Science.gov

Sample records for dose rate determination

  1. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  2. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Chung, Kun Ho; Lee, Wanno; Park, Doo-Won; Kang, Mun-Ja

    2014-04-01

    A spectrometric determination of the dose rate using a detector is a very useful method to identify the contribution of artificial nuclides. In addition, the individual dose rate for detected gamma nuclides from the radioactive materials as well as the environment can give further information such as the in-situ measurement because of the direct relation between the individual dose rate and the activity of a nuclide. In this study, the calculation method for the individual dose rate for detected gamma nuclides was suggested by introducing the concept of the dose rate spectroscopy and the peak-to-total ratio in the energy spectrum for the dose rate, which means just a form of multiplied counts and the value of a G-factor in the spectrum. In addition, the validity of the suggested method for the individual dose rate was experimentally verified through a comparison of the calculation results on the energy spectra for several conditions of the standard source.

  3. A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-05-24

    The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily

  4. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    SciTech Connect

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  5. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.; Loftin, B.; Abramczyk, G.; Bellamy, S.

    2012-05-09

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels within the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for

  6. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    SciTech Connect

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  7. Analysis of Potassium in Bricks--Determining the Dose Rate from {sup 40}K for Thermoluminescence Dating

    SciTech Connect

    Musilek, Ladislav; Polach, Tomas; Trojek, Tomas

    2008-08-07

    Thermoluminescence (TL) dating is based on accumulating the natural radiation dose in the material of a dated artefact (brick, pottery, etc.), and comparing the dose accumulated during the lifetime of the object with the dose rate within the sample collected for TL measurement. Determining the dose rate from natural radionuclides in materials is one of the most important and most difficult parts of the technique. The most important radionuclides present are usually nuclides of the uranium and thorium decay series and {sup 40}K. An analysis of the total potassium concentration enables us to determine the {sup 40}K content effectively, and from this it is possible to calculate the dose rate originating from this radiation source. X-ray fluorescence (XRF) analysis can be used to determine the potassium concentration in bricks rapidly and efficiently. The procedure for analysing potassium, examples of results of dose rate calculation and possible sources of error are described here.

  8. Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients

    PubMed Central

    Liu, Lin L.; Li, Fei; Pao, William; Michor, Franziska

    2015-01-01

    Background The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance. Methods We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies. Results We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration. Conclusions For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes. PMID:26536620

  9. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels

  10. A GREEN'S FUNCTION APPROACH FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2012-06-14

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with each unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a

  11. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    PubMed Central

    Ravikumar, Barlanka; Lakshminarayana, S.

    2012-01-01

    In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D) dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT) based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192Ir) source from high dose rate (HDR) Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung) to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances. PMID:22363109

  12. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing

    PubMed Central

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-01-01

    An understanding of the dynamics of intestinal Lgr5+ stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5+ stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-CreERT2 × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ+ crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5+ stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool. PMID:25832104

  13. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing.

    PubMed

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-07-01

    An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool. PMID:25832104

  14. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications. PMID:26086681

  15. Online Monitoring And Determination Of Environmental Dose Rate, Using Radiological Network In Albania

    SciTech Connect

    Telhaj, Ervis; Deda, Antoneta

    2010-01-21

    From May 2004, in the Institute of Nuclear Physics is installed Albanian Radiological Monitoring Network, in the framework of emergency monitoring in the territory of Albania. In this network, this is unique monitoring on-line system in our country. are included 5(five) monitoring stations, respectively in Tirane, Shkoder, Kukes, Korce and Vlore. The last four stations are near Albanian borders The network performs measures of ambient dose rate in a range from 5 nSv/h up to 10 Sv/h. For measurements are used detector of type VACUTEC 70045 A, which are calibrated in the Centre of Applied Nuclear Physics, University of Tirana, using standard radiation source Cs-137. This monitoring help to warn in real time the relative authorities, in case of radiological accidents of 5th degree (for example accidents in nuclear power plants, near Albanian territory).

  16. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    SciTech Connect

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  17. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  18. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  19. Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

    SciTech Connect

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    Purpose: To measure the absorbed dose rate to water of {sup 60}Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials: Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results: The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm{sup -1}. After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions: Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.

  20. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (ESTSC)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  1. Determination of the tissue attenuation factor along two major axes of a high dose rate (HDR) 192Ir source.

    PubMed

    Cho, S H; Muller-Runkel, R; Hanson, W F

    1999-08-01

    Quantitative information on photon scattering around brachytherapy sources is needed to develop dose calculation formalisms capable of predicting dosimetric parameters with minimal empiricism. Photon absorption and scatter around brachytherapy sources can be characterized using the tissue attenuation factor, defined as the ratio of dose in water to water kerma in free space. In this study, the tissue attenuation factor along two major axes of a high dose rate (HDR) 192Ir source was determined by TLD measurements and MCNP Monte Carlo calculations. A calculational method is also suggested to derive the tissue attenuation factor along the longitudinal source axis from the factor along the transverse axis, using published anisotropy data as input. TLD and Monte Carlo results agreed with each other for both source axes within the statistical uncertainty (approximately +/- 5%) of Monte Carlo calculations. Comparison with published data, available only for the transverse source axis, also showed good agreement within +/- 5%. The shape and magnitude of the tissue attenuation factor are found to be remarkably different between the two axes. The tissue attenuation factor reaches a maximum value of about 1.4 at 8 cm from the source along the longitudinal source axis, while a maximum value of about 1.04 occurs at 3-4 cm from the source along the transverse axis. The calculated tissue attenuation factor along the longitudinal source axis generally reproduced the TLD and Monte Carlo results within +/- 5% at most radial distances. PMID:10501048

  2. Determination of florfenicol dose rate in feed for control of mortality in nile tilapia Oreochromis nilotica infected with streptococcus iniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dose titration study was conducted to determine the dosage of florfenicol (FFC) in feed to control Streptococcus iniae-associated mortality in Nile tilapia Oreochromis niloticus. Six tanks were assigned to each of five treatments: (1) not challenged with S. iniae and fed unmedicated feed; (2) chal...

  3. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    NASA Astrophysics Data System (ADS)

    Toni, M. P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-10-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d0 = 1 cm, \\dot {D}_{w,1\\,cm} , is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure \\dot {D}_{w,1\\,cm} due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under ‘wall-less air chamber’ conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of Dw,1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on \\dot {D}_{w,1\\,cm} is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant Λ1 cm, traceable to the Dw,1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on Λ1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature.

  4. Sampling and recording dose rate meter

    SciTech Connect

    Kronenberg, S.

    1984-04-06

    A wide range radiation dose rate for civil defense use, including a Geiger-Mueller tube used in a continuous counting mode and for measuring dose rates from the natural background to about 30. rads/hr., with an ion chamber arranged to measure higher dose rates up to 10,000 rads/hr. The instrument has a sample and record capability in which the selected radiation detector will have its output connected to a selected storage capacitor for a precise interval of time determined by a timing circuit and the storage capacitor will accumulate and hold a voltage proportional to the dose rate, which can be read by means of an electrometer at a later time. The instrument has a self contained hand cranked power supply and all components are selected for long shelf life.

  5. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  6. Dose-rate dependence of heat radiosensitization

    SciTech Connect

    Gerner, E.W.; Oval, J.H.; Manning, M.R.; Sim, D.A.; Bowden, G.T.; Hevezi, J.M.

    1983-09-01

    The dose rate dependence of heat radiosensitization was studied using rat astrocytoma cells in culture and a cliniclly relevant protocol of heat dose and heat radiation sequence. Cells were treated with a minimally toxic heat dose of 43/sup 0/C for 30 minutes, after which they were irradiated with varying doses of radiation at dose rates ranging from 0.567 to 300 cGy/min. This heat dose substantially reduced the extrapolation number (n), but had little effect on D/sub 0/ of the radiation survival curve at dose rates of 50 cGy/min or greater. At dose rates less than 10 cGy/min, 43/sup 0/C for 30 min had little effect on n and only for the lowest dose rate studied (0.567 cGy/min) was there a significant reduction in D/sub 0/ (60%). The thermal enhancement ratio did not vary inversely with radiation dose rate over the dose rate range studied but, instead, was maximal at the two dose rate extremes (0.567 and 300 cGy/min). These data demonstrate that a clinically relevant heat dose enhances very low dose rate, as well as high dose rate, ionizing radiation, but suggest that little benefit is to be gained from using dose rates intermediate between conventional radiotherapeutic high dose rates or dose rates representative of interstitial implants.

  7. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    SciTech Connect

    Georg, Dietmar

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  8. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  9. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  10. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown. PMID:27164221

  11. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  12. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  13. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  14. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  15. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. PMID:25195117

  16. Dose rate effects in WLS fibers

    NASA Astrophysics Data System (ADS)

    Maio, A.; David, M.; Gomes, A.

    1997-03-01

    The radiation hardness of different types of WLS fibers produced by BICRON, KURARAY and POL.HI.TECH has been systematically studied. Low dose rate irradiations (from 0.55 krad/h up to 4 krad/h and total dose of about 140 krad) were performed with a 60Co γ source. The results are compared with high dose rate irradiations (1.5 Mrad/h and total dose of 1 Mrad) in a mixed field of 20% of neutrons and 80% of γ's in a nuclear reactor. The degradation of the optical properties of fibers with different composition, namely different Ultraviolet absorber (UVA) concentration and different type of cladding are studied. Dose rate effects are investigated as well as the effect of irradiation with different type of particles. The UVA can help on the radiation hardness, but no permanent dose rate effects, or special effects due to the neutron component of the irradiation field were observed.

  17. A systematic evaluation of the dose-rate constant determined by photon spectrometry for twenty-one different models of low energy photon-emitting brachytherapy sources

    PubMed Central

    Chen, Zhe (Jay); Nath, Ravinder

    2012-01-01

    Purpose To perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value (CONΛ) recommended by the American Association of Physicist in Medicine (AAPM) for twenty-one low energy photon-emitting interstitial brachytherapy sources. Method and Materials A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either 125I (14 models), 103Pd (6 models), or 131Cs (one model) were included in this study. A photon spectrometry technique (Med. Phys. 34, 1412-1430, 2007) was used to determine the dose-rate constant (PSTΛ) for each source model. Source-dependent variations in PSTΛ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. Results The values of PSTΛ for the encapsulated sources of 103Pd, 125I, and 131Cs varied from 0.661 cGyh-1U-1 to 0.678 cGyh-1U-1, 0.959 cGyh-1U-1 to 1.024 cGyh-1U-1, and 1.066 cGyh-1U-1 to 1.073 cGyh-1U-1, respectively. The relative variation in PSTΛ among the six 103Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in PSTΛ were observed among the fourteen 125I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some 125I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the PSTΛ value to vary from 0.959 cGyh-1U-1 to 1.019 cGyh-1U-1 depending on the amount of silver used by a given source model. For those 125I sources that contain no silver, their PSTΛ was less variable and had values within 1% of 1.024 cGyh-1U

  18. Determinants of Toxicity, Patterns of Failure, and Outcome Among Adult Patients With Soft Tissue Sarcomas of the Extremity and Superficial Trunk Treated With Greater Than Conventional Doses of Perioperative High-Dose-Rate Brachytherapy and External Beam Radiotherapy

    SciTech Connect

    San Miguel, Inigo; San Julian, Mikel; Cambeiro, Mauricio; Sanmamed, Miguel Fernandez; Vazquez-Garcia, Blanca; Pagola, Maria; Gaztanaga, Miren; Martin-Algarra, Salvador; Martinez-Monge, Rafael

    2011-11-15

    Purpose: The present study was undertaken to determine factors predictive of toxicity, patterns of failure, and survival in 60 adult patients with soft tissue sarcomas of the extremity and superficial trunk treated with combined perioperative high-dose-rate brachytherapy and external beam radiotherapy. Methods and Materials: The patients were treated with surgical resection and perioperative high-dose-rate brachytherapy (16 or 24 Gy) for negative and close/microscopically positive resection margins, respectively. External beam radiotherapy (45 Gy) was added postoperatively to reach a 2-Gy equivalent dose of 62.9 and 72.3 Gy, respectively. Adjuvant chemotherapy with ifosfamide and doxorubicin was given to patients with advanced high-grade tumors. Results: Grade 3 toxic events were observed in 18 patients (30%) and Grade 4 events in 6 patients (10%). No Grade 5 events were observed. A location in the lower limb was significant for Grade 3 or greater toxic events on multivariate analysis (p = .013), and the tissue volume encompassed by the 150% isodose line showed a trend toward statistical significance (p = .086). The local control, locoregional control, and distant control rate at 9 years was 77.4%, 69.5%, and 63.8%, respectively. On multivariate analysis, microscopically involved margins correlated with local control (p = .036) and locoregional control (p = .007) and tumor size correlated with distant metastases (p = .004). The 9-year disease-free survival and overall survival rate was 47.0% and 61.5%, respectively. Multivariate analysis showed poorer disease-free survival rates for patients with tumors >6 cm (p = .005) and microscopically involved margins (p = .043), and overall survival rates decreased with increasing tumor size (p = .011). Conclusions: Grade 3 or greater wound complications can probably be decreased using meticulous treatment planning to decrease the tissue volume encompassed by the 150% isodose line, especially in lower limb locations

  19. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2014-11-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but

  20. BEHAVIRORAL EFFECTS OF MICROWAVES: RELATIONSHIP OF TOTAL DOSE AND DOSE RATE

    EPA Science Inventory

    The goal of the research was to compare the relationship of whole body averaged specific absorption rate (SAR) and specific absorption (SA) to determine whether dose rate or dose was the better predictor of biological effects. Sperm positive Long-Evans female rats were exposed to...

  1. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  2. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  3. Determinants of Complications and Outcome in High-Risk Squamous Cell Head-and-Neck Cancer Treated With Perioperative High-Dose Rate Brachytherapy (PHDRB)

    SciTech Connect

    Martinez-Monge, Rafael; Pagola Divasson, Maria; Cambeiro, Mauricio; Gaztanaga, Miren; Moreno, Marta; Arbea, Leire; Montesdeoca, Nestor; Alcalde, Juan

    2011-11-15

    Purpose: To determine the impact of a set of patient, tumor, and treatment factors on toxicity and outcome in patients with head-and-neck squamous cell cancer treated with surgical resection and perioperative high-dose rate brachytherapy (PHDRB) alone (single-modality [SM] group) (n = 46) or PHDRB combined with postoperative radiation or chemoradiation (combined-modality [CM] group) (n = 57). Methods and Materials: From 2000 to 2008, 103 patients received PHDRB after complete macroscopic resection. SM patients received 32 or 40 Gy of PHDRB in 8 or 10 twice-daily treatments for R0 and R1 resections. CM patients received 16 or 24 Gy of PHDRB in 4 or 6 twice-daily treatments for R0 and R1 resections, followed by external radiation of 45 Gy in 25 fractions with or without concomitant chemotherapy. Results: Grade {>=}4 complications according to the Radiation Therapy Oncology Group were more frequent in the SM group than in the CM group (p = 0.024). Grade {>=}3 and {>=}4 complications increased with the antecedent of prior irradiation (p = 0.032 and p = 0.006, respectively) and with TV{sub 150} values of 13 mL or greater (p = 0.032 and p = 0.032, respectively). After a median follow-up of 34.8 and 60.8 months for SM and CM patients, respectively, patients with high-risk margins had a 9-year local control rate of 68.0% whereas patients with wider margins had a 9-year local control of 93.7% (p = 0.045). Patients with primary and recurrent tumors had 9-year actuarial locoregional control rates of 81.8% and 54.2%, respectively (p = 0.003). Patients with lymph-vascular space invasion (LVSI)-positive and LVSI-negative tumors had 9-year distant control rates of 62.8% and 81.6%, respectively (p = 0.034). Disease-free survival rates decreased in recurrent cases (p = 0.006) as well as in LVSI-positive patients (p = 0.035). Conclusions: The complications observed are largely attributable to the antecedent of prior irradiation but can possibly be minimized by meticulous mapping and

  4. Dosimetric investigation of high dose rate, gated IMRT

    SciTech Connect

    Lin, Teh; Chen Yan; Hossain, Murshed; Li, Jinsheng; Ma, C.-M.

    2008-11-15

    Increasing the dose rate offers time saving for IMRT delivery but the dosimetric accuracy is a concern, especially in the case of treating a moving target. The objective of this work is to determine the effect of dose rate associated with organ motion and gated treatment using step-and-shoot IMRT delivery. Both measurements and analytical simulation on clinical plans are performed to study the dosimetric differences between high dose rate and low dose rate gated IMRT step-and-shoot delivery. Various sites of IMRT plans for liver, lung, pancreas, and breast cancers were delivered to a custom-made motorized phantom, which simulated sinusoidal movement. Repeated measurements were taken for gated and nongated delivery with different gating settings and three dose rates, 100, 500, and 1000 MU/min using ion chambers and extended dose range films. For the study of the residual motion effect for individual segment dose and composite dose of IMRT plans, our measurements with 30%-60% phase gating and without gating for various dose rates were compared. A small but clinically acceptable difference in delivered dose was observed between 1000, 500, and 100 MU/min at 30%-60% phase gating. A simulation is presented, which can be used for predicting dose profiles for patient cases in the presence of motion and gating to confirm that IMRT step-and-shoot delivery with gating for 1000 MU/min are not much different from 500 MU/min. Based on the authors sample plan analyses, our preliminary results suggest that using 1000 MU/Min dose rate is dosimetrically accurate and efficient for IMRT treatment delivery with gating. Nonetheless, for the concern of patient care and safety, a patient specific QA should be performed as usual for IMRT plans for high dose rate deliveries.

  5. Dose rate analysis for Tank 101 AZ (Project W151)

    SciTech Connect

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP{sub 2}) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A.

  6. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  7. Biological effects of α-radiation exposure by (241)Am in Arabidopsis thaliana seedlings are determined both by dose rate and (241)Am distribution.

    PubMed

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-11-01

    Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. PMID:26204519

  8. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  9. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  10. Determination of Prognostic Factors for Vaginal Mucosal Toxicity Associated With Intravaginal High-Dose Rate Brachytherapy in Patients With Endometrial Cancer

    SciTech Connect

    Bahng, Agnes Y.; Dagan, Avner; Bruner, Deborah W.; Lin, Lilie L.

    2012-02-01

    Purpose: The objective of this study was to determine the patient- and treatment-related prognostic factors associated with vaginal toxicity in patients who received intravaginal high dose rate (HDR) brachytherapy alone as adjuvant treatment for endometrial cancer. Secondary goals of this study included a quantitative assessment of optimal dilator use frequency and a crude assessment of clinical predictors for compliant dilator use. Methods and Materials: We retrospectively reviewed the charts of 100 patients with histologically confirmed endometrial cancer who underwent total hysterectomy and bilateral salpingo-oophorectomy with or without lymph node dissection and adjuvant intravaginal brachytherapy between 1995 and 2009 at the Hospital of University of Pennsylvania. The most common treatment regimen used was 21 Gy in three fractions (71 patients). Symptoms of vaginal mucosal toxicity were taken from the history and physical exams noted in the patients' charts and were graded according to the Common Toxicity Criteria for Adverse Events v. 4.02. Results: The incidence of Grade 1 or asymptomatic vaginal toxicity was 33% and Grade 2-3 or symptomatic vaginal toxicity was 14%. Multivariate analysis of age, active length, and dilator use two to three times a week revealed odds ratios of 0.93 (p = 0.013), 3.96 (p = 0.008), and 0.17 (p = 0.032) respectively. Conclusion: Increasing age, vaginal dilator use of at least two to three times a week, and shorter active length were found to be significantly associated with a decreased risk of vaginal stenosis. Future prospective studies are necessary to validate our findings.

  11. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  12. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  13. Validation of the flooding dose technique to determine fractional rates of protein synthesis in a model bivalve species, the blue mussel (Mytilus edulis L.).

    PubMed

    McCarthy, Ian D; Nicholls, Ruth; Malham, Shelagh K; Whiteley, Nia M

    2016-01-01

    For the first time, use of the flooding dose technique using (3)H-Phenylalanine is validated for measuring whole-animal and tissue-specific rates of protein synthesis in the blue mussel Mytilus edulis (61mm shell length; 4.0g fresh body mass). Following injection, the phenylalanine-specific radioactivities in the gill, mantle and whole-animal free pools were elevated within one hour and remained elevated and stable for up to 6h following injection of (3)H-phenylalanine into the posterior adductor muscle. Incorporation of (3)H-phenylalanine into body protein was linear over time following injection and the non-significant intercepts for the regressions suggested incorporation into body protein occurred rapidly after injection. These results validate the technique for measuring rates of protein synthesis in mussels. There were no differences in the calculated rates following 1-6h incubation in gill, mantle or whole-animal and fractional rates of protein synthesis from the combined time course data were 9.5±0.8%d(-1) for the gill, 2.5±0.3%d(-1) for the mantle and 2.6±0.3%d(-1) for the whole-animal, respectively (mean values±SEM). The whole-animal absolute rate of protein synthesis was calculated as 18.9±0.6mg protein day(-1). The use of this technique in measuring one of the major components of maintenance metabolism and growth will provide a valuable and convenient tool in furthering our understanding of the protein metabolism and energetics of this keystone marine invertebrate and its ability to adjust and respond to fluctuations, such as that expected as a result of climate change. PMID:26497279

  14. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  15. Dose rate, dose-equivalent rate, and quality factor in SLS-1

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Braby, L. A.; Cucinotta, F. A.; Atwell, W.

    1992-01-01

    A tissue-equivalent proportional counter (TEPC) sensitive to the lineal energy range of 0.26-300 keV micrometer-1 was flown on STS-40 (39 degrees x 278 km x 296 km) inside the Spacelab. This instrument was previously flown on STS-31 but was modified to provide a finer resolution at lower lineal energies to better map the South Atlantic Anomaly (SAA) protons. The instrument was turned on 6 June 1991, and operated for 7470 min (124.5 h). The flight duration was characterized by a very large number of X-ray solar flares and enhanced magnetic field fluctuations; however, no significant dose from the solar particles was measured at the location of this instrument. The flight data can be separated into trapped and galactic cosmic radiation parts. The dose rate, dose-equivalent rate and quality factor for trapped radiation were 4.21 +/- 0.03 mrad day-1, 7.72 +/- 0.05 mrem day-1, and 1.83 +/- 0.1, respectively. The dose rate, dose-equivalent rate, and quality factor for galactic cosmic radiation were 5.34 +/- 0.03 mrad day-1, 14.63 +/- 0.06 mrem day-1, and 2.74 +/- 0.1, respectively. The overall quality factor for the flight was 2.38. The dose from the GCR is higher than from SAA protons because of the high inclination and low altitude of this flight. The AP8MAX model of the trapped radiation gives a dose rate of 2.43 mrad day-1 and a quality factor of 1.77. The CREME solar maximum model of galactic cosmic radiation gives a dose rate of 2.54 mrad day-1 and a quality factor of 2.91. Thus the AP8MAX model underestimates the dose by a factor of 1.8 whereas the CREME model leads to an underestimation of the dose by a factor of 2. A comparison of the LET spectra using the AP8MAX model and galactic cosmic radiation transport codes shows only a qualitative agreement.

  16. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  17. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  18. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  19. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    SciTech Connect

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  20. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  1. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-03-15

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses {>=}70 Gy may compensate the effect of close margins {>=}1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses {<=}50 Gy with PHDRB alone.

  2. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    NASA Astrophysics Data System (ADS)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-03-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.

  3. The estimation of galactic cosmic ray penetration and dose rates

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.; Wright, J. J.

    1972-01-01

    This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

  4. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  5. Determinants of thiopental induction dose requirements.

    PubMed

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance. PMID:8418708

  6. Metabolically consistent breathing rates for use in dose assessments

    SciTech Connect

    Layton, D.W. )

    1993-01-01

    Assessments of doses resulting from exposures to airborne gases and particles are based almost exclusively on inhalation rates that are inconsistent with the quantities of oxygen needed to metabolize dietary intakes of fats, carbohydrates, and protein. This inconsistency leads to erroneous estimates of inhalation exposures and can distort the relative importance of inhalation and ingestion-based exposures to environmental contaminants that are present in foods, air, and water. As a means of dealing with this problem, a new methodology for estimating breathing rates is presented that is based on the oxygen uptake associated with energy expenditures and a ventilatory equivalent that relates minute volume to oxygen uptake. Three alternative energy-based approaches for estimating daily inhalation rates are examined: (1) average daily intakes of food energy from dietary surveys, adjusted for under reporting of foods; (2) average daily energy expenditure calculated from ratios of total daily expenditure to basal metabolism; and (3) daily energy expenditures determined from a time-activity survey. Under the first two approaches, inhalation rates for adult females in different age cohorts ranged from 9.7 to 11 m3 d-1, whereas for adult males the range was 13 to 17 m3 d-1. Inhalation rates for adults determined from activity patterns were higher (i.e., 13 to 18 m3 d-1), however, those rates were shown to be quite sensitive to the energy expenditures used to represent light and sedentary activities. In contrast to the above estimates, the ICRP 23 reference values for adult females and males are 21 and 23 m3 d-1 (Snyder et al. 1975). Finally, the paper provides a technique for determining the short-term breathing rates of individuals based on their basal metabolic rate and level of physical activity.

  7. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  8. Application of MCNP{trademark} to storage facility dose rate assessment

    SciTech Connect

    Urban, W.T.; Roberts, R.R.; Estes, G.P.; Taylor, W.M.

    1996-12-31

    The MCNP code is widely used in the determination of neutral particle dose rate analyses. In this paper we examine the application of MCNP to several storage facilities containing special nuclear material, SNM, wherein the neutron dose rate is the primary quantity of interest. In particular, we describe the special geometry, modeling assumptions, and physics considerations encountered in each of three applications.

  9. Unexpectedly large dose rate dependent output from a linear accelerator.

    PubMed

    Cheng, P C; Kubo, H

    1988-01-01

    During our routine calibration of a Varian Clinac-20 linear accelerator, the absorbed dose for a fixed monitor unit (mu) was found to decrease with increasing dose rate. Between dose rates of 100 and 500 mu/min, there was up to 20% difference in absorbed dose for a 20-MeV electron beam. The cause of this problem was a failure in the electronics circuit of an integrating board. This paper presents our analysis of the problem and suggests a possible means of isolating such a failure to warn technologists, physicists, and engineers. PMID:3141760

  10. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  11. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  12. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.

    PubMed

    Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40). PMID:15798311

  13. VMATc: VMAT with constant gantry speed and dose rate.

    PubMed

    Peng, Fei; Jiang, Steve B; Romeijn, H Edwin; Epelman, Marina A

    2015-04-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. PMID:25789937

  14. External dose rate in Unirea salt mine, Slanic-Prahova, Romania.

    PubMed

    Margineanu, R M; Apostu, A M; Duliu, O G; Bercea, S; Gomoiu, C M; Cristache, C I

    2009-05-01

    The distribution of the external dose rate within the former Unirea salt mine, host of the Low-Level Background Laboratory was determined and compared with calculated values based on the experimentally determined content of natural radioactive elements in the mine walls. The average external dose rate was found to be 1.3+/-0.3 nSv h(-1), close to calculated one of 1.4+/-0.2 nSv h(-1). PMID:19231217

  15. Neutron and photon effective dose equivalent rate calculations for the repackaging of tru waste

    SciTech Connect

    Sattelberger, J. A.

    2002-01-01

    Neutron and photon effective dose equivalent rates were estimated for operations that will occur in the characterization and repackaging of transuranic (TRU) waste drums. These activities will be performed in structures called Mobile Units (MU). A MU is defined as a modular and transportable container, also called a transportainer. The transportainers have been designed to house a process required for certification of TRU wastes. The purpose of these calculations was to provide dose rates from Pu-238 TRU waste in various locations in the transportainer using MCNP-4C. In addition to dose rates for the various radiological operations in the repackaging area, the dose rate from the adjacent storage area was calculated to determine the contribution to the total dose rate.

  16. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-11-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  17. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  18. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  19. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  20. Analysis of decay dose rates and dose management in the National Ignition Facility.

    PubMed

    Khater, Hesham; Brereton, Sandra; Dauffy, Lucile; Hall, Jim; Hansen, Luisa; Kim, Soon; Kohut, Tom; Pohl, Bertram; Sitaraman, Shiva; Verbeke, Jerome; Young, Mitchell

    2013-06-01

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes the large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by neutrons generated during a shot, and the resultant gamma dose rates are estimated at various decay times following the shot. A set of computational tools was developed to help in estimating potential radiation exposure to TB workers. The results presented in this paper describe the expected radiation environment inside the TB following a low-yield DT shot of 10(16) neutrons. General environment dose rates drop below 30 μSv h(-1) within 3 h following a shot, with higher dose rates observed in the vicinity (~30 cm) of few components. The dose rates drop by more than a factor of two at 1 d following the shot. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB. Primary components, including the Target Chamber and diagnostic and beam line components, are constructed of aluminum. Near-term TB accessibility is driven by the decay of the aluminum activation product, 24Na. Worker dose is managed using electronic dosimeters (EDs) self-issued at kiosks using commercial dose management software. The software programs the ED dose and dose rate alarms based on the Radiological Work Permit (RWP) and tracks dose by individual, task, and work group. PMID:23629063

  1. Analysis of bipolar linear circuit response mechanisms for high and low dose rate total dose irradiations

    SciTech Connect

    Barnaby, H.; Tausch, H.J.; Turfler, R.; Cole, P.; Baker, P.; Pease, R.L.

    1996-12-01

    A methodology is presented for the identification of circuit total dose response mechanisms in bipolar linear microcircuits irradiated at high and low dose rates. This methodology includes manual circuit analysis, circuit simulations with SPICE using extracted device parameters, and selective irradiations of portions of the circuit using a scanning electron microscope.

  2. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  3. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. PMID:25809111

  4. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  5. Irradiation dose determination below room temperature

    NASA Astrophysics Data System (ADS)

    Ramos-Bernal, S.; Cruz, E.; Negrón-Mendoza, A.; Bustos, E.

    2002-03-01

    The measurements presented were undertaken to provide quantitative information on the low temperature irradiation of thermoluminiscence phosphors. The crystals used were (a) LiF co-doped with Mg, Cu and P, and (b) CaSO 4 doped with Dy. The absorbed dose values in the interval studied showed a linear behavior at low doses and low temperature. The aim of this work is to test if these crystals can be used to measure the dose absorbed by solids at low temperature.

  6. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  7. Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies

    PubMed Central

    Olipitz, Werner; Hembrador, Sheena; Davidson, Matthew; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2011-01-01

    Radiation exposure of humans generally results in low doses delivered at low dose-rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb long-term survivor study (LSS) cohort. However, the total doses and dose-rates in the LSS cohort are still higher than most environmental and occupational exposures in humans. Importantly, the dose-rate is a critical determinant of health risks stemming from radiation exposure. Understanding the shape of the dose-rate response curve for different biological outcomes is thus crucial for projecting the biological hazard from radiation in different environmental and man-made conditions. A significant barrier to performing low dose-rate studies is the difficulty in creating radiation source configurations compatible with long-term cellular or animal experiments. In this study the design and characterization of a large area, 125I-based irradiator is described. The irradiator allows continuous long-term exposure of mice at variable dose-rates and can be sited in standard animal care facilities. The dose-rate is determined by the level of 125I activity added to a large NaOH filled, rectangular phantom. The desired dose rate is maintained at essentially constant levels by weekly additions of 125I to compensate for decay. Dosimetry results for long-term animal irradiation at targeted dose rates of 0.00021 and 0.0021 cGy min−1 are presented. PMID:20386202

  8. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  9. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  10. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  11. Numerical calculation of relative dose rates from spherical 106Ru beta sources used in ophthalmic brachytherapy

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.

  12. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  13. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  14. Determinations of H(10) and its dose components onboard aircraft.

    PubMed

    Lindborg, L; Beck, P; Bottolier-Depois, J F; Latocha, M; Lillhök, J; Rollet, S; Roos, H; Roth, J; Schraube, H; Spurny, F; Stehno, G; Trompier, F; Wissmann, F

    2007-01-01

    Aircrew is in general receiving a higher average annual dose than other occupationally exposed personnel, and about half of the effective dose is deposited by high-LET neutron secondaries. A recent investigation of the cancer incidence following the atomic bombs at Hiroshima and Nagasaki has put forward the possibility that the relative biological efficiency for neutrons could be underestimated. If so, the effective dose to aircrew from this component would increase and the estimation of this component will become even more important. Different ambient dose equivalent measurement techniques and calculation methods have recently been compared on a dedicated flight. The experimental results are compared with calculations made with the codes EPCARD 3.2 and an updated version of FLUKA and different galactic proton spectra. The aircraft circulated within the target areas at two constant altitudes with a flight route variation of only about 1 degrees in longitude and latitude to reduce the influence from variations in atmospheric and geomagnetic shielding. The instrumentation consisted of tissue-equivalent proportional counters (TEPC) and a silicon diode spectrometer. Measurements were performed for 2 h to reduce the statistical uncertainties in the results. The TEPCs were evaluated either according to single-event analysis techniques or the variance-covariance method. Besides the total ambient dose equivalent, the instruments can be evaluated to reveal the low- and high-LET components. The EPCARD and FLUKA simulations can determine the contribution from each type of particle directly. The ratio between the calculated and the measured average value of the ambient dose equivalent rate was 1.00 +/- 0.08 with all instruments included for EPCARD and 0.97 +/- 0.07 when FLUKA was used. The measured high-LET component and the calculated neutron component are not quite identical, but should be similar. The agreement was always within 20%. The high-LET component contributed with

  15. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  16. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  17. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  18. ACDOS2: an improved neutron-induced dose rate code

    SciTech Connect

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  19. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  20. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  1. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  2. Impact of Surface Curvature on Dose Delivery in Intraoperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Oh, Moonseong Wang Zhou; Malhotra, Harish K.; Jaggernauth, Wainwright; Podgorsak, Matthew B.

    2009-04-01

    In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas ({<=} 5 catheters) but, interestingly, the dose error was negligible for large treated areas (>5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.

  3. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  4. Solar modulation of dose rate onboard the Mir station.

    PubMed

    Badhwar, G D; Shurshakov, V A; Tsetlin, V V

    1997-12-01

    Models of the radiation belts that are currently used to estimate exposure for astronauts describe the environment at times of either solar minimum or solar maximum. Static models, constructed using data acquired prior to 1970 during a solar cycle with relatively low solar radio flux, have flux uncertainties of a factor of two to live and dose-rate uncertainties of a factor of about two. The inability of these static models to provide a dynamic description of the radiation belt environment limits our ability to predict radiation exposures for long-duration missions in low earth orbits. In an attempt to add some predictive capability of these models, we studied the measured daily absorbed dose rate on the Mir orbital station over roughly the complete 22nd solar cycle that saw some of the highest solar flux values in the last 40 y. We show that the daily trapped particle dose rate is an approximate power law function of daily atmospheric density. Atmospheric density values are in turn obtained from standard correlation with observed solar radio noise flux. This correlation improves, particularly during periods of high solar activity, if the density at roughly 400 days earlier time is used. This study suggests the possibility of a dose- and flux-predictive trapped-belt model based on atmospheric density. PMID:11542263

  5. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  6. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  7. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  8. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  9. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  10. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  11. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect

    CARLSON, A.B.

    1999-02-24

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  12. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate. PMID:23147566

  13. Charged particle radiation environment for the LST. [measuring charged particle dose rates

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Burrell, M. O.; Wright, J. J.

    1974-01-01

    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day.

  14. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  15. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  16. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    SciTech Connect

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K. |; Powell, Matthew A. |; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran |; Grigsby, Perry W. |||. E-mail: pgrigsby@wustl.edu

    2007-02-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group.

  17. DOSE TO CURIE DETERMINATION FOR CONTAINERS WITH MEASURABLE CS-137

    SciTech Connect

    RATHBUN LA; ANDERSON JD; SWAN RJ

    2010-12-03

    The Next Generation Retrieval (NGR) project will retrieve suspect transuranic (TRU) waste containers from Trenches 17 and 27 in the 218-E-12B (12B) burial ground. The trenches were in operation from May 1970 through October 1972. A portion of the retrieved containers that will require shipment to and acceptance at a treatment, storage, and disposal (TSD) facility and the containers will be either remote-handled (RH) and/or contact-handled (CH). The method discussed in this document will be used for the RH and some of the CH containers to determine the radionuclide inventory. Waste disposition (shipment and TSD acceptance) requires that the radioactive content be characterized for each container. Source-term estimates using high resolution, shielded, gamma-ray scan assay techniques cannot be performed on a number of RH and other containers with high dose rates from {sup 137}Cs-{sup 137m}Ba. This document provides the method to quantify the radioactive inventory of fission product gamma emitters within the containers based on the surface dose rate measurements taken in the field with hand-held survey instruments.

  18. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  19. Dose Rate Calibration of a Commercial Beta-Particle Irradiator Used In Archeological and Geological Dating

    SciTech Connect

    Bernal, S.M.

    2004-10-31

    The 801E Multiple Sample Irradiator, manufactured by Daybreak Nuclear Systems, is capable of exposing up to 30 samples to beta radiation by placing each sample one by one directly beneath a heavily shielded ceramic Sr-90/Y-90 source and opening a specially designed shutter. Daybreak Nuclear Systems does not provide the {sup 90}Sr/{sup 90}Y dose rate to the sample because of variations of up to 20% in the nominal activity of the beta sources (separately manufactured by AEA Technology). Thus it is left to the end user to determine. Here aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C), in the form of Landauer's Luxel{trademark}, was irradiated to different known doses using a calibrated {sup 90}Sr/{sup 90}Y beta particle irradiator, and the OSL signal monitored after each irradiation to generate a calibration curve. Comparison of the OSL Signal from the unknown 801E Irradiator dose with the calibration curve enabled the dose and therefore dose rate to be determined. The timing accuracy of the 801E Irradiator was also evaluated and found to be +/- 0.5 seconds. The dose rate of the beta source was found to be 0.147 +/- 0.007 Gy/s.

  20. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  1. On the Quality of ENSDF {gamma}-Ray Intensity Data for {gamma}-Ray Spectrometric Determination of Th and U and Their Decay Series Disequilibria, in the Assessment of the Radiation Dose Rate in Luminescence Dating of Sediments

    SciTech Connect

    Corte, Frans de; Vandenberghe, Dimitri; Wispelaere, Antoine de

    2005-05-24

    In luminescence dating of sediments, one of the most interesting tools for the determination of the annual radiation dose is Ge {gamma}-ray spectrometry. Indeed, it yields information on both the content of the radioelements K, Th, and U, and on the occurrence - in geological times - of disequilibria in the Th and U decay series. In the present work, two methodological variants of the {gamma}-spectrometric analysis were tested, which largely depend on the quality of the nuclear decay data involved: (1) a parametric calibration of the sediment measurements, and (2) the correction for the heavy spectral interference of the 226Ra 186.2 keV peak by 235U at 185.7 keV. The performance of these methods was examined via the analysis of three Certified Reference Materials, with the introduction of {gamma}-ray intensity data originating from ENSDF. Relevant conclusions were drawn as to the accuracy of the data and their uncertainties quoted.

  2. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved. PMID:22074737

  3. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment. PMID:26313590

  4. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGESBeta

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  5. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  6. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  7. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  8. The Dose Rate Conversion Factors for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-13

    In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is

  9. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  10. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  11. Optimized source selection for intracavitary low dose rate brachytherapy

    SciTech Connect

    Nurushev, T.; Kim, Jinkoo

    2005-05-01

    A procedure has been developed for automating optimal selection of sources from an available inventory for the low dose rate brachytherapy, as a replacement for the conventional trial-and-error approach. The method of optimized constrained ratios was applied for clinical source selection for intracavitary Cs-137 implants using Varian BRACHYVISION software as initial interface. However, this method can be easily extended to another system with isodose scaling and shaping capabilities. Our procedure provides optimal source selection results independent of the user experience and in a short amount of time. This method also generates statistics on frequently requested ideal source strengths aiding in ordering of clinically relevant sources.

  12. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes

    PubMed Central

    Bertucci, Antonella; Smilenov, Lubomir B.; Turner, Helen C.; Amundson, Sally A.; Brenner, David J.

    2016-01-01

    Developing new methods for radiation biodosimetry has been identified as a high priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose-rates due to their geographical position and sheltering conditions, and dose-rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The RABiT (Rapid Automated Biodosimetry Tool) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose-rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 hours. The acute dose (ADR) was delivered at ∼1.03Gy/min and the low dose rate (LDR) exposure at ∼0.31Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose-rate starting at 2Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose-rate exposure. PMID:26791381

  13. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes.

    PubMed

    Bertucci, Antonella; Smilenov, Lubomir B; Turner, Helen C; Amundson, Sally A; Brenner, David J

    2016-03-01

    Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure. PMID:26791381

  14. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  15. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. PMID:24787672

  16. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  17. Modifications to SAS4 to provide cask dose rate profiles

    SciTech Connect

    Napolitano, D.G.; Sweezy, J.E.; Henkel, C.S.

    1997-12-01

    SAS4 of the SCALE code system has been used extensively by NAC International (NAC) to perform storage and transport cask shielding analyses. SAS4 utilizes a one-dimensional XSDRNPM adjoint calculation of the cask to generate biasing parameters for a three-dimensional MORSE-SGC Monte Carlo model of the cask geometry. This technique is very efficient in getting particles to tally at the cask exterior surfaces. However, SAS4/MORSE-SGC is limited to the use of point detectors (next-event estimators) and large surface detectors (surface-crossing estimators). Modifications to SAS4 were made to allow a more flexible use of the surface detectors. This modification allows multiple nonoverlapping surface detectors on each surface and allows each surface detector to be broken into subdetectors. The use of subdetectors enables the user to obtain detailed surface dose rate profiles. Tallies can now be performed on all surfaces of the cask and at user-specified distances from the cask surface. The subdetectors provide an alternative to point detectors and excessive computational time. The NAC version of SAS4 is called SAS4A. A comparison of CPU time and dose rates is made between SAS4 point detectors and SAS4A surface subdetection on the NLI {1/2} transport cask.

  18. Effects of dose rate on microsturctural evolution and swelling in austenitic steels under irradiation

    NASA Astrophysics Data System (ADS)

    Okita, T.; Kamada, T.; Sekimura, N.

    2000-12-01

    Effects of dose rate on microstructural evolution in a simple model austenitic ternary alloy are examined. Annealed specimens are irradiated with fast neutrons at several positions in the core and above core in FFTF/MOTA between 390°C and 435°C in a wide range of doses and dose rates. In Fe-15Cr-16Ni, swelling seems to increase linearly with dose without incubation dose. Cavities are observed even in the specimens irradiated to 0.07 dpa at 1.9×10-9 dpa/s. Both cavity nucleation and growth are enhanced by low dose rates. These are mainly caused by accelerated formation of dislocation loops at lower dose rates. Low dose rates enhance swelling by shortening incubation dose for the onset of steady-state swelling. In the specimens irradiated at higher dose rates to higher doses, high density of dislocation increases average cavity diameter, however decreases cavity density.

  19. Customized approach for organ dose determination in diagnostic radiology

    SciTech Connect

    Yanch, J.C.; Lambeth, M.J.

    1997-12-01

    A new method of determining organ dose during diagnostic radiology using the Monte Carlo N-Particle (MCNP) code in conjunction with a sophisticated anthropomorphic phantom is under development. This dosimetry approach will improve the current method of extrapolating from dose tables by allowing custom tailoring of patient size, beam energy, beam size, and beam position for each radiographic procedure. In this paper we describe the series of computer-based anthropomorphic phantoms developed to represent adults of different sizes and the method of determining absorbed dose delivered during any X-ray procedure. In addition, the steps taken to verify the physical accuracy of the phantom and the dosimetry are discussed.

  20. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    SciTech Connect

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  1. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing

    NASA Astrophysics Data System (ADS)

    Deist, T. M.; Gorissen, B. L.

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  2. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    PubMed

    Deist, T M; Gorissen, B L

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data. PMID:26760757

  3. Guidance on Dose Rate Measurements for Use in Dose-to-Curie Conversions

    SciTech Connect

    Howell, R.S.

    2000-09-05

    The dose-to-curie (DTC) methodology used at SRS was developed in early 1994 by Health Physics Technology (HPT) for inclusion in the Site Waste Information Tracking System (WITS). DTC is used to estimate the nuclide activity in a waste container based on the measured dose rate from the container. The DTC method is a simple and easy to apply method that can provide a reasonable estimate of the container activity by nuclide when properly applied. In order to make the method practical, numerous assumptions had to be made and limitations placed on its use. Many of these assumptions and limitations can only be procedurally controlled and must be well understood by these individuals in order to assure proper application numerous the method. These limitations are addressed in this report.

  4. Electrochemical noise measurement for determining corrosion rates

    SciTech Connect

    Reichert, D.L.

    1996-12-31

    Electrochemical noise measurements (ENM), linear polarization tests and mass loss measurements were performed in sulfuric acid, acetic acid and other solutions. The ENM data were converted to corrosion rates by calculating the noise resistance, R{sub n} = {sigma}V/{sigma}I where {sigma}V and {sigma}I are the standard deviations of the potential and current. Good correlation among the three methods was obtained for low to moderate corrosion rates, but poor correlation was observed for high rates. ENM has proven valuable for determining corrosion rates in low-conductivity solutions, which are not suitable for linear polarization resistance (LPR) testing, and for measuring very low corrosion rates in which mass loss tests would have required at least 30 days exposure to provide meaningful results.

  5. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.

    PubMed

    Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna

    2016-01-01

    Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB. PMID:26235549

  6. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  7. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  8. Effects of prescription depth, cylinder size, treatment length, tip space, and curved end on doses in high-dose-rate vaginal brachytherapy

    SciTech Connect

    Li Shidong . E-mail: sli1@hfhs.org; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin

    2007-03-15

    Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach.

  9. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered

  10. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  11. Topological determinants of protein unfolding rates.

    PubMed

    Jung, Jaewoon; Lee, Jooyoung; Moon, Hie-Tae

    2005-02-01

    For proteins that fold by two-state kinetics, the folding and unfolding processes are believed to be closely related to their native structures. In particular, folding and unfolding rates are influenced by the native structures of proteins. Thus, we focus on finding important topological quantities from a protein structure that determine its unfolding rate. After constructing graphs from protein native structures, we investigate the relationships between unfolding rates and various topological quantities of the graphs. First, we find that the correlation between the unfolding rate and the contact order is not as prominent as in the case of the folding rate and the contact order. Next, we investigate the correlation between the unfolding rate and the clustering coefficient of the graph of a protein native structure, and observe no correlation between them. Finally, we find that a newly introduced quantity, the impact of edge removal per residue, has a good overall correlation with protein unfolding rates. The impact of edge removal is defined as the ratio of the change of the average path length to the edge removal probability. From these facts, we conclude that the protein unfolding process is closely related to the protein native structure. PMID:15558603

  12. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  13. Response of mouse lung to irradiation at different dose-rates

    SciTech Connect

    Hill, R.P.

    1983-07-01

    Groups of LAF1 mice were given thoracic irradiation using /sup 60/Co ..gamma..-rays at dose-rates of 0.05 Gy/min (LDR) or 1.1 Gy/min (HDR) and the death of the animals was monitored as a function of time. It was found that the time pattern of animal deaths was similar for the two different dose-rates. Dose response curves for animals dying at various times up to 500 days after irradiation were calculated and the LD/sub 50/ values determined. The curves for the LD/sub 50/ values, plotted as a function of the time at analysis for treatment at HDR or LDR, were essentially parallel to each other but separated by a factor (LDR/HDR) of about 1.8. This indicates that the sparing effect of LDR treatment is the same for deaths occurring during the early pneumonitis phase or during the late fibrotic phase of lung damage. The available information on the response of patients to whole thoracic irradiation, given for either palliation or piror to bone marrow transplantation, suggests that for similar dose-rates to those studied here the ratio (LDR/HDR) is only 1.2 to 1.3. This difference between the animal and human data may reflect the modifying effect of the large doses of cytotoxic drugs used in combination with the irradiation of bone marrow transplant patients.

  14. High-dose-rate brachytherapy in uterine cervical carcinoma

    SciTech Connect

    Patel, Firuza D. . E-mail: patelfd@glide.net.in; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-05-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  15. Determination of transit dose profile for a {sup 192}Ir HDR source

    SciTech Connect

    Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.

    2013-05-15

    Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered

  16. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates.

    PubMed

    Fournier, P; Crosbie, J C; Cornelius, I; Berkvens, P; Donzelli, M; Clavel, A H; Rosenfeld, A B; Petasecca, M; Lerch, M L F; Bräuer-Krisch, E

    2016-07-21

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency's TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called 'current ramping' method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials. PMID:27366861

  17. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  18. Dose Rate Calucaltion for the DHL W/DOE SNF Codisposal Waste Package

    SciTech Connect

    G. Radulescu

    2000-02-12

    The purpose of this calculation is to determine the surface dose rates of the short codisposal waste package (WP) of defense high-level waste (DHLW) and TRIGA (Training, Research, Isotopes, General Atomics) spent nuclear fuel (SNF). The WP contains the TRIGA SNF, in a standardized 18-in. DOE (U.S. Department of Energy) SNF canister, and five 3-m-long Savannah River Site (SRS) DHLW pour glass canisters, which surround the DOE SNF canister.

  19. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  20. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation

    PubMed Central

    Papas, Klearchos K.; Bellin, Melena D.; Sutherland, David E. R.; Suszynski, Thomas M.; Kitzmann, Jennifer P.; Avgoustiniatos, Efstathios S.; Gruessner, Angelika C.; Mueller, Kathryn R.; Beilman, Gregory J.; Balamurugan, Appakalai N.; Loganathan, Gopalakrishnan; Colton, Clark K.; Koulmanda, Maria; Weir, Gordon C.; Wilhelm, Josh J.; Qian, Dajun; Niland, Joyce C.; Hering, Bernhard J.

    2015-01-01

    Background Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Methods Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Results Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6–12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Conclusions Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations. PMID:26258815

  1. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  2. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor. PMID:20338871

  3. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  4. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  5. Development and validation of a test dose strategy for once-daily i.v. busulfan: importance of fixed infusion rate dosing.

    PubMed

    Kangarloo, S Bill; Naveed, Farrukh; Ng, Ella S M; Chaudhry, M Ahsan; Wu, Judy; Bahlis, Nizar J; Brown, Christopher B; Daly, Andrew; Duggan, Peter; Geddes, Michelle; Quinlan, Diana; Savoie, Mary Lynn; Shafey, Mona; Stewart, Douglas A; Storek, Jan; Yang, Maggie; Zacarias, Nancy; Yue, Ping; Magliocco, Anthony M; Russell, James A

    2012-02-01

    Intravenous (i.v.) busulfan (Bu) administered once daily in myeloablative transplant regimens is convenient, effective, and relatively well tolerated. Therapeutic drug monitoring is recommended as nonrelapse mortality increases when daily exposure, as determined by the area under the plasma concentration versus time curve (AUC), exceeds 6000 μM·min. We describe sequential studies to achieve accurate prediction of treatment doses of Bu based on the kinetics of a smaller test dose. A total of 335 patients with hematologic malignancies were given daily i.v. Bu 3.2 mg/kg × 4 and fludarabine 50 mg/m(2) × 5. Pharmacokinetic monitoring was conducted for both the test dose and first treatment dose of Bu (day -5). Three different test dose schedules were evaluated: 12 mg Bu administered over 20 minutes, 0.8 mg/kg over 3 hours, and 0.8 mg/kg infused at 80 mg/h. The 3.2 mg/kg treatment doses were infused over a fixed time of 3 hours for the first 2 test dose trials and at a fixed rate of 80 mg/h for the final protocol. All test dose infusions were on day -7. In the first 2 schedules, Bu administered over a fixed time had significantly higher clearance for the test dose compared with the treatment dose. However, when both the test and the treatment doses were administered at the same infusion rate, clearance of the drug between the 2 dosing days was equivalent. Predicted day -5 AUC (AUC(-5)) showed a high linear correlation (r(2) = 0.74) to the actual AUC(-5). The error of these predictions was <20% in 98% of patients and <10% in 80%. In 24 individuals, the test dose predicted an AUC >5500 μM·min; therefore, the first Bu treatment dose was reduced to a desired target AUC. All adjusted doses fell within 20% of the targeted exposure. We conclude that a test dose strategy for therapeutic drug monitoring of daily i.v. Bu is accurate if the test and treatment doses are infused at the same rate. This approach allows targeting of therapeutic doses of Bu to desired levels and

  6. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  7. Retrospective dosimetric comparison of low-dose-rate and pulsed-dose-rate intracavitary brachytherapy using a tandem and mini-ovoids.

    PubMed

    Mourtada, Firas; Gifford, Kent A; Berner, Paula A; Horton, John L; Price, Michael J; Lawyer, Ann A; Eifel, Patricia J

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ((192)Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ((137)Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the (137)Cs and (192)Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% +/- 1% and 6% +/- 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% +/- 3% lower than the LDR dose, mainly because of the (192)Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% +/- 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers. PMID:17707197

  8. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    SciTech Connect

    Mourtada, Firas Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-10-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ({sup 192}Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ({sup 137}Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the {sup 137}Cs and {sup 192}Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% {+-} 1% and 6% {+-} 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% {+-} 3% lower than the LDR dose, mainly because of the {sup 192}Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% {+-} 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.

  9. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  10. Measurement of patient entrance surface dose rates for fluoroscopic x-ray units.

    PubMed

    Martin, C J

    1995-05-01

    Measurements of patient entrance surface dose rate provide valuable data for interpreting results from dose-area product studies on fluoroscopic x-ray equipment. Methods for measurement of entrance surface dose rate with backscatter and incident dose rate without backscatter have been investigated. Entrance surface dose rate is measured with an ionization chamber in contact with a tissue-equivalent phantom. Backscattered radiation contributes 27-45% to the measurement and is affected by field size and chamber position. Incident dose rate measured using a copper phantom provides an alternative approach. Consistent relationships between thicknesses of Perspex and copper giving similar incident dose rates under automatic gain control have been established for different tube potentials with and without a grid. This allows measurements of incident dose rate made using copper to be linked to corresponding thicknesses of tissue-equivalent material. Since only a few millimetres of copper are required, contributions from backscatter can be minimized and transport of phantoms is simplified. Incident dose can be related to dose-area product and entrance surface dose derived using backscatter factors. Such measurements play a valuable role in interpreting patient dose data and recommending options to reduce patient dose. PMID:7652010

  11. Computational determination of absorbed dose distributions from gamma ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanyu; Inanc, Feyzi

    2001-04-01

    A biomedical procedure known as brachytherapy involves insertion of many radioactive seeds into a sick gland for eliminating sick tissue. For such implementations, the spatial distribution of absorbed dose is very important. A simulation tool has been developed to determine the spatial distribution of absorbed dose in heterogeneous environments where the gamma ray source consists of many small internal radiation emitters. The computation is base on integral transport method and the computations are done in a parallel fashion. Preliminary results involving 137Cs and 125I sources surrounded by water and comparison of the results to the experimental and computational data available in the literature are presented.

  12. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines.

    PubMed

    Gridley, D S; Pecaut, M J; Miller, G M; Moyers, M F; Nelson, G A

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements. PMID:11491015

  13. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  14. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  15. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  16. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  17. The provision of a uniform vaginal surface dose rate by a novel afterloading cylinder.

    PubMed

    Johnson, J M; Potish, R A

    1991-12-01

    The administration of a uniform dose rate to the vaginal surface is important in the management of endometrial, cervical, and vaginal malignancies. Unfortunately, conventional vaginal cylinders fail to provide this uniformity, and although dome cylinders do so, they require specialized 137Cs sources. Thus, a new acrylic vaginal cylinder has been developed to use with standard 137Cs sources and provides a uniform dose rate independent of vaginal size. Each contoured cylinder follows a particular isodose line. A metal ring is used to secure the device to minimize vulvar trauma associated with other vaginal cylinders. The construction and use of a set of these cylinders has allowed determination of their utility and limitations, which will be discussed in detail. Although these applicators do not completely replace conventional cylinders, they do offer a useful addition to the brachy-therapeutic armamentarium. PMID:1764169

  18. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    SciTech Connect

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  19. Evaluation of High Performance Converters Under Low Dose Rate Total Ionizing Dose (TID) Testing for NASA Programs

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Sahu, Kusum

    1998-01-01

    This paper reports the results of low dose rate (0.01-0.18 rads(Si)/sec) total ionizing dose (TID) tests performed on several types of high performance converters. The parts used in this evaluation represented devices such as a high speed flash converter, a 16-bit ADC and a voltage-to-frequency converter.

  20. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Bewes, J. M.; Suchowerska, N.; Jackson, M.; Zhang, M.; McKenzie, D. R.

    2008-07-01

    Intensity-modulated radiation therapy (IMRT) achieves optimal dose conformity to the tumor through the use of spatially and temporally modulated radiation fields. In particular, average dose rate and instantaneous dose rate (pulse amplitude) are highly variable within a single IMRT fraction. In this study we isolate these variables and determine their impact on cell survival. Survival was assessed using a clonogenic assay. Two cell lines of differing radiosensitivity were examined: melanoma (MM576) and non-small cell lung cancer (NCI-H460). The survival fraction was observed to be independent of instantaneous dose rate. A statistically significant trend to increased survival was observed as the average dose rate was decreased, for a constant total dose. The results are relevant to IMRT practice, where average treatment times can be significantly extended to allow for movement of the multi-leaf collimator (MLC). Our in vitro study adds to the pool of theoretical evidence for the consequences of protracted treatments. We find that extended delivery times can substantially increase the cell survival. This also suggests that regional variation in the dose-rate history across a tumor, which is inherent to IMRT, will affect radiation dose efficacy.

  1. Response of lymphoid organs to low dose rate Cf-252, Cs-137 and acute Co-60

    SciTech Connect

    Feola, J.; Maruyama, Y.; Magura, C.; Hwang, H.N.

    1986-01-01

    RBE of low dose rate (LDR) /sup 252/Cf radiation was studied for thymus using weight loss compared to unirradiated controls. These were compared against LDR /sup 137/Cs and acute /sup 60/Co effects. For thymus, biexponential dose response curves were noted for acute /sup 60/Co and LDR /sup 137/Cs irradiations. No dose rate effect was noted with /sup 137/Cs. D/sub 37/ for the first component D/sub 1/ was 109 cGy and for the second D/sub 2/ was 624 cGy for /sup 60/Co. Relative biological effectiveness (RBE) is a complex endpoint and was different for the low dose (sensitive) and high dose (resistant) responses and for /sup 252/Cf. RBE/sub n/ of the sensitive portion was 1.7 and for overall was 4.0. Spleen response was also determined for the 3 radiations. Biexponential dose-response curves were also observed for resting spleen to acute /sup 60/Co and LDR /sup 137/Cs radiation. D/sub 1/ = 285 cGy and D/sub 2/ = 1538 cGy for acute /sup 60/Co; D/sub 1/ = 205 cGy for /sup 137/Cs and indicated a dose rate effect = 1.04 for /sup 137/Cs. The LDR /sup 137/Cs was 1.3x more effective than acute /sup 60/Co for the sensitive response; it was 1.9 x greater for the resistant response. However, the response to /sup 252/Cf vs. /sup 137/Cs for the spleen indicated that there was a greater sensitivity to dose rate than to LET. RBE/sub n/ for /sup 252/Cf vs. /sup 137/Cs was 1.0. Stimulation of spleen growth after injection of Corynebacterium parvum allowed study of radiation effects of proliferating spleen cells at day 10. Acute /sup 60/Co and LDR /sup 137/Cs ..gamma..-rays had reduced effects compared to LDR /sup 252/Cf radiation and RBE was 4.0 vs. LDR /sup 137/Cs. RBE in lymphoid organs thus depended on organ, on assay and on resting/proliferating status.

  2. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    PubMed

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-01

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications. PMID:20160695

  3. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  4. Committed effective dose determination in southern Brazilian cereal flours.

    PubMed

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure. PMID:23511708

  5. Car-borne survey of natural background gamma dose rate in Çanakkale region, Turkey.

    PubMed

    Turhan, S; Arıkan, I H; Oğuz, F; Özdemir, T; Yücel, B; Varinlioğlu, A; Köse, A

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Çanakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples from the Çanakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92,856 data of the background gamma dose rate were collected for the Çanakkale region. The background gamma dose rate of the Çanakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h⁻¹, respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 µSv. PMID:21362693

  6. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  7. Experimental determination of chlorite dissolution rates

    SciTech Connect

    Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Wetton, P.D.; Savage, D.

    1995-12-31

    Current concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the disturbed zone surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline. Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Program. Four experiments have been carried out at 25 C and four at 70 C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0, 10.3, 11.6 and 13.0 [at 25 C]). Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite. These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 C, but slightly faster than that of muscovite at 70 C.

  8. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  9. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  10. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  11. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  12. 31 CFR 359.14 - How are composite rates determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false How are composite rates determined... BONDS, SERIES I General Information § 359.14 How are composite rates determined? Composite rates are set... composite interest rates.): Composite rate = {(Fixed rate ÷ 2) + Semiannual inflation rate + } × 2. 2...

  13. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  14. Dosimetric characterization of surface applicators for use with high dose rate Iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Fulkerson, Regina Kennedy

    Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate 192Ir sources, as well as electronic brachytherapy sources. Although use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the American Association of Physicists in Medicine (AAPM) bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. This thesis work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with high dose rate 192Ir and electronic brachytherapy sources. Air-kerma rate measurements were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom and in-water. Theoretical dose distributions and depth dose curves were

  15. Effect of radiocesium transfer on ambient dose rate in forest environments affected by the Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Kato, H.

    2015-12-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.

  16. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  17. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma

    PubMed Central

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  18. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. PMID:12539753

  20. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Astrophysics Data System (ADS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm 2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  1. Dose-rate scaling factor estimation of THOR BNCT test beam.

    PubMed

    Hsu, F Y; Tung, C J; Chen, J C; Wang, Y L; Huang, H C; Zamenhof, R G

    2004-11-01

    In 1998, an epithermal neutron test beam was designed and constructed at the Tsing Hua Open-Pool Reactor (THOR) for the purpose of preliminary dosimetric experiments in boron neutron capture therapy (BNCT). A new epithermal neutron beam was designed at this facility, and is currently under construction, with clinical trials targeted in late 2004. Depth dose-rate distributions for the THOR BNCT test beam have been measured by means of activation foil and dual ion chamber techniques. Neutron and structure-induced gamma spectra measured at the test beam exit were configured into a source function for the Monte Carlo-based treatment planning code NCTPlan. Dose-rate scaling factors (DRSFs) were determined to normalize computationally derived dose-rate distributions with experimental measurements in corresponding mathematical and physical phantoms, and to thus enable accurate treatment planning using the NCTPlan code. A similar approach will be implemented in characterizing the new THOR epithermal beam in preparation for clinical studies. This paper reports the in-phantom calculated and experimental dosimetry comparisons and derived DRSFs obtained with the THOR test beam. PMID:15308162

  2. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  3. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-01

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804

  4. Comparisons of Monte Carlo calculations with absorbed dose determinations in flat materials using high-current, energetic electron beams

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Galloway, Richard A.; Heiss, Arthur H.; Logar, John R.

    2007-08-01

    International standards and guidelines for calibrating high-dose dosimetry systems to be used in industrial radiation processing recommend that dose-rate effects on dosimeters be evaluated under conditions of use. This is important when the irradiation relies on high-current electron accelerators, which usually provide very high dose-rates. However, most dosimeter calibration facilities use low-intensity gamma radiation or low-current electron accelerators, which deliver comparatively low dose-rates. Because of issues of thermal conductivity and response, portable calorimeters cannot be practically used with high-current accelerators, where product conveyor speeds under an electron beam can exceed several meters per second and the calorimeter is not suitable for use with product handling systems. As an alternative, Monte Carlo calculations can give theoretical estimates of the absorbed dose in materials with flat or complex configurations such that the results are independent of dose-rate. Monte Carlo results can then be compared to experimental dose determinations to see whether dose-rate effects in the dosimeters are significant. A Monte Carlo code has been used in this study to calculate the absorbed doses in alanine film dosimeters supported by flat sheets of plywood irradiated with electrons using incident energies extending from 1.0 MeV to 10 MeV with beam currents up to 30 mA. The same process conditions have been used for dose determinations with high-current electron beams using low dose-rate gamma calibrated alanine film dosimeters. The close agreement between these calculations and the dosimeter determinations indicates that the response of this type of dosimeter system is independent of the dose-rate, and provides assurance that Monte Carlo calculations can yield results with sufficient accuracy for many industrial applications.

  5. Determination of the prescription dose for biradionuclide permanent prostate brachytherapy

    SciTech Connect

    Nuttens, V. E.; Lucas, S.

    2008-12-15

    A model based on the linear quadratic model that has been corrected for repopulation, sublethal cell damage repair, and RBE effect has been used to determine the prescription dose for prostate permanent brachytherapy using seeds loaded with a mixture of {sup 103}Pd and {sup 125}I or a mixture of {sup 103}Pd and {sup 131}Cs. The prescription dose was determined by comparing the tumor cell survival fractions between the considered biradionuclide seed implant and one monoradionuclide seed implant chosen from {sup 103}Pd, {sup 125}I, and {sup 131}Cs. Prostate edema is included in the model. The influence of the value of the radiobiological parameters and RBE were also investigated. Two mixtures of radionuclides were considered: {sup 103}Pd{sub 0.75}-{sup 125}I{sub 0.25} and {sup 103}Pd{sub 0.25}-{sup 131}Cs{sub 0.75}, where the subscripts indicate the fractions of total initial internal activity in the biradionuclide seed. These fractions were selected in order to obtain a dose distribution that lies between that of {sup 103}Pd and {sup 125}I/{sup 131}Cs. As expected, the computed prescription dose values are dependent on the model parameters (edema half-life and magnitude, radiobiogical parameters, and RBE). The radionuclide used as a benchmark also has a strong impact on the derived prescribed dose. The large uncertainties in the radiobiological parameters and RBE values produce big errors in the computed prescribed dose. Averaged over the range of all the parameters and depending on the radionuclide used as a benchmark (in subscript), the derived prescription dose for the first mixture (PdI) would be: D{sub Pd}{sup PdI}=142{sub -16}{sup +15} Gy and D{sub I}{sup PdI}=142{sub -8}{sup +6} Gy; and D{sub Pd}{sup PdCs}=128{sub -13}{sup +13} Gy and D{sub Cs}{sup PdCs}=115{sub -7}{sup +6} Gy for the PdCs mixture. The uncertainties could be reduced if the radiobiological parameters and RBE value were known more accurately. However, as edema characteristics are patient

  6. Methods of determining the effective dose in dental radiology.

    PubMed

    Thilander-Klang, Anne; Helmrot, Ebba

    2010-01-01

    A wide variety of X-ray equipment is used today in dental radiology, including intra-oral, orthopantomographic, cephalometric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose. However, it is difficult to determine its reliability, and it is difficult to make comparisons, especially when different modalities are used. The classification of the new CBCT units is also problematic as they are sometimes classified as CT units. This will lead to problems in choosing the best dosimetric method, especially when the examination geometry resembles more on an ordinary orthopantomographic examination, as the axis of rotation is not at the centre of the patient, and small radiation field sizes are used. The purpose of this study was to present different methods for the estimation of the effective dose from the equipment currently used in dental radiology, and to discuss their limitations. The methods are compared based on commonly used measurable and computable dose quantities, and their reliability in the estimation of the effective dose. PMID:20211918

  7. 5 CFR 531.604 - Determining an employee's locality rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Determining an employee's locality rate... employee's locality rate. (a) An annual locality rate consists of a scheduled annual rate of pay plus an... section. (b) An agency determines an employee's locality rate by— (1) Determining the employee's...

  8. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  9. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  10. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  11. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  12. Investigation of determinism in heart rate variability

    NASA Astrophysics Data System (ADS)

    Gomes, M. E. D.; Souza, A. V. P.; Guimarães, H. N.; Aguirre, L. A.

    2000-06-01

    The article searches for the possible presence of determinism in heart rate variability (HRV) signals by using a new approach based on NARMA (nonlinear autoregressive moving average) modeling and free-run prediction. Thirty-three 256-point HRV time series obtained from Wistar rats submitted to different autonomic blockade protocols are considered, and a collection of surrogate data sets are generated from each one of them. These surrogate sequences are assumed to be nondeterministic and therefore they may not be predictable. The original HRV time series and related surrogates are submitted to NARMA modeling and prediction. Special attention has been paid to the problem of stationarity. The results consistently show that the surrogate data sets cannot be predicted better than the trivial predictor—the mean—while most of the HRV control sequences are predictable to a certain degree. This suggests that the normal HRV signals have a deterministic signature. The HRV time series derived from the autonomic blockade segments of the experimental protocols do not show the same predictability performance, albeit the physiological interpretation is not obvious. These results have important implications to the methodology of HRV analysis, indicating that techniques from nonlinear dynamics and deterministic chaos may be applied to elicit more information about the autonomic modulation of the cardiovascular activity.

  13. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  14. Study of the dose rate effect of 180 nm nMOSFETs

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang

    2015-01-01

    Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.

  15. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1). PMID:25944962

  16. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.

    PubMed

    Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki

    2015-11-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. PMID:25953794

  17. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  18. Points of Interest: What Determines Interest Rates?

    ERIC Educational Resources Information Center

    Schilling, Tim

    Interest rates can significantly influence people's behavior. When rates decline, homeowners rush to buy new homes and refinance old mortgages; automobile buyers scramble to buy new cars; the stock market soars, and people tend to feel more optimistic about the future. But even though individuals respond to changes in rates, they may not fully…

  19. 'In Vivo' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    SciTech Connect

    Gonzalez-Azcorra, S. A.; Ruiz-Trejo, C.; Buenfil, A. E.; Mota-Garcia, A.; Poitevin-Chacon, M. A.; Santamaria-Torruco, B. J.; Rodriguez-Ponce, M.; Herrera-Martinez, F. P.; Gamboa de Buen, I.

    2008-08-11

    In this prospective study, rectal dose was measured 'in vivo' using TLD-100 crystals (3x3x1 mm{sup 3}), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerologia (INCan)

  20. Dose rate effects on the thermoluminescence properties of MWCVD diamond films

    NASA Astrophysics Data System (ADS)

    Gastélum, S.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    Synthetic CVD diamond, being non-toxic and tissue equivalent, has been proposed as a ionizing radiation passive dosimeter with relevant applications in radiotherapy and clinical dosimetry. In the present work, the thermoluminescence (TL) properties of microwave-assisted chemical vapor deposition (MWCVD) diamond, 6 μm thick film grown on (100) silicon substrates, were studied after room temperature γ-irradiation for 2.4, 3.1, 5.94, 13.1, 20.67, 43.4 and 81.11 Gy min-1 dose rates in the range of 0.05-10 kGy. At fixed irradiation dose the TL efficiency increases as the dose rate increases. As the dose increases the peak temperature at the maximum intensity of the TL glow curve is shifted about 10 K degrees toward the lower temperature side. The TL glow curve shape resembles first-order kinetics for low-radiation doses and second-order kinetics for higher doses. Linear dose behavior was found for doses below 200 Gy and supralinear for higher doses; respectively, with a significant dependence on the dose rate, reaching saturation for higher doses around 2.0 kGy. Due to the dose rate dependence of the TL properties of the CVD diamond sample, it is necessary to take these effects into consideration for dosimetric applications involving synthetic CVD diamond.

  1. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  2. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  3. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation.

    PubMed

    van Oorschot, Bregje; Hovingh, Suzanne; Dekker, Annelot; Stalpers, Lukas J; Franken, Nicolaas A P

    2016-02-01

    Gamma-H2AX foci detection is the standard method to quantify DNA double-strand break (DSB) induction and repair. In this study, we investigated the induction and decay of γ-H2AX foci of different tumor cell lines and fibroblasts with known mutations in DNA damage repair genes, including ATM, LigIV, DNA-PKcs, Rad51 and Rad54. A radiation dose of 2.4 Gy was used for either an acute single high-dose-rate (sHDR) exposure or a pulsed dose-rate (pDR) exposure over 24 h. The number of γ-H2AX foci was determined at 30 min and 24 h after sHDR irradiation and directly after pDR irradiation. In a similar manner, γ-H2AX foci were also examined in lymphocytes of patients with differences in normal tissue toxicity after a total radiation dose of 1 Gy. In an initial count of the number of foci 30 min after sHDR irradiation, repair-proficient cell types could not be distinguished from repair-deficient cell types. However at 24 h postirradiation, while we observed a large decrease in foci numbers in NHEJ-proficient cells, the amount of γ-H2AX foci in cell types with mutated NHEJ repair remained at high levels. Except for IRS-1SF cells, HR-deficient cell types eventually did show a moderate decrease in foci number over time, albeit to a lesser extent than their corresponding parentals or repair-proficient control cells. In addition, analysis of γ-H2AX foci after sHDR exposure of patients with different sensitivity status clearly showed individual differences in radiation response. Radiosensitive patients could be distinguished from the more radioresistant patients with γ-H2AX foci decay ratios (initial number of foci divided by residual number of foci). Significantly higher decay ratios were observed in patients without toxicities, indicating more proficient repair compared to patients with radiation-induced side effects. After pDR irradiation, no consistent correlation could be found between foci number and radiosensitivity. In conclusion, γ-H2AX formation is a rapid and

  4. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  5. High-Dose-Rate Prostate Brachytherapy Consistently Results in High Quality Dosimetry

    SciTech Connect

    White, Evan C.; Kamrava, Mitchell R.; Demarco, John; Park, Sang-June; Wang, Pin-Chieh; Kayode, Oluwatosin; Steinberg, Michael L.; Demanes, D. Jeffrey

    2013-02-01

    Purpose: We performed a dosimetry analysis to determine how well the goals for clinical target volume coverage, dose homogeneity, and normal tissue dose constraints were achieved with high-dose-rate (HDR) prostate brachytherapy. Methods and Materials: Cumulative dose-volume histograms for 208 consecutively treated HDR prostate brachytherapy implants were analyzed. Planning was based on ultrasound-guided catheter insertion and postoperative CT imaging; the contoured clinical target volume (CTV) was the prostate, a small margin, and the proximal seminal vesicles. Dosimetric parameters analyzed for the CTV were D90, V90, V100, V150, and V200. Dose to the urethra, bladder, bladder balloon, and rectum were evaluated by the dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} of each organ, expressed as a percentage of the prescribed dose. Analysis was stratified according to prostate size. Results: The mean prostate ultrasound volume was 38.7 {+-} 13.4 cm{sup 3} (range: 11.7-108.6 cm{sup 3}). The mean CTV was 75.1 {+-} 20.6 cm{sup 3} (range: 33.4-156.5 cm{sup 3}). The mean D90 was 109.2% {+-} 2.6% (range: 102.3%-118.4%). Ninety-three percent of observed D90 values were between 105 and 115%. The mean V90, V100, V150, and V200 were 99.9% {+-} 0.05%, 99.5% {+-} 0.8%, 25.4% {+-} 4.2%, and 7.8% {+-} 1.4%. The mean dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} for organs at risk were: Urethra: 107.3% {+-} 3.0%, 101.1% {+-} 14.6%, and 47.9% {+-} 34.8%; bladder wall: 79.5% {+-} 5.1%, 69.8% {+-} 4.9%, and 64.3% {+-} 5.0%; bladder balloon: 70.3% {+-} 6.8%, 59.1% {+-} 6.6%, and 52.3% {+-} 6.2%; rectum: 76.3% {+-} 2.5%, 70.2% {+-} 3.3%, and 66.3% {+-} 3.8%. There was no significant difference between D90 and V100 when stratified by prostate size. Conclusions: HDR brachytherapy allows the physician to consistently achieve complete prostate target coverage and maintain normal tissue dose constraints for organs at risk over a wide range of target volumes.

  6. Sedimentation rate determination by radionuclides mass balances

    NASA Astrophysics Data System (ADS)

    Cazala, C.; Reyss, J. L.; Decossas, J. L.; Royer, A.

    2003-04-01

    In the past, uranium mining activity took place in the area around Limoges, France. Even nowadays, this activity results in an increase in the input and availability of radionuclides in aquifer reservoirs, making of this area a suitable site to better understand the behaviour of radionuclides in the surficial environment. Water was sampled monthly over the entire year 2001 in a brook that collects mine water and in a lake fed by this brook. Samples were filtered through 0.45μm filters to remove particles. Activities of 238U, 226Ra, 210Pb, 228Th and 228Ra were measured on particulate (>0.45μm), dissolved (<0.45μm) and total (unfiltered) fractions by gamma spectrometry in the well of a high efficiency, low background, germanium detector settled in an underground laboratory, protected from cosmic rays by 1700 m of rocks (LSM, CNRS-CEA, French Alps). Activities measured in particulate and dissolved fractions were summed and compared to the one measured in unfiltered water to test the filtration yield. No significant loss or contamination were detected. In the brook water, 70% of 238U, 60% of 226Ra and 80% of 210Pb are associated with particles. Activities associated with particles decrease drastically along with the velocity of current when the stream enters the lake. An annual mass balance of radionuclides carried by particles from the stream to the lake was used to determine the sedimentation rate in the lake. The flux of particles deduced from mass balance calculations based on five isotopes corresponds to the thickness of sediment accumulated since the creation of this artificial lake (that is, 1976). This study emphasises the usefulness of radionuclides as tracers for environmental investigations.

  7. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  8. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  9. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  10. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  11. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  12. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  13. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  14. Determination of cytotoxic thermal dose during HIFU ablation

    NASA Astrophysics Data System (ADS)

    Nandlall, Sacha D.; Bazán-Peregrino, Miriam; Mo, Steven; Coussios, Constantin-C.

    2012-10-01

    Thermal dose has been proposed for various hyperthermic cancer treatment modalities as a measure of heat-induced cell and tissue damage. However, many of the models that are currently used for calculating thermal dose have not been validated or suitably adapted for the elevated temperatures and rates of heating encountered during ablation by High-Intensity Focused Ultrasound (HIFU). This work quantifies the performance of the widely employed Cumulative Equivalent Minutes at 43°C (CEM43) thermal dose metric under HIFU-relevant heating. A total of 36 agar phantoms were embedded with different human cancer cell lines (PC3, 22RV1, or ZR75.1) as well as calcein AM and propidium iodide assays. The phantoms were cast in sterile molds with internal dimensions of 7 cm × 7 cm × 2 mm. Using a water bath, 12 of the phantoms were treated with mild hyperthermia (43-46°C for up to 60 minutes), while another 12 were subjected to HIFU-relevant temperature profiles (60-80°C peak temperature, 2-3°C/s peak heating rate). In each of the remaining 12 phantoms, 8 HIFU exposures were carried out in a 37°C water tank (1.067 MHz, 95% duty cycle, 3-6 MPa peak rarefaction pressure, 2-20 s exposure duration). Cavitation emissions were monitored passively with a detector transducer that was confocally and co-axially aligned with the HIFU source. Cell death was quantified by measuring the locally averaged fluorescence intensity of the assays relative to unheated and severely heat-shocked phantoms. The results show that the CEM43 dose required to achieve the same level of heat-induced cell death varies considerably across cell lines, and that inertial cavitation can cause significant mechanical damage at ablation-relevant intensities even when no significant thermal dose is delivered (CEM43 < 5 s). These findings demonstrate the need for improved models of cell death at ablation-relevant temperatures.

  15. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  16. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. PMID:27400663

  17. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  18. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  19. Enhanced charge trapping in bipolar spacer oxides during low-dose-rate irradiation

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Nowlin, R.N.; Pease, R.L.; DeLaus, M.

    1994-03-01

    Thermally-stimulated-current and capacitance-voltage measurements reveal enhanced hole trapping in bipolar spacer-oxide capacitors irradiated at 0 V at low dose rates. Possible mechanisms and implications for bipolar low-rate response are discussed.

  20. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  1. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    SciTech Connect

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang; Xiong Li; Hansen, Jorgen L.; O'Farrell, Desmond A.; Viswanathan, Akila N.

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladder were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.

  2. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  3. Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers.

    PubMed

    Gilard, Olivier; Thomas, Jérémie; Troussellier, Laurent; Myara, Mikhael; Signoret, Philippe; Burov, Ekaterina; Sotom, Michel

    2012-05-01

    A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity. PMID:22614396

  4. Radon Dose Determination for Cave Guides in Czech Republic

    NASA Astrophysics Data System (ADS)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-01

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of

  5. Radon Dose Determination for Cave Guides in Czech Republic

    SciTech Connect

    Thinova, Lenka; Rovenska, Katerina

    2008-08-07

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin

  6. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation

    SciTech Connect

    Barrett, A.; Depledge, M.H.; Powles, R.L.

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to <0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  7. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  8. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration

    PubMed Central

    Rudqvist, Nils; Spetz, Johan; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    Background 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. Methods BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. Results In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy). PMID:26177204

  9. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  10. A survey of quality control practices for high dose rate (HDR) and pulsed dose rate (PDR) brachytherapy in the United Kingdom

    PubMed Central

    Bidmead, Margaret; Nisbet, Andrew

    2012-01-01

    Purpose A survey of quality control (QC) currently undertaken in UK radiotherapy centres for high dose rate (HDR) and pulsed dose rate (PDR) brachytherapy has been conducted. The purpose was to benchmark current accepted practice of tests, frequencies and tolerances to assure acceptable HDR/PDR equipment performance. It is 20 years since a similar survey was conducted in the UK and the current review is timed to coincide with a revision of the IPEM Report 81 guidelines for quality control in radiotherapy. Material and methods All radiotherapy centres in the UK were invited by email to complete a comprehensive questionnaire on their current brachytherapy QC practice, including: equipment type, patient workload, source calibration method, level of image guidance for planning, prescribing practices, QC tests, method used, staff involved, test frequencies, and acceptable tolerance limits. Results Survey data was acquired between June and August 2012. Of the 64 centres invited, 47 (73%) responded, with 31 centres having brachytherapy equipment (3 PDR) and fully completing the survey, 13 reporting no HDR/PDR brachytherapy, and 3 intending to commence HDR brachytherapy in the near future. All centres had comprehensive QC schedules in place and there was general agreement on key test frequencies and tolerances. Greatest discord was whether source strength for treatment planning should be derived from measurement, as at 58% of centres, or from the certified value, at 42%. IPEM Report 81 continues to be the most frequently cited source of QC guidance, followed by ESTRO Booklet No. 8. Conclusions A comprehensive survey of QC practices for HDR/PDR brachytherapy in UK has been conducted. This is a useful reference to which centres may benchmark their own practice. However, individuals should take a risk-assessment based approach, employing full knowledge of local equipment, clinical procedures and available test equipment in order to determine individual QC needs. PMID:23378853

  11. Pantak Therapax SXT 150: performance assessment and dose determination using IAEA TRS-398 protocol.

    PubMed

    Jurado, D; Eudaldo, T; Carrasco, P; Jornet, N; Ruiz, A; Ribas, M

    2005-08-01

    The performance assessment and beam characteristics of the Therapax SXT 150 unit, which encompass both low and medium-energy beams, were evaluated. Dose determination was carried out by implementing the International Atomic Energy Agency (IAEA) TRS-398 protocol and measuring all the dosimetric parameters in order to have a solid, consistent and reliable data set for the unit. Mechanical movements, interlocks and applicator characteristics agreed with specifications. The timer exhibited good accuracy and linearity. The output was very stable, with good repeatability, long-term reproducibility and no dependence on tube head orientation. The measured dosimetric parameters included beam first and second half-value layers (HVLs), absorbed dose rate to water under reference conditions, central axis depth dose distributions, output factors and beam profiles. Measured first HVLs agreed with comparable published data, but the homogeneity coefficients were low in comparison with typical values found in the literature. The timer error was significant for all filters and should be taken into consideration for the absorbed dose rate determination under reference conditions as well as for the calculation of treatment times. Percentage depth-dose (PDD) measurements are strongly recommended for each filter-applicator combination. The output factor definition of the IAEA TRS-398 protocol for medium-energy X-ray qualities involves the use of data that is difficult to measure. Beam profiles had small penumbras and good symmetry and flatness except for the lowest energy beam, for which a heel effect was observed. PMID:16046424

  12. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  13. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  14. High dose rate sources in remote afterloading brachytherapy: Implications for intracavitary and interstitial treatment of carcinoma

    SciTech Connect

    Syzek, E.J.; Bogardus, C.R. Jr. )

    1990-11-01

    Remote afterloading brachytherapy provides effective cancer treatment with zero personnel radiation exposure compared to conventional low dose rate systems requiring inpatient use of iridium, radium, or cesium sources. Clinical use of high dose rate brachytherapy is broadened to encompass curative treatment of cervical, endometrial, endobronchial, head and neck, esophageal, rectal, and prostatic carcinomas as well as palliation of intra-abdominal metastasis intraoperatively. Complications encountered with high dose rate sources will be compared to those of low dose rate systems commonly used in conjunction with external beam irradiation. Radiobiological effectiveness and economic benefits will be addressed to provide support for use of remote afterloading using high dose rate brachytherapy in palliative and curative treatment of selected carcinoma. 36 refs.

  15. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D. C.

    1980-01-01

    This paper describes recent modifications of the computer code DOSFACTER, which was developed for the purpose of estimating dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides dispersed in the environment. The modifications and additions which have been made to the calculations outlined above include the following: (1) calculation of electron dose-rate factors for radiosensitive portions of the skin; (2) incorporation of improved estimates of organ dose-rate factors for photons; and (3) calculation of dose-rate factors for additional radio nuclides and incorporation of updated radioactive decay data for all radionuclides. The revised dose-rate factors described in this paper are available upon request from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  16. On the use of pulsed reduced dose rate for improvement of the therapeutic ratio

    NASA Astrophysics Data System (ADS)

    Rasmussen, Karl H., V.

    This work demonstrates three related aspects of the efficacy, delivery, and verification of pulsed reduced dose rate radiotherapy (PRDR). PRDR is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR uses 0.2GyX10fx daily doses delivered over a 30-minute time span. Under PRDR treatments, a subset of patients have had an unexpectedly positive response to treatment. It was a primary goal of this project to determine if low-dose hyper-radiosensitivity was a contributor to the increased radio-response from these patients. This was done through the use of human T98G glioma and HT29 colorectal cells, and V79.379-A Chinese hamster fibroblasts with drug inhibition of the p53 and PI3K pathways. Radiation was delivered with a medical linear accelerator in either 2Gy acute doses or through PRDR. Methods used to analyze the effect of these techniques included clonogenic assay, flow cytometry, and western blots. Comparison of survival ratios demonstrated no decrease in efficacy for either the standard T98G or HT29 cell lines when using PRDR as compared to an acute dose. T98G with PI3K inhibition and V79.397-A cells demonstrated a decreased efficacy of treatment using PRDR relative to an acute dose. These results suggest an equivalency in tumor treatment with a possible improvement in normal tissue toxicities for the PRDR method. An additional method of delivering PRDR through the use of Tomotherapy was proposed and demonstrated to be accurate. Tomotherapy planning forces the short leaf open times for individual MLC projections from low dose fractionation closed, resulting in an undeliverable plan due to the loss of a large number of usable projections. Application of a virtual grid with directional blocking allows for the output from useable segments to be above this threshold, resulting in a deliverable treatment plan. Finally, analysis was performed on a proposed QA

  17. Correlation between indoor radon concentration and dose rate in air from terrestrial gamma radiation in Japan.

    PubMed

    Fujimoto, K

    1998-09-01

    A correlation between the indoor radon concentration and dose rate in air from terrestrial gamma radiation is studied using the results of nationwide indoor radon and external exposure surveys, although the surveys were not conducted at the same time nor at the same location. The radon concentration shows a log-normal-like distribution, whereas the terrestrial gamma radiation dose rate in air shows a normal-like distribution. A log-linear scatterplot for each pair of the indoor radon concentration and gamma-ray dose rate in air in each city reveals a clear relationship. The average, maximum, and minimum as well as regression line of radon concentration were found to increase with the gamma-ray dose rate in air. The group in higher quantile of radon concentration shows larger dependence on the gamma-ray dose rate. The rate of increase of radon concentration with the gamma-ray dose rate in air depends on the house structure. The wooden house has a larger rate of increase than the concrete house, and the regression lines cross at high air dose rate. Based on the finding in the present study a certain criterion level of air dose rate could be established and used for an effective survey to find out which houses might require a remedial action in conjunction with other screening tools. The criterion level of air dose rate might be more effective if the level is set for each house structure since the rate of increase of radon concentration depends on house structure. PMID:9721838

  18. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  19. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    SciTech Connect

    Madu, Chika N. . E-mail: chikam@xrt.upenn.edu; Machuzak, Michael S.; Sterman, Daniel H.; Musani, Ali; Ahya, Vivek; McDonough, James; Metz, James M.

    2006-12-01

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDR brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.

  20. The behavioral theory of timing: Reinforcer rate determines pacemaker rate

    PubMed Central

    Bizo, Lewis A.; White, K. Geoffrey

    1994-01-01

    In the behavioral theory of timing, pulses from a hypothetical Poisson pacemaker produce transitions between states that are correlated with adjunctive behavior. The adjunctive behavior serves as a discriminative stimulus for temporal discriminations. The present experiments tested the assumption that the average interpulse time of the pacemaker is proportional to interreinforcer interval. Responses on a left key were reinforced at variable intervals for the first 25 s since the beginning of a 50-s trial, and right-key responses were reinforced at variable intervals during the second 25 s. Psychometric functions relating proportion of right-key responses to time since trial onset, in 5-s intervals across the 50-s trial, were sigmoidal in form. Average interpulse times derived by fitting quantitative predictions from the behavioral theory of timing to obtained psychometric functions decreased when the interreinforcer interval was decreased and increased when the interreinforcer interval was increased, as predicted by the theory. In a second experiment, average interpulse times estimated from trials without reinforcement followed global changes in interreinforcer interval, as predicted by the theory. Changes in temporal discrimination as a function of interreinforcer interval were therefore not influenced by the discrimination of reinforcer occurrence. The present data support the assumption of the behavioral theory of timing that interpulse time is determined by interreinforcer interval. PMID:16812723

  1. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1973-01-01

    The problem studied involved cell proliferation in mice thymus undergoing irradiation at a dose rate of 10 roetgens/day for 105 days. Specifically, the aim was to determine wheather or not a steady state of cell population can be established for the indicated period of time and what compensatory mechanisms of cell population are involved.

  2. Dose rate constant of a Cesium-131 interstitial brachytherapy seed measured by thermoluminescent dosimetry and gamma-ray spectrometry

    SciTech Connect

    Chen, Z.; Bongiorni, P.; Nath, R.

    2005-11-15

    The aim of this work was to conduct an independent determination of the dose rate constant of the newly introduced Model CS-1 {sup 131}Cs seed. A total of eight {sup 131}Cs seeds were obtained from the seed manufacturer. The air-kerma strength of each seed was measured by the manufacturer whose calibration is traceable to the air-kerma strength standard established for the {sup 131}Cs seeds at the National Institute of Standards and Technology (1{sigma} uncertainty <1%). The dose rate constant of each seed was measured by two independent methods: One based on the actual photon energy spectrum emitted by the seed using gamma-ray spectrometry and the other based on the dose-rate measured by thermoluminescent dosimeter (TLD) in a Solid Water{sup TM} phantom. The dose rate constant in water determined by the gamma-ray spectrometry technique and by the TLD dosimetry are 1.066{+-}0.064 cGyh{sup -1}U{sup -1} and 1.058{+-}0.106 cGyh{sup -1}U{sup -1}, respectively, showing excellent agreement with each other. These values, however, are approximately 15% greater than a previously reported value of 0.915 cGyh{sup -1}U{sup -1} [Med. Phys. 31, 1529-1538 (2004)]. Although low-energy fluorescent x rays at 16.6 and 18.7 keV, originating from niobium present in the seed construction, were measured in the energy spectrum of the {sup 131}Cs seeds, their yields were not sufficient to lower the dose rate constant to the value of 0.915 cGyh{sup -1}U{sup -1}. Additional determinations of the dose rate constant may be needed to establish an AAPM recommended consensus value for routine clinical use of the {sup 131}Cs seed.

  3. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    SciTech Connect

    Able, Charles M.; Bright, Megan; Frizzell, Bart

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  4. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    PubMed Central

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  5. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    PubMed Central

    Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju

    2014-01-01

    Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166

  6. Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data.

    PubMed

    Kumagai, K; Ookubo, H; Kimura, H

    2015-11-01

    In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detector systems in the low dose rate range. The background dose rate varies mainly as a result of the deposition of (222)Rn progeny in precipitation and shielding of the ground by snow cover. Increments in the environmental dose rate due to radionuclides released from nuclear facilities must be separated from these background variations. The method in the present study corrects for the dose rate variations from natural sources by multiple regression analysis based on the γ-ray counting rates of single-channel analysers opened in the energy ranges of γ-rays emitted by (214)Bi and (208)Tl. Assuming a normal distribution of the results and using the one-sided type I error of 0.01 while ignoring the type II error, the detection limit of the γ-ray dose rate from artificial sources was 0.77 nGy h(-1). PMID:25948830

  7. On the relationship between the Martian pressure changes and the MSL/RAD dose rate variations

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Wimmer-Schweingruber, Robert; zeitlin, Cary; Rafkin, Scot; Koehler, Jan; Hassler, Donald; Ehresmann, Bent; Appel, Jan; Boehm, Eckart; Boettcher, Stephan; Brinza, David; Burmeister, Soenke; Lohf, Henning; Martin, Cesar; Posner, Arik; Reitz, Guenther

    2015-04-01

    The Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory's (MSL) rover Curiosity measures the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed the diurnal variations of the total dose rate and neutron count rate due to changes in atmospheric column mass driven by the atmospheric thermal tide tep{rafkin2014}. Variations in the dose rate are shown to be anti-correlated with the changes in atmospheric shielding, while the neutron count rate shows a positive-correlation with the changes of atmospheric pressure. We have analyzed this cyclic variations in the longer term and discovered a second-order effect of this diurnal correlation which indicates a non-linear pressure-dose rate effect. We also employed a PLANETOCOSMIC simulation which shows as well a non-linear correlation between pressure and particles fluxes on the surface of Mars.

  8. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility. PMID:11277221

  9. A guide to the measurement of environmental gamma-ray dose rate

    NASA Astrophysics Data System (ADS)

    Spiers, F. W.; Gibson, J. A. B.; Thompson, I. M. G.

    The performance of Geiger counters, ionization chambers, scintillators, gamma-ray spectrometers and thermoluminescence dosimeters is discussed. Cosmic, man made, and natural environmental gamma radiation is considered. Dosimeter calibration, measurement procedures, precautions which reduce errors, accuracy assessment, and the interpretation of results are covered. The calculation of dose equivalent to body organs is outlined. Levels of the annual dose equivalent received by the UK population are given. The minimum change in measured dose rate significant at the 95% confidence level as an estimate of the mean environmental dose rate is 12mrad/yr.

  10. TLD skin dose measurements and acute and late effects after lumpectomy and high-dose-rate brachytherapy only for early breast cancer

    SciTech Connect

    Perera, Francisco . E-mail: francisco.perera@lrcc.on.ca; Chisela, Frank; Stitt, Larry; Engel, Jay; Venkatesan, Varagur

    2005-08-01

    Purpose: This report examines the relationships between measured skin doses and the acute and late skin and soft tissue changes in a pilot study of lumpectomy and high-dose-rate brachytherapy only for breast cancer. Methods and Materials: Thirty-seven of 39 women enrolled in this pilot study of high-dose-rate brachytherapy (37.2 Gy in 10 fractions b.i.d.) each had thermoluminescent dosimetry (TLD) at 5 points on the skin of the breast overlying the implant volume. Skin changes at TLD dose points and fibrosis at the lumpectomy site were documented every 6 to 12 months posttreatment using a standardized physician-rated cosmesis questionnaire. The relationships between TLD dose and acute skin reaction, pigmentation, or telangiectasia at 5 years were analyzed using the GEE algorithm and the GENMOD procedure in the SAS statistical package. Fisher's exact test was used to determine whether there were any significant associations between acute skin reaction and late pigmentation or telangiectasia or between the volumes encompassed by various isodoses and fibrosis or fat necrosis. Results: The median TLD dose per fraction (185 dose points) multiplied by 10 was 9.2 Gy. In all 37 patients, acute skin reaction Grade 1 or higher was observed at 5.9% (6 of 102) of dose points receiving 10 Gy or less vs. 44.6% (37 of 83) of dose points receiving more than 10 Gy (p < 0.0001). In 25 patients at 60 months, 1.5% telangiectasia was seen at dose points receiving 10 Gy or less (1 of 69) vs. 18% (10 of 56) telangiectasia at dose points receiving more than 10 Gy (p 0.004). Grade 1 or more pigmentation developed at 1.5% (1 of 69) of dose points receiving less than 10 Gy vs. 25% (14 of 56) of dose points receiving more than 10 Gy (p < 0.001). A Grade 1 or more acute skin reaction was also significantly associated with development of Grade 1 or more pigmentation or telangiectasia at 60 months. This association was most significant for acute reaction and telangiectasia directly over the

  11. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  12. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. PMID:26943159

  13. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  14. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations

    PubMed Central

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation. PMID:27014633

  15. Determination of a suitable voriconazole pharmacokinetic model for personalised dosing.

    PubMed

    McDougall, David A J; Martin, Jennifer; Playford, E Geoffrey; Green, Bruce

    2016-04-01

    Model based personalised dosing (MBPD) is a sophisticated form of individualised therapy, where a population pharmacokinetic (PK) or pharmacodynamic model is utilised to estimate the dose required to reach a target exposure or effect. The choice of which model to implement in MBPD is a subjective decision. By choosing one model, information from the remaining models is ignored, as well as the rest of the literature base. This manuscript describes a methodology to develop a 'hybrid' model for voriconazole that incorporated information from prior models in a biologically plausible manner. Voriconazole is a triazole antifungal with difficult to predict PK, although it does have a defined exposure-response relationship. Nine population PK models of voriconazole were identified from the literature. The models differed significantly in structural components. The hybrid model contained a two-compartment disposition model with mixed linear and nonlinear time-dependent clearance. The parameters for the hybrid model were determined using simulation techniques. Validation of the hybrid model was assessed via visual predictive checks, which indicated the majority of the variability in the literature models was captured by the hybrid model. The predictive performance was assessed using four different sampling strategies of limited concentrations from ten richly PK sampled subjects to predict future concentrations. Overall, the hybrid model predicted future concentrations with good precision. Further prospective and retrospective validation of the hybrid model is required before it could be used in clinical practice. PMID:26676909

  16. Laser-based irradiation apparatus and methods for monitoring the dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2006-03-28

    A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.

  17. Factors for Predicting Rectal Dose of High-Dose-Rate Intracavitary Brachytherapy After Pelvic Irradiation in Patients With Cervical Cancer: A Retrospective Study With Radiography-Based Dosimetry

    SciTech Connect

    Huang Engyen; Wang Chongjong; Lan Jenhong; Chen Huichun; Fang Fumin; Hsu, H.-C.; Huang Yujie; Wang Changyu; Wang Yuming

    2010-02-01

    Purpose: To evaluate the predictive factors for rectal dose of the first fraction of high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From March 1993 through February 2008, 946 patients undergoing pelvic irradiation and HDR-ICBT were analyzed. Examination under anesthesia (EUA) at the first implantation of the applicator was usually performed in the early period. Rectal point was determined radiographically according to the 38th Report of the International Commission of Radiation Units and Measurements (ICRU). The ICRU rectal dose (PRD) as a percentage of point A dose was calculated; multiple linear regression models were used to predict PRD. Results: Factors influencing successful rectal dose calculation were EUA (p < 0.001) and absence of diabetes (p = 0.047). Age (p < 0.001), body weight (p = 0.002), diabetes (p = 0.020), and EUA (p < 0.001) were independent factors for the PRD. The predictive equation derived from the regression model was PRD (%) = 57.002 + 0.443 x age (years) - 0.257 x body weight (kg) + 6.028 x diabetes (no: 0; yes: 1) - 8.325 x EUA (no: 0; yes: 1) Conclusion: Rectal dose at the first fraction of HDR-ICBT is positively influenced by age and diabetes, and negatively correlated with EUA and body weight. A small fraction size at point A may be considered in patients with a potentially high rectal dose to reduce the biologically effective dose if the ICRU rectal dose has not been immediately obtained in the first fraction of HDR-ICBT.

  18. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate {sup 192}Ir sources

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the {sup 192}Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a

  19. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  20. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  1. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    SciTech Connect

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  2. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation.

    PubMed

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate.This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2  g/kg), a single dose of rituximab (375  mg/m), and 4 doses of bortezomib (1.3  mg/m). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients.There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83  ±  16.0 (14952  ±  5820) and 63  ±  36.0 (10321  ±  7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468-634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group.In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  3. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation

    PubMed Central

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-01-01

    Abstract Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate. This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2 g/kg), a single dose of rituximab (375 mg/m2), and 4 doses of bortezomib (1.3 mg/m2). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients. There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83 ± 16.0 (14952 ± 5820) and 63 ± 36.0 (10321 ± 7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468–634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group. In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  4. Improvement Accuracy of Assessment of Total Equivalent Dose Rate during Air Travel

    NASA Astrophysics Data System (ADS)

    Dorenskiy, Sergey; Minligareev, Vladimir

    For radiation safety on the classic flight altitudes 8-11 km is necessary to develop a methodology for calculating the total equivalent dose rate (EDR) to prevent excess exposure of passengers and crews of airliners. During development it became necessary to assess all components affecting the calculation of EDR Comprehensive analysis of the solution to this problem, based on the developed program basis, allowing to automate calculations , as well as on the assessment of the statistical data is introduced. The results have shown that: 1) Limiting accuracy of error of geomagnetic cutoff rigidity (GCR) in the period from 2005 to 2010 was 5% This error is not significant within the considered problems. 2) It is necessary to take into account seasonal variations of atmospheric parameters in the calculation of the EDR. The difference in the determination of dose rate can reach 31% Diurnal variations of atmospheric parameters are offered to consider to improve reliability of EDR estimates. 3) Introduction in the GCR calculations of additional parameters is necessary for reliability improvement and estimation accuracy of EDR on flight routs (Kp index of geomagnetic activity , etc.).

  5. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  6. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  7. Samarium-153 therapy for prostate cancer: the evaluation of urine activity, staff exposure and dose rate from patients.

    PubMed

    Parlak, Yasemin; Gumuser, Gul; Sayit, Elvan

    2015-03-01

    The aim of this study was to determine the excretion of Samarium-153-ethylenediaminetetramethylphosphonic acid ((153)Sm-EDTMP) in urine and to calculate the dose rate of its retention in the body as a function of time and the dose received by the skin of laboratory staff's finger. Urine samples were collected from 11 patients after intravenous injection of (153)Sm-EDTMP. The measurements of dose rate were performed. Thermoluminescent dosemeters were used for absorbed dose measurements. Effective half-lives that were calculated from urine sample measurements were found as 7.1±3 h within the first 24 h. Whole body dose rates before collecting urine of patients were 60.0 ± 15.7 µSv h(-1) for within 1 h following (153)Sm-EDTMP administration. The highest finger radiation dose is to the right-hand thumb (3.8 ± 2 mGy). The results of the study imply that patients who recieved (153)Sm-EDTMP therapy should be kept a minumum of 8 h in an isolated room at hospital and that one staff should give therapy at most two patients per week. PMID:25063786

  8. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  9. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern.

    PubMed

    Borot de Battisti, M; Maenhout, M; Denis de Senneville, B; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm(3)to 23.3 cm(3)) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions. PMID:26378657

  10. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NASA Astrophysics Data System (ADS)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  11. Conventional High-Dose-Rate Brachytherapy With Concomitant Complementary IMRT Boost: A Novel Approach for Improving Cervical Tumor Dose Coverage

    SciTech Connect

    Duan, Jun; Kim, Robert Y. Elassal, Shaaban; Lin Huiyi; Shen Sui

    2008-07-01

    Purpose: To investigate the feasibility of combining conventional high-dose-rate (HDR) brachytherapy with a concomitant complementary intensity-modulated radiotherapy (IMRT) boost for improved target coverage in cervical cancers. Methods and Materials: Six patients with cervical cancer underwent conventional HDR (C-HDR) treatment. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired with a CT/MRI-compatible applicator in place. The clinical target volumes (CTVs), defined as the gross target volume with a 3-mm margin and the uterus, were delineated on the CT scans, along with the organs at risk (OARs). The IMRT plans were optimized to generate dose distributions complementing those of C-HDR to cover the CTV while maintaining low doses to the OARs (IMRT-HDR). For comparison, dwell-weight optimized HDR (O-HDR) plans were also generated to cover the CTV and spare the OARs. The three treatment techniques (C-HDR, O-HDR, and IMRT-HDR) were compared. The percentage of volume receiving 95% of the prescription dose (V{sub 95}) was used to evaluate dose coverage to the CTV, and the minimal doses in the 2.0-cm{sup 3} volume receiving the greatest dose were calculated to compare the doses to the OARs. Results: The C-HDR technique provided very poor CTV coverage in 5 cases (V{sub 95} <62%). Although O-HDR provided excellent gross tumor volume coverage (V{sub 95} {>=}96.9%), it resulted in unacceptably high doses to the OARs in all 6 cases and unsatisfactory coverage to the whole CTV in 3 cases. IMRT-HDR not only yielded substantially improved CTV coverage (average V{sub 95} = 95.3%), but also kept the doses to the bladder and rectum reasonably low. Conclusion: Compared with C-HDR and O-HDR, concomitant IMRT boost complementary to C-HDR not only provided excellent CTV coverage, but also maintained reasonably low doses to the OARs.

  12. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  13. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6 Gy min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62  ±  1)% within approximately 20 h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  14. Measurement uncertainty analysis of low-dose-rate prostate seed brachytherapy: post-implant dosimetry.

    PubMed

    Gregory, Kent J; Pattison, John E; Bibbo, Giovanni

    2015-03-01

    The minimal dose covering 90 % of the prostate volume--D 90--is arguably the most important dosimetric parameter in low-dose-rate prostate seed brachytherapy. In this study an analysis of the measurement uncertainties in D 90 from low-dose-rate prostate seed brachytherapy was conducted for two common treatment procedures with two different post-implant dosimetry methods. The analysis was undertaken in order to determine the magnitude of D 90 uncertainty, how the magnitude of the uncertainty varied when D 90 was calculated using different dosimetry methods, and which factors were the major contributors to the uncertainty. The analysis considered the prostate as being homogeneous and tissue equivalent and made use of published data, as well as original data collected specifically for this analysis, and was performed according to the Guide to the expression of uncertainty in measurement (GUM). It was found that when prostate imaging and seed implantation were conducted in two separate sessions using only CT images for post-implant analysis, the expanded uncertainty in D 90 values were about 25 % at the 95 % confidence interval. When prostate imaging and seed implantation were conducted during a single session using CT and ultrasound images for post-implant analysis, the expanded uncertainty in D 90 values were about 33 %. Methods for reducing these uncertainty levels are discussed. It was found that variations in contouring the target tissue made the largest contribution to D 90 uncertainty, while the uncertainty in seed source strength made only a small contribution. It is important that clinicians appreciate the overall magnitude of D 90 uncertainty and understand the factors that affect it so that clinical decisions are soundly based, and resources are appropriately allocated. PMID:25555753

  15. High Dose-Rate Intracavitary Brachytherapy for Cervical Carcinomas With Lower Vaginal Infiltration

    SciTech Connect

    Kazumoto, Tomoko Kato, Shingo; Tabushi, Katsuyoshi; Kutsutani-Nakamura, Yuzuru; Mizuno, Hideyuki; Takahashi, Michiko; Shiromizu, Kenji; Saito, Yoshihiro

    2007-11-15

    Purpose: This report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina. Methods and Materials: We adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB-IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as 'pear-shaped' isodose curve. Then 3-4 more sessions per week of this new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as 'utero-vaginal brachytherapy'. The mean follow-up period was 87.4 months (range, 51.8-147.9 months). Results: Isodose curve for this program was 'galaxy-shaped'. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis. Conclusions: Because of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration.

  16. Analgesia dose prescribing and estimated glomerular filtration rate decline: a general practice database linkage cohort study

    PubMed Central

    Nderitu, Paul; Doos, Lucy; Strauss, Vicky Y; Lambie, Mark; Davies, Simon J; Kadam, Umesh T

    2014-01-01

    Objective We aimed to quantify the short-term effect of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and paracetamol analgesia dose prescribing on estimated glomerular filtration rate (eGFR) decline in the general practice population. Design A population-based longitudinal clinical data linkage cohort study. Setting Two large general practices in North Staffordshire, UK. Participants Patients aged 40 years and over with ≥2 eGFR measurements spaced ≥90 days apart between 1 January 2009 and 31 December 2010 were selected. Exposure Using WHO Defined Daily Dose standardised cumulative analgesia prescribing, patients were categorised into non-user, normal and high-dose groups. Outcome measure The primary outcome was defined as a >5 mL/min/1.73 m2/year eGFR decrease between the first and last eGFR. Logistic regression analyses were used to estimate risk, adjusting for sociodemographics, comorbidity, baseline chronic kidney disease (CKD) status, renin-angiotensin-system inhibitors and other analgesia prescribing. Results There were 4145 patients (mean age 66 years, 55% female) with an analgesia prescribing prevalence of 17.2% for NSAIDs, 39% for aspirin and 22% for paracetamol and stage 3–5 CKD prevalence was 16.1% (n=667). Normal or high-dose NSAID and paracetamol prescribing was not significantly associated with eGFR decline. High-dose aspirin prescribing was associated with a reduced risk of eGFR decline in patients with a baseline (first) eGFR ≥60 mL/min/1.73 m2; OR=0.52 (95% CI 0.35 to 0.77). Conclusions NSAID, aspirin and paracetamol prescribing over 2 years did not significantly affect eGFR decline with a reduced risk of eGFR decline in high-dose aspirin users with well-preserved renal function. However, the long-term effects of analgesia use on eGFR decline remain to be determined. PMID:25138808

  17. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  18. Quality of platelet concentrates irradiated with UVB light: effect of UV dose and dose rate on glycocalicin release and correlation with other markers of the platelet storage lesion.

    PubMed

    Bessos, H; Murphy, W G; Robertson, A; Vickers, M; Seghatchian, M J; Tandy, N P; Cutts, M; Pamphilon, D H

    1993-06-01

    The amount of membrane-associated glycoprotein Ib in platelet concentrates (PCs) irradiated with a high dose of UVB light has been shown to be significantly reduced after 48 h storage. We recently corroborated this finding when we noted an increase in the supernatant levels of glycocalicin (GC, a major segment of glycoprotein Ib) in UVB-treated PCs during storage. The aim of the present study was to determine whether GC release was related to both the UV dose and the rate of dose delivery. Plateletpheresis concentrates obtained from five donors were pooled and split into five equal parts. Four of these were treated with 7500 and 15,000 mJ/cm2 UVB using two prototype UV sources with differing rates of dose delivery; namely, Baxter (BAT) and British Aerospace (BAC) cabinets, with the latter having the slower rate of delivery. On days 1 and 5 of storage, GC levels in the supernatants of PCs were determined by ELISA. Moreover, the following parameters were also assessed: platelet and WBC count; hypotonic shock response (HSR) and platelet aggregation response to ADP, ADP+collagen, ADP+arachidonic acid and ristocetin; pH; supernatant levels of lactate, glucose, von Willebrand factor (vWf) and beta-thromboglobulin (beta TG). The results revealed an association of GC release with UVB dose using both UV sources, although this was more apparent in the BAC system, in which glycocalicin release at day 5 of storage was as follows (microgram/ml, mean +/- SD): 4.8 +/- 0.3 and 9.5 +/- 3.6 at 7500 and 15,000 mJ/cm2 respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8374699

  19. Indoor Gamma Dose Rates In Kuwait Using Handheld Gamma-ray Spectrometer.

    PubMed

    Al-Azmi, Darwish

    2016-07-01

    A survey of indoor gamma dose rates was carried out in Kuwait using a NaI dosimeter/spectrometer. The measurements started from May 2013 until April 2015 and covered different locations within 200 dwellings: 158 halls, 26 rooms, 17 basements, and 43 kitchens (total of 244 locations). Alongside the dose rate measurements, gamma-ray spectra were also acquired to evaluate the relative contributions of K, Bi, and Tl and check the presence of Cs. The results show that the dose rates for all locations varied from 39.3 to 103.3 nSv h with a mean of 70.6 nSv h, indicating that the indoor dose rates are low and within the normal range. PMID:27218289

  20. Extension of a generalized state-vector model of radiation carcinogenesis to consideration of dose rate

    SciTech Connect

    Crawford-Brown, D.J. ); Hofmann, W. )

    1993-06-01

    Mathematical models for radiation carcinogenesis typically employ transition rates that either are a function of the dose to specific cells or are purely empirical constructs unrelated to biophysical theory. These functions either ignore or do not explicitly model interactions between the fates of cells in a community. This paper extends a model of mitosis, cell transformation, promotion, and progression to cases in which interacting cellular communities are irradiated at specified dose rates. The model predicts that lower dose rates are less effective at producing cancer when irradiation is by X- or gamma rays but are generally more effective in instances of irradiation by alpha particles up to a dose rate in excess of 0.01 Gy/day. The resulting predictions are compared with existing experimental data. 39 refs., 9 figs., 1 tab.

  1. An Interactive Point Kernel Program For Photon Dose Rate Prediction of Cylindrical Source/Shield Arrangements.

    Energy Science and Technology Software Center (ESTSC)

    1990-10-26

    Version 00 The program ZYLIND is an interactive point kernel program for photon dose rate prediction of a homogeneous cylindrical source shielded by cylindrical (radial) or plane (axial) layered shields.

  2. Establishment of air kerma reference standard for low dose rate Cs-137 brachytherapy sources.

    PubMed

    Sharma, Sunil Dutt; Kumar, Sudhir; Srinivasan, P; Chourasiya, G

    2011-01-01

    A guarded cylindrical graphite ionization chamber of nominal volume 1000 cm3 was designed and fabricated for use as a reference standard for low-dose rate 137Cs brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin's general cavity theory, as well as by the Monte Carlo simulation and validated experimentally using Amersham CDCS-J-type 137Cs reference source. In the analytical method, the N(K) was calculated for 662 keV gamma rays of 137Cs brachytherapy source. In the Monte Carlo method, the geometry of the measurement setup and physics-related input data of the 137Cs source and the surrounding material were simulated using the Monte Carlo N-Particle code. The photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficient. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber, and the N(K) was determined. The analytical and Monte Carlo values of N(K) of the cylindrical graphite ionization chamber for 137Cs brachytherapy source are in agreement within 1.07%. The deviation of analytical and Monte Carlo values from experimental values of N(K) is 0.36% and 0.72%, respectively. This agreement validates the analytical value, and establishes this chamber as a reference standard for RAKR or AKS measurement of 137Cs brachytherapy sources. PMID:22089009

  3. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  4. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo.

    PubMed

    Hu, Yanmin; Liu, Alexander; Ortega-Muro, Fatima; Alameda-Martin, Laura; Mitchison, Denis; Coates, Anthony

    2015-01-01

    Although high-dose rifampicin holds promise for improving tuberculosis control by potentially shortening treatment duration, these effects attributed to eradication of persistent bacteria are unclear. The presence of persistent Mycobacterium tuberculosis was examined using resuscitation promoting factors (RPFs) in both in vitro hypoxia and in vivo murine tuberculosis models before and after treatment with incremental doses of rifampicin. Pharmacokinetic parameters and dose-dependent profile of rifampicin in the murine model were determined. The Cornell mouse model was used to test efficacy of high-dose rifampicin in combination with isoniazid and pyrazinamide and to measure relapse rate. There were large numbers of RPF-dependent persisters in vitro and in vivo. Stationary phase cultures were tolerant to rifampicin while higher concentrations of rifampicin eradicated plate count positive but not RPF-dependent persistent bacteria. In murine infection model, incremental doses of rifampicin exhibited a dose-dependent eradication of RPF-dependent persisters. Increasing the dose of rifampicin significantly reduced the risk of antibiotic resistance emergence. In Cornell model, mice treated with high-dose rifampicin regimen resulted in faster visceral clearance; organs were M. tuberculosis free 8 weeks post-treatment compared to 14 weeks with standard-dose rifampicin regimen. Organ sterility, plate count and RPF-dependent persister negative, was achieved. There was no disease relapse compared to the standard dose regimen (87.5%). High-dose rifampicin therapy results in eradication of RPF-dependent persisters, allowing shorter treatment duration without disease relapse. Optimizing rifampicin to its maximal efficacy with acceptable side-effect profiles will provide valuable information in human studies and can potentially improve current tuberculosis chemotherapy. PMID:26157437

  5. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  6. A dosimetric study on the Ir-192 high dose rate flexisource.

    PubMed

    Granero, D; Pérez-Calatayud, J; Casal, E; Ballester, F; Venselaar, J

    2006-12-01

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained. PMID:17278809

  7. A dosimetric study on the Ir-192 high dose rate Flexisource

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Casal, E.; Ballester, F.; Venselaar, J.

    2006-12-15

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained.

  8. 5 CFR 304.104 - Determining rate of pay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Determining rate of pay. 304.104 Section 304.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS EXPERT AND CONSULTANT APPOINTMENTS § 304.104 Determining rate of pay. (a) The rate of basic pay for experts...

  9. 5 CFR 304.104 - Determining rate of pay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Determining rate of pay. 304.104 Section 304.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS EXPERT AND CONSULTANT APPOINTMENTS § 304.104 Determining rate of pay. (a) The rate of basic pay for experts...

  10. 44 CFR 61.7 - Risk premium rate determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Risk premium rate determinations. 61.7 Section 61.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... COVERAGE AND RATES § 61.7 Risk premium rate determinations. (a) Pursuant to section 1307 of the Act,...

  11. 47 CFR 54.607 - Determining the rural rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Determining the rural rate. 54.607 Section 54.607 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Health Care Providers § 54.607 Determining the rural rate. (a) The rural rate shall be the...

  12. Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, Kazumasa; Tsuruoka, Hiroshi; Van Le, Tan; Arai, Moeko; Saito, Kyoko; Fukushi, Masahiro

    2016-07-01

    A car-borne survey was made in metropolitan Tokyo, Japan, in December 2014 to estimate external dose. This survey was conducted for all municipalities of Tokyo and the results were compared with measurements done in 2003. The ambient dose rate measured in the whole area of Tokyo in December 2014 was 60 nGy h(-1) (23-142 nGy h(-1)), which was 24% higher than the rate in 2003. Higher dose rates (>70 nGy h(-1)) were observed on the eastern and western ends of Tokyo; furthermore, the contribution ratio from artificial radionuclides ((134)Cs and (137)Cs) to ambient dose rate in eastern Tokyo was twice as high as that of western Tokyo. Based on the measured ambient dose rate, the effective dose rate after the accident was estimated to be 0.45 μSv h(-1) in Tokyo. This value was 22% higher than the value before the accident as of December 2014. PMID:27055250

  13. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  14. Measurement of dosimetric parameters for the Alpha-Omega high-dose-rate Iridium-192 source

    SciTech Connect

    Muller-Runkel, R. . E-mail: renate.muller@ssfhs.org

    2005-09-30

    Thermoluminescent (TLD) measurements of dose-rate constant, anisotropy function, and radial dose function are reported for the Alpha-Omega high dose rate (HDR) Iridium-192 ({sup 192}Ir) source, which has been available since 1998 for use in the MicroSelectron HDR afterloader manufactured by the Nucletron Corporation. Measurement results are compared with published or available Monte Carlo calculations for both sources. They are found in good agreement, and, within experimental accuracy, no difference is seen in the dosimetric parameters of both sources.

  15. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGESBeta

    Dewji, S.; Bellamy, M.; Hertel, N.; Leggett, R.; Sherbini, S.; Saba, M.; Eckerman, K.

    2015-03-25

    specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  16. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    SciTech Connect

    Dewji, S. Bellamy, M.; Leggett, R.; Eckerman, K.; Hertel, N.; Sherbini, S.; Saba, M.

    2015-04-15

    specific activities of {sup 131}I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for {sup 131}I patients with normal thyroid uptake (peak thyroid uptake of ∼27% of administered {sup 131}I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ∼4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ∼3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with {sup 131}I therapy, consideration must be given to (patient- and case-specific) administered {sup 131}I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. The method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.

  17. On-site gamma dose rates at the Andreeva Bay shore technical base, northwest Russia.

    PubMed

    Reistad, O; Dowdall, M; Standring, W J F; Selnaes, Ø G; Hustveit, S; Steinhusen, F; Sørlie, A

    2008-07-01

    The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity. PMID:18243437

  18. TOLERANCE TO COCAINE’S EFFECTS FOLLOWING CHRONIC ADMINISTRATION OF A DOSE WITHOUT DETECTED EFFECTS ON RESPONSE RATE OR PAUSE

    PubMed Central

    Minervini, Vanessa; Branch, Marc N.

    2014-01-01

    To observe tolerance to drug effects on operant behavior, the dose that researchers have often selected for chronic administration is one that disrupts, but does not abolish, responding. Some evidence suggests that tolerance may develop after chronic administration of relatively smaller doses. The purpose of the present experiment was to assess systematically effects of chronic administration of a dose without detected effect on responding. Specifically, response rates and postreinforcement pauses of five pigeons key pecking under a three-component multiple fixed-ratio schedule of food reinforcement were observed under chronic cocaine administration. We evaluated the effects of a range of doses (1.0 mg/kg to 17.0 mg/kg) during acute administration. The largest dose that failed to alter responding acutely then was administered chronically (1.0 mg/kg for one pigeon, 3.0 mg/kg for three pigeons, and 5.6 mg/kg for one pigeon). After 30 consecutive sessions of chronic administration, smaller and larger doses occasionally were substituted for the chronic dose. Pigeons then received presession saline administration for 30 consecutive sessions, and the postchronic effects of the series of doses on responding were determined. All subjects developed tolerance to doses of cocaine that initially had caused large decreases in rate, with the magnitude of the effects varying across components of the multiple schedule and subjects. Specifically, tolerance generally was greatest in the components with smaller ratios. Following postchronic saline administration, tolerance was usually diminished. Overall, the results demonstrate that under these conditions, repeated experience with disruptive effects of cocaine on food-maintained responding is not a necessary factor in the development of tolerance. PMID:24019029

  19. Tolerance to cocaine's effects following chronic administration of a dose without detected effects on response rate or pause.

    PubMed

    Minervini, Vanessa; Branch, Marc N

    2013-11-01

    To observe tolerance to drug effects on operant behavior, the dose that researchers have often selected for chronic administration is one that disrupts, but does not abolish, responding. Some evidence suggests that tolerance may develop after chronic administration of relatively smaller doses. The purpose of the present experiment was to assess systematically effects of chronic administration of a dose without detected effect on responding. Specifically, response rates and post-reinforcement pauses of five pigeons key pecking under a three-component multiple fixed-ratio schedule of food reinforcement were observed under chronic cocaine administration. We evaluated the effects of a range of doses (1.0 mg/kg to 17.0  mg/kg) during acute administration. The largest dose that failed to alter responding acutely then was administered chronically (1.0  mg/kg for 1 pigeon, 3.0  mg/kg for 3 pigeons, and 5.6  mg/kg for 1 pigeon). After 30 consecutive sessions of chronic administration, smaller and larger doses occasionally were substituted for the chronic dose. Pigeons then received pre-session saline administration for 30 consecutive sessions, and the post-chronic effects of the series of doses on responding were determined. All subjects developed tolerance to doses of cocaine that initially had caused large decreases in rate, with the magnitude of the effects varying across components of the multiple schedule and subjects. Specifically, tolerance generally was greatest in the components with smaller ratios. Following post-chronic saline administration, tolerance was usually diminished. Overall, the results demonstrate that under these conditions, repeated experience with disruptive effects of cocaine on food-maintained responding is not a necessary factor in the development of tolerance. PMID:24019029

  20. Radioactivity determination of sealed pure beta-sources by surface dose measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Choi, Chang Heon; Jung, Seongmoon; Choi, Kanghyuk; Son, Kwang-Jae; Lee, Jun Sig; Ye, Sung-Joon

    2016-04-01

    This study aims to determine the activity of a sealed pure beta-source by measuring the surface dose rate using an extrapolation chamber. A conversion factor (cGy s-1 Bq-1), which was defined as the ratio of surface dose rate to activity, can be calculated by Monte Carlo simulations of the extrapolation chamber measurement. To validate this hypothesis the certified activities of two standard pure beta-sources of Sr/Y-90 and Si/P-32 were compared with those determined by this method. In addition, a sealed test source of Sr/Y-90 was manufactured by the HANARO reactor group of KAERI (Korea Atomic Energy Research Institute) and used to further validate this method. The measured surface dose rates of the Sr/Y-90 and Si/P-32 standard sources were 4.615×10-5 cGy s-1 and 2.259×10-5 cGy s-1, respectively. The calculated conversion factors of the two sources were 1.213×10-8 cGy s-1 Bq-1 and 1.071×10-8 cGy s-1 Bq-1, respectively. Therefore, the activity of the standard Sr/Y-90 source was determined to be 3.995 kBq, which was 2.0% less than the certified value (4.077 kBq). For Si/P-32 the determined activity was 2.102 kBq, which was 6.6% larger than the certified activity (1.971 kBq). The activity of the Sr/Y-90 test source was determined to be 4.166 kBq, while the apparent activity reported by KAERI was 5.803 kBq. This large difference might be due to evaporation and diffusion of the source liquid during preparation and uncertainty in the amount of weighed aliquot of source liquid. The overall uncertainty involved in this method was determined to be 7.3%. We demonstrated that the activity of a sealed pure beta-source could be conveniently determined by complementary combination of measuring the surface dose rate and Monte Carlo simulations.

  1. 44 CFR 61.7 - Risk premium rate determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Risk premium rate... COVERAGE AND RATES § 61.7 Risk premium rate determinations. (a) Pursuant to section 1307 of the Act, the... estimate the risk premium rates necessary to provide flood insurance in accordance with accepted...

  2. 44 CFR 61.7 - Risk premium rate determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Risk premium rate... COVERAGE AND RATES § 61.7 Risk premium rate determinations. (a) Pursuant to section 1307 of the Act, the... estimate the risk premium rates necessary to provide flood insurance in accordance with accepted...

  3. 44 CFR 61.7 - Risk premium rate determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Risk premium rate... COVERAGE AND RATES § 61.7 Risk premium rate determinations. (a) Pursuant to section 1307 of the Act, the... estimate the risk premium rates necessary to provide flood insurance in accordance with accepted...

  4. 44 CFR 61.7 - Risk premium rate determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Risk premium rate... COVERAGE AND RATES § 61.7 Risk premium rate determinations. (a) Pursuant to section 1307 of the Act, the... estimate the risk premium rates necessary to provide flood insurance in accordance with accepted...

  5. Rates of Change in Naturalistic Psychotherapy: Contrasting Dose-Effect and Good-Enough Level Models of Change

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Berkeljon, Arjan; Atkins, David C.; Olsen, Joseph A.; Nielsen, Stevan L.

    2009-01-01

    Most research on the dose-effect model of change has combined data across patients who vary in their total dose of treatment and has implicitly assumed that the rate of change during therapy is constant across doses. In contrast, the good-enough level model predicts that rate of change will be related to total dose of therapy. In this study, the…

  6. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  7. 12 CFR 1026.22 - Determination of annual percentage rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (REGULATION Z) Closed-End Credit § 1026.22 Determination of annual percentage rate. (a) Accuracy of annual.... (1) The Regulation Z Annual Percentage Rate Tables produced by the Bureau may be used to...

  8. 12 CFR 1026.22 - Determination of annual percentage rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (REGULATION Z) Closed-End Credit § 1026.22 Determination of annual percentage rate. (a) Accuracy of annual.... (1) The Regulation Z Annual Percentage Rate Tables produced by the Bureau may be used to...

  9. 12 CFR 1026.22 - Determination of annual percentage rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (REGULATION Z) Closed-End Credit § 1026.22 Determination of annual percentage rate. (a) Accuracy of annual.... (1) The Regulation Z Annual Percentage Rate Tables produced by the Bureau may be used to...

  10. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  11. Effect of Radiocesium Transfer on Ambient Dose Rate in Forest Environment

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Hisadome, Keigo; Kawamori, Ayumi

    2014-05-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Daiichi nuclear power plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (beech with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). In decreasing order of total Cs-137 deposition from the canopy to forest floor were the mature cedar stand, the young cedar stand, and the broad-leaved forest. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied by forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rates at the canopy (approx. 10 m-) decreased earlier than physical attenuation of radiocesium, whereas those at the forest floor varied among three forest stands. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor.

  12. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    SciTech Connect

    DiCello, D.C.; Odell, A.D.; Jackson, T.J.

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  13. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  14. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  15. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGESBeta

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  16. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  17. A coupled deterministic/stochastic method for computing neutron capture therapy dose rates

    NASA Astrophysics Data System (ADS)

    Hubbard, Thomas Richard

    new method was validated by comparing results to experimental measurements and benchmark data in a series of test cases chosen to demonstrate the strengths and weaknesses of the method. Experimental cases included the SAINT gold foil irradiations at the UVAR and detailed phantom dosimetry measurements at the Brookhaven Medical Research Reactor (BMRR). Results of the validation studies showed that the method provides values that are, in most cases, within one fractional standard deviation (FSD) of accepted experimental and benchmark values. A sample brain tumor treatment case was modeled for the conceptual UVAR NCT facility in order to determine the effect of body orientation, size, position, and shielding on the neutron dose rate at a variety of body parts. Ssb{n} "ray effects" were apparent and caused inaccuracies toward the back of the coupling surface; these can be avoided. The method provides treatment planners the ability to calculate dose rates throughout a patient's body and in the treatment room for various treatment configurations in order to minimize the dose to healthy tissue. The thermal neutrons provide the major contribution to neutron dose, but their effect can be minimized by applying localized shielding and by orienting the patient in order to maximize self-shielding. The method may also be used for facility design studies, and such studies of the UVAR have confirmed its suitability as an NCT facility.

  18. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  19. Determining radiation dose to residents of radiation-contaminated buildings

    SciTech Connect

    Lee, J.J.S.; Wu, T.H.; Chong, N.S.; Dong, S.L.

    1999-08-01

    There are more than one thousand residents who lived in about 140 radiation-contaminated buildings and received the assessed radiation dose equivalent over 5 mSv/year. In this paper, a systematic approach to dose reconstruction is proposed for evaluating radiation dose equivalent to the residents. The approach includes area survey and exposure measurement, source identification and energy spectrum analysis, special designed TLD-embedded badges for residents to wear and organ dose estimation with Rando phantom simulation. From the study, it is concluded that the ionization chamber should still be considered as the primary modality for external dose measurement. However, lacking of accurate daily activity patterns of the residents, the dose equivalent estimation with the chamber measurements would be somehow overestimated. The encountered limitation could be compensated with the use of the TLD badges and Rando phantom simulation that could also provide more information for internal organ dose equivalent estimations. As the radiation patterns in the buildings are highly anisotropic, which strongly depends on the differences of structural and indoor layouts, it demands a mathematical model dealing with the above concerns. Also, further collaborations with studies on biological markers of the residents would make the entire dose equivalent estimation more helpful and reliable.

  20. 12 CFR 226.22 - Determination of annual percentage rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RESERVE SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Closed-End Credit § 226.22 Determination of.... (1) The Regulation Z Annual Percentage Rate Tables produced by the Board may be used to determine...

  1. Development and testing of gallium arsenide photoconductive detectors for ultra-fast, high dose rate electron and photon radiation measurements

    NASA Astrophysics Data System (ADS)

    Kharashvili, George

    Real time radiation dose measurements often present a challenge in high dose rate environments, like those needed for testing survivability of electronic devices or biological agents. Dosimetry needs at particle accelerator facilities require development of devices with fast (tens of picoseconds or less) response to pulsed radiation, linear response over a wide range of dose rates (up to 1011 Gy/s), high resistance to radiation damage, and successful operation in mixed gamma and neutron environments. Gallium arsenide photoconductive detectors (GaAs PCDs) have been shown to exhibit many of these desirable characteristics, especially the fast time response, when neutron irradiation is used to introduce displacement damage in the crystalline lattice of GaAs, hence improving the time response characteristics of the devices at the expense of their sensitivity. The objective of this project was to develop and test GaAs PCDs for ultra fast, high dose rate electron and bremsstrahlung radiation measurements. Effects of neutron pre-irradiation and detector size on the PCD properties were also investigated. GaAs PCDs with three different neutron irradiation levels (0, ˜1014, and 5 x 1015 n/cm 2 (1-MeV equivalent in GaAs) were fabricated. The devices were tested with 7, 20 and 38-MeV electron pulses produced by linear accelerators operating at the L-band frequency of 1.3-GHz and the S-band frequency of 2.8-GHz. In addition, detector responses at high dose rates were tested with 33-ns wide, 7-MeV maximum energy bremsstrahlung pulses produced by a pulse-power accelerator. The time response characteristics and the dose-rate ranges of application of the GaAs PCDs were determined. Several operational issues were identified. Recommendations on how to improve the PCD fabrication procedure and diagnostic capabilities for the high intensity radiation research are also discussed.

  2. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  3. Determination of radionuclides and pathways contributing to cumulative dose

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  4. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  5. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Astrophysics Data System (ADS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-10-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  6. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy

    SciTech Connect

    Niu Hongquan; Hsi, Wen C.; Chu, James C.H.; Kirk, Michael C.; Kouwenhoven, Erik

    2004-12-01

    The nucletron Leipzig applicator is designed for (HDR) {sup 192}Ir brachy radiotherapy of surface lesions. The dosimetric characteristics of this applicator were investigated using simulation method based on Monte Carlo N-particle (MCNP) code and phantom measurements. The simulation method was validated by comparing calculated dose rate distributions of nucletron microSelectron HDR {sup 192}Ir source against published data. Radiochromic films and metal-oxide-semiconductor field-effect transistor (MOSFET) detectors were used for phantom measurements. The double exposure technique, correcting the nonuniform film sensitivity, was applied in the film dosimetry. The linear fit of multiple readings with different irradiation times performed for each MOSFET detector measurement was used to obtain the dose rate of each measurement and to correct the source transit-time error. The film and MOSFET measurements have uncertainties of 3%-7% and 3%-5%, respectively. The dose rate distributions of the Leipzig applicator with 30 mm opening calculated by the validated MC method were verified by measurements of film and MOSFET detectors. Calculated two-dimensional planar dose rate distributions show similar patterns as the film measurement. MC calculated dose rate at a reference point defined at depth 5 mm on the applicator's central axis is 7% lower than the film and 3% higher than the MOSFET measurements. The dose rate of a Leipzig applicator with 30 mm opening at reference point is 0.241{+-}3% cGy h{sup -1} U{sup -1}. The MC calculated depth dose rates and profiles were tabulated for clinic use.

  7. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  8. Radiobiological effects of altering dose rate in filter-free photon beams.

    PubMed

    Karan, T; Moiseenko, V; Gill, B; Horwood, R; Kyle, A; Minchinton, A I

    2013-02-21

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication. PMID:23363688

  9. Radiobiological effects of altering dose rate in filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Karan, T.; Moiseenko, V.; Gill, B.; Horwood, R.; Kyle, A.; Minchinton, A. I.

    2013-02-01

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication.

  10. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  11. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  12. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  13. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    PubMed

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively. PMID:11543145

  14. Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Mickle, R.

    1975-01-01

    A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

  15. 47 CFR 54.605 - Determining the urban rate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Determining the urban rate. 54.605 Section 54... Determining the urban rate. (a) If a rural health care provider requests support for an eligible service to be... equal to the “standard urban distance,” as defined in paragraph (c) of this section, for the state...

  16. 47 CFR 54.605 - Determining the urban rate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Determining the urban rate. 54.605 Section 54... Determining the urban rate. (a) If a rural health care provider requests support for an eligible service to be... equal to the “standard urban distance,” as defined in paragraph (c) of this section, for the state...

  17. 47 CFR 54.605 - Determining the urban rate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Determining the urban rate. 54.605 Section 54...) UNIVERSAL SERVICE Universal Service Support for Health Care Providers § 54.605 Determining the urban rate... is less than or equal to the “standard urban distance,” as defined in paragraph (c) of this...

  18. 12 CFR 1026.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Determination of annual percentage rate. 1026.14 Section 1026.14 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Open-End Credit § 1026.14 Determination of annual percentage rate. (a) General rule. The...

  19. 12 CFR 1026.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 9 2014-01-01 2014-01-01 false Determination of annual percentage rate. 1026.14 Section 1026.14 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Open-End Credit § 1026.14 Determination of annual percentage rate. (a) General rule. The...

  20. 12 CFR 1026.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Determination of annual percentage rate. 1026.14 Section 1026.14 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Open-End Credit § 1026.14 Determination of annual percentage rate. (a) General rule. The...

  1. 5 CFR 531.604 - Determining an employee's locality rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Determining an employee's locality rate. 531.604 Section 531.604 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER THE GENERAL SCHEDULE Locality-Based Comparability Payments § 531.604 Determining an employee's locality rate. (a) An annual...

  2. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  3. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, Philip Lon; Sterbentz, James William

    2001-04-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements’ burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element’s reported burnup or provide a burnup estimate for an element with an unknown burnup.

  4. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, P.L.; Sterbentz, J.W.

    2002-07-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  5. Determination of radionuclides and pathways contributing to dose in 1945

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 003) examined the contributions of numerous radionuclides to dose via environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk (calculation 001). Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1, as described in Calculation 001.

  6. Safety Aspects of Pulsed Dose Rate Brachytherapy: Analysis of Errors in 1,300 Treatment Sessions

    SciTech Connect

    Koedooder, Kees Wieringen, Niek van; Grient, Hans N.B. van der; Herten, Yvonne R.J. van; Pieters, Bradley R.; Blank, Leo

    2008-03-01

    Purpose: To determine the safety of pulsed-dose-rate (PDR) brachytherapy by analyzing errors and technical failures during treatment. Methods and Materials: More than 1,300 patients underwent treatment with PDR brachytherapy, using five PDR remote afterloaders. Most patients were treated with consecutive pulse schemes, also outside regular office hours. Tumors were located in the breast, esophagus, prostate, bladder, gynecology, anus/rectum, orbit, head/neck, with a miscellaneous group of small numbers, such as the lip, nose, and bile duct. Errors and technical failures were analyzed for 1,300 treatment sessions, for which nearly 20,000 pulses were delivered. For each tumor localization, the number and type of occurring errors were determined, as were which localizations were more error prone than others. Results: By routinely using the built-in dummy check source, only 0.2% of all pulses showed an error during the phase of the pulse when the active source was outside the afterloader. Localizations treated using flexible catheters had greater error frequencies than those treated with straight needles or rigid applicators. Disturbed pulse frequencies were in the range of 0.6% for the anus/rectum on a classic version 1 afterloader to 14.9% for orbital tumors using a version 2 afterloader. Exceeding the planned overall treatment time by >10% was observed in only 1% of all treatments. Patients received their dose as originally planned in 98% of all treatments. Conclusions: According to the experience in our institute with 1,300 PDR treatments, we found that PDR is a safe brachytherapy treatment modality, both during and outside of office hours.

  7. Measured dose rate constant from oncology patients administered 18F for positron emission tomography

    SciTech Connect

    Quinn, Brian; Holahan, Brian; Aime, Jean; Humm, John; St Germain, Jean; Dauer, Lawrence T.

    2012-10-15

    Purpose: Patient exposure rate measurements verify published patient dose rate data and characterize dose rates near 2-18-fluorodeoxyglucose ({sup 18}F-FDG) patients. A specific dose rate constant based on patient exposure rate measurements is a convenient quantity that can be applied to the desired distance, injection activity, and time postinjection to obtain an accurate calculation of cumulative external radiation dose. This study reports exposure rates measured at various locations near positron emission tomography (PET) {sup 18}F-FDG patients prior to PET scanning. These measurements are normalized for the amount of administered activity, measurement distance, and time postinjection and are compared with other published data. Methods: Exposure rates were measured using a calibrated ionization chamber at various body locations from 152 adult oncology patients postvoid after a mean uptake time of 76 min following injection with a mean activity of 490 MBq {sup 18}F-FDG. Data were obtained at nine measurement locations for each patient: three near the head, four near the chest, and two near the feet. Results: On contact with, 30 cm superior to and 30 cm lateral to the head, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.482 (0.511), 0.135 (0.155), and 0.193 (0.223) {mu}Sv/MBq h, respectively. On contact with, 30 cm anterior to, 30 cm lateral to and 1 m anterior to the chest, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.623 (0.709), 0.254 (0.283), 0.190 (0.218), and 0.067 (0.081) {mu}Sv/MBq h respectively. 30 cm inferior and 30 cm lateral to the feet, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.024 (0.022) and 0.039 (0.044) {mu}Sv/MBq h, respectively. Conclusions: The measurements for this study support the use of 0.092 {mu}Sv m{sup 2}/MBq h as a reasonable representation of the dose rate anterior from the chest of

  8. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  9. 7 CFR 1714.5 - Determination of interest rates on municipal rate loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rates in effect for all funds advanced on municipal rate loans during the calendar quarter and all... Administration (FmHA) at 7 CFR 1942.17(f) (1) and (4). Pursuant to the FmHA rule, the interest rates are set... 7 Agriculture 11 2011-01-01 2011-01-01 false Determination of interest rates on municipal...

  10. Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Russo, James K.; Armeson, Kent E.; Richardson, Susan

    2012-05-01

    Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address

  11. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer*

    PubMed Central

    Pellizzon, Antônio Cássio Assis

    2016-01-01

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. PMID:27403021

  12. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-01-01

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional func-tion is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference toler-ance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty func-tion, then, may

  13. Inferring the determinants of protein evolutionary rates in mammals.

    PubMed

    Zou, Yang; Shao, Xiaojian; Dong, Dong

    2016-06-15

    Understanding the determinants of protein evolutionary rates is one of the most fundamental evolutionary questions. Previous studies have revealed that many biological variables are tightly associated with protein evolutionary rates in mammals. However, the dominant role of these biological variables and their combinatorial effects to evolutionary rates of mammalian proteins are still less understood. In this work, we derived a quantitative model to correlate protein evolutionary rates with the levels of these variables. The result showed that only a small number of variables are necessary to accurately predict protein evolutionary rates, among which miRNA regulation plays the most important role. Our result suggested that biological variables are extensively interrelated and suffer from hidden redundancies in determining protein evolutionary rates. Various variables should be considered in a natural ensemble to comprehensively assess the determinants of protein evolutionary rate. PMID:26899866

  14. Calibration of 192Ir high dose rate brachytherapy source using different calibration procedures

    PubMed Central

    Bondel, Shwetha; Ravikumar, Manickham; Supe, Sanjay Sudhakar; Reddy, Buchuppudi Rekha

    2013-01-01

    Aim To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations. Background The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies. Materials and methods The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations. Results The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively. Conclusion Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes. PMID:24944818

  15. RECOVERY OF A TRITIATED LANA SAMPLE FOR DOSE CONVERSION FACTOR DETERMINATION

    SciTech Connect

    Staack, G.

    2010-11-12

    The purpose of this work is to develop a technical basis for both estimating the dose of a worker exposed to respirable tritiated LaNi{sub 4.25}Al{sub 0.75} (LANA) and implementing hazard appropriate controls. Savannah River National Laboratory (SRNL) has agreed to provide Lovelace Respiratory Research Institute (LRRI) with a tritiated LANA sample. LRRI will determine the particle size distribution (PSD) as well as perform dissolution rate studies on the sample in serum ultrafiltrate (SUF), a simulated lung fluid. The rate of tritium release from the sample will be measured over a three month period. Tritium release rate information will be used to calculate a DCF for respirable tritiated LANA.

  16. Bladder (ICRU) dose point does not predict urinary acute toxicity in adjuvant isolated vaginal vault high-dose-rate brachytherapy for intermediate-risk endometrial cancer

    PubMed Central

    Aiza, Antonio; Gomes, Maria José Leite; Chen, Michael Jenwei; Pellizzon, Antonio Cassio de Assis; Mansur, David B.; Baiocchi, Glauco

    2015-01-01

    Purpose High-dose-rate brachytherapy (HDR-BT) alone is an adjuvant treatment option for stage I intermediaterisk endometrial cancer after complete surgical resection. The aim of this study was to determine the value of the dose reported to ICRU bladder point in predicting acute urinary toxicity. Oncologic results are also presented. Material and methods One hundred twenty-six patients were treated with postoperative HDR-BT 24 Gy (4 × 6 Gy) per ICRU guidelines for dose reporting. Cox analysis was used to identify variables that affected local control. The mean bladder point dose was examined for its ability to predict acute urinary toxicity. Results Two patients (1.6%) developed grade 1 gastrointestinal toxicity and 12 patients (9.5%) developed grades 1-2 urinary toxicity. No grade 3 or greater toxicity was observed. The mean bladder point dose was 46.9% (11.256 Gy) and 49.8% (11.952 Gy) for the asymptomatic and symptomatic groups, respectively (p = 0.69). After a median follow-up of 36.8 months, the 3-year local failure and 5-year cancer-specific and overall survival rates were 2.1%, 100%, and 94.6%, respectively. No pelvic failure was seen in this cohort. Age over 60 years (p = 0.48), lymphatic invasion (p = 0.77), FIGO histological grade (p = 0.76), isthmus invasion (p = 0.68), and applicator type (cylinder × ovoid) (p = 0.82) did not significantly affect local control. Conclusions In this retrospective study, ICRU bladder point did not correlate with urinary toxicity. Four fractions of 6 Gy HDR-BT effected satisfactory local control, with acceptable urinary and gastrointestinal toxicity. PMID:26622241

  17. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  18. Efficacy of a Low Dose of Estrogen on Antioxidant Defenses and Heart Rate Variability

    PubMed Central

    Casali, Karina Rabello; Baraldi, Dhãniel; Conzatti, Adriana; Araújo, Alex Sander da Rosa; Khaper, Neelam; Llesuy, Susana; Rigatto, Katya; Belló-Klein, Adriane

    2014-01-01

    This study tested whether a low dose (40% less than the pharmacological dose of 17-β estradiol) would be as effective as the pharmacological dose to improve cardiovascular parameters and decrease cardiac oxidative stress. Female Wistar rats (n = 9/group) were divided in three groups: (1) ovariectomized (Ovx), (2) ovariectomized animals treated for 21 days with low dose (LE; 0.2 mg), and (3) high dose (HE; 0.5 mg) 17-β estradiol subcutaneously. Hemodynamic assessment and spectral analysis for evaluation of autonomic nervous system regulation were performed. Myocardial superoxide dismutase (SOD) and catalase (CAT) activities, redox ratio (GSH/GSSG), total radical-trapping antioxidant potential (TRAP), hydrogen peroxide, and superoxide anion concentrations were measured. HE and LE groups exhibited an improvement in hemodynamic function and heart rate variability. These changes were associated with an increase in the TRAP, GSH/GSSG, SOD, and CAT. A decrease in hydrogen peroxide and superoxide anion was also observed in the treated estrogen groups as compared to the Ovx group. Our results indicate that a low dose of estrogen is just as effective as a high dose into promoting cardiovascular function and reducing oxidative stress, thereby supporting the approach of using low dose of estrogen in clinical settings to minimize the risks associated with estrogen therapy. PMID:24738017

  19. Determining organ doses from computed tomography scanners using cadaveric subjects

    NASA Astrophysics Data System (ADS)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  20. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  1. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  2. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  3. [Measurement of the Dose Rate Using Dosimeters in Interventional Radiology and Its Difficulty].

    PubMed

    Yoshida, Hidenori; Takahashi, Chiharu; Narita, Nobuhiro; Mizusawa, Yasuhiko; Sekiya, Masaru; Ohkubo, Masaki

    2016-01-01

    In equipment used for interventional radiology (IVR), automatic exposure control (AEC) is incorporated to obtain the X-ray output suitable for the treatment of targeted lesions. For the AEC, users select a region as the signal sensing region (measuring field, MF) in the flat panel detector; MFs with various sizes and shapes were pre-defined and prepared in the system. The aim of this study was to examine the change of measured dose rate with the selection of MFs, the type of dosimeters (the ionization chamber dosimeter and the semiconductor dosimeter), and the dosimeter placement relative to the direction of X-ray tube (from cathode to anode). The IVR equipment was Allura Xper FD20/10 (Philips Medical Systems), and six kinds of built-in MFs were used. It was found that dose rate measured by the ionization chamber dosimeter showed a variation of -2 mGy/min with the MFs and the ionization chamber dosimeter placement. The dose rate measured by the semiconductor dosimeter showed more variation than the ionization chamber dosimeter. The change of dose rate with the dosimeter placement would be caused by the MF overlapping the dosimeter which would affect the AEC (the X-ray output). Also, the change of dose rate with the dosimeter placement was considered to be related to the heel effect of the X-ray beam. When performing dose rate measurements, we should notice that the selection of MFs, the type of dosimeters, and the dosimeter placement would affect the measured values. PMID:26796935

  4. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    SciTech Connect

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A.

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was considerable scatter in the gamma passing rate

  5. Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Lin, M. H.; Dai, X. F.; Koren, Sion; Klayton, T.; Wang, L.; Li, J. S.; Chen, L.; Price, R. A.

    2012-07-01

    There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min-1. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR

  6. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    SciTech Connect

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

  7. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    SciTech Connect

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  8. ANALYSIS OF DOSE RATES DURING REPLACEMENT OF MANIPULATORS IN THE FFTF INTERIM EXAMINATION & MAINTENANCE (IEM) CELL

    SciTech Connect

    NELSON, J.V.

    2002-01-23

    Replacement of a master-slave manipulator in the Interim Examination and Maintenance Cell at the Fast Flux Test Facility was carried out in August 2001. This operation created a 178-mm opening in the thick concrete wall of the hot cell. To aid in radiological work planning, dose rates outside the penetration in the wall were predicted using MCNP{trademark} photon transport calculations. The predicted dose rate was 7.7 mrem/h, which was reasonably close to the value of 10.4 mrem/h inferred from measurements.

  9. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  10. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  11. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230

  12. Dose-rate and irradiation temperature dependence of BJT SPICE model rad-parameters

    SciTech Connect

    Montagner, X.; Briand, R.; Fouillat, P.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1998-06-01

    A method to predict low dose rate degradation of bipolar transistors using high dose-rate, high temperature irradiation is evaluated, based on an analysis of four new rad-parameters that are introduced in the BJT SPICE model. This improved BJT model describes the radiation-induced excess base current with great accuracy. The low-level values of the rad-parameters are good tools for evaluating the proposed high-temperature test method because of their high sensitivity to radiation-induced degradation.

  13. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  14. A Monte Carlo evaluation for effects of probable dimensional uncertainties of low dose rate brachytherapy seeds on dose

    PubMed Central

    Camgöz, Berkay; Kumru, Mehmet N.

    2014-01-01

    The aim of this study is to determine effects of size deviations of brachytherapy seeds on two dimensional dose distributions around the seed. Although many uncertainties are well known, the uncertainties which stem from geometric features of radiation sources are weakly considered and predicted. Neither TG-43 report which is not completely in common consensus, nor individual scientific MC and experimental studies include sufficient data for geometric uncertainties. Sizes of seed and its components can vary in a manufacturing deviation. This causes geometrical uncertainties, too. In this study, three seeds which have different geometrical properties were modeled using EGSnrc-Code Packages. Seeds were designed with all their details using the geometry package. 5% deviations of seed sizes were assumed. Modified seeds were derived from original seed by changing sizes by 5%. Normalizations of doses which were calculated from three kinds of brachytherapy seed and their derivations were found to be about 3%–20%. It was shown that manufacturing differences of brachytherapy seed cause considerable changes in dose distribution. PMID:25184054

  15. Poster — Thur Eve — 27: Flattening Filter Free VMAT Quality Assurance: Dose Rate Considerations for Detector Response

    SciTech Connect

    Viel, Francis; Duzenli, Cheryl; Camborde, Marie-Laure; Strgar, Vincent; Horwood, Ron; Atwal, Parmveer; Gete, Ermias; Karan, Tania

    2014-08-15

    Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data and a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.

  16. Statistical variability and confidence intervals for planar dose QA pass rates

    SciTech Connect

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B.

    2011-11-15

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization

  17. Anatomy-Based Inverse Planning Simulated Annealing Optimization in High-Dose-Rate Prostate Brachytherapy: Significant Dosimetric Advantage Over Other Optimization Techniques

    SciTech Connect

    Jacob, Dayee Raben, Adam; Sarkar, Abhirup; Grimm, Jimm; Simpson, Larry

    2008-11-01

    Purpose: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk. Method and Materials: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Plato Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V{sub 75%}) for the rectum and bladder, volume receiving at least 125% of the dose (V{sub 125%}) for the urethra, and total volume receiving the reference dose (V{sub 100%}) and volume receiving 150% of the dose (V{sub 150%}) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared. Results: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization. Conclusions: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.

  18. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... standards for protection against radiation in effect prior to January 1, 1994. ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual...

  19. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... standards for protection against radiation in effect prior to January 1, 1994. ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual...

  20. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this

  1. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  2. Assessment of natural radioactivity levels and associated dose rates in soil samples from Northern Rajasthan, India.

    PubMed

    Duggal, Vikas; Rani, Asha; Mehra, Rohit; Ramola, R C

    2014-01-01

    The analysis of naturally occurring radionuclides ((226)Ra, (232)Th and (40)K) has been carried out in 40 soil samples collected from four districts of the Northern Rajasthan, India using gamma-ray spectrometry with an NaI(Tl) detector. The activity concentrations of the samples range from 38±9 to 65±11 Bq kg(-1) with a mean value of 52 Bq kg(-1) for (226)Ra, from 8±8 to 32±9 Bq kg(-1) with a mean value of 19 Bq kg(-1) for (232)Th and from 929±185 to 1894±249 Bq kg(-1) with a mean value of 1627 Bq kg(-1) for (40)K. The measured activity concentration of (226)Ra and (40)K in soil was higher and for (232)Th was lower than the worldwide range. Radium equivalent activities were calculated for the soil samples to assess the radiation hazards arising due to the use of these soils in the construction of buildings. The calculated average radium equivalent activity was 205±20 Bq kg(-1), which is less than the recommended limit of 370 Bq kg(-1) by the Organization for Economic Cooperation and Development. The total absorbed dose rate calculated from the activity concentration of (226)Ra, (232)Th and (40)K ranges from 77 to 123 nGy h(-1) with an average value of 103 nGy h(-1). The mean external (Hex) and internal hazard indices (Hin) for the area under study were determined to be 0.55 and 0.69, respectively. The corresponding average annual effective dose was found to be 0.63 mSv. PMID:23943368

  3. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    SciTech Connect

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  4. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer.

    PubMed

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-01-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. PMID:23669454

  5. Solar particle dose rate buildup and distribution in critical body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Simonsen, L.C. ||

    1993-12-31

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  6. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  7. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  8. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  9. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis)

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Robinson, Laura F.; Hönisch, Bärbel

    2015-11-01

    Radiocarbon (14C) measurements are an important tool for determining growth rates of bamboo corals, a cosmopolitan group of calcitic deep-sea corals. Published growth rate estimates for bamboo corals are highly variable, with potential environmental or ecological drivers of this variability poorly constrained. Here we systematically investigate the application of 14C for growth rate determinations in bamboo corals using 55 14C dates on the calcite and organic fractions of six bamboo corals (identified as Keratoisis sp.) from the western North Atlantic Ocean. Calcite 14C measurements on the distal surface of these corals and five previously published bamboo corals exhibit a strong one-to-one relationship with the 14C of dissolved inorganic carbon (DI14C) in ambient seawater (r2=0.98), confirming the use of Keratoisis sp. calcite 14C as a proxy for seawater 14C activity. Radial growth rates determined from 14C age-depth regressions, 14C plateau tuning and bomb 14C reference chronologies range from 12 to 78 μm y-1, in general agreement with previously published radiometric growth rates. We document potential biases to 14C growth rate determinations resulting from water mass variability, bomb radiocarbon, secondary infilling (ontogeny), and growth rate nonlinearity. Radial growth rates for Keratoisis sp. specimens do not correlate with ambient temperature, suggesting that additional biological and/or environmental factors may influence bamboo coral growth rates.

  10. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  11. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  12. Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate

    PubMed Central

    Jaberi, Ramin; Sedaghat, Ahad; Azma, Zohreh; Nojomi, Marzieh; Falavarjani, Khalil Ghasemi; Nazari, Hossein

    2016-01-01

    Purpose To evaluate the outcomes of ruthenium-106 (106Ru) brachytherapy in terms of radiation parameters in patients with thick uveal melanomas. Material and methods Medical records of 51 patients with thick (thickness ≥ 7 mm and < 11 mm) uveal melanoma treated with 106Ru brachytherapy during a ten-year period were reviewed. Radiation parameters, tumor regression, best corrected visual acuity (BCVA), and treatment-related complications were assessed. Results Fifty one eyes of 51 consecutive patients including 25 men and 26 women with a mean age of 50.5 ± 15.2 years were enrolled. Patients were followed for 36.1 ± 26.5 months (mean ± SD). Mean radiation dose to tumor apex and to sclera were 71 (± 19.2) Gy and 1269 (± 168.2) Gy. Radiation dose rates to tumor apex and to sclera were 0.37 (± 0.14) Gy/h and 6.44 (± 1.50) Gy/h. Globe preservation was achieved in 82.4%. Preoperative mean tumor thickness of 8.1 (± 0.9) mm decreased to 4.5 (± 1.6) mm, 3.4 (± 1.4) mm, and 3.0 (± 1.46) mm at 12, 24, and 48 months after brachytherapy (p = 0.03). Four eyes that did not show regression after 6 months of brachytherapy were enucleated. Secondary enucleation was performed in 5 eyes because of tumor recurrence or neovascular glaucoma. Tumor recurrence was evident in 6 (11.8%) patients. Mean Log MAR (magnification requirement) visual acuity declined from 0.75 (± 0.63) to 0.94 (± 0.5) (p = 0.04). Best corrected visual acuity of 20/200 or worse was recorded in 37% of the patients at the time of diagnosis and 61.7% of the patients at last exam (p = 0.04). Non-proliferative and proliferative radiation-induced retinopathy was observed in 20 and 7 eyes. Conclusions Thick uveal melanomas are amenable to 106Ru brachytherapy with less than recommended apex radiation dose and dose rates. PMID:26985199

  13. Assessing resting heart rate in adolescents: determinants and correlates.

    PubMed

    Rabbia, F; Grosso, T; Cat Genova, G; Conterno, A; De Vito, B; Mulatero, P; Chiandussi, L; Veglio, F

    2002-05-01

    The aim of this study was to evaluate the distribution of resting heart rate and its biological and environmental determinants in adolescents. The study was cross- sectional and the population consisted of 2230 children and adolescents, age range 12-18 years, enrolled randomly from state schools in Turin, Italy. In all participants the following parameters were evaluated: heart rate, blood pressure (BP), weight, height, degree of sexual development, physical activity, parental socio-cultural level. Heart rate and BP were measured after 5, 10 and 15 min in a sitting position. Furthermore, to obtain regression equations to define heart rate as a function of the other variables available, a multiple regression analysis was performed. In both sexes BP, but not heart rate, declined significantly from the first to the last determination. Heart rate was positively and significantly correlated to BP level in both sexes; heart rate was higher in girls (3 bpm) and followed a progressive decreasing trend with age in both sexes, that was opposite to BP values. Age, sexual maturation, height, physical activity and parental socio-cultural level were independent determinants of resting heart rate. In conclusion, resting heart rate in adolescents is related to several methodological, constitutional and environmental factors that have to be taken into account when assessing heart rate values and constructing tables of normal values. PMID:12082493

  14. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  15. 12 CFR 226.22 - Determination of annual percentage rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Closed-End Credit § 226.22 Determination of annual... paragraph (a)(4) of this section. (b) Computation tools. (1) The Regulation Z Annual Percentage Rate...

  16. Effects of growth medium and fertilizer rate on the yield response of soybeans exposed to chronic doses of ozone

    SciTech Connect

    Heagle, A.S.; Letchworth, M.B.; Mitchell, C.A.

    1983-01-01

    The objectives were to determine whether wide variation in fertilizer rates or type of growth medium would affect the response of soybeans, Glycine max 'Davis' exposed to chronic doses of ozone (O/sub 3/) in open-top field chambers. Responses to O/sub 3/ were compared for plants grown in the ground or in pots containing an artificial growth medium. In 1977, the yield of plants grown in pots containing soil, sand, and a mixture of perlite, peat moss, and vermiculite was greater than that of plants grown in the ground; in 1978, the reverse was true. However, the percentage yeild loss caused by O/sub 3/ was not affected by the growth medium either year. Separate tests were made for potted plants that received different levels of fertilizer. At moderate fertilizer rates, the yield response to different doses of O/sub 3/ was not significantly affected by fertilizer rate for either year. In 1978, plants with no fertilizer added were severely stunted and even relatively high doses of O/sub 3/ did not further decrease yield. The results suggest that plant response to O/sub 3/ will be fairly uniform over a range of substrate types and fertilizer rates when edaphic conditions are adequate to insure normal plant growth. 17 references, 5 figures, 2 tables.

  17. SU-E-J-116: Uncertainties Associated with Dose Summation of High-Dose Rate Brachytherapy and Intensity Modulated Radiotherapy for Gynecological Cases

    SciTech Connect

    Kauweloa, K; Bergamo, A; Gutierrez, A; Stathakis, S; Papanikolaou, N; Kirby, N; Mavroidis, P

    2015-06-15

    Purpose: Determining the cumulative dose distribution (CDD) for gynecological patients treated with both high-dose rate (HDR) brachytherapy and intensity-modulated radiotherapy (IMRT) is challenging. The purpose of this work is to study the uncertainty of performing this with a structure-guided deformable (SGD) approach in Velocity. Methods: For SGD, the Hounsfield units inside specified contours are overridden to set uniform values. Deformable image registration (DIR) is the run on these process images, which forces the DIR to focus on these contour boundaries. 18 gynecological cancer patients were used in this study. The original bladder and rectum planning contours for these patients were used to drive the SGD. A second set of contours were made of the bladder by the same person with the intent of carefully making them completely consistent with each other. This second set was utilized to evaluate the spatial accuracy of the SGD. The determined spatial accuracy was then multiplied by the local dose gradient to determine a dose uncertainty associated with the SGD dose warping. The normal tissue complication probability (NTCP) was then calculated for each dose volume histogram (DVH) that included four different probabilistic uncertainties associated with the spatial errors (e.g., 68.3% and 95.4%). Results: The NTCPs for each DVH (e.g., NTCP-−95.4%, NTCP-−68.3%, NTCP-68.3%, NTCP-95.4%) differed amongst patients. All patients had an NTCP-−95.4% close to 0%, while NTCP-95.4% ranged from 0.67% to 100%. Nine patients had an NTCP-−95.4% less than 50% while the remaining nine patients had NTCP-95.4% greater than 50%. Conclusion: The uncertainty associated with this CDD technique renders a large NTCP uncertainty. Thus, it is currently not practical for clinical use. The two ways to improve this would be to use more precise contours to drive the SGD and to use a more accurate DIR algorithm.

  18. FEASIBILITY OF DOSE ADJUSTMENT BASED ON DIFFERENCE IN LONG-TERM CLEARANCE RATES OF INHALED PARTICULATE MATTER IN HUMANS AND LABORATORY ANIMALS

    EPA Science Inventory

    Long-term pulmonary clearance rates were evaluated for several laboratory animal species, dogs, and humans to determine if differences among species exist, and if so, the adequacy of the data for dose adjustment. Within each species, large variations in clearance rates were seen,...

  19. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    SciTech Connect

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S.; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L.

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  20. Correlation-study about the ambient dose rate and the weather conditions

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  1. Dose rate and beam profile measurement of proton beam using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  2. Saran-Chloropel plastic suit worker dose rates from airborne tritium exposure - first exposure hour

    SciTech Connect

    Edwards, T.

    1993-04-20

    Radiological Engineering was requested to develop Tritium Stay Time Chart dose rates for the 9 mil Saran-Chloropel (CPE) plastic suit for a period of one hour or less. Assumptions utilized in previous calculations were revised to better address the first hour of exposure in the suit for emergency situations.

  3. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented. PMID:24667385

  4. Dose dependent effect of GnRH analogue on pregnancy rate of repeat breeder crossbred cows.

    PubMed

    Kharche, S D; Srivastava, S K

    2007-05-01

    The aim of this study was to investigate the effect of treating repeat breeder dairy crossbred cows with different doses of GnRH analogue through i.m. at the time of artificial insemination, on pregnancy rates from their first service after treatment and overall pregnancy rates. One hundred and thirty seven crossbred dairy cows with a history of repeat breeding and eligible after 6-8 infertile services but clinically free of diseases were selected for the study. The animals were randomly divided into three groups. Group 1 (n = 55) cows were treated intramuscularly with each 20 microg Buserelin-acetate (Receptal, Hoechst Roussel Vet GmbH) at the time of artificial insemination. Group 2 (n = 40) cows were treated intramuscularly with each 10 microg Buserelin-acetate at the time of artificial insemination. Group 3 (n = 42) cows were treated intramuscularly with saline as control at the time of artificial insemination. The first service pregnancy rates in Groups 1-3 were 45, 25 and 17%, respectively. Similarly, the overall conception rates in Groups 1-3 were 87, 58 and 48%, respectively. The results indicated that the pregnancy rate in crossbred cows could be improved by the GnRH treatment. The higher dose of GnRH significantly increased (P < 0.05) the first service as well as overall pregnancy rate in a dose dependent manner in repeat breeder crossbred cow bred previously 6-8 times unsuccessfully. PMID:16787717

  5. Determinants of Graduation Rate of Public Alternative Schools

    ERIC Educational Resources Information Center

    Izumi, Masashi; Shen, Jianping; Xia, Jiangang

    2015-01-01

    In this study we investigated determinants of the graduation rate of public alternative schools by analyzing the most recent, nationally representative data from Schools and Staffing Survey 2007-2008. Based on the literature, we built a series of three regression models via successive block entry, predicting the graduate rate first by (a) student…

  6. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    SciTech Connect

    Rai, Bhavana; Patel, Firuza D.; Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh; Aprem, Abi Santhosh

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  7. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  8. A real-time in vivo dosimetric verification method for high-dose rate intracavitary brachytherapy of nasopharyngeal carcinoma

    SciTech Connect

    Qi Zhenyu; Deng Xiaowu; Cao Xinping; Huang Shaomin; Lerch, Michael; Rosenfeld, Anatoly

    2012-11-15

    Purpose: A real-time in vivo dosimetric verification method using metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters has been developed for patient dosimetry in high-dose rate (HDR) intracavitary brachytherapy of nasopharyngeal carcinoma (NPC). Methods: The necessary calibration and correction factors for MOSFET measurements in {sup 192}Iridium source were determined in a water phantom. With the detector placed inside a custom-made nasopharyngeal applicator, the actual dose delivered to the tumor was measured in vivo and compared to the calculated values using a commercial brachytherapy planning system. Results: Five MOSFETs were independently calibrated with the HDR source, yielding calibration factors of 0.48 {+-} 0.007 cGy/mV. The maximum sensitivity variation was no more than 7% in the clinically relevant distance range of 1-5 cm from the source. A total of 70 in vivo measurements in 11 NPC patients demonstrated good agreement with the treatment planning. The mean differences between the planned and the actually delivered dose within a single treatment fraction were -0.1%{+-} 3.8% and -0.1%{+-} 3.7%, respectively, for right and left side assessments. The maximum dose deviation was less than 8.5%. Conclusions: In vivo measurement using the real-time MOSFET dosimetry system is possible to evaluate the actual dose to the tumor received by the patient during a treatment fraction and thus can offer another line of security to detect and prevent large errors.

  9. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams.

    PubMed

    Kry, Stephen F; Popple, Richard; Molineu, Andrea; Followill, David S

    2012-01-01

    Ion recombination is approximately corrected for in the Task Group 51 protocol by Pion, which is calculated by a two-voltage measurement. This measurement approach may be a poor estimate of the true recombination, particularly if Pion is large (greater than 1.05). Concern exists that Pion in high-dose-per-pulse beams, such as flattening filter free (FFF) beams, may be unacceptably high, rendering the two-voltage measurement technique inappropriate. Therefore, Pion was measured for flattened beams of 6, 10, 15, and 18 MV and for FFF beams of 6 and 10 MV. The values for the FFF beams were verified with 1/V versus 1/Q curves (Jaffé plots). Pion was also measured for electron beams of 6, 12, 16, 18, and 20 MeV on a traditional accelerator, as well as on the high-dose-rate Varian TrueBeam accelerator. The measurements were made at a range of depths and with PTW, NEL, and Exradin Farmer-type chambers. Consistent with the increased dose per pulse, Pion was higher for FFF beams than for flattening filter beams. However, for all beams, measurement locations, and chambers examined, Pion never exceeded 1.018. Additionally, Pion was always within 0.3% of the recombination calculated from the Jaffé plots. We conclude that ion recombination can be adequately accounted for in high-dose-rate FFF beams using Pion determined with the standard two-voltage technique. PMID:23149774

  10. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  11. Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method

    SciTech Connect

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2015-01-01

    The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysis that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.

  12. Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method

    DOE PAGESBeta

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2015-01-01

    The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysismore » that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.« less

  13. Assessing the reproducibility of fractional rates of protein synthesis in muscle tissue measured using the flooding dose technique.

    PubMed

    McCarthy, Ian D; Brown, James

    2016-07-01

    The flooding dose technique of Garlick et al. (1980) has become the main method for measuring tissue and whole-animal rates of protein synthesis in ectotherms. However, single tissue samples are used to determine rates of protein synthesis and no studies have examined the pattern of flooding in large tissues such as the white muscle in fishes, which can comprise up to 55% of the wet body mass of a fish and which is poorly perfused. The present study has examined, for the first time, the patterns of flooding and measured rates of protein synthesis in five different regions of the white muscle in the Arctic charr Salvelinus alpinus ranging in size from 25g to 1.6kg following a flooding dose injection of L-[(3)H]-phenylalanine. The results indicate that the degree of flooding (i.e. free pool specific radioactivity relative to that of the injection solution) and elevation in free phenylalanine concentrations can vary between regions but the calculated fractional rates of protein synthesis were similar in four of the five regions studied. The variability in rates of protein synthesis increased with body size with greater variability observed between regions for fish >1kg in body mass. For consistency between studies, it is recommended that samples are taken from the epaxial muscle in the region below the dorsal fin when measuring fractional rates of white muscle synthesis in fishes. PMID:26970581

  14. Effect of Dose Rate on Residual γ-H2AX Levels and Frequency of Micronuclei in X-Irradiated Mouse Lymphocytes

    PubMed Central

    Turner, H. C.; Shuryak, I.; Taveras, M.; Bertucci, A.; Perrier, J. R.; Chen, C.; Elliston, C. D.; Johnson, G. W.; Smilenov, L. B.; Amundson, S. A.; Brenner, D. J.

    2015-01-01

    The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P < 0.05) were observed at doses ≤2.2 Gy, such that the acute dose γ-H2AX and TUNEL-positive cell yields were significantly larger than the equivalent LDR yields. At the 4.45 Gy dose there was no difference in γ-H2AX expression between the two dose rates, whereas there was a two- to threefold increase in apoptosis in the LDR samples compared to the equivalent 4.45 Gy acute dose. Micronuclei yields were measured at 24 h and 7 days using the in vitro cytokinesis-blocked micronucleus (CBMN) assay. The results showed that MNi yields increased up to 2.2 Gy with no further increase at 4.45 Gy and with no detectable dose-rate effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however

  15. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR.

    PubMed

    Hsu, F Y; Liu, M T; Tung, C J; Hsueh Liu, Y W; Chang, C C; Liu, H M; Chou, F I

    2009-07-01

    Tsing Hua open-pool reactor (THOR) at Tsing Hua University in Taiwan has been used to investigate the feasibility and to enhance the technology of boron neutron capture therapy (BNCT) for years. A rebuilt epithermal beam port for BNCT at THOR was finished in the summer of 2004, and then researches and experiments were performed to hasten the first clinical treatment case of BNCT in Taiwan in the near future. NCTPlan, a Monte Carlo-based clinical treatment planning code, was used to calculate the dose-rate distributions of BNCT in this work. A self-made Snyder head phantom with a servo-motor control system was irradiated in front of the THOR BNCT beam exit. The phantom was made from a 3mm shell of quartz wool impregnated with acrylic casting resin mounted on an acrylic base, and was filled with water. Gold foils (bare and cadmium-covered) and paired ion chambers (one with graphite wall and filled with CO(2) gas, another with A-150 plastic tissue equivalent wall and filled with tissue equivalent gas) were placed inside the Snyder phantom to measure and estimate the depth-dose distributions in the central axis of the beam. Dose components include the contribution of thermal neutrons, fast neutrons, photons and emitted alpha particles from (10)B(n,alpha)(7)Li reaction. Comparison and analysis between computed and measured results of depth-dose distributions were made in this work. Dose rate scaling factors (DRSFs) were defined as normalization factors derived individually for each dose component in the BNCT in-phantom radiation field that provide the best agreement between measured and computed data. This paper reports the in-phantom calculated and experimental dosimetry and the determined DRSFs used in NCTPlan code for the BNCT beam of THOR. PMID:19375926

  16. 12 CFR 226.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Determination of annual percentage rate. 226.14 Section 226.14 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Open-End Credit § 226.14 Determination...

  17. 12 CFR 226.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Determination of annual percentage rate. 226.14 Section 226.14 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Open-End Credit § 226.14 Determination...

  18. 12 CFR 226.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Determination of annual percentage rate. 226.14 Section 226.14 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Open-End Credit § 226.14 Determination of annual...

  19. 12 CFR 226.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Determination of annual percentage rate. 226.14 Section 226.14 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Open-End Credit § 226.14 Determination of annual...

  20. 12 CFR 226.14 - Determination of annual percentage rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Determination of annual percentage rate. 226.14 Section 226.14 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Open-End Credit § 226.14 Determination of annual...

  1. Determinants of interest rates on tax-exempt hospital bonds.

    PubMed

    Grossman, M; Goldman, F; Nesbitt, S W; Mobilia, P

    1993-12-01

    The aim of this paper is to examine the determinants of interest rates on tax-exempt hospital bonds. The results highlight the potential and actual roles of Federal and state policy in the determination of these rates. The shift to a Prospective Payment System under Medicare has subsidized the borrowing costs of some hospitals at the expense of others. The selection of underwriters by negotiation rather than by competitive bidding results in higher interest rates. The Federal tax act of 1986 raised the cost of hospital debt by encouraging bond issues to contain call features. PMID:10131753

  2. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    SciTech Connect

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  3. Chloroquine improves survival and hematopoietic recovery following lethal low dose- rate radiation

    PubMed Central

    Lim, Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang, Yonggang; Yu, Hsiang-Hsuan M; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose We have previously shown that the anti-malarial agent chloroquine can abrogate the lethal cellular effects of low dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials C57BL/6 mice were irradiated with total of 12.8 Gy delivered at 9.4 cGy/hr. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hrs and 4 hrs before irradiation. Bone marrow cells isolated from tibia, fibula and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retro orbital injection. Chimerism was assessed by flow cytometry. In vitro methyl cellulose colony forming assay of whole bone marrow cells as well as FACS analysis of lineage depleted cells was used to assess the effect of chloroquine on progenitor cells. Results Mice pretreated with chloroquine prior to radiation exhibited a significantly higher survival rate compared to mice treated with radiation alone (80 vs.31 percent, p=0.0026). Chloroquine administration prior to radiation did not impact the survival of ATM null mice (p=0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after the transplantation (4.2 percent vs. 0.4 percent, p=0.015). Conclusion Chloroquine administration prior to radiation had a significant effect on the survival of normal but not ATM null mice strongly suggesting that the in vivo effect like the in vitro effect is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the

  4. STUDIES OF ECHOVIRUS-12 IN VOLUNTEERS: DETERMINATION OF MINIMAL INFECTIOUS DOSE AND THE EFFECT OF PREVIOUS INFECTION ON INFECTIOUS DOSE

    EPA Science Inventory

    A two-part study of echovirus-12 was done in volunteers. In the first part the human infectious dose of the virus was determined in 149 healthy adults with undetectable serum antibody, each of whom drank 0-330,000 plaque-forming units (pfu) of virus in 100 ml of nonchlorinated wa...

  5. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control

  6. Attitude and Trajectory Determination using Magnetometers and Estimated Rates

    NASA Technical Reports Server (NTRS)

    Schierman, J. D.; Schmidt, D. K.; Deutschmann, J.

    1997-01-01

    A simultaneous attitude and orbit determination algorithm which uses magnetometer measurements and estimated attitude rates is presented. This is an extension of an algorithm which uses magnetometer and rate gyro measurements. The new algorithm is intended for gyroless spacecraft, or in the case of gyro failures/saturation. Torque control input data is used in forming the rate estimates. Simulation tests of the algorithm are presented. First, tests were performed using the 'true' rate values at each time step. This simulated using accurate gyro measurements. Then, tests were performed estimating the rates. Using estimated rates rather than 'gyro measurements' did not significantly degrade the algorithm's performance if accurate estimates of the initial rates were available. An initial Root-Sum-Square (RSS) position error of 1,400 km was reduced to an average error of approximately 100 km within the first two minutes. The RSS attitude error converged to less than 1.5 degrees within three orbits.

  7. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. PMID:27371916

  8. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  9. Benchmarking of Monte Carlo based shutdown dose rate calculations for applications to JET.

    PubMed

    Petrizzi, L; Batistoni, P; Fischer, U; Loughlin, M; Pereslavtsev, P; Villari, R

    2005-01-01

    The calculation of dose rates after shutdown is an important issue for operating nuclear reactors. A validated computational tool is needed for reliable dose rate calculations. In fusion reactors neutrons induce high levels of radioactivity and presumably high doses. The complex geometries of the devices require the use of sophisticated geometry modelling and computational tools for transport calculations. Simple rule of thumb laws do not always apply well. Two computational procedures have been developed recently and applied to fusion machines. Comparisons between the two methods showed some inherent discrepancies when applied to calculation for the ITER while good agreement was found for a 14 MeV point source neutron benchmark experiment. Further benchmarks were considered necessary to investigate in more detail the reasons for the different results in different cases. In this frame the application to the Joint European Torus JET machine has been considered as a useful benchmark exercise. In a first calculational benchmark with a representative D-T irradiation history of JET the two methods differed by no more than 25%. In another, more realistic benchmark exercise, which is the subject of this paper, the real irradiation history of D-T and D-D campaigns conducted at JET in 1997-98 were used to calculate the shut-down doses at different locations, irradiation and decay times. Experimental dose data recorded at JET for the same conditions offer the possibility to check the prediction capability of the calculations and thus show the applicability (and the constraints) of the procedures and data to the rather complex shutdown dose rate analysis of real fusion devices. Calculation results obtained by the two methods are reported below, comparison with experimental results give discrepancies ranging between 2 and 10. The reasons of that can be ascribed to the high uncertainty on the experimental data and the unsatisfactory JET model used in the calculation. A new

  10. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    PubMed

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. PMID:21113609

  11. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I

    SciTech Connect

    Sorbe, B.G.; Smeds, A.C. )

    1990-02-01

    A high dose rate ({sup 60}Co) afterloading technique was used for postoperative prophylactic vaginal irradiation in a series of 404 women with endometrial carcinoma Stage I. The total recurrence rate was 3.7% with 0.7% vaginal deposits. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrial infiltration (greater than 1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. Dose per fraction and the size of the target volume were highly significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening is closely related to the dose per fraction, length of the reference isodose, and the applicator diameter. The shape of the vaginal applicator versus the isodoses and the importance of the source train geometry and relative activity for dose gradient inhomogeneities within the target volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 for vaginal shrinkage effect and 2.0 for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data.

  12. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  13. The time variation of dose rate artificially increased by the Fukushima nuclear crisis

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Yamada, Masatoshi; Kashiwakura, Ikuo; Akiba, Suminori

    2011-01-01

    A car-borne survey for dose rate in air was carried out in March and April 2011 along an expressway passing northwest of the Fukushima Dai-ichi Nuclear Power Station which released radionuclides starting after the Great East Japan Earthquake on March 11, 2011, and in an area closer to the Fukushima NPS which is known to have been strongly affected. Dose rates along the expressway, i.e. relatively far from the power station were higher after than before March 11, in some places by several orders of magnitude, implying that there were some additional releases from Fukushima NPS. The maximum dose rate in air within the high level contamination area was 36 μGy h−1, and the estimated maximum cumulative external dose for evacuees who came from Namie Town to evacuation sites (e.g. Fukushima, Koriyama and Nihonmatsu Cities) was 68 mSv. The evacuation is justified from the viewpoint of radiation protection. PMID:22355606

  14. Extensive antibiotic prescription rate among hospitalized patients in Uganda: but with frequent missed-dose days

    PubMed Central

    Kiguba, Ronald; Karamagi, Charles; Bird, Sheila M.

    2016-01-01

    Objectives To describe the patterns of systemic antibiotic use and missed-dose days and detail the prescription, dispensing and administration of frequently used hospital-initiated antibiotics among Ugandan inpatients. Methods This was a prospective cohort of consented adult inpatients admitted on the medical and gynaecological wards of the 1790 bed Mulago National Referral Hospital. Results Overall, 79% (603/762; 95% CI: 76%–82%) of inpatients received at least one antibiotic during hospitalization while 39% (300/762; 95% CI: 36%–43%) had used at least one antibiotic in the 4 weeks pre-admission; 1985 antibiotic DDDs, half administered parenterally, were consumed in 3741 inpatient-days. Two-fifths of inpatients who received at least one of the five frequently used hospital-initiated antibiotics (ceftriaxone, metronidazole, ciprofloxacin, amoxicillin and azithromycin) missed at least one antibiotic dose-day (44%, 243/558). The per-day risk of missed antibiotic administration was greatest on day 1: ceftriaxone (36%, 143/398), metronidazole (27%, 67/245), ciprofloxacin (34%, 39/114) and all inpatients who missed at least one dose-day of prescribed amoxicillin and azithromycin. Most patients received fewer doses than were prescribed: ceftriaxone (74%, 273/371), ciprofloxacin (90%, 94/105) and metronidazole (97%, 222/230). Of prescribed doses, only 62% of ceftriaxone doses (1178/1895), 35% of ciprofloxacin doses (396/1130) and 27% of metronidazole doses (1043/3862) were administered. Seven percent (13/188) of patients on intravenous metronidazole and 6% (5/87) on intravenous ciprofloxacin switched to oral route. Conclusions High rates of antibiotic use both pre-admission and during hospitalization were observed, with low parenteral/oral switch of hospital-initiated antibiotics. Underadministration of prescribed antibiotics was common, especially on the day of prescription, risking loss of efficacy and antibiotic resistance. PMID:26945712

  15. Field and model investigations of external gamma dose rates along the Cumbrian coast, NW England.

    PubMed

    McDonald, P; Bryan, S E; Hunt, G J; Baldwin, M; Parker, T G

    2005-03-01

    A survey of the contribution to external dose from gamma rays originating from intertidal sediments in the vicinity of the British Nuclear Group Sellafield site showed that the major anthropogenic contributions were due to (137)Cs and (60)Co. At some sites, traces of other anthropogenic radionuclides were detected, namely (106)Ru, (125)Sb, and (154)Eu. The proportions of fine grained material (<63 microm) were used to improve model predictions of dose contribution due to external exposure to gamma rays, using the CUMBRIA77/DOSE77 model. Model dose predictions were compared to those directly measured in the field. Using the new proportions of fine grained material (1-17.5%) in conjunction with field gamma-ray spectra, model predictions were improved considerably for most sites. Exceptions were at Drigg Barn Scar and Whitehaven Coal Sands sites, which had their own unique characteristics. The highest (60)Co activity concentrations in this study were detected at Drigg Barn Scar. These relatively high activity concentrations of (60)Co were due to the presence of (60)Co in mussels and barnacles, hence upsetting the fine sediment relationships used in previous dose calculations. Whitehaven Coal Sands was unusual in that it contained higher levels of radionuclides than would be expected in sandy sediment. The mineralogy of these sediments was the controlling factor on (137)Cs binding, rather than the proportion of fine grained material. By adjusting the effective fine grained sediment proportions for calculations involving (60)Co and (137)Cs at Drigg Barn Scar and Whitehaven Coal Sands respectively, the CUMBRIA77/DOSE77 model predictions could be improved upon significantly for these sites. This work highlights the influence of particle size and sediment composition on external dose rate calculations, as well as the potential for external dose contributions from biota. PMID:15798279

  16. Correlation of External Exposure and Dose Equivalent Rates with Uranium Surface Contamination

    SciTech Connect

    Ashley, J.C.; Bogard, J.S.; Brown, K.S.; England, C.A.; Hamm, R.N.; Turner, J.E.

    1999-06-01

    This report provides both calculated estimates and measured values of exposure in air and tissue dose from external penetrating radiation at a distance of 1 m from uranium contamination on surfaces at the Oak Ridge Y-12 Plant, in support of the Y-12 Site Radiological Characterization Study. Calculated values are based on the total energy from gamma rays and X rays emitted by uranium and its shordaughters at secular equilibrium. Results of a small number of measurements are provided for comparison. Dose rate values derived here are limited to those of external penetrating radiation from distributed sources with limited surface area and from point sources.

  17. Total-body irradiation and cataract incidence: A randomized comparison of two instantaneous dose rates

    SciTech Connect

    Ozsahin, M.; Belkacemi, Y.; Pene, F.; Dominique, C.; Schwartz, L.H.; Uzal, C.; Lefkopoulos, D.; Gindrey-Vie, B.; Vitu-Loas, L.; Touboul, E. )

    1994-01-15

    To assess the influence of instantaneous total-body irradiation dose rate in hematological malignancies, the authors randomized 157 patients according to different instantaneous dose rates. Patients have undergone a total-body irradiation before bone-marrow transplantation according to two different techniques: Either in one fraction (1000 cGy given to the midplane at the level of L4, and 800 cGy to the lungs) or in six fractions (1200 cGy over 3 consecutive days to the midplane at the level of L4, and 900 cGy to the lungs). Patients were randomized according to two instantaneous dose rates, called LOW and HIGH, in single-dose (6 vs. 15 cGy/min) and fractionated (3 vs. 6 cGy/min) TBI groups; there were 77 cases for the LOW and 80 for the HIGH groups, with 57 patients receiving single-dose (28 LOW, 29 HIGH) and 100 patients receiving fractionated total-body irradiation (49 LOW, 51 HIGH). As of July 1992, 16 of 157 patients developed cataracts after 17 to 46 months, with an estimated incidence of 23% at 5 years. Four of 77 patients in the LOW group, 12 of 80 patients in the HIGH group developed cataracts, with 5-year estimated incidences of 12% and 34%, respectively. Ten of 57 patients in the single-dose group, and 6 of 100 patients in the fractionated group developed cataracts, with 5-year estimated incidences of 39% and 13%, respectively. When the subgroups were considered, in the single-dose group, 3 of 28 LOW patients, and 7 of 29 HIGH patients developed cataracts, with 5-year estimated incidences of 24% and 53%, respectively; in the fractionated group, 1 of 49 LOW patients, and 5 of 51 HIGH patients developed cataracts, with 5-year estimated incidences of 4% and 22%, respectively. There was no statistically significant difference in terms of 5-year estimated cataract incidence between the patients receiving steroids and those not. The instantaneous dose rate was the only independent factor influencing the cataractogenesis. 18 refs., 5 figs., 1 tab.

  18. Novel application of high-dose rate brachytherapy for severe, recalcitrant palmoplantar pustulosis.

    PubMed

    Timerman, D; Devlin, P M; Nambudiri, V E; Wright, N A; Vleugels, R A; Clark, R A; Kupper, T S; Merola, J F; Patel, M

    2016-07-01

    Palmoplantar pustulosis (PPP) is a chronic pustular dermatitis of the palms and soles, which is frequently associated with significant pruritus and pain, often limiting daily activities. We present the case of a 36-year-old man with severe PPP who had treatment failure with multiple medical therapies but showed marked improvement with high-dose rate brachytherapy. Brachytherapy has the advantage of providing a conformal dose distribution over complex curved surfaces, such as the foot and ankle. Our observations suggest that brachytherapy may be a well-tolerated treatment option for patients with severe, refractory PPP. PMID:26848819

  19. Basic program analyzes fluid rheology to determine pump rates

    SciTech Connect

    Moftah, K.R. )

    1994-05-09

    The use of statistical methods can improve the selection of a rheological model and the subsequent calculations for critical pump rate and pressure drop for cementing operations. The accompanying interactive Basic computer program allows the user to analyze fluid rheology to help determine the best data for use in predicting cementing pump rates. An accurate critical pump rate and pressure drop can then be calculated based on the correctly calculated rheological parameters. For cementing operations, the important methods of calculating the critical pump rate are the Hedstrom analysis, based on the Bingham plastic rheological model, and the Metzner and Reed analysis, based on the power law rheological model.

  20. Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays

    SciTech Connect

    Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

  1. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    low dose radiation exposure. Cells viability/cytotoxicity analysis data are currently being analyzed to determine how these endpoints are affected under our experimental conditions. The results from this study will be translatable to risk assessment for assigning limits to radiation workers, pre-dosing for more effective radiotherapy and the consequences of long duration space flight. The data from this study has been presented a various scientific meetings/workshops and a manuscript, containing the findings, is currently being prepared for publication. Due to unforeseen challenges in collecting the data and standardizing experimental procedures, the second and third aims have not been completed. However, attempts will be made, based on the availability of funds, to continue this project so that these aims can be satisfied.

  2. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects.

    PubMed

    Luebeck, E G; Heidenreich, W F; Hazelton, W D; Paretzke, H G; Moolgavkar, S H

    1999-10-01

    This study is a comprehensive analysis of the latest follow-up of the Colorado uranium miners cohort using the two-stage clonal expansion model with particular emphasis on effects related to age and exposure. The model provides a framework in which the hazard function for lung cancer mortality incorporates detailed information on exposure to radon and radon progeny from hard rock and uranium mining together with information on cigarette smoking. Even though the effect of smoking on lung cancer risk is explicitly modeled, a significant birth cohort effect is found which shows a linear increase in the baseline lung cancer risk with birth year of the miners in the cohort. The analysis based on the two-stage clonal expansion model suggests that exposure to radon affects both the rate of initiation of intermediate cells in the pathway to cancer and the rate of proliferation of intermediate cells. However, in contrast to the promotional effect of radon, which is highly significant, the effect of radon on the rate of initiation is found to be not significant. The model is also used to study the inverse dose-rate effect. This effect is evident for radon exposures typical for mines but is predicted to be attenuated, and for longer exposures even reversed, for the more protracted and lower radon exposures in homes. The model also predicts the drop in risk with time after exposure ceases. For residential exposures, lung cancer risks are compared with the estimates from the BEIR VI report. While the risk estimates are in agreement with those derived from residential studies, they are about two- to fourfold lower than those reported in the BEIR VI report. PMID:10477911

  3. Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates

    NASA Technical Reports Server (NTRS)

    Niemi, Nathan; Oskin, Mike; Burbank, Douglas; Heimsath, Arjun

    2005-01-01

    The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation.

  4. Region change rate-driven seamline determination method

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Wang, Mi; Li, Junli; Yuan, Shenggu; Hu, Fen

    2015-07-01

    This paper presents a novel method of seamline determination using region change rate (RCR) for orthoimage mosaicking. RCR is the change rate of the segmented region and is calculated based on the percentage of changed pixels in the segmented region. The presented method contains a two-level seamline optimization procedure to determine the final seamline using RCR. First, an object-level optimization based on image segmentation and change detection is executed to determine the allowed regions, i.e., the connected regions with minimized maximum RCR value through which seamlines are allowed to pass. This optimization is used to limit the maximum RCR along the seamline. Second, to determine the optimized seamline, pixel-level optimization is performed using Dijkstra's algorithm based on differential cost. Finally, experimental results from digital aerial orthoimages and comparisons with other methods demonstrate the potential of the presented method for seamline determination.

  5. Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes; Relevance to SST Operations and Space Research

    NASA Technical Reports Server (NTRS)

    Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.

    1974-01-01

    Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.

  6. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation

    PubMed Central

    Brooks, Antone L.; Hoel, David G.; Preston, R. Julian

    2016-01-01

    Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588

  7. Integrated loading rate determination for wastewater infiltration system sizing

    SciTech Connect

    Jenssen, P.D. . Centre for Soil and Environmental Research); Siegrist, R.L. )

    1991-01-01

    One of the principal parameters used in wastewater system design is the hydraulic loading rate. Historically the determination of the loading rate has been a straight forward process involving selection of a rate based on soil texture or water percolation rate. Research and experience over the past decade has provided additional insight into the complex processes occurring within wastewater-amended soil systems and has suggested the fallacy of this approach. A mean grain size vs. sorting (MESO) diagram constitutes a new basis for soil classification for wastewater infiltration system design. Crude characterization of the soil hydraulic properties is possible according to the MESO Diagram and loading rate as well as certain purification aspects can be assessed from the diagram. In this paper, an approach is described based on the MESO Diagram that integrates soil properties and wastewater pretreatment to yield a loading rate. 53 refs., 3 figs., 2 tabs.

  8. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  9. Oil Prices and Interest Rates: Do They Determine the Exchange Rate?

    ERIC Educational Resources Information Center

    Law, I. A.; Old, J. L.

    1986-01-01

    Argues that the relationship between the British pound sterling, interest rates, and oil prices has been overemphasized by economic commentators because they ignored a basic economic theory about the determination of the exchange rate. Provides an example and suggestions for follow up instruction. (Author/JDH)

  10. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  11. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    SciTech Connect

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  12. Long-term results of breast cancer irradiation treatment with low-dose-rate external irradiation

    SciTech Connect

    Pierquin, Bernard; Tubiana, Maurice . E-mail: maurice.tubiana@biomedicale.univ-paris5.fr; Pan, Camille; Lagrange, Jean-Leon; Calitchi, Elie; Otmezguine, Yves

    2007-01-01

    Purpose: The aim of this study was to assess beam therapy with low-dose-rate (LDR) external irradiation in a group of patients with breast cancer. Methods and Materials: This trial compared, from 1986 to 1989, patients with advanced breast cancer treated either by conventional fractionation or low-dose-rate (LDR) external radiotherapy (dose-rate 15 mGy/min, 5 sessions of 9 Gy delivered on 5 consecutive days). Results: A total of 21 patients were included in the fractionated therapy arm. At follow-up 15 years after treatment, 7 local recurrences had occurred, 3 patients had died of cancer, 18 patients were alive, 10 were without evidence of disease, and 6 had evidence of disease. A total of 22 patients had been included in the LDR arm of the study. Of these, 11 had received a