Science.gov

Sample records for dose simox process

  1. Formation of CoSi sub 2 in SIMOX wafers by high dose Co implantation

    SciTech Connect

    Sjoreen, T.P. Kernforschungsanlage Juelich GmbH . Inst. fuer Schicht- und Ionentechnik); Jebasinski, R.; Schmidt, K.; Mantl, S. . Inst. fuer Schicht- und Ionentechnik); Holzbrecher, H.; Speier, W. . Zentralabteilung fuer Chemische Analysen)

    1991-01-01

    SIMOX wafers have been implanted with high doses of Co and annealed at high temperatures in order to study the formation of buried single-crystal CoSi{sub 2} layers in this material. For this study SIMOX wafers of (100) oriented Si were implanted at 100--200 keV with doses of 1.2 {minus} 2.0 {times} 10{sup 17} Co{sup +}/cm{sup 2}, and annealed in rapid thermal processor or tube furnace. As-implanted and annealed samples were analyzed by Rutherford backscattering/channeling spectroscopy (RBS), cross-sectional transmission electron microscopy (XTEM), secondary ion mass spectroscopy, and the Van der Pauw technique. The best buried CoSi{sub 2} layers were obtained at an implantation energy of 100 keV and by subsequent RTA. RBS minimum yields of {approximately}6% were obtained for the buried layer, this is the same as that reported for bulk (100) Si. The measured resistivity of 15 {mu}{Omega}-cm and XTEM confirmed the continuity of the layer. Buried CoSi{sub 2} layers were successfully produced up to an implantation energy of 180 keV. However, as the energy was increased the quality of the CoSi{sub 2} layer degraded, with minimum yields increasing to 24% at 180 keV, and with a corresponding degradation in the minimum yields in the top Si layer. At 200 keV a buried epitaxial layer was not produced. The degradation of crystal quality with ion implantation energy and the failure to produce a buried layer at 200 keV are discussed. 11 refs., 4 figs.

  2. Gettering layer for oxygen accumulation in the initial stage of SIMOX processing

    NASA Astrophysics Data System (ADS)

    Ou, Xin; Kögler, Reinhard; Skorupa, Wolfgang; Möller, Wolfhard; Wang, Xi; Gerlach, Jürgen W.

    2009-05-01

    A cavity layer or nano-bubble layer introduced by He implantation before the oxygen implantation collects the implanted oxygen and increases the oxygen concentration. The average size and density of the oxygen precipitates formed in the initial stage of the separation-by-implanted-oxygen (SIMOX) process is conform with the size and density of the cavities pre-formed by He implantation and annealing. The gettering ability of the cavity layer for oxygen is directly related to the area of the internal surface of the cavities. A nano-bubble layer accumulates oxygen in a very narrow range occurring between the damage maximum, DP, and the mean projected ion range, RP. Such a nano-bubble layer is most efficient in oxygen gettering due to their larger area of the internal surface and the small size of the oxide precipitates initially formed at the bubbles.

  3. The effect of heavy metal contamination in SIMOX on radiation hardness of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ipri, Alfred C.; Jastrzebski, L.; Peters, D.

    1989-12-01

    It is shown that heavy-metal contamination introduced during implantation of oxygen into silicon results in a reduction of SIMOX (separation by implanted oxygen) oxide radiation hardness. Radiation-induced back-channel leakage currents in MOS transistors processed in SIMOX films containing various levels of heavy metals, as measured by surface photovoltage (SPV), are a strong function of heavy metal concentration. It is concluded that SPV measurements of as-implanted SIMOX wafers can be used as a rapid nondestructive quality control inspection technique to predict the radiation hardness of the SIMOX oxide prior to processing.

  4. Advanced manufacturing of SIMOX for low power electronics

    NASA Astrophysics Data System (ADS)

    Alles, Michael; Krull, Wade

    1996-04-01

    Silicon-on-insulator (SOI) has emerged as a key technology for low power electronics. The merits of SOI technology have been demonstrated, and are gaining acceptance in the semiconductor industry. In order for the SOI approach to be viable, several factors must converge, including the availability of SOI substrates in sufficient quantity, of acceptable quality, and at a competitive price. This work describes developments in SIMOX manufacturing technology and summarizes progress in each of these areas.

  5. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  6. Dose assurance in radiation processing plants

    NASA Astrophysics Data System (ADS)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  7. A MOS switched-capacitor ladder filter in SIMOX technology for high temperature applications up to 300 C

    SciTech Connect

    Verbeck, M.; Zimmermann, C.; Fiedler, H.L.

    1996-07-01

    The need for electronic devices and integrated circuits suitable for temperatures beyond the 125 C limit increases steadily. Typical applications for high temperature microelectronics can be found in the automotive industry, in avionics and space exploration, as well as in the oil drilling industry, geothermal exploration, and industrial measurement and control systems. This paper describes techniques and methods used to realize a seventh order switched-capacitor low pass filter in SIMOX technology. The filter has Bessel characteristic and a 3 dB-bandwidth of 20 Hz at a clock frequency of 100 kHz. Special design of transistors and transmission gates results in drastically reduced leakage currents at high temperatures. The power supply voltage of the switched-capacitor filter is 10 V. The temperature range is extended up to 300 C. Experimental results of the transistors, the transmission gates, the operational amplifier, and the complete filter are presented.

  8. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    PubMed Central

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-01-01

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance—provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as dS¯=es/mS, where eS is the energy deposited in the mass mS contained in the volume. Since mass and energy should be conserved, when dS¯ is mapped to an image R(dS→R¯=dR¯), the mean dose mapping error is defined as Δdm¯=|dR¯-dS¯|=|eR/mR-eS/mS|, where the eR and eS are integral doses (energy deposited), and mR and mS are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, Δdd¯=|∂d¯∂e*Δe+∂d¯∂m*Δm|=|(eS-eR)mR-(mS-mR)mR2*eR|=α|dR¯-dS¯| with α=mS/mR. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, DR¯=∑S=09dS→R¯, and associated error values (ΔDm¯ and ΔDd¯) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose distribution, the average accumulated differential dose mapping error is 4.3%, the average absolute differential dose mapping error is 10.8%, and the average accumulated mean dose mapping error is 5.0%. Accumulated differential dose mapping errors within the gross tumor volume (GTV) and planning target volume (PTV) are lower, 0

  9. Total-dose response of silicon-on-insulator (soi) metal-oxide- semiconductor field-effect transistor's (mosfet's). Master's thesis

    SciTech Connect

    Biwer, M.C.

    1988-06-01

    Total-dose response of both NMOS and PMOS FET's fabricated on SIMOX and ZMR substrates was studied. Two types of back-channel leakage currents were identified for the SIMOX devices. A back channel leakage due to MOSFET action uses the substrate bias as the gate bias. The other component is due to soft reverse characteristics of the body-drain junction. The back-channel leakage due to MOSFET action varies with the substrate bias and thus varies with irradiation due to threshold-voltage shift. The soft reverse current is a function of drain-body voltage and hence varies with substrate bias and irradiation. The threshold-voltage, I-V characteristics, and subthreshold currents of both front and back channels as a function of total dose were obtained.

  10. A normal tissue dose response model of dynamic repair processes

    NASA Astrophysics Data System (ADS)

    Alber, Markus; Belka, Claus

    2006-01-01

    A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.

  11. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  12. Dose assessment for process water tunnels at Hanford Site.

    SciTech Connect

    Kamboj, S.; Yu, C.; LePoire, D.; Environmental Assessment

    2000-01-01

    The RESRAD-BUILD and RESRAD computer codes were used for dose assessment of the 105-C Process Water Tunnels at the Hanford Site. The evaluation assessed three different exposure scenarios: recreational use, tunnel maintenance worker, and residential use. The recreationist and maintenance worker scenarios were evaluated by using RESRAD-BUILD, a computer model for analyzing the radiological doses resulting from remediation and occupancy of structures contaminated with radioactive material. The recreationist was assumed to use the tunnels as an overnight shelter for eight hours per day for one week. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered for both scenarios in dose assessment. The gradual removal of surface contamination over time and ingrowth of decay products were considered in calculating the dose at different times. The maximum dose would occur immediately after the release and was estimated to be 1.9 mrem/yr for the recreationist and 0.9 mrem/yr for the maintenance worker. The residential scenario was evaluated by using the probabilistic RESRAD code. It was assumed that total activity from the tunnels would be brought into the near-surface layer by future human activities. Eight exposure pathways were considered. The maximum yearly dose for this very unlikely scenario would occur immediately after the release and was less than 4 mrem/yr for the maximally exposed individual. The assessment demonstrates that both codes are suitable for nuclear facility decontamination and decommissioning sites, where buildings and structures with residual radioactivity must be evaluated to facilitate property transfer or release.

  13. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC)

    SciTech Connect

    Gerard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, Francois; Aletti, Pierre

    2009-04-15

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center ({+-}4% of deviation between the calculated and measured doses) by calculating a control process capability (C{sub pc}) index. The C{sub pc} index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should

  14. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC).

    PubMed

    Gérard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, François; Aletti, Pierre

    2009-04-01

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short-term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center (+/- 4% of deviation between the calculated and measured doses) by calculating a control process capability (C(pc)) index. The C(pc) index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short-term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the

  15. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  16. Comparing greenhouse sprayers: the dose-transfer process.

    PubMed

    Ebert, Timothy A; Derksen, Richard C; Downer, Roger A; Krause, Charles R

    2004-05-01

    Three sprayers were evaluated for their affect on retention and efficacy: a carbon dioxide powered high-volume sprayer, a DRAMM coldfogger, and an Electrostatic Spraying Systems (ESS) sprayer with air-assistance. The active ingredients used were spinosad and azadirachtin. The plant canopy was constructed in the greenhouse using potted soybeans (Glycine max (L) Merrill cr Pioneer 9392). Application efficacy with spinosad was assessed using thrips [Western flower thrips, Frankliniella occidentalis (Pergande)] and mite (two-spotted spider mite, Tetranychus urticae Koch) abundance on shoots and leaves. Application efficacy with azadirachtin was assessed using thrips and aphid (soybean aphid, Aphis glycines Matsumura) abundance on shoots and leaves. The atomization characteristics of each sprayer were measured using an Aerometrics phase/Doppler particle analyzer (PDPA) 100-1D. The results of four tests are presented. Two tests used each sprayer according to manufacturer recommendations. These are 'recommended volume' tests that confound differences in toxicant distribution caused by the sprayer with differences caused by changes in application volume. The other two tests were 'constant volume' tests in which all three sprayers were used to deliver the same application volume. Both types of test gave differences between sprayers in retention of toxicant, but only the recommended volume tests showed significant effects of the sprayers on pest abundance. We attribute this difference to the role played by changing application volumes in the dose-transfer process. The constant-volume tests showed that application equipment influences efficacy. PMID:15154520

  17. High-dose processing and application to Korean space foods

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Kang, Sang-Wook; Choi, Gi-Hyuk; Lee, Ju-Woon

    2009-07-01

    Nutrition bar, Ramen (ready-to-cook noodle), and two Korean traditional foods ( Kimchi, fermented vegetable; Sujeonggwa, cinnamon beverage) have been developed as space foods using high-dose gamma irradiation. Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. Sterilization of Space Kimchi (SK) was confirmed by a microbiological test. The hardness of the Space Kimchi was lower than the untreated Kimchi (CON), but higher than the irradiated only Kimchi. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. The optimal doses for eliminating the contaminated microbes and maintaining the qualities of the Nutrition bars, Ramen, and Sujeonggwa were determined at 15, 10 and 6 kGy, respectively. All the Korean space food were certificated for use in space flight conditions of 30 days by the Russian Institute for Biomedical Problems.

  18. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process

    PubMed Central

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    Background: The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. Aim: To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). Materials and Methods: The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of F-18 FDG. The F18-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. Results: The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44±0.22 μSv/injection (3.71±0.48 nSv/MBq), for doctors the dose values were 2.44±0.25 μSv/injection (6.29±0.49 nSv/MBq) and for technologists the doses were 0.61±0.10 μSv/injection (1.58±0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the F18-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). Conclusion: This study confirms that low levels of radiation dose are

  19. Effective dose in the manufacturing process of rutile covered welding electrodes.

    PubMed

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area. PMID:23324444

  20. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  1. The Research of Improving the Particleboard Glue Dosing Process Based on TRIZ Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Fan, Delin; Zhang, Yizhuo

    This research creates a design methodology by synthesizing the Theory of Inventive Problem Solving (TRIZ) and cascade control based on Smith predictor. The particleboard glue supplying and dosing system case study defines the problem and the solution using the methodology proposed in the paper. Status difference existing in the gluing dosing process of particleboard production usually causes gluing volume inaccurately. In order to solve the problem above, we applied the TRIZ technical contradiction and inventive principle to improve the key process of particleboard production. The improving method mapped inaccurate problem to TRIZ technical contradiction, the prior action proposed Smith predictor as the control algorithm in the glue dosing system. This research examines the usefulness of a TRIZ based problem-solving process designed to improve the problem-solving ability of users in addressing difficult or reoccurring problems and also testify TRIZ is practicality and validity. Several suggestions are presented on how to approach this problem.

  2. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  3. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  4. Improving low-dose cardiac CT images using 3D sparse representation based processing

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Luo, Limin

    2015-03-01

    Cardiac computed tomography (CCT) has been widely used in diagnoses of coronary artery diseases due to the continuously improving temporal and spatial resolution. When helical CT with a lower pitch scanning mode is used, the effective radiation dose can be significant when compared to other radiological exams. Many methods have been developed to reduce radiation dose in coronary CT exams including high pitch scans using dual source CT scanners and step-and-shot scanning mode for both single source and dual source CT scanners. Additionally, software methods have also been proposed to reduce noise in the reconstructed CT images and thus offering the opportunity to reduce radiation dose while maintaining the desired diagnostic performance of a certain imaging task. In this paper, we propose that low-dose scans should be considered in order to avoid the harm from accumulating unnecessary X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. Accordingly, in this paper, a 3D dictionary representation based image processing method is proposed to reduce CT image noise. Information on both spatial and temporal structure continuity is utilized in sparse representation to improve the performance of the image processing method. Clinical cases were used to validate the proposed method.

  5. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  6. Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats.

    PubMed

    Schumacher, Anett; Sivanandan, Brindan; Tolledo, Edgor Cole; Woldegabriel, Jacob; Ito, Rutsuko

    2016-08-01

    Repeated exposure to sub-anesthetic doses of ketamine in rats has been shown to induce cognitive deficits, as well as behavioral changes akin to the negative symptoms of schizophrenia, giving much face validity to the use of ketamine administration as a pharmacological model of schizophrenia. This study sought to further characterize the behavioral effects of two different ketamine pre-treatment regimens, focusing primarily on the effects of repeated ketamine administration on novelty processing, a capacity that is disrupted in schizophrenia. Rats received 5 or 14 intra-peritoneal injections of 30mg/kg ketamine or saline across 5 or 7days, respectively. They were then tested in an associative mismatch detection task to examine their ability to detect novel configurations of familiar audio-visual sequences. Furthermore, rats underwent a sequential novel object and novel object location exploration task. Subsequently, rats were also tested on the delayed matching to place T-maze task, sucrose preference task and locomotor tests involving administering a challenge dose of amphetamine (AMPH). The high-dose ketamine pre-treatment regimen elicited impairments in mismatch detection and working memory. In contrast, the low-dose ketamine pre-treatment regimen improved performance of novelty detection. In addition, low-dose ketamine pre-treated rats showed locomotor sensitization following an AMPH challenge, while the high-dose ketamine pre-treated rats showed an attenuated locomotor response to AMPH, compared to control rats. These findings demonstrate that different regimens of repeated ketamine administration induce alterations in novelty processing in opposite directions, and that differential neural adaptations occurring in the mesolimbic dopamine system may underlie these effects. PMID:27064663

  7. Effective dose in SMAW and FCAW welding processes using rutile consumables.

    PubMed

    Herranz, M; Rozas, S; Idoeta, R; Alegría, N

    2014-03-01

    The shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes use covered electrodes and flux cored wire as consumables. Among these consumables, ones containing rutile are the most widely used, and since they have a considerable natural radioactive content, they can be considered as NORM (naturally occurring radioactive material). To calculate the effective dose on workers during their use in a conservative situation, samples of slag and aerosols and particles emitted or deposited during welding were taken and measured by gamma, alpha and beta spectrometry. An analytical method was also developed for estimating the activity concentration of radionuclides in the inhaled air. (222)Rn activity concentration was also assessed. With all these data, internal and external doses were calculated. The results show that external doses are negligible in comparison with internal ones, which do not exceed 1 mSv yr(-1), either in this conservative situation or in any other more favourable one. Radionuclides after Rn in the radioactive natural series are emitted at the same activity concentration to the atmosphere, this being around 17 times higher than that corresponding to radionuclides before Rn. Taking into account these conclusions and the analytical method developed, it can be concluded that one way to assess the activity concentration of natural radionuclides in inhaled air and hence effective doses could be the early gamma-ray spectrometry of aerosols and particles sampled during the welding process. PMID:24334773

  8. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively). PMID:26863777

  9. Documents containing operating data for Hanford separations processes, 1944--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to identify documents that record batch, daily, or selected monthly separations processes operating information at the Hanford Site for the years 1944-1972. The information found in these documents is needed to develop the source terms necessary to make dose estimates. The documents have been identified, located, declassified if necessary, evaluated, and made available to the HEDR Project in general, the HEDR Task 03 (Source Terms) in particular, and the public. Complete bibliographic citations and some sample pages from the Hanford separations processes documents are included.

  10. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    SciTech Connect

    Able, Charles M.; Bright, Megan; Frizzell, Bart

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  11. Radiation dose reduction in digital radiography using wavelet-based image processing methods

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki

    2011-03-01

    In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.

  12. "Effects of recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in rats".

    PubMed

    Bianchi, Sara; Fusi, Jonathan; Franzoni, Ferdinando; Giovannini, Luca; Galetta, Fabio; Mannari, Claudio; Guidotti, Emanuele; Tocchini, Leonardo; Santoro, Gino

    2016-08-01

    Although many studies highlight how long-term moderate dose of Recombinant Human Erythropoietin (rHuEPO) treatments result in beneficial and antioxidants effects, few studies take into account the effects that short-term high doses of rHuEPO (mimicking abuse conditions) might have on the oxidative stress processes. Thus, the aim of this study was to investigate the in vivo antioxidant activity of rHuEPO, administered for a short time and at high doses to mimic its sports abuse as doping. Male Wistar healthy rats (n=36) were recruited for the study and were treated with three different concentrations of rHuEPO: 7.5, 15, 30μg/kg. Plasma concentrations of erythropoietin, 8-epi Prostaglandin F2α, plasma and urinary concentrations of NOx were evaluated with specific assay kit, while hematocrit levels were analyzed with an automated cell counter. Antioxidant activity of rHuEPO was assessed analyzing the possible variation of the plasma scavenger capacity against hydroxylic and peroxylic radicals by TOSC (Total Oxyradical Scavenging Capacity) assay. Statistical analyses showed higher hematocrit values, confirmed by a statistically significant increase of plasmatic EPO concentration. An increase in plasma scavenging capacity against peroxyl and hydroxyl radicals, in 8-isoprostane plasmatic concentrations and in plasmatic and urinary levels of NOX were also found in all the treated animals, though not always statistically significant. Our results confirm the literature data regarding the antioxidant action of erythropoietin administered at low doses and for short times, whereas they showed an opposite incremental oxidative stress action when erythropoietin is administered at high doses. PMID:27470373

  13. Challenges in validating the sterilisation dose for processed human amniotic membranes

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.

    2007-11-01

    Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.

  14. The electron dose monitoring and control system in EB radiation processing for wires and cables

    NASA Astrophysics Data System (ADS)

    Zhou, Xinzhi; Zhou, Yong; Zhou, Youyi; Tang, Qiang

    2002-03-01

    This paper introduces a close-loop microcomputer control system used for EB radiation processing of wires and cables, which is based on the measurements and calculations of the absorbed dose distribution of 0.6-2.0 MeV electrons in circular compound materials. The calculation of electron energy deposition in 4-layer media is carried out by the bipartition model of electron transport. The design ideas, system configuration and implementation of this control system governed by a 586 personal computer under windows 98 OS are described in this paper. The field operation results such as control precision and step response curves of this system are also given. The control system has been used for EB radiation processing of wires.

  15. Application of a hot-melt granulation process to enhance fenofibrate solid dose manufacturing.

    PubMed

    Chaudhary, Rakesh Singh; Amankwaa, Edward; Kumar, Sandeep; Hu, Tom; Chan, Mohamed; Sanghvi, Pradeep

    2016-07-01

    Evaluation of hot-melt granulation of fenofibrate and croscarmellose sodium and its cooling time for the molten mass in a ratio of 55:45 was conducted to assess the manufacturing process capability to produce an acceptable granulation which flows well on Korsch PH300 tablet compression machine. The formation of the drug-polymer eutectic mixture was investigated by differential scanning calorimetry, scanning electron microscopy and X-ray powder diffraction. The physical properties of the hot-melt was determined by examining the milled blocks after solidification and milling after cooling periods of 10, 20 and 30 d. The milled material was assessed for the effect of hold time of the blend on the solid dose compression characteristics. The impact of cooling on the processing of the blocks was assessed after 10, 20 and 30 d of cooling. The study suggests that after the hot-melt formed the fenofibrate crystallized independently and a solid solution with croscarmellose sodium was not formed. The age of the blocks determined the hardness of the crystals, changing the processing nature of the granules with respect to compression and powder flow characteristics. The blocks processed after 20 d and beyond produced granules with a characteristic suitable for holding the blend for 14 d in the bin with no impact on flow properties and compressibility of the blend. There was no chipping, capping, sticking or picking observed and a higher compression speed was achieved. PMID:26552938

  16. Fast Neutron Dose Evaluation Using CR39 by Coincidence Counting Process

    NASA Astrophysics Data System (ADS)

    Vilela, Eudice; Brandão, J. O. C.; Santos, J. A. L.; de Freitas, F. F.

    2008-08-01

    The solid state nuclear tracks detection (SSNTD) technique is widely used in the area of radiation dosimetry. Different materials can be used applying this technique as glass and the most used in the dosimetry field that are the polycarbonates, CR39 and Makrofol-DE. Both are very rich in hydrogenous, that enables the SSNTD to detect fast neutrons through recoils of protons in the own detector material, without need of converters. The low reproducibility of its backgroundhas often been the major drawback in the assessment of low fluences of fast neutrons with SSNTDs. This problem can be effectively solved by counting coincidence of tracks in two detectors foils irradiated in close contact. After processing and counting only tracks produced by the same recoil nuclei on the surfaces of both detectors are considered as a track. This procedure enables the reduction of the background counts in the response of the detectors. In this work a preliminary study on the application of the coincidence technique for neutron dosimetry is presented. The CR39 material was investigated aiming to achieve the personal dose equivalent for fast neutrons. Using this method of analysis a significant reduction on the lower detectable dose was observed resulting even one order of magnitude smaller value. Reading, however, needs to be automated due to the large areas necessary to achieve a satisfactory number of tracks for statistical significance of results.

  17. A Markov decision process approach to temporal modulation of dose fractions in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kim, M.; Ghate, A.; Phillips, M. H.

    2009-07-01

    The current state of the art in cancer treatment by radiation optimizes beam intensity spatially such that tumors receive high dose radiation whereas damage to nearby healthy tissues is minimized. It is common practice to deliver the radiation over several weeks, where the daily dose is a small constant fraction of the total planned. Such a 'fractionation schedule' is based on traditional models of radiobiological response where normal tissue cells possess the ability to repair sublethal damage done by radiation. This capability is significantly less prominent in tumors. Recent advances in quantitative functional imaging and biological markers are providing new opportunities to measure patient response to radiation over the treatment course. This opens the door for designing fractionation schedules that take into account the patient's cumulative response to radiation up to a particular treatment day in determining the fraction on that day. We propose a novel approach that, for the first time, mathematically explores the benefits of such fractionation schemes. This is achieved by building a stylistic Markov decision process (MDP) model, which incorporates some key features of the problem through intuitive choices of state and action spaces, as well as transition probability and reward functions. The structure of optimal policies for this MDP model is explored through several simple numerical examples.

  18. Object-oriented process dose modeling for glove-box operations

    SciTech Connect

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-07-01

    The Plutonium Facility at Los Alamos National Laboratory (LANL) supports several defense- and non-defense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of glove boxes connected to each other via trolley glove boxes. Each room may contain glove boxes dedicated to several different operations or functions. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. The immediate sources to which a worker is exposed provide the primary EDE. The secondary EDE results from operations and sources in the same vicinity or room as the worker. The background EDE results from all other sources of radiation, such as natural sources and sources outside of the room. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. An associated paper details the tool that they use to determine the primary and secondary EDEs for all processes of interest in a room containing glove boxes.

  19. Measurement of vocal doses in speech: experimental procedure and signal processing.

    PubMed

    Svec, Jan G; Popolo, Peter S; Titze, Ingo R

    2003-01-01

    An experimental method for quantifying the amount of voicing over time is described in a tutorial manner. A new procedure for obtaining calibrated sound pressure levels (SPL) of speech from a head-mounted microphone is offered. An algorithm for voicing detection (kv) and fundamental frequency (F0) extraction from an electroglottographic signal is described. The extracted values of SPL, F0, and kv are used to derive five vocal doses: the time dose (total voicing time), the cycle dose (total number of vocal fold oscillatory cycles), the distance dose (total distance travelled by the vocal folds in an oscillatory path), the energy dissipation dose (total amount of heat energy dissipated in the vocal folds) and the radiated energy dose (total acoustic energy radiated from the mouth). The doses measure the vocal load and can be used for studying the effects of vocal fold tissue exposure to vibration. PMID:14686546

  20. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  1. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  2. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... Department of Labor, as provided under 20 CFR part 30, NIOSH will request from DOE records on radiation dose... information in the possession of NIOSH, from radiation safety programs, research, medical screening...

  3. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... Department of Labor, as provided under 20 CFR part 30, NIOSH will request from DOE records on radiation dose... information in the possession of NIOSH, from radiation safety programs, research, medical screening...

  4. Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose

    NASA Astrophysics Data System (ADS)

    Heath, Robert L.; Lefohn, Allen S.; Musselman, Robert C.

    Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O 3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O 3 concentration and diurnal uptake and entry of O 3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O 3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O 3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O 3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O 3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O 3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that

  5. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying...

  6. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying...

  7. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying...

  8. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying...

  9. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying...

  10. Rapid Automated Treatment Planning Process to Select Breast Cancer Patients for Active Breathing Control to Achieve Cardiac Dose Reduction

    SciTech Connect

    Wang Wei; Purdie, Thomas G.; Rahman, Mohammad; Marshall, Andrea; Liu Feifei; Fyles, Anthony

    2012-01-01

    Purpose: To evaluate a rapid automated treatment planning process for the selection of patients with left-sided breast cancer for a moderate deep inspiration breath-hold (mDIBH) technique using active breathing control (ABC); and to determine the dose reduction to the left anterior descending coronary artery (LAD) and the heart using mDIBH. Method and Materials: Treatment plans were generated using an automated method for patients undergoing left-sided breast radiotherapy (n = 53) with two-field tangential intensity-modulated radiotherapy. All patients with unfavorable cardiac anatomy, defined as having >10 cm{sup 3} of the heart receiving 50% of the prescribed dose (V{sub 50}) on the free-breathing automated treatment plan, underwent repeat scanning on a protocol using a mDIBH technique and ABC. The doses to the LAD and heart were compared between the free-breathing and mDIBH plans. Results: The automated planning process required approximately 9 min to generate a breast intensity-modulated radiotherapy plan. Using the dose-volume criteria, 20 of the 53 patients were selected for ABC. Significant differences were found between the free-breathing and mDIBH plans for the heart V{sub 50} (29.9 vs. 3.7 cm{sup 3}), mean heart dose (317 vs. 132 cGy), mean LAD dose (2,047 vs. 594 cGy), and maximal dose to 0.2 cm{sup 3} of the LAD (4,155 vs. 1,507 cGy, all p <.001). Of the 17 patients who had a breath-hold threshold of {>=}0.8 L, 14 achieved a {>=}90% reduction in the heart V{sub 50} using the mDIBH technique. The 3 patients who had had a breath-hold threshold <0.8 L achieved a lower, but still significant, reduction in the heart V{sub 50}. Conclusions: A rapid automated treatment planning process can be used to select patients who will benefit most from mDIBH. For selected patients with unfavorable cardiac anatomy, the mDIBH technique using ABC can significantly reduce the dose to the LAD and heart, potentially reducing the cardiac risks.

  11. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Department of Labor, as provided under 20 CFR part 30, NIOSH will request from DOE records on radiation dose... exposures, the radiation type (gamma, x-ray, neutron, beta, or other charged particle) and radiation energy... signed by the claimant or a representative of the claimant authorized pursuant to 20 CFR 30.600. If...

  12. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Department of Labor, as provided under 20 CFR part 30, NIOSH will request from DOE records on radiation dose... exposures, the radiation type (gamma, x-ray, neutron, beta, or other charged particle) and radiation energy... signed by the claimant or a representative of the claimant authorized pursuant to 20 CFR 30.600. If...

  13. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Department of Labor, as provided under 20 CFR part 30, NIOSH will request from DOE records on radiation dose... exposures, the radiation type (gamma, x-ray, neutron, beta, or other charged particle) and radiation energy... signed by the claimant or a representative of the claimant authorized pursuant to 20 CFR 30.600. If...

  14. Biological monitoring to determine worker dose in a butadiene processing plant

    SciTech Connect

    Bechtold, W.E.; Hayes, R.B.

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  15. Red Meat and Processed Meat Consumption and Nasopharyngeal Carcinoma Risk: A Dose-response Meta-analysis of Observational Studies.

    PubMed

    Li, Fuqin; Duan, Fujiao; Zhao, Xia; Song, Chunhua; Cui, Shuli; Dai, Liping

    2016-01-01

    The purpose of this study is to clarify and quantify the potential dose-response association between the intake of total red and total processed meat and risk of nasopharyngeal carcinoma (NPC). Relevant studies were identified by searching PubMed, EMBASE, and Chinese databases (CNKI and Wanfang). The summary relative risk (RR) with 95% confidence interval (95%CI) was calculated. A total of 15 independent studies with 12,735 subjects were identified. Compared with the low-rank intake, the summary RR of NPC was 1.35 (95%CI, 1.21-1.51) for total red meat and 1.46 (95%CI, 1.34-1.64) for total processed meat. For the moderate-rank intake, the summary RR of NPC was 1.54 (95%CI, 1.36-1.79) for total red meat and 1.59 (95%CI, 1.3-1.90) for total processed meat. The summary RR for high-rank intake was 1.71 (95%CI, 1.14-2.55) for total red meat and 2.11 (95%CI, 1.31-3.42) for total processed meat. The combined estimates showed obvious evidence of statistically significant association between total red and total processed meat consumption dose and risk of NPC (Ptrend< 0.01). In conclusion, our data suggest that a high intake of total red or total processed meat is associated with a significantly increased risk of NPC. PMID:27367552

  16. Development of a process to achieve residue-free photoresist removal after high-dose ion implantation

    NASA Astrophysics Data System (ADS)

    McOmber, Janice I.; Nair, Rajesh S.

    1991-04-01

    Photoresist subjected to high-dose ion implantation tends to bubble and explode during the plasma photoresist stripping process in single-wafer ashers. A process has been developed to achieve the goals of complete photoresist removal with no bubbling or residues, minimum particulates, and minimal-CV shifts. These goals are accomplished by suitable photoresist pretreatment and optimization of resist strip parameters. Deep UV bake prior to implantation along with reduced platen temperature topside-lamp-assisted ashing have resulted in a residue-free ash with a low-CV shift.

  17. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  18. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy.

    PubMed

    Asteriti, Italia Anna; Di Cesare, Erica; De Mattia, Fabiola; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-08-15

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases. PMID:25153724

  19. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy

    PubMed Central

    Asteriti, Italia Anna; Cesare, Erica Di; Mattia, Fabiola De; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-01-01

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases. PMID:25153724

  20. Optimized Parallelization for Nonlocal Means Based Low Dose CT Image Processing

    PubMed Central

    Zhang, Libo; Yang, Benqiang; Zhuang, Zhikun; Hu, Yining; Chen, Yang; Luo, Limin; Shu, Huazhong

    2015-01-01

    Low dose CT (LDCT) images are often significantly degraded by severely increased mottled noise/artifacts, which can lead to lowered diagnostic accuracy in clinic. The nonlocal means (NLM) filtering can effectively remove mottled noise/artifacts by utilizing large-scale patch similarity information in LDCT images. But the NLM filtering application in LDCT imaging also requires high computation cost because intensive patch similarity calculation within a large searching window is often required to be used to include enough structure-similarity information for noise/artifact suppression. To improve its clinical feasibility, in this study we further optimize the parallelization of NLM filtering by avoiding the repeated computation with the row-wise intensity calculation and the symmetry weight calculation. The shared memory with fast I/O speed is also used in row-wise intensity calculation for the proposed method. Quantitative experiment demonstrates that significant acceleration can be achieved with respect to the traditional straight pixel-wise parallelization. PMID:26078781

  1. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.

    PubMed

    Aquilonius, Karin; Hallberg, Bengt

    2005-01-01

    Swedish nuclear utility companies are required to assess doses due to releases of radionuclides during normal operation. In 2001, calculation methods used earlier were updated due to new authority regulations. The isotope (14)C is of special interest in dose assessments due to the role of carbon in the metabolism of all life forms. Earlier, factors expressing the ratio between concentration of (14)C in air and in various plants were used. In order to extend the possibility to take local conditions into account, a process-oriented assessment model for uptake of carbon and doses from releases of (14)C to air was developed (POM(14)C). The model uses part of DAISY which has been developed to model the turnover of carbon in crops. [Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1993. Description of the Soil Plant System Model DAISY, Basic Principles and Modelling Approach. Simulation Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System. Jordbruksförlaget, The Royal Veterinary and Agricultural University, Copenhagen, Denmark]. The main objectives were to test model performance of the former method, and to investigate if taking site specific parameters into account to a greater degree would lead to major differences in the results. Several exposure pathways were considered: direct consumption of locally grown cereals, vegetables, and root vegetables, as well as consumption of milk and meat from cows having eaten fodder cereals and green fodder from the area around the nuclear plant. The total dose of the earlier model was compared with that of POM(14)C. The result of the former was shown to be slightly higher than the latter, but POM(14)C confirmed that the earlier results were of a reasonable magnitude. When full account of local conditions was taken, e.g. as regards solar radiation, temperature, and concentration of (14)C in air at various places in the surroundings of each nuclear plant, a difference in dose between

  2. Laser Processing of High Dose Ion Implanted Silicon: the Solid Phase Regime.

    NASA Astrophysics Data System (ADS)

    Lietoila, Arto

    1981-06-01

    The mechanism of pulsed laser annealing of Si is studied by developing a computer model for the temperature rise and career concentration induced in Si by laser pulses. The model gives results consistent with the hypothesis that annealing with nanosecond pulses causes melting of the sample surface, suggesting that this mode of laser processing is not a solid phase phenomenon. The temperatures produced in Si by cw laser and arc lamp radiation are calculated using the Kirchhoff transform for the nonlinear heat flow problem. The laser induced solid phase epitaxial regrowth of implantation amorphized Si is found to proceed at rates which are more than an order of magnitude higher than the rates extrapolated from low temperature furnace annealing data. However, complete regrowth of thick amorphous layers cannot be achieved: the epitaxial regrowth is stopped by the spontaneous formation of polycrystalline Si at the surface. It is found that cw laser annealing is capable of completely activating As and P concentrations well above the solid solubility limit. Thermal annealing causes the metastable concentrations to relax to equilibrium, which feature is used to measure the solubilities of As and P as electrically active dopants in Si. Electron mobilities are measured in concentrations up to 1.2 x 10('21) cm(' -3). The deactivation process of As is also characterized. Rapid thermal and cw arc lamp annealing are also observed to activate implanted As concentrations in excess of solubility. This shows that the formation of the metastable concentrations is a result of the solid phase epitaxial regrowth, rather than a product of the laser irradiation per se.

  3. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time.

    PubMed

    Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2016-09-01

    Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. PMID:27041323

  4. 250 mSv: temporary increase in the emergency exposure dose limit in response to the TEPCO Fukushima Daiichi NPP accident and its decision making process.

    PubMed

    Yasui, Shojiro

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011, led to an accident at the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company (TEPCO). In response to this accident, on March 14, 2011, the Ministry of Health, Labour, and Welfare (MHLW) of Japan enforced an ordinance that temporarily increased the radiation exposure dose limit allowed to 250 mSv during the emergency. This article explains the processes of a) temporarily increasing emergency dose limits, b) controlling for the combined emergency and normal exposure doses, and c) reducing the limit back to 100 mSv. Major issues addressed when deliberating the reduction of the emergency limits includes the following: a) political initiative, b) a phased reduction of dose limits, and c) transitional measures for workers who were exposed to more than 100 mSv. This article also identifies key challenges that need further deliberation to be resolved. These include: a) establishing a pre-defined protocol for applying pre-accident emergency dose limits and/or amending post-accident limits; b) designating the conditions in which to apply or amend emergency dose limits; c) selecting methods of radiation control for individuals who are exposed to more than the normal exposure dose limit during emergency work; and d) designating the conditions under which to terminate or reduce emergency dose limits after the accident. PMID:25436995

  5. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure

    PubMed Central

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797

  6. AXAIR: A Computer Code for SAR Assessment of Plume-Exposure Doses from Potential Process-Accident Releases to Atmosphere

    SciTech Connect

    Pillinger, W.L.

    2001-05-17

    This report describes the AXAIR computer code which is available to terminal users for evaluating the doses to man from exposure to the atmospheric plume from postulated stack or building-vent releases at the Savannah River Plant. The emphasis herein is on documentation of the methodology only. The total-body doses evaluated are those that would be exceeded only 0.5 percent of the time based on worst-sector, worst-case meteorological probability analysis. The associated doses to other body organs are given in the dose breakdowns by radionuclide, body organ and pathway.

  7. Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process.

    PubMed

    Tan, Yinhe; Yang, Zhiwen; Pan, Xin; Chen, Meiwan; Feng, Min; Wang, Lili; Liu, Hu; Shan, Ziyun; Wu, Chuanbin

    2012-05-10

    The objective of this study was to investigate the stability and aerosolization of pressurized metered dose inhalers (pMDIs) containing thymopentin nanoparticles. Thymopentin nanoparticles, fabricated by a bottom-up process, were suspended in hydrofluoroalkane (HFA) 134a together with cineole and/or n-heptane to produce pMDI formulations. The stability study of the pMDIs obtained was carried out at ambient temperature for 6 months. The amount of thymopentin and the aerosolization properties of pMDIs were determined using high-performance liquid chromatography (HPLC) and a twin-stage impinger (TSI), respectively. Based on the results, thymopentin nanoparticles were readily suspended in HFA 134a with the aid of cineole and/or n-heptane to form physically stable pMDI formulations, and more than 98% of the labeled amount of thymopentin and over 50% of the fine particle fraction (FPF) of the pMDIs were achieved. During storage, it was found that for all pMDIs more than 97% of the labeled amount of thymopentin and FPF greater than 47% were achieved. Moreover, the size of thymopentin nanoparticles in propellant containing cineole and n-heptane showed little change. It is, therefore, concluded that the pMDIs comprising thymopentin nanoparticles developed in this study were stable and suitable for inhalation therapy for systemic action. PMID:22343132

  8. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  9. Plasma immersion ion implantation for silicon processing

    NASA Astrophysics Data System (ADS)

    Yankov, Rossen A.; Mändl, Stephan

    2001-04-01

    Plasma Immersion Ion Implantation (PIII) is a technology which is currently widely investigated as an alternative to conventional beam line implantation for ultrashallow doping beyond the 0.15 m technology. However, there are several other application areas in modern semiconductor processing. In this paper a detailed discussion of the PIII process for semiconductors and of actual as well as future applications is given. Besides the well known advantages of PIII - fast process, implantation of the whole surface, low cost of ownership - several peculiarities - like spread of the implantation energy due to finite rise time or collisions, no mass separation, high secondary electron emission - must be mentioned. However, they can be overcome by adjusting the system and the process parameters. Considering the applications, ultrashallow junction formation by PIII is an established industrial process, whereas SIMOX and Smart-Cut by oxygen and hydrogen implantation are current topics between research and introduction into industry. Further applications of PIII, of which some already are research topics and some are only investigated by conventional ion implantation, include seeding for metal deposition, gettering of metal impurities, etch stop layers and helium implantation for localized lifetime control.

  10. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect

    O'Neil, Peter

    2009-05-15

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  11. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit–based Dose Deformation Framework

    SciTech Connect

    Qi, X. Sharon; Santhanam, Anand; Neylon, John; Min, Yugang; Armstrong, Tess; Sheng, Ke; Staton, Robert J.; Pukala, Jason; Pham, Andrew; Low, Daniel A.; Lee, Steve P.; Steinberg, Michael; Manon, Rafael; Chen, Allen M.; Kupelian, Patrick

    2015-06-01

    Purpose: The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Methods and Materials: Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Results: Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. Conclusions: A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real

  12. SU-E-I-12: Characterization of Edge Effects in a Commercial Low-Dose Image Processing System

    SciTech Connect

    Marsh, R; Silosky, M

    2014-06-01

    Purpose: Minimizing radiation dose while preserving image quality is critical in fluoroscopic imaging. One recent development is a noise reduction system (Allura Clarity) offered by Philips. Others have reported approximately 50% reduction in air kerma when using Clarity. These studies, however, provide only a cursory look at how the Clarity system affects image quality. The purpose of this work was to evaluate the effect of Clarity on the appearance of high-frequency image information. Methods: A lead attenuator with a smooth edge was imaged on two Philips Allura FD20 detectors: one with Clarity and one without. The edge was positioned in the center of the field of view and images were obtained under the following conditions: 40cm and 11cm fields of view, single shot and continuous fluoroscopy modes, and using abdomen and cardiac protocols, for a total of sixteen imaging conditions. Profiles were drawn perpendicular to the edge across 80% of its length, averaged to reduce noise, normalized to the maximum pixel value, and plotted as a function of distance. Results: For all single-shot acquisitions and most fluoroscopic images, overshoot of the edge was observed. This effect was more substantial for single-shot acquisitions (∼20%) than for fluoroscopic images (∼50%). For fluoroscopic acquisition, the overshoot decayed more quickly with the Clarity system. However, the system with Clarity introduced a ringing effect for both single-shot and fluoroscopic images that is not present on the non-Clarity system. Conclusion: Previous reports have demonstrated a substantial dose reduction when using Clarity but the impact this has on image appearance has not been characterized. One demonstrated difference is the change in appearance of high-frequency image information. It remains to be determined whether this effect may impact clinical images adversely.

  13. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  14. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Brodská, Barbora

    2011-11-01

    The effects of the pan-caspase inhibitor Q-VD-OPh on caspase activity, DNA fragmentation, PARP cleavage, 7A6 exposition, and cellular adhesivity to fibronectin were analyzed in detail in three different apoptotic systems involving two cell lines (JURL-MK1 and HL60) and two apoptosis inducers (imatinib mesylate and suberoylanilide hydroxamic acid). Q-VD-OPh fully inhibited caspase-3 and -7 activity at 0.05  µM concentration as indicated both by the measurement of the rate of Ac-DEVD-AFC cleavage and anti-caspase immunoblots. Caspase-8 was also inhibited at low Q-VD-OPh concentrations. On the other hand, significantly higher Q-VD-OPh dose (10 µM) was required to fully prevent the cleavage of PARP-1. DNA fragmentation and disruption of the cell membrane functionality (Trypan blue exclusion test) were both prevented at 2 µM Q-VD-OPh while 10 µM inhibitor was needed to inhibit the drug-induced loss of cellular adhesivity to fibronectin which was observed in JURL-MK1 cells. The exposition of the mitochondrial antigen 7A6 occurred independently of Q-VD-OPh addition and may serve to the detection of cumulative incidence of the cells which have initiated the apoptosis. Our results show that Q-VD-OPh efficiency in the inhibition of caspase-3 activity and DNA fragmentation in the whole-cell environment is about two orders of magnitude higher than that of z-VAD-fmk. This difference is not due to a slow permeability of the latter through the cytoplasmic membrane. PMID:21751237

  15. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    SciTech Connect

    Kohlbrenner, R; Kolli, KP; Taylor, A; Kohi, M; Fidelman, N; LaBerge, J; Kerlan, R; Gould, R

    2014-06-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treat HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav

  16. Dose-dependent effects of polyphenolic extracts from green tea, blue-berried honeysuckle, and chokeberry on rat caecal fermentation processes.

    PubMed

    Frejnagel, Slawomir; Juskiewicz, Jerzy

    2011-06-01

    The physiological status of the colon or ceacum is known to be very important for the host organism. Therefore, the aim of this study was to estimate the influence of high doses of polyphenolic extracts from chokeberry (CH), blue-berried honeysuckle (H), and green tea (GT) on fermentation processes in the caecum and caecal parameters of rats fed casein diets. In a 4-week experiment, 35-day-old rats were fed diets containing 0.4, 0.8, and 1.2 % of pure polyphenols. The greatest weight of digesta was recorded in rats fed 1.2 % of GT extract, and these animals were also characterised by having the lowest content of dry matter. Supplementation of diets with the extracts of interest caused a reduction in pH values and ammonia concentrations in caecal digesta in comparison to control animals. The results of a two-way analysis of variance indicated dose-dependent (except for 0.4 % supplementation) inhibition of enzymatic activity compared to control animals. Introduction of CH and H extracts significantly reduced the activity of β-glucuronidase compared to rats fed tea diets. Two-way analysis of variance showed a significant decrease in volatile fatty acids concentration in rats fed diets supplemented with H and CH extracts in comparison to control and tea-fed rats. The obtained results showed that the extracts tested can distinctly influence caecal parameters and metabolism. PMID:21240841

  17. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  18. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  19. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    SciTech Connect

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  20. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    radionuclides. However, we continually see {sup 137}Cs in the groundwater at all contaminated atolls; the turnover time of the groundwater is about 5 y. The {sup 137}Cs can only get to the groundwater by leaching through the soil column when a portion of the soluble fraction of {sup 137}Cs inventory in the soil is transported to the groundwater when rainfall is heavy enough to cause recharge of the aquifer. This process is causing a loss of {sup 137}Cs out of the root zone of the plants that provides an environmental loss constant ({lambda}{sub env}) in addition to radiological decay {lambda}{sub rad}. Consequently, there is an effective rate of loss, {lambda}{sub eff} = {lambda}{sub rad} + {lambda}{sub env} that is the sum of the radiological and environmental-loss decay constants. We have had, and continue to have, a vigorous program to determine the rate of the environmental loss process. What we do know at this time is that the loss of {sup 137}Cs over time is greater than the estimate based on radiological decay only, and that the actual dose received by the Utirik people over 30-, 50-, or 70-y will be less than those presented in this report.

  1. Dose audit failures and dose augmentation

    NASA Astrophysics Data System (ADS)

    Herring, C.

    1999-01-01

    Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.

  2. Blood phenylalanine concentrations in patients with PAH-deficient hyperphenylalaninaemia off diet without and with three different single oral doses of tetrahydrobiopterin: assessing responsiveness in a model of statistical process control.

    PubMed

    Lindner, M; Gramer, G; Garbade, S F; Burgard, P

    2009-08-01

    Tetrahydrobiopterin (BH(4)) cofactor loading is a standard procedure to differentiate defects of BH(4) metabolism from phenylalanine hydroxylase (PAH) deficiency. BH(4) responsiveness also exists in PAH-deficient patients with high residual PAH activity. Unexpectedly, single cases with presumed nil residual PAH activity have been reported to be BH(4) responsive, too. BH(4) responsiveness has been defined either by a >or=30% reduction of blood Phe concentration after a single BH(4) dose or by a decline greater than the individual circadian Phe level variation. Since both methods have methodological disadvantages, we present a model of statistical process control (SPC) to assess BH(4) responsiveness. Phe levels in 17 adult PKU patients of three phenotypic groups off diet were compared without and with three different single oral dosages of BH(4) applied in a double-blind randomized cross-over design. Results are compared for >or=30% reduction and SPC. The effect of BH(4) by >or=30% reduction was significant for groups (p < 0.01) but not for dose (p = 0.064), with no interaction of group with dose (p = 0.24). SPC revealed significant effects for group (p < 0.01) and the interaction for group with dose (p < 0.05) but not for dose alone (p = 0.87). After one or more loadings, seven patients would be judged to be BH(4) responsive either by the 30% criterion or by the SPC model, but only three by both. Results for patients with identical PAH genotype were not very consistent within (for different BH(4) doses) and between the two models. We conclude that a comparison of protein loadings without and with BH(4) combined with a standardized procedure for data analysis and decision would increase the reliability of diagnostic results. PMID:19513811

  3. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  4. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  5. 13th TC1/TC7 Symposium Fundamental and Applied Metrology September 01-03, 2010, London, UK: Effects of radiation dose reduction in digital radiography using wavelet-based image processing

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Tsai, D. Y.; Lee, Y.; Matsuyama, E.; Kojima, K.

    2010-07-01

    In this paper, we investigated the effect of the use of wavelet transform on dose reduction in computed radiography (CR). The physical properties of the processed CR images were measured using the modulation transfer function (MTF), noise power spectrum (NPS), contrast-to-noise ratio, and peak signal-to-noise ratio. Furthermore, visual evaluation was performed by Scheffe's pair comparison method. Experimental results showed that sigmoid-type transfer curves for wavelet coefficient weighting adjustment could improve the MTF, and three soft-threshold methods could improve the NPS at all spatial frequency ranges. Moreover, our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved with the sigmoid-type transfer curve in hip joint radiography.

  6. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. PMID:27169731

  7. Dose sculpting with generalized equivalent uniform dose

    SciTech Connect

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-05-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD{sub 0} and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD{sub 0} was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD{sub 0} was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n

  8. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  9. Benchmark Dose Modeling

    EPA Science Inventory

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  10. Biostability of polyether-urethane scaffolds: a comparison of two novel processing methods and the effect of higher gamma-irradiation dose.

    PubMed

    Haugen, H; Gerhardt, L C; Will, J; Wintermantel, E

    2005-05-01

    This article deals with enzyme-induced biodegradation behavior of thermoplastic polyether-urethane (TPU). Porous scaffolds were processed by a new foaming method applied in hot pressing and injection molding. The scaffolds were subsequently gamma sterilized. The samples were incubated with cholesterol esterase (CE) for 28 days to simulate an enzymatic degradation order to assess polymer biostability. The main focus of degradation products was the most toxic one: methylene dianiline (MDA). LC/MS was used to separate the breakdown products and to identify possible MDA amounts. The results showed that (a) the hot-pressed sample released an MDA amount almost twice as large (0.26 ng +/- 0.008) as that of the injection-molded samples (0.15 ng +/- 0.003) after incubation with enzyme activity in the physiological range, and (b) a tenfold increase in CE activity revealed considerably higher MDA amounts (7540.0 ng +/- 0.004). This enzyme concentration is physiologically unlikely, however, but may occur for extreme high inflammation behavior. Even for extremely high levels of CE enzyme, the scaffold will not discharge MDA above toxic levels. The injection-molded samples sterilized at 25 kGy seem to represent the most promising processing method. Therefore, the new injection-molding foaming process of polyether-urethane can be considered appropriate for use as a biomaterial. PMID:15756657

  11. Process

    SciTech Connect

    Geenen, P.V.; Bennis, J.

    1989-04-04

    A process is described for minimizing the cracking tendency and uncontrolled dimensional change, and improving the strength of a rammed plastic refractory reactor liner comprising phosphate-bonded silicon carbide or phosphate-bonded alumina. It consists of heating the reactor liner placed or mounted in a reactor, prior to its first use, from ambient temperature up to a temperature of from about 490/sup 0/C to about 510/sup 0/C, the heating being carried out by heating the liner at a rate to produce a temperature increase of the liner not greater than about 6/sup 0/C per hour.

  12. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  13. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800

  14. A comparison of quantum limited dose and noise equivalent dose

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang

    2016-03-01

    Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.

  15. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  16. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus.

    PubMed

    Stanojlović, M; Guševac, I; Grković, I; Zlatković, J; Mitrović, N; Zarić, M; Horvat, A; Drakulić, D

    2015-12-17

    The present study attempted to investigate how chronic cerebral hypoperfusion (CCH) and repeated low-dose progesterone (P) treatment affect gene and protein expression, subcellular distribution of key apoptotic elements within protein kinase B (Akt) and extracellular signal-regulated kinases (Erk) signal transduction pathways, as well as neurodegenerative processes and behavior. The results revealed the absence of Erk activation in CCH in cytosolic and synaptosomal fractions, indicating a lower threshold of Akt activation in brain ischemia, while P increased their levels above control values. CCH induced an increase in caspase 3 (Casp 3) and poly (ADP-ribose) polymerase (PARP) gene and protein expression. However, P restored expression of examined molecules in all observed fractions, except for the levels of Casp 3 in synapses which highlighted its possible non-apoptotic or even protective function. Our study showed the absence of nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) response to this type of ischemic condition and its strong activation under the influence of P. Further, the initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by CCH was significantly reduced by P. Finally, P reversed the CCH-induced reduction in locomotor activity, while promoting a substantial decrease in anxiety-related behavior. Our findings support the concept that repeated low-dose post-ischemic P treatment reduces CCH-induced neurodegeneration in the hippocampus. Neuroprotection is initiated through the activation of investigated kinases and regulation of their downstream molecules in subcellular specific manner, indicating that this treatment may be a promising therapy for alleviation of CCH-induced pathologies. PMID:26518459

  17. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  18. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    PubMed

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. PMID:25129210

  19. Dose refinement. ARAC's role

    SciTech Connect

    Ellis, J. S.; Sullivan, T. J.; Baskett, R. L.

    1998-06-01

    The Atmospheric Release Advisory Capability (ARAC), located at the Lawrence Livermore National Laboratory, since the late 1970's has been involved in assessing consequences from nuclear and other hazardous material releases into the atmosphere. ARAC's primary role has been emergency response. However, after the emergency phase, there is still a significant role for dispersion modeling. This work usually involves refining the source term and, hence, the dose to the populations affected as additional information becomes available in the form of source term estimates release rates, mix of material, and release geometry and any measurements from passage of the plume and deposition on the ground. Many of the ARAC responses have been documented elsewhere. 1 Some of the more notable radiological releases that ARAC has participated in the post-emergency phase have been the 1979 Three Mile Island nuclear power plant (NPP) accident outside Harrisburg, PA, the 1986 Chernobyl NPP accident in the Ukraine, and the 1996 Japan Tokai nuclear processing plant explosion. ARAC has also done post-emergency phase analyses for the 1978 Russian satellite COSMOS 954 reentry and subsequent partial burn up of its on board nuclear reactor depositing radioactive materials on the ground in Canada, the 1986 uranium hexafluoride spill in Gore, OK, the 1993 Russian Tomsk-7 nuclear waste tank explosion, and lesser releases of mostly tritium. In addition, ARAC has performed a key role in the contingency planning for possible accidental releases during the launch of spacecraft with radioisotope thermoelectric generators (RTGs) on board (i.e. Galileo, Ulysses, Mars-Pathfinder, and Cassini), and routinely exercises with the Federal Radiological Monitoring and Assessment Center (FRMAC) in preparation for offsite consequences of radiological releases from NPPs and nuclear weapon accidents or incidents. Several accident post-emergency phase assessments are discussed in this paper in order to illustrate

  20. Dose comparisons for mammographic systems

    SciTech Connect

    Speiser, R.C.; Zanrosso, E.M.; Jeromin, L.S.; Carlson, R.A.

    1986-09-01

    Dose estimates were made for Kodak Min-R screens combined with Kodak Min-R film and Kodak Ortho M film, both with and without a 5:1 Bucky grid; for standard xeroradiographic techniques in negative development mode; and for the new, higher sensitivity xeroradiographic process of the Xerox 175 System. The estimates were derived from exposure versus depth measurements in phantoms made of BR12 breast simulation material using thermoluminescent detectors. A molybdenum target source with molybdenum filtration, at a half-value layer of 0.37-mm Al, was used for the screen-film measurements. All xeroradiographic measurements were made with a tungsten target source with aluminum filtration at half-value layers of 1.5 to 1.56 mm Al. Mean glandular dose estimates for the Min-R screen/Ortho M film combination with Bucky grid and for the new xeroradiographic process were found to be similar. Dose reduction with the new xeroradiographic system was achieved through a more sensitive photoreceptor and more sensitive development, which also improved the unique imaging characteristics of xeroradiography.

  1. Know your dose: RADDOSE

    PubMed Central

    Paithankar, Karthik S.; Garman, Elspeth F.

    2010-01-01

    The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-­ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter ‘diffraction-dose efficiency’, which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. PMID:20382991

  2. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  3. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  4. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model).

    PubMed

    Shen, Jun; Boeckmann, Alison; Vick, Andrew

    2012-06-01

    A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854

  5. Acetaminophen dosing for children

    MedlinePlus

    Taking acetaminophen (Tylenol) can help children with colds and fever feel better. As with all drugs, it is important to give children the correct dose. Acetaminophen is safe when taken as directed. But taking ...

  6. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  7. User instructions for the CIDER Dose Code

    SciTech Connect

    Eslinger, P.W.; Lessor, K.S.; Ouderkirk, S.J.

    1994-05-01

    This document provides user instructions for the CIDER (Calculation of Individual Doses from Environmental Radionuclides) computer code. The CIDER code computes estimates of annual doses estimated for both reference individuals with a known residence and food consumption history. This document also provides user instructions for four utility codes used to build input data libraries for CIDER. These utility codes are ENVFAC (environmental factors), FOOFAC (food factors), LIFFAC (lifestyle factors), and ORGFAC (organ factors). Finally, this document provides user instructions for the EXPAND utility code. The EXPAND code processes a result file from CIDER and extracts a summary of the dose information for reporting or plotting purposes.

  8. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer- APPENDICES Appendices-Volume 1A

    SciTech Connect

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    This report consists of all the appendices for the report described below: In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values as appendices. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest

  9. Dosing dilemmas in obese children.

    PubMed

    Mulla, H; Johnson, T N

    2010-08-01

    With the epidemic of childhood obesity, it is not uncommon for prescribers to puzzle over an appropriate drug dose for an obese child. Defining the optimum therapeutic dose of a drug relies on an understanding of pharmacokinetics and pharmacodynamics. Both these processes can be affected by body composition and the physiological changes that occur in obese children. As a rule of thumb, 75% of excess weight in obese subjects is fat mass, and the remainder lean mass. Although it is reasonable to assume that increases in fat mass alter the distribution of lipophilic drugs and increases in lean mass alter drug clearance, good quality and consistent clinical data supporting these assumptions are lacking for the majority of drugs. The relatively few clinical studies that have evaluated the impact of obesity have often been limited by poor design and insufficient sample size. Moreover, clinical studies conducted during drug development rarely include (or are required to include) obese subjects. Guidance on dosing obese children ought to be provided by drug manufacturers. This could be achieved by including obese patients in studies where possible, enabling the effect of body size on pharmacotherapy to be evaluated. This approach could be further augmented by the use of physiologically based-pharmacokinetic models during early (preclinical) development to predict the impact of obesity on drug disposition, and subsequent clinical studies later in development to provide confirmatory proof. In the meantime, for the majority of drugs already prescribed in children, particularly those where the therapeutic range is narrow or there is significant toxicity, the lack of a validated body size descriptor to use at the bedside means the choice of dose will rely on empirical experience and application of the precautionary principle. PMID:20585055

  10. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  11. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  12. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  13. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction

    PubMed Central

    Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-01-01

    Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322

  14. Dose response signal detection under model uncertainty.

    PubMed

    Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav; Bretz, Frank

    2015-12-01

    We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations. PMID:26228796

  15. Towards more reliable automated multi-dose dispensing: retrospective follow-up study on medication dose errors and product defects.

    PubMed

    Palttala, Iida; Heinämäki, Jyrki; Honkanen, Outi; Suominen, Risto; Antikainen, Osmo; Hirvonen, Jouni; Yliruusi, Jouko

    2013-03-01

    To date, little is known on applicability of different types of pharmaceutical dosage forms in an automated high-speed multi-dose dispensing process. The purpose of the present study was to identify and further investigate various process-induced and/or product-related limitations associated with multi-dose dispensing process. The rates of product defects and dose dispensing errors in automated multi-dose dispensing were retrospectively investigated during a 6-months follow-up period. The study was based on the analysis of process data of totally nine automated high-speed multi-dose dispensing systems. Special attention was paid to the dependence of multi-dose dispensing errors/product defects and pharmaceutical tablet properties (such as shape, dimensions, weight, scored lines, coatings, etc.) to profile the most suitable forms of tablets for automated dose dispensing systems. The relationship between the risk of errors in dose dispensing and tablet characteristics were visualized by creating a principal component analysis (PCA) model for the outcome of dispensed tablets. The two most common process-induced failures identified in the multi-dose dispensing are predisposal of tablet defects and unexpected product transitions in the medication cassette (dose dispensing error). The tablet defects are product-dependent failures, while the tablet transitions are dependent on automated multi-dose dispensing systems used. The occurrence of tablet defects is approximately twice as common as tablet transitions. Optimal tablet preparation for the high-speed multi-dose dispensing would be a round-shaped, relatively small/middle-sized, film-coated tablet without any scored line. Commercial tablet products can be profiled and classified based on their suitability to a high-speed multi-dose dispensing process. PMID:22458299

  16. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  17. Multiple-dose acetaminophen pharmacokinetics.

    PubMed

    Sahajwalla, C G; Ayres, J W

    1991-09-01

    Four different treatments of acetaminophen (Tylenol) were administered in multiple doses to eight healthy volunteers. Each treatment (325, 650, 825, and 1000 mg) was administered five times at 6-h intervals. Saliva acetaminophen concentration versus time profiles were determined. Noncompartmental pharmacokinetic parameters were calculated and compared to determine whether acetaminophen exhibited linear or dose-dependent pharmacokinetics. For doses less than or equal to 18 mg/kg, area under the curve (AUC), half-life (t1/2), mean residence time (MRT), and ratio of AUC to dose for the first dose were compared with the last dose. No statistically significant differences were observed in dose-corrected AUC for the first or last dose among subjects or treatments. Half-lives and MRT were not significantly different among treatments for the first or the last dose. Statistically significant differences in t1/2 and MRT were noted (p less than 0.05) among subjects for the last dose. A plot of AUC versus dose for the first and the last doses exhibited a linear relationship. Dose-corrected saliva concentration versus time curves for the treatments were superimposable. Thus, acetaminophen exhibits linear pharmacokinetics for doses of 18 mg/kg or less. Plots of AUC versus dose for one subject who received doses higher than 18 mg/kg were curved, suggesting nonlinear behavior of acetaminophen in this subject. PMID:1800709

  18. New Antibiotic Dosing

    PubMed Central

    Pineda, Leslie C.; Watt, Kevin M.

    2015-01-01

    Infection is common in premature infants and can cause significant morbidity and mortality. To prevent these devastating consequences, most infants admitted to the neonatal intensive care unit (NICU) are exposed to antibiotics. However, dosing regimens are often extrapolated from data in adults and older children, increasing the risk for drug toxicity and lack of clinical efficacy because they fail to account for developmental changes in infant physiology. Despite legislation promoting and, in some cases, requiring pediatric drug studies, infants remain therapeutic orphans who often receive drugs "off-label" without data from clinical trials. Pharmacokinetic (PK) studies in premature infants have been scarce due to low study consent rates; limited blood volume available to conduct PK studies; difficulty in obtaining blood from infants; limited use of sensitive, low-volume drug concentration assays; and a lack of expertise in pediatric modeling and simulation. However, newer technologies are emerging with minimal-risk study designs, including ultra-low-volume assays, PK modeling and simulation, and opportunistic drug protocols. With minimal-risk study designs, PK data and dosing regimens for infants are now available for antibiotics commonly used in the NICU, including ampicillin, clindamycin, meropenem, metronidazole, and piperacillin/tazobactam. The discrepancy between previous dosing recommendations extrapolated from adult data and newer dosing regimens based on infant PK studies highlights the need to conduct PK studies in premature infants. PMID:25678003

  19. LADTAPXL Aqueous Dose Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1999-08-10

    LADTAPXL is an EXCEL spreadsheet model of the NRC computer code LADTAP. LADTAPXL calculates maximally exposed individual and population doses from chronic liquid releases. Environmental pathways include external exposure resulting from recreational activities on the Savannah River and ingestion of water, fish, and invertebrates of Savannah River origin.

  20. Radiation fields and dose assessments in Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation. PMID:21498858

  1. Dose specification for radiation therapy: dose to water or dose to medium?

    PubMed

    Ma, C-M; Li, Jinsheng

    2011-05-21

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis. PMID:21508447

  2. Dose constraints to the individual annual doses of exposed workers in the medical sector.

    PubMed

    Kamenopoulou, V; Drikos, G; Dimitriou, P

    2001-03-01

    The study is an attempt, within the process of the optimization of radiation protection, to propose constraints to the individual annual doses of classified workers employed in the medical sector of ionizing radiation applications in Greece. These exposed workers were grouped according to their specialties, i.e. medical doctors, technicians and nurses and their occupational category with common or similar tasks, such as diagnostic radiology, interventional radiology, nuclear medicine and radiotherapy. The last 5 years' annual dose distributions of these occupational groups, coming from the National Dose Registry Information System (NDRIS) of the Greek Atomic Energy Commission (GAEC) were analyzed. The proposed dose constraints (DCs) were set at levels, below which the annual doses of the 70 or 75% of the exposed workers per category are expected to be included. At the present stage the derived values may be considered achievable ceiling values referring to acceptably applied practices rather than to optimized ones, taking into account social and economic criteria. PMID:11274851

  3. When is a dose not a dose

    SciTech Connect

    Bond, V.P.

    1991-01-01

    Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)

  4. Delivery verification and dose reconstruction in tomotherapy

    NASA Astrophysics Data System (ADS)

    Kapatoes, Jeffrey Michael

    2000-11-01

    It has long been a desire in photon-beam radiation therapy to make use of the significant fraction of the beam exiting the patient to infer how much of the beam energy was actually deposited in the patient. With a linear accelerator and corresponding exit detector mounted on the same ring gantry, tomotherapy provides a unique opportunity to accomplish this. Dose reconstruction describes the process in which the full three-dimensional dose actually deposited in a patient is computed. Dose reconstruction requires two inputs: an image of the patient at the time of treatment and the actual energy fluence delivered. Dose is reconstructed by computing the dose in the CT with the verified energy fluence using any model-based algorithm such as convolution/superposition or Monte Carlo. In tomotherapy, the CT at the time of treatment is obtained by megavoltage CT, the merits of which have been studied and proven. The actual energy fluence delivered to the patient is computed in a process called delivery verification. Methods for delivery verification and dose reconstruction in tomotherapy were investigated in this work. It is shown that delivery verification can be realized by a linear model of the tornotherapy system. However, due to the measurements required with this initial approach, clinical implementation would be difficult. Therefore, a clinically viable method for delivery verification was established, the details of which are discussed. With the verified energy fluence from delivery verification, an assessment of the accuracy and usefulness of dose reconstruction is performed. The latter two topics are presented in the context of a generalized dose comparison tool developed for intensity modulated radiation therapy. Finally, the importance of having a CT from the time of treatment for reconstructing the dose is shown. This is currently a point of contention in modern clinical radiotherapy and it is proven that using the incorrect CT for dose reconstruction can lead

  5. Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement

    SciTech Connect

    Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi

    2013-07-01

    Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image

  6. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  7. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  8. [Quality control dose calibrators].

    PubMed

    Montoza Aguado, M; Delgado García, A; Ramírez Navarro, A; Salgado García, C; Muros de Fuentes, M A; Ortega Lozano, S; Bellón Guardia, M E; Llamas Elvira, J M

    2004-01-01

    We have reviewed the legislation about the quality control of dose calibrator. The importance of verifying the correct work of these instruments, is fundamental in daily practice of radiopharmacy and nuclear medicine. The Spanish legislation establishes to include these controls as part of the quality control of radiopharmaceuticals, and the program of quality assurance in nuclear medicine. We have reviewed guides and protocols from international eminent organizations, summarizing the recommended tests and periodicity of them. PMID:15625064

  9. Dose esclation in radioimmunotherapy based on projected whole body dose

    SciTech Connect

    Wahl, R.L.; Kaminski, M.S.; Regan, D.

    1994-05-01

    A variety of approaches have been utilized in conducting phase I radioimmunotherapy dose-escalation trials. Escalation of dose has been based on graded increases in administered mCi; mCi/kg; or mCi/m2. It is also possible to escalate dose based on tracer-projected marrow, blood or whole body radiation dose. We describe our results in performing a dose-escalation trial in patients with non-Hodgkin lymphoma based on escalating administered whole-body radiation dose. The mCi dose administered was based on a patient-individualized tracer projected whole-body dose. 25 patients were entered on the study. RIT with 131 I anti-B-1 was administered to 19 patients. The administered dose was prescribed based on the projected whole body dose, determined from patient-individualized tracer studies performed prior to RIT. Whole body dose estimates were based on the assumption that the patient was an ellipsoid, with 131 antibody kinetics determined using a whole-body probe device acquiring daily conjugate views of 1 minute duration/view. Dose escalation levels proceeded with 10 cGy increments from 25 cGy whole-body and continues, now at 75 cGy. The correlation among potential methods of dose escalation and toxicity was assessed. Whole body radiation dose by probe was strongly correlated with the blood radiation dose determined from sequential blood sampling during tracer studies (r=.87). Blood radiation dose was very weakly correlated with mCi dose (r=.4) and mCi/kg (r=.45). Whole body radiation dose appeared less well-correlated with injected dose in mCi (r=.6), or mCi/kg (r=.64). Toxicity has been infrequent in these patients, but appears related to increasing whole body dose. Non-invasive determination of whole-body radiation dose by gamma probe represents a non-invasive method of estimating blood radiation dose, and thus of estimating bone marrow radiation dose.

  10. Antimicrobial Dose in Obese Patient

    PubMed Central

    Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan

    2007-01-01

    Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are

  11. An expanded pharmacogenomics warfarin dosing table with utility in generalised dosing guidance.

    PubMed

    Shahabi, Payman; Scheinfeldt, Laura B; Lynch, Daniel E; Schmidlen, Tara J; Perreault, Sylvie; Keller, Margaret A; Kasper, Rachel; Wawak, Lisa; Jarvis, Joseph P; Gerry, Norman P; Gordon, Erynn S; Christman, Michael F; Dubé, Marie-Pierre; Gharani, Neda

    2016-08-01

    Pharmacogenomics (PGx) guided warfarin dosing, using a comprehensive dosing algorithm, is expected to improve dose optimisation and lower the risk of adverse drug reactions. As a complementary tool, a simple genotype-dosing table, such as in the US Food and Drug Administration (FDA) Coumadin drug label, may be utilised for general risk assessment of likely over- or under-anticoagulation on a standard dose of warfarin. This tool may be used as part of the clinical decision support for the interpretation of genetic data, serving as a first step in the anticoagulation therapy decision making process. Here we used a publicly available warfarin dosing calculator (www.warfarindosing.org) to create an expanded gene-based warfarin dosing table, the CPMC-WD table that includes nine genetic variants in CYP2C9, VKORC1, and CYP4F2. Using two datasets, a European American cohort (EUA, n=73) and the Quebec Warfarin Cohort (QWC, n=769), we show that the CPMC-WD table more accurately predicts therapeutic dose than the FDA table (51 % vs 33 %, respectively, in the EUA, McNemar's two-sided p=0.02; 52 % vs 37 % in the QWC, p<1×10(-6)). It also outperforms both the standard of care 5 mg/day dosing (51 % vs 34 % in the EUA, p=0.04; 52 % vs 31 % in the QWC, p<1×10(-6)) as well as a clinical-only algorithm (51 % vs 38 % in the EUA, trend p=0.11; 52 % vs 45 % in the QWC, p=0.003). This table offers a valuable update to the PGx dosing guideline in the drug label. PMID:27121899

  12. Dose Equivalents for Second-Generation Antipsychotics: The Minimum Effective Dose Method

    PubMed Central

    Leucht, Stefan

    2014-01-01

    Background: Clinicians need to know the right antipsychotic dose for optimized treatment, and the concept of dose equivalence is important for many clinical and scientific purposes. Methods: We refined a method presented in 2003, which was based on the minimum effective doses found in fixed-dose studies. We operationalized the selection process, updated the original findings, and expanded them by systematically searching more recent literature and by including 13 second-generation antipsychotics. To qualify for the minimum effective dose, a dose had to be significantly more efficacious than placebo in the primary outcome of at least one randomized, double-blind, fixed-dose trial. In a sensitivity analysis, 2 positive trials were required. The minimum effective doses identified were subsequently used to derive olanzapine, risperidone, haloperidol, and chlorpromazine equivalents. Results: We reviewed 73 included studies. The minimum effective daily doses/olanzapine equivalents based on our primary approach were: aripiprazole 10 mg/1.33, asenapine 10 mg/1.33, clozapine 300 mg/40, haloperidol 4 mg/0.53, iloperidone 8 mg/1.07, lurasidone 40 mg/5.33, olanzapine 7.5 mg/1, paliperidone 3 mg/0.4, quetiapine 150 mg/20, risperidone 2 mg/0.27, sertindole 12 mg/1.60, and ziprasidone 40 mg/5.33. For amisulpride and zotepine, reliable estimates could not be derived. Conclusions: This method for determining antipsychotic dose equivalence entails an operationalized and evidence-based approach that can be applied to the various antipsychotic drugs. As a limitation, the results are not applicable to specific populations such as first-episode or refractory patients. We recommend that alternative methods also be updated in order to minimize further differences between the methods and risk of subsequent bias. PMID:24493852

  13. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    SciTech Connect

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  14. Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks.

    PubMed

    Calabrese, Edward J

    2016-08-01

    In Part I, hormetic doses of a variety of agents stimulated adaptive responses that conditioned and protected cells against the subsequent toxicity resulting from a second, higher dose (called a challenging dose) of the same or different agents. Herein (Part II), the optimal conditioning (hormetic) doses of many agents are documented, cellular mechanisms and temporal profiles are examined from which the conditioning (hormetic) responses are elicited, and the optimal conditioning doses are compared to the levels at which optimal protection occurs in response to the toxic challenge dose. Entry criteria for study evaluation required a conditioning mechanism-induced endpoint response, an hormetic/biphasic dose response for the protective response following the challenging dose, and a mechanistic assessment of how the conditioning dose afforded protection against a toxic challenging dose. The conditioning dose that demonstrated the largest increase in a mechanism-related conditioning (hormetic) response (i.e., prior to administration of the challenging dose) was the same dose that was optimally protective following the challenging dose. Specific receptor antagonists and/or inhibitors of cell signaling pathways which blocked the induction of conditioning (hormetic) effects during the conditioning period abolished the protective effects following the application of a challenge dose, thus identifying a specific and essential component of the hormetic mechanism. Conditioning responses often had sufficient doses to assess the nature of the dose response. In each of the cases these mechanism-based endpoints displayed an hormetic dose response. The present analysis reveals that hormetic biphasic dose responses were associated with both the conditioning process and the protective effects elicited following the challenging dose. Furthermore, based on optimal dosage, temporal relationships and the known mediating actions of receptor-based and/or cell signaling-based mechanisms

  15. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  16. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  18. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  19. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  20. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  1. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  2. High total dose effects on CMOS/SOI technology

    SciTech Connect

    Flament, O.; Dupont-Nivet, E.; Leray, J.L.; Pere, J.F.; Delagnes, E. ); Auberton-Herve, A.J.; Giffard, B. ); Borel, G.; Ouisse, T. )

    1992-06-01

    This paper reports that, CMOS silicon on insulator technology has shown its ability to process hardened components which remain functional after irradiation with a total dose of several tens of Megarads. New tests on elementary transistors and 29101 microprocessor have been made at doses up to 100 Mrad (SiO{sub 2}) and above. Results of irradiation at these total doses are presented for different biases, together with the post-irradiation behavior of the components. All the observations show that new parameters must be taken into account for hardness insurance at a high level of total dose.

  3. Integral dose conservation in radiotherapy.

    PubMed

    Reese, Adam S; Das, Shiva K; Curie, Charles; Marks, Lawrence B

    2009-03-01

    Treatment planners frequently modify beam arrangements and use IMRT to improve target dose coverage while satisfying dose constraints on normal tissues. The authors herein analyze the limitations of these strategies and quantitatively assess the extent to which dose can be redistributed within the patient volume. Specifically, the authors hypothesize that (1) the normalized integral dose is constant across concentric shells of normal tissue surrounding the target (normalized to the average integral shell dose), (2) the normalized integral shell dose is constant across plans with different numbers and orientations of beams, and (3) the normalized integral shell dose is constant across plans when reducing the dose to a critical structure. Using the images of seven patients previously irradiated for cancer of brain or prostate cancer and one idealized scenario, competing three-dimensional conformal and IMRT plans were generated using different beam configurations. Within a given plan and for competing plans with a constant mean target dose, the normalized integral doses within concentric "shells" of surrounding normal tissue were quantitatively compared. Within each patient, the normalized integral dose to shells of normal tissue surrounding the target was relatively constant (1). Similarly, for each clinical scenario, the normalized integral dose for a given shell was also relatively constant regardless of the number and orientation of beams (2) or degree of sparing of a critical structure (3). 3D and IMRT planning tools can redistribute, rather than eliminate dose to the surrounding normal tissues (intuitively known by planners). More specifically, dose cannot be moved between shells surrounding the target but only within a shell. This implies that there are limitations in the extent to which a critical structure can be spared based on the location and geometry of the critical structure relative to the target. PMID:19378734

  4. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  5. [Fixed-dose combination].

    PubMed

    Nagai, Yoshio

    2015-03-01

    Many patients with type 2 diabetes mellitus(T2DM) do not achieve satisfactory glycemic control by monotherapy alone, and often require multiple oral hypoglycemic agents (OHAs). Combining OHAs with complementary mechanisms of action is fundamental to the management of T2DM. Fixed-dose combination therapy(FDC) offers a method of simplifying complex regimens. Efficacy and tolerability appear to be similar between FDC and treatment with individual agents. In addition, FDC can enhance adherence and improved adherence may result in improved glycemic control. Four FDC agents are available in Japan: pioglitazone-glimepiride, pioglitazone-metformin, pioglitazone-alogliptin, and voglibose-mitiglinide. In this review, the advantages and disadvantages of these four combinations are identified and discussed. PMID:25812374

  6. Visualization of a changing dose field.

    SciTech Connect

    Helm, T. M; Kornreich, D. E.

    2002-01-01

    To help visualize the results of dose modeling for nuclear materials processing opcrations, we have developed an integrated model that uses a simple dosc calculation tool to obtain estimates of the dose field in a complex geomctry and then post-process the data to produce a video of the now time-dependent data. We generate two-dimensional radiation fields within an existing physical cnvironment and then analyze them using three-dimensional visualization techniques. The radiation fields are generated for both neutrons and photons. Standard monoenergetic diffusion theory is used to estimate the neutron dosc fields. The photon dose is estimated using a point-kernel formalism, with photon shielding effects and buildup taken into account. The radiation field dynamics are analyzed by interleaving individual 3D graphic 'snapshots' into a smoothed, lime dependent, video-based display. In-the-room workers are 'seen' in the radiation fields via a graphical, 3D fly-through rendering of the room. Worker dose levels can reveal surprising dependencies on operational source placement, source types, worker alignment, shielding alignments, and indirect operations from external workers.

  7. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    PubMed

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. PMID:27184851

  8. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  9. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.]. PMID:25601291

  10. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution.

    PubMed

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-06-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  11. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

    PubMed Central

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-01-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  12. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  13. Low doses of memantine disrupt memory in adult rats.

    PubMed

    Creeley, Catherine; Wozniak, David F; Labruyere, Joanne; Taylor, George T; Olney, John W

    2006-04-12

    Memantine, a drug recently approved for treatment of Alzheimer's disease, has been characterized as a unique NMDA antagonist that confers protection against excitotoxic neurodegeneration without the serious side effects that other NMDA antagonists are known to cause. In the present study, we determined what dose of memantine is required to protect the adult rat brain against an NMDA receptor-mediated excitotoxic process and then tested that dose and a range of lower doses to determine whether the drug in this dose range is associated with significant side effects. Consistent with previous research, we found that memantine confers a neuroprotective effect beginning at an intraperitoneal dose of 20 mg/kg, a dose that we found, contrary to previous reports, produces locomotor disturbances severe enough to preclude testing for learning and memory effects. We then determined that, at intraperitoneal doses of 10 and 5 mg/kg, memantine disrupts both memory and locomotor behaviors. Rats treated with these doses performed at control-like levels in learning a hole-board task but were significantly impaired in demonstrating what they had learned when tested 24 h later. This impairment of memory retention was not state dependent in that it was demonstrable regardless of whether the rats were or were not exposed to memantine on the day of retention testing. We conclude that, in the adult rat, memantine behaves like other NMDA antagonists in that it is neuroprotective only at doses that produce intolerable side effects, including memory impairment. PMID:16611808

  14. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  15. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  16. Testing the individual effective dose hypothesis.

    PubMed

    Vu, Hung T; Klaine, Stephen J

    2014-04-01

    The assumption of the individual effective dose is the basis for the probit method used for analyzing dose or concentration-response data. According to this assumption, each individual has a uniquely innate tolerance expressed as the individual effective dose (IED) or the smallest dose that is sufficient to kill the individual. An alternative to IED, stochasticity suggests that individuals do not have uniquely innate tolerance; deaths result from random processes occurring among similar individuals. Although the probit method has been used extensively in toxicology, the underlying assumption has not been tested rigorously. The goal of the present study was to test which assumption, IED or stochasticity, best explained the response of Daphnia magna exposed to multiple pulses of copper sulfate (CuSO4 ) over 24 d. Daphnia magna were exposed to subsequent age-dependent 24-h median lethal concentrations (LC50s) of copper (Cu). Age-dependent 24-h LC50 values and Cu depuration test were determined prior to the 24-d bioassay. The LC50 values were inversely related to organism age. The Cu depuration of D. magna did not depend on age or Cu concentration, and 5 d was sufficient recovery time. Daphnia magna were exposed to 4 24-h Cu exposures, and surviving organisms after each exposure were transferred to Cu-free culture media for recovery before the next exposure. Stochasticity appropriately explained the survival and reproduction response of D. magna exposed to Cu. PMID:24318469

  17. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  18. Exercise Dose in Clinical Practice.

    PubMed

    Wasfy, Meagan M; Baggish, Aaron L

    2016-06-01

    There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors, including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. PMID:27267537

  19. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  20. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    Energy Science and Technology Software Center (ESTSC)

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guidemore » 1.109 Rev. 1 and NUREG-0133 by optional choice.« less

  1. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    SciTech Connect

    BOHN, TED S.

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guide 1.109 Rev. 1 and NUREG-0133 by optional choice.

  2. Management of pediatric radiation dose using GE fluoroscopic equipment.

    PubMed

    Belanger, Barry; Boudry, John

    2006-09-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  3. Joint pharmacy/nursing procedure for monitoring unit dose distribution and unadministered doses.

    PubMed

    Dahl, F C; Conway, M F; Henderson, C M

    1986-09-01

    This article describes a procedure that uses a multidisciplinary approach to quality assurance in a unit-dose distribution system. The procedure described here uses an assigned nurse and one member of the pharmacy staff (pharmacist, technician/intern) on each nursing unit to check the physical contents of medication cassettes as well as compare pharmacy patient profiles with nursing medication administration records. In examining data from a 184 calendar day period, there was an average of 822 doses of medication per day, including IV admixtures and piggybacks, checked using this system. The time spent in the checking process was approximately 40 minutes per day for each of the three pharmacy staff members performing the check. The average daily census during this period was 60 patients, located on two medical/surgical nursing units, a combined short-procedure unit/detox unit, and an eight-bed critical care unit. The procedure presented also includes a mechanism for the nursing staff to easily document unadministered doses in a manner that provides the pharmacy department with this information. The procedure described makes it extremely difficult for certain types of medication errors to extend beyond a 24-hour period. It also controls missing doses. We found during the 184-day period that only 12 doses were reported missing from the cassettes after the check process. The low number of missing doses reported can be attributed to the fact that the assigned nurse and member of the pharmacy staff verify the presence of a 24-hour supply of medication. PMID:10278987

  4. Dose-mass inverse optimization for minimally moving thoracic lesions

    NASA Astrophysics Data System (ADS)

    Mihaylov, I. B.; Moros, E. G.

    2015-05-01

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung

  5. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  6. 42 CFR 82.12 - Will it be possible to conduct dose reconstructions for all claims?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR part 30). Pursuant to section 7384q of EEOICPA, the Secretary of HHS is authorized to add classes... 42 Public Health 1 2011-10-01 2011-10-01 false Will it be possible to conduct dose reconstructions... Dose Reconstruction Process § 82.12 Will it be possible to conduct dose reconstructions for all...

  7. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV).

    PubMed

    McKenney, Douglas G; Kurath, Gael; Wargo, Andrew R

    2016-03-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50 values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout. PMID:26752429

  8. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    McKenney, Douglas; Kurath, Gael; Wargo, Andrew

    2016-01-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  9. Replacing the Measles Ten-Dose Vaccine Presentation with the Single-Dose Presentation in Thailand

    PubMed Central

    Lee, Bruce Y.; Assi, Tina-Marie; Rookkapan, Korngamon; Connor, Diana L.; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T.; Welling, Joel S.; Norman, Bryan A.; Chen, Sheng-I; Bailey, Rachel R.; Wiringa, Ann E.; Wateska, Angela R.; Jana, Anirban; Van Panhuis, Willem G.; Burke, Donald S.

    2011-01-01

    Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes entailed to deliver vaccines from manufacturers to patients). We developed a computational model of Thailand’s Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose Measles-Mumps-Rubella vaccine (which Thailand is currently considering) and a single-dose measles vaccine. While the Trang province vaccine supply chain would generally have enough storage and transport capacity to accommodate the switches, the added volume could push some locations’ storage and transport space utilization close to their limits. Single-dose vaccines would allow for more precise ordering and decrease open vial waste, but decrease reserves for unanticipated demand. Moreover, the added disposal and administration costs could far outweigh the costs saved from preventing open vial wastage. PMID:21439313

  10. The total ionizing dose effect in 12-bit, 125 MSPS analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Xue, Wu; Wu, Lu; Yudong, Li; Qi, Guo; Xin, Wang; Xingyao, Zhang; Xin, Yu; Wuying, Ma

    2014-04-01

    This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.

  11. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  12. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process

  13. Phase 1 of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Not Available

    1991-08-01

    The work described in this report was prompted by the public's concern about potential effect from the radioactive materials released from the Hanford Site. The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation dose the public might have received from the Hanford Site since 1944, when facilities began operating. Phase 1 of the HEDR Project is a pilot'' or demonstration'' phase. The objectives of this initial phase were to determine whether enough historical information could be found or reconstructed to be used for dose estimation and develop and test conceptual and computational models for calculating credible dose estimates. Preliminary estimates of radiation doses were produced in Phase 1 because they are needed to achieve these objectives. The reader is cautioned that the dose estimates provided in this and other Phase 1 HEDR reports are preliminary. As the HEDR Project continues, the dose estimates will change for at least three reasons: more complete input information for models will be developed; the models themselves will be refined; and the size and shape of the geographic study area will change. This is one of three draft reports that summarize the first phase of the four-phased HEDR Project. This, the Summary Report, is directed to readers who want a general understanding of the Phase 1 work and preliminary dose estimates. The two other reports -- the Air Pathway Report and the Columbia River Pathway Report -- are for readers who understand the radiation dose assessment process and want to see more technical detail. Detailed descriptions of the dose reconstruction process are available in more than 20 supporting reports listed in Appendix A. 32 refs., 46 figs.

  14. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. PMID:21040869

  15. A TLD dose algorithm using artificial neural networks

    SciTech Connect

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-12-31

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.

  16. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  17. Dose management in CT facility

    PubMed Central

    Tsapaki, V; Rehani, M

    2007-01-01

    Computed Tomography (CT) examinations have rapidly increased in number over the last few years due to recent advances such as the spiral, multidetector-row, CT fluoroscopy and Positron Emission Tomography (PET)-CT technology. This has resulted in a large increase in collective radiation dose as reported by many international organisations. It is also stated that frequently, image quality in CT exceeds the level required for confident diagnosis. This inevitably results in patient radiation doses that are higher than actually required, as also stressed by the US Food and Drug Administration (FDA) regarding the CT exposure of paediatric and small adult patients. However, the wide range in exposure parameters reported, as well as the different CT applications reveal the difficulty in standardising CT procedures. The purpose of this paper is to review the basic CT principles, outline the recent technological advances and their impact in patient radiation dose and finally suggest methods of radiation dose optimisation. PMID:21614279

  18. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (ESTSC)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  19. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  20. Gamma Radiation Doses In Sweden

    NASA Astrophysics Data System (ADS)

    Almgren, Sara; Barregârd, Lars; Isaksson, Mats

    2008-08-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  1. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  3. Measurements and calculations of electron dose distributions in circular materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhou, Xinzhi; An, Zhu; Zhou, Youyi; Wang, Shiming

    2002-03-01

    In this paper, the absorbed dose distributions of 0.6-2.0 MeV electrons in circular compound materials have been calculated by the calculation method of electron energy deposition in multi-layer media based on bipartition model of electron transport. In addition, the blue cellophane film dosimeters have been used to measure the electron absorbed dose distributions in some circular objects. The calculation results are in agreement with some measurement data. The results indicate the usefulness of the calculation and measurement methods for electron dose monitoring and control in radiation processing of wire and cable.

  4. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  5. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    SciTech Connect

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-12-15

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There

  6. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-12-31

    The purpose of this paper is to consider two general topics: Technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied. 90 refs., 4 tabs.

  7. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  8. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  9. HEDR model validation plan. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ``tools`` for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ``validate`` these tools. In the sense of the HEDR Project, ``validation`` is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model.

  10. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  11. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash

  12. Reduction of radiation dose to patients undergoing barium enema by dose audit.

    PubMed

    Yu, S K; Cheung, Y K; Chan, T L; Kung, C M; Yuen, M K

    2001-02-01

    Nowadays, new fluoroscopic machines are usually equipped with a dose-area product (DAP) meter for dose measurement. In our hospital, DAP meters have been used in the Diagnostic Radiology Department for dose audit since June 1997. Demographic patient data, name of radiologist, fluoroscopic duration and DAP readings of every case were recorded by radiographers. In early 1999, questionnaires were distributed to radiologists who had performed fluoroscopic examinations during the auditing period. 23 radiologists with varying years of experience completed the questionnaire and their practice was analysed. Since familiarization with the examination technique would affect radiologists' practice, these radiologists were divided into two groups for analysis. Radiologists with less than 3 years of experience were grouped together as junior radiologists, whilst others were grouped as senior radiologists. Results of the questionnaire indicated that radiologists generally found DAP meters useful for dose evaluation in the process of technique refinement. Radiologists aware of being under continuous surveillance of their practice showed significant reduction of doses (junior radiologists 25%, p<0.005; senior radiologists 36%, p<0.05) and fluoroscopic times (junior radiologists 36%, p<0.001; senior radiologists 18%, p<0.05) compared with radiologists who were unaware that they were under surveillance but with similar radiological experience. This effect is believed to be because of increased awareness of radiation dose through audit. In addition, this "audit effect" may also affect junior radiologists in decision-making regarding the number of radiographs (p<0.05), but no effect was found for senior radiologists (p>0.5). PMID:11718389

  13. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  14. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  15. Notes on the effect of dose uncertainty

    SciTech Connect

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated.

  16. The Northern Marshall Islands radiological survey: Data and dose assessments

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

  17. Dose tracking and radiology department management.

    PubMed

    Kirova, G; Georgiev, E; Zasheva, C; St Georges, A

    2015-07-01

    The purpose of this work was to review the reasonable measures that should be implemented as part of a routine practice in the process of managing CT radiation risks in a typical average radiology department. Based on 6 y of experience in the management of a general radiology department and the newly implemented supportive software for dose tracking, analysing and reporting, the approach towards radiation risk reduction is presented. Thanks to this approach, some problems have been resolved, and reasonable measures have been introduced into daily practice. PMID:25813480

  18. MILDOS uranium milling dose assessment code update.

    SciTech Connect

    LePoire, D. J.; Arnish, J. J.; Chen, S. Y.; Faillace, E. R.; Yuan, Y. C.; Schmidt, D. W.; Environmental Assessment; Washington Group International; NRC

    2001-11-01

    The MILDOS-AREA code was developed to estimate radiological doses and risks from uranium milling activities. The code has been used for demonstrating radiological compliance regarding the U.S. Nuclear Regulatory Commission's licensing requirements for uranium milling activities. The code was recently updated with an enhanced software package to address the following four areas: regulatory changes, in-situ leaching extraction technologies, software user interfaces, and software distribution technologies via the internet. Users can now specify in-situ leaching processes through a Windows object-based Geographic information System interface with incorporated updated regulation methodologies. The code and documentation are freely distributed through the Internet.

  19. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  20. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  1. Dose-rate dependence of heat radiosensitization

    SciTech Connect

    Gerner, E.W.; Oval, J.H.; Manning, M.R.; Sim, D.A.; Bowden, G.T.; Hevezi, J.M.

    1983-09-01

    The dose rate dependence of heat radiosensitization was studied using rat astrocytoma cells in culture and a cliniclly relevant protocol of heat dose and heat radiation sequence. Cells were treated with a minimally toxic heat dose of 43/sup 0/C for 30 minutes, after which they were irradiated with varying doses of radiation at dose rates ranging from 0.567 to 300 cGy/min. This heat dose substantially reduced the extrapolation number (n), but had little effect on D/sub 0/ of the radiation survival curve at dose rates of 50 cGy/min or greater. At dose rates less than 10 cGy/min, 43/sup 0/C for 30 min had little effect on n and only for the lowest dose rate studied (0.567 cGy/min) was there a significant reduction in D/sub 0/ (60%). The thermal enhancement ratio did not vary inversely with radiation dose rate over the dose rate range studied but, instead, was maximal at the two dose rate extremes (0.567 and 300 cGy/min). These data demonstrate that a clinically relevant heat dose enhances very low dose rate, as well as high dose rate, ionizing radiation, but suggest that little benefit is to be gained from using dose rates intermediate between conventional radiotherapeutic high dose rates or dose rates representative of interstitial implants.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  3. Dose quality assurance for industrial irradiation with an electron linac

    NASA Astrophysics Data System (ADS)

    White, B. F.; Lawrence, C. B.; Lee-Whiting, G. E.; Lord, S.; Mason, V. A.; Smyth, D. L.; Ungrin, J.

    1989-04-01

    In the development of the IMPELA family of electron linacs for industrial radiation processing, the needs for on-line monitoring of exposure dose have been recognized. The diverse applications under consideration demand a broad range of control-system performance and delivered-dose assurance measures appropriate to the sensitivities of the processes. The AAMI Guideline for Electron Beam Radiation Sterilization of Medical Devices points to a probable upper bound to the complexity of such requirements. ASTM and IAEA standards and guidelines for radiation dosimetry define the methods available for off-line verification of absorbed dose. The impact of the requirements for on-line measurements and the limitations inherent to the IMPELA design, are reviewed. The interdependencies of off-line product dosimetry and analyses with the on-line monitoring of process parameters are explored in search of criteria for optimization of cost-effective, flexible industrial irradiators.

  4. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  5. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  6. Dose reconstruction using mobile phones.

    PubMed

    Beerten, K; Reekmans, F; Schroeyers, W; Lievens, L; Vanhavere, F

    2011-03-01

    Electronic components inside mobile phones are regarded as useful tools for accident and retrospective dosimetry using optically stimulated luminescence (OSL) and thermoluminescence. Components inside the devices with suitable properties for luminescence dosimetry include, amongst others, ceramic substrates in resistors, capacitors, transistors and antenna switches. Checking the performance of such devices in dosimetric experiments is a crucial step towards developing a reliable dosimetry system for emergency situations using personal belongings. Here, the results of dose assessment experiments using irradiated mobile phones are reported. It will be shown that simple regenerative dose estimates, derived from various types of components removed from different mobile phone models, are consistent with the given dose, after applying an average fading correction factor. PMID:21062806

  7. Exercise and sport performance with low doses of caffeine.

    PubMed

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis. PMID:25355191

  8. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes.

    PubMed

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjaer Unmack; Chernyy, Sergey; Andresen, Thomas L; Larsen, Niels B

    2016-01-21

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patient-specific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduced as a flexible and cost-efficient method for producing multiplexed dosing assays. The high spatial resolution of light projector technology defines multiple compound doses by the volume of individual compound-embedded hydrogel segments. Quantitative dosing of multiple proteins with a dynamic range of 1-2 orders of magnitude is demonstrated using fluorescently labeled albumins. The hydrogel matrix results from photopolymerization of low-cost poly(ethylene glycol) diacrylates (PEGDA), and tuning of the PEGDA composition enables fast complete dosing of all tested species. Dosing of hydrophilic and hydrophobic compounds is demonstrated using two first-line chemotherapy regimens combining oxaliplatin, SN-38, 5-fluorouracil, and folinic acid, with each compound being dosed from a separate light-defined hydrogel segment. Cytotoxicity studies using a colorectal cancer cell line show equivalent effects of dissolved and released compounds. Further control of the dosing process is demonstrated by liposomal encapsulation of oxaliplatin, stable embedding of the liposomes in hydrogels for more than 3 months, and heat-triggered complete release of the loaded oxaliplatin. PMID:26619161

  9. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  10. Sievert, gray and dose equivalent.

    PubMed

    Pfalzner, P M

    1983-12-01

    The concepts of physical quantity and physical units of measurement are presented. The relations between quantities, the names and symbols for SI (International System) base units, derived units and special names of SI units are illustrated. From the definition of the radiation quantity dose equivalent, the SI unit for this quantity is shown to be dimensionally identical with the joule per kilogram. The sievert (Sv) is the special (restricted) name for the SI unit of the quantity dose equivalent, with 1 Sv = 1 J/kg. PMID:6668293

  11. Energetic dose: Beyond fire and flint?

    USGS Publications Warehouse

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  12. An investigation of nonuniform dose deposition from an electron beam

    NASA Astrophysics Data System (ADS)

    Lilley, William; Luu, Kieu X.

    1994-08-01

    In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.

  13. Radiological dose assessments of atolls in the Northern Marshall Islands

    SciTech Connect

    Robison, W.L.

    1983-11-01

    Methods and models used to estimate the radiation doses to a returning population of the atolls in the Marshall Islands are presented. In this environment natural processes have acted on source-term radionuclides for nearly 30 years. The data bases developed for the models, and the results of the radiological dose analyses at the various atolls are described. The major radionuclides in order of their contribution to the total estimated doses were /sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, /sup 241/Am, and /sup 60/Co. Exposure pathways in order of their contribution to the estimated doses were: terrestrial food chain, external ..gamma.., marine food chain, inhalation, and cistern water and ground water. 56 references, 13 figures, 16 tables.

  14. PCBS: CANCER DOSE-RESPONSE ASSESSMENT AND APPLICATION TO ENVIRONMENTAL MIXTURES (1996)

    EPA Science Inventory

    This report updates the cancer dose-response assessment for polychlorinated biphenyls (PCBs) and shows how information on toxicity, disposition, and environmental processes can be considered together to evaluate health risks from PCB mixtures in the environment. Processes that ch...

  15. Comparing Greenhouse Sprayers: The Dose-Transfer Process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innovation in spray equipment for insecticide delivery in greenhouses could improve pest control, help manage pest control costs, improve worker safety, and reduce environmental contamination. The ability of a high pressure atomizer (DRAMM), an air-assist, electrostatic sprayer (ESS), and a low pre...

  16. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  17. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  18. The Dose Makes the Poison.

    ERIC Educational Resources Information Center

    Ottoboni, Alice

    1992-01-01

    A Toxicologist discusses common misconception that all chemicals are poisonous to people and the environment and how these misconceptions are perpetuated. Describes what makes a chemical toxic. Defines related concepts including dose, acute and chronic toxicity, and natural verses synthetic chemicals. (MCO)

  19. BENCHMARK DOSE TECHNICAL GUIDANCE DOCUMENT

    EPA Science Inventory

    The U.S. EPA conducts risk assessments for an array of health effects that may result from exposure to environmental agents, and that require an analysis of the relationship between exposure and health-related outcomes. The dose-response assessment is essentially a two-step proce...

  20. Peritoneal Dialysis Dose and Adequacy

    MedlinePlus

    ... Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Peritoneal Dialysis Dose and Adequacy Page Content On this page: ... from the abdominal cavity. [ Top ] Types of Peritoneal Dialysis The two types of peritoneal dialysis differ mainly ...

  1. Dose modeling in ultraviolet phototherapy

    SciTech Connect

    Grimes, David Robert; Robbins, Chris; O'Hare, Neil John

    2010-10-15

    Purpose: Ultraviolet phototherapy is widely used in the treatment of numerous skin conditions. This treatment is well established and largely beneficial to patients on both physical and psychological levels; however, overexposure to ultraviolet radiation (UVR) can have detrimental effects, such as erythemal responses and ocular damage in addition to the potentially carcinogenic nature of UVR. For these reasons, it is essential to control and quantify the radiation dose incident upon the patient to ensure that it is both biologically effective and has the minimal possible impact on the surrounding unaffected tissue. Methods: To date, there has been little work on dose modeling, and the output of artificial UVR sources is an area where research has been recommended. This work characterizes these sources by formalizing an approach from first principles and experimentally examining this model. Results: An implementation of a line source model is found to give impressive accuracy and quantifies the output radiation well. Conclusions: This method could potentially serve as a basis for a full computational dose model for quantifying patient dose.

  2. Validation of CT dose-reduction simulation

    SciTech Connect

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-15

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The ''just noticeable difference (JND)'' in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%{+-}1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%{+-}1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%{+-}2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose, which

  3. Validation of CT dose-reduction simulation.

    PubMed

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F; Bae, Kyongtae T; Whiting, Bruce R

    2009-01-01

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The "just noticeable difference (JND)" in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p > 0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6% +/- 1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1% +/- 1.6%. Cadaver measurements indicated that image noise was matched to within 2.6% +/- 2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p = 0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose

  4. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  5. Patient Dose In Diagnostic Radiology: When & How?

    NASA Astrophysics Data System (ADS)

    Lassen, Margit; Gorson, Robert O.

    1980-08-01

    Different situations are discussed in which it is of value to know radiation dose to the patient in diagnostic radiology. Radiation dose to specific organs is determined using the Handbook on Organ Doses published by the Bureau of Radiological Health of the Food and Drug Administration; the method is applied to a specific case. In this example dose to an embryo is calculated in examinations involving both fluoroscopy and radiography. In another example dose is determined to a fetus in late pregnancy using tissue air ratios. Patient inquiries about radiation dose are discussed, and some answers are suggested. The reliability of dose calculations is examined.

  6. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk. PMID:8966249

  7. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  8. Alternative sample sizes for verification dose experiments and dose audits

    NASA Astrophysics Data System (ADS)

    Taylor, W. A.; Hansen, J. M.

    1999-01-01

    ISO 11137 (1995), "Sterilization of Health Care Products—Requirements for Validation and Routine Control—Radiation Sterilization", provides sampling plans for performing initial verification dose experiments and quarterly dose audits. Alternative sampling plans are presented which provide equivalent protection. These sampling plans can significantly reduce the cost of testing. These alternative sampling plans have been included in a draft ISO Technical Report (type 2). This paper examines the rational behind the proposed alternative sampling plans. The protection provided by the current verification and audit sampling plans is first examined. Then methods for identifying equivalent plans are highlighted. Finally, methods for comparing the cost associated with the different plans are provided. This paper includes additional guidance for selecting between the original and alternative sampling plans not included in the technical report.

  9. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  10. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    SciTech Connect

    Yao Rui; Bernard, Damian; Turian, Julius; Abrams, Ross A.; Sensakovic, William; Fung, Henry C.; Chu, James C. H.

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lung dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.

  11. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  12. Confectionery-based dose forms.

    PubMed

    Tangso, Kristian J; Ho, Quy Phuong; Boyd, Ben J

    2015-01-01

    Conventional dosage forms such as tablets, capsules and syrups are prescribed in the normal course of practice. However, concerns about patient preferences and market demands have given rise to the exploration of novel unconventional dosage forms. Among these, confectionery-based dose forms have strong potential to overcome compliance problems. This report will review the availability of these unconventional dose forms used in treating the oral cavity and for systemic drug delivery, with a focus on medicated chewing gums, medicated lollipops, and oral bioadhesive devices. The aim is to stimulate increased interest in the opportunities for innovative new products that are available to formulators in this field, particularly for atypical patient populations. PMID:25146440

  13. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  14. Radiation Dose from Cigarette Tobacco

    NASA Astrophysics Data System (ADS)

    Papastefanou, C.

    2008-08-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made produced radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv y-1 (average 79.7 μSv y-1), while for 228Ra from 19.3 to 116.0 μSv y-1 (average 67.1 μSv y-1) and for 210Pb from 47.0 to 134.9 μSv y-1 (average 104.7 μSv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y-1 (average 251.5 μSv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1).

  15. 5-ASA Dose-Response

    PubMed Central

    Katz, Seymour; Lichtenstein, Gary R; Safdi, Michael A

    2010-01-01

    Mesalamine (5-aminosalicylic acid; 5-ASA) represents the cornerstone of first-line therapy for mild-to-moderate ulcerative colitis (UC). Current guidelines suggest that the combination of oral and rectal therapies provide optimal symptom resolution and effectively maintain remission in the majority of these patients. Although effective, most oral 5-ASA formulations have a high pill burden and rectal therapies are associated with low adherence. Recent research has examined patterns of compliance, as well as the efficacy of different dose levels of 5-ASA in terms of symptom resolution, the maintenance of remission, and improvements in quality of life. The ASCEND I, II, and III trials found that doses of 4.8 g/day are more effective than 2.4 g/day doses in patients with moderate disease, those with previous steroid use, and those with a history of multiple medications. The benefits of effective long-term 5-ASA therapy include the avoidance of more costly and potentially toxic drugs (such as corticosteroids and biologic therapies), as well as improvements in quality of life, reductions in the need for future colectomy, and a lower risk of developing colorectal cancer. PMID:20567558

  16. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  17. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  18. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown. PMID:27164221

  19. Respiratory dose assessment of inhaled particles: continuing progress

    EPA Science Inventory

    Internal dose is a key factor for determining the health risk ofinhaled pollutant particles on the one hand and the efficacy ofdrug inhalantsonthe other. Accurateestimation ofrespiratorydose, however, is a difficult task because multiple factors come to play roles in the process....

  20. Treatment planning and dose calculation in radiation ecology

    SciTech Connect

    Bentel, G.C.; Nelson, C.E.; Noell, K.T.

    1989-01-01

    This book focuses on treatment planning of cancer therapy. The following topics are discussed: elements of clinical radiation oncology; radiation physics; dose calculation for external beams; pretreatment procedures; brachytherapy; principles of external beam treatment planning; practical treatment planning; and normal tissue consequences. Eight chapters have been processed separately for inclusion in the appropriate data bases.

  1. Patient specific tube current modulation for CT dose reduction

    NASA Astrophysics Data System (ADS)

    Jin, Yannan; Yin, Zhye; Yao, Yangyang; Wang, Hui; Wu, Mingye; Kalra, Mannudeep; De Man, Bruno

    2015-03-01

    Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.

  2. Confusion: acetaminophen dosing changes based on NO evidence in adults.

    PubMed

    Krenzelok, Edward P; Royal, Mike A

    2012-06-01

    Acetaminophen (paracetamol) plays a vital role in American health care, with in excess of 25 billion doses being used annually as a nonprescription medication. Over 200 million acetaminophen-containing prescriptions, usually in combination with an opioid, are dispensed annually. While acetaminophen is recognized as a safe and effective analgesic and antipyretic, it is also associated with significant morbidity and mortality (hepatotoxicity) if doses in excess of the therapeutic amount are ingested inappropriately. The maximum daily therapeutic dose of 3900-4000 mg was established in separate actions in 1977 and 1988, respectively, via the Food and Drug Administration (FDA) monograph process for nonprescription medications. The FDA has conducted multiple advisory committee meetings to evaluate acetaminophen and its safety profile, and has suggested (but not mandated) a reduction in the maximum daily dosage from 3900-4000 mg to 3000-3250 mg. In 2011, McNeil, the producer of the Tylenol® brand of acetaminophen, voluntarily reduced the maximum daily dose of its 500 mg tablet product to 3000 mg/day, and it has pledged to change the labeling of its 325 mg/tablet product to reflect a maximum of 3250 mg/day. Generic manufacturers have not changed their dosing regimens and they have remained consistent with the established monograph dose. Therefore, confusion will be inevitable as both consumers and health care professionals try to determine the proper therapeutic dose of acetaminophen. Which is the correct dose of acetaminophen: 3000 mg if 500 mg tablets are used, 3250 mg with 325 mg tablets, or 3900 mg when 650 mg arthritis-strength products are used? PMID:22530736

  3. A new look at CT dose measurement: beyond CTDI.

    PubMed

    Dixon, Robert L

    2003-06-01

    Equations are derived for generating accumulated dose distributions and the dose line integral in a cylindrical dosimetry phantom for a helical CT scan series from the single slice dose profiles using convolution methods. This exposition will better clarify the nature of the dose distribution in helical CT, as well as providing the medical physicist with a better understanding of the physics involved in dose delivery and the measurement process. Also addressed is the concern that as radiation beam widths for multi-slice scanners get wider, the current methodology based on the measurement of the integral of the single slice profile using a 10 cm long ion chamber (CTDI100) may no longer be adequate. It is shown that this measurement would underestimate the equilibrium dose and dose line integral by about 20% in the center of the body phantom, and by about 10% in the center of the head phantom for a 20 mm nominal beam width in a multi-slice scanner. Rather than making the ion chamber even longer to collect the broad scatter tails of the single slice profile, an alternative to the CTDI method is suggested which involves using a small volume ion chamber, and scanning a length of phantom long enough to establish dose equilibrium at the location of the chamber. With a modern CT scanner, such a scan length can be covered in 15 s or less with a helical or axial series, so this method is not significantly more time-consuming than the long chamber method. The method is demonstrated experimentally herein. PMID:12852553

  4. Radiation dose modeling using IGRIP and Deneb/ERGO

    SciTech Connect

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-12-31

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

  5. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  6. The MIRD method of estimating absorbed dose

    SciTech Connect

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  7. 4D SPECT/CT acquisition for 3D dose calculation and dose planning in (177)Lu-peptide receptor radionuclide therapy: applications for clinical routine.

    PubMed

    Kairemo, Kalevi; Kangasmäki, Aki

    2013-01-01

    Molecular radiotherapy combines the potential of a specific tracer (vector) targeting tumor cells with local radiotoxicity. Designing a specific tumor-targeting/killing combination is a tailoring process. Radionuclides with imaging capacity serve best in the selection of the targeting molecule. The potential of targeted therapy with radiolabeled peptides has been reported in many conditions; peptide receptor radionuclide therapy (PRRT) is already part of Scandinavian guidelines for treating neuroendocrine tumors. Lu-177- and Y-90-labeled somatostatin analogs, including DOTATOC, DOTANOC, and DOTATATE, are most the commonly used and have turned out to be effective. For routine use, an efficient, rapid, and reliable dose calculation tool is needed. In this chapter we describe how serial pre- and posttherapeutic scans can be used for dose calculation and for predicting therapy doses. Our software for radionuclide dose calculation is a three-dimensional, voxel-based system. The 3D dose calculation requires coregistered SPECT image sets from several time points after infusion to reconstruct time-activity curves for each voxel. Image registration is done directly by SPECT image registration using the first time point as a target. From the time-activity curves, initial activity and total half-life maps are calculated to produce a cumulated activity map. The cumulated activity map is then convoluted with a voxel-dose kernel to obtain a 3D dose map. We performed dose calculations similarly for both therapeutic and preplanning images. Preplanning dose was extrapolated to predict therapy dose using the ratio of administered activities. Our 3D dose calculation results are also compared with those of OLINDA. Our preliminary results indicate that dose planning using pretherapeutic scanning can predict critical organ and tumor doses. In some cases, the dose planning prediction resulted in slight, and slightly dose-dependent, overestimation of final therapy dose. Real tumor dose

  8. Fewer Doses of HPV Vaccine Result in Immune Response Similar to Three-Dose Regimen

    MedlinePlus

    ... Releases NCI News Note Fewer doses of HPV vaccine result in immune response similar to three-dose ... that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody ...

  9. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  10. Personalised dosing: Printing a dose of one's own medicine.

    PubMed

    Alomari, Mustafa; Mohamed, Fatima H; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    Ink-jet printing is a versatile, precise and relatively inexpensive method of depositing small volumes of solutions with remarkable accuracy and repeatability. Although developed primarily as a technology for image reproduction, its areas of application have expanded significantly in recent years. It is particularly suited to the manufacture of low dose medicines or to short production runs and so offers a potential manufacturing solution for the paradigm of personalised medicines. This review discusses the technical and clinical aspects of ink-jet printing that must be considered in order for the technology to become widely adopted in the pharmaceutical arena and considers applications in the literature. PMID:25498157