic resonance imaging (fMRI) during an active and a passive motor task for the affected and unaffected hand before and after a three week comprehensive hand motor training. Twelve patients in the subacute phase from 2 to 9 weeks after mild to moderate motor stroke were recruited. During fMRI, the active task comprised fist clenching, which was precisely controlled for motor performance by visual feedback of force and frequency. The passive task consisted of wrist flexion-extension of 1Hz frequency by means of a pneumatic driven splint. Arm Ability Training (AAT) was conducted one hour per day over 3 weeks in addition to inward rehabilitative therapy. Performance gain was tested using movements trained with AAT, but also with conventional hand motor tests (Nine-Hole-Peg Test, Box-and-Block Test). Rehabilitation therapy and AAT resulted in considerable improvement of performance in trained tasks and other hand motor functions (e.g., Nine-Hole-Peg Test). FMRI activation in the ventral premotor cortex (vPMC) of the lesioned hemisphere increased over time for the active task only for the affected hand. No such change was present for the passive wrist extension task or the active task with the unaffected hand. In addition, only for the post measurement of the active task performed with the affected hand, bilateral vPMC shows a more pronounced activation than in healthy controls. This finding contradicts the simple "near to normal is good recovery" opinion. PMID:27113682

  2. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey.

    PubMed

    Maier, Marc A; Kirkwood, Peter A; Brochier, Thomas; Lemon, Roger N

    2013-06-01

    The responses of individual primate corticospinal neurons to localized electrical stimulation of primary motor (M1) and of ventral premotor cortex (area F5) are poorly documented. To rectify this and to study interactions between responses from these areas, we recorded corticospinal axons, identified by pyramidal tract stimulation, in the cervical spinal cord of three chloralose-anesthetized macaque monkeys. Single stimuli (≤400 μA) were delivered to the hand area of M1 or F5 through intracortical microwire arrays. Only 14/112 (13%) axons showed responses to M1 stimuli that indicated direct intracortical activation of corticospinal neurons (D-responses); no D-responses were seen from F5. In contrast, 62 axons (55%) exhibited consistent later responses to M1 stimulation, corresponding to indirect activation (I-responses), showing that single-pulse intracortical stimulation of motor areas can result in trans-synaptic activation of a high proportion of the corticospinal output. A combined latency histogram of all axon responses was nonperiodic, clearly different from the periodic surface-recorded corticospinal volleys. This was readily explained by correcting for conduction velocities of individual axons. D-responding axons, taken as originating in neurons close to the M1 stimulating electrodes, showed more I-responses from M1 than those without a D-response, and 8/10 of these axons also responded to F5 stimulation. Altogether, 33% of tested axons responded to F5 stimulation, most of which also showed I-responses from M1. These excitatory effects are in keeping with facilitation of hand muscles evoked from F5 being relayed via M1. This was further demonstrated by facilitation of test responses from M1 by conditioning F5 stimuli. PMID:23536718

  3. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    PubMed Central

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  4. Effectiveness and neural mechanisms associated with tDCS delivered to premotor cortex in stroke rehabilitation: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background More than 60% of stroke survivors experience residual deficits of the paretic upper limb/hand. Standard rehabilitation generates modest gains. Stimulation delivered to the surviving Primary Motor Cortex in the stroke-affected hemisphere has been considered a promising adjunct. However, recent trials challenge its advantage. We discuss our pilot clinical trial that aims to address factors implicated in divergent success of the approach. We assess safety, feasibility and efficacy of targeting an alternate locus during rehabilitation- the premotor cortex. In anticipating variance across patients, we measure neural markers differentiating response from non-response. Methods/Design In a randomized, sham-controlled, double-blinded pilot clinical study, patients with chronic stroke (n = 20) are assigned to receive transcranial direct current stimulation delivered to the premotor cortex or sham during rehabilitation of the paretic arm/hand. Patients receive the designated intervention for 30 min, twice a day for 3 days a week for 5 weeks. We assess hand function and patients’ reports of use of paretic hand. A general linear mixed methods model will analyze changes from pre- to post-intervention. Responders and non-responders will be compared upon baseline level of function, and neural substrates, including function and integrity of output tracts, bi-hemispheric balance, and lesion profile. Incidence of adverse events will be compared using Fisher’s Exact test, while rigor of blinding will be assessed with Chi-square analysis to ascertain feasibility. Discussion Variable success of cortical stimulation in rehabilitation can be related to gaps in theoretical basis and clinical investigation. Given that most patients with severe deficits have damage to the primary motor cortex or its output pathways, it would be futile to target stimulation to this site. We suggest targeting premotor cortex because it contributes substantially to descending output, a

  5. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  6. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    ERIC Educational Resources Information Center

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  7. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory.

    PubMed

    Woodcock, Eric A; Wadehra, Sunali; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome. PMID:27092063

  8. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory

    PubMed Central

    Woodcock, Eric A.; Wadehra, Sunali; Diwadkar, Vaibhav A.

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness’ characterization as a disconnection syndrome. PMID:27092063

  9. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex

    PubMed Central

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F.; Obermayer, Joshua; Heistek, Tim S.; de Haan, Roel; de Kock, Christiaan P. J.; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D.

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing.

  10. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    PubMed

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak. PMID:24236696

  11. Distinct core thalamocortical pathways to central and dorsal primary auditory cortex.

    PubMed

    Read, Heather L; Nauen, David W; Escabí, Monty A; Miller, Lee M; Schreiner, Christoph E; Winer, Jeffery A

    2011-04-01

    The cat primary auditory cortex (AI) is usually assumed to form one continuous functional region. However, the dorsal and central parts of the AI iso-frequency domain contain neurons that have distinct response properties to acoustic stimuli. In this study, we asked whether neurons projecting to dorsal versus central regions of AI originate in different parts of the medial geniculate body (MGB). Spike rate responses to variations in the sound level and frequency of pure tones were used to measure characteristic frequency (CF) and frequency resolution. These were mapped with high spatial density in order to place retrograde tracers into matching frequency regions of the central narrow-band region (cNB) and dorsal AI. Labeled neurons projecting to these two parts of AI were concentrated in the middle and rostral thirds of the MGB, respectively. There was little evidence that differences in dorsal and central AI function could be due to convergent input from cells outside the ventral division of the MGB (MGBv). Instead, inputs arising from different locations along the caudal-to-rostral dimension of MGBv represent potential sources of response differences between central and dorsal sub-regions of AI. PMID:21145383

  12. Premotor and Motor Cortices Encode Reward

    PubMed Central

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one’s actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  13. Premotor and Motor Cortices Encode Reward.

    PubMed

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  14. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  15. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. PMID:26493441

  16. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    PubMed

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. PMID:26166620

  17. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  18. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  19. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.

    PubMed

    Oemisch, Mariann; Westendorff, Stephanie; Everling, Stefan; Womelsdorf, Thilo

    2015-09-23

    The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and

  20. Medial prefrontal cortex-dorsal anterior cingulate cortex connectivity during behavior selection without an objective correct answer.

    PubMed

    Nakao, Takashi; Osumi, Takahiro; Ohira, Hideki; Kasuya, Yukinori; Shinoda, Jun; Yamada, Jitsuhiro; Northoff, Georg

    2010-10-01

    Life choices (e.g., occupational choice) often include situations with two or more possible correct answers, thereby putting us in a situation of conflict. Recent reports have described that the evaluation of conflict might be crucially mediated by neural activity in the dorsal anterior cingulate cortex (dACC), although the reduction of conflict might rather be associated with neural activity in the medial prefrontal cortex (MPFC). What remains unclear is whether these regions mutually interact, thereby raising the question of their functional connectivity during conflict situations. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging (fMRI) data, this study shows that the dACC co-varied significantly higher with the MPFC during an occupational choice task with two possible correct answers when compared to the control task: a word-length task with one possible correct answer. These results suggest that the MPFC has a functional relation with dACC, especially in conflict situations where there is no objective correct answer. Taken together, this lends support to the assumption that the MPFC might be crucial in biasing the decision, thereby reducing conflict. PMID:20655361

  1. Increased functional connectivity between dorsal posterior parietal and ventral occipitotemporal cortex during uncertain memory decisions.

    PubMed

    Hutchinson, J Benjamin; Uncapher, Melina R; Wagner, Anthony D

    2015-01-01

    Retrieval of episodic memories is a multi-component act that relies on numerous operations ranging from processing the retrieval cue, evaluating retrieved information, and selecting the appropriate response given the demands of the task. Motivated by a rich functional neuroimaging literature, recent theorizing about various computations at retrieval has focused on the role of posterior parietal cortex (PPC). In a potentially promising line of research, recent neuroimaging findings suggest that different subregions of dorsal PPC respond distinctly to different aspects of retrieval decisions, suggesting that better understanding of their contributions might shed light on the component processes of retrieval. In an attempt to understand the basic operations performed by dorsal PPC, we used functional MRI and functional connectivity analyses to examine how activation in, and connectivity between, dorsal PPC and ventral temporal regions representing retrieval cues varies as a function of retrieval decision uncertainty. Specifically, participants made a five-point recognition confidence judgment for a series of old and new visually presented words. Consistent with prior studies, memory-related activity patterns dissociated across left dorsal PPC subregions, with activity in the lateral IPS tracking the degree to which participants perceived an item to be old, whereas activity in the SPL increased as a function of decision uncertainty. Importantly, whole-brain functional connectivity analyses further revealed that SPL activity was more strongly correlated with that in the visual word-form area during uncertain relative to certain decisions. These data suggest that the involvement of SPL during episodic retrieval reflects, at least in part, the processing of the retrieval cue, perhaps in service of attempts to increase the mnemonic evidence elicited by the cue. PMID:24825621

  2. Retinotopic organization of extrastriate cortex in the owl monkey--dorsal and lateral areas.

    PubMed

    Sereno, Martin I; McDonald, Colin T; Allman, John M

    2015-01-01

    Dense retinotopy data sets were obtained by microelectrode visual receptive field mapping in dorsal and lateral visual cortex of anesthetized owl monkeys. The cortex was then physically flatmounted and stained for myelin or cytochrome oxidase. Retinotopic mapping data were digitized, interpolated to a uniform grid, analyzed using the visual field sign technique-which locally distinguishes mirror image from nonmirror image visual field representations-and correlated with the myelin or cytochrome oxidase patterns. The region between V2 (nonmirror) and MT (nonmirror) contains three areas-DLp (mirror), DLi (nonmirror), and DLa/MTc (mirror). DM (mirror) was thin anteroposteriorly, and its reduced upper field bent somewhat anteriorly away from V2. DI (nonmirror) directly adjoined V2 (nonmirror) and contained only an upper field representation that also adjoined upper field DM (mirror). Retinotopy was used to define area VPP (nonmirror), which adjoins DM anteriorly, area FSTd (mirror), which adjoins MT ventrolaterally, and TP (mirror), which adjoins MT and DLa/MTc dorsoanteriorly. There was additional retinotopic and architectonic evidence for five more subdivisions of dorsal and lateral extrastriate cortex-TA (nonmirror), MSTd (mirror), MSTv (nonmirror), FSTv (nonmirror), and PP (mirror). Our data appear quite similar to data from marmosets, though our field sign-based areal subdivisions are slightly different. The region immediately anterior to the superiorly located central lower visual field V2 varied substantially between individuals, but always contained upper fields immediately touching lower visual field V2. This region appears to vary even more between species. Though we provide a summary diagram, given within- and between-species variation, it should be regarded as a guide to parsing complex retinotopy rather than a literal representation of any individual, or as the only way to agglomerate the complex mosaic of partial upper and lower field, mirror- and

  3. Insula–Dorsal Anterior Cingulate Cortex Coupling is Associated with Enhanced Brain Reactivity to Smoking Cues

    PubMed Central

    Janes, Amy C; Farmer, Stacey; Peechatka, Alyssa L; Frederick, Blaise de B; Lukas, Scott E

    2015-01-01

    The insula plays a critical role in maintaining nicotine dependence and reactivity to smoking cues. More broadly, the insula and the dorsal anterior cingulate cortex (dACC) are key nodes of the salience network (SN), which integrates internal and extrapersonal information to guide behavior. Thus, insula–dACC interactions may be integral in processing salient information such as smoking cues that facilitate continued nicotine use. We evaluated functional magnetic resonance imaging (fMRI) data from nicotine-dependent participants during rest, and again when they viewed smoking-related images. Greater insula–dACC coupling at rest was significantly correlated with enhanced smoking cue-reactivity in brain areas associated with attention and motor preparation, including the visual cortex, right ventral lateral prefrontal cortex, and the dorsal striatum. In an independent cohort, we found that insula–dACC connectivity was stable over 1-h delay and was not influenced by changes in subjective craving or expired carbon monoxide, suggesting that connectivity strength between these regions may be a trait associated with heightened cue-reactivity. Finally, we also showed that insula reactivity to smoking cues correlates with a rise in cue-reactivity throughout the entire SN, indicating that the insula's role in smoking cue-reactivity is not functionally independent, and may actually represent the engagement of the entire SN. Collectively, these data provide a more network-level understanding of the insula's role in nicotine dependence and shows a relationship between inherent brain organization and smoking cue-reactivity. PMID:25567427

  4. Preparatory Activity and Connectivity in Dorsal Anterior Cingulate Cortex for Cognitive Control

    PubMed Central

    Schulz, Kurt P.; Bédard, Anne-Claude V.; Czarnecki, Rosa; Fan, Jin

    2011-01-01

    Dorsal anterior cingulate cortex (dACC) is composed of functionally distinct subregions that may contribute to the top-down control of response selection and preparation. Multiple motor areas have been identified in dACC, including an anterior zone implicated in conflict monitoring and a caudal zone involved in movement execution. This study tested the involvement of a third cingulate area, the posterior zone of dACC, in the top-down control of response selection and preparation. Sixteen healthy young adults were scanned with event-related functional magnetic resonance imaging while performing a cued go/no-go task that was designed to minimize response conflicts. The activation and functional connectivity of dACC were tested with standard convolution models and psychophysiological interaction analyses, respectively. Ready cues that informed the direction of the impending response triggered preparatory neural activity in the posterior zone of dACC and strengthened functional connectivity with the anterior and caudal zones of dACC, as well as perigenual anterior cingulate cortex, frontal operculum, dorsolateral prefrontal cortex, sensory association cortices, and extra-pyramidal motor areas. The preparatory cues activated dACC above and beyond the general arousing effects common to cues despite negligible conflict in the go/no-go task. The integration of cognitive, sensorimotor, and incentive signals in dACC places the region in an ideal position to select and prepare appropriate behavioral responses to achieve higher-level goals. PMID:21515388

  5. Evolution of Premotor Cortical Excitability after Cathodal Inhibition of the Primary Motor Cortex: A Sham-Controlled Serial Navigated TMS Study

    PubMed Central

    Bathe-Peters, Rouven; Irlbacher, Kerstin; Brandt, Stephan A.

    2013-01-01

    Background Premotor cortical regions (PMC) play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1). Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS). Purpose The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance. Hypothesis Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability. Methods We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS) to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function. Results Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance. Conclusion The PMC

  6. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    PubMed

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  7. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  8. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    PubMed Central

    Asemi, Avisa; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A.; Bressler, Steven L.

    2015-01-01

    Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior. PMID:26089783

  9. Exaggerated Activation of Dorsal Anterior Cingulate Cortex During Cognitive Interference: A Monozygotic Twin Study of Posttraumatic Stress Disorder

    PubMed Central

    Shin, Lisa M.; Bush, George; Milad, Mohammed R.; Lasko, Natasha B.; Brohawn, Kathryn Handwerger; Hughes, Katherine C.; Macklin, Michael L.; Gold, Andrea L.; Karpf, Rachel D.; Orr, Scott P.; Rauch, Scott L.; Pitman, Roger K.

    2013-01-01

    Objective Neuroimaging studies have revealed functional abnormalities in the anterior cingulate cortex in posttraumatic stress disorder (PTSD). The goal of the current research was to determine whether hyperresponsivity of the dorsal anterior cingulate in PTSD is an acquired characteristic or familial risk factor. Method Using a case-control twin design, we studied combat-exposed veterans with PTSD (n=12) and their identical combat-unexposed co-twins (n=12), as well as combat-exposed veterans without PTSD (n=14) and their identical combat-unexposed co-twins (n=14). Participants underwent functional magnetic resonance imaging during completion of the Multi-Source Interference Task, which reliably activates the dorsal anterior cingulate. Results Combat veterans with PTSD and their co-twins had significantly greater activation in the dorsal anterior cingulate and tended to have larger response time difference scores, as compared to non-PTSD veterans and their co-twins. Dorsal anterior cingulate activation in the exposed twins was positively correlated with their PTSD symptom severity. Dorsal anterior cingulate activation in the unexposed twins was positively correlated with their combat-exposed co-twins’ PTSD symptom severity, but not with depression or alcohol use severity in the combat-exposed co-twins. Conclusions Hyperresponsivity in the dorsal anterior cingulate appears to be a familial risk factor for the development of PTSD following psychological trauma. PMID:21724666

  10. Controlling the self: the role of the dorsal frontomedian cortex in intentional inhibition.

    PubMed

    Lynn, Margaret T; Muhle-Karbe, Paul S; Brass, Marcel

    2014-12-01

    Intentional inhibition refers to the suppression of ongoing behavior on the basis of internally-generated decisions. This ability to cancel planned actions at the last moment is thought to be critical for self-control and has been related to activation in a circumscribed region of the dorsal frontomedian cortex (dFMC). Preliminary theories of intentional inhibition were based on studies that exclusively examined the cancellation of motor responses, and consequently concluded that this region serves the suppression of motor output. Yet recent evidence suggests that the dFMC is also involved in inhibitory control over more abstract internal states such as emotions or desires that have no immediate behavioral output. In this review, we therefore wish to put forth a new integrative perspective on the role of the dFMC in human self-control. We will argue that by virtue of its anatomical location and functional connections, this area may subserve the disengagement from current urges and impulses, thus facilitating successful exertions of self-control across a wide range of contexts by overcoming a self-focused perspective. We will discuss the fit of this view of the dFMC with the existing literature, identify critical experimental determinants for engaging the dFMC in intentional inhibition, and outline promising perspectives for future research. PMID:25220165

  11. Dissociation of retinal and headcentric disparity signals in dorsal human cortex

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van Den Berg, Albert V.

    2015-01-01

    Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012), and unmasking camouflaged surfaces (Rokers et al., 2009), but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6) and lateral motion areas (MT+), which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011), but also translational speed of the head relative to the scene. Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex. PMID:25759642

  12. Dorsal and Ventral Pathways for Prosody.

    PubMed

    Sammler, Daniela; Grosbras, Marie-Hélène; Anwander, Alfred; Bestelmeyer, Patricia E G; Belin, Pascal

    2015-12-01

    Our vocal tone--the prosody--contributes a lot to the meaning of speech beyond the actual words. Indeed, the hesitant tone of a "yes" may be more telling than its affirmative lexical meaning. The human brain contains dorsal and ventral processing streams in the left hemisphere that underlie core linguistic abilities such as phonology, syntax, and semantics. Whether or not prosody--a reportedly right-hemispheric faculty--involves analogous processing streams is a matter of debate. Functional connectivity studies on prosody leave no doubt about the existence of such streams, but opinions diverge on whether information travels along dorsal or ventral pathways. Here we show, with a novel paradigm using audio morphing combined with multimodal neuroimaging and brain stimulation, that prosody perception takes dual routes along dorsal and ventral pathways in the right hemisphere. In experiment 1, categorization of speech stimuli that gradually varied in their prosodic pitch contour (between statement and question) involved (1) an auditory ventral pathway along the superior temporal lobe and (2) auditory-motor dorsal pathways connecting posterior temporal and inferior frontal/premotor areas. In experiment 2, inhibitory stimulation of right premotor cortex as a key node of the dorsal stream decreased participants' performance in prosody categorization, arguing for a motor involvement in prosody perception. These data draw a dual-stream picture of prosodic processing that parallels the established left-hemispheric multi-stream architecture of language, but with relative rightward asymmetry. PMID:26549262

  13. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game.

    PubMed

    Seo, Hyojung; Lee, Daeyeol

    2007-08-01

    The process of decision making in humans and other animals is adaptive and can be tuned through experience so as to optimize the outcomes of their choices in a dynamic environment. Previous studies have demonstrated that the anterior cingulate cortex plays an important role in updating the animal's behavioral strategies when the action outcome contingencies change. Moreover, neurons in the anterior cingulate cortex often encode the signals related to expected or actual reward. We investigated whether reward-related activity in the anterior cingulate cortex is affected by the animal's previous reward history. This was tested in rhesus monkeys trained to make binary choices in a computer-simulated competitive zero-sum game. The animal's choice behavior was relatively close to the optimal strategy but also revealed small systematic biases that are consistent with the use of a reinforcement learning algorithm. In addition, the activity of neurons in the dorsal anterior cingulate cortex that was related to the reward received by the animal in a given trial often was modulated by the rewards in the previous trials. Some of these neurons encoded the rate of rewards in previous trials, whereas others displayed activity modulations more closely related to the reward prediction errors. In contrast, signals related to the animal's choices were represented only weakly in this cortical area. These results suggest that neurons in the dorsal anterior cingulate cortex might be involved in the subjective evaluation of choice outcomes based on the animal's reward history. PMID:17670983

  14. Optogenetic Inhibition of Dorsal Medial Prefrontal Cortex Attenuates Stress-Induced Reinstatement of Palatable Food Seeking in Female Rats

    PubMed Central

    Calu, Donna J.; Kawa, Alex B.; Marchant, Nathan J.; Navarre, Brittany M.; Henderson, Mark J.; Chen, Billy; Yau, Hau-Jie; Bossert, Jennifer M.; Schoenbaum, Geoffrey; Deisseroth, Karl; Harvey, Brandon K.; Hope, Bruce T.; Shaham, Yavin

    2013-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress. Recently, we identified a role of dorsal medial prefrontal cortex (mPFC) neurons in stress-induced reinstatement of palatable food seeking in male rats. It is unknown whether endogenous neural activity in dorsal mPFC drives stress-induced reinstatement in female rats. Here, we used an optogenetic approach, in which female rats received bilateral dorsal mPFC microinjections of viral constructs coding light-sensitive eNpHR3.0 – eYFP or control eYFP protein and intracranial fiber optic implants. Rats were food restricted and trained to lever press for palatable food pellets. Subsequently, pellets were removed, and lever pressing was extinguished; then the effect of bilateral dorsal mPFC light delivery on reinstatement of food seeking was assessed after injections of the pharmacological stressor yohimbine (an α-2 andrenoceptor antagonist) or pellet priming, a manipulation known to provoke food seeking in hungry rats. Dorsal mPFC light delivery attenuated yohimbine-induced reinstatement of food seeking in eNpHR3.0-injected but not eYFP-injected rats. This optical manipulation had no effect on pellet-priming-induced reinstatement or ongoing food-reinforced responding. Dorsal mPFC light delivery attenuated yohimbine-induced Fos immuno-reactivity and disrupted neural activity during in vivo electrophysiological recording in awake rats. Optical stimulation caused significant outward currents and blocked electrically evoked action potentials in eNpHR3.0-injected but not eYFP-injected mPFC hemispheres. Light delivery alone caused no significant inflammatory response in mPFC. These findings indicate that intracranial light delivery in eNpHR3.0 rats disrupts endogenous dorsal mPFC neural activity that plays a role in stress-induced relapse to food seeking in female rats. PMID:23283335

  15. Childhood emotional maltreatment severity is associated with dorsal medial prefrontal cortex responsivity to social exclusion in young adults.

    PubMed

    van Harmelen, Anne-Laura; Hauber, Kirsten; Gunther Moor, Bregtje; Spinhoven, Philip; Boon, Albert E; Crone, Eveline A; Elzinga, Bernet M

    2014-01-01

    Children who have experienced chronic parental rejection and exclusion during childhood, as is the case in childhood emotional maltreatment, may become especially sensitive to social exclusion. This study investigated the neural and emotional responses to social exclusion (with the Cyberball task) in young adults reporting childhood emotional maltreatment. Using functional magnetic resonance imaging, we investigated brain responses and self-reported distress to social exclusion in 46 young adult patients and healthy controls (mean age = 19.2±2.16) reporting low to extreme childhood emotional maltreatment. Consistent with prior studies, social exclusion was associated with activity in the ventral medial prefrontal cortex and posterior cingulate cortex. In addition, severity of childhood emotional maltreatment was positively associated with increased dorsal medial prefrontal cortex responsivity to social exclusion. The dorsal medial prefrontal cortex plays a crucial role in self-and other-referential processing, suggesting that the more individuals have been rejected and maltreated in childhood, the more self- and other- processing is elicited by social exclusion in adulthood. Negative self-referential thinking, in itself, enhances cognitive vulnerability for the development of psychiatric disorders. Therefore, our findings may underlie the emotional and behavioural difficulties that have been reported in adults reporting childhood emotional maltreatment. PMID:24416347

  16. Modulation of serotonin dynamics in the dorsal raphe nucleus via high frequency medial prefrontal cortex stimulation.

    PubMed

    Srejic, Luka R; Wood, Kevin M; Zeqja, Anisa; Hashemi, Parastoo; Hutchison, William D

    2016-10-01

    The subcallosal cingulate (SCC) region, or its rodent homologue the medial prefrontal cortex (mPFC), and midbrain dorsal raphe (DR) are crucial nodes of the widespread network implicated in emotional regulation. Stimulation of the SCC is being explored as a potential treatment for depression. Because modulation of the 5-HT system is the most common pharmacological means of treating depression, we sought to establish 5-HT's role in the mPFC-DR projection. Using anaesthetized mice, we recorded neuronal activity in 49 neurons of the DR before, during, and after high frequency stimulation (HFS) of the mPFC. The majority of DR cells (74%) significantly decreased firing rate during HFS (p<0.001, 65.7±9.4% of baseline, 14 mice). To see the effect of mPFC-HFS on 5-HT neurons, we used transgenic mice with expression of the channelrhodopsin fusion protein directed to the 5-HT neuronal population. Neurons were categorized as 5-HT based on their excitatory response to blue light stimulation (p<0.05, n=11). Our main finding was that identified 5-HT neurons in the DR were clearly inhibited by HFS, albeit non-selectively. Lastly, we used fast scan cyclic voltammetry (FSCV) to investigate the effects of mPFC-HFS on the release and reuptake of electrically stimulated 5-HT in the DR of C57BL/6J mice. Serotonin clearance was significantly faster following 5min HFS (2.3±1.0s, n=5, p<0.05) when compared to control levels (3.7±1.0s, n=5), indicating less release or more efficient 5-HT reuptake. Taken together, these findings imply that mPFC stimulation alters 5-HT activity dynamics in the DR. Such altered 5-HT dynamics may modulate the potential therapeutic mechanisms of SCC/mPFC stimulation. PMID:27326670

  17. Proliferative Defects and Formation of a Double Cortex in Mice Lacking Mltt4 and Cdh2 in the Dorsal Telencephalon

    PubMed Central

    Gil-Sanz, Cristina; Landeira, Bruna; Ramos, Cynthia; Costa, Marcos R.

    2014-01-01

    Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype. PMID:25100583

  18. Spinal dorsal horn neuron response to mechanical stimuli is decreased by electrical stimulation of the primary motor cortex.

    PubMed

    Senapati, Arun K; Huntington, Paula J; Peng, Yuan B

    2005-03-01

    Motor cortex stimulation (MCS) has been used clinically as a tool for the control for central post-stroke pain and neuropathic facial pain. The underlying mechanisms involved in the antinociceptive effect of MCS are not clearly understood. We hypothesize that the antinociceptive effect is through the modulation of the spinal dorsal horn neuron activity. Thirty-two wide dynamic range spinal dorsal horn neurons were recorded, in response to graded mechanical stimulation (brush, pressure, and pinch) at their respective receptive fields, while a stepwise electrical stimulation was applied simultaneously in the motor cortex. The responses to brush at control, 10 V, 20 V, and 30 V, and recovery were 11.5+/-1.6, 12.1+/-2.6, 11.1+/-2.2, 10.5+/-2.1, and 13.2+/-2.5 spikes/s, respectively. The responses to pressure at control, 10 V, 20 V, and 30 V, and recovery were 33.2+/-6.1, 22.9+/-5.3, 20.5+/-5.0, 17.3+/-3.8, and 27.0+/-4.0 spikes/s, respectively. The responses to pinch at control, 10 V, 20 V, and 30 V, and recovery were 37.2+/-6.4, 26.3+/-4.7, 25.9+/-4.7, 22.5+/-4.3, and 35.0+/-6.2 spikes/s, respectively. It is concluded that, in the rat, electrical stimulation of the motor cortex produces significant transient inhibition of the responses of spinal cord dorsal horn neurons to higher intensity mechanical stimuli without affecting their response to an innocuous stimulus. PMID:15725415

  19. Memory consolidation of fear conditioning: bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex.

    PubMed

    Feng, Pan; Feng, Tingyong; Chen, Zhencai; Lei, Xu

    2014-11-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala-dorsal anterior cingulate cortex (dACC) and hippocampus-insula functional connectivity were enhanced, whereas the amygdala-medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala-mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  20. Memory consolidation of fear conditioning: Bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex

    PubMed Central

    Feng, Pan; Chen, Zhencai; Lei, Xu

    2014-01-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala–dorsal anterior cingulate cortex (dACC) and hippocampus–insula functional connectivity were enhanced, whereas the amygdala–medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala–mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  1. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    PubMed

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring. PMID:25958159

  2. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex

    PubMed Central

    Kok, Melanie A.; Stolzberg, Daniel; Brown, Trecia A.

    2014-01-01

    Current models of hierarchical processing in auditory cortex have been based principally on anatomical connectivity while functional interactions between individual regions have remained largely unexplored. Previous cortical deactivation studies in the cat have addressed functional reciprocal connectivity between primary auditory cortex (A1) and other hierarchically lower level fields. The present study sought to assess the functional contribution of inputs along multiple stages of the current hierarchical model to a higher order area, the dorsal zone (DZ) of auditory cortex, in the anaesthetized cat. Cryoloops were placed over A1 and posterior auditory field (PAF). Multiunit neuronal responses to noise burst and tonal stimuli were recorded in DZ during cortical deactivation of each field individually and in concert. Deactivation of A1 suppressed peak neuronal responses in DZ regardless of stimulus and resulted in increased minimum thresholds and reduced absolute bandwidths for tone frequency receptive fields in DZ. PAF deactivation had less robust effects on DZ firing rates and receptive fields compared with A1 deactivation, and combined A1/PAF cooling was largely driven by the effects of A1 deactivation at the population level. These results provide physiological support for the current anatomically based model of both serial and parallel processing schemes in auditory cortical hierarchical organization. PMID:25339709

  3. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex.

    PubMed

    Kok, Melanie A; Stolzberg, Daniel; Brown, Trecia A; Lomber, Stephen G

    2015-01-15

    Current models of hierarchical processing in auditory cortex have been based principally on anatomical connectivity while functional interactions between individual regions have remained largely unexplored. Previous cortical deactivation studies in the cat have addressed functional reciprocal connectivity between primary auditory cortex (A1) and other hierarchically lower level fields. The present study sought to assess the functional contribution of inputs along multiple stages of the current hierarchical model to a higher order area, the dorsal zone (DZ) of auditory cortex, in the anaesthetized cat. Cryoloops were placed over A1 and posterior auditory field (PAF). Multiunit neuronal responses to noise burst and tonal stimuli were recorded in DZ during cortical deactivation of each field individually and in concert. Deactivation of A1 suppressed peak neuronal responses in DZ regardless of stimulus and resulted in increased minimum thresholds and reduced absolute bandwidths for tone frequency receptive fields in DZ. PAF deactivation had less robust effects on DZ firing rates and receptive fields compared with A1 deactivation, and combined A1/PAF cooling was largely driven by the effects of A1 deactivation at the population level. These results provide physiological support for the current anatomically based model of both serial and parallel processing schemes in auditory cortical hierarchical organization. PMID:25339709

  4. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.

    PubMed

    Filimon, Flavia; Rieth, Cory A; Sereno, Martin I; Cottrell, Garrison W

    2015-09-01

    Previous functional magnetic resonance imaging (fMRI) research on action observation has emphasized the role of putative mirror neuron areas such as Broca's area, ventral premotor cortex, and the inferior parietal lobule. However, recent evidence suggests action observation involves many distributed cortical regions, including dorsal premotor and superior parietal cortex. How these different regions relate to traditional mirror neuron areas, and whether traditional mirror neuron areas play a special role in action representation, is unclear. Here we use multi-voxel pattern analysis (MVPA) to show that action representations, including observation, imagery, and execution of reaching movements: (1) are distributed across both dorsal (superior) and ventral (inferior) premotor and parietal areas; (2) can be decoded from areas that are jointly activated by observation, execution, and imagery of reaching movements, even in cases of equal-amplitude blood oxygen level-dependent (BOLD) responses; and (3) can be equally accurately classified from either posterior parietal or frontal (premotor and inferior frontal) regions. These results challenge the presumed dominance of traditional mirror neuron areas such as Broca's area in action observation and action representation more generally. Unlike traditional univariate fMRI analyses, MVPA was able to discriminate between imagined and observed movements from previously indistinguishable BOLD activations in commonly activated regions, suggesting finer-grained distributed patterns of activation. PMID:24862848

  5. The role of the dorsal medial frontal cortex in central processing limitation: a transcranial magnetic stimulation study.

    PubMed

    Soutschek, Alexander; Taylor, Paul C J; Schubert, Torsten

    2016-09-01

    When humans perform two tasks simultaneously, responses to the second task are increasingly delayed as the interval between the two tasks decreases (psychological refractory period). This delay of the second task is thought to reflect a central processing limitation at the response selection stage. However, the neural mechanisms underlying this central processing limitation remain unclear. Using transcranial magnetic stimulation (TMS), we examined the role of the dorsal medial frontal cortex (dMFC) in a dual-task paradigm in which participants performed an auditory task 1 and a visual task 2. We found that dMFC TMS, relative to control conditions, reduced the psychological refractory period for task 2 processing, whereas we observed no dMFC TMS effects on task 1 processing. This suggests a causal role of the dMFC in coordinating response selection processes at the central bottleneck. PMID:27083589

  6. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    PubMed Central

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  7. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  8. Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: implications for drug addiction therapies.

    PubMed

    Jasinska, Agnes J; Chen, Billy T; Bonci, Antonello; Stein, Elliot A

    2015-03-01

    Although the importance of the medial prefrontal cortex (MPFC) in cocaine addiction is well established, its precise contribution to cocaine seeking, taking and relapse remains incompletely understood. In particular, across two different models of cocaine self-administration, pharmacological or optogenetic activation of the dorsal MPFC has been reported to sometimes promote and sometimes inhibit cocaine seeking. We highlight important methodological differences between the two experimental paradigms and propose a framework to potentially reconcile the apparent discrepancy. We also draw parallels between these pre-clinical models of cocaine self-administration and human neuro-imaging studies in cocaine users, and argue that both lines of evidence point to dynamic interactions between cue-reactivity processes and control processes within the dorsal MPFC circuitry. From a translational perspective, these findings underscore the importance of interventions and therapeutics targeting not just a brain region, but a specific computational process within that brain region, and may have implications for the design and implementation of more effective treatments for human cocaine addiction. PMID:24620898

  9. Turtle Dorsal Cortex Pyramidal Neurons Comprise Two Distinct Cell Types with Indistinguishable Visual Responses

    PubMed Central

    Crockett, Thomas; Wright, Nathaniel; Thornquist, Stephen; Ariel, Michael; Wessel, Ralf

    2015-01-01

    A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network. These competing hypotheses raise the important question to what extent the computational function of a neuron is determined by its individual type or by its circuit connections. We created electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual cortex by measuring responses to current injection using whole-cell recordings. A blind clustering algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical neurons. The apparently network driven variability of the visual responses concealed the existence of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic physiological properties is minimized when neurons are embedded in a synaptic recurrent network. PMID:26633877

  10. Combat veterans with comorbid PTSD and mild TBI exhibit a greater inhibitory processing ERP from the dorsal anterior cingulate cortex.

    PubMed

    Shu, I-Wei; Onton, Julie A; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C

    2014-10-30

    Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings. PMID:25150386

  11. Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress.

    PubMed

    Baratta, Michael V; Zarza, Christina M; Gomez, Devan M; Campeau, Serge; Watkins, Linda R; Maier, Steven F

    2009-09-01

    Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor 1 week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors. PMID:19686468

  12. Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress

    PubMed Central

    Baratta, Michael V.; Zarza, Christina M.; Gomez, Devan M.; Campeau, Serge; Watkins, Linda R.; Maier, Steven F.

    2009-01-01

    Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor one week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors. PMID:19686468

  13. The body and objects represented in the ventral stream of the parieto-premotor network.

    PubMed

    Murata, Akira; Wen, Wen; Asama, Hajime

    2016-03-01

    The network between the parietal cortex and premotor cortex has a pivotal role in sensory-motor control. Grasping-related neurons in the anterior intraparietal area (AIP) and the ventral premotor cortex (F5) showed complementary properties each other. The object information for grasping is sent from the parietal cortex to the premotor cortex for sensory-motor transformation, and the backward signal from the premotor cortex to parietal cortex can be considered an efference copy/corollary discharge that is used to predict sensory outcome during motor behavior. Mirror neurons that represent both own action and other's action are involved in this system. This system also very well fits with body schema that reflects online state of the body during motor execution. We speculate that the parieto-premotor network, which includes the mirror neuron system, is key for mapping one's own body and the bodies of others. This means that the neuronal substrates that control one's own action and the mirror neuron system are shared with the "who" system, which is related to the recognition of action contribution, i.e., sense of agency. Representation of own and other's body in the parieto-premotor network is key to link between sensory-motor control and higher-order cognitive functions. PMID:26562332

  14. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations

    PubMed Central

    Cassaday, Helen J.; Nelson, Andrew J. D.; Pezze, Marie A.

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  15. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus

    PubMed Central

    Reichel, Judith M.; Nissel, Sabine; Rogel-Salazar, Gabriela; Mederer, Anna; Käfer, Karola; Bedenk, Benedikt T.; Martens, Henrik; Anders, Rebecca; Grosche, Jens; Michalski, Dominik; Härtig, Wolfgang; Wotjak, Carsten T.

    2015-01-01

    GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories. PMID:25628548

  16. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations.

    PubMed

    Cassaday, Helen J; Nelson, Andrew J D; Pezze, Marie A

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  17. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex.

    PubMed

    Martínez, María Cecilia; Villar, María Eugenia; Ballarini, Fabricio; Viola, Haydée

    2014-12-01

    Retroactive interference (RI) is a type of amnesia in which a new learning experience can impair the expression of a previous one. It has been studied in several types of memories for over a century. Here, we aimed to study in the long-term memory (LTM) formation of an object-in-context task, defined as the recognition of a familiar object in a context different to that in which it was previously encountered. We trained rats with two sample trials, each taking place in a different context in association with different objects. Test sessions were performed 24 h later, to evaluate LTM for both object-context pairs using separate groups of trained rats. Furthermore, given the involvement of hippocampus (Hp) and medial prefrontal cortex (mPFC) in several recognition memories, we also analyzed the participation of these structures in the LTM formation of this task by the local infusion of muscimol. Our results show that object-in-context LTM formation is sensitive to RI by a different either familiar or novel object-context pair trial, experienced 1 h later. This interference occurs in a restricted temporal window and works on the LTM consolidation phase, leaving intact short-term memory expression. The second sample trial did not affect the object recognition part of the memory. Besides, muscimol treatment before the second sample trial blocks its object-in-context LTM and restores the first sample trial memory. We hypothesized that LTM-RI amnesia is probably caused by resources or cellular machinery competition in these brain regions when they are engaged in memory formation of the traces. In sum, when two different object-in-context memory traces are being processed, the second trace interferes with the consolidation of the first one requiring mPFC and CA1 dorsal Hp activation. PMID:25044872

  18. Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities

    PubMed Central

    Höistad, Malin; Heinsen, Helmut; Wicinski, Bridget; Schmitz, Christoph; Hof, Patrick R.

    2012-01-01

    Aims The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many studies have assessed volume, cortical thickness, and neuronal densities or numbers in these regions. Available data however are rather conflicting and no clear cortical alteration pattern has been established. Changes in oligodendrocytes and white matter have been observed in schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease development. Methods We investigated the dorsal anterior cingulate cortex (dACC) in 13 males with schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC volume, neuronal and glial densities, total neuron and glial numbers, and glia/neuron (GNI) ratios in both layers II-III and V-VI. Results We observed no differences in neuronal or glial densities. No changes were observed in dACC cortical volume, total neuron numbers, and total glial numbers in schizophrenia. This contrasts with previous findings and suggests that the dACC may not undergo as severe changes in schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-specific effects on oligodendrocyte distribution during development. Conclusions Using rigorous stereological methods, we demonstrate a seemingly normal cortical organization in an important neocortical area for schizophrenia, emphasizing the importance of such morphometric approaches in quantitative neuropathology. We discuss the significance of subregion- and layer-specific alterations in the development of schizophrenia, and the discrepancies between post-mortem histopathological studies and in vivo brain imaging findings in patients. PMID:22860626

  19. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    PubMed Central

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  20. The consolidation of inhibitory avoidance memory in mice depends on the intensity of the aversive stimulus: The involvement of the amygdala, dorsal hippocampus and medial prefrontal cortex.

    PubMed

    Canto-de-Souza, L; Mattioli, R

    2016-04-01

    Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience. PMID:26851130

  1. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Ridler, Thomas; Murray, Tracey K.; Ward, Mark A.; de Groot, Emily; Goodfellow, Marc; Phillips, Keith G.; Randall, Andrew D.

    2016-01-01

    The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal–ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration. Dorsoventral gradients in certain intrinsic membrane properties, such as membrane capacitance and afterhyperpolarizations, were flattened in rTg4510 mEC-SCs, while other cellular gradients [e.g., input resistance (Ri), action potential properties] remained intact. Specifically, the intrinsic properties of rTg4510 mEC-SCs in dorsal aspects of the mEC were preferentially affected, such that action potential firing patterns in dorsal mEC-SCs were altered, while those in ventral mEC-SCs were unaffected. We also found that neuronal oscillations in the gamma frequency band (30–80 Hz) were preferentially disrupted in the dorsal mEC of rTg4510 slices, while those in ventral regions were comparatively preserved. These alterations corresponded to a flattened dorsoventral gradient in theta-gamma cross-frequency coupling of local field potentials recorded from the mEC of freely moving rTg4510 mice. These differences were not paralleled by changes to the dorsoventral gradient in parvalbumin staining or neurodegeneration. We propose that the selective disruption to dorsal mECs, and the resultant flattening of certain dorsoventral gradients, may contribute to disturbances in spatial information processing observed in this model of dementia. SIGNIFICANCE STATEMENT The medial entorhinal cortex (mEC) plays a key role in spatial memory and is one of the first areas to express the pathological features of dementia. Neurons of the mEC are

  2. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella

    PubMed Central

    Dea, Melvin; Hamadjida, Adjia; Elgbeili, Guillaume; Quessy, Stephan; Dancause, Numa

    2016-01-01

    The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network. PMID:26966266

  3. Ventral Premotor to Primary Motor Cortical Interactions during Noxious and Naturalistic Action Observation

    ERIC Educational Resources Information Center

    Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel

    2010-01-01

    Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…

  4. Glutamate receptor binding in the frontal cortex and dorsal striatum of aged rats with impaired attentional set-shifting.

    PubMed

    Nicolle, Michelle M; Baxter, Mark G

    2003-12-01

    Aged Long-Evans rats exhibit deficits in attentional set shifting, an aspect of executive function, relative to adult rats. Impairments in set shifting and spatial learning are uncorrelated in aged rats, indicating a possible dissociation of the effects of ageing in prefrontal versus hippocampal systems. Ionotropic glutamate receptor binding was assessed using an in vitro autoradiography method in young and aged rats. The rats had been tested on a set-shifting task that measured attentional set shifts and reversal learning, as well as in a spatial learning task in the Morris water maze. [3H]Kainate, [3H]AMPA and NMDA-displaceable [3H]glutamate receptor binding were quantified in orbital cortex, cingulate cortex, medial frontal cortex, dorsolateral and dorsomedial striatum. Age-related decreases in [3H]kainate binding were apparent in all regions measured. Similarly, NMDA-displaceable [3H]glutamate binding was decreased in the aged rats in all the regions measured except for the medial frontal area where no age effects were observed. [3H]AMPA receptor binding was preserved with age in all the regions measured. Lower levels of [3H]kainate binding in the cingulate cortex were significantly correlated with poorer set-shifting performance, whereas higher levels of NMDA binding in the dorsomedial striatum were correlated with poorer set-shifting performance. There were no significant correlations between the levels of ionotropic glutamate receptors and performance in the reversal task or spatial learning in the Morris water maze. These results indicate that age-related behavioural deficits in attentional set shifting are selectively associated with neurobiological alterations in the cingulate cortex and dorsomedial striatum. PMID:14686906

  5. Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus

    PubMed Central

    Tuscher, Jennifer J.; Luine, Victoria; Frankfurt, Maya

    2016-01-01

    Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2. SIGNIFICANCE STATEMENT Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of

  6. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  7. Virtual reality and the role of the prefrontal cortex in adults and children.

    PubMed

    Jäncke, Lutz; Cheetham, Marcus; Baumgartner, Thomas

    2009-05-01

    In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences. PMID:19753097

  8. Activation of premotor vocal areas during musical discrimination.

    PubMed

    Brown, Steven; Martinez, Michael J

    2007-02-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of premotor areas involved in vocal-motor planning and production, namely the somatotopic mouth region of the primary and lateral premotor cortices, Broca's area, the supplementary motor area, and the anterior insula. A perceptual control task involving passive listening alone to monophonic melodies led to activations exclusively in temporal-lobe auditory areas. These results show that, compared to passive listening tasks, discrimination tasks elicit activation in vocal-motor planning areas. PMID:17027134

  9. Left Dorsal Speech Stream Components and Their Contribution to Phonological Processing

    PubMed Central

    Murakami, Takenobu; Kell, Christian A.; Restle, Julia; Ugawa, Yoshikazu

    2015-01-01

    Models propose an auditory-motor mapping via a left-hemispheric dorsal speech-processing stream, yet its detailed contributions to speech perception and production are unclear. Using fMRI-navigated repetitive transcranial magnetic stimulation (rTMS), we virtually lesioned left dorsal stream components in healthy human subjects and probed the consequences on speech-related facilitation of articulatory motor cortex (M1) excitability, as indexed by increases in motor-evoked potential (MEP) amplitude of a lip muscle, and on speech processing performance in phonological tests. Speech-related MEP facilitation was disrupted by rTMS of the posterior superior temporal sulcus (pSTS), the sylvian parieto-temporal region (SPT), and by double-knock-out but not individual lesioning of pars opercularis of the inferior frontal gyrus (pIFG) and the dorsal premotor cortex (dPMC), and not by rTMS of the ventral speech-processing stream or an occipital control site. RTMS of the dorsal stream but not of the ventral stream or the occipital control site caused deficits specifically in the processing of fast transients of the acoustic speech signal. Performance of syllable and pseudoword repetition correlated with speech-related MEP facilitation, and this relation was abolished with rTMS of pSTS, SPT, and pIFG. Findings provide direct evidence that auditory-motor mapping in the left dorsal stream causes reliable and specific speech-related MEP facilitation in left articulatory M1. The left dorsal stream targets the articulatory M1 through pSTS and SPT constituting essential posterior input regions and parallel via frontal pathways through pIFG and dPMC. Finally, engagement of the left dorsal stream is necessary for processing of fast transients in the auditory signal. PMID:25632119

  10. Left dorsal speech stream components and their contribution to phonological processing.

    PubMed

    Murakami, Takenobu; Kell, Christian A; Restle, Julia; Ugawa, Yoshikazu; Ziemann, Ulf

    2015-01-28

    Models propose an auditory-motor mapping via a left-hemispheric dorsal speech-processing stream, yet its detailed contributions to speech perception and production are unclear. Using fMRI-navigated repetitive transcranial magnetic stimulation (rTMS), we virtually lesioned left dorsal stream components in healthy human subjects and probed the consequences on speech-related facilitation of articulatory motor cortex (M1) excitability, as indexed by increases in motor-evoked potential (MEP) amplitude of a lip muscle, and on speech processing performance in phonological tests. Speech-related MEP facilitation was disrupted by rTMS of the posterior superior temporal sulcus (pSTS), the sylvian parieto-temporal region (SPT), and by double-knock-out but not individual lesioning of pars opercularis of the inferior frontal gyrus (pIFG) and the dorsal premotor cortex (dPMC), and not by rTMS of the ventral speech-processing stream or an occipital control site. RTMS of the dorsal stream but not of the ventral stream or the occipital control site caused deficits specifically in the processing of fast transients of the acoustic speech signal. Performance of syllable and pseudoword repetition correlated with speech-related MEP facilitation, and this relation was abolished with rTMS of pSTS, SPT, and pIFG. Findings provide direct evidence that auditory-motor mapping in the left dorsal stream causes reliable and specific speech-related MEP facilitation in left articulatory M1. The left dorsal stream targets the articulatory M1 through pSTS and SPT constituting essential posterior input regions and parallel via frontal pathways through pIFG and dPMC. Finally, engagement of the left dorsal stream is necessary for processing of fast transients in the auditory signal. PMID:25632119

  11. The dorsal stream contribution to phonological retrieval in object naming

    PubMed Central

    Faseyitan, Olufunsho; Kim, Junghoon; Coslett, H. Branch

    2012-01-01

    Meaningful speech, as exemplified in object naming, calls on knowledge of the mappings between word meanings and phonological forms. Phonological errors in naming (e.g. GHOST named as ‘goath’) are commonly seen in persisting post-stroke aphasia and are thought to signal impairment in retrieval of phonological form information. We performed a voxel-based lesion-symptom mapping analysis of 1718 phonological naming errors collected from 106 individuals with diverse profiles of aphasia. Voxels in which lesion status correlated with phonological error rates localized to dorsal stream areas, in keeping with classical and contemporary brain-language models. Within the dorsal stream, the critical voxels were concentrated in premotor cortex, pre- and postcentral gyri and supramarginal gyrus with minimal extension into auditory-related posterior temporal and temporo-parietal cortices. This challenges the popular notion that error-free phonological retrieval requires guidance from sensory traces stored in posterior auditory regions and points instead to sensory-motor processes located further anterior in the dorsal stream. In a separate analysis, we compared the lesion maps for phonological and semantic errors and determined that there was no spatial overlap, demonstrating that the brain segregates phonological and semantic retrieval operations in word production. PMID:23171662

  12. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex – frontal, temporal (auditory), and medial temporal – under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensory–motor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensory–motor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  13. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts

    PubMed Central

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  14. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

    PubMed

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  15. Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging.

    PubMed

    Ito, Tetsufumi; Hirose, Junichi; Murase, Kazuyuki; Ikeda, Hiroshi

    2014-11-24

    Layer 1 of the dorsal cortex of the inferior colliculus (DCIC) is distinguished from other layers by its cytoarchitecture and fiber connections. However, the information of the sound types represented in layer 1 of the DCIC remains unclear because placing electrodes on such thin structures is challenging. In this study, we utilized in vivo calcium imaging to assess auditory-evoked activities in multiple cells in layer 1 of DCIC and to characterize sound stimuli producing strong activity. Most cells examined showed strong responses to broad-band noise and low-frequency tone bursts of high sound intensity. In some cases, we successfully obtained frequency response areas, which are receptive fields to tone frequencies and intensities, and ~30% of these showed V-shape tunings. This is the first systematic study to record auditory responses of cells in layer 1 of DCIC. These results indicate that cells in this area are selective to tones with low frequency, implying the importance of such auditory information in the neural circuitry of layer 1 of DCIC. PMID:25278189

  16. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats

    PubMed Central

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-01-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague–Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement. PMID:25837282

  17. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex.

    PubMed

    Amat, José; Paul, Evan; Zarza, Christina; Watkins, Linda R; Maier, Steven F

    2006-12-20

    Previous experience with stressors over which the subject has behavioral control blocks the typical behavioral consequences of subsequent exposure to stressors over which the organism has no behavioral control. The present experiments explored the involvement of the ventral medial prefrontal cortex (mPFCv) in mediating this "immunizing" or resilience producing effect of an initial experience with control. Behavioral immunization was blocked by inactivation of the mPFCv with muscimol at the time of the initial experience with control, as well as at the time of the later exposure to uncontrollable stress. Inhibition of protein synthesis within the mPFCv by anisomycin also blocked immunization when administered at the time of the initial controllable stress but had no effect when administered at the time of the later uncontrollable stress. Additional experiments found that the initial experience with control blocks the intense activation of serotonergic cells in the dorsal raphe nucleus that would normally be produced by uncontrollable stress, providing a mechanism for behavioral immunization. Furthermore, mPFCv activity during the initial controllable stressor was required for this effect to occur. These results suggest that the mPFCv is needed both to process information about the controllability of stressors and to utilize such information to regulate responses to subsequent stressors. Moreover, the mPFCv may be a site of storage or plasticity concerning controllability information. These results are consistent with recent research in other domains that explore the functions of the mPFCv. PMID:17182776

  18. Delay of gratification is associated with white matter connectivity in the dorsal prefrontal cortex: a diffusion tensor imaging study in chimpanzees (Pan troglodytes)

    PubMed Central

    Latzman, Robert D.; Taglialatela, Jared P.; Hopkins, William D.

    2015-01-01

    Individual variability in delay of gratification (DG) is associated with a number of important outcomes in both non-human and human primates. Using diffusion tensor imaging (DTI), this study describes the relationship between probabilistic estimates of white matter tracts projecting from the caudate to the prefrontal cortex (PFC) and DG abilities in a sample of 49 captive chimpanzees (Pan troglodytes). After accounting for time between collection of DTI scans and DG measurement, age and sex, higher white matter connectivity between the caudate and right dorsal PFC was found to be significantly associated with the acquisition (i.e. training phase) but not the maintenance of DG abilities. No other associations were found to be significant. The integrity of white matter connectivity between regions of the striatum and the PFC appear to be associated with inhibitory control in chimpanzees, with perturbations on this circuit potentially leading to a variety of maladaptive outcomes. Additionally, results have potential translational implications for understanding the pathophysiology of a number of psychiatric and clinical outcomes in humans. PMID:26041344

  19. Spatiotemporal Profile of Voltage-Sensitive Dye Responses in the Visual Cortex of Tree Shrews Evoked by Electric Microstimulation of the Dorsal Lateral Geniculate and Pulvinar Nuclei

    PubMed Central

    Thomas, Sébastien; Petry, Heywood M.; Bickford, Martha E.; Casanova, Christian

    2015-01-01

    The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas. These projection patterns suggest that the pulvinar nucleus most strongly influences (drives) activity in cortical areas beyond V1. Should this hypothesis be true, one would expect the spatiotemporal responses evoked by pulvinar activation to be different in V1 and extrastriate areas, reflecting the different connectivity patterns. We investigated this issue by analyzing the spatiotemporal dynamics of cortical visual areas' activity following thalamic electrical microstimulation in tree shrews, using optical imaging and voltage-sensitive dyes. As expected, electrical stimulation of the dLGN induced fast and local responses in V1, as well as in extrastriate and contralateral cortical areas. In contrast, electrical stimulation of the pulvinar induced fast and local responses in extrastriate areas, followed by weak and diffuse activation in V1 and contralateral cortical areas. This study highlights spatiotemporal cortical activation characteristics induced by stimulation of first (dLGN) and high-order (pulvinar) thalamic nuclei. SIGNIFICANCE STATEMENT The pulvinar nucleus represents the main extrageniculate thalamic visual structure in higher-order mammals, but its exact role remains enigmatic. The pulvinar receive prominent inputs from virtually all visual cortical areas. Cortico-thalamo-cortical pathways through the pulvinar nuclei may then provide a complementary route for corticocortical information flow. One step toward the understanding of the role of transthalamic corticocortical pathways is to determine the nature of the signals transmitted between the cortex and the thalamus. By performing, for

  20. Motor dysfunctions in Parkinson's disease and premotor lesions.

    PubMed

    Freund, H J

    1989-01-01

    A characteristic disturbance of hand function in Parkinson's disease lies in the performance of rapid automatized movements. Patients have difficulty in producing serial hand movements faster than 2 Hz. The only possibility to perform rapid alternating movements is to synchronize them with their tremor frequency. This mechanism underlies the so-called 'hastening' phenomenon and leads to a disturbance of skills like handwriting or typing, which are usually performed at higher frequencies. The temporal disorder in patients with lesions of premotor cortex is characterized by the difficulty in organizing higher order temporal sequences in complex motor acts. PMID:2653836

  1. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    PubMed

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  2. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats.

    PubMed

    Ribeiro, Marcelo L; Moreira, Luciana M; Arçari, Demetrius P; Dos Santos, Letícia França; Marques, Antônio Cezar; Pedrazzoli, José; Cerutti, Suzete M

    2016-10-15

    This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties. PMID:27424157

  3. Oxytocin via its receptor affects restraint stress-induced methamphetamine CPP reinstatement in mice: Involvement of the medial prefrontal cortex and dorsal hippocampus glutamatergic system.

    PubMed

    Han, Wen-Yan; Du, Ping; Fu, Shi-Yuan; Wang, Fang; Song, Ming; Wu, Chun-Fu; Yang, Jing-Yu

    2014-04-01

    Our previous study revealed that intracerebroventricular oxytocin (OT) markedly inhibited the restraint stress-priming conditioned place preference (CPP) reinstatement induced by methamphetamine (MAP) via the glutamatergic system. In this study, the effect of microinjection with OT into mesocorticolimbic regions, the medial prefrontal cortex (mPFC) and the dorsal hippocampus (DHC), on the restraint stress-priming CPP reinstatement were further studied. The results showed that a 15-min restraint stress significantly reinstated MAP-induced CPP, which was inhibited by the microinjection of OT (0.5 and 2.5μg/μl/mouse) into the mPFC. Atosiban (Ato), a selective inhibitor of OT receptor, could absolutely block the effect of OT (2.5μg/μl/mouse). The reinstatement was inhibited by microinjecting with OT (2.5 but not 0.5μg/μl/mouse) into the DHC, which could not be reversed by Ato. Western blotting results showed that the levels of GLT1, VGLUT2, NR2B, p-ERK1/2 and p-CREB expressions in the mPFC were increased and CaMKII was decreased markedly after the stress-priming MAP-induced CPP reinstatement test. OT blocked the changing levels of GLT1, VGLUT2, NR2B, p-CREB and CaMK II, which were reversed by Ato, but failed to affect the elevated expression of p-ERK1/2. In DHC, the levels of VGLUT2, p-ERK1/2 and CREB expressions were reduced during the stress-induced reinstatement, which could be reversed by OT and further abolished by Ato. The present results suggest that mPFC and DHC play differential roles in restraint stress-priming CPP reinstatement induced by MAP and OT via OT receptor affects the reinstatement in which the glutamatergic system is involved. PMID:24269543

  4. Markers of Serotonergic Function in the Orbitofrontal Cortex and Dorsal Raphé Nucleus Predict Individual Variation in Spatial-Discrimination Serial Reversal Learning

    PubMed Central

    Barlow, Rebecca L; Alsiö, Johan; Jupp, Bianca; Rabinovich, Rebecca; Shrestha, Saurav; Roberts, Angela C; Robbins, Trevor W; Dalley, Jeffrey W

    2015-01-01

    Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior. PMID:25567428

  5. Sex differences in myelin-associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control.

    PubMed

    Bayless, D W; Daniel, J M

    2015-08-01

    Impulsive actions and decisions often lead to undesirable outcomes. Lesion and neuroimaging studies have revealed that the orbital frontal cortex (OFC) and dorsal striatum (dSTR) play key roles in inhibitory control. It has been proposed that greater OFC input into the dSTR reflects enhanced top-down cognitive control and less impulsive responding. We previously reported a sex difference in inhibitory control, such that female rats make fewer impulsive errors than do male rats. The goal of the present study was to investigate differences in the OFC and dSTR of young adult male and female rats. In Experiment 1, we measured levels of two myelin-associated proteins, myelin basic protein (MBP) and myelin proteolipid protein (PLP), in the OFC and dSTR. Western blot data revealed that females had significantly higher levels of both MBP and PLP in the OFC but similar levels in the dSTR as compared to males. In Experiment 2, we infused the anterograde tracer, biotinylated dextran amine (BDA), into the OFC and measured the density of BDA in the dSTR. BDA was visualized using histochemistry followed by light microscopy imaging and densitometry analysis. Density of BDA in the dSTR was significantly greater in females as compared to males indicating that the projections from the OFC to dSTR may be greater in females as compared to males. Our results suggest a potential neuroanatomical sex difference that may contribute to the reported differences in inhibitory control levels of male and female rats. PMID:26002313

  6. Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke.

    PubMed

    Archer, Derek B; Misra, Gaurav; Patten, Carolynn; Coombes, Stephen A

    2016-06-01

    Microstructural properties of the corticospinal tract (CST) descending from the motor cortex predict strength and motor skill in the chronic phase after stroke. Much less is known about the relation between brain microstructure and visuomotor processing after stroke. In this study, individual's poststroke and age-matched controls performed a unimanual force task separately with each hand at three levels of visual gain. We collected diffusion MRI data and used probabilistic tractography algorithms to identify the primary and premotor CSTs. Fractional anisotropy (FA) within each tract was used to predict changes in force variability across different levels of visual gain. Our observations revealed that individuals poststroke reduced force variability with an increase in visual gain, performed the force task with greater variability as compared with controls across all gain levels, and had lower FA in the primary motor and premotor CSTs. Our results also demonstrated that the CST descending from the premotor cortex, rather than the primary motor cortex, best predicted force variability. Together, these findings demonstrate that the microstructural properties of the premotor CST predict visual gain-related changes in force variability in individuals poststroke. Hum Brain Mapp 37:2039-2054, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920656

  7. Premotor neuronal plasticity in monkeys adapting to a new dynamic environment.

    PubMed

    Xiao, Jun

    2005-12-01

    Recent evidence indicates that premotor cortex (PM) in addition to their well-established motor functions, also play a role in nonmotor processes such as spatial attention and working memory. In the present study, neuronal activities in dorsal PM (PMd) and ventral PM (PMv) were recorded in a force field adaptation task. This study found that PM neurons show learning-related plasticity and that a neuron demonstrates either one type or multiple types of properties (i.e. kinematic, dynamic, and memory). The current study reveals that memory properties could be displayed by one or a combination of the cell activity parameters [i.e. average firing rate (AFR), dynamic range (DR), and preferred direction (PD)]. A predominant percentage of cells displayed memory properties with AFR or AFR plus other parameters. This study investigated the memory properties vs. the time sequence of the task trial [i.e. delay time (DT), movement time (MT), and target holding time (THT)] and found that: (i) most neurons display memory properties only in one time window; (ii) few neurons display memory properties in three time windows, and (iii) there are significantly more cells showing memory properties during MT than during any other time windows. There are cells that show memory I (changing their tuning curves in the force field and retaining those changes after the force field was removed), memory II (changing their tuning curves after the force field was removed), or both properties. Significantly more cells display one type of memory property (memory I or memory II) rather than both types of memory properties (memory I and memory II). PMID:16367792

  8. Cortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys

    PubMed Central

    Stepniewska, Iwona; Kaas, Jon H.

    2011-01-01

    We examined the connections of posterior parietal cortex (PPC) with motor/premotor cortex (M1/PM) and other cortical areas. Electrical stimulation (500 ms trains) delivered to microelectrode sites evoked movements of reach, defense, and grasp, from distinct zones in M1/PM and PPC, in squirrel and owl monkeys. Tracer injections into M1/PM reach, defense, and grasp zones showed dense connections with M1/PM hand/forelimb representations. The densest inputs outside of frontal cortex were from PPC zones. M1 zones were additionally connected with somatosensory hand/forelimb representations in areas 3a, 3b, and 1 and the somatosensory areas of the upper bank of the lateral sulcus (S2/PV). Injections into PPC zones showed primarily local connections and the densest inputs outside of PPC originated from M1/PM zones. The PPC reach zone also received dense inputs from cortex caudal to PPC, which likely relayed visual information. In contrast, the PPC grasp zone was densely connected with the hand/forelimb representations of areas 3a, 3b, 1, and S2/PV. Thus, the dorsal parietal–frontal network involved in reaching was preferentially connected to visual cortex, whereas the more ventral network involved in grasping received somatosensory inputs. Additional weak interlinks between dissimilar zones (e.g., PPC reach and PPC grasp) were apparent and may coordinate actions. PMID:21263034

  9. Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos.

    PubMed

    Stepniewska, Iwona; Cerkevich, Christina M; Kaas, Jon H

    2016-06-01

    Posterior parietal cortex (PPC) of prosimian galagos includes a rostral portion (PPCr) where electrical stimulation evokes different classes of complex movements from different subregions, and a caudal portion (PPCc) where such stimulation fails to evoke movements in anesthetized preparations ( Stepniewska, Fang et al. 2009). We placed tracer injections into PPCc to reveal patterns of its cortical connections. There were widespread connections within PPCc as well as connections with PPCr and extrastriate visual areas, including V2 and V3. Weaker connections were with dorsal premotor cortex, and the frontal eye field. The connections of different parts of PPCc with visual areas were roughly retinotopic such that injections to dorsal PPCc labeled more neurons in the dorsal portions of visual areas, representing lower visual quadrant, and injections to ventral PPCc labeled more neurons in ventral portions of these visual areas, representing the upper visual quadrant. We conclude that much of the PPCc contains a crude representation of the contralateral visual hemifield, with inputs largely, but not exclusively, from higher-order visual areas that are considered part of the dorsal visuomotor processing stream. As in galagos, the caudal half of PPC was likely visual in early primates, with the rostral PPC half mediating sensorimotor functions. PMID:26088972

  10. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    NASA Technical Reports Server (NTRS)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  11. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    PubMed

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles. PMID:23575861

  12. Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs.

    PubMed

    Thura, David; Cisek, Paul

    2016-01-20

    Recent work suggests that while animals decide between reaching actions, neurons in dorsal premotor (PMd) and primary motor (M1) cortex reflect a dynamic competition between motor plans and determine when commitment to a choice is made. This competition is biased by at least two sources of information: the changing sensory evidence for one choice versus another, and an urgency signal that grows over time. Here, we test the hypothesis that the urgency signal adjusts the trade-off between speed and accuracy during both decision-making and movement execution. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves over the course of each trial. In different blocks, task timing parameters encouraged monkeys to voluntarily adapt their behavior to be either hasty or conservative. Consistent with our hypothesis, during the deliberation process the baseline and gain of neural activity in decision-related PMd (29%) and M1 cells (45%) was higher when monkeys applied a hasty policy than when they behaved conservatively, but at the time of commitment the population activity was similar across blocks. Other cells (30% in PMd, 30% in M1) showed activity that increased or decreased with elapsing time until the moment of commitment. Movement-related neurons were also more active after longer decisions, as if they were influenced by the same urgency signal controlling the gain of decision-related activity. Together, these results suggest that the arm motor system receives an urgency/vigor signal that adjusts the speed-accuracy trade-off for decision-making and movement execution. Significance statement: This work addresses the neural mechanisms that control the speed-accuracy trade-off in both decisions and movements, in the kinds of dynamic situations that are typical of natural animal behavior. We found that many "decision-related" premotor and motor neurons are modulated in a time-dependent manner compatible with an "urgency" signal that

  13. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  14. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease.

    PubMed

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram; Reck, Christiane; Barbe, Michael Thomas; Tscheuschler, Maike Karoline; Tittgemeyer, Marc; Siebner, Hartwig Roman; Timmermann, Lars

    2014-11-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive movements of the right index finger at maximal repetition rate. Multiple source beamformer analysis and dynamic causal modeling were used to assess oscillatory coupling between the lateral premotor cortex (lPM), supplementary motor area (SMA), and primary motor cortex (M1) in the contralateral hemisphere. Elderly healthy controls showed task-related modulation in connections from lPM to SMA and M1, mainly within the γ-band (>30 Hz). Nonmedicated PD patients also showed task-related γ-γ coupling from lPM to M1, but γ coupling from lPM to SMA was absent. Levodopa reinstated physiological γ-γ coupling from lPM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement. PMID:23733911

  15. Dopamine Replacement Modulates Oscillatory Coupling Between Premotor and Motor Cortical Areas in Parkinson's Disease

    PubMed Central

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram; Reck, Christiane; Barbe, Michael Thomas; Tscheuschler, Maike Karoline; Tittgemeyer, Marc; Siebner, Hartwig Roman; Timmermann, Lars

    2014-01-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive movements of the right index finger at maximal repetition rate. Multiple source beamformer analysis and dynamic causal modeling were used to assess oscillatory coupling between the lateral premotor cortex (lPM), supplementary motor area (SMA), and primary motor cortex (M1) in the contralateral hemisphere. Elderly healthy controls showed task-related modulation in connections from lPM to SMA and M1, mainly within the γ-band (>30 Hz). Nonmedicated PD patients also showed task-related γ-γ coupling from lPM to M1, but γ coupling from lPM to SMA was absent. Levodopa reinstated physiological γ-γ coupling from lPM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement. PMID:23733911

  16. Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study.

    PubMed

    Sebastian, Alexandra; Jung, Patrick; Neuhoff, Jonathan; Wibral, Michael; Fox, Peter T; Lieb, Klaus; Fries, Pascal; Eickhoff, Simon B; Tüscher, Oliver; Mobascher, Arian

    2016-04-01

    The right inferior frontal cortex (rIFC) is frequently activated during executive control tasks. Whereas the function of the dorsal portion of rIFC, more precisely the inferior frontal junction (rIFJ), is convergingly assigned to the attention system, the functional key role of the ventral portion, i.e., the inferior frontal gyrus (rIFG), is hitherto controversially debated. Here, we used a two-step methodical approach to clarify the differential function of rIFJ and rIFG. First, we used event-related functional magnetic resonance imaging (fMRI) during a modified stop signal task with an attentional capture condition (acSST) to delineate attentional from inhibitory motor processes (step 1). Then, we applied coordinate-based meta-analytic connectivity modeling (MACM) to assess functional connectivity profiles of rIFJ and rIFG across various paradigm classes (step 2). As hypothesized, rIFJ activity was associated with the detection of salient stimuli, and was functionally connected to areas of the ventral and dorsal attention network. RIFG was activated during successful response inhibition even when controlling for attentional capture and revealed the highest functional connectivity with core motor areas. Thereby, rIFJ and rIFG delineated largely independent brain networks for attention and motor control. MACM results attributed a more specific attentional function to rIFJ, suggesting an integrative role between stimulus-driven ventral and goal-directed dorsal attention processes. In contrast, rIFG was disclosed as a region of the motor control but not attention system, being essential for response inhibition. The current study provides decisive evidence regarding a more precise functional characterization of rIFC subregions in attention and inhibition. PMID:25637472

  17. Object vision to hand action in macaque parietal, premotor, and motor cortices

    PubMed Central

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. DOI: http://dx.doi.org/10.7554/eLife.15278.001 PMID:27458796

  18. Object vision to hand action in macaque parietal, premotor, and motor cortices.

    PubMed

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. PMID:27458796

  19. Distributed representations of rule identity and rule order in human frontal cortex and striatum.

    PubMed

    Reverberi, Carlo; Görgen, Kai; Haynes, John-Dylan

    2012-11-28

    Humans are able to flexibly devise and implement rules to reach their desired goals. For simple situations, we can use single rules, such as "if traffic light is green then cross the street." In most cases, however, more complex rule sets are required, involving the integration of multiple layers of control. Although it has been shown that prefrontal cortex is important for rule representation, it has remained unclear how the brain encodes more complex rule sets. Here, we investigate how the brain represents the order in which different parts of a rule set are evaluated. Participants had to follow compound rule sets that involved the concurrent application of two single rules in a specific order, where one of the rules always had to be evaluated first. The rules and their assigned order were independently manipulated. By applying multivariate decoding to fMRI data, we found that the identity of the current rule was encoded in a frontostriatal network involving right ventrolateral prefrontal cortex, right superior frontal gyrus, and dorsal striatum. In contrast, rule order could be decoded in the dorsal striatum and in the right premotor cortex. The nonhomogeneous distribution of information across brain areas was confirmed by follow-up analyses focused on relevant regions of interest. We argue that the brain encodes complex rule sets by "decomposing" them in their constituent features, which are represented in different brain areas, according to the aspect of information to be maintained. PMID:23197733

  20. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex.

    PubMed

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using 'forced choices' (one target viable) was highly reliable when applied to 'free choices'. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed 'changes of mind': the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary 'indecision': delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. PMID:25942352

  1. Selective Long-term Reorganization of the Corticospinal Projection from the Supplementary Motor Cortex following Recovery from Lateral Motor Cortex Injury

    PubMed Central

    McNeal, David W.; Darling, Warren G.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; Solon, Kathryn M.; Hynes, Stephanie M.; Pizzimenti, Marc A.; Rotella, Diane; Vanadurongvan, Tyler; Morecraft, Robert J.

    2013-01-01

    Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Since the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). Following injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons and motor neurons supplying intrinsic hand muscles which all play important roles in mediating reaching and digit movements. Following recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term post-injury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. PMID:20034062

  2. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward

    PubMed Central

    Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-01-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock–Paper–Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player’s success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness. PMID:26500290

  3. Human posterior parietal cortex plans where to reach and what to avoid.

    PubMed

    Lindner, Axel; Iyer, Asha; Kagan, Igor; Andersen, Richard A

    2010-09-01

    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided. PMID:20810892

  4. Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    PubMed Central

    Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing

    2011-01-01

    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505

  5. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    PubMed

    Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing

    2011-01-01

    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505

  6. Trace Eyeblink Conditioning in Mice Is Dependent upon the Dorsal Medial Prefrontal Cortex, Cerebellum, and Amygdala: Behavioral Characterization and Functional Circuitry1,2,3

    PubMed Central

    Taylor, William; Gray, Richard; Kalmbach, Brian; Zemelman, Boris V.; Desai, Niraj S.; Johnston, Daniel; Chitwood, Raymond A.

    2015-01-01

    Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998

  7. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion.

    PubMed

    Schwendt, Marek; Rocha, Angelica; See, Ronald E; Pacchioni, Alejandra M; McGinty, Jacqueline F; Kalivas, Peter W

    2009-11-01

    Chronic abuse of methamphetamine leads to cognitive dysfunction and high rates of relapse, paralleled by significant changes of brain dopamine and serotonin neurotransmission. Previously, we found that rats with extended access to methamphetamine self-administration displayed enhanced methamphetamine-primed reinstatement of drug-seeking and cognitive deficits relative to limited access animals. The present study investigated whether extended access to methamphetamine self-administration produced abnormalities in dopamine and serotonin systems in rat forebrain. Rats self-administered methamphetamine (0.02-mg/i.v. infusion) during daily 1-h sessions for 7 to 10 days, followed by either short- (1-h) or long-access (6-h) self-administration for 12 to 14 days. Lever responding was extinguished for 2 weeks before either reinstatement testing or rapid decapitation and tissue dissection. Tissue levels of monoamine transporters and markers of methamphetamine-induced toxicity were analyzed in several forebrain areas. Long-access methamphetamine self-administration resulted in escalation of daily drug intake ( approximately 7 mg/kg/day) and enhanced drug-primed reinstatement compared with the short-access group. Furthermore, long-, but not short-access to self-administered methamphetamine resulted in persistent decreases in dopamine transporter (DAT) protein levels in the prefrontal cortex and dorsal striatum. In contrast, only minor alterations in the tissue levels of dopamine or its metabolites were found, and no changes in markers specific for dopamine terminals or glial cell activation were detected. Our findings suggest that persistent methamphetamine seeking is associated with region-selective changes in DAT levels without accompanying monoaminergic neurotoxicity. Greater understanding of the neuroadaptations underlying persistent methamphetamine seeking and cognitive deficits could yield targets suitable for future therapeutic interventions. PMID:19648469

  8. Interplay of Inhibition and Excitation Shapes a Premotor Neural Sequence

    PubMed Central

    Kosche, Georg; Vallentin, Daniela

    2015-01-01

    In the zebra finch, singing behavior is driven by a sequence of bursts within premotor neurons located in the forebrain nucleus HVC (proper name). In addition to these excitatory projection neurons, HVC also contains inhibitory interneurons with a role in premotor patterning that is unclear. Here, we used a range of electrophysiological and behavioral observations to test previously described models suggesting discrete functional roles for inhibitory interneurons in song production. We show that single HVC premotor neuron bursts are sufficient to drive structured activity within the interneuron network because of pervasive and facilitating synaptic connections. We characterize interneuron activity during singing and describe reliable pauses in the firing of those neurons. We then demonstrate that these gaps in inhibition are likely to be necessary for driving normal bursting behavior in HVC premotor neurons and suggest that structured inhibition and excitation may be a general mechanism enabling sequence generation in other circuits. PMID:25609636

  9. The relevance of pre-motor symptoms in Parkinson's disease.

    PubMed

    Visanji, Naomi; Marras, Connie

    2015-10-01

    Parkinson's disease (PD) has a wide range of non-motor symptoms including; constipation, sleep disturbance, deficits in vision and olfaction, mood disorders and cardiac autonomic dysfunction. Several of these non-motor symptoms can manifest prior to the onset of motor symptoms. Recognizing these pre-motor symptoms may enable early diagnosis of PD. Currently, no single pre-motor symptom is able to predict the development of PD with 100% sensitivity or specificity. Ongoing studies in several independent at-risk cohorts should reveal the potential of combinations of pre-motor symptoms and multi-stage screening strategies to identify individuals at increased risk of PD. PD progression may be governed by a prion-like spread of a-syn throughout the nervous system. Identifying individuals at the earliest stage will likely be critical to preventing the pathological progression of PD, highlighting the relevance of pre-motor symptoms in the future treatment of the disease. PMID:26416397

  10. Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease.

    PubMed

    MacKinnon, Colum D; Webb, Ruth M; Silberstein, Paul; Tisch, Steven; Asselman, Peter; Limousin, Patricia; Rothwell, John C

    2005-03-01

    High-frequency electrical stimulation through electrodes implanted in the subthalamic nucleus (STN) has been shown to reduce significantly the cardinal symptoms of Parkinson's disease (PD). Despite the success of this treatment, the mechanisms of action of stimulation are poorly understood. To elucidate further the mechanisms of action of deep brain stimulation and its effects on cortical activity, we recorded electroencephalographic potentials from 61 scalp-surface electrodes during low-frequency (5-10 Hz) bipolar stimulation in 11 patients with advanced PD (14 implanted electrodes were tested). In all electrodes tested, stimulation through at least one of the four contacts produced a medium-latency waveform with an average onset of 14 +/- 3 ms and peak at 23 +/- 4 ms. This potential typically increased in magnitude across contacts from ventral to dorsal. Within-subject comparisons of median nerve somatosensory evoked potentials demonstrated that the generator of the medium-latency potential was within the primary sensorimotor cortex or lateral premotor cortex ipsilateral to stimulation. The timing and topography of this potential were consistent with indirect activation of the cortex by excitation of pallido-thalamic axons that traverse the dorsal aspect of the STN. The potential evoked by stimulation through the contact used for optimal clinical effect was highly variable across electrodes and frequently different from the medium-latency potential described above, suggesting that the neuronal elements mediating the medium-latency potential were different from those that mediate the clinical effects. PMID:15813949

  11. Anatomical Characterization of a Rabbit Cerebellar Eyeblink Premotor Pathway Using Pseudorabies and Identification of a Local Modulatory Network in Anterior Interpositus

    PubMed Central

    Gonzalez-Joekes, Jimena; Schreurs, Bernard G.

    2012-01-01

    Rabbit eyeblink conditioning is a well-characterized model of associative learning. In order to identify specific neurons that are part of the eyeblink premotor pathway, a retrograde transynaptic tracer (pseudorabies virus) was injected into the orbicularis oculi muscle. Four time points (3, 4, 4 ½, and 5 days) were selected to identify sequential segments of the pathway and a map of labeled structures was generated. At 3 days, labeled first-order motor neurons were found in dorsolateral facial nucleus ipsilaterally. At 4 days, second-order premotor neurons were found in reticular nuclei, and sensory trigeminal, auditory, vestibular and motor structures including contralateral red nucleus. At 4 ½ days, labeled third-order premotor neurons were found in the pons, midbrain and cerebellum, including dorsolateral anterior interpositus nucleus and rostral fastigial nucleus. At 5 days, labeling revealed higher-order premotor structures. Labeled fourth-order Purkinje cells were found in ipsilateral cerebellar cortex in lobule HVI and in lobule I. The former has been implicated in eyeblink conditioning and the latter in vestibular control. Labeled neurons in anterior interpositus were studied using neurotransmitter immunoreactivity to classify individual cell types and delineate their interconnectivity. Labeled third-order premotor neurons were immunoreactive for glutamate and corresponded to large excitatory projection neurons. Labeled fourth-order premotor interneurons were immunoreactive for GABA (30%), glycine (18%), or both GABA and glycine (52%) and form a functional network within AIN involved in modulation of motor commands. These results identify a complete eyeblink premotor pathway, deep cerebellar interconnectivity, and specific neurons responsible for the generation of eyeblink responses. PMID:22956838

  12. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest

    PubMed Central

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J.; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of SI and several brain regions functionally associated with SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over SI. PMID:25882754

  13. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    PubMed

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  14. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    PubMed

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand. PMID:27322001

  15. Parkinson's disease risk score: moving to a premotor diagnosis.

    PubMed

    Winkler, Jürgen; Ehret, Reinhard; Büttner, Thomas; Dillmann, Ulrich; Fogel, Wolfgang; Sabolek, Michael; Winkelmann, Juliane; Kassubek, Jan

    2011-05-01

    Early pre-motor symptoms (also frequently termed "non-motor" symptoms) in Parkinson's disease (PD), which precede the onset of motor symptoms, are being increasingly recognized by clinicians. Non-motor symptoms in the pre-motor phase of PD include impaired olfaction (hyposmia), sleep disturbances (i.e., radid eye movement sleep behavior disorder, daytime sleepiness), behavioral/emotional dysfunction (i.e., change of personality or change of core personal characteristics), dysautonomia (i.e., constipation, urinary dysfunction, orthostatic hypotension), depressive symptoms (i.e., fatigue, apathy, anxiety), and chronic pain (joint and muscle). The pre-motor phase of PD is based on current pathophysiological concepts that relate these symptoms to early structural changes within lower brainstem nuclei and the peripheral nervous system including the autonomic and enteric ganglia. The perspective to identify these symptoms as early as possible will enable neurologists to make a diagnosis at the pre-motor stage of PD. Thus, the development of a PD risk score will be the first means to identify individuals at risk who are most likely to develop the prototypical motor symptoms of PD later in life. More importantly, these individuals at risk will be the first to benefit from disease-modifying strategies. In this workshop report, the elements of a PD risk score are proposed, including the stepwise sequence of escalating diagnostic measures to diagnose the pre-motor stage in PD. PMID:21560061

  16. Tuning-in to the beat: Aesthetic appreciation of musical rhythms correlates with a premotor activity boost.

    PubMed

    Kornysheva, Katja; von Cramon, D Yves; Jacobsen, Thomas; Schubotz, Ricarda I

    2010-01-01

    Listening to music can induce us to tune in to its beat. Previous neuroimaging studies have shown that the motor system becomes involved in perceptual rhythm and timing tasks in general, as well as during preference-related responses to music. However, the role of preferred rhythm and, in particular, of preferred beat frequency (tempo) in driving activity in the motor system remains unknown. The goals of the present functional magnetic resonance imaging (fMRI) study were to determine whether the musical rhythms that are subjectively judged as beautiful boost activity in motor-related areas and if so, whether this effect is driven by preferred tempo, the underlying pulse people tune in to. On the basis of the subjects' judgments, individual preferences were determined for the different systematically varied constituents of the musical rhythms. Results demonstrate the involvement of premotor and cerebellar areas during preferred compared to not preferred musical rhythms and indicate that activity in the ventral premotor cortex (PMv) is enhanced by preferred tempo. Our findings support the assumption that the premotor activity increase during preferred tempo is the result of enhanced sensorimotor simulation of the beat frequency. This may serve as a mechanism that facilitates the tuning-in to the beat of appealing music. PMID:19585590

  17. Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models.

    PubMed

    Aghagolzadeh, Mehdi; Truccolo, Wilson

    2016-02-01

    Motor cortex neuronal ensemble spiking activity exhibits strong low-dimensional collective dynamics (i.e., coordinated modes of activity) during behavior. Here, we demonstrate that these low-dimensional dynamics, revealed by unsupervised latent state-space models, can provide as accurate or better reconstruction of movement kinematics as direct decoding from the entire recorded ensemble. Ensembles of single neurons were recorded with triple microelectrode arrays (MEAs) implanted in ventral and dorsal premotor (PMv, PMd) and primary motor (M1) cortices while nonhuman primates performed 3-D reach-to-grasp actions. Low-dimensional dynamics were estimated via various types of latent state-space models including, for example, Poisson linear dynamic system (PLDS) models. Decoding from low-dimensional dynamics was implemented via point process and Kalman filters coupled in series. We also examined decoding based on a predictive subsampling of the recorded population. In this case, a supervised greedy procedure selected neuronal subsets that optimized decoding performance. When comparing decoding based on predictive subsampling and latent state-space models, the size of the neuronal subset was set to the same number of latent state dimensions. Overall, our findings suggest that information about naturalistic reach kinematics present in the recorded population is preserved in the inferred low-dimensional motor cortex dynamics. Furthermore, decoding based on unsupervised PLDS models may also outperform previous approaches based on direct decoding from the recorded population or on predictive subsampling. PMID:26336135

  18. Individual Differences in Premotor and Motor Recruitment during Speech Perception

    ERIC Educational Resources Information Center

    Szenkovits, Gayaneh; Peelle, Jonathan E.; Norris, Dennis; Davis, Matthew H.

    2012-01-01

    Although activity in premotor and motor cortices is commonly observed in neuroimaging studies of spoken language processing, the degree to which this activity is an obligatory part of everyday speech comprehension remains unclear. We hypothesised that rather than being a unitary phenomenon, the neural response to speech perception in motor regions…

  19. Positive Effect of Impairment-Oriented Training on N-Acetylaspartate Levels of Ipsilesional Motor Cortex in Subcortical Stroke: A Case Study

    PubMed Central

    Ahmed, Ali Bani; Cirstea, Carmen M

    2016-01-01

    Background and Purpose We investigated the effects of an intensive impairment-oriented training on neuronal state (assessed by proton MR spectroscopy, 1H-MRS) of the spared motor and premotor cortices in the injured (ipsilesional) hemisphere and clinical impairment in a patient with chronic subcortical stroke. Methods One survivor of a single ischemic stroke located outside of the motor and premotor cortices (assessed on T1-weighted MRI) was studied at six months after stroke. We used functional MRI-guided 1H-MRS to quantify the levels of N-acetylaspartate (NAA - a putative neuronal marker) in the hand representation within ipsilesional primary motor cortex (M1), dorsal premotor cortex (dPM) and supplementary motor area (SMA), and Fugl-Meyer (normal=66 points) test to assess the arm motor impairment immediately before and after a motor training paradigm. Training comprised intensive variable practice (1080 repetitions over 12 day-period) of a reach-to-grasp task with the impaired hand while focusing the learner's attention on an altered movement component, i.e., decreased elbow extension. Results At baseline, the patient was severely impaired (Fugl-Meyer score=25 points) and exhibited lower level of NAA in all areas (M1, 9.2 mM vs. 11.6 ± 2.0 mM in healthy controls; dPM, 8.9 mM vs. 12.2 ± 1.9 mM; SMA, 7.4 mM vs. 11.0 ± 2.3 mM). After training, the patient improved clinically (by 6 points) and displayed higher levels of NAA across all areas (by 0.6-3.3 mM). Conclusions Our data demonstrated that the radiologically normal-appearing ipsilesional motor and premotor areas have the resources to boost behavioral output in response to an intervention. We hope that these data will act as a starting point for further research to test the potential of 1H-MRS measures to provide a biomarker of neuroplasticity in response to restorative therapies in chronic stroke. PMID:27066519

  20. Dorsal wrist syndrome repair.

    PubMed

    Yasuda, Masataka; Masada, Kazuhiro; Takeuchi, Eiji

    2004-07-01

    Dorsal wrist pain with or without a palpable dorsal wrist ganglion is a common complaint. Watson developed the concept of the dorsal wrist syndrome (DWS) which is an entity encompassing pre-dynamic rotary subluxation of the scaphoid and the overloaded wrist. We reviewed 20 cases of DWS treated surgically. There were nine males (11 wrists) and nine females (nine wrists). Post-operative follow-up ranged from five to 67 months (mean, 37 months). At operation, we observed SLL tears in eight wrists and dorsal ganglia in 12 cases. Following surgery, 12 cases reported being pain free, five had mild pain, two moderate pain and one case reported severe pain. Post-operative extension/flexion was 73/70 average. Post-operative grip strength was 28 kg average. We believe that excision of the posterior interosseous nerve and the dorsal capsule including the ganglion, if present, provides pain relief in DWS. PMID:15368625

  1. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest.

    PubMed

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J; Avenanti, Alessio; Keysers, Christian; Gazzola, Valeria; Maurits, Natasha M

    2015-07-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although the SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over the SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over the SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of the SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of the SI and several brain regions functionally associated with the SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over the SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over the SI. PMID:25882754

  2. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  3. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding.

    PubMed

    Michael, John; Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D

    2014-04-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap. PMID:24549297

  4. Elemental gesture dynamics are encoded by song premotor cortical neurons.

    PubMed

    Amador, Ana; Perl, Yonatan Sanz; Mindlin, Gabriel B; Margoliash, Daniel

    2013-03-01

    Quantitative biomechanical models can identify control parameters that are used during movements, and movement parameters that are encoded by premotor neurons. We fit a mathematical dynamical systems model including subsyringeal pressure, syringeal biomechanics and upper-vocal-tract filtering to the songs of zebra finches. This reduces the dimensionality of singing dynamics, described as trajectories (motor 'gestures') in a space of syringeal pressure and tension. Here we assess model performance by characterizing the auditory response 'replay' of song premotor HVC neurons to the presentation of song variants in sleeping birds, and by examining HVC activity in singing birds. HVC projection neurons were excited and interneurons were suppressed within a few milliseconds of the extreme time points of the gesture trajectories. Thus, the HVC precisely encodes vocal motor output through activity at the times of extreme points of movement trajectories. We propose that the sequential activity of HVC neurons is used as a 'forward' model, representing the sequence of gestures in song to make predictions on expected behaviour and evaluate feedback. PMID:23446354

  5. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, P S

    2012-10-01

    Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD. PMID:22921965

  6. New Technique for Dorsal Fragment Reduction in Distal Radius Fractures by Using Volar Bone Fenestration

    PubMed Central

    TSUCHIYA, Fumika; NAITO, Kiyohito; MOGAMI, Atsuhiko; OBAYASHI, Osamu

    2013-01-01

    Introduction: For intra-articular distal radius fractures (AO Classification, type B2) with a displaced dorsal fragment, there remains much discussion on the fixation method for the dorsal fragment. To reduce the displaced dorsal fragment, we developed a new technique consisting of fenestration of the volar bone cortex, reduction using an intramedullary procedure, and fixation using a volar plate. This avoids necessity of dorsal approach. Technical Note: We performed this surgical technique in 2 patients and achieved a good reduced position without much injury to the bone cortex at the site of volar plate placement. This surgical technique allows reduction of the dorsal fragment using an intramedullary procedure by only a volar approach, and, therefore, does not affect the dorsal soft tissue (extensor tendon). For intra-articular distal radius fractures, complete reduction of the articular surface is extremely difficult, and, in patients with a remaining gap on the articular surface, a variable angle locking screw system may be useful. In the 2 patients, the angle of the locking screw was adjusted to catch the displaced dorsal fragment, and adequate reduction and fixation could be achieved. Conclusion: This technique using fenestration of the volar bone cortex allows reduction and fixation of the displaced dorsal fragment in distal radius fractures and thus avoids the necessity of a dorsal approach. PMID:27298898

  7. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  8. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    PubMed Central

    Lang, Nicolas; Siebner, Hartwig R.; Ward, Nick S.; Lee, Lucy; Nitsche, Michael A.; Paulus, Walter; Rothwell, John C.; Lemon, Roger N.; Frackowiak, Richard S.

    2013-01-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, H215O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (± 1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function. PMID:16045502

  9. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    PubMed

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function. PMID:16045502

  10. Pre-Motor Parkinson’s Disease: Concepts and Definitions

    PubMed Central

    Siderowf, Andrew; Lang, Anthony E.

    2012-01-01

    Parkinson’s disease (PD) has a prodromal phase during which non-motor clinical features as well as physiological abnormalities may be present. These pre-motor markers could be used to screen for PD before motor abnormalities are present. The technology to identify PD before it reaches symptomatic Braak Stage 3 (substantia nigra compacta (SNc) involvement) already exists. The current challenge is to define the appropriate scope of use of predictive testing for PD. Imaging technologies, like dopamine transporter imaging, currently offer the highest degree of accuracy for identifying pre-motor PD, but they are expensive as screening tools and abnormalities on these studies would only be evident at Braak Stage 3 or higher. Efficiency is greatly enhanced by combining imaging with a pre-screening test, such as olfactory testing. This two-step process has the potential to greatly reduce costs while retaining diagnostic accuracy. Alternatively, or in concert with this approach, evaluating high-risk populations (e.g. patients with rapid eye movement behavior disorder (RBD) or LRRK2 mutations) would enrich the sample for cases with underlying PD. Ultimately, the role of pre-clinical detection of PD will be determined by the ability of emerging therapies to influence clinical outcomes. As such, implementation of large-scale screening strategies awaits the arrival of clearly safe and effective therapies that address the underlying pathogenesis of PD. Future research will establish more definitive biomarkers capable of revealing the presence of disease in advance of SNc involvement with the promise of the potential for introducing disease modifying therapy even before the development of evidence for dopamine deficiency. PMID:22508279

  11. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  12. Premotor Symptoms as Predictors of Outcome in Parkinsons Disease: A Case-Control Study

    PubMed Central

    Wu, Yu-Hsuan; Lee, Wei-Ju; Chen, Yi-Huei

    2016-01-01

    Background To evaluate the association between the premotor symptoms and the prognosis of PD. Methods A total of 1213 patients who were diagnosed of PD from January 2001 to December 2008 were selected from the Taiwan’s National Health Insurance Research Database. Patients were traced back to determine the presence of premotor symptoms, including rapid eye movement sleep behavior disorder (RBD), depression, and constipation. Cox’s regression analysis was used to detect the risks between the occurrence of premotor symptoms and the outcome (including death, psychosis, accidental injury, dementia and aspiration pneumonia). In addition, the association between premotor symptoms and levodopa equivalent dosage (LED) was examined. Results Higher occurrence of death, dementia and aspiration pneumonia were identified in PD patients with premotor symptoms than without premotor symptoms (HR 1·69, 95% CI 1·34–2·14, p <0·001 for death; HR 1·63, 95% CI 1·20–2·22, p = 0·002 for dementia; HR 2·45, 95% CI 1·42–4·21, p = 0·001 for aspiration pneumonia). In a comorbidities-stratified analysis, PD patients with premotor symptoms showed significantly high risks of mortality and morbidity (dementia and aspiration pneumonia), especially in the absence of comorbidities. Independent predictors of mortality in PD were found to be higher age, male sex, constipation, RBD, RBD with constipation and depression, and diabetes. Furthermore, no significant differences of LED and subsequent accidental injury were noted between PD patient with or without premotor symptoms. Conclusion Premotor symptoms seem to be not merely risk factors, but also prognostic factors of PD. PMID:27533053

  13. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B)

    PubMed Central

    Lanzilotto, Marco; Perciavalle, Vincenzo; Lucchetti, Cristina

    2015-01-01

    The Supplementary Eye Field (SEF) and the Frontal Eye Field (FEF) have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B) of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance) and during the execution of a visual fixation task (VFT). In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey's head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze orienting

  14. Is visual processing in the dorsal stream accessible to consciousness?

    PubMed

    Milner, A D

    2012-06-22

    There are two highly interconnected clusters of visually responsive areas in the primate cortex. These two clusters have relatively few interconnections with each other, though those interconnections are undoubtedly important. One of the two main clusters (the dorsal stream) links the primary visual cortex (V1) to superior regions of the occipito-parietal cortex, while the other (the ventral stream) links V1 to inferior regions of the occipito-temporal cortex. According to our current understanding of the functional anatomy of these two systems, the dorsal stream's principal role is to provide real-time 'bottom-up' visual guidance of our movements online. In contrast, the ventral stream, in conjunction with top-down information from visual and semantic memory, provides perceptual representations that can serve recognition, visual thought, planning and memory offline. In recent years, this interpretation, initially based chiefly on studies of non-human primates and human neurological patients, has been well supported by functional MRI studies in humans. This perspective presents empirical evidence for the contention that the dorsal stream governs the visual control of movement without the intervention of visual awareness. PMID:22456882

  15. [Non-motor symptoms in premotor phase of Parkinson disease].

    PubMed

    Takahashi, Kazushi

    2013-01-01

    Non-motor symptoms are common in patients with newly diagnosed Parkinson's disease (PD), and some even predate the emergence of the classic motor features. The premotor phase of PD is characterized by several important non-motor features, including constipation, olfactory dysfunction, REM sleep behavior disorder (RBD), depression, etc. The basis of this prodromal stage is that the pathological process related to Lewy bodies, may start outside of the substantia nigra. We investigated 469 Japanese PD patients in our multicenter study, using the Japanese version of the RBD screening questionnaire. Probable RBD was detected in 146 patients (31%) and the RBD symptoms of 53 patients preceded the onset of PD motor symptoms. With the probable exception of RBD, non-motor clinical markers can be sensitive for an impending diagnosis of PD, but these features are common and non-specific. The combination of non-motor clinical markers and more specific markers (e.g., imaging or genetic markers) may achieve sufficient utility in PD diagnosis and prediction in future. Being able to diagnose that a patient has PD at an earlier time point than is currently possible, would be allowed to introduce potential disease-modifying therapies at a time when it could have fundamental and long-lasting effects. PMID:24291850

  16. Functional Connectivity of the Dorsal Striatum in Female Musicians.

    PubMed

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective. PMID:27148025

  17. Functional Connectivity of the Dorsal Striatum in Female Musicians

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective. PMID:27148025

  18. Finding prefrontal cortex in the rat.

    PubMed

    Leonard, Christiana M

    2016-08-15

    The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections The cortical projection field of the mediodorsal nucleus of the thalamus (MD) was identified in the rat using the Fink-Heimer silver technique for tracing degenerating fibers. Small stereotaxic lesions confined to MD were followed by terminal degeneration in the dorsal bank of the rhinal sulcus (sulcal cortex) and the medial wall of the hemisphere anterior and dorsal to the genu of the corpus callosum (medial cortex). No degenerating fibers were traced to the convexity of the hemisphere. The cortical formation receiving a projection from MD is of a relatively undifferentiated type which had been previously classified as juxtallocortex. A study of the efferent fiber connections of the rat׳s MD-projection cortex demonstrated some similarities to those of monkey prefrontal cortex. A substantial projection to the pretectal area and deep layers of the superior colliculus originates in medial cortex, a connection previously reported for caudal prefrontal (area 8) cortex in the monkey. Sulcal cortex projects to basal olfactory structures and lateral hypothalamus, as does orbital frontal cortex in the monkey. The rat׳s MD-projection cortex differs from that in the monkey in that it lacks a granular layer and appears to have no prominent direct associations with temporal and juxtahippocampal areas. Furthermore, retrograde degeneration does not appear in the rat thalamus after damage to MD-projection areas, suggesting that the striatum or thalamus receives a proportionally larger share of the MD-projection in this animal than it does in the monkey. Comparative behavioral investigations are in progress to investigate functional differences between granular prefrontal cortex in the primate and the relatively primitive MD-projection cortex in the rat. © 1969. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26867704

  19. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    PubMed

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity. PMID:24790186

  20. Connecting to Create: Expertise in Musical Improvisation Is Associated with Increased Functional Connectivity between Premotor and Prefrontal Areas

    PubMed Central

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene

    2014-01-01

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity. PMID:24790186

  1. Assessment of penetration of dorsal screws after fixation of the distal radius using ultrasound: cadaveric study.

    PubMed

    Williams, D; Singh, J; Heidari, N; Ahmad, M; Noorani, A; Di Mascio, L

    2016-02-01

    Introduction Volar locking plates are used to treat unstable and displaced fractures of the distal radius. Potential advantages of stable anatomical reduction (eg early mobilisation) can be limited by penetration of dorsal screws, leading to synovitis and potential rupture of extensor tendons. Despite intraoperative imaging, penetration of dorsal screws continues to be a problem in volar plating of the distal radius. Ultrasound is a well recognised, readily available, diagnostic tool used to assess soft-tissue impingement by orthopaedic hardware. In this cadaveric study, we wished to ascertain the sensitivity and specificity of ultrasound for identification of protrusion of dorsal screws after volar plating of the distal radius. Methods Four adult, unpaired phenol-embalmed cadaveric distal radii were used. A VariAx™ Distal Radius Volar Locking Plate system (Stryker, Kalamazoo, MI, USA) was employed for instrumented fixation. A portable SIUI CTS 900 ultrasound machine (Providian Medical, Eastlake, OH, USA) was used to image the dorsal cortex to ascertain screw penetration. Results Specificity and sensitivity of ultrasound for detection of screw protrusion through the dorsal cortex was 100%. Conclusions Ultrasound was found to be a safe and accurate method for assessment of dorsal-screw penetration through the dorsal cortex of the radius after volar plating of the distal radius. It also aids diagnosis of associated tendon disorders (eg tenosynovitis) that might cause pain and limit wrist function. PMID:26829667

  2. Dorsal spine osteoblastoma

    PubMed Central

    Bhargava, Pranshu; Singh, Rahul; Garg, Bharat B.

    2016-01-01

    Benign osteoblastoma is a rare primary neoplasm comprising less than 1% of primary bone tumors.[1] We report a case of a 20-year-old female patient presenting with progressive paraparesis over one year and back pain over the dorsal spine gradually increasing in severity over a year. Computerised tomomography (CT) of the spine revealed a well-defined 3.5 × 3.0 cm mass heterodense expansile bony lesion arising from the lamina of the D12 vertebra, having lytic and sclerotic component and causing compromise of the bony spinal canal. D12 laminectomy and total excision of the tumor was done. PMID:27057242

  3. Calretinin as a Marker for Premotor Neurons Involved in Upgaze in Human Brainstem

    PubMed Central

    Adamczyk, Christopher; Strupp, Michael; Jahn, Klaus; Horn, Anja K. E.

    2015-01-01

    Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin (PAV) and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC) and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF), which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin (CR)-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of CR input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and CR may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and CR positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan (ACAN) component of perineuronal nets, parvalbumin or CR and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without CR coexpression, which were intermingled. The parvalbumin/CR positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking CR are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as indicated by co-expression of glutamate decarboxylase in a

  4. Activation of Premotor Vocal Areas during Musical Discrimination

    ERIC Educational Resources Information Center

    Brown, Steven; Martinez, Michael J.

    2007-01-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…

  5. The Laryngeal Motor Cortex: Its Organization and Connectivity

    PubMed Central

    Simonyan, Kristina

    2014-01-01

    Our ability to learn and control the motor aspects of complex laryngeal behaviors, such as speech and song, is modulated by the laryngeal motor cortex (LMC), which is situated in the area 4 of the primary motor cortex and establishes both direct and indirect connections with laryngeal motoneurons. In contrast, the LMC in monkeys is located in the area 6 of the premotor cortex, projects only indirectly to laryngeal motoneurons and its destruction has essentially no effect on production of species-specific calls. These differences in cytoarchitectonic location and connectivity may be a result of hominid evolution that led to the LMC shift from the phylogenetically “old” to “new” motor cortex in order to fulfill its paramount function, i.e., voluntary motor control of human speech and song production. PMID:24929930

  6. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  7. Dual dorsal columns: a review.

    PubMed

    Beck, C H

    1976-02-01

    Recent evidence indicates that Wall (1970) may have been premature in concluding that dorsal column lesions produce no discernable sensory defects. Much of the negative evidence Wall presented to support this view is inconclusive. In addition several studies have reported significant sensory deficits in animals with severed dorsal columns. On the other hand, the literature strongly supports Wall's view that dorsal column lesions cause motor disturbances. A review of the anatomical and electrophysiological literature reveals growing evidence for the dissociation of two major subsystems relaying in the dorsal column nuclei. The possible functions of these two systems are discussed. PMID:814988

  8. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats.

    PubMed

    Koganezawa, Tadachika; Paton, Julian F R

    2014-11-01

    Brainstem hypoperfusion is a major excitant of sympathetic activity triggering hypertension, but the exact mechanisms involved remain incompletely understood. A major source of excitatory drive to preganglionic sympathetic neurons originates from the ongoing activity of premotor neurons in the rostral ventrolateral medulla (RVLM sympathetic premotor neurons). The chemosensitivity profile of physiologically characterized RVLM sympathetic premotor neurons during hypoxia and hypercapnia remains unclear. We examined whether physiologically characterized RVLM sympathetic premotor neurons can sense brainstem ischaemia intrinsically. We addressed this issue in a unique in situ arterially perfused preparation before and after a complete blockade of fast excitatory and inhibitory synaptic transmission. During hypercapnic hypoxia, respiratory modulation of RVLM sympathetic premotor neurons was lost, but tonic firing of most RVLM sympathetic premotor neurons was elevated. After blockade of fast excitatory and inhibitory synaptic transmission, RVLM sympathetic premotor neurons continued to fire and exhibited an excitatory firing response to hypoxia but not hypercapnia. This study suggests that RVLM sympathetic premotor neurons can sustain high levels of neuronal discharge when oxygen is scarce. The intrinsic ability of RVLM sympathetic premotor neurons to maintain responsivity to brainstem hypoxia is an important mechanism ensuring adequate arterial pressure, essential for maintaining cerebral perfusion in the face of depressed ventilation and/or high cerebral vascular resistance. PMID:25016023

  9. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    PubMed Central

    Davare, Marco; Zénon, Alexandre; Desmurget, Michel; Olivier, Etienne

    2015-01-01

    To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  10. The human lumbar dorsal rami.

    PubMed Central

    Bogduk, N; Wilson, A S; Tynan, W

    1982-01-01

    The L 1-4 dorsal rami tend to form three branches, medial, lateral, and intermediate, which are distributed, respectively, to multifidus, iliocostalis, and longissimus. The intertransversarii mediales are innervated by a branch of the dorsal ramus near the origin of the medial branch. The L 4 dorsal ramus regularly forms three branches while the L 1-3 levels the lateral and intermediate branches may, alternatively, arise from a short common stem. The L 5 dorsal ramus is much longer than the others and forms only a medial and an intermediate branch. Each lumbar medial branch innervates two adjacent zygapophysial joints and ramifies in multifidus, supplying only those fascicles which arise from the spinous process with the same segmental number as the nerve. The comparative anatomy of the lumbar dorsal rami is discussed and the applied anatomy with respect to 'rhizolysis', 'facet denervation' and diagnostic paraspinal electromyography is described. PMID:7076562

  11. Pointing in visual periphery: is DF's dorsal stream intact?

    PubMed

    Hesse, Constanze; Ball, Keira; Schenk, Thomas

    2014-01-01

    Observations of the visual form agnosic patient DF have been highly influential in establishing the hypothesis that separate processing streams deal with vision for perception (ventral stream) and vision for action (dorsal stream). In this context, DF's preserved ability to perform visually-guided actions has been contrasted with the selective impairment of visuomotor performance in optic ataxia patients suffering from damage to dorsal stream areas. However, the recent finding that DF shows a thinning of the grey matter in the dorsal stream regions of both hemispheres in combination with the observation that her right-handed movements are impaired when they are performed in visual periphery has opened up the possibility that patient DF may potentially also be suffering from optic ataxia. If lesions to the posterior parietal cortex (dorsal stream) are bilateral, pointing and reaching deficits should be observed in both visual hemifields and for both hands when targets are viewed in visual periphery. Here, we tested DF's visuomotor performance when pointing with her left and her right hand toward targets presented in the left and the right visual field at three different visual eccentricities. Our results indicate that DF shows large and consistent impairments in all conditions. These findings imply that DF's dorsal stream atrophies are functionally relevant and hence challenge the idea that patient DF's seemingly normal visuomotor behaviour can be attributed to her intact dorsal stream. Instead, DF seems to be a patient who suffers from combined ventral and dorsal stream damage meaning that a new account is needed to explain why she shows such remarkably normal visuomotor behaviour in a number of tasks and conditions. PMID:24626162

  12. Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, Ps

    2012-12-01

    BACKGROUND AND PURPOSE Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss; however, the noradrenergic system exhibits degeneration as well. Noradrenergic deficit in PD may be responsible for certain non-motor symptoms of the pathology, including psychiatric disorders and cognitive decline. The aim of this study was to generate a pre-motor rodent model of PD with noradrenergic denervation, and to assess whether treatment with exendin-4 (EX-4), a glucagon-like peptide 1 receptor agonist, could reverse impairment exhibited by our model. EXPERIMENTAL APPROACH We generated a model of PD utilizing N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine and 6-hydroxydopamine to create partial lesions of both the noradrenergic and dopaminergic systems respectively. We then assessed the validity of our model using an array of behavioural paradigms and biochemical techniques. Finally, we administered EX-4 over a 1 week period to determine therapeutic efficacy. KEY RESULTS Our model exhibits anhedonia and decreased object recognition as indicated by a decrease in sucrose preference, increased immobility in the forced swim test and reduced novel object exploration. Tissue and extracellular dopamine and noradrenaline were reduced in the frontal cortex and striatum. TH+ cell counts decreased in the locus coeruleus and substantia nigra. Treatment with EX-4 reversed behavioural impairment and restored extracellular/tissue levels of both dopamine and noradrenaline and TH+ cell counts. CONCLUSION AND IMPLICATIONS We conclude that early treatment with EX-4 may reverse certain neuropsychiatric dysfunction and restore dopamine and noradrenaline content. PMID:22774922

  13. Corticocortical synaptic influences on morphologically identified pyramidal neurones in the motor cortex of the monkey.

    PubMed Central

    Ghosh, S; Porter, R

    1988-01-01

    1. Corticocortical synaptic influences on pyramidal neurones in the precentral motor cortex of monkeys were examined using intracellular recordings. Corticocortical afferents from the postarcuate premotor area and the somatic sensory cortical areas were activated by bifocal stimulation of the cortical surface. Neurones that were found to respond orthodromically to such stimuli were labelled by intracellular ionophoresis of horseradish peroxidase. 2. Almost all neurones that were penetrated satisfactorily and labelled successfully were found to be pyramidal neurones located in lamina III or lamina V. Some labelled neurones in lamina V were also characterized as pyramidal tract neurones (PTNs) by antidromic activation from the cerebral peduncles or medullary pyramids. 3. Pyramidal neurones located in lamina III and lamina V (including PTNs) were excited at short latency by stimulation of the premotor cortex (1.1-4.0 ms) and somatosensory cortex (1.1-6.5 ms). There were no statistical differences in the distributions of latencies of corticocortical EPSPs between those evoked in lamina III neurones and those recorded in lamina V neurones, or between corticocortical EPSPs evoked from the premotor cortex in comparison with those from the somatosensory cortex. Excitatory responses to stimulation of the premotor area were usually more difficult to evoke and smaller in amplitude than those produced by stimulation of the somatosensory areas. 4. Corticocortical EPSPs were often followed by IPSPs. The amplitudes of the EPSPs and IPSPs could be increased by increasing the stimulus intensity. In a few neurones IPSPs that were not preceded by EPSPs were recorded. Images Plate 1 PMID:3418539

  14. Rate of cognitive decline during the premotor phase of essential tremor

    PubMed Central

    Louis, Elan D.; Sánchez-Ferro, Álvaro; Bermejo-Pareja, Félix

    2013-01-01

    Objective: To characterize the rate of cognitive decline during the premotor phase of essential tremor (ET) in comparison to prevalent ET cases and controls. Methods: In this population-based, prospective study of people aged 65 years and older (Neurological Disorders in Central Spain), a 37-item version of the Mini-Mental State Examination was administered at 2 visits (baseline and follow-up, approximately 3 years later). We compared the rate of cognitive decline in 3 groups: prevalent ET cases (i.e., participants diagnosed with ET at baseline and at follow-up), “premotor” ET cases (i.e., participants diagnosed with incident ET at follow-up, but not at baseline), and controls (i.e., participants not diagnosed with ET at baseline or follow-up). Results: The 2,375 participants included 135 prevalent ET cases, 56 premotor ET cases, and 2,184 controls. During the follow-up period of 3.4 ± 0.5 years (mean ± SD), the 37-item version of the Mini-Mental State Examination declined by 0.7 ± 3.3 points (0.2 ± 1.0 points/year) in prevalent ET cases, 1.1 ± 3.5 points (0.3 ± 1.0 points/year) in premotor ET cases, and 0.1 ± 3.9 points (0.0 ± 1.2 points/year) in controls (p = 0.014). The difference between premotor ET cases and controls was significant (p = 0.046), as was the difference between prevalent ET cases and controls (p = 0.027). Conclusions: In this prospective cohort, cognitive test scores in premotor and prevalent ET cases declined at a faster rate than in elders without this disease. A decline in global cognitive function may occur in a premotor phase of ET. PMID:23700331

  15. Here, there and everywhere: higher visual function and the dorsal visual stream.

    PubMed

    Cooper, Sarah Anne; O'Sullivan, Michael

    2016-06-01

    The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered. PMID:26786007

  16. Research on the Premotor Symptoms of Parkinson’s Disease: Clinical and Etiological Implications

    PubMed Central

    Burton, Edward A.; Ross, G. Webster; Huang, Xuemei; Savica, Rodolfo; Abbott, Robert D.; Ascherio, Alberto; Caviness, John N.; Gao, Xiang; Gray, Kimberly A.; Hong, Jau-Shyong; Kamel, Freya; Jennings, Danna; Kirshner, Annette; Lawler, Cindy; Liu, Rui; Miller, Gary W.; Nussbaum, Robert; Peddada, Shyamal D.; Rick, Amy Comstock; Ritz, Beate; Siderowf, Andrew D.; Tanner, Caroline M.; Tröster, Alexander I.; Zhang, Jing

    2013-01-01

    Background: The etiology and natural history of Parkinson’s disease (PD) are not well understood. Some non-motor symptoms such as hyposmia, rapid eye movement sleep behavior disorder, and constipation may develop during the prodromal stage of PD and precede PD diagnosis by years. Objectives: We examined the promise and pitfalls of research on premotor symptoms of PD and developed priorities and strategies to understand their clinical and etiological implications. Methods: This review was based on a workshop, Parkinson’s Disease Premotor Symptom Symposium, held 7–8 June 2012 at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. Discussion: Research on premotor symptoms of PD may offer an excellent opportunity to characterize high-risk populations and to better understand PD etiology. Such research may lead to evaluation of novel etiological hypotheses such as the possibility that environmental toxicants or viruses may initiate PD pathogenesis in the gastrointestinal tract or olfactory bulb. At present, our understanding of premotor symptoms of PD is in its infancy and faces many obstacles. These symptoms are often not specific to PD and have low positive predictive value for early PD diagnosis. Further, the pathological bases and biological mechanisms of these premotor symptoms and their relevance to PD pathogenesis are poorly understood. Conclusion: This is an emerging research area with important data gaps to be filled. Future research is needed to understand the prevalence of multiple premotor symptoms and their etiological relevance to PD. Animal experiments and mechanistic studies will further understanding of the biology of these premotor symptoms and test novel etiological hypothesis. Citation: Chen H, Burton EA, Ross GW, Huang X, Savica R, Abbott RD, Ascherio A, Caviness JN, Gao X, Gray KA, Hong JS, Kamel F, Jennings D, Kirshner A, Lawler C, Liu R, Miller GW, Nussbaum R, Peddada SD, Comstock Rick A, Ritz

  17. Evaluation of net causal influences in the circuit responding to premotor control during the movement-readiness state using conditional Granger causality.

    PubMed

    Wang, Yuqing; Chen, Huafu; Gao, Qing; Yang, Yihong; Gong, Qiyong; Gao, Fabao

    2015-01-21

    As an initialization procedure for brain responding to subsequent movement execution (ME), the movement-readiness (MR) state is important for understanding the formation processes from daily movement training to long-term memory of movement pattern. As such, based on functional magnetic resonance imaging (fMRI), the net causal influences among regions contributing to premotor control during the MR state were explored by means of conditional Granger causality (CGC) and graph-theory methods in the present study. Our results found that net causal circuits responding to unimanual MR were identified during right-hand or left-hand MR, involving in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), upper precuneus (UPCU), caudate nucleus (CN), cingulate motor area (CMA), supplementary motor area (SMA) and primary sensorimotor area (S1M1). Moreover, the contralateral CN, SMA and S1M1 revealed greater net causal influences during unimanual MR, which highlighted the contralateral dominant modulations during unimanual MR. Furthermore, according as the graph-theory analysis, the higher In+Out degrees of upper precuneus (UPCU) during right-hand MR or higher In+Out degrees of cingulate motor area (CMA) and posterior cingulate cortex (PCC) during left-hand MR implied the brain asymmetry of causal connectivity in the circuit responding to right-hand or left-hand MR. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25148703

  18. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.

    PubMed

    Norris, Brian J; Weaver, Adam L; Morris, Lee G; Wenning, Angela; García, Paul A; Calabrese, Ronald L

    2006-07-01

    The central pattern generator for heartbeat in medicinal leeches constitutes seven identified pairs of segmental heart interneurons. Four identified pairs of heart interneurons make a staggered pattern of inhibitory synaptic connections with segmental heart motor neurons. Using extracellular recording from multiple interneurons in the network in 56 isolated nerve cords, we show that this pattern generator produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons. This pattern corresponds to a similarly asymmetric fictive motor pattern in heart motor neurons and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. We provide a quantitative description of the firing pattern of all the premotor interneurons, including phase, duty cycle, and intraburst frequency of this premotor activity pattern. This analysis identifies two stereotypical coordination modes corresponding to synchronous and peristaltic, which show phase constancy over a broad range of periods as do the fictive motor pattern and the heart constriction pattern. Coordination mode is controlled through one segmental pair of heart interneurons (switch interneurons). Side-to-side switches in coordination mode are a regular feature of this pattern generator and occur with changes in activity state of these switch interneurons. Associated with synchronous coordination of premotor interneurons, the ipsilateral switch interneuron is in an active state, during which it produces rhythmic bursts, whereas associated with peristaltic coordination, the ipsilateral switch interneuron is largely silent. We argue that timing and pattern elaboration are separate functions produced by overlapping subnetworks in the heartbeat central pattern generator. PMID:16611849

  19. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion.

    PubMed

    Hasegawa, Eri; Truman, James W; Nose, Akinao

    2016-01-01

    We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, combined action of which likely regulates patterned motor activity during locomotion. Although recent studies identified candidate inhibitory premotor interneurons, the identity of premotor interneurons that provide excitatory drive to motor neurons during locomotion remains unknown. In this study, we searched for and identified two putative excitatory premotor interneurons in this system, termed CLI1 and CLI2 (cholinergic lateral interneuron 1 and 2). These neurons were segmentally arrayed and activated sequentially from the posterior to anterior segments during peristalsis. Consistent with their being excitatory premotor interneurons, the CLIs formed GRASP- and ChAT-positive putative synapses with motoneurons and were active just prior to motoneuronal firing in each segment. Moreover, local activation of CLI1s induced contraction of muscles in the corresponding body segments. Taken together, our results suggest that the CLIs directly activate motoneurons sequentially along the segments during larval locomotion. PMID:27470675

  20. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion

    PubMed Central

    Hasegawa, Eri; Truman, James W.; Nose, Akinao

    2016-01-01

    We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, combined action of which likely regulates patterned motor activity during locomotion. Although recent studies identified candidate inhibitory premotor interneurons, the identity of premotor interneurons that provide excitatory drive to motor neurons during locomotion remains unknown. In this study, we searched for and identified two putative excitatory premotor interneurons in this system, termed CLI1 and CLI2 (cholinergic lateral interneuron 1 and 2). These neurons were segmentally arrayed and activated sequentially from the posterior to anterior segments during peristalsis. Consistent with their being excitatory premotor interneurons, the CLIs formed GRASP- and ChAT-positive putative synapses with motoneurons and were active just prior to motoneuronal firing in each segment. Moreover, local activation of CLI1s induced contraction of muscles in the corresponding body segments. Taken together, our results suggest that the CLIs directly activate motoneurons sequentially along the segments during larval locomotion. PMID:27470675

  1. fMRI of Intrasubject Variability in ADHD: Anomalous Premotor Activity with Prefrontal Compensation

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Simmonds, Daniel J.; Caffo, Brian S.; Denckla, Martha B.; Pekar, James J.; Mostofsky, Stewart H.

    2008-01-01

    Neural correlates of intrasubject variability (ISV) were studied using functional magnetic resonance imaging in 25 children with attention-deficit/hyperactivity disorder (ADHD) and typically developing(TD) children performing simple go/no-go tasks. Results concluded that in children with ADHD, dysfunction of premotor systems resulted in increased…

  2. Education and risk of incident dementia during the premotor and motor phases of essential tremor (NEDICES).

    PubMed

    Benito-León, Julián; Contador, Israel; Louis, Elan D; Cosentino, Stephanie; Bermejo-Pareja, Félix

    2016-08-01

    Individuals with late-onset essential tremor (ET) (e.g., older adults) seem to have an increased prevalence of mild cognitive impairment and dementia, and a higher risk of incident dementia. It is well-known that education has a protective role against dementia in individuals without a pre-existing neurologic disorder, but evidence regarding the maintenance of this effect during the premotor and motor phases of ET is unknown. Our aim was to determine the influence of education on the risk of dementia in a population-based cohort of ET patients and controls. In a prospective study (Neurological Disorders in Central Spain), participants ≥65 years old were evaluated twice: at baseline (1994-1995) and at follow-up (1997-1998). There were 3 groups: premotor (i.e., participants first diagnosed with incident ET at follow-up), prevalent ET (i.e., participants diagnosed with ET at baseline and at follow-up), and controls. Participants were stratified into lower education (≤primary studies) versus higher education (≥secondary studies) categories. Dementia risk was estimated using Cox proportional-hazards models (higher education control group = reference category). Among the participants, 3878 had a mean duration of follow-up of 3.2 years. Eight (16.7%) of 48 lower education premotor ET patients developed incident dementia versus 1 (3.3%) of 30 higher education premotor ET patients, 9 (7.1%) of 126 lower education prevalent ET patients, 7 (8.8%) of 80 higher education prevalent ET patients, and 92 (4.9%) of 1892 lower education controls (P < 0.001). In comparison to the higher education controls, the adjusted hazard ratios for incident dementia were 5.84 (lower education premotor ET, P < 0.001); 1.36 (higher education premotor ET, P = 0.76); 2.13 (lower education prevalent ET, P = 0.04); 2.79 (higher education prevalent ET, P = 0.01); and 1.66 (lower education controls, P = 0.01). Our results suggest that a higher educational attainment may ameliorate the risk

  3. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  4. Enkephalin surges in dorsal neostriatum as a signal to eat.

    PubMed

    DiFeliceantonio, Alexandra G; Mabrouk, Omar S; Kennedy, Robert T; Berridge, Kent C

    2012-10-23

    Compulsive overconsumption of reward characterizes disorders ranging from binge eating to drug addiction. Here, we provide evidence that enkephalin surges in an anteromedial quadrant of dorsal neostriatum contribute to generating intense consumption of palatable food. In ventral striatum, mu opioid circuitry contributes an important component of motivation to consume reward. In dorsal neostriatum, mu opioid receptors are concentrated within striosomes that receive inputs from limbic regions of prefrontal cortex. We employed advanced opioid microdialysis techniques that allow detection of extracellular enkephalin levels. Endogenous >150% enkephalin surges in anterior dorsomedial neostriatum were triggered as rats began to consume palatable chocolates. In contrast, dynorphin levels remained unchanged. Furthermore, a causal role for mu opioid stimulation in overconsumption was demonstrated by observations that microinjection in the same anterior dorsomedial quadrant of a mu receptor agonist ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DAMGO) generated intense >250% increases in intake of palatable sweet food (without altering hedonic impact of sweet tastes). Mapping by "Fos plume" methods confirmed the hyperphagic effect to be anatomically localized to the anteromedial quadrant of the dorsal neostriatum, whereas other quadrants were relatively ineffective. These findings reveal that opioid signals in anteromedial dorsal neostriatum are able to code and cause motivation to consume sensory reward. PMID:23000149

  5. Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy

    PubMed Central

    Bonnelle, Valerie; Manohar, Sanjay; Behrens, Tim; Husain, Masud

    2016-01-01

    Lack of physical engagement, productivity, and initiative—so-called “behavioral apathy”—is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost—and greater effort sensitivity—for action initiation in more apathetic people. PMID:26564255

  6. Changes in Synaptic Populations in the Spinal Dorsal Horn Following a Dorsal Rhizotomy in the Monkey

    PubMed Central

    Darian-Smith, Corinna; Hopkins, Stephanie; Ralston, Henry J.

    2010-01-01

    Studies in monkeys have shown substantial neuronal reorganization and behavioral recovery during the months following a cervical dorsal root lesion (DRL; Darian-Smith [2004] J. Comp. Neurol. 470:134–150; Darian-Smith and Ciferri [2005] J. Comp. Neurol. 491:27–45, [2006] J. Comp. Neurol. 498:552–565). The goal of the present study was to identify ultrastructural synaptic changes post-DRL within the dorsal horn (DH). Two monkeys received a unilateral DRL, as described previously (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476–481), which removed cutaneous and proprioceptive input from the thumb, index finger, and middle finger. Six weeks before terminating the experiment at 4 post-DRL months, hand representation was mapped electrophysiologically within the somatosensory cortex, and anterograde tracers were injected into reactivated cortex to label corticospinal terminals. Sections were collected through the spinal lesion zone. Corticospinal terminals and inhibitory profiles were visualized by using preembedding immunohistochemistry and postembedding γ-aminobutyric acid (GABA) immunostaining, respectively. Synaptic elements were systematically counted through the superficial DH and included synaptic profiles with round vesicles (R), pleomorphic flattened vesicles (F; presumed inhibitory synapses), similar synapses immunolabeled for GABA (F-GABA), primary afferent synapses (C-type), synapses with dense-cored vesicles (D, mostly primary afferents), and presynaptic dendrites of interneurons (PSD). Synapse types were compared bilaterally via ANOVAs. As expected, we found a significant drop in C-type profiles on the lesioned side (~16% of contralateral), and R profiles did not differ bilaterally. More surprising was a significant increase in the number of F profiles (~170% of contralateral) and F-GABA profiles (~315% of contralateral) on the side of the lesion. Our results demonstrate a striking increase in the inhibitory circuitry within the deafferented DH

  7. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    PubMed

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. PMID:26827656

  8. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  9. Dorsal Hump Reduction and Osteotomies.

    PubMed

    Azizzadeh, Babak; Reilly, Michael

    2016-01-01

    This article discusses the technique for planning, executing, and troubleshooting dorsal hump reduction for the cosmetic rhinoplasty patient. Details of the discussion include the necessary elements of the preoperative consultation with the patient, the specific instruments used to effectively and reproducibly create osteotomies, the anatomic and patient variables that require special attention, and the necessary measures to guard against potential complications. PMID:26616694

  10. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    PubMed

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity. PMID:17804574