Science.gov

Sample records for dose rate endobronchial

  1. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  2. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  3. High Dose Rate Brachytherapy as a Treatment Option in Endobronchial Tumors

    PubMed Central

    Hosni, Ali; Rink, Alexandra; Czarnecka, Kasia; McPartlin, Andrew; Patterson, Susan; Saibishkumar, Elantholiparameswaran

    2016-01-01

    Purpose. To report our experience with high dose rate endobronchial brachytherapy (HDR-EBBT) and to assess its efficacy and tolerability with possibility of its use in selected cases with curative intent. Method. Retrospective review of patients with endobronchial tumors treated at our institution in 2007–2013 with HDR-EBBT. Subjective response and treatment related toxicity were extracted from patients' records. Clinical response was evaluated by chest CT +/− bronchoscopy 2-3 months after treatment. Local control (LC) and overall survival (OS) were analyzed. Results. Overall 23 patients were identified. Ten patients were treated with curative intent, in 8 of them HDR-EBBT was combined with external beam radiotherapy. Short term palliation was as follows: dyspnea (13/15), cough (12/14), and hemoptysis (3/3). Seventeen patients were evaluated, of whom 9 (53%) showed complete response. Four patients developed local failure (only 1 of them treated with curative intent) and were salvaged with HDR-EBBT (n = 1), chemotherapy (n = 2), and laser (n = 1). Among patients treated with curative intent, the 2-year LC and OS were 89% and 67%, respectively, and 2 out of 4 deaths were cancer-related. Late toxicity included bronchial stenosis (n = 1). Only 1 patient had fatal hemoptysis and postmortem examination indicated local recurrence. Conclusion. HDR-EBBT is promising treatment with tolerable complication if used in properly selected patients. PMID:27493804

  4. High-Dose-Rate Endobronchial Brachytherapy for Recurrent Airway Obstruction From Hyperplastic Granulation Tissue

    SciTech Connect

    Tendulkar, Rahul D. Fleming, Peter A.; Reddy, Chandana A.; Gildea, Thomas R.; Machuzak, Michael; Mehta, Atul C.

    2008-03-01

    Purpose: Benign endobronchial granulation tissue causes airway obstruction in up to 20% of patients after lung transplantation or stent placement. High-dose-rate endobronchial brachytherapy (HDR-EB) has been successful in some cases refractory to standard bronchoscopic interventions. Methods and Materials: Between September 2004 and May 2005, 8 patients with refractory benign airway obstruction were treated with HDR-EB, using one to two fractions of Ir-192 prescribed to 7.1 Gy at a radius of 1 cm. Charts were retrospectively reviewed to evaluate subjective clinical response, forced expiratory volume in 1 second (FEV{sub 1}), and frequency of therapeutic bronchoscopies over 6-month periods before and after HDR-EB. Results: The median follow-up was 14.6 months, and median survival was 10.5 months. The mean number of bronchoscopic interventions improved from 3.1 procedures in the 6-month pretreatment period to 1.8 after HDR-EB. Mean FEV{sub 1} improved from 36% predicted to 46% predicted. Six patients had a good-to-excellent subjective early response, but only one maintained this response beyond 6 months, and this was the only patient treated with HDR-EB within 24 h from the most recent bronchoscopic intervention. Five patients have expired from causes related to their chronic pulmonary disease, including one from hemoptysis resulting from a bronchoarterial fistula. Conclusion: High-dose-rate-EB may be an effective treatment for select patients with refractory hyperplastic granulation tissue causing recurrent airway stenosis. Performing HDR-EB within 24-48 h after excision of obstructive granulation tissue could further improve outcomes. Careful patient selection is important to maximize therapeutic benefit and minimize toxicity. The optimal patient population, dose, and timing of HDR-EB should be investigated prospectively.

  5. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  6. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    SciTech Connect

    Madu, Chika N. . E-mail: chikam@xrt.upenn.edu; Machuzak, Michael S.; Sterman, Daniel H.; Musani, Ali; Ahya, Vivek; McDonough, James; Metz, James M.

    2006-12-01

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDR brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.

  7. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Weinberg, Benjamin D.; Allison, Ron R.; Sibata, Claudio; Parent, Teresa; Downie, Gordon

    2009-06-01

    We reviewed the outcome of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) for patients with symptomatic obstruction from endobronchial non-small cell lung cancer. Methods: Nine patients who received combined PDT and HDR for endobronchial cancers were identified and their charts reviewed. The patients were eight males and one female aged 52-73 at diagnosis, initially presenting with various stages of disease: stage IA (N=1), stage IIA (N=1), stage III (N=6), and stage IV (N=1). Intervention was with HDR (500 cGy to 5 mm once weekly for 3 weeks) and PDT (2 mg/kg Photofrin, followed by 200 J/cm2 illumination 48 hours post infusion). Treatment group 1 (TG-1, N=7) received HDR first; Treatment group 2 (TG-2, N=2) received PDT first. Patients were followed by regular bronchoscopies. Results: Treatments were well tolerated, all patients completed therapy, and none were lost to follow-up. In TG-1, local tumor control was achieved in six of seven patients for: 3 months (until death), 15 months, 2+ years (until death), 2+ years (ongoing), and 5+ years (ongoing, N=2). In TG-2, local control was achieved in only one patient, for 84 days. Morbidities included: stenosis and/or other reversible benign local tissue reactions (N=8); photosensitivity reaction (N=2), and self-limited pleural effusion (N=2). Conclusions: Combined HDR/PDT treatment for endobronchial tumors is well tolerated and can achieve prolonged local control with acceptable morbidity when PDT follows HDR and when the spacing between treatments is one month or less. This treatment regimen should be studied in a larger patient population.

  8. Effective Bolus Dose of Sufentanil to Attenuate Cardiovascular Responses in Laryngoscopic Double-Lumen Endobronchial Intubation

    PubMed Central

    Choi, Byung-Hee; Lee, Yong-Cheol

    2016-01-01

    Background Sufentanil is a potent opioid analgesic frequently used in clinical anesthesia. Double-lumen endobronchial intubation induces profound cardiovascular responses in comparison with ordinary endotracheal intubation because of the larger tube diameter and direct irritation of the carina. Objectives The purpose of this study was to determine the effective bolus dose of sufentanil to attenuate hemodynamic changes in response to laryngoscopic double-lumen endobronchial intubation. Patients and Methods We randomly assigned 72 patients aged 18 - 65 years and with an American Society of Anesthesiologists physical status of 1 or 2 to one of four sufentanil dose groups: NS, S0.1, S0.2, or S0.3. The respective doses for the groups were as follows: normal saline, 0.1 mcg/kg of sufentanil, 0.2 mcg/kg of sufentanil, and 0.3 mcg/kg of sufentanil. Blood pressure and heart rate were recorded during the pre-anesthesia period at baseline, pre-intubation, immediate post-intubation, and every minute during 5 minutes after intubation. Results Baseline mean arterial pressures in the NS, S0.1, S0.2, and S0.3 groups were 89.8 ± 12.1, 89.2 ± 10.9, 88.8 ± 13.6, and 90.7 ± 11.1, respectively. At immediate post-intubation, the mean arterial pressures in the NS, S0.1, S0.2, and S0.3 groups were 129.7 ± 14.7, 120.7 ± 14.2, 120.8 ± 17.2, and 96.7 ± 10.4, respectively. At immediate post-intubation, the mean arterial pressure in the NS, S0.1, and S0.2 groups significantly increased from baseline (P < 0.001), but the S0.3 group showed no difference. In the time point comparison at immediate post- intubation, the S0.3 group had a significantly lower mean arterial pressure than did the NS, S0.1, and S0.2 groups (P < 0.001). Conclusions We found that 0.3 mcg/kg of sufentanil attenuates cardiovascular responses to double-lumen endobronchial intubation without adverse effects. PMID:27252903

  9. Endobronchial radiation therapy (EBRT) in the management of lung cancer

    SciTech Connect

    Roach, M. III; Leidholdt, E.M. Jr.; Tatera, B.S.; Joseph, J. )

    1990-06-01

    Between October 1987 and November 1988, 19 endobronchial Iridium-192 line source placements were attempted in 17 patients with advanced incurable lung cancer. Approximately 30 Gy was delivered to the endobronchus using a low dose rate (LDR) afterloading technique delivering a mean dose of 70 cGy/hr at 5 mm. Improvement in subjective symptoms was noted in 67% of evaluable patients whereas objective responses defined by chest X ray and bronchoscopy were noted in 26% and 60%, respectively. No significant morbidity was observed. The radiation exposure to health care workers was low ranging from 10 to 40 mRem per treatment course with most of the staff receiving less than 10 mRem per treatment course (minimal detectable level 10 mRem). The results of this series are compared with selected series using low dose rate as well as intermediate dose rate (IDR) and high dose rate (HDR) endobronchial radiation therapy (EBRT). Based on bronchoscopic responses from the selected series reviewed, both HDR low total dose per treatment (range 7.5-10 Gy) and LDR high total dose per treatment (range 30-50 Gy) are effective in palliating the vast majority of patients with endobronchial lesions. Intermediate dose rate is also effective using fractions similar to high dose rate but total dose similar to low dose rate. The efficacy of endobronchial radiation therapy in the palliative setting suggest a possible role for endobronchial radiation therapy combined with external beam irradiation with or without chemotherapy in the initial management of localized lung cancer. Defining the optimal total dose, dose rate, and the exact role of endobronchial radiation therapy in the management of lung cancer will require large cooperative trials with standardization of techniques and definitions.

  10. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  11. High dose rate sources in remote afterloading brachytherapy: Implications for intracavitary and interstitial treatment of carcinoma

    SciTech Connect

    Syzek, E.J.; Bogardus, C.R. Jr. )

    1990-11-01

    Remote afterloading brachytherapy provides effective cancer treatment with zero personnel radiation exposure compared to conventional low dose rate systems requiring inpatient use of iridium, radium, or cesium sources. Clinical use of high dose rate brachytherapy is broadened to encompass curative treatment of cervical, endometrial, endobronchial, head and neck, esophageal, rectal, and prostatic carcinomas as well as palliation of intra-abdominal metastasis intraoperatively. Complications encountered with high dose rate sources will be compared to those of low dose rate systems commonly used in conjunction with external beam irradiation. Radiobiological effectiveness and economic benefits will be addressed to provide support for use of remote afterloading using high dose rate brachytherapy in palliative and curative treatment of selected carcinoma. 36 refs.

  12. Endobronchial Tuberculosis Mimicking Asthma

    PubMed Central

    Argun Baris, Serap; Onyilmaz, Tuğba; Basyigit, Ilknur; Boyaci, Hasim

    2015-01-01

    Endobronchial tuberculosis (EBTB) is defined as tuberculosis infection of the tracheobronchial tree with microbial and histopathological evidence. The clinical symptoms of the diseases are nonspecific. Chronic cough is the major symptom of the disease. The diagnosis is often delayed due to its nonspecific presentation and misdiagnosed as bronchial asthma. This case is presented to recall the notion that the endobronchial tuberculosis can mimic asthma and the importance of bronchoscopic evaluation in a patient with chronic cough and treatment resistant asthma. PMID:26798513

  13. Longstanding Endobronchial Foreign Body

    PubMed Central

    Trisolini, R.; Dore, R.; Bertolini, R.; Pasturenzi, L.; Catania, A. Fede; Gualtieri, G.; Torre, M.

    1999-01-01

    There are many circumstances in which the diagnosis of endobronchial inhalation of a foreign body (FB) can be missed. Generally, in such cases, within weeks or at most months from the event, clinical bronchopulmonary symptoms develop which allow a correct diagnosis to be made and significant complications to be avoided. We report the case of a patient in whom an endobronchial FB remained undiagnosed, because of lack of symptoms, for almost three years, and then caused signifiicant complications before being identified and removed. Problems related to diagnosis and therapy are discussed. PMID:18493510

  14. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  15. Dose-rate dependence of heat radiosensitization

    SciTech Connect

    Gerner, E.W.; Oval, J.H.; Manning, M.R.; Sim, D.A.; Bowden, G.T.; Hevezi, J.M.

    1983-09-01

    The dose rate dependence of heat radiosensitization was studied using rat astrocytoma cells in culture and a cliniclly relevant protocol of heat dose and heat radiation sequence. Cells were treated with a minimally toxic heat dose of 43/sup 0/C for 30 minutes, after which they were irradiated with varying doses of radiation at dose rates ranging from 0.567 to 300 cGy/min. This heat dose substantially reduced the extrapolation number (n), but had little effect on D/sub 0/ of the radiation survival curve at dose rates of 50 cGy/min or greater. At dose rates less than 10 cGy/min, 43/sup 0/C for 30 min had little effect on n and only for the lowest dose rate studied (0.567 cGy/min) was there a significant reduction in D/sub 0/ (60%). The thermal enhancement ratio did not vary inversely with radiation dose rate over the dose rate range studied but, instead, was maximal at the two dose rate extremes (0.567 and 300 cGy/min). These data demonstrate that a clinically relevant heat dose enhances very low dose rate, as well as high dose rate, ionizing radiation, but suggest that little benefit is to be gained from using dose rates intermediate between conventional radiotherapeutic high dose rates or dose rates representative of interstitial implants.

  16. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  17. Black Endobronchial Ultrasound.

    PubMed

    Dhillon, Samjot S; Harris, Kassem; Ylagan, Lourdes

    2015-10-01

    The infrequent bronchoscopic finding of black airway pigmentation due to a variety of causes has been labeled as "Black Bronchoscopy." Black bronchioalveolar lavage has been sometimes described in tobacco, marijuana, and crack cocaine smokers. To add to this interesting panorama of bronchoscopic findings, we describe cases of black endobronchial ultrasound-guided transbronchial needle aspirates due to metastatic melanoma and anthracotic lymph nodes. PMID:26348692

  18. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  19. [Benign endobronchial tumors].

    PubMed

    Nikhtianov, Kh

    1980-01-01

    Endobronchial localizations of benign neoplasms are met with in 24.5 per cent of the cases. Right lung localizations are more frequent. More than half of them are broadly based (57.5 per cent). In most of the cases it is a matter of nonepithelial tumours of which a greater intensity is displayed by hamartomas /7/, vascular /4/ and neurogenic /3/ neoformations. The size of endobronchial tumours varies from 1 to 10 cm. Cases measuring 1-3 cm are the most numerous. Those of the "iceberg" type appear to be larger. The size per se has a relative importance for the clinical picture. Endobronchial tumours exhibit a clear cut clinical picture, and run a clinical course in three stages, determined by the degree of bronchial obturation and longstanding of the condition. The most common symptoms are coughing /80.7 per cent/, expectoration /50.0 per cent/, rales /57.6 per cent/, dullness /38.4 per cent/ and lacking respiration /38.4 per cent/. The nosological entity by itself is less conclusive for the clinical course. The X-ray data have orientation and by no means decisive significance for the diagnosis. The "crab pincers" sign in the bronchial lumen during bronchography has a definite importance. Bronchoscopy in conjunction with biopsy is a dependable method of preoperative diagnosing. It contributes greatly to the nosological diagnosis. Even nowadays, the diagnosis of endobronchial tumours is difficult. A rather exact diagnosis can be made intraoperatively, whereas the most accurate diagnosis is established only after histological study. The treatment of endobronchial benign neoplasms is operative. The number of medium /lobectomies/ and extensive /pulmonectomies/ pulmonary resections is considerable. In case of early diagnosis and intervention, sparing resection is the naturally indicated size of operation - mainly resection and plasty of the bronchi without lobectomy. The advantages of circular resection are substantial. Reconstructive operations of "clarinet" and

  20. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  1. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown. PMID:27164221

  2. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (ESTSC)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  3. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  4. Endobronchial ultrasound elastography

    PubMed Central

    Dietrich, Christoph F.; Jenssen, Christian; Herth, Felix J. F.

    2016-01-01

    Elastographic techniques have recently become available as advanced diagnostic tools for tissue characterization. Strain elastography is a real-time technique used with transcutaneous ultrasound (US) and endoscopic US. Convincing evidence is available demonstrating a significant value of strain elastography for the discrimination of benign and malignant lymph nodes (LNs). This paper reviews preliminary data demonstrating the feasibility of performing real-time elastography during endobronchial US (EBUS) and a potential application of this technique for selection of LNs for EBUS-guided transbronchial needle aspiration in patients with lung cancer and extrathoracic malignancies. PMID:27503154

  5. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  6. [Endobronchial brachytherapy: state of the art in 2013].

    PubMed

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications. PMID:23465785

  7. Endobronchial metastases of colorectal cancer.

    PubMed

    Rosado Dawid, Natalia-Zuberoa; Villegas Fernández, Francisco Ramón; Rodríguez Cruz, María Del Mar; Ramos Meca, Asunción

    2016-04-01

    Colorectal metastases affecting trachea or bronchi are highly unusual. Up to 26% of endotracheal/endobronchial metastases are due to colorectal cancer. Treatment and palliative management rely on a multidisciplinary team to improve their quality of life. PMID:26856850

  8. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. PMID:25195117

  9. Dose rate effects in WLS fibers

    NASA Astrophysics Data System (ADS)

    Maio, A.; David, M.; Gomes, A.

    1997-03-01

    The radiation hardness of different types of WLS fibers produced by BICRON, KURARAY and POL.HI.TECH has been systematically studied. Low dose rate irradiations (from 0.55 krad/h up to 4 krad/h and total dose of about 140 krad) were performed with a 60Co γ source. The results are compared with high dose rate irradiations (1.5 Mrad/h and total dose of 1 Mrad) in a mixed field of 20% of neutrons and 80% of γ's in a nuclear reactor. The degradation of the optical properties of fibers with different composition, namely different Ultraviolet absorber (UVA) concentration and different type of cladding are studied. Dose rate effects are investigated as well as the effect of irradiation with different type of particles. The UVA can help on the radiation hardness, but no permanent dose rate effects, or special effects due to the neutron component of the irradiation field were observed.

  10. Endobronchial Ultrasound Bronchoscope Damage.

    PubMed

    Patil, Monali; Harris, Kassem; Krishnan, Amita; Alraiyes, Abdul H; Dhillon, Samjot S

    2016-07-01

    Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration is an effective, safe, and cost-effective diagnostic bronchoscopy technique for the work-up of mediastinal lymphadenopathy. Concern has been raised, however, about the high cost of convex-probe EBUS bronchoscope repairs. The damage is usually due to breakage of the insertion tube (the flexible part that is advanced into the airways), moisture invasion and damages to the working channel, image guide bundle, or umbilical cord. Understanding the root cause of EBUS scope damage is important for its prevention. We describe 2 unusual cases of EBUS scope damage. In the first case, the distal black rubber covering of the EBUS scope insertion tube was damaged due to friction with the edge of an endotracheal tube and in the second case, the EBUS scope insertion tube was angulating laterally instead of vertically during the flexion maneuver, probably due to scope manipulation while wedged tightly in a segmental bronchus. PMID:27077640

  11. Sampling and recording dose rate meter

    SciTech Connect

    Kronenberg, S.

    1984-04-06

    A wide range radiation dose rate for civil defense use, including a Geiger-Mueller tube used in a continuous counting mode and for measuring dose rates from the natural background to about 30. rads/hr., with an ion chamber arranged to measure higher dose rates up to 10,000 rads/hr. The instrument has a sample and record capability in which the selected radiation detector will have its output connected to a selected storage capacitor for a precise interval of time determined by a timing circuit and the storage capacitor will accumulate and hold a voltage proportional to the dose rate, which can be read by means of an electrometer at a later time. The instrument has a self contained hand cranked power supply and all components are selected for long shelf life.

  12. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  13. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  14. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  15. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  16. High-Dose-Rate Brachytherapy for Non-Small-Cell Lung Carcinoma: A Retrospective Study of 226 Patients

    SciTech Connect

    Aumont-le Guilcher, Maud; Prevost, Bernard; Sunyach, Marie Pierre; Peiffert, Didier; Maingon, Philippe; Thomas, Laurence; Williaume, Daniele; Begue, Mickael; Lerouge, Delphine; Campion, Loic; Mahe, Marc-Andre

    2011-03-15

    Purpose: To evaluate the efficacy and toxicity of high-dose-rate (HDR) brachytherapy in patients with inoperable endobronchial carcinoma. Methods and Materials: We retrospectively reviewed the records (April 1991-May 2004) of patients with non-small-cell carcinoma, with no extrabronchial spread on computed tomography scans, who underwent HDR brachytherapy because of contraindications to surgery and external beam radiation therapy. Kaplan-Meier survival curves were compared by the log-rank test. Prognostic factors were analyzed by multivariate analysis. Results: 226 patients (223 men, 3 women, mean age: 62.2 years (range, 40-84)) were included. Of those, 217 (97%) had squamous cell carcinoma (Tis/T1/T2/Tx: 60/153/9/4). Dose was prescribed at 1 cm from the radius (24-35 Gy in 4-6 fractions). Mean follow-up was 30.4 months (range, 9-116). Complete endoscopic response rate was 93.6% at 3 months. One hundred twenty-eight patients (56%) died of intercurrent disease (n = 45), local failure (n = 36), metastasis (n = 10), local failure and metastasis (n = 11), complications (n = 13), and other causes (n = 12). The 2-year and 5-year survival rates were, respectively, 57% and 29% (overall) (median, 28.6 months), 81% and 56% (cancer-specific), and 68% and 50% (local disease-free). Acute toxicity included pneumothorax (1.5%) and mucosal inflammation (10%). Late complications were hemoptysis (6.6% with 5% of fatalities), bronchitis (19.5%), and necrosis (3.5%). In multivariate analysis, a distal tumor location and the use of two catheters were associated with improved local disease-free survival (p = 0.003 and p = 0.007, respectively) and a distal tumor location with improved overall survival (p = 0.0001). Conclusions: This large retrospective study confirms that HDR brachytherapy is an efficient and safe treatment in patients with inoperable endobronchial carcinoma.

  17. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  18. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  19. Endobronchial mimics of primary endobronchial carcinoma: a clinical study of 25 cases.

    PubMed

    Magro, Cynthia M; Ross, Patrick

    2005-04-01

    While endobronchial lesions that present with symptoms of obstruction may be reflective of primary bronchogenic malignancy, there have been a number of reports of bronchial lesions other than primary bronchogenic carcinoma simulating primary endobronchial epithelial malignancy clinically. Twenty-five cases of symptomatic endobronchial disease were encountered with pathological assessment demonstrating an endobronchial process other than carcinoma, representing metastatic disease (breast, colon, renal, head and neck origin), fungal infection, Hodgkin's lymphoma, primary bronchogenic melanoma, lipoma, broncholith and inflammatory pseudopolyp. The present report underscores the potential pathogenetic heterogeneity encountered in lesions presenting with signs and symptoms of endobronchial obstruction, emphasizing the critical role of biopsy for establishing a definitive diagnosis. PMID:15875062

  20. Method for endobronchial video parsing

    NASA Astrophysics Data System (ADS)

    Byrnes, Patrick D.; Higgins, William E.

    2016-03-01

    Endoscopic examination of the lungs during bronchoscopy produces a considerable amount of endobronchial video. A physician uses the video stream as a guide to navigate the airway tree for various purposes such as general airway examinations, collecting tissue samples, or administering disease treatment. Aside from its intraoperative utility, the recorded video provides high-resolution detail of the airway mucosal surfaces and a record of the endoscopic procedure. Unfortunately, due to a lack of robust automatic video-analysis methods to summarize this immense data source, it is essentially discarded after the procedure. To address this problem, we present a fully-automatic method for parsing endobronchial video for the purpose of summarization. Endoscopic- shot segmentation is first performed to parse the video sequence into structurally similar groups according to a geometric model. Bronchoscope-motion analysis then identifies motion sequences performed during bronchoscopy and extracts relevant information. Finally, representative key frames are selected based on the derived motion information to present a drastically reduced summary of the processed video. The potential of our method is demonstrated on four endobronchial video sequences from both phantom and human data. Preliminary tests show that, on average, our method reduces the number of frames required to represent an input video sequence by approximately 96% and consistently selects salient key frames appropriately distributed throughout the video sequence, enabling quick and accurate post-operative review of the endoscopic examination.

  1. [Endobronchial aspergilloma revealing a bronchial carcinoma].

    PubMed

    Slimani, Hajar; Soualhi, Mouna; Sadak, Nouzha; Zahraoui, Rachida; Bourkadi, Jamal-Eddine

    2016-08-01

    Endobronchial aspergillosis is a rare presentation of pulmonary aspergillosis in immunocompetent patients; this raises questions about structural changes inducing airflow stasis in order to colonize the bronchial lumen. We present the case of a patient diagnosed with endobronchial aspergilloma covering a bronchial adenocarcinoma. PMID:27475005

  2. Dose rate, dose-equivalent rate, and quality factor in SLS-1

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Braby, L. A.; Cucinotta, F. A.; Atwell, W.

    1992-01-01

    A tissue-equivalent proportional counter (TEPC) sensitive to the lineal energy range of 0.26-300 keV micrometer-1 was flown on STS-40 (39 degrees x 278 km x 296 km) inside the Spacelab. This instrument was previously flown on STS-31 but was modified to provide a finer resolution at lower lineal energies to better map the South Atlantic Anomaly (SAA) protons. The instrument was turned on 6 June 1991, and operated for 7470 min (124.5 h). The flight duration was characterized by a very large number of X-ray solar flares and enhanced magnetic field fluctuations; however, no significant dose from the solar particles was measured at the location of this instrument. The flight data can be separated into trapped and galactic cosmic radiation parts. The dose rate, dose-equivalent rate and quality factor for trapped radiation were 4.21 +/- 0.03 mrad day-1, 7.72 +/- 0.05 mrem day-1, and 1.83 +/- 0.1, respectively. The dose rate, dose-equivalent rate, and quality factor for galactic cosmic radiation were 5.34 +/- 0.03 mrad day-1, 14.63 +/- 0.06 mrem day-1, and 2.74 +/- 0.1, respectively. The overall quality factor for the flight was 2.38. The dose from the GCR is higher than from SAA protons because of the high inclination and low altitude of this flight. The AP8MAX model of the trapped radiation gives a dose rate of 2.43 mrad day-1 and a quality factor of 1.77. The CREME solar maximum model of galactic cosmic radiation gives a dose rate of 2.54 mrad day-1 and a quality factor of 2.91. Thus the AP8MAX model underestimates the dose by a factor of 1.8 whereas the CREME model leads to an underestimation of the dose by a factor of 2. A comparison of the LET spectra using the AP8MAX model and galactic cosmic radiation transport codes shows only a qualitative agreement.

  3. Surgical approaches of endobronchial neoplasms

    PubMed Central

    Li, Zhigang; Kougioumtzi, Ioanna; Darwiche, Kaid; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Stylianaki, Aikaterini; Kesisis, Georgios; Machairiotis, Nikolaos; Zarogoulidis, Konstantinos

    2013-01-01

    Endobronchial tumors are a rare entity that presents with different pathological findings. The interventional pulmonologist, but also the thoracic surgeon have at their disposal the same techniques for diagnosis, however; the two modalities differentiate in the treatment approach. Diagnosis evaluation should include lymph node evaluation. Minimal invasive techniques under local or general anesthesia are usually preferred by the interventional pulmonologists, whereas in the surgical approach of the thoracic surgeons the general anesthesia is necessary. A more extensive surgical approach either lobotomy or pneumonectomy should be performed in cases with positive intrapulmonary lymph nodes. Carinal reconstruction should be performed skillfully to get a negative proximal margin whenever needed. In the current manuscript we will present the methods of patient evaluation and surgical techniques for the management of these lesions. PMID:24102010

  4. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation - A Phantom Study

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Banckwitz, Rosemarie; Zarogoulidis, Paul; Vogl, Thomas; Darwiche, Kaid; Goldberg, Eugene; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Freitag, Lutz; Turner, J Francis; Pivert, Patrick Le; Yarmus, Lonny; Zarogoulidis, Konstantinos; Brachmann, Johannes

    2014-01-01

    Rationale: Cone Beam Computed Tomography imaging has become increasingly important in many fields of interventional therapies. Objective: Lung navigation study which is an uncommon soft tissue approach. Methods: As no effective organ radiation dose levels were available for this kind of Cone Beam Computed Tomography application we simulated in our DynaCT (Siemens AG, Forchheim, Germany) suite 2 measurements including 3D acquisition and again for 3D acquisition and 4 endobronchial navigation maneuvers under fluoroscopy towards a nodule after the 8th segmentation in the right upper lobe over a total period of 20 minutes (min). These figures reflect the average complexity and time in our experience. We hereby describe the first time the exact protocol of lung navigation by a Cone Beam Computed Tomography approach. Measurement: The hereby first time measured body radiation doses in that approach showed very promising numbers between 0,98-1,15mSv giving specific lung radiation doses of 0,42-0,38 mSv. Main results: These figures are comparable or even better to other lung navigation systems. Cone Beam Computed Tomography offers some unique features for lung interventionists as a realtime 1-step navigation system in an open structure feasible for endobronchial and transcutaneous approach. Conclusions: Due to this low level of radiation exposure Cone Beam Computed Tomography is expected to attract interventionists interested in using and guiding endobronchial or transcutaneous ablative procedures to peripheral endobronchial and other lung lesions. PMID:24563674

  5. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Chung, Kun Ho; Lee, Wanno; Park, Doo-Won; Kang, Mun-Ja

    2014-04-01

    A spectrometric determination of the dose rate using a detector is a very useful method to identify the contribution of artificial nuclides. In addition, the individual dose rate for detected gamma nuclides from the radioactive materials as well as the environment can give further information such as the in-situ measurement because of the direct relation between the individual dose rate and the activity of a nuclide. In this study, the calculation method for the individual dose rate for detected gamma nuclides was suggested by introducing the concept of the dose rate spectroscopy and the peak-to-total ratio in the energy spectrum for the dose rate, which means just a form of multiplied counts and the value of a G-factor in the spectrum. In addition, the validity of the suggested method for the individual dose rate was experimentally verified through a comparison of the calculation results on the energy spectra for several conditions of the standard source.

  6. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  7. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    SciTech Connect

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  8. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  9. The estimation of galactic cosmic ray penetration and dose rates

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.; Wright, J. J.

    1972-01-01

    This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

  10. Dosimetric investigation of high dose rate, gated IMRT

    SciTech Connect

    Lin, Teh; Chen Yan; Hossain, Murshed; Li, Jinsheng; Ma, C.-M.

    2008-11-15

    Increasing the dose rate offers time saving for IMRT delivery but the dosimetric accuracy is a concern, especially in the case of treating a moving target. The objective of this work is to determine the effect of dose rate associated with organ motion and gated treatment using step-and-shoot IMRT delivery. Both measurements and analytical simulation on clinical plans are performed to study the dosimetric differences between high dose rate and low dose rate gated IMRT step-and-shoot delivery. Various sites of IMRT plans for liver, lung, pancreas, and breast cancers were delivered to a custom-made motorized phantom, which simulated sinusoidal movement. Repeated measurements were taken for gated and nongated delivery with different gating settings and three dose rates, 100, 500, and 1000 MU/min using ion chambers and extended dose range films. For the study of the residual motion effect for individual segment dose and composite dose of IMRT plans, our measurements with 30%-60% phase gating and without gating for various dose rates were compared. A small but clinically acceptable difference in delivered dose was observed between 1000, 500, and 100 MU/min at 30%-60% phase gating. A simulation is presented, which can be used for predicting dose profiles for patient cases in the presence of motion and gating to confirm that IMRT step-and-shoot delivery with gating for 1000 MU/min are not much different from 500 MU/min. Based on the authors sample plan analyses, our preliminary results suggest that using 1000 MU/Min dose rate is dosimetrically accurate and efficient for IMRT treatment delivery with gating. Nonetheless, for the concern of patient care and safety, a patient specific QA should be performed as usual for IMRT plans for high dose rate deliveries.

  11. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  12. Dose rate analysis for Tank 101 AZ (Project W151)

    SciTech Connect

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP{sub 2}) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A.

  13. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  14. Endobronchial ultrasound echoic image of pulmonary hamartoma.

    PubMed

    Kajikawa, Shigehisa; Imai, Naoyuki; Takashima, Kouji; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2014-06-01

    A 62-year-old man with an indicated chest radiographic abnormality was referred to our hospital for more thorough examinations. Endobronchial ultrasound-guided transbronchial needle aspiration was performed because of a mass at the left hilum. Endobronchial ultrasound images showed scattered high-density spots in a low echoic and mosaic density. The pathological findings revealed pulmonary hamartoma. Subsequently, the mass was resected and comparison of ultrasound findings and pathological findings indicated that the scattered high echoic spots appeared to reflect cartilaginous tissues and bronchial epithelium inside the tumor. PMID:25473576

  15. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  16. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  17. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  18. Endobronchial metastases from extrathoracic malignancies.

    PubMed

    Akoglu, Sebahat; Uçan, Eyüp S; Celik, Gülperi; Sener, Gülper; Sevinç, Can; Kilinç, Oğuz; Itil, Oya

    2005-01-01

    Endobronchial metastases (EBM) from extrapulmonary malignant tumors are rare. The most common extrathoracic malignancies associated with EBM are breast, renal and colorectal carcinomas. In this study, we aimed to evaluate the clinical, radiographic and bronchoscopic aspects of patients with EBM who were diagnosed between 1992 and 2002. Data about patients' clinical conditions, symptoms, radiographic and endoscopic findings, and histopathological examination results were investigated. EBM was defined as bronchoscopically visible lesions histopathologically identical to the primary tumor in patients with extrapulmonary malignancies. We found 15 cases with EBM. Primary tumors included breast (3), colorectal (3), and renal (2) carcinomas; Malignant Melanoma (2); synovial sarcoma (1), ampulla of Vater adenocarcinoma (1), pheochromocytoma (1), hypernephroma (1), and Hodgkin's Disease (1). The most common symptoms were dyspnea (80%), cough (66.6%) and hemoptysis (33.3%). Multiple (40%) or single (13.3%) pulmonary nodules, mediastinal or hilar lymphadenopathy (40%), and effusion (40%) were the most common radiographic findings. The mean interval from initial diagnosis to diagnosis of EBM was 32.8 months (range, 0-96 months) and median survival time was 18 months (range, 4-84). As a conclusion, various extrapulmonary tumors can metastasize to the bronchus. Symptoms and radiographic findings are similar with those in primary lung cancer. Therefore, EBM should be discriminated from primary lung cancer histopathologically. Although mean survival time is usually short, long-term survivors were reported. Consequently, treatment must be planned according to the histology of the primary tumor, evidence of metastasis to other sites and medical status of the patient. PMID:16475029

  19. Unexpectedly large dose rate dependent output from a linear accelerator.

    PubMed

    Cheng, P C; Kubo, H

    1988-01-01

    During our routine calibration of a Varian Clinac-20 linear accelerator, the absorbed dose for a fixed monitor unit (mu) was found to decrease with increasing dose rate. Between dose rates of 100 and 500 mu/min, there was up to 20% difference in absorbed dose for a 20-MeV electron beam. The cause of this problem was a failure in the electronics circuit of an integrating board. This paper presents our analysis of the problem and suggests a possible means of isolating such a failure to warn technologists, physicists, and engineers. PMID:3141760

  20. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  1. BEHAVIRORAL EFFECTS OF MICROWAVES: RELATIONSHIP OF TOTAL DOSE AND DOSE RATE

    EPA Science Inventory

    The goal of the research was to compare the relationship of whole body averaged specific absorption rate (SAR) and specific absorption (SA) to determine whether dose rate or dose was the better predictor of biological effects. Sperm positive Long-Evans female rats were exposed to...

  2. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  3. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  4. VMATc: VMAT with constant gantry speed and dose rate.

    PubMed

    Peng, Fei; Jiang, Steve B; Romeijn, H Edwin; Epelman, Marina A

    2015-04-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. PMID:25789937

  5. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-11-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  6. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  7. Analysis of decay dose rates and dose management in the National Ignition Facility.

    PubMed

    Khater, Hesham; Brereton, Sandra; Dauffy, Lucile; Hall, Jim; Hansen, Luisa; Kim, Soon; Kohut, Tom; Pohl, Bertram; Sitaraman, Shiva; Verbeke, Jerome; Young, Mitchell

    2013-06-01

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes the large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by neutrons generated during a shot, and the resultant gamma dose rates are estimated at various decay times following the shot. A set of computational tools was developed to help in estimating potential radiation exposure to TB workers. The results presented in this paper describe the expected radiation environment inside the TB following a low-yield DT shot of 10(16) neutrons. General environment dose rates drop below 30 μSv h(-1) within 3 h following a shot, with higher dose rates observed in the vicinity (~30 cm) of few components. The dose rates drop by more than a factor of two at 1 d following the shot. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB. Primary components, including the Target Chamber and diagnostic and beam line components, are constructed of aluminum. Near-term TB accessibility is driven by the decay of the aluminum activation product, 24Na. Worker dose is managed using electronic dosimeters (EDs) self-issued at kiosks using commercial dose management software. The software programs the ED dose and dose rate alarms based on the Radiological Work Permit (RWP) and tracks dose by individual, task, and work group. PMID:23629063

  8. Analysis of bipolar linear circuit response mechanisms for high and low dose rate total dose irradiations

    SciTech Connect

    Barnaby, H.; Tausch, H.J.; Turfler, R.; Cole, P.; Baker, P.; Pease, R.L.

    1996-12-01

    A methodology is presented for the identification of circuit total dose response mechanisms in bipolar linear microcircuits irradiated at high and low dose rates. This methodology includes manual circuit analysis, circuit simulations with SPICE using extracted device parameters, and selective irradiations of portions of the circuit using a scanning electron microscope.

  9. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  10. Endobronchial sonography: feasibility and preliminary results.

    PubMed Central

    Hürter, T; Hanrath, P

    1992-01-01

    Endobronchial sonography, a new ultrasound technique, has been evaluated for the assessment of normal lungs and bronchial carcinomas. The procedure was performed with ultrasound catheters, which were introduced into central and peripheral bronchi through the operating channel of fibreoptic bronchoscopes. The bronchial wall is highly echogenic and laminated. The lung parenchyma appears echo rich and patchy. Pulmonary arteries can be identified by the pulsatile changes and floating echoes within the echo free lumen. Echo poor bronchial carcinomas were detected in 69 out of 74 patients with endoscopically visible tumours and in 19 out of 26 patients with peripheral carcinomas. The correct implantation of metallic stents was facilitated by endobronchial sonography in nine patients. The sonographic examination carried no particular risk and caused little discomfort. Images PMID:1412103

  11. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. PMID:25809111

  12. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  13. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  14. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  15. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  16. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  17. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  18. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  19. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  20. ACDOS2: an improved neutron-induced dose rate code

    SciTech Connect

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  1. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  2. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  3. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  4. Impact of Surface Curvature on Dose Delivery in Intraoperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Oh, Moonseong Wang Zhou; Malhotra, Harish K.; Jaggernauth, Wainwright; Podgorsak, Matthew B.

    2009-04-01

    In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas ({<=} 5 catheters) but, interestingly, the dose error was negligible for large treated areas (>5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.

  5. Solar modulation of dose rate onboard the Mir station.

    PubMed

    Badhwar, G D; Shurshakov, V A; Tsetlin, V V

    1997-12-01

    Models of the radiation belts that are currently used to estimate exposure for astronauts describe the environment at times of either solar minimum or solar maximum. Static models, constructed using data acquired prior to 1970 during a solar cycle with relatively low solar radio flux, have flux uncertainties of a factor of two to live and dose-rate uncertainties of a factor of about two. The inability of these static models to provide a dynamic description of the radiation belt environment limits our ability to predict radiation exposures for long-duration missions in low earth orbits. In an attempt to add some predictive capability of these models, we studied the measured daily absorbed dose rate on the Mir orbital station over roughly the complete 22nd solar cycle that saw some of the highest solar flux values in the last 40 y. We show that the daily trapped particle dose rate is an approximate power law function of daily atmospheric density. Atmospheric density values are in turn obtained from standard correlation with observed solar radio noise flux. This correlation improves, particularly during periods of high solar activity, if the density at roughly 400 days earlier time is used. This study suggests the possibility of a dose- and flux-predictive trapped-belt model based on atmospheric density. PMID:11542263

  6. Simulator training for endobronchial ultrasound: a randomised controlled trial.

    PubMed

    Konge, Lars; Clementsen, Paul Frost; Ringsted, Charlotte; Minddal, Valentina; Larsen, Klaus Richter; Annema, Jouke T

    2015-10-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is very operator dependent and has a long learning curve. Simulation-based training might shorten the learning curve, and an assessment tool with solid validity evidence could ensure basic competency before unsupervised performance.A total of 16 respiratory physicians, without EBUS experience, were randomised to either virtual-reality simulator training or traditional apprenticeship training on patients, and then each physician performed EBUS-TBNA procedures on three patients. Three blinded, independent assessor assessed the video recordings of the procedures using a newly developed EBUS assessment tool (EBUSAT).The internal consistency was high (Cronbach's α=0.95); the generalisability coefficient was good (0.86), and the tool had discriminatory ability (p<0.001). Procedures performed by simulator-trained novices were rated higher than procedures performed by apprenticeship-trained novices: mean±sd are 24.2±7.9 points and 20.2±9.4 points, respectively; p=0.006. A pass/fail standard of 28.9 points was established using the contrasting groups method, resulting in 16 (67%) and 20 (83%) procedures performed by simulator-trained novices and apprenticeship-trained novices failing the test, respectively; p<0.001.The endobronchial ultrasound assessment tool could be used to provide reliable and valid assessment of competence in EBUS-TBNA, and act as an aid in certification. Virtual-reality simulator training was shown to be more effective than traditional apprenticeship training. PMID:26160875

  7. Endobronchial biopsies on aspirin and prasugrel.

    PubMed

    Harris, Kassem; Kebbe, Jad

    2015-06-01

    Patients are generally required to stop antiplatelet therapy prior to elective invasive procedures. Some patients receive dual antiplatelet therapy for recent vascular procedures such as drug-eluting coronary stenting, and early discontinuation of antiplatelet agents could lead to a significant risk of stent thrombosis. Most bronchoscopic procedures are performed on patients using Aspirin but not on those using Clopidogrel or Prasugrel. In this report, we describe a unique case of a patient with a recent placement of drug-eluting stents, who required endobronchial biopsies for evaluation of lung cancer recurrence. The procedure was performed successfully and safely with no complications. PMID:25697386

  8. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  9. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  10. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  11. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  12. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect

    CARLSON, A.B.

    1999-02-24

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  13. Charged particle radiation environment for the LST. [measuring charged particle dose rates

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Burrell, M. O.; Wright, J. J.

    1974-01-01

    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day.

  14. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  15. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  16. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-03-15

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses {>=}70 Gy may compensate the effect of close margins {>=}1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses {<=}50 Gy with PHDRB alone.

  17. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    SciTech Connect

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K. |; Powell, Matthew A. |; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran |; Grigsby, Perry W. |||. E-mail: pgrigsby@wustl.edu

    2007-02-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group.

  18. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    PubMed Central

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  19. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    PubMed

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  20. Endobronchial lipoma: a rare cause of bronchial occlusion.

    PubMed

    Triviño, Ana; Mora-Cabezas, Montserrat; Vallejo-Benitez, Ana; García-Escudero, Antonio; González-Cámpora, Ricardo

    2013-11-01

    Endobronchial lipoma is a rare benign neoplasm of the tracheobronchial tree. Despite its benign nature, associated endoluminal polypoid growth can cause bronchial occlusion. In this paper, we present the consequences of a late diagnosis of this condition. PMID:23680317

  1. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved. PMID:22074737

  2. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  3. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  4. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  5. The Dose Rate Conversion Factors for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-13

    In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is

  6. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  7. Optimized source selection for intracavitary low dose rate brachytherapy

    SciTech Connect

    Nurushev, T.; Kim, Jinkoo

    2005-05-01

    A procedure has been developed for automating optimal selection of sources from an available inventory for the low dose rate brachytherapy, as a replacement for the conventional trial-and-error approach. The method of optimized constrained ratios was applied for clinical source selection for intracavitary Cs-137 implants using Varian BRACHYVISION software as initial interface. However, this method can be easily extended to another system with isodose scaling and shaping capabilities. Our procedure provides optimal source selection results independent of the user experience and in a short amount of time. This method also generates statistics on frequently requested ideal source strengths aiding in ordering of clinically relevant sources.

  8. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  9. Two cases of endobronchial aspergilloma with lung cancer: a review the literature of endobronchial aspergilloma with underlying malignant lesions of the lung

    PubMed Central

    Jiang, Shenghua; Jiang, Luning; Shan, Fenglian; Zhang, Xiulian; Song, Ming

    2015-01-01

    Endobronchial aspergilloma is a rare disease entity with pulmonary involvement of aspergillus. Few cases of endobronchial aspergilloma associated with malignant lesions have been reported in the literature. We present 2 more cases of endobronchial aspergilloma with underlying lung cancer. And summarize the published literatures to investigate the clinical manifestations, bronchoscopic characters, imaging performances in patients with endobronchial aspergilloma with underlying malignant lesions of the lung. A review of the literature reveals 8 cases of endobronchial aspergilloma with coexisting lung malignant lesions upon presentation. The medical details of the patients including age, sex, clinical symptoms, radiological manifestations bronchoscopic characters, diagnosis and treatment are summarized. Endobronchial aspergilloma is usually incidentally detected in patients with underlying lung disease. With the increasing popularity of flexible bronchoscopy, it is being recognized as a necrotic mass causing bronchial obstruction. We should be paid more attention to prevent misdiagnosis of combined endobronchial aspergilloma and lung malignant diseases. PMID:26629257

  10. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  11. Metabolically consistent breathing rates for use in dose assessments

    SciTech Connect

    Layton, D.W. )

    1993-01-01

    Assessments of doses resulting from exposures to airborne gases and particles are based almost exclusively on inhalation rates that are inconsistent with the quantities of oxygen needed to metabolize dietary intakes of fats, carbohydrates, and protein. This inconsistency leads to erroneous estimates of inhalation exposures and can distort the relative importance of inhalation and ingestion-based exposures to environmental contaminants that are present in foods, air, and water. As a means of dealing with this problem, a new methodology for estimating breathing rates is presented that is based on the oxygen uptake associated with energy expenditures and a ventilatory equivalent that relates minute volume to oxygen uptake. Three alternative energy-based approaches for estimating daily inhalation rates are examined: (1) average daily intakes of food energy from dietary surveys, adjusted for under reporting of foods; (2) average daily energy expenditure calculated from ratios of total daily expenditure to basal metabolism; and (3) daily energy expenditures determined from a time-activity survey. Under the first two approaches, inhalation rates for adult females in different age cohorts ranged from 9.7 to 11 m3 d-1, whereas for adult males the range was 13 to 17 m3 d-1. Inhalation rates for adults determined from activity patterns were higher (i.e., 13 to 18 m3 d-1), however, those rates were shown to be quite sensitive to the energy expenditures used to represent light and sedentary activities. In contrast to the above estimates, the ICRP 23 reference values for adult females and males are 21 and 23 m3 d-1 (Snyder et al. 1975). Finally, the paper provides a technique for determining the short-term breathing rates of individuals based on their basal metabolic rate and level of physical activity.

  12. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  13. Modifications to SAS4 to provide cask dose rate profiles

    SciTech Connect

    Napolitano, D.G.; Sweezy, J.E.; Henkel, C.S.

    1997-12-01

    SAS4 of the SCALE code system has been used extensively by NAC International (NAC) to perform storage and transport cask shielding analyses. SAS4 utilizes a one-dimensional XSDRNPM adjoint calculation of the cask to generate biasing parameters for a three-dimensional MORSE-SGC Monte Carlo model of the cask geometry. This technique is very efficient in getting particles to tally at the cask exterior surfaces. However, SAS4/MORSE-SGC is limited to the use of point detectors (next-event estimators) and large surface detectors (surface-crossing estimators). Modifications to SAS4 were made to allow a more flexible use of the surface detectors. This modification allows multiple nonoverlapping surface detectors on each surface and allows each surface detector to be broken into subdetectors. The use of subdetectors enables the user to obtain detailed surface dose rate profiles. Tallies can now be performed on all surfaces of the cask and at user-specified distances from the cask surface. The subdetectors provide an alternative to point detectors and excessive computational time. The NAC version of SAS4 is called SAS4A. A comparison of CPU time and dose rates is made between SAS4 point detectors and SAS4A surface subdetection on the NLI {1/2} transport cask.

  14. Effects of dose rate on microsturctural evolution and swelling in austenitic steels under irradiation

    NASA Astrophysics Data System (ADS)

    Okita, T.; Kamada, T.; Sekimura, N.

    2000-12-01

    Effects of dose rate on microstructural evolution in a simple model austenitic ternary alloy are examined. Annealed specimens are irradiated with fast neutrons at several positions in the core and above core in FFTF/MOTA between 390°C and 435°C in a wide range of doses and dose rates. In Fe-15Cr-16Ni, swelling seems to increase linearly with dose without incubation dose. Cavities are observed even in the specimens irradiated to 0.07 dpa at 1.9×10-9 dpa/s. Both cavity nucleation and growth are enhanced by low dose rates. These are mainly caused by accelerated formation of dislocation loops at lower dose rates. Low dose rates enhance swelling by shortening incubation dose for the onset of steady-state swelling. In the specimens irradiated at higher dose rates to higher doses, high density of dislocation increases average cavity diameter, however decreases cavity density.

  15. Guidance on Dose Rate Measurements for Use in Dose-to-Curie Conversions

    SciTech Connect

    Howell, R.S.

    2000-09-05

    The dose-to-curie (DTC) methodology used at SRS was developed in early 1994 by Health Physics Technology (HPT) for inclusion in the Site Waste Information Tracking System (WITS). DTC is used to estimate the nuclide activity in a waste container based on the measured dose rate from the container. The DTC method is a simple and easy to apply method that can provide a reasonable estimate of the container activity by nuclide when properly applied. In order to make the method practical, numerous assumptions had to be made and limitations placed on its use. Many of these assumptions and limitations can only be procedurally controlled and must be well understood by these individuals in order to assure proper application numerous the method. These limitations are addressed in this report.

  16. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing

    NASA Astrophysics Data System (ADS)

    Deist, T. M.; Gorissen, B. L.

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  17. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    PubMed

    Deist, T M; Gorissen, B L

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data. PMID:26760757

  18. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.

    PubMed

    Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna

    2016-01-01

    Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB. PMID:26235549

  19. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  20. Endobronchial interstitial brachytherapy using a bronchofiberscope with a flexible injector system

    SciTech Connect

    Mittal, B.B.; Matuschak, G.; Culpepper, J.

    1984-07-01

    A new flexible implantation system for endobronchial brachytherapy is described. This system was used to implant Au-198 seeds in the endobronchial tumors of two patients; discomfort and morbidity were minimal. The flexible injector system may be an improvement over the rigid system for endobronchial implantation in most patients.

  1. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered

  2. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  3. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  4. High-dose-rate brachytherapy in uterine cervical carcinoma

    SciTech Connect

    Patel, Firuza D. . E-mail: patelfd@glide.net.in; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-05-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  5. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    NASA Astrophysics Data System (ADS)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-03-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.

  6. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  7. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor. PMID:20338871

  8. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  9. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  10. Endobronchial Ultrasound Bronchoscopy to the Heart of the Matter.

    PubMed

    Palamidas, Anastasios F; Rosendahl, Ulrich; Shah, Pallav L

    2016-01-01

    Endobronchial ultrasound has been one of the success stories of the last decade, and the utility of the procedure continues to expand. Originally, it was developed for the staging and diagnosis of lung cancer, but its use rapidly expanded to other malignancies and even benign disease. We present the case of a patient originally referred with suspected endocarditis who was found to have a mass involving the right ventricle and the pulmonary outflow tract. Endobronchial ultrasound-guided biopsy was used to obtain a tissue diagnosis from the cardiac mass. PMID:27548703

  11. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  12. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  13. Retrospective dosimetric comparison of low-dose-rate and pulsed-dose-rate intracavitary brachytherapy using a tandem and mini-ovoids.

    PubMed

    Mourtada, Firas; Gifford, Kent A; Berner, Paula A; Horton, John L; Price, Michael J; Lawyer, Ann A; Eifel, Patricia J

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ((192)Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ((137)Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the (137)Cs and (192)Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% +/- 1% and 6% +/- 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% +/- 3% lower than the LDR dose, mainly because of the (192)Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% +/- 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers. PMID:17707197

  14. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    SciTech Connect

    Mourtada, Firas Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-10-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ({sup 192}Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ({sup 137}Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the {sup 137}Cs and {sup 192}Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% {+-} 1% and 6% {+-} 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% {+-} 3% lower than the LDR dose, mainly because of the {sup 192}Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% {+-} 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.

  15. Measurement of patient entrance surface dose rates for fluoroscopic x-ray units.

    PubMed

    Martin, C J

    1995-05-01

    Measurements of patient entrance surface dose rate provide valuable data for interpreting results from dose-area product studies on fluoroscopic x-ray equipment. Methods for measurement of entrance surface dose rate with backscatter and incident dose rate without backscatter have been investigated. Entrance surface dose rate is measured with an ionization chamber in contact with a tissue-equivalent phantom. Backscattered radiation contributes 27-45% to the measurement and is affected by field size and chamber position. Incident dose rate measured using a copper phantom provides an alternative approach. Consistent relationships between thicknesses of Perspex and copper giving similar incident dose rates under automatic gain control have been established for different tube potentials with and without a grid. This allows measurements of incident dose rate made using copper to be linked to corresponding thicknesses of tissue-equivalent material. Since only a few millimetres of copper are required, contributions from backscatter can be minimized and transport of phantoms is simplified. Incident dose can be related to dose-area product and entrance surface dose derived using backscatter factors. Such measurements play a valuable role in interpreting patient dose data and recommending options to reduce patient dose. PMID:7652010

  16. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines.

    PubMed

    Gridley, D S; Pecaut, M J; Miller, G M; Moyers, M F; Nelson, G A

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements. PMID:11491015

  17. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  18. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  19. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  20. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  1. Evaluation of High Performance Converters Under Low Dose Rate Total Ionizing Dose (TID) Testing for NASA Programs

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Sahu, Kusum

    1998-01-01

    This paper reports the results of low dose rate (0.01-0.18 rads(Si)/sec) total ionizing dose (TID) tests performed on several types of high performance converters. The parts used in this evaluation represented devices such as a high speed flash converter, a 16-bit ADC and a voltage-to-frequency converter.

  2. Design of the Endobronchial Valve for Emphysema Palliation Trial (VENT): a non-surgical method of lung volume reduction

    PubMed Central

    Strange, Charlie; Herth, Felix JF; Kovitz, Kevin L; McLennan, Geoffrey; Ernst, Armin; Goldin, Jonathan; Noppen, Marc; Criner, Gerard J; Sciurba, Frank C

    2007-01-01

    Background Lung volume reduction surgery is effective at improving lung function, quality of life, and mortality in carefully selected individuals with advanced emphysema. Recently, less invasive bronchoscopic approaches have been designed to utilize these principles while avoiding the associated perioperative risks. The Endobronchial Valve for Emphysema PalliatioN Trial (VENT) posits that occlusion of a single pulmonary lobe through bronchoscopically placed Zephyr® endobronchial valves will effect significant improvements in lung function and exercise tolerance with an acceptable risk profile in advanced emphysema. Methods The trial design posted on Clinical trials.gov, on August 10, 2005 proposed an enrollment of 270 subjects. Inclusion criteria included: diagnosis of emphysema with forced expiratory volume in one second (FEV1) < 45% of predicted, hyperinflation (total lung capacity measured by body plethysmography > 100%; residual volume > 150% predicted), and heterogeneous emphysema defined using a quantitative chest computed tomography algorithm. Following standardized pulmonary rehabilitation, patients were randomized 2:1 to receive unilateral lobar placement of endobronchial valves plus optimal medical management or optimal medical management alone. The co-primary endpoint was the mean percent change in FEV1 and six minute walk distance at 180 days. Secondary end-points included mean percent change in St. George's Respiratory Questionnaire score and the mean absolute changes in the maximal work load measured by cycle ergometry, dyspnea (mMRC) score, and total oxygen use per day. Per patient response rates in clinically significant improvement/maintenance of FEV1 and six minute walk distance and technical success rates of valve placement were recorded. Apriori response predictors based on quantitative CT and lung physiology were defined. Conclusion If endobronchial valves improve FEV1 and health status with an acceptable safety profile in advanced emphysema

  3. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    PubMed

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-01

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications. PMID:20160695

  4. Acute Scedosporium apiospermum Endobronchial Infection in Cystic Fibrosis.

    PubMed

    Padoan, Rita; Poli, Piercarlo; Colombrita, Domenico; Borghi, Elisa; Timpano, Silviana; Berlucchi, Marco

    2016-06-01

    Fungi are known pathogens in cystic fibrosis patients. A boy with cystic fibrosis boy presented with acute respiratory distress. Bronchoscopy showed airways obstruction by mucus plugs and bronchial casts. Scedosporium apiospermum was identified as the only pathogen. Bronchoalveolar lavage successfully resolved the acute obstruction. Plastic bronchitis is a new clinical picture of acute Scedosporium endobronchial colonization in cystic fibrosis patients. PMID:26967814

  5. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  6. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  7. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  8. Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients

    PubMed Central

    Liu, Lin L.; Li, Fei; Pao, William; Michor, Franziska

    2015-01-01

    Background The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance. Methods We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies. Results We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration. Conclusions For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes. PMID:26536620

  9. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Astrophysics Data System (ADS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm 2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  10. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  11. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. PMID:12539753

  12. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-01

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804

  13. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  14. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  15. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  16. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  17. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1). PMID:25944962

  18. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.

    PubMed

    Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki

    2015-11-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. PMID:25953794

  19. Study of the dose rate effect of 180 nm nMOSFETs

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang

    2015-01-01

    Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.

  20. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  1. Dose rate effects on the thermoluminescence properties of MWCVD diamond films

    NASA Astrophysics Data System (ADS)

    Gastélum, S.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    Synthetic CVD diamond, being non-toxic and tissue equivalent, has been proposed as a ionizing radiation passive dosimeter with relevant applications in radiotherapy and clinical dosimetry. In the present work, the thermoluminescence (TL) properties of microwave-assisted chemical vapor deposition (MWCVD) diamond, 6 μm thick film grown on (100) silicon substrates, were studied after room temperature γ-irradiation for 2.4, 3.1, 5.94, 13.1, 20.67, 43.4 and 81.11 Gy min-1 dose rates in the range of 0.05-10 kGy. At fixed irradiation dose the TL efficiency increases as the dose rate increases. As the dose increases the peak temperature at the maximum intensity of the TL glow curve is shifted about 10 K degrees toward the lower temperature side. The TL glow curve shape resembles first-order kinetics for low-radiation doses and second-order kinetics for higher doses. Linear dose behavior was found for doses below 200 Gy and supralinear for higher doses; respectively, with a significant dependence on the dose rate, reaching saturation for higher doses around 2.0 kGy. Due to the dose rate dependence of the TL properties of the CVD diamond sample, it is necessary to take these effects into consideration for dosimetric applications involving synthetic CVD diamond.

  2. 'In Vivo' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    SciTech Connect

    Gonzalez-Azcorra, S. A.; Ruiz-Trejo, C.; Buenfil, A. E.; Mota-Garcia, A.; Poitevin-Chacon, M. A.; Santamaria-Torruco, B. J.; Rodriguez-Ponce, M.; Herrera-Martinez, F. P.; Gamboa de Buen, I.

    2008-08-11

    In this prospective study, rectal dose was measured 'in vivo' using TLD-100 crystals (3x3x1 mm{sup 3}), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerologia (INCan)

  3. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  4. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  5. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  6. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  7. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  8. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. PMID:27400663

  9. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  10. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  11. Enhanced charge trapping in bipolar spacer oxides during low-dose-rate irradiation

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Nowlin, R.N.; Pease, R.L.; DeLaus, M.

    1994-03-01

    Thermally-stimulated-current and capacitance-voltage measurements reveal enhanced hole trapping in bipolar spacer-oxide capacitors irradiated at 0 V at low dose rates. Possible mechanisms and implications for bipolar low-rate response are discussed.

  12. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  13. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  14. Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers.

    PubMed

    Gilard, Olivier; Thomas, Jérémie; Troussellier, Laurent; Myara, Mikhael; Signoret, Philippe; Burov, Ekaterina; Sotom, Michel

    2012-05-01

    A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity. PMID:22614396

  15. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation

    SciTech Connect

    Barrett, A.; Depledge, M.H.; Powles, R.L.

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to <0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  16. Application of MCNP{trademark} to storage facility dose rate assessment

    SciTech Connect

    Urban, W.T.; Roberts, R.R.; Estes, G.P.; Taylor, W.M.

    1996-12-31

    The MCNP code is widely used in the determination of neutral particle dose rate analyses. In this paper we examine the application of MCNP to several storage facilities containing special nuclear material, SNM, wherein the neutron dose rate is the primary quantity of interest. In particular, we describe the special geometry, modeling assumptions, and physics considerations encountered in each of three applications.

  17. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  18. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  19. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  20. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D. C.

    1980-01-01

    This paper describes recent modifications of the computer code DOSFACTER, which was developed for the purpose of estimating dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides dispersed in the environment. The modifications and additions which have been made to the calculations outlined above include the following: (1) calculation of electron dose-rate factors for radiosensitive portions of the skin; (2) incorporation of improved estimates of organ dose-rate factors for photons; and (3) calculation of dose-rate factors for additional radio nuclides and incorporation of updated radioactive decay data for all radionuclides. The revised dose-rate factors described in this paper are available upon request from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  1. Neutron and photon effective dose equivalent rate calculations for the repackaging of tru waste

    SciTech Connect

    Sattelberger, J. A.

    2002-01-01

    Neutron and photon effective dose equivalent rates were estimated for operations that will occur in the characterization and repackaging of transuranic (TRU) waste drums. These activities will be performed in structures called Mobile Units (MU). A MU is defined as a modular and transportable container, also called a transportainer. The transportainers have been designed to house a process required for certification of TRU wastes. The purpose of these calculations was to provide dose rates from Pu-238 TRU waste in various locations in the transportainer using MCNP-4C. In addition to dose rates for the various radiological operations in the repackaging area, the dose rate from the adjacent storage area was calculated to determine the contribution to the total dose rate.

  2. Correlation between indoor radon concentration and dose rate in air from terrestrial gamma radiation in Japan.

    PubMed

    Fujimoto, K

    1998-09-01

    A correlation between the indoor radon concentration and dose rate in air from terrestrial gamma radiation is studied using the results of nationwide indoor radon and external exposure surveys, although the surveys were not conducted at the same time nor at the same location. The radon concentration shows a log-normal-like distribution, whereas the terrestrial gamma radiation dose rate in air shows a normal-like distribution. A log-linear scatterplot for each pair of the indoor radon concentration and gamma-ray dose rate in air in each city reveals a clear relationship. The average, maximum, and minimum as well as regression line of radon concentration were found to increase with the gamma-ray dose rate in air. The group in higher quantile of radon concentration shows larger dependence on the gamma-ray dose rate. The rate of increase of radon concentration with the gamma-ray dose rate in air depends on the house structure. The wooden house has a larger rate of increase than the concrete house, and the regression lines cross at high air dose rate. Based on the finding in the present study a certain criterion level of air dose rate could be established and used for an effective survey to find out which houses might require a remedial action in conjunction with other screening tools. The criterion level of air dose rate might be more effective if the level is set for each house structure since the rate of increase of radon concentration depends on house structure. PMID:9721838

  3. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  4. Convex probe endobronchial ultrasound: applications beyond conventional indications

    PubMed Central

    Li, Peng; Zheng, Wei

    2015-01-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is maturing and gaining acceptance by more and more clinicians for lymph node staging of lung cancer and diagnosis of mediastinal and hilar masses or lymph node enlargement by convex probe endobronchial ultrasound (CP-EBUS). The application of CP-EBUS, however, is not limited to conventional indications. Diagnostically, elastography is a new technology for the differentiation of benign and malignant lymph nodes before aspiration. CP-EBUS can also be used for pulmonary vascular diseases, such as pulmonary embolism (PE) and non-thrombotic endovascular lesions (NELs). Therapeutically, CP-EBUS can be used for cyst drainage and drug injections. CP-EBUS is not limited to observation and aspiration of mediastinal masses and lymph nodes, but is also suitable for exploration of other tissues external to the central airway, which necessitates unprecedented skills for the bronchoscopist. PMID:26543618

  5. Giant endobronchial hamartoma resected by fiberoptic bronchoscopy electrosurgical snaring

    PubMed Central

    2011-01-01

    Less than 1% of lung neoplasms are represented by benign tumors. Among these, hamartomas are the most common with an incidence between 0.025% and 0.32%. In relation to the localization, hamartomas are divided into intraparenchymal and endobronchial. Clinical manifestation of an endobronchial hamartoma (EH) results from tracheobronchial obstruction or bleeding. Usually, EH localizes in large diameter bronchus. Endoscopic removal is usually recommended. Bronchotomy or parenchimal resection through thoracotomy should be reserved only for cases where the hamatoma cannot be approached through endoscopy, or when irreversible lung functional impairment occurred after prolonged airflow obstruction. Generally, when endoscopic approach is used, this is through rigid bronchoscopy, laser photocoagulation or mechanical resection. Here we present a giant EH occasionally diagnosed and treated by fiberoptic bronchoscopy electrosurgical snaring. PMID:21838930

  6. A rare case of fibrostenotic endobronchial tuberculosis of trachea

    PubMed Central

    Cary, Cassiopia; Jhajj, Manjit; Cinicola, John; Evans, Richard; Cheriyath, Pramil; Gorepatti, Venaka

    2015-01-01

    Endobronchial tuberculosis (EBTB) is a sequelae of pulmonary tuberculosis (TB) that extends to the endobronchial or endotracheal wall causing inflammation, edema, ulceration, granulation or fibrosis of mucosa and submucosa. This case depicts a 20 year old foreign-born woman with a history of active pulmonary TB on anti-TB chemotherapy, who presented with worsening stridor, dyspnea, cough and weight loss. The disease state was diagnosed with multiple modalities including, spirometry, CT scan of the neck, and bronchoscopy. The biopsies of the tracheal web revealed fibrotic tissue without any granulomas or malignancy establishing the diagnosis of EBTB. Serial balloon dilations and anti-neoplastic therapy with Mitomycin C was used to accomplish sufficient airway patency to relieve her symptoms. ETBT is a rare consequence of TB, which although has a low incidence in the United States, so physicians should have a high clinical suspicion based on the need for prompt intervention. PMID:26779339

  7. Endobronchial Carcinoid Tumour with Extensive Ossification: An Unusual Case Presentation.

    PubMed

    Osmond, Allison; Filter, Emily; Joseph, Mariamma; Inculet, Richard; Kwan, Keith; McCormack, David

    2016-01-01

    Carcinoid tumour is a well-known primary endobronchial lung neoplasm. Although calcifications may be seen in up to 30% of pulmonary carcinoid tumours, near complete ossification of these tumours is an unusual finding. Such lesions can prove diagnostically challenging at the time of intraoperative frozen section as the latter technique requires thin sectioning of the lesion for microscopic assessment. We present an unusual case of endobronchial carcinoid tumour with extensive ossification in a 45-year-old male. Preliminary intraoperative diagnosis was achieved through the alternative use of cytology scrape smears. The final diagnosis was confirmed after decalcification of the tumour. The prognostic implications of heavily ossified carcinoid tumours remain elusive. Long-term clinical follow-up of these patients is recommended. PMID:27610135

  8. Endobronchial Carcinoid Tumour with Extensive Ossification: An Unusual Case Presentation

    PubMed Central

    Filter, Emily; Joseph, Mariamma; Inculet, Richard; Kwan, Keith; McCormack, David

    2016-01-01

    Carcinoid tumour is a well-known primary endobronchial lung neoplasm. Although calcifications may be seen in up to 30% of pulmonary carcinoid tumours, near complete ossification of these tumours is an unusual finding. Such lesions can prove diagnostically challenging at the time of intraoperative frozen section as the latter technique requires thin sectioning of the lesion for microscopic assessment. We present an unusual case of endobronchial carcinoid tumour with extensive ossification in a 45-year-old male. Preliminary intraoperative diagnosis was achieved through the alternative use of cytology scrape smears. The final diagnosis was confirmed after decalcification of the tumour. The prognostic implications of heavily ossified carcinoid tumours remain elusive. Long-term clinical follow-up of these patients is recommended. PMID:27610135

  9. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  10. Endobronchial ultrasound-transbronchial needle aspiration and its practical application.

    PubMed

    Currie, G P; McKean, M E; Kerr, K M; Denison, A R; Chetty, M

    2011-08-01

    Endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) has emerged over the past decade as one of the most exciting and innovative developments in the field of respiratory medicine. This procedure allows sampling of mediastinal lymph nodes and masses in both malignant and benign disease and overcomes some of the disadvantages associated with mediastinoscopy and blind transbronchial needle aspiration. We describe the clinical use, indications for and limitations of EBUS-TBNA along with several illustrated clinical examples. PMID:21546452

  11. Endobronchial ultrasound for the detection of chronic pulmonary artery thrombus.

    PubMed

    Dhillon, Samjot Singh; Harris, Kassem

    2016-01-01

    Endobronchial ultrasound (EBUS) has been shown to be able to successfully identify acute/subacute pulmonary thromboembolism (PE). Most reported cases have required confirmation by computerized tomography (CT) angiography. This report demonstrates a case where CT angiography was not conclusive and the EBUS was useful in clarifying the chronic process inside the pulmonary artery compatible with clinical diagnosis of chronic pulmonary artery thrombosis. PMID:27503162

  12. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    PubMed Central

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  13. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    PubMed Central

    Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju

    2014-01-01

    Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166

  14. Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data.

    PubMed

    Kumagai, K; Ookubo, H; Kimura, H

    2015-11-01

    In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detector systems in the low dose rate range. The background dose rate varies mainly as a result of the deposition of (222)Rn progeny in precipitation and shielding of the ground by snow cover. Increments in the environmental dose rate due to radionuclides released from nuclear facilities must be separated from these background variations. The method in the present study corrects for the dose rate variations from natural sources by multiple regression analysis based on the γ-ray counting rates of single-channel analysers opened in the energy ranges of γ-rays emitted by (214)Bi and (208)Tl. Assuming a normal distribution of the results and using the one-sided type I error of 0.01 while ignoring the type II error, the detection limit of the γ-ray dose rate from artificial sources was 0.77 nGy h(-1). PMID:25948830

  15. On the relationship between the Martian pressure changes and the MSL/RAD dose rate variations

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Wimmer-Schweingruber, Robert; zeitlin, Cary; Rafkin, Scot; Koehler, Jan; Hassler, Donald; Ehresmann, Bent; Appel, Jan; Boehm, Eckart; Boettcher, Stephan; Brinza, David; Burmeister, Soenke; Lohf, Henning; Martin, Cesar; Posner, Arik; Reitz, Guenther

    2015-04-01

    The Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory's (MSL) rover Curiosity measures the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed the diurnal variations of the total dose rate and neutron count rate due to changes in atmospheric column mass driven by the atmospheric thermal tide tep{rafkin2014}. Variations in the dose rate are shown to be anti-correlated with the changes in atmospheric shielding, while the neutron count rate shows a positive-correlation with the changes of atmospheric pressure. We have analyzed this cyclic variations in the longer term and discovered a second-order effect of this diurnal correlation which indicates a non-linear pressure-dose rate effect. We also employed a PLANETOCOSMIC simulation which shows as well a non-linear correlation between pressure and particles fluxes on the surface of Mars.

  16. A guide to the measurement of environmental gamma-ray dose rate

    NASA Astrophysics Data System (ADS)

    Spiers, F. W.; Gibson, J. A. B.; Thompson, I. M. G.

    The performance of Geiger counters, ionization chambers, scintillators, gamma-ray spectrometers and thermoluminescence dosimeters is discussed. Cosmic, man made, and natural environmental gamma radiation is considered. Dosimeter calibration, measurement procedures, precautions which reduce errors, accuracy assessment, and the interpretation of results are covered. The calculation of dose equivalent to body organs is outlined. Levels of the annual dose equivalent received by the UK population are given. The minimum change in measured dose rate significant at the 95% confidence level as an estimate of the mean environmental dose rate is 12mrad/yr.

  17. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  18. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. PMID:26943159

  19. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  20. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations

    PubMed Central

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation. PMID:27014633

  1. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  2. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  3. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  4. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  5. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    SciTech Connect

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  6. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  7. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  8. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  9. Conventional High-Dose-Rate Brachytherapy With Concomitant Complementary IMRT Boost: A Novel Approach for Improving Cervical Tumor Dose Coverage

    SciTech Connect

    Duan, Jun; Kim, Robert Y. Elassal, Shaaban; Lin Huiyi; Shen Sui

    2008-07-01

    Purpose: To investigate the feasibility of combining conventional high-dose-rate (HDR) brachytherapy with a concomitant complementary intensity-modulated radiotherapy (IMRT) boost for improved target coverage in cervical cancers. Methods and Materials: Six patients with cervical cancer underwent conventional HDR (C-HDR) treatment. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired with a CT/MRI-compatible applicator in place. The clinical target volumes (CTVs), defined as the gross target volume with a 3-mm margin and the uterus, were delineated on the CT scans, along with the organs at risk (OARs). The IMRT plans were optimized to generate dose distributions complementing those of C-HDR to cover the CTV while maintaining low doses to the OARs (IMRT-HDR). For comparison, dwell-weight optimized HDR (O-HDR) plans were also generated to cover the CTV and spare the OARs. The three treatment techniques (C-HDR, O-HDR, and IMRT-HDR) were compared. The percentage of volume receiving 95% of the prescription dose (V{sub 95}) was used to evaluate dose coverage to the CTV, and the minimal doses in the 2.0-cm{sup 3} volume receiving the greatest dose were calculated to compare the doses to the OARs. Results: The C-HDR technique provided very poor CTV coverage in 5 cases (V{sub 95} <62%). Although O-HDR provided excellent gross tumor volume coverage (V{sub 95} {>=}96.9%), it resulted in unacceptably high doses to the OARs in all 6 cases and unsatisfactory coverage to the whole CTV in 3 cases. IMRT-HDR not only yielded substantially improved CTV coverage (average V{sub 95} = 95.3%), but also kept the doses to the bladder and rectum reasonably low. Conclusion: Compared with C-HDR and O-HDR, concomitant IMRT boost complementary to C-HDR not only provided excellent CTV coverage, but also maintained reasonably low doses to the OARs.

  10. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  11. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6 Gy min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62  ±  1)% within approximately 20 h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  12. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  13. Extension of a generalized state-vector model of radiation carcinogenesis to consideration of dose rate

    SciTech Connect

    Crawford-Brown, D.J. ); Hofmann, W. )

    1993-06-01

    Mathematical models for radiation carcinogenesis typically employ transition rates that either are a function of the dose to specific cells or are purely empirical constructs unrelated to biophysical theory. These functions either ignore or do not explicitly model interactions between the fates of cells in a community. This paper extends a model of mitosis, cell transformation, promotion, and progression to cases in which interacting cellular communities are irradiated at specified dose rates. The model predicts that lower dose rates are less effective at producing cancer when irradiation is by X- or gamma rays but are generally more effective in instances of irradiation by alpha particles up to a dose rate in excess of 0.01 Gy/day. The resulting predictions are compared with existing experimental data. 39 refs., 9 figs., 1 tab.

  14. Indoor Gamma Dose Rates In Kuwait Using Handheld Gamma-ray Spectrometer.

    PubMed

    Al-Azmi, Darwish

    2016-07-01

    A survey of indoor gamma dose rates was carried out in Kuwait using a NaI dosimeter/spectrometer. The measurements started from May 2013 until April 2015 and covered different locations within 200 dwellings: 158 halls, 26 rooms, 17 basements, and 43 kitchens (total of 244 locations). Alongside the dose rate measurements, gamma-ray spectra were also acquired to evaluate the relative contributions of K, Bi, and Tl and check the presence of Cs. The results show that the dose rates for all locations varied from 39.3 to 103.3 nSv h with a mean of 70.6 nSv h, indicating that the indoor dose rates are low and within the normal range. PMID:27218289

  15. An Interactive Point Kernel Program For Photon Dose Rate Prediction of Cylindrical Source/Shield Arrangements.

    Energy Science and Technology Software Center (ESTSC)

    1990-10-26

    Version 00 The program ZYLIND is an interactive point kernel program for photon dose rate prediction of a homogeneous cylindrical source shielded by cylindrical (radial) or plane (axial) layered shields.

  16. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  17. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  18. External dose rate in Unirea salt mine, Slanic-Prahova, Romania.

    PubMed

    Margineanu, R M; Apostu, A M; Duliu, O G; Bercea, S; Gomoiu, C M; Cristache, C I

    2009-05-01

    The distribution of the external dose rate within the former Unirea salt mine, host of the Low-Level Background Laboratory was determined and compared with calculated values based on the experimentally determined content of natural radioactive elements in the mine walls. The average external dose rate was found to be 1.3+/-0.3 nSv h(-1), close to calculated one of 1.4+/-0.2 nSv h(-1). PMID:19231217

  19. A dosimetric study on the Ir-192 high dose rate flexisource.

    PubMed

    Granero, D; Pérez-Calatayud, J; Casal, E; Ballester, F; Venselaar, J

    2006-12-01

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained. PMID:17278809

  20. A dosimetric study on the Ir-192 high dose rate Flexisource

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Casal, E.; Ballester, F.; Venselaar, J.

    2006-12-15

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained.

  1. Numerical calculation of relative dose rates from spherical 106Ru beta sources used in ophthalmic brachytherapy

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.

  2. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate. PMID:23147566

  3. Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, Kazumasa; Tsuruoka, Hiroshi; Van Le, Tan; Arai, Moeko; Saito, Kyoko; Fukushi, Masahiro

    2016-07-01

    A car-borne survey was made in metropolitan Tokyo, Japan, in December 2014 to estimate external dose. This survey was conducted for all municipalities of Tokyo and the results were compared with measurements done in 2003. The ambient dose rate measured in the whole area of Tokyo in December 2014 was 60 nGy h(-1) (23-142 nGy h(-1)), which was 24% higher than the rate in 2003. Higher dose rates (>70 nGy h(-1)) were observed on the eastern and western ends of Tokyo; furthermore, the contribution ratio from artificial radionuclides ((134)Cs and (137)Cs) to ambient dose rate in eastern Tokyo was twice as high as that of western Tokyo. Based on the measured ambient dose rate, the effective dose rate after the accident was estimated to be 0.45 μSv h(-1) in Tokyo. This value was 22% higher than the value before the accident as of December 2014. PMID:27055250

  4. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  5. Measurement of dosimetric parameters for the Alpha-Omega high-dose-rate Iridium-192 source

    SciTech Connect

    Muller-Runkel, R. . E-mail: renate.muller@ssfhs.org

    2005-09-30

    Thermoluminescent (TLD) measurements of dose-rate constant, anisotropy function, and radial dose function are reported for the Alpha-Omega high dose rate (HDR) Iridium-192 ({sup 192}Ir) source, which has been available since 1998 for use in the MicroSelectron HDR afterloader manufactured by the Nucletron Corporation. Measurement results are compared with published or available Monte Carlo calculations for both sources. They are found in good agreement, and, within experimental accuracy, no difference is seen in the dosimetric parameters of both sources.

  6. On-site gamma dose rates at the Andreeva Bay shore technical base, northwest Russia.

    PubMed

    Reistad, O; Dowdall, M; Standring, W J F; Selnaes, Ø G; Hustveit, S; Steinhusen, F; Sørlie, A

    2008-07-01

    The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity. PMID:18243437

  7. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  8. Rates of Change in Naturalistic Psychotherapy: Contrasting Dose-Effect and Good-Enough Level Models of Change

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Berkeljon, Arjan; Atkins, David C.; Olsen, Joseph A.; Nielsen, Stevan L.

    2009-01-01

    Most research on the dose-effect model of change has combined data across patients who vary in their total dose of treatment and has implicitly assumed that the rate of change during therapy is constant across doses. In contrast, the good-enough level model predicts that rate of change will be related to total dose of therapy. In this study, the…

  9. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  10. Effect of Radiocesium Transfer on Ambient Dose Rate in Forest Environment

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Hisadome, Keigo; Kawamori, Ayumi

    2014-05-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Daiichi nuclear power plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (beech with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). In decreasing order of total Cs-137 deposition from the canopy to forest floor were the mature cedar stand, the young cedar stand, and the broad-leaved forest. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied by forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rates at the canopy (approx. 10 m-) decreased earlier than physical attenuation of radiocesium, whereas those at the forest floor varied among three forest stands. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor.

  11. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  12. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  13. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGESBeta

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  14. Bronchoscopic debulking for endobronchial malignancy: Predictors of recanalization and recurrence

    PubMed Central

    Kuo, Scott Chih-Hsi; Lo, Yu-Lun; Chou, Chun-Liang; Chung, Fu-Tsai; Lin, Shu-Min; Liu, Chien-Ying; Kuo, Han-Pin

    2015-01-01

    Background Central airway obstruction related to endobronchial malignancy is one of the most difficult oncological complications and requires efficient palliative intervention. Methods Fifty-three consecutive patients with unresectable endobronchial malignancy receiving bronchoscopic cryotherapy as palliative treatment were retrospectively reviewed. Efficiency was evaluated by the improvement of performance status (PS), and the best achievement of tumor removal was assessed as complete or partial removal. Result Patients’ PS after cryotherapeutic tumor removal improved from the baseline PS (P = 0.006). In multivariate logistic regression analysis, the compression part of the tumor (odds ratio [OR] 0.42; 95% confidence interval [CI] 0.23∼0.75, P = 0.004) and the thin tumor stalk (OR 87.86; 95% CI 2.31∼3337.37, P = 0.016) were independent predictors of complete tumor removal. Tumors larger than 9.3 cm, including compression and invasion parts, had the highest odds of being only partially removed (positive predictive value [PPV]: 88.2%, likelihood ratio [LR]+: 10.49); tumors smaller than 9.3 cm were likely to be completely removed (negative predictive value [NPV]: 80.6%, LR−: 0.34). After cryotherapy, re-obstruction was significantly associated with non-squamous cell carcinoma (65.7 vs. 16.7%, P = 0.001) and patients who had longer overall survival (11.7 vs. 1.5 months, P < 0.001). Odds of tumor re-obstruction increased 2.28-fold (PPV: 81.6%, LR+: 2.28) beyond two months; the odds decreased by 81% (NPV: 73.3%, LR−: 0.19) within two months. Conclusion Debulking of a tumor using cryotherapy is a useful palliative treatment for endobronchial obstruction secondary to a variety of malignancies. PMID:26557910

  15. Endobronchial ultrasound for mediastinal staging in lung cancer patients.

    PubMed

    Guarize, Juliana; Pardolesi, Alessandro; Donghi, Stefano; Filippi, Niccolò; Casadio, Chiara; Midolo, Valeria; Petrella, Francesco; Spaggiari, Lorenzo

    2014-01-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has changed the way mediastinal staging is performed in lung cancer patients. EBUS-TBNA is probably the most important non-invasive procedure for mediastinal staging and the currently preferred approach in many reference cancer centres worldwide. EBUS-TBNA is a less invasive technique than mediastinoscopy with low morbidity and no mortality and can be performed in an outpatient setting with excellent results. This study describes the technical aspects of EBUS-TBNA and our personal experience with the procedure. PMID:25332380

  16. Endobronchial lipoma: two cases and review of the literature.

    PubMed Central

    Cockcroft, D. W.; Copland, G. M.; Donevan, R. E.; Gourlay, R. H.

    1976-01-01

    Endobronchial lipoma is a benign tumour of the large bronchi occurring in middle-aged men. To the 38 successfully treated cases in the English literature a further 2 are added. The symptoms are those of obstructive pneumonitis mimicking bronchogenic carcinoma, and the result of delayed therapy may be bronchiectasis. Treatment includes local resection through a bronchoscope or a bronchotomy incision, or removal, if necessary, of the obstructed lobe or lung at thoracotomy. Smoking may be important in the pathogenesis of this tumour. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 PMID:953901

  17. Endobronchial ultrasound: an unusual diagnostic tool for pulmonary embolism.

    PubMed

    Sariaydin, Muzaffer; Günay, Sibel; Günay, Ersin; Sarinc Ulasli, Sevinc

    2016-03-01

    Pulmonary thromboembolism (PTE) is an emergent and common pulmonary vascular disease. The most common diagnostic method for PTE is computer-aided tomography angiography. Endobronchial ultrasonography (EBUS) is used in diagnosis and staging of lung cancer via transbronchial needle aspiration from mediastinal lymphadenopathies and central masses. Diagnosis of PTE with EBUS is not common, although this technique helps to monitor pulmonary vasculature. The present case, a 60-year-old female patient to whom EBUS was applied because of mediastinal lymphadenopathy, was diagnosed as incidental PTE. PMID:26992367

  18. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Astrophysics Data System (ADS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-10-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  19. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  20. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy

    SciTech Connect

    Niu Hongquan; Hsi, Wen C.; Chu, James C.H.; Kirk, Michael C.; Kouwenhoven, Erik

    2004-12-01

    The nucletron Leipzig applicator is designed for (HDR) {sup 192}Ir brachy radiotherapy of surface lesions. The dosimetric characteristics of this applicator were investigated using simulation method based on Monte Carlo N-particle (MCNP) code and phantom measurements. The simulation method was validated by comparing calculated dose rate distributions of nucletron microSelectron HDR {sup 192}Ir source against published data. Radiochromic films and metal-oxide-semiconductor field-effect transistor (MOSFET) detectors were used for phantom measurements. The double exposure technique, correcting the nonuniform film sensitivity, was applied in the film dosimetry. The linear fit of multiple readings with different irradiation times performed for each MOSFET detector measurement was used to obtain the dose rate of each measurement and to correct the source transit-time error. The film and MOSFET measurements have uncertainties of 3%-7% and 3%-5%, respectively. The dose rate distributions of the Leipzig applicator with 30 mm opening calculated by the validated MC method were verified by measurements of film and MOSFET detectors. Calculated two-dimensional planar dose rate distributions show similar patterns as the film measurement. MC calculated dose rate at a reference point defined at depth 5 mm on the applicator's central axis is 7% lower than the film and 3% higher than the MOSFET measurements. The dose rate of a Leipzig applicator with 30 mm opening at reference point is 0.241{+-}3% cGy h{sup -1} U{sup -1}. The MC calculated depth dose rates and profiles were tabulated for clinic use.

  1. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  2. Radiobiological effects of altering dose rate in filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Karan, T.; Moiseenko, V.; Gill, B.; Horwood, R.; Kyle, A.; Minchinton, A. I.

    2013-02-01

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication.

  3. Radiobiological effects of altering dose rate in filter-free photon beams.

    PubMed

    Karan, T; Moiseenko, V; Gill, B; Horwood, R; Kyle, A; Minchinton, A I

    2013-02-21

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication. PMID:23363688

  4. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  5. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    PubMed

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively. PMID:11543145

  6. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates.

    PubMed

    Fournier, P; Crosbie, J C; Cornelius, I; Berkvens, P; Donzelli, M; Clavel, A H; Rosenfeld, A B; Petasecca, M; Lerch, M L F; Bräuer-Krisch, E

    2016-07-21

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency's TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called 'current ramping' method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials. PMID:27366861

  7. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  8. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    SciTech Connect

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  9. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, P.L.; Sterbentz, J.W.

    2002-07-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  10. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.