Science.gov

Sample records for dot stimuli comparison

  1. Inhibition in Dot Comparison Tasks

    ERIC Educational Resources Information Center

    Clayton, Sarah; Gilmore, Camilla

    2015-01-01

    Dot comparison tasks are commonly used to index an individual's Approximate Number System (ANS) acuity, but the cognitive processes involved in completing these tasks are poorly understood. Here, we investigated how factors including numerosity ratio, set size and visual cues influence task performance. Forty-four children aged 7-9 years completed…

  2. A comparison of monopolar and bipolar electrical stimuli and thermal stimuli in determining the vitality of human teeth.

    PubMed

    Moody, A B; Browne, R M; Robinson, P P

    1989-01-01

    The sensory threshold was determined for 50 teeth in 31 patients using constant-current stimuli of 0.1, 1.0 and 10 ms duration at 10 Hz through both monopolar and bipolar electrodes. The teeth were also tested with a cold stimulus (ethyl chloride on cotton wool), then extracted, processed and examined by light microscopy. Histologically, 38 teeth were vital and 7 non-vital. The best prediction of vitality was from ethyl chloride (80% correct) or bipolar stimuli of 10 ms duration and up to 200 microA (73% correct). The remaining 5 teeth had vital radicular pulps and necrotic tissue coronally, but a comparison between the results of monopolar and bipolar stimulation did not permit the detection of this group. There was no correlation between the electrical threshold and presence of caries, restorations, pulp stones or diffuse pulpal mineralization. PMID:2624561

  3. Preparation and characterization of multi stimuli-responsive photoluminescent nanocomposites of graphene quantum dots with hyperbranched polyethylenimine derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Liu, Hua-Ji; Cheng, Fa; Chen, Yu

    2014-06-01

    Oxidized graphene sheets (OGS) were treated with a hyperbranched polyethylenimine (PEI) under hydrothermal conditions to generate nanocomposites of graphene quantum dots (GQDs) functionalized with PEI (GQD-PEIs). The influence of the reaction temperature and the PEI/OGS feed ratio on the photoluminescence properties of the GQD-PEIs was studied. The obtained GQD-PEIs were characterized by TEM, dynamic light scattering, elemental analysis, FTIR, zeta potential measurements and 1H NMR spectroscopy, from which their structural information was inferred. Subsequently, isobutyric amide (IBAm) groups were attached to the GQD-PEIs through the amidation reaction of isobutyric anhydride with the PEI moieties, which resulted in GQD-PEI-IBAm nanocomposites. GQD-PEI-IBAm was not only thermoresponsive, but also responded to other stimuli, including inorganic salts, pH, and loaded organic guests. The cloud point temperature (Tcp) of aqueous solutions of GQD-PEI-IBAm could be modulated through changing the number of IBAm units in GQD-PEI-IBAm, by varying the type and concentration of the inorganic salts and loaded organic guests, or by varying the pH. All the obtained GQD-PEI-IBAm nanocomposites were photoluminescent, and their maximum emission wavelengths were not influenced by outside stimuli. Their emission intensities were influenced a little or negligibly by pH, traditional salting-out anions (Cl- and SO42-), and the relatively polar aspirin guest. However, the traditional salting-in I- anion and the more hydrophobic 1-pyrenebutyric acid (PBA) guest could effectively quench their fluorescence. 2D NOESY 1H NMR spectra verified that GQD-PEI-IBAm accommodated the relatively polar aspirin guest using the PEI-IBAm shell, but adsorbed the relatively hydrophobic PBA guest through the nanographene core. The release rate of the guest encapsulated by the thermoresponsive GQD is different below and above Tcp.Oxidized graphene sheets (OGS) were treated with a hyperbranched

  4. Modulation of perceived contrast in the brightness comparison of asynchronous stimuli.

    PubMed

    Claessens, Peter M E; Oliveira Pereira, Lucas; Baldo, Marcus Vinícius C

    2015-01-01

    Comparative judgment is a crucial task in ecological settings, as well as in many experimental studies about basic aspects of perceptual processes. It has long been known that sequential comparison is prone to order effects. This phenomenon has received little attention and has often been discounted as a type of response bias. In the present study, we investigated brightness discrimination of two brief (100 ms) spatially disjoint luminance stimuli. In the first and second experiments, stimuli were presented against a dark background with a stimulus onset asynchrony (SOA) from 0 to 200 ms, in a paradigm controlling for response bias. In the third experiment, stimuli were presented against a bright background. We demonstrate that the time interval between stimuli modulates and even inverts their perceived brightness difference, enhancing the second stimulus relative to the first. When the background is brighter than the target stimuli, the sign of the effect is inverted, suggesting that the underlying mechanism operates on contrast rather than brightness. The magnitude of this effect is shown to depend on SOA and average luminance level of the target stimuli. Hypotheses in terms of neural and attentional dynamics are proposed. PMID:25236921

  5. Automatic Direction of Spatial Attention to Male Versus Female Stimuli: A Comparison of Heterosexual Men and Women.

    PubMed

    Snowden, Robert J; Curl, Catriona; Jobbins, Katherine; Lavington, Chloe; Gray, Nicola S

    2016-05-01

    Abundant research has shown that men's sexual attractions are more category-specific in relation to gender than women's are. We tested whether the early automatic allocation of spatial attention reflects these sexual attractions. The dot-probe task was used to assess whether spatial attention was attracted to images of either male or female models that were naked or partially clothed. In Experiment 1, men were faster if the target appeared after the female stimulus, whereas women were equally quick to respond to targets after male or female stimuli. In Experiment 2, neutral cues were introduced. Men were again faster to female images in comparison to male or neutral images, but showed no bias on the male versus neutral test. Women were faster to both male and female pictures in comparison to neutral pictures. However, in this experiment they were also faster to female pictures than to male pictures. The results suggest that early attentional processes reveal category-specific interest to the preferred sexual category for heterosexual men, and suggest that heterosexual women do not have category-specific guidance of attentional mechanisms. The technique may have promise in measuring sexual interest in other situations where participants may not be able, or may not be willing, to report upon their sexual interests (e.g., assessment of paedophilic interest). PMID:26857378

  6. Sexual preference for child and aggressive stimuli: comparison of rapists and child molesters using auditory and visual stimuli.

    PubMed

    Miner, M H; West, M A; Day, D M

    1995-06-01

    154 Ss were tested using penile plethysmography as part of intake into a voluntary inpatient sex offender treatment program. The testing protocol included slide stimuli of nude males and females in four age categories ranging from age 1 to adult; audiotaped descriptions of sexual activity with children of both genders which included fondling, sexual contact with no resistance, coercive sexual contact, sexual assault, nonsexual assault, and consensual sexual contact with an adult; videotaped depictions of rape of an adult woman, nonsexual assault of an adult woman and consensual sexual involvement with an adult woman, and audiotaped descriptions that paralleled the videotapes. The results indicated that child molesters (male victim) show a decidedly more offense related arousal profile than either child molesters (female victim) or rapists, and that the profiles of child molesters (female victim) and rapists are remarkably similar, although statistically significantly different from each other. Rapists respond significantly more to rape and nonsexual assault than either of the two child molester groups, with child molesters with female victims responding more than those with male victims. In all three groups, the highest level of noncoercive adult responding was to women, with differences among offense groups present for visual stimuli, but not in response to auditory stimuli. Overall, the patterns of results are similar whether they are based on composites across stimulus modality or on the individual stimuli. PMID:7598675

  7. A direct comparison of the taste of electrical and chemical stimuli.

    PubMed

    Stevens, David A; Baker, Diane; Cutroni, Elizabeth; Frey, Alexander; Pugh, David; Lawless, Harry T

    2008-06-01

    Three multidimensional scaling studies were conducted to compare the taste qualities evoked from electrical and chemical stimulation, including ferrous sulfate as a typical "metallic" taste stimulus. Bipolar, anodal, and cathodal stimulation were delivered by 1.5- or 3-V batteries applied to the tongue. Solutions of chemical stimuli including prototypical tastes and binary mixtures were evaporated on small metal disks to provide tactile impressions similar to those of the battery stimuli and avoid any potential response biases induced by the subjects' knowledge of the form of the stimulus. Multidimensional unfolding was performed to place stimuli and verbal descriptors in common perceptual spaces. Bipolar, anodal, and cathodal stimuli were tested in separate experiments but generated very similar perceptual spaces and were differentiated from the chemical stimuli. Electrical stimuli were associated with descriptors, such as metallic, copper penny, and iron nail, regardless of the polarity of stimulation. Taste qualities evoked by electric stimuli may not be fully described by commonly used taste stimuli or their binary mixtures and appear most adequately described by a unique metallic taste. PMID:18316314

  8. Comparison of quantum confinement effects between quantum wires and dots

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2004-03-30

    Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.

  9. Comparison of EEG propagation speeds under emotional stimuli on smartphone between the different anxiety states

    PubMed Central

    Asakawa, Tetsuya; Muramatsu, Ayumi; Hayashi, Takuto; Urata, Tatsuya; Taya, Masato; Mizuno-Matsumoto, Yuko

    2014-01-01

    The current study evaluated the effect of different anxiety states on information processing as measured by an electroencephalography (EEG) using emotional stimuli on a smartphone. Twenty-three healthy subjects were assessed for their anxiety states using The State Trait Anxiety Inventory (STAI) and divided into two groups: low anxiety (I, II) or high anxiety (III and IV, V). An EEG was performed while the participant was presented with emotionally laden audiovisual stimuli (resting, pleasant, and unpleasant sessions) and emotionally laden sentence stimuli (pleasant sentence, unpleasant sentence sessions) and EEG data was analyzed using propagation speed analysis. The propagation speed of the low anxiety group at the medial coronal for resting stimuli for all time segments was higher than those of high anxiety group. The low anxiety group propagation speeds at the medial sagittal for unpleasant stimuli in the 0–30 and 60–150 s time frames were higher than those of high anxiety group. The propagation speeds at 150 s for all stimuli in the low anxiety group were significantly higher than the correspondent propagation speeds of the high anxiety group. These events suggest that neural information processes concerning emotional stimuli differ based on current anxiety state. PMID:25540618

  10. Comparison of EEG propagation speeds under emotional stimuli on smartphone between the different anxiety states.

    PubMed

    Asakawa, Tetsuya; Muramatsu, Ayumi; Hayashi, Takuto; Urata, Tatsuya; Taya, Masato; Mizuno-Matsumoto, Yuko

    2014-01-01

    The current study evaluated the effect of different anxiety states on information processing as measured by an electroencephalography (EEG) using emotional stimuli on a smartphone. Twenty-three healthy subjects were assessed for their anxiety states using The State Trait Anxiety Inventory (STAI) and divided into two groups: low anxiety (I, II) or high anxiety (III and IV, V). An EEG was performed while the participant was presented with emotionally laden audiovisual stimuli (resting, pleasant, and unpleasant sessions) and emotionally laden sentence stimuli (pleasant sentence, unpleasant sentence sessions) and EEG data was analyzed using propagation speed analysis. The propagation speed of the low anxiety group at the medial coronal for resting stimuli for all time segments was higher than those of high anxiety group. The low anxiety group propagation speeds at the medial sagittal for unpleasant stimuli in the 0-30 and 60-150 s time frames were higher than those of high anxiety group. The propagation speeds at 150 s for all stimuli in the low anxiety group were significantly higher than the correspondent propagation speeds of the high anxiety group. These events suggest that neural information processes concerning emotional stimuli differ based on current anxiety state. PMID:25540618

  11. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    PubMed Central

    Didoné, Dayane Domeneghini; Oppitz, Sheila Jacques; Folgearini, Jordana; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas

    2016-01-01

    Introduction Long Latency Auditory Evoked Potentials (LLAEP) with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent) to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /. PMID:27096012

  12. Comparison of Methods for Collecting and Modeling Dissimilarity Data: Applications to Complex Sound Stimuli

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; Guastavino, Catherine; Murphy, Emma; Ogg, Mattson; Smith, Bennett K.; McAdams, Stephen

    2011-01-01

    Sorting procedures are frequently adopted as an alternative to dissimilarity ratings to measure the dissimilarity of large sets of stimuli in a comparatively short time. However, systematic empirical research on the consequences of this experiment-design choice is lacking. We carried out a behavioral experiment to assess the extent to which…

  13. Tones and numbers: a combined EEG-MEG study on the effects of musical expertise in magnitude comparisons of audiovisual stimuli.

    PubMed

    Paraskevopoulos, Evangelos; Kuchenbuch, Anja; Herholz, Sibylle C; Foroglou, Nikolaos; Bamidis, Panagiotis; Pantev, Christo

    2014-11-01

    This study investigated the cortical responses underlying magnitude comparisons of multisensory stimuli and examined the effect that musical expertise has in this process. The comparative judgments were based on a newly learned rule binding the auditory and visual stimuli within the context of magnitude comparisons: "the higher the pitch of the tone, the larger the number presented." The cortical responses were measured by simultaneous MEG\\EEG recordings and a combined source analysis with individualized realistic head models was performed. Musical expertise effects were investigated by comparing musicians to non-musicians. Congruent audiovisual stimuli, corresponding to the newly learned rule, elicited activity in frontotemporal and occipital areas. In contrast, incongruent stimuli activated temporal and parietal regions. Musicians when compared with nonmusicians showed increased differences between congruent and incongruent stimuli in a prefrontal region, thereby indicating that music expertise may affect multisensory comparative judgments within a generalized representation of analog magnitude. PMID:24916460

  14. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals.

    PubMed

    Hayes, Dave J; Duncan, Niall W; Xu, Jiameng; Northoff, Georg

    2014-09-01

    Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity. PMID:25010558

  15. Comparison times are longer for hedonic than for intensity judgements of taste stimuli.

    PubMed

    Veldhuizen, Maria G; Vessaz, Melina N; Kroeze, Jan H A

    2005-03-16

    Response times of intensity and hedonic comparisons were determined in a within-subjects experimental design. Forced-choice paired comparisons of orange lemonades with various concentrations of added quinine sulfate were made by 48 subjects. Depending on experimental condition, the subjects had to focus either on intensity or on pleasantness and give their responses as fast as possible. The data showed shorter response times for intensity comparisons than for pleasantness comparisons. Although taste processing may be partially serial and partially parallel, the larger part of the response times and the differences between them may be due to cognitive processing. PMID:15763588

  16. A comparison of automated static dark stimuli with the Humphrey STATPAC program in glaucomatous visual field loss.

    PubMed Central

    Mutlukan, E

    1994-01-01

    Visual field examination is conventionally performed with bright stimuli on a dark background. Dark stimuli on a bright background, however, may provide different information as light increases and decreases are subject to parallel processing in the visual pathway. Twenty five eyes with primary open angle glaucoma and visual field loss were examined with the Humphrey visual field analyser thresholding program 30-2 and the computer assisted moving eye campimeter (CAMEC) using static dark stimuli at four different Weber contrast levels of -10 (n = 9), -22 (n = 25), -37 (n = 14), and -76% (n = 25) on a cathode ray tube with a background luminance of 10 cd/m2. The cumulative results obtained with STATPAC 'pattern deviation' empirical probability maps and the results from each contrast of the dark stimulus at identical test locations were compared at eccentricity annuli bands of 4-9, 10-20, and 21-28 degrees. Dark stimuli of lower contrast provided higher abnormal point detection rates. Furthermore, visual field defects to the low contrast dark stimuli were more extensive than those to the luminous stimuli. In conclusion, dark stimuli allowed the delineation between glaucomatous field defects and the normal regions in the central visual field. Images PMID:8148332

  17. Comparison studies of infrared photodetectors with a quantum-dot and a quantum-wire base

    NASA Astrophysics Data System (ADS)

    El Tokhy, M. S.; Mahmoud, I. I.; Konber, H. A.

    2011-12-01

    This paper mainly presents a theoretical analysis for the characteristics of quantum dot infrared photodetectors (QDIPs) and quantum wire infrared photodetectors (QRIPs). The paper introduces a unique mathematical model of solving Poisson's equations with the usage of Lambert W functions for infrared detectors' structures based on quantum effects. Even though QRIPs and QDIPs have been the subject of extensive researches and development during the past decade, it is still essential to implement theoretical models allowing to estimate the ultimate performance of those detectors such as photocurrent and its figure-of-merit detectivity vs. various parameter conditions such as applied voltage, number of quantum wire layers, quantum dot layers, lateral characteristic size, doping density, operation temperature, and structural parameters of the quantum dots (QDs), and quantum wires (QRs). A comparison is made between the computed results of the implemented models and fine agreements are observed. It is concluded from the obtained results that the total detectivity of QDIPs can be significantly lower than that in the QRIPs and main features of the QRIPs such as large gap between the induced photocurrent and dark current of QRIP which allows for overcoming the problems in the QDIPs. This confirms what is evaluated before in the literature. It is evident that by increasing the QD/QR absorption volume in QDIPs/QRIPs as well as by separating the dark current and photocurrents, the specific detectivity can be improved and consequently the devices can operate at higher temperatures. It is an interesting result and it may be benefit to the development of QDIP and QRIP for infrared sensing applications.

  18. Comparison of the contractile responses to irregular and regular trains of stimuli during microstimulation of single human motor axons.

    PubMed

    Leitch, Michael; Macefield, Vaughan G

    2014-04-01

    During voluntary contractions, human motoneurons discharge with a physiological variability of ∼20%. However, studies that have measured the contractile responses to microstimulation of single motor axons have used regular trains of stimuli with no variability. We tested the hypothesis that irregular (physiological) trains of stimuli produce greater contractile responses than regular (nonphysiological) trains of identical mean frequency but zero variability. High-impedance tungsten microelectrodes were inserted into the common peroneal nerve and guided into fascicles supplying a toe extensor muscle. Selective microstimulation was achieved for 14 single motor axons. Contractile responses were measured via an angular displacement transducer over the relevant toe. After the responses to regular trains of 10 stimuli extending from 2 to 100 Hz were recorded, irregular trains of 10 stimuli, based on the interspike intervals recorded from single motor units during voluntary contractions, were delivered. Finally, the stimulation sequences were repeated following a 2-min period of continuous stimulation at 10 Hz to induce muscle fatigue. Regular trains of stimuli generated a sigmoidal increase in displacement with frequency, whereas irregular trains, emulating the firing of volitionally driven motoneurons, displayed significantly greater responses over the same frequency range (8-24 Hz). This was maintained even in the presence of fatigue. We conclude that physiological discharge variability, which incorporates short and long interspike intervals, offers an advantage to the neuromuscular system by allowing motor units to operate on a higher level of the contraction-frequency curve and taking advantage of catch-like properties in skeletal muscle. PMID:24401713

  19. Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1

    PubMed Central

    Schuch, Klaus; Logothetis, Nikos K.; Maass, Wolfgang

    2011-01-01

    A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N-methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network

  20. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials.

    PubMed

    Sperl, Matthias F J; Panitz, Christian; Hermann, Christiane; Mueller, Erik M

    2016-09-01

    Several methods that are promising for studying the neurophysiology of fear conditioning (e.g., EEG, MEG) require a high number of trials to achieve an adequate signal-to-noise ratio. While electric shock and white noise burst are among the most commonly used unconditioned stimuli (US) in conventional fear conditioning studies with few trials, it is unknown whether these stimuli are equally well suited for paradigms with many trials. Here, N = 32 participants underwent a 260-trial differential fear conditioning and extinction paradigm with a 240-trial recall test 24 h later and neutral faces as conditioned stimuli. In a between-subjects design, either white noise bursts (n = 16) or electric shocks (n = 16) served as US, and intensities were determined using the most common procedure for each US (i.e., a fixed 95 dB noise burst and a work-up procedure for electric shocks, respectively). In addition to differing US types, groups also differed in closely linked US-associated characteristics (e.g., calibration methods, stimulus intensities, timing). Subjective ratings (arousal/valence), skin conductance, and evoked heart period changes (i.e., fear bradycardia) indicated more reliable, extinction-resistant, and stable conditioning in the white noise burst versus electric shock group. In fear conditioning experiments where many trials are presented, white noise burst should serve as US. PMID:27286734

  1. The late positive potential (LPP) in response to varying types of emotional and cigarette stimuli in smokers: a content comparison.

    PubMed

    Minnix, Jennifer A; Versace, Francesco; Robinson, Jason D; Lam, Cho Y; Engelmann, Jeffrey M; Cui, Yong; Brown, Victoria L; Cinciripini, Paul M

    2013-07-01

    Identifying neural mechanisms associated with addiction has substantially improved the overall understanding of addictive processes. Indeed, research suggests that drug-associated cues may take advantage of neural mechanisms originally intended for emotional processing of stimuli relevant to survival. In this study, we investigated cortical responses to several categories of emotional cues (erotic, romance, pleasant objects, mutilation, sadness, and unpleasant objects) as well as two types of smoking-related cues (people smoking and cigarette-related objects). We recorded ERPs from 180 smokers prior to their participation in a smoking cessation clinical trial and assessed emotional salience by measuring the amplitude of the late positive potential (LPP; 400 to 600 ms after picture onset). As expected, emotional and cigarette-related pictures prompted a significantly larger LPP than neutral pictures. The amplitude of the LPP increased as a function of picture arousal level, with high-arousing erotic and mutilation pictures showing the largest response in contrast to low-arousing pleasant and unpleasant objects, which showed the smallest response (other than neutral). Compared to females, male participants showed larger LPPs for high-arousing erotic and mutilation pictures. However, unlike emotional pictures, no difference was noted for the LPP between cigarette stimuli containing people versus those containing only objects, suggesting that in contrast to emotional objects, cigarette-related objects are highly relevant for smokers. We also compared the smokers to a small (N=40), convenience sample of never-smokers. We found that never-smokers had significantly smaller LPPs in response to erotic and cigarette stimuli containing only objects compared to smokers. PMID:23643564

  2. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  3. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  4. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    SciTech Connect

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad

    2014-06-15

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  5. A Dot enzyme linked immunosorbent assay (Dot ELISA): comparison with standard fluorescent antibody test (FAT) for the diagnosis of rabies in animals.

    PubMed

    Jayakumar, R; Nachimuthu, K; Padmanaban, V D

    1995-09-01

    A modified enzyme linked immunosorbent assay (Dot ELISA) is described for visual detection of rabies antigen in animals. The test materials were dotted onto the nitrocellulose paper and allowed to react with rabies antiserum. The bound antigen--anti-body were reacted with a peroxidase conjugated antirabbit immunoglobulin. Positive reactions were easily visualized as brown dots after enzyme degradation of the substrate. A total of 400 specimens from various geographical locations were tested with the dot ELISA technique, and also with the fluorescent antibody test (FAT), which was used as a reference method. The concordance between the two tests was 95.25%. The dot ELISA may have potential applications as a rapid, simple and economical field test in the diagnosis of rabies. PMID:8549116

  6. Comparison of V[Combining Dot Above]O2peak Performance on a Motorized vs. a Nonmotorized Treadmill.

    PubMed

    Morgan, Amy L; Laurent, C Matthew; Fullenkamp, Adam M

    2016-07-01

    Morgan, AL, Laurent, CM, and Fullenkamp, AM. Comparison of V[Combining Dot Above]O2peak performance on a motorized vs. a nonmotorized treadmill. J Strength Cond Res 30(7): 1898-1905, 2016-Despite growing popularity of nonmotorized treadmills (NMTs), little data exist regarding responses during exercise testing using this equipment, which is important when providing an appropriate exercise prescription. The purpose of this study was to evaluate physiological and perceptual responses during peak graded exercise tests (GXTs) on a motorized treadmill (MT) vs. NMT. Volunteers (12 men and 12 women aged 18-35 years) performed 2 peak GXT sessions (1 MT and 1 NMT). Respiratory gases and heart rate (HR) were collected each minute; perceptual response was estimated (Borg's 6-20 rating of perceived exertion [RPE] scale) during the final 10 seconds of each stage. Peak values (i.e., V[Combining Dot Above]O2, HR, speed) were determined during the final 10 seconds of each test; ventilatory threshold (VT) was assessed using the V-slope method. Paired t-tests matching variables measured at each stage of the GXT identified significantly higher values on the NMT for V[Combining Dot Above]O2 83% of the time, HR 67% of the time, and RPE 25% of the time. Interestingly though, neither peak V[Combining Dot Above]O2 (48.6 ± 9.2 ml·kg·min vs. 47.8 ± 8.9 ml·kg·min), peak HR (185 ± 9 b·min vs. 188 ± 10 b·min; p = 0.90), nor VT (72.7 ± 5.7% vs. 73.8 ± 5.4%) were significantly different on the NMT vs. the MT. However, significant differences were identified between NMT and MT tests for time to exhaustion (9:55 ± 1:49 vs. 12:05 ± 2:48; p < 0.01) and peak speed (8.0 ± 0.9 mph vs. 9.2 ± 1.4 mph; p < 0.01). Thus, although peak values obtained were similar between testing sessions on the NMT and MT, the majority of submaximal data were significantly different between trials. These differences are important when designing exercise prescriptions using submaximal values from NMT testing

  7. Do Rare Stimuli Evoke Large P3s by Being Unexpected? A Comparison of Oddball Effects Between Standard-Oddball and Prediction-Oddball Tasks

    PubMed Central

    Verleger, Rolf; Śmigasiewicz, Kamila

    2016-01-01

    The P3 component of event-related potentials increases when stimuli are rarely presented. It has been assumed that this oddball effect (rare-frequent difference) reflects the unexpectedness of rare stimuli. The assumption of unexpectedness and its link to P3 amplitude were tested here. A standard- oddball task requiring alternative key-press responses to frequent and rare stimuli was compared with an oddball-prediction task where stimuli had to be first predicted and then confirmed by key-pressing. Oddball effects in the prediction task depended on whether the frequent or the rare stimulus had been predicted. Oddball effects on P3 amplitudes and error rates in the standard oddball task closely resembled effects after frequent predictions. This corroborates the notion that these effects occur because frequent stimuli are expected and rare stimuli are unexpected. However, a closer look at the prediction task put this notion into doubt because the modifications of oddball effects on P3 by expectancies were entirely due to effects on frequent stimuli, whereas the large P3 amplitudes evoked by rare stimuli were insensitive to predictions (unlike response times and error rates). Therefore, rare stimuli cannot be said to evoke large P3 amplitudes because they are unexpected. We discuss these diverging effects of frequency and expectancy, as well as general differences between tasks, with respect to concepts and hypotheses about P3b’s function and conclude that each discussed concept or hypothesis encounters some problems, with a conception in terms of subjective relevance assigned to stimuli offering the most consistent account of these basic effects. PMID:27512527

  8. Comparison of DOT-ELISA and Standard-ELISA for Detection of the Vibrio cholerae Toxin in Culture Supernatants of Bacteria Isolated from Human and Environmental Samples.

    PubMed

    Meza-Lucas, Antonio; Pérez-Villagómez, María-Fernanda; Martínez-López, José-Patricio; García-Rodea, Ricardo; Martínez-Castelán, María-Guadalupe; Escobar-Gutiérrez, Alejandro; de-la-Rosa-Arana, Jorge-Luis; Villanueva-Zamudio, Altagracia

    2016-09-01

    A comparison of DOT-ELISA and Standard-ELISA was made for detection of Vibrio cholerae toxin in culture supernatants of bacteria isolated from human and environmental samples. A total of 293 supernatants were tested in a double blind assay. A correlation of 100 % was obtained between both techniques. The cholera toxin was found in 20 Inaba and 3 Ogawa strains. Positive samples were from seafood (17 samples), potable water (1 sample) and sewage (5 samples). The DOT-ELISA was useful as the standard-ELISA to confirm the presence of cholera toxin in the environmental samples. PMID:27407304

  9. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kelley, Anne Myers

    2016-06-01

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ˜2.8 and ˜5.2 nm (˜410 and ˜2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active "longitudinal optical" phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  10. Electrophoretic determination of ricin using immunogold silver staining--comparison with simple "protein dot" method.

    PubMed

    Terazawa, K; Griffiths, G D; Leith, A G; Green, M A

    1989-08-01

    Studies were performed to establish a sensitive electrophoretic immunodetection system for the highly toxic plant protein, ricin. This has potential criminal application as an agent for causing a delayed death following parenteral administration. The immunodetection system could be used to demonstrate residual traces of the toxin left in certain tissues of the victim's body. Following polyacrylamide gel electrophoresis of ricin added to rat muscle tissue extracts, the gels were electro-blotted onto nitrocellulose paper and ricin bands probed for visualisation by immunostaining. Several immunostaining procedures were investigated in order to select the most sensitive. These included indirect immunoperoxidase, peroxidase-anti-peroxidase (PAP), avidin-biotin complex (ABC) and the immunogold silver staining (IGSS) procedures. The sensitivity of PAP and indirect immunoperoxidase methods were similar at around 50 ng while the ABC technique gave visible staining of 10 ng of electro-blotted ricin. The method with greatest sensitivity was undoubtedly IGSS, which resulted in unequivocal demonstration of 4 ng of ricin. The IGSS-immunoblotting system was considered to readily demonstrate the presence of ricin in muscle tissue from the injection site of dead victims. We compared this system with the very simple method of sample dot staining. Here, samples of ricin were spotted directly onto nitrocellulose. The dots were stained using the IGSS method which was found able to demonstrate less than 10 pg of ricin. PMID:2479790

  11. Hi-C Observations of Penumbral Bright Dots: Comparison with the IRIS Results

    NASA Technical Reports Server (NTRS)

    Alpert, S. E.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R.

    2014-01-01

    We observed bright dots (BDs) in a sunspot penumbra by using data acquired by the High Resolution Coronal Imager (Hi-C). The sizes of these BDs are on the order of 1 arcsecond (1') and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6' pixel -1 resolution. These BDs become readily apparent with Hi-C's 0.1' pixel -1 resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to relate these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied and Hi-C had a short observation time. We use 193 A Hi-C data from July 11, 2012 which observed from 18:52:00 UT{18:56:00 UT and supplement it with data from AIA's 193 A passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi-C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra, sometimes doing both. BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less and last longer. We examine the properties of the Hi-C BDs and compare them with the IRIS BDs. Our BDs are similar to the exceptional values of the IRIS BDs: they move slower on average and their sizes and lifetimes are on the higher end of the distributions of IRIS BDs. We infer that our penumbral BDs are some of the larger BDs observed by IRIS.

  12. Quantum dot-ring nanostructure — A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Janus-Zygmunt, Iwona; Kȩdzierska, Barbara; Gorczyca-Goraj, Anna; Zipper, Elżbieta; Maśka, Maciej M.

    2016-03-01

    It has been shown recently that a nanostructure composed of a quantum dot (QD) surrounded by a quantum ring (QR) possesses a set of very unique characteristics that make it a good candidate for future nanoelectronic devices. Its main advantage is the ability to easily tune transport properties on demand by so-called “wavefunction engineering”. In practice, the distribution of the electron wavefunction in the nanostructure can be controlled by, e.g., electrical gating. In order to predict some particular properties of the system, one has to know the exact wavefunctions for different shapes of the confining potential that defines the structure. In this paper, we compare three different methods that can be used to determine the energy spectrum, electron wavefunctions and transport properties of the system under investigation. In the first approach, we utilize the cylindrical symmetry of the confining potential and solve only the radial part of the Schrödinger equation; in the second approach, we discretize the Schrödinger equation in two dimensions and find the eigenstates with the help of the Lanczös method; in the third approach, we use package Kwant to solve a tight-binding approximation of the original system. To study the transport properties in all these approaches, we calculate microscopically the strength of the coupling between the nanosystem and leads. In the first two approaches, we use the Bardeen method, in the third one calculations are performed with the help of package Kwant.

  13. In vitro immunotoxicology of quantum dots and comparison with dissolved cadmium and tellurium.

    PubMed

    Bruneau, Audrey; Fortier, Marlene; Gagne, Francois; Gagnon, Christian; Turcotte, Patrice; Tayabali, Azam; Davis, Thomas A; Auffret, Michel; Fournier, Michel

    2015-01-01

    The increasing use of products derived from nanotechnology has raised concerns about their potential toxicity, especially at the immunocompetence level in organisms. This study compared the immunotoxicity of cadmium sulfate/cadmium telluride (CdS/Cd-Te) mixture quantum dots (QDs) and their dissolved components, cadmium chloride (CdCl2 )/sodium telluride (NaTeO3 ) salts, and a CdCl2 /NaTeO3 mixture on four animal models commonly used in risk assessment studies: one bivalve (Mytilus edulis), one fish (Oncorhynchus mykiss), and two mammals (mice and humans). Our results of viability and phagocytosis biomarkers revealed that QDs were more toxic than dissolved metals for blue mussels. For other species, dissolved metals (Cd, Te, and Cd-Te mixture) were more toxic than the nanoparticles (NPs). The most sensitive species toward QDs, according to innate immune cells, was humans (inhibitory concentration [IC50 ] = 217 μg/mL). However, for adaptative immunity, lymphoblastic transformation in mice was decreased for small QD concentrations (EC50 = 4 μg/mL), and was more sensitive than other model species tested. Discriminant function analysis revealed that blue mussel hemocytes were able to discriminate the toxicity of QDs, Cd, Te, and Cd-Te mixture (Partial Wilk's λ = 0.021 and p < 0.0001). For rainbow trout and human cells, the immunotoxic effects of QDs were similar to those obtained with the dissolved fraction of Cd and Te mixture. For mice, the toxicity of QDs markedly differed from those observed with Cd, Te, and dissolved Cd-Te mixture. The results also suggest that aquatic species responded more differently than vertebrates to these compounds. The results lead to the recommendation that mussels and mice were most able to discriminate the effects of Cd-based NPs from the effects of dissolved Cd and Te at the immunocompetence level. PMID:23893621

  14. InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants

    NASA Astrophysics Data System (ADS)

    Alhashim, Hala H.; Khan, Mohammed Zahed Mustafa; Majid, Mohammed A.; Ng, Tien K.; Ooi, Boon S.

    2015-10-01

    We report on the impurity-free vacancy-disordering effect in InAs/GaAs quantum-dot (QD) laser structure based on seven dielectric capping layers. Compared to the typical SiO2 and Si3N4 films, HfO2 and SrTiO3 dielectric layers showed superior enhancement and suppression of intermixing up to 725°C, respectively. A QD peak ground-state differential blue shift of >175 nm (>148 meV) is obtained for HfO2 capped sample. Likewise, investigation of TiO2, Al2O3, and ZnO capping films showed unusual characteristics, such as intermixing-control caps at low annealing temperature (650°C) and interdiffusion-promoting caps at high temperatures (≥675°C). We qualitatively compared the degree of intermixing induced by these films by extracting the rate of intermixing and the temperature for ground-state and excited-state convergences. Based on our systematic characterization, we established reference intermixing processes based on seven different dielectric encapsulation materials. The tailored wavelength emission of ˜1060-1200 nm at room temperature and improved optical quality exhibited from intermixed QDs would serve as key materials for eventual realization of low-cost, compact, and agile lasers. Applications include solid-state laser pumping, optical communications, gas sensing, biomedical imaging, green-yellow-orange coherent light generation, as well as addressing photonic integration via area-selective, and postgrowth bandgap engineering.

  15. Comparison of Gated Audiovisual Speech Identification in Elderly Hearing Aid Users and Elderly Normal-Hearing Individuals: Effects of Adding Visual Cues to Auditory Speech Stimuli.

    PubMed

    Moradi, Shahram; Lidestam, Björn; Rönnberg, Jerker

    2016-01-01

    The present study compared elderly hearing aid (EHA) users (n = 20) with elderly normal-hearing (ENH) listeners (n = 20) in terms of isolation points (IPs, the shortest time required for correct identification of a speech stimulus) and accuracy of audiovisual gated speech stimuli (consonants, words, and final words in highly and less predictable sentences) presented in silence. In addition, we compared the IPs of audiovisual speech stimuli from the present study with auditory ones extracted from a previous study, to determine the impact of the addition of visual cues. Both participant groups achieved ceiling levels in terms of accuracy in the audiovisual identification of gated speech stimuli; however, the EHA group needed longer IPs for the audiovisual identification of consonants and words. The benefit of adding visual cues to auditory speech stimuli was more evident in the EHA group, as audiovisual presentation significantly shortened the IPs for consonants, words, and final words in less predictable sentences; in the ENH group, audiovisual presentation only shortened the IPs for consonants and words. In conclusion, although the audiovisual benefit was greater for EHA group, this group had inferior performance compared with the ENH group in terms of IPs when supportive semantic context was lacking. Consequently, EHA users needed the initial part of the audiovisual speech signal to be longer than did their counterparts with normal hearing to reach the same level of accuracy in the absence of a semantic context. PMID:27317667

  16. Detection and typing of human papillomavirus using the Vira Type "in situ" kit: comparison with a conventional dot blot technique.

    PubMed Central

    Faulkner-Jones, B E; Bellomarino, V M; Borg, A J; Orzeszko, K; Garland, S M

    1990-01-01

    A new commercial kit (Vira Type "in situ", Life Technologies, Inc., Molecular Diagnostics Division, Guithersburg, Maryland, USA) for the detection of human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33 and 35 in routinely processed human anogenital tissue was compared with a conventional dot blot assay for HPV 6, 11, 16 and 18. Both systems use double-stranded genomic DNA probes for the detection of type specific HPV DNA. The probes used on the dot blots were labelled with 32P and visualised autoradiographically. The Vira Type probes were labelled with biotin and visualised using a streptavidin-alkaline phosphatase conjugate with NBT-BCIP substrate. Biopsy specimens from the cervix, vagina, and vulva of 46 women were processed by both methods and compared. The histological diagnoses ranged from benign changes, to dysplasia, and invasive carcinoma. Overall, 50% of biopsy specimens were positive for HPV DNA by dot blot hybridisation; only 39% were positive by Vira Type in situ hybridisation. Three of the specimens positive by the Vira Type "in situ" kit showed no cross hybridisation and were the same HPV type as the dot blot. A further 13 showed hybridisation, but the showed cross hybridisation, but the to the dot blot results. One biopsy specimen was positive for different HPV types by the two tests and one was positive by Vira Type and negative by dot blot. Six biopsy specimens were negative by Vira Type but positive by dot blot. It is concluded that the Vira Type "in situ" kit has a similar specificity but lower sensitivity than the dot blot hybridisation method for the detection of HPV DNA. Images PMID:2175755

  17. Attention samples stimuli rhythmically.

    PubMed

    Landau, Ayelet Nina; Fries, Pascal

    2012-06-01

    Overt exploration or sampling behaviors, such as whisking, sniffing, and saccadic eye movements, are often characterized by a rhythm. In addition, the electrophysiologically recorded theta or alpha phase predicts global detection performance. These two observations raise the intriguing possibility that covert selective attention samples from multiple stimuli rhythmically. To investigate this possibility, we measured change detection performance on two simultaneously presented stimuli, after resetting attention to one of them. After a reset flash at one stimulus location, detection performance fluctuated rhythmically. When the flash was presented in the right visual field, a 4 Hz rhythm was directly visible in the time courses of behavioral performance at both stimulus locations, and the two rhythms were in antiphase. A left visual field flash exerted only partial reset on performance and induced rhythmic fluctuation at higher frequencies (6-10 Hz). These findings show that selective attention samples multiple stimuli rhythmically, and they position spatial attention within the family of exploration behaviors. PMID:22633805

  18. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  19. Transitive Responding in Hooded Crows Requires Linearly Ordered Stimuli

    ERIC Educational Resources Information Center

    Lazareva, Olga F.; Smirnova, Anna A.; Bagozkaja, Maria S.; Zorina, Zoya A.; Rayevsky, Vladimir V.; Wasserman, Edward A.

    2004-01-01

    Eight crows were taught to discriminate overlapping pairs of visual stimuli (A+ B-, B+ C-, C+ D-, and D+ E-). For 4 birds, the stimuli were colored cards with a circle of the same color on the reverse side whose diameter decreased from A to E (ordered feedback group). These circles were made available for comparison to potentially help the crows…

  20. Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain

    PubMed Central

    Muralidharan, Arjun; Kuo, Andy; Jacob, Meera; Lourdesamy, Jacintha S.; Carvalho, Lara Melo Soares Pinho De; Nicholson, Janet R.; Corradini, Laura; Smith, Maree T.

    2016-01-01

    Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. Rats that burrowed ≤ 450 g of gravel on any 2 days of the individual training phase were excluded from the study. The remaining rats received either a unilateral intraplantar injection of Freund's complete adjuvant (FCA) or saline, or underwent unilateral chronic constriction injury (CCI) of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked pain behaviors were assessed prior to model induction, and twice-weekly until study completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner for both FCA-and CCI- rats, there was considerable inter-animal variability. By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability. PMID:27242458

  1. NESSTI: Norms for Environmental Sound Stimuli

    PubMed Central

    Hocking, Julia; Dzafic, Ilvana; Kazovsky, Maria; Copland, David A.

    2013-01-01

    In this paper we provide normative data along multiple cognitive and affective variable dimensions for a set of 110 sounds, including living and manmade stimuli. Environmental sounds are being increasingly utilized as stimuli in the cognitive, neuropsychological and neuroimaging fields, yet there is no comprehensive set of normative information for these type of stimuli available for use across these experimental domains. Experiment 1 collected data from 162 participants in an on-line questionnaire, which included measures of identification and categorization as well as cognitive and affective variables. A subsequent experiment collected response times to these sounds. Sounds were normalized to the same length (1 second) in order to maximize usage across multiple paradigms and experimental fields. These sounds can be freely downloaded for use, and all response data have also been made available in order that researchers can choose one or many of the cognitive and affective dimensions along which they would like to control their stimuli. Our hope is that the availability of such information will assist researchers in the fields of cognitive and clinical psychology and the neuroimaging community in choosing well-controlled environmental sound stimuli, and allow comparison across multiple studies. PMID:24023866

  2. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    photon emission to classical emission. Dual emission also provides these NCs with more advanced functionalities than the isolated components. The ability to better tailor the emission spectrum can be advantageous for color designed LEDs in lighting and display applications. The different response of the two emission colors to external stimuli enables ratiometric sensing. Control over hot carrier dynamics within such structures allows for photoluminescence upconversion. This Account first provides a description of the main hurdles toward the synthesis of colloidal double QDs and an overview of the growing library of synthetic pathways toward constructing them. The main discoveries regarding their photophysical properties are then described in detail, followed by an overview of potential applications taking advantage of the double-dot structure. Finally, a perspective and outlook for their future development is provided. PMID:27108870

  3. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    emission to classical emission. Dual emission also provides these NCs with more advanced functionalities than the isolated components. The ability to better tailor the emission spectrum can be advantageous for color designed LEDs in lighting and display applications. The different response of the two emission colors to external stimuli enables ratiometric sensing. Control over hot carrier dynamics within such structures allows for photoluminescence upconversion. This Account first provides a description of the main hurdles toward the synthesis of colloidal double QDs and an overview of the growing library of synthetic pathways toward constructing them. The main discoveries regarding their photophysical properties are then described in detail, followed by an overview of potential applications taking advantage of the double-dot structure. Finally, a perspective and outlook for their future development is provided. PMID:27108870

  4. Attentional and affective processing of sexual stimuli in women with hypoactive sexual desire disorder.

    PubMed

    Brauer, Marieke; van Leeuwen, Matthijs; Janssen, Erick; Newhouse, Sarah K; Heiman, Julia R; Laan, Ellen

    2012-08-01

    Hypoactive sexual desire disorder (HSDD) is the most common sexual problem in women. From an incentive motivation perspective, HSDD may be the result of a weak association between sexual stimuli and rewarding experiences. As a consequence, these stimuli may either lose or fail to acquire a positive meaning, resulting in a limited number of incentives that have the capacity to elicit a sexual response. According to current information processing models of sexual arousal, sexual stimuli automatically activate meanings and if these are not predominantly positive, processes relevant to the activation of sexual arousal and desire may be interrupted. Premenopausal U.S. and Dutch women with acquired HSDD (n = 42) and a control group of sexually functional women (n = 42) completed a single target Implicit Association Task and a Picture Association Task assessing automatic affective associations with sexual stimuli and a dot detection task measuring attentional capture by sexual stimuli. Results showed that women with acquired HSDD displayed less positive (but not more negative) automatic associations with sexual stimuli than sexually functional women. The same pattern was found for self-reported affective sex-related associations. Participants were slower to detect targets in the dot detection task that replaced sexual images, irrespective of sexual function status. As such, the findings point to the relevance of affective processing of sexual stimuli in women with HSDD, and imply that the treatment of HSDD might benefit from a stronger emphasis on the strengthening of the association between sexual stimuli and positive meaning and sexual reward. PMID:21892693

  5. Effects of vasoactive stimuli on blood flow to choroid plexus

    SciTech Connect

    Faraci, F.M.; Mayhan, W.G.; Williams, J.K.; Heistad, D.D. )

    1988-02-01

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-{mu}m microspheres were similar, which suggest that shunting of 15-{mu}m microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 {plus minus} 26 (means {plus minus} SE) ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} in dogs and 385 {plus minus} 73 ml {center dot} min{sup {minus}1} 100 g{sup {minus}1} in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by {approx} 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum.

  6. Control by Contextual Stimuli in Novel Second-Order Conditional Discriminations

    ERIC Educational Resources Information Center

    Perez-Gonzalez, Luis Antonio; Martinez, Hector

    2007-01-01

    Eighteen undergraduates participated in studies designed to examine the factors that produce transfer of contextual functions to novel stimuli in second-order conditional discriminations. In Study 1, participants selected comparison B1 given sample A1 and comparison B2 given sample A2 in a matching-to-sample procedure. Contextual stimuli X1 or X2…

  7. Headphone localization of speech stimuli

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1991-01-01

    Recently, three dimensional acoustic display systems have been developed that synthesize virtual sound sources over headphones based on filtering by Head-Related Transfer Functions (HRTFs), the direction-dependent spectral changes caused primarily by the outer ears. Here, 11 inexperienced subjects judged the apparent spatial location of headphone-presented speech stimuli filtered with non-individualized HRTFs. About half of the subjects 'pulled' their judgements toward either the median or the lateral-vertical planes, and estimates were almost always elevated. Individual differences were pronounced for the distance judgements; 15 to 46 percent of stimuli were heard inside the head with the shortest estimates near the median plane. The results infer that most listeners can obtain useful azimuth information from speech stimuli filtered by nonindividualized RTFs. Measurements of localization error and reversal rates are comparable with a previous study that used broadband noise stimuli.

  8. Psychopathy, aggression, and the processing of emotional stimuli in non-referred girls and boys.

    PubMed

    Kimonis, Eva R; Frick, Paul J; Fazekas, Holly; Loney, Bryan R

    2006-01-01

    Research shows that individuals with psychopathic traits differ in how they process negative emotional stimuli. However, it is unclear whether these differences are specific to certain types of negative emotional stimulus and whether they are more strongly associated with psychopathic traits or aggression. Further, it is not clear whether or not deficits in emotional processing generalize to females and ethnic minority individuals with psychopathic traits. In this study, we examined the emotional processing of visual stimuli using a dot-probe task in 50 non-referred girls and boys (mean age of 9.30; SD = 2.00). Overall, there was a significant association between proactive aggression and reduced responsiveness to distressing stimuli. In addition, the predicted association between psychopathic traits and reduced responsiveness to distressing stimuli was only found for children high on aggression. Also, the associations among aggression, psychopathic traits, and responsiveness to distressing stimuli did not differ for boys and girls. PMID:16491477

  9. Meet the Fribbles: novel stimuli for use within behavioural research

    PubMed Central

    Barry, Tom J.; Griffith, James W.; De Rossi, Stephanie; Hermans, Dirk

    2014-01-01

    Clinical researchers make use of experimental models for mental disorders. In many cases, these models use stimuli that are relevant to the disorder under scrutiny, which allows one to experimentally investigate the factors that contribute to the development of the disorder. For example, one might use spiders or spider-like stimuli in the study of specific phobia. More broadly, researchers often make use of real-world stimuli such as images of animals, geometrical shapes or emotional words. However, these stimuli are often limited in their experimental controllability and their applicability to the disorder in question. We present a novel set of animal-like stimuli, called Fribbles, for use within behavioural research. Fribbles have desirable properties for use in research because they are similar to real-world stimuli, but due to their novelty, participants will not have had previous experience with them. They also have known properties that can be experimentally manipulated. We present an investigation into similarity between Fribbles in order to illustrate their utility in research that relies on comparisons between similar stimuli. Fribbles offer both experimental control and generalisability to the real world, although some consideration must be made concerning the properties that influence similarity between Fribbles when selecting them along a dimension of similarity. PMID:24575075

  10. Fluorescent carbon dot (C-dot) nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Pan, Xiaoyong; Gu, Liuqun; Ren, Wei; Cheng, Weiren; Kumar, Jatin N.; Liu, Ye

    2014-09-01

    Fluorescent carbon dot (C-dot) nanoclusters composed of C-dot-loaded hollow silica spheres are obtained via the dehydration of mannose, which is adsorbed onto hollow silica spheres or poly(ethylene glycol)-graft-hollow silica spheres (PEG-g-hollow silica). The structure of C-dot nanoclusters are confirmed using 1H NMR, FTIR, TEM and TGA. C-dot nanoclusters show a redshifted fluorescence emission with an increased excitation wavelength. Passivation with PEG diamines improve the quantum yields to ˜2%. Confocal laser scanning microscopy (CLSM) results reflect the fact that C-dot nanoclusters can provide good cytoplasm imaging of live Hep G2 cells and live MCF-7 cells, and the imaging obtained is brighter and more even than those from free C-dots. With their combination of good photostability and low cytotoxicity, C-dot nanoclusters are promising for the production of higher quality bioimaging.

  11. OLFACTORY EVOKED RESPONSES TO ODOROUS STIMULI OF DIFFERENT INTENSITIES

    EPA Science Inventory

    In comparison to other senses the electrophysiology of olfaction has been little studied in man and some of the basic paradigms used in the study of the other senses have not yet been widely applied to its study. asic information such as the effect of stimuli of different intensi...

  12. Stimuli, Reinforcers, and Private Events

    ERIC Educational Resources Information Center

    Nevin, John A.

    2008-01-01

    Radical behaviorism considers private events to be a part of ongoing observable behavior and to share the properties of public events. Although private events cannot be measured directly, their roles in overt action can be inferred from mathematical models that relate private responses to external stimuli and reinforcers according to the same…

  13. Bayesian-based integration of multisensory naturalistic perithreshold stimuli.

    PubMed

    Regenbogen, Christina; Johansson, Emilia; Andersson, Patrik; Olsson, Mats J; Lundström, Johan N

    2016-07-29

    Most studies exploring multisensory integration have used clearly perceivable stimuli. According to the principle of inverse effectiveness, the added neural and behavioral benefit of integrating clear stimuli is reduced in comparison to stimuli with degraded and less salient unisensory information. Traditionally, speed and accuracy measures have been analyzed separately with few studies merging these to gain an understanding of speed-accuracy trade-offs in multisensory integration. In two separate experiments, we assessed multisensory integration of naturalistic audio-visual objects consisting of individually-tailored perithreshold dynamic visual and auditory stimuli, presented within a multiple-choice task, using a Bayesian Hierarchical Drift Diffusion Model that combines response time and accuracy. For both experiments, unisensory stimuli were degraded to reach a 75% identification accuracy level for all individuals and stimuli to promote multisensory binding. In Experiment 1, we subsequently presented uni- and their respective bimodal stimuli followed by a 5-alternative-forced-choice task. In Experiment 2, we controlled for low-level integration and attentional differences. Both experiments demonstrated significant superadditive multisensory integration of bimodal perithreshold dynamic information. We present evidence that the use of degraded sensory stimuli may provide a link between previous findings of inverse effectiveness on a single neuron level and overt behavior. We further suggest that a combined measure of accuracy and reaction time may be a more valid and holistic approach of studying multisensory integration and propose the application of drift diffusion models for studying behavioral correlates as well as brain-behavior relationships of multisensory integration. PMID:26719235

  14. Cognitive robotic system for learning of complex visual stimuli

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Rozhkov, A. S.

    2013-05-01

    The problem of learning of complex visual stimuli in cognitive robotics is considered. These stimuli should be selected on the base of rules supporting arbitrary comparisons of stimulus features with features of other salient objects (context). New perceptual knowledge representation based on the predicate logic is implemented to express such rules. Computable predicates are provided by low-level vision system. The rules are constructed using genetic algorithms on the base of a set of examples obtained by a robot during consequent trials. Dependence between the number of necessary trials and rule complexity is studied.

  15. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  16. The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms

    PubMed Central

    Lesh, Tyler A.; Salo, Taylor; Barch, Deanna M.; MacDonald, Angus W.; Gold, James M.; Ragland, J. Daniel; Strauss, Milton; Silverstein, Steven M.; Carter, Cameron S.

    2016-01-01

    Goal maintenance is an aspect of cognitive control that has been identified as critical for understanding psychopathology according to criteria of the NIMH-sponsored CNTRICS (Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia) and Research Domain Criteria (RDoC) initiatives. CNTRICS proposed the expectancy AX-CPT, and its visual-spatial parallel the dot probe expectancy (DPX), as valid measures of the cognitive and neural processes thought to be relevant for goal maintenance. The goal of this study was to specifically examine the functional neural correlates and connectivity patterns of both goal maintenance tasks in the same subset of subjects to further validate their neural construct validity and clarify our understanding of the nature and function of the neural circuitry engaged by the tasks. Twenty-six healthy control subjects performed both the letter (AX) and dot pattern (DPX) variants of the CPT during fMRI. Behavioral performance was similar between tasks. The 2 tasks engaged the same brain networks including dorsolateral prefrontal cortex (DLPFC) and dorsal parietal regions, supporting their validity as complementary measures of the goal maintenance construct. Interestingly there was greater engagement of the frontal opercular insula region during the expectancy AX-CPT (letter) and greater functional connectivity between the PFC and medial temporal lobe in the DPX (dot pattern). These differences are consistent with differential recruitment of phonological and visual-spatial processes by the two tasks and suggest that additional long-term memory systems may be engaged by the dot probe version. PMID:26494483

  17. The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms.

    PubMed

    Lopez-Garcia, Pilar; Lesh, Tyler A; Salo, Taylor; Barch, Deanna M; MacDonald, Angus W; Gold, James M; Ragland, J Daniel; Strauss, Milton; Silverstein, Steven M; Carter, Cameron S

    2016-02-01

    Goal maintenance is an aspect of cognitive control that has been identified as critical for understanding psychopathology according to criteria of the NIMH-sponsored CNTRICS (Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia) and Research Domain Criteria (RDoC) initiatives. CNTRICS proposed the expectancy AX-CPT, and its visual-spatial parallel the dot probe expectancy (DPX), as valid measures of the cognitive and neural processes thought to be relevant for goal maintenance. The goal of this study was to specifically examine the functional neural correlates and connectivity patterns of both goal maintenance tasks in the same subset of subjects to further validate their neural construct validity and clarify our understanding of the nature and function of the neural circuitry engaged by the tasks. Twenty-six healthy control subjects performed both the letter (AX) and dot pattern (DPX) variants of the CPT during fMRI. Behavioral performance was similar between tasks. The 2 tasks engaged the same brain networks including dorsolateral prefrontal cortex (DLPFC) and dorsal parietal regions, supporting their validity as complementary measures of the goal maintenance construct. Interestingly there was greater engagement of the frontal opercular insula region during the expectancy AX-CPT (letter) and greater functional connectivity between the PFC and medial temporal lobe in the DPX (dot pattern). These differences are consistent with differential recruitment of phonological and visual-spatial processes by the two tasks and suggest that additional long-term memory systems may be engaged by the dot probe version. PMID:26494483

  18. Enhanced brain susceptibility to negative stimuli in adolescents: ERP evidences

    PubMed Central

    Yuan, Jiajin; Ju, Enxia; Meng, Xianxin; Chen, Xuhai; Zhu, Siyu; Yang, Jiemin; Li, Hong

    2015-01-01

    Background: Previous studies investigated neural substrates of emotional face processing in adolescents and its comparison with adults. As emotional faces elicit more of emotional expression recognition rather than direct emotional responding, it remains undetermined how adolescents are different from adults in brain susceptibility to emotionally stressful stimuli. Methods: Event-Related Potentials (ERPs) were recorded for highly negative (HN), moderately negative (MN), and neutral pictures in 20 adolescents and 20 adults while subjects performed a standard/deviant distinction task by pressing different keys, irrespective of the emotionality of deviant stimuli. Results: Adolescents exhibited more negative amplitudes for HN vs. neutral pictures in N1 (100–150 ms), P2 (130–190 ms), N2 (210–290 ms), and P3 (360–440 ms) components. In addition, adolescents showed more negative amplitudes for MN compared to neutral pictures in N1, P2, and N2 components. By contrast, adults exhibited significant emotion effects for HN stimuli in N2 and P3 amplitudes but not in N1 and P2 amplitudes, and they did not exhibit a significant emotion effect for MN stimuli at all these components. In the 210–290 ms time interval, the emotion effect for HN stimuli was significant across frontal and central regions in adolescents, while this emotion effect was noticeable only in the central region for adults. Conclusions: Adolescents are more emotionally sensitive to negative stimuli compared to adults, regardless of the emotional intensity of the stimuli, possibly due to the immature prefrontal control system over the limbic emotional inputs during adolescence. PMID:25972790

  19. The Impact of Stimuli on Affect in Persons With Dementia

    PubMed Central

    Cohen-Mansfield, Jiska; Marx, Marcia S.; Thein, Khin; Dakheel-Ali, Maha

    2011-01-01

    Objective To examine how presentation of different stimuli impacts affect in nursing home residents with dementia. Method Participants were 193 residents aged 60 to 101 years from 7 Maryland nursing homes who had a diagnosis of dementia (derived from the medical chart or obtained from the attending physician). Cognitive functioning was assessed via the Mini-Mental State Examination (MMSE), and data pertaining to activities of daily living were obtained through the Minimum Data Set. Affect was assessed using observations of the 5 moods from Lawton’s Modified Behavior Stream. Baseline observations of affect were performed for comparisons. During the study, each participant was presented with 25 predetermined engagement stimuli in random order over a period of 3 weeks. Stimuli were categorized as live social, simulated social, manipulative, work/task-related, music, reading, or individualized to the participant’s self-identity. The dates of data collection were 2005–2007. Results Differences between stimulus categories were significant for pleasure (F6,144 = 25.137, P < .001) and interest (F6,144 = 18.792, P < .001) but not for negative affect. Pleasure and interest were highest for the live social category, followed by self-identity and simulated social stimuli for pleasure, and for manipulative stimuli in terms of the effect on interest. The lowest levels of pleasure and interest were observed for music. Participants with higher cognitive function had significantly higher pleasure (F1,97 = 6.27, P < .05). Although the general trend of the impact of the different categories was similar for different levels of cognitive function, there were significant differences in pleasure in response to specific stimuli (interaction effect: F6,92 = 2.31, P < .05). Overall, social stimuli have the highest impact on affect in persons with dementia. Conclusions The findings of the present study are important, as affect is a major indicator of quality of life and this study is

  20. Effects of complex aural stimuli on mental performance.

    PubMed

    Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen

    2003-06-01

    The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments. PMID:15176128

  1. Emotional Stimuli and Motor Conversion Disorder

    ERIC Educational Resources Information Center

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt, Jr.; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to…

  2. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  3. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  4. Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety.

    PubMed

    Kappenman, Emily S; Farrens, Jaclyn L; Luck, Steven J; Proudfit, Greg Hajcak

    2014-01-01

    The dot-probe task is often considered a gold standard in the field for investigating attentional bias to threat. However, serious issues with the task have been raised. Specifically, a number of studies have demonstrated that the traditional reaction time (RT) measure of attentional bias to threat in the dot-probe task has poor internal reliability and poor test-retest reliability. In addition, although threatening stimuli capture attention in other paradigms, attentional bias to threat has not usually been found in typical research participants in the dot-probe task. However, when attention is measured in the dot-probe task with the N2pc component of the event-related potential waveform, substantial attentional orienting to threat is observed, and the internal reliability is moderate. To provide a rigorous comparison of the reliability of this N2pc measure and the conventional behavioral measure, as well as to examine the relationship of these measures to anxiety, the present study examined the N2pc in conjunction with RT in the dot-probe task in a large sample of participants (N = 96). As in previous studies, RT showed no bias to threatening images across the sample and exhibited poor internal reliability. Moreover, this measure did not relate to trait anxiety. By contrast, the N2pc revealed a significant initial shift of attention to threat, and this measure was internally reliable. However, the N2pc was not correlated with trait anxiety, indicating that it does not provide a meaningful index of individual differences in anxiety in the dot-probe task. Together, these results indicate a serious need to develop new tasks and methods to more reliably investigate attentional bias to threat and its relationship to anxiety in both clinical and non-clinical populations. PMID:25538644

  5. Body image concern and selective attention to disgusting and non-self appearance-related stimuli.

    PubMed

    Onden-Lim, Melissa; Wu, Ray; Grisham, Jessica R

    2012-09-01

    Although selective attention to one's own appearance has been widely documented in studies of body dysmorphic disorder (BDD), little is known about attentional bias toward non-self appearance-related stimuli in BDD. Furthermore, despite reports of heightened experience of disgust in BDD, it is unknown whether these individuals differentially attend to disgusting stimuli and whether disgust is important in processing of unattractive stimuli. We used a dot probe procedure to investigate the relationship between dysmorphic concern, a defining feature of BDD, and selective attention to faces, attractive, unattractive and disgusting images in a female heterosexual student population (N=92). At the long stimulus presentation (1000 ms), dysmorphic concern was positively associated with attention to faces in general and attractive appearance-related images. In contrast, at the short stimulus presentation (200 ms), there was a positive association between dysmorphic concern and disgusting images. Implications for theoretical models of BDD are discussed. PMID:22898205

  6. The quantum Hall effect in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Greshnov, A. A.

    2014-12-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

  7. A Comparison of Antibacterial Activity of Selected Thyme (Thymus) Species by Means of the Dot Blot Test with Direct Bioautographic Detection.

    PubMed

    Orłowska, Marta; Kowalska, Teresa; Sajewicz, Mieczysław; Jesionek, Wioleta; Choma, Irena M; Majer-Dziedzic, Barbara; Szymczak, Grażyna; Waksmundzka-Hajnos, Monika

    2015-01-01

    Bioautography carried out with the aid of thin-layer chromatographic adsorbents can be used to assess antibacterial activity in samples of different origin. It can either be used as a simple and cost-effective detection method applied to a developed chromatogram, or to the dot blot test performed on a chromatographic plate, where total antibacterial activity of a sample is scrutinized. It was an aim of this study to compare antibacterial activity of 18 thyme (Thymus) specimens and species (originating from the same gardening plot and harvested in the same period of time) by means of a dot blot test with direct bioautography. A two-step extraction of herbal material was applied, and at step two the polar fraction of secondary metabolites was obtained under the earlier optimized extraction conditions [methanol-water (27+73, v/v), 130°C]. This fraction was then tested for its antibacterial activity against Bacillus subtilis bacteria. It was established that all investigated extracts exhibited antibacterial activity, yet distinct differences were perceived in the size of the bacterial growth inhibition zones among the compared thyme species. Based on the results obtained, T. citriodorus "golden dwarf" (sample No. 5) and T. marschallianus (sample No. 6) were selected as promising targets for further investigations and possible inclusion in a herbal pharmacopeia, which is an essential scientific novelty of this study. PMID:26268965

  8. Spatially resolved photoluminescence spectroscopy of quantum dots

    NASA Astrophysics Data System (ADS)

    Dybiec, Maciej

    Recent advancements in nanotechnology create a need for a better understanding of the underlying physical processes that lead to the different behavior of nanoscale structures in comparison to bulk materials. The influence of the surrounding environment on the physical and optical properties of nanoscale objects embedded inside them is of particular interest. This research is focused on the optical properties of semiconductor quantum dots which are zero-dimensional nanostructures. There are many investigation techniques for measuring the local parameters and structural characteristics of Quantum Dot structures. They include X-ray diffraction, Transmission Electron Microscopy, Wavelength Dispersive Spectroscopy, etc. However, none of these is suitable for the study of large areas of quantum dots matrices and substrates. The existence of spatial inhomogeneity in the quantum dots allows for a deeper and better understanding of underlying physical processes responsible in particular for the observed changes in photoluminescence (PL) characteristics. Spectroscopic PL mapping can reveal areas of improved laser performance of InAs - InGaAs quantum dots structures. Establishing physical mechanisms responsible for two different types of spatial PL inhomogeneity in InAs/InGaAs quantum dots structures for laser applications was the first objective of this research. Most of the bio-applications of semiconductor quantum dots utilize their superior optical properties over organic fluorophores. Therefore, optimization of QD labeling performance with biomolecule attachment was another focus of this research. Semiconductor quantum dots suspended in liquids were investigated, especially the influence of surrounding molecules that may be attached or bio-conjugated to the quantum dots for specific use in biological reactions on the photoluminescence spectrum. Provision of underlying physical mechanisms of optical property instability of CdSe/ZnS quantum dots used for biological

  9. Modulating the processing of emotional stimuli by cognitive demand.

    PubMed

    Kellermann, Tanja S; Sternkopf, Melanie A; Schneider, Frank; Habel, Ute; Turetsky, Bruce I; Zilles, Karl; Eickhoff, Simon B

    2012-03-01

    Emotional processing is influenced by cognitive processes and vice versa, indicating a profound interaction of these domains. The investigation of the neural mechanisms underlying this interaction is not only highly relevant for understanding the organization of human brain function. Rather, it may also help in understanding dysregulated emotions in affective disorders and in elucidating the neurobiology of cognitive behavioural therapy (e.g. in borderline personality disorder), which aims at modulating dysfunctional emotion processes by cognitive techniques, such as restructuring. In the majority of earlier studies investigating the interaction of emotions and cognition, the main focus has been on the investigation of the effects of emotional stimuli or, more general, emotional processing, e.g. instituted by emotional material that needed to be processed, on cognitive performance and neural activation patterns. Here we pursued the opposite approach and investigated the modulation of implicit processing of emotional stimuli by cognitive demands using an event-related functional magnetic resonance imaging--study on a motor short-term memory paradigm with emotional interferences. Subjects were visually presented a finger-sequence consisting either of four (easy condition) or six (difficult condition) items, which they had to memorize. After a short pause positive, negative or neutral International affective picture system pictures or a green dot (as control condition) were presented. Subjects were instructed to reproduce the memorized sequence manually as soon as the picture disappeared. Analysis showed that with increasing cognitive demand (long relative to short sequences), neural responses to emotional pictures were significantly reduced in amygdala and orbitofrontal cortex. In contrast, the more difficult task evoked stronger activation in a widespread frontoparietal network. As stimuli were task-relevant go-cues and hence had to be processed perceptually, we

  10. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  11. Visual stimuli: past and present

    NASA Astrophysics Data System (ADS)

    Westheimer, Gerald

    2013-03-01

    The fundamental properties of light and the principles of the structure and function of the visual system were discovered at a time when the only light sources were the sun and the flame of a candle. Contributions by Newton, Huygens, Thomas Young and Purkinje, Helmholtz's ophthalmoscope - all preceded the first incandescent filament. Light bulbs, Xenon arcs, lasers, light-emitting diodes (LEDs), computer monitors then sequentially enlarged the arsenal, and so did the steps from Nicol prism to Polaroid in polarizing light, and from glass and interference filters to laser light in generating monochromatic light. Technological advances have a deep impact on the research topics at any one time, expanding their scope. In particular, utilization of computers now allows the generation and manipulation of targets permitting questions to be approached that could not have been envisaged at the dawn of the technological era of vision research. Just beyond the immediate grasp of even the most thoughtful vision scientist, however, is the concern that stimulus sets originating in mathematicians' and physicists' toolboxes fail to capture some essential ingredients indigenous to human vision. The quest to study vision with stimuli in its own terms continues.

  12. Quantum dot device tunable from single to triple dot system

    SciTech Connect

    Rogge, M. C.; Haug, R. J.; Pierz, K.

    2013-12-04

    We present a lateral quantum dot device which has a tunable number of quantum dots. Depending on easily tunable gate voltages, one, two or three quantum dots are found. They are investigated in transport and charge detection.

  13. The method of constant stimuli is inefficient

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Fitzhugh, Andrew

    1990-01-01

    Simpson (1988) has argued that the method of constant stimuli is as efficient as adaptive methods of threshold estimation and has supported this claim with simulations. It is shown that Simpson's simulations are not a reasonable model of the experimental process and that more plausible simulations confirm that adaptive methods are much more efficient that the method of constant stimuli.

  14. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  15. Narcissism dimensions differentially moderate selective attention to evaluative stimuli in incarcerated offenders

    PubMed Central

    Krusemark, Elizabeth A.; Lee, Christopher; Newman, Joseph P.

    2014-01-01

    Narcissistic personality disorder is associated with distinguishing traits including self-enhancement, arrogance and intense reactivity to ego threat. Theoretical accounts of narcissism suggest these heterogeneous behaviors reflect a defensive motivational style that functions to both uphold and protect the self-concept. However, the notion that narcissism can be characterized by grandiose and vulnerable dimensions raises the possibility that these diverse behaviors represent distinct expressions of narcissistic defensiveness. The present study examined whether both dimensions exhibit a general defensive style marked by selective attention to evaluative stimuli or are differentially associated with selective attention to positive and negative information, respectively. Using a dot probe task consisting of valenced and neutral trait adjectives, we evaluated these hypotheses in a group of male offenders. Results indicated that vulnerable narcissism was associated with attention biases for both positive and negative stimuli, though the dimension was further distinguished by disengagement difficulties and a greater recognition memory bias in response to negative words. Conversely, grandiose narcissism was associated with increased accuracy when attending to positive stimuli and directing attention away from negative stimuli. Overall, these findings suggest narcissistic individuals share motivated selective attention in response to evaluative stimuli, while simultaneously highlighting important phenotypic differences between grandiose and vulnerable dimensions. PMID:25330183

  16. Study of polycation-capped Mn:ZnSe quantum dots as a novel fluorescent probe for living cells.

    PubMed

    Pan, Xiaobo; Li, Zheng; Wang, Tianlong; Xie, Jin; Wang, Pei-Nan; Chen, Ji-Yao; Chen, Li; Mi, Lan

    2014-05-01

    Transition metal manganese ion (Mn(2+)) doped zinc selenide quantum dots (Mn:ZnSe D-Dots) have been considered as a new material for fluorescent probes in biological labeling. However, this application is limited by the low membrane permeability of D-Dots. In this work, Mn:ZnSe D-Dots were capped with the polycation Sofast to label living cells. For the first time, the efficiency of cellular uptake in living cells is significantly enhanced. Various molar ratios of Sofast to D-Dots were explored and compared to obtain the optimal reaction conditions between Sofast and D-Dots for preparing Sofast/D-Dots nano-compound. A comparison on the fluorescence labeling ability of living cells were made between Sofast/D-Dots and pure D-Dots. Results from laser scanning confocal microscope show that Sofast/D-Dots complexes enter the cells more efficiently than pure D-Dots, even with a lower concentration and shorter incubation time. The cytotoxicities of D-Dots and Sofast/D-Dots were also studied. It was found that Sofast/D-Dots have a much lower cytotoxicity than cadmium-containing quantum dots (i.e. CdTe and CdTe/ZnS). Our results suggest that the non-heavy-metal-containing Sofast/D-Dots complexes have a great potential in the application of biological labeling, especially of long-time bioimaging in living cells. PMID:24488596

  17. Effective Stimuli for Constructing Reliable Neuron Models

    PubMed Central

    Druckmann, Shaul; Berger, Thomas K.; Schürmann, Felix; Hill, Sean; Markram, Henry; Segev, Idan

    2011-01-01

    The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose. PMID:21876663

  18. Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Zarei, Mahmoud; Joo, Sang Woo

    2016-01-01

    Two analytical approaches including chemiluminescence (CL) and corona discharge ionization ion mobility spectrometry (CD-IMS) were developed for sensitive determination of selegiline (SG). We found that the CL intensity of the KMnO4-Na2S2O3 CL system was significantly enhanced in the presence of L-cysteine capped CdS quantum dots (QDs). A possible CL mechanism for this CL reaction is proposed. In the presence of SG, the enhanced CL system was inhibited. Based on this inhibition, a simple and sensitive flow-injection CL method was proposed for the determination of SG. Under optimum experimental conditions, the decreased CL intensity was proportional to SG concentration in the range of 0.01 to 30.0 mg L- 1. The detection limit (3σ) was 0.004 mg L- 1. Also, SG was determined using CD-IMS, and under optimum conditions of CD-IMS, calibration curves were linear in the range of 0.15 to 42.0 mg L- 1, with a detection limit (3σ) of 0.03 mg L- 1. The precision of the two methods was calculated by analyzing samples containing 5.0 mg L- 1 of SG (n = 11). The relative standard deviations (RSDs%) of the flow-injection CL and CD-IMS methods are 2.17% and 3.83%, respectively. The proposed CL system exhibits a higher sensitivity and precision than the CD-IMS method for the determination of SG.

  19. Comparison between dot-immunoblotting assay and clinical sign determination method for quantifying avian infectious bronchitis virus vaccine by titration in embryonated eggs.

    PubMed

    Yuk, Seong-su; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-tack; Gwon, Gyeong-Bin; Jeong, Jei-Hyun; Jeong, Sol; Youn, Ha-Na; Heo, Yong-Hwan; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-04-01

    A sensitive and specific method for measuring the vaccine titer of infectious bronchitis virus (IBV) is important to commercial manufacturers for improving vaccine quality. Typically, IBV is titrated in embryonated chicken eggs, and the infectivity of the virus dilutions is determined by assessing clinical signs in the embryos as evidence of viral propagation. In this study, we used a dot-immunoblotting assay (DIA) to measure the titers of IBV vaccines that originated from different pathogenic strains or attenuation methods in embryonated eggs, and we compared this assay to the currently used method, clinical sign evaluation. To compare the two methods, we used real-time reverse transcription-PCR, which had the lowest limit of detection for propagated IBV. As a clinical sign of infection, dwarfism of the embryo was quantified using the embryo: egg (EE) index. The DIA showed 9.41% higher sensitivity and 15.5% higher specificity than the clinical sign determination method. The DIA was particularly useful for measuring the titer of IBV vaccine that did not cause apparent stunting but propagated in embryonated chicken eggs such as a heat-adapted vaccine strain. The results of this study indicate that the DIA is a rapid, sensitive, reliable method for determining IBV vaccine titer in embryonated eggs at a relatively low cost. PMID:26802454

  20. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Jen; Sung, Calvin T.; Aljuffali, Ibrahim A.; Huang, Yu-Jie; Fang, Jia-You

    2013-08-01

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92-134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g-1 it could be increased to 50 nmol g-1 after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.

  1. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes.

    PubMed

    Wen, Chih-Jen; Sung, Calvin T; Aljuffali, Ibrahim A; Huang, Yu-Jie; Fang, Jia-You

    2013-08-16

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches. PMID:23867977

  2. Comparison of magneto-optical properties of various excitonic complexes in CdTe and CdSe self-assembled quantum dots.

    PubMed

    Kobak, J; Smoleński, T; Goryca, M; Rousset, J-G; Pacuski, W; Bogucki, A; Oreszczuk, K; Kossacki, P; Nawrocki, M; Golnik, A; Płachta, J; Wojnar, P; Kruse, C; Hommel, D; Potemski, M; Kazimierczuk, T

    2016-07-01

    We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence studies of emission lines related to the recombination of neutral exciton X, biexciton XX, and singly charged excitons (X(+), X(-)) allowed us to determine average parameters describing CdTe QDs (CdSe QDs): X-XX transition energy difference 12 meV (24 meV); fine-structure splitting δ1=0.14 meV (δ1=0.47 meV); g-factor g  =  2.12 (g  =  1.71); diamagnetic shift γ=2.5 μeV T(-2) (γ =1.3 μeV T(-2)). We find also statistically significant correlations between various parameters describing internal structure of excitonic complexes. PMID:27173643

  3. Comparison of magneto-optical properties of various excitonic complexes in CdTe and CdSe self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Kobak, J.; Smoleński, T.; Goryca, M.; Rousset, J.-G.; Pacuski, W.; Bogucki, A.; Oreszczuk, K.; Kossacki, P.; Nawrocki, M.; Golnik, A.; Płachta, J.; Wojnar, P.; Kruse, C.; Hommel, D.; Potemski, M.; Kazimierczuk, T.

    2016-07-01

    We present a comparative study of two self-assembled quantum dot (QD) systems based on II–VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence studies of emission lines related to the recombination of neutral exciton X, biexciton XX, and singly charged excitons (X+, X‑) allowed us to determine average parameters describing CdTe QDs (CdSe QDs): X–XX transition energy difference 12 meV (24 meV); fine-structure splitting δ1=0.14 meV (δ1=0.47 meV); g-factor g  =  2.12 (g  =  1.71) diamagnetic shift γ=2.5 μeV T‑2 (γ =1.3 μeV T‑2). We find also statistically significant correlations between various parameters describing internal structure of excitonic complexes.

  4. Ultra-bright and stimuli-responsive fluorescent nanoparticles for bioimaging.

    PubMed

    Battistelli, Giulia; Cantelli, Andrea; Guidetti, Gloria; Manzi, Jeannette; Montalti, Marco

    2016-01-01

    Fluorescent nanoparticles (NPs) are unique contrast agents for bioimaging. Examples of molecular-based fluorescent NPs with brightness similar or superior to semiconductor quantum dots have been reported. These ultra-bright NPs consist of a silica or polymeric matrix that incorporate the emitting dyes as individual moieties or aggregates and promise to be more biocompatible than semiconductor quantum dots. Ultra-bright materials result from heavy doping of the structural matrix, a condition that entails a close mutual proximity of the doping dyes. Ground state and excited state interactions between the molecular emitters yield aggregation-caused quenching (ACQ) and proximity-caused quenching (PCQ). In combination with Föster resonance energy transfer (FRET) ACQ and PCQ originate collective phenomena that produce amplified quenching of the nanoprobes. In this focus article, we discuss strategies to achieve ultra-bright nanoprobes avoiding ACQ and PCQ also exploiting aggregation-induced emission (AIE). Amplified quenching, on the other hand, is also proposed as a strategy to design stimuli-responsive fluorogenic probes through disaggregation-induced emission (DIE) in alternative to AIE. As an advantage, DIE consents to design stimuli-responsive materials starting from a large variety of precursors. On the contrary, AIE is characteristic of a limited number of species. Examples of stimuli-responsive fluorogenic probes based on DIE are discussed. PMID:26017007

  5. Sex attracts: investigating individual differences in attentional bias to sexual stimuli.

    PubMed

    Kagerer, Sabine; Wehrum, Sina; Klucken, Tim; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2014-01-01

    We investigated the impact of sexual stimuli and the influence of sexual motivation on the performance in a dot-probe task and a line-orientation task in a large sample of males and females. All pictures (neutral, erotic) were rated on the dimensions of valence, arousal, disgust, and sexual arousal. Additionally, questionnaires measuring sexual interest/desire/motivation were employed. The ratings of the sexual stimuli point to a successful picture selection because sexual arousal did not differ between the sexes. The stimuli were equally arousing for men and women. Higher scores in the employed questionnaires measuring sexual interest/desire/motivation led to higher sexual arousal ratings of the sex pictures. Attentional bias towards sex pictures was observed in both experimental tasks. The attentional biases measured by the dot-probe and the line-orientation task were moderately intercorrelated suggesting attentional bias as a possible marker for a sex-attention trait. Finally, only the sexual sensation seeking score correlated with the attentional biases of the two tasks. Future research is needed to increase the predictive power of these indirect measures of sexual interest. PMID:25238545

  6. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  7. Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-10-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  8. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  9. Generalized Habituation of Concept Stimuli in Toddlers

    ERIC Educational Resources Information Center

    Faulkender, Patricia J.; And Others

    1974-01-01

    An evaluation of selective generalization of habituation on the basis of meaningful categories of stimuli. Also explored are the sex differences in conceptual generalization of habituation. Subjects were 36 toddlers with a mean age of 40 months. (SDH)

  10. Stimuli, Reinforcers, and the Persistence of Behavior

    ERIC Educational Resources Information Center

    Nevin, John A.

    2009-01-01

    This article reviews evidence from basic and translational research with pigeons and humans suggesting that the persistence of operant behavior depends on the contingency between stimuli and reinforcers, and considers some implications for clinical interventions. (Contains 4 figures.)

  11. Priming effects on the perceived grouping of ambiguous dot patterns.

    PubMed

    Kurylo, Daniel D; Bukhari, Farhan

    2015-09-01

    For ambiguous stimuli, complex dynamics guide processes of perceptual grouping. Previous studies have suggested two opposing effects on grouping that are produced by the preliminary stimulus state: one that enhances grouping towards the existing structure, and another that opposes this structure. To examine effects of the preliminary state on grouping directly, measurements were made of perceived grouping of dot patterns that followed a visual prime. Three stimuli were presented in sequence: prime, target, and mask. Targets were composed of an evenly spaced dot grid in which grouping was established by similarity in luminance. Subjects indicated the dominant perceived grouping. The prime either corresponded to or opposed the prevailing organization of the target. Contrary to the hypothesis, solid-line primes biased grouping away from the structure of the prime, even when the prevailing organization of dot patterns strongly favored the primes' structure. This effect occurred, although to a lesser extent, when primes did not occupy the same location of targets, but were presented in a marginal area surrounding the grid. Priming effects did not occur for primes constructed of dot patterns. Effects found here may be attributed to a forward masking effect by primes, which more effectively disrupts grouping of patterns matched to the prime. Effects may also be attributed to a type of pattern contrast, in which a grouped pattern dissimilar to primes gains salience. For the pattern contrast model, the partial activation of multiple grouped configurations is compared to the pattern of the solid-line primes. PMID:25281427

  12. Comparison of Toxicity of CdSe: ZnS Quantum Dots on Male Reproductive System in Different Stages of Development in Mice

    PubMed Central

    Amiri, Gholamreza; Valipoor, Akram; Parivar, Kazem; Modaresi, Mehrdad; Noori, Ali; Gharamaleki, Hamideh; Taheri, Jafar; Kazemi, Ali

    2016-01-01

    Background Quantum dots (QDs) are new types of fluorescent materials for biological labeling. QDs toxicity study is an essential requirement for future clinical applications. Therefore, this study aimed to evaluate cytotoxic effects of CdSe: ZnS QDs on male reproductive system. Materials and Methods In this experimental study, the different concentrations of CdSe: ZnS QDs (10, 20 and 40 mg/kg) were injected to 32 male mice (adult group) and 24 pregnant mice (embryo group) on day 8 of gestation. The histological changes of testis and epididymis were studied by a light microscopy, and the number of seminiferous tubules between two groups was compared. One-way analysis of variance (one-way Anova) using the Statistical Package for the Social Sciences (SPSS, SPSS Inc., USA) version 16 were performed for statistical analysis. Results In adult group, histological studies of testis tissues showed a high toxicity of CdSe: ZnS in 40 mg/kg dose followed by a decrease in lamina propria; destruction in interstitial tissue; deformation of seminiferous tubules; and a reduction in number of spermatogonia, spermatocytes, and spermatids. However, there was an interesting result in fetal testis development, meaning there was no significant effect on morphology and structure of the seminiferous tubules and number of sperm stem cells. Also histological study of epididymis tissues in both groups (adult and embryo groups) showed no significant effect on morphology and structure of tubule and epithelial cells, but there was a considerable reduction in number of spermatozoa in the lumen of the epididymal duct in 40 mg/kg dose of adult group. Conclusion The toxicity of QDs on testicular tissue of the mice embryo and adult are different before and after puberty. Due to lack of research in this field, this study can be an introduction to evaluate the toxicity of QDs on male reproduction system in different stages of development. PMID:26985339

  13. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores.

    PubMed

    Bradburne, Christopher E; Delehanty, James B; Boeneman Gemmill, Kelly; Mei, Bing C; Mattoussi, Hedi; Susumu, Kimihiro; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L

    2013-09-18

    Interest in taking advantage of the unique spectral properties of semiconductor quantum dots (QDs) has driven their widespread use in biological applications such as in vitro cellular labeling/imaging and sensing. Despite their demonstrated utility, concerns over the potential toxic effects of QD core materials on cellular proliferation and homeostasis have persisted, leaving in question the suitability of QDs as alternatives for more traditional fluorescent materials (e.g., organic dyes, fluorescent proteins) for in vitro cellular applications. Surprisingly, direct comparative studies examining the cytotoxic potential of QDs versus these more traditional cellular labeling fluorophores remain limited. Here, using CdSe/ZnS (core/shell) QDs as a prototypical assay material, we present a comprehensive study in which we characterize the influence of QD dose (concentration and incubation time), QD surface capping ligand, and delivery modality (peptide or cationic amphiphile transfection reagent) on cellular viability in three human cell lines representing various morphological lineages (epithelial, endothelial, monocytic). We further compare the effects of QD cellular labeling on cellular proliferation relative to those associated with a panel of traditionally employed organic cell labeling fluorophores that span a broad spectral range. Our results demonstrate the important role played by QD dose, capping ligand structure, and delivery agent in modulating cellular toxicity. Further, the results show that at the concentrations and time regimes required for robust QD-based cellular labeling, the impact of our in-house synthesized QD materials on cellular proliferation is comparable to that of six commercial cell labeling fluorophores. Cumulatively, our results demonstrate that the proper tuning of QD dose, surface ligand, and delivery modality can provide robust in vitro cell labeling reagents that exhibit minimal impact on cellular viability. PMID:23879393

  14. Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Zarei, Mahmoud; Joo, Sang Woo

    2016-01-15

    Two analytical approaches including chemiluminescence (CL) and corona discharge ionization ion mobility spectrometry (CD-IMS) were developed for sensitive determination of selegiline (SG). We found that the CL intensity of the KMnO4-Na2S2O3 CL system was significantly enhanced in the presence of L-cysteine capped CdS quantum dots (QDs). A possible CL mechanism for this CL reaction is proposed. In the presence of SG, the enhanced CL system was inhibited. Based on this inhibition, a simple and sensitive flow-injection CL method was proposed for the determination of SG. Under optimum experimental conditions, the decreased CL intensity was proportional to SG concentration in the range of 0.01 to 30.0 mg L(-1). The detection limit (3σ) was 0.004 mg L(-1). Also, SG was determined using CD-IMS, and under optimum conditions of CD-IMS, calibration curves were linear in the range of 0.15 to 42.0 mg L(-1), with a detection limit (3σ) of 0.03 mg L(-1). The precision of the two methods was calculated by analyzing samples containing 5.0 mg L(-1) of SG (n=11). The relative standard deviations (RSDs%) of the flow-injection CL and CD-IMS methods are 2.17% and 3.83%, respectively. The proposed CL system exhibits a higher sensitivity and precision than the CD-IMS method for the determination of SG. PMID:26318702

  15. Bile salts are effective taste stimuli in channel catfish.

    PubMed

    Rolen, S H; Caprio, J

    2008-09-01

    Bile salts are known olfactory stimuli for teleosts, but only a single report has indicated that the taste system of a fish was sensitive to this class of stimuli. Here, gustatory responses of the channel catfish, Ictalurus punctatus, to four bile salts that included taurine-, glycine- and non-conjugated compounds along with three stimulatory amino acids as a comparison were investigated using extracellular electrophysiological techniques. Integrated multiunit responses were obtained from the branch of the facial nerve innervating taste buds on the maxillary barbel. Bile salts were shown to be highly effective facial taste stimuli, with estimated electrophysiological thresholds for three of the four tested bile salts of approximately 10(-11) mol l(-1) to 10(-10) mol l(-1), slightly lower by 1-2 log units than those to amino acids in the same species. Although the sensitivity of the facial taste system of the channel catfish to bile salts is high, the relative magnitude of the response to suprathreshold concentrations of bile salts was significantly less than that to amino acids. Multiunit cross-adaptation experiments indicate that bile salts and amino acids bind to relatively independent receptor sites; however, nerve-twig data and single-fiber recordings suggest that both independent and shared neural pathways exist for the transmission of bile salt and amino acid information to the primary gustatory nucleus of the medulla. PMID:18723536

  16. Binocular Combination of Second-Order Stimuli

    PubMed Central

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  17. Binocular combination of second-order stimuli.

    PubMed

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  18. Stimuli-responsive nanoparticles from ionic cellulose derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Yonggui; Heinze, Thomas; Zhang, Kai

    2015-12-01

    Stimuli-responsive nanoparticles (NPs) based on sustainable polymeric feedstock still need more exploration in comparison with NPs based on synthetic polymers. In this report, stimuli-responsive NPs from novel ionic cellulose derivatives were prepared via a facile nanoprecipitation. Cellulose 10-undecenoyl ester (CUE) with a degree of substitution (DS) of 3 was synthesized by esterification of cellulose with 10-undecenoyl chloride. Then, CUE was modified by photo-induced thiol-ene reactions, in order to obtain organo-soluble ionic cellulose derivatives with DSs of ~3, namely cellulose 11-((3-carboxyl)ethylthio)undecanoate (CUE-MPA), cellulose 11-((2-aminoethyl)thio)undecanoate (CUE-CA), cellulose 11-(2-(2-(diethylamino)ethyl)thio)undecanoate (CUE-DEAET) and cellulose 11-(2-(2-(dimethylamino)ethyl)thio)undecanoate (CUE-DMAET). CUE-MPA could be transformed into NPs with average diameters in the range of 80-330 nm, but these NPs did not show particular stimuli-responsive properties. Moreover, the dropping technique resulted in smaller NPs than a dialysis technique. Stable NPs with average diameters in the range of 90-180 nm showing pH-responsive and switchable sizes were obtained from CUE-DEAET and CUE-DMAET possessing tertiary amines using nanoprecipitation. Thus, altering the terminal functional groups will be a new approach to prepare stimuli-responsive cellulose-derived polymeric NPs.Stimuli-responsive nanoparticles (NPs) based on sustainable polymeric feedstock still need more exploration in comparison with NPs based on synthetic polymers. In this report, stimuli-responsive NPs from novel ionic cellulose derivatives were prepared via a facile nanoprecipitation. Cellulose 10-undecenoyl ester (CUE) with a degree of substitution (DS) of 3 was synthesized by esterification of cellulose with 10-undecenoyl chloride. Then, CUE was modified by photo-induced thiol-ene reactions, in order to obtain organo-soluble ionic cellulose derivatives with DSs of ~3, namely cellulose

  19. Fractionated Reaction Time Responses to Auditory and Electrocutaneous Stimuli.

    ERIC Educational Resources Information Center

    Beehler, Pamela J. Hoyes; Kamen, Gary

    1986-01-01

    An investigation was conducted to equate auditory and electrocutaneous stimuli. These equated stimuli were used in a second investigation examining neuromotor responses to stimuli of varying intensity. Results are provided. (Author/MT)

  20. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    PubMed Central

    Nishimura, Akio; Michimata, Chikashi

    2013-01-01

    The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger) was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features. PMID:23637688

  1. Emotional stimuli and motor conversion disorder

    PubMed Central

    Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to positive stimuli. We investigated the relationship between conversion disorder and affect by assessing amygdala activity to affective stimuli. We conducted a functional magnetic resonance imaging study using a block design incidental affective task with fearful, happy and neutral face stimuli and compared valence contrasts between 16 patients with conversion disorder and 16 age- and gender-matched healthy volunteers. The patients with conversion disorder had positive movements such as tremor, dystonia or gait abnormalities. We also assessed functional connectivity between the amygdala and regions associated with motor preparation. A group by affect valence interaction was observed. Post hoc analyses revealed that whereas healthy volunteers had greater right amygdala activity to fearful versus neutral compared with happy versus neutral as expected, there were no valence differences in patients with conversion disorder. There were no group differences observed. The time course analysis also revealed greater right amygdala activity in patients with conversion disorder for happy stimuli (t = 2.96, P = 0.006) (with a trend for fearful stimuli, t = 1.81, P = 0.08) compared with healthy volunteers, with a pattern suggestive of impaired amygdala habituation even when controlling for depressive and anxiety symptoms. Using psychophysiological interaction analysis, patients with conversion disorder had greater functional connectivity between the right amygdala and the right supplementary motor area during both fearful versus neutral, and happy versus neutral ‘stimuli’ compared with healthy volunteers. These results were confirmed with

  2. Short term memory for tactile stimuli.

    PubMed

    Gallace, Alberto; Tan, Hong Z; Haggard, Patrick; Spence, Charles

    2008-01-23

    Research has shown that unreported information stored in rapidly decaying visual representations may be accessed more accurately using partial report than using full report procedures (e.g., [Sperling, G., 1960. The information available in brief visual presentations. Psychological Monographs, 74, 1-29.]). In the 3 experiments reported here, we investigated whether unreported information regarding the actual number of tactile stimuli presented in parallel across the body surface can be accessed using a partial report procedure. In Experiment 1, participants had to report the total number of stimuli in a tactile display composed of up to 6 stimuli presented across their body (numerosity task), or else to detect whether or not a tactile stimulus had previously been presented in a position indicated by a visual probe given at a variable delay after offset of a tactile display (i.e., partial report). The results showed that participants correctly reported up to 3 stimuli in the numerosity judgment task, but their performance was significantly better than chance when up to 5 stimuli were presented in the partial report task. This result shows that short-lasting tactile representations can be accessed using partial report procedures similar to those used previously in visual studies. Experiment 2 showed that the duration of these representations (or the time available to consciously access them) depends on the number of stimuli presented in the display (the greater the number of stimuli that are presented, the faster their representation decays). Finally, the results of a third experiment showed that the differences in performance between the numerosity judgment and partial report tasks could not be explained solely in terms of any difference in task difficulty. PMID:18083147

  3. Attentional Processing of Faces in ASD: A Dot-Probe Study

    ERIC Educational Resources Information Center

    Moore, David J.; Heavey, Lisa; Reidy, John

    2012-01-01

    The present study used the Dot-Probe paradigm to explore attentional allocation to faces compared with non-social images in high-functioning individuals with autism spectrum disorder (ASD) and typically developing controls. There was no evidence of attentional bias in either group when stimuli were presented at individually calculated…

  4. Dots and Cubes

    ERIC Educational Resources Information Center

    Eaton, Bryan L.

    1974-01-01

    Illustrated is the mathematical analysis of a three-dimensional game using techniques from the calculus of finite differences. This game is an analog of the familiar two-dimensional game, Dots and Squares. (JP)

  5. Recall and recognition hypermnesia for Socratic stimuli.

    PubMed

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures. PMID:25523628

  6. Stimuli-responsive dendrimers in drug delivery.

    PubMed

    Wang, Hui; Huang, Quan; Chang, Hong; Xiao, Jianru; Cheng, Yiyun

    2016-03-01

    Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed. PMID:26806314

  7. Stimuli-responsive materials in analytical separation.

    PubMed

    Lorenzo, Rosa A; Carro, Antonia M; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-01

    This review focuses on the fundamentals of stimuli-responsive materials and their applications to three common separation techniques, namely extraction, chromatography, and electrophoresis. Although still little investigated, materials that switch their affinity for the analyte on and off as a function of tiny changes in physical and biochemical variables offer relevant advantages for analyte extraction, concentration, and separation. Temperature and/or pH-responsive polymers in the form of chains or networks, which are dispersed in the sample as free entities or after being grafted onto beads (which may incorporate magnetic cores), enable quantitative capture and/or elution of the analyte under mild conditions and without needing organic solvents. Regarding liquid-chromatography separation, responsive stationary phases enable the implementation of "all-in-water" procedures in which retention times are modulated by means of temperature or pH gradients. Other stimuli that can be externally applied, for example light or magnetic fields, can also be used for efficient extraction or separation of the target substance without altering the composition of the sample matrix. Moreover, stimuli-responsiveness enables straightforward recycling of solid and/or stationary phases for a prolonged lifetime. Improved understanding of the phase transitions of stimuli-responsive materials and design of suitable formats for analytical applications should enable wider and more successful application of stimuli-responsive materials in analytical separations. PMID:25910881

  8. Dynamic bioactive stimuli-responsive polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH < 2.3, the P2VP segments are protonated and extend, but for pH > 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface

  9. Verbal Establishing Stimuli: Testing the Motivative Effect of Stimuli in a Derived Relation with Consequences

    ERIC Educational Resources Information Center

    Ju, Winifred C.; Hayes, Steven C.

    2008-01-01

    The present study examined whether the presentation of stimuli in equivalence relations with consequences increases the operant behavior that produces these consequences. In Experiment 1, both normal words and experimentally trained equivalence stimuli did so with young children. In Experiment 2, results were similar with college students. Here, a…

  10. VEP Responses to Op-Art Stimuli

    PubMed Central

    O’Hare, Louise; Clarke, Alasdair D. F.; Pollux, Petra M. J.

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast. PMID:26422207

  11. Effects of data limitations on heartbeat detection in the method of constant stimuli.

    PubMed

    Brener, J; Ring, C; Liu, X

    1994-05-01

    In the method of constant stimuli applied to measuring heartbeat detection, subjects judge the simultaneity of heartbeats and exteroceptive comparison stimuli presented at various intervals after the R-wave (0, 100, 200, 300, 400, and 500 ms). Using versions of this procedure, investigators have found that between 20% (Yates, Jones, Marie, & Hogben, 1985) and 54% (Brener, Liu, & Ring, 1993) of subjects can detect heartbeat sensations. Whereas Yates et al. used a single comparison stimulus on each trial and Brener et al. used 10, the present study examined whether this disparity in heartbeat detection performance could be attributed to the number of comparison stimuli presented on each trial. In each of 360 trials, 30 subjects judged the simultaneity of heartbeat sensations and tones following 1, 5, or 10 comparison stimulus presentations. Significantly fewer subjects met the criterion for heartbeat detection with 1 tone presentation (13%) than with either 5 (43%) or 10 (47%) tone presentations. It is concluded that a single stimulus presentation imposes data limitations that result in underestimation of the accuracy of heartbeat detection. The presentation of at least 5 stimuli in each trial alleviates this limitation. PMID:8008794

  12. Transformation of the Discriminative and Eliciting Functions of Generalized Relational Stimuli

    ERIC Educational Resources Information Center

    Dougher, Michael J.; Hamilton, Derek; Fink, Brandi; Harrington, Jennifer

    2007-01-01

    In three experiments, match-to-sample procedures were used with undergraduates to establish arbitrary relational functions for three abstract visual stimuli. In the presence of samples A, B, and C, participants were trained to select the smallest, middle, and largest member, respectively, of a series of three-comparison arrays. In Experiment 1,…

  13. Electrodermal Activity to Auditory Stimuli in Autistic, Retarded, and Normal Children.

    ERIC Educational Resources Information Center

    Stevens, Sheila; Gruzelier, John

    1984-01-01

    Electrodermal activity to auditory stimuli was compared in 20 autistic children and their matched retarded and normal controls (N=80). The autistic children were virtually indistinguishable in individual features of electrodermal activity from controls when both chronological and mental age comparisons were accounted for. (Author/CL)

  14. Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms

    PubMed Central

    Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195

  15. Skidmore Clips of Neutral and Expressive Scenarios (SCENES): Novel dynamic stimuli for social cognition research.

    PubMed

    Schofield, Casey A; Weeks, Justin W; Taylor, Lea; Karnedy, Colten

    2015-12-30

    Social cognition research has relied primarily on photographic emotional stimuli. Such stimuli likely have limited ecological validity in terms of representing real world social interactions. The current study presents evidence for the validity of a new stimuli set of dynamic social SCENES (Skidmore Clips of Emotional and Neutral Expressive Scenarios). To develop these stimuli, ten undergraduate theater students were recruited to portray members of an audience. This audience was configured to display (seven) varying configurations of social feedback, ranging from unequivocally approving to unequivocally disapproving (including three different versions of balanced/neutral scenes). Validity data were obtained from 383 adult participants recruited from Amazon's Mechanical Turk. Each participant viewed three randomly assigned scenes and provided a rating of the perceived criticalness of each scene. Results indicate that the SCENES reflect the intended range of emotionality, and pairwise comparisons suggest that the SCENES capture distinct levels of critical feedback. Overall, the SCENES stimuli set represents a publicly available (www.scenesstimuli.com) resource for researchers interested in measuring social cognition in the presence of dynamic and naturalistic social stimuli. PMID:26553146

  16. Potential bronchoconstrictor stimuli in acid fog.

    PubMed Central

    Balmes, J R; Fine, J M; Gordon, T; Sheppard, D

    1989-01-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction. PMID:2539989

  17. Potential bronchoconstrictor stimuli in acid fog

    SciTech Connect

    Balmes, J.R.; Fine, J.M.; Gordon, T.; Sheppard, D.

    1989-02-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and nitric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction.

  18. Categorization of Multidimensional Stimuli by Pigeons

    ERIC Educational Resources Information Center

    Berg, Mark E.; Grace, Randolph C.

    2011-01-01

    Six pigeons responded in a visual category learning task in which the stimuli were dimensionally separable Gabor patches that varied in frequency and orientation. We compared performance in two conditions which varied in terms of whether accurate performance required that responding be controlled jointly by frequency and orientation, or…

  19. Musicians' Perception of Beat in Monotonic Stimuli.

    ERIC Educational Resources Information Center

    Duke, Robert A.

    1989-01-01

    Assesses musicians' perceptions of beat in monotonic stimuli and attempts to define empirically the range of perceived beat tempo in music. Subjects performed a metric pulse in response to periodic stimulus tones. Results indicate a relatively narrow range within which beats are perceived by trained musicians. (LS)

  20. Responses to Urban Stimuli: A Balanced Approach.

    ERIC Educational Resources Information Center

    Geller, Daniel M.

    1980-01-01

    Proposes an alternative to Milgram's overload model of urban behavior. Suggests that intense, complex and/or novel stimuli may lead to positive as well as negative effects, and that this may vary across persons or over time. Presents data that confirm the importance of urban complexity as an organizing variable. (Author/GC)

  1. Contingent Stimuli Signal Subsequent Reinforcer Ratios

    ERIC Educational Resources Information Center

    Boutros, Nathalie; Davison, Michael; Elliffe, Douglas

    2011-01-01

    Conditioned reinforcer effects may be due to the stimulus' discriminative rather than its strengthening properties. While this was demonstrated in a frequently-changing choice procedure, a single attempt to replicate in a relatively static choice environment failed. We contend that this was because the information provided by the stimuli was…

  2. Regional brain responses in nulliparous women to emotional infant stimuli.

    PubMed

    Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational

  3. Appetitive responses to computer-generated visual stimuli by the praying mantis Sphodromantis lineola (Burr.).

    PubMed

    Prete, F R; Mahaffey, R J

    1993-01-01

    Tethered adult female praying mantises, Sphodromantis lineola (Burr.), were presented with various computer-generated visual stimuli that moved against patterned or homogeneous white backgrounds in predetermined patterns and at predetermined speeds. The degrees to which the stimulus configurations elicited appetitive behaviors (attempting to approach and/or striking) indicated the relative degrees to which the stimuli were classified as prey. Mantises readily struck at cartoon "crickets" that subtended visual angles as great as 24.5 deg x 62.5 deg, but response rate was suppressed if the stimuli were superimposed on horizontally moving patterned backgrounds. Mantises also displayed appetitive behaviors to moving black squares (edge lengths = 10-47 deg) that moved in predetermined "erratic" paths; however, their response rates were affected by several factors: (1) response rate declined as edge length increased over 10 deg; (2) striking was emitted to stimuli viewed from 23 mm (but not farther) away; and (3) both stimulus displacement rate (distance moved between video frames) and apparent speed (video frame rate) dramatically affected the releasing strength of the stimuli. Finally, mantises responded appetitively to random dot patterns moving synchronously against identically patterned backgrounds and to pairs of black squares moving synchronously against a white background. However, in the latter case, response rate declined as the squares were moved farther apart horizontally or vertically. These and previous results from our laboratory on mantises are congruent with behavioral results obtained from other insects such as flies (Diptera) and dragon flies (Odonata) and suggest that there are neuroanatomical similarities between these groups. PMID:8338803

  4. Sex differences in event-related potentials and attentional biases to emotional facial stimuli

    PubMed Central

    Pfabigan, Daniela M.; Lamplmayr-Kragl, Elisabeth; Pintzinger, Nina M.; Sailer, Uta; Tran, Ulrich S.

    2014-01-01

    Attentional processes play an important role in the processing of emotional information. Previous research reported attentional biases during stimulus processing in anxiety and depression. However, sex differences in the processing of emotional stimuli and higher prevalence rates of anxiety disorders among women, compared to men, suggest that attentional biases may also differ between the two sexes. The present study used a modified version of the dot probe task with happy, angry, and neutral facial stimuli to investigate the time course of attentional biases in healthy volunteers. Moreover, associations of attentional biases with alexithymia were examined on the behavioral and physiological level. Event-related potentials were measured while 21 participants (11 women) performed the task, utilizing also for the first time a difference wave approach in the analysis to highlight emotion-specific aspects. Women showed overall enhanced probe P1 amplitudes compared to men, in particular after rewarding facial stimuli. Using the difference wave approach, probe P1 amplitudes appeared specifically enhanced with regard to congruently presented happy facial stimuli among women, compared to men. Both methods yielded enhanced probe P1 amplitudes after presentation of the emotional stimulus in the left compared to the right visual hemifield. Probe P1 amplitudes correlated negatively with self-reported alexithymia, most of these correlations were only observable in women. Our results suggest that women orient their attention to a greater extent to facial stimuli than men and corroborate that alexithymia is a correlate of reduced emotional reactivity on a neuronal level. We recommend using a difference wave approach when addressing attentional processes of orientation and disengagement also in future studies. PMID:25566151

  5. Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Black, Jonathan T.; Blandino, Joseph R.; Jones, Thomas W.; Danehy, Paul M.; Dorrington, Adrian A.

    2003-01-01

    This paper documents the technique of using hundreds or thousands of projected dots of light as targets for photogrammetry and videogrammetry of gossamer space structures. Photogrammetry calculates the three-dimensional coordinates of each target on the structure, and videogrammetry tracks the coordinates versus time. Gossamer structures characteristically contain large areas of delicate, thin-film membranes. Examples include solar sails, large antennas, inflatable solar arrays, solar power concentrators and transmitters, sun shields, and planetary balloons and habitats. Using projected-dot targets avoids the unwanted mass, stiffness, and installation costs of traditional retroreflective adhesive targets. Four laboratory applications are covered that demonstrate the practical effectiveness of white-light dot projection for both static-shape and dynamic measurement of reflective and diffuse surfaces, respectively. Comparisons are made between dot-projection videogrammetry and traditional laser vibrometry for membrane vibration measurements. The paper closes by introducing a promising extension of existing techniques using a novel laser-induced fluorescence approach.

  6. The temporal primacy of self-related stimuli and negative stimuli: an ERP-based comparative study.

    PubMed

    Zhu, Min; Luo, Junlong; Zhao, Na; Hu, Yinying; Yan, Lingyue; Gao, Xiangping

    2016-10-01

    Numerous studies have shown there exist attention biases for self-related and negative stimuli. Few studies, however, have been carried out to compare the effects of such stimuli on the neural mechanisms of early attentional alertness and subsequent cognitive processing. The purpose of the present study was to examine the temporal primacy of both self-related stimuli and negative stimuli in the neurophysiologic level. In a modified oddball task, event-related potentials of the deviant stimuli (i.e., self-face, negative face and neutral face) were recorded. Results revealed that larger P2 amplitudes were elicited by self-related and negative stimuli than by neutral stimuli. Negative stimuli, however, elicited shorter P2 latencies than self-related and neutral stimuli. As for the N2 component, self-related and negative stimuli elicited smaller amplitudes and shorter latencies than neutral stimuli, but otherwise did not differ. Self-related stimuli also elicited larger P3 and late positive component (LPC) amplitudes than negative and neutral stimuli. The pattern of results suggests that the primacy of negative stimuli occurred at an early attention stage of processing, while the primacy of self-related stimuli occurred at the subsequent cognitive evaluation and memory stage. PMID:26513485

  7. DOT Transmit Module

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Sahasrabudhe, Adit; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2013-01-01

    The Deep Space Optical Terminal (DOT) transmit module demonstrates the DOT downlink signaling in a flight electronics assembly that can be qualified for deep space. The assembly has the capability to generate an electronic pulse-position modulation (PPM) waveform suitable for driving a laser assembly to produce the optical downlink signal. The downlink data enters the assembly through a serializer/ deserializer (SERDES) interface, and is encoded using a serially concatenated PPM (SCPPM) forward error correction code. The encoded data is modulated using PPM with an inter-symbol guard time to aid in receiver synchronization. Monitor and control of the assembly is via a low-voltage differential signal (LVDS) interface

  8. The visual mismatch negativity elicited with visual speech stimuli

    PubMed Central

    Files, Benjamin T.; Auer, Edward T.; Bernstein, Lynne E.

    2013-01-01

    The visual mismatch negativity (vMMN), deriving from the brain's response to stimulus deviance, is thought to be generated by the cortex that represents the stimulus. The vMMN response to visual speech stimuli was used in a study of the lateralization of visual speech processing. Previous research suggested that the right posterior temporal cortex has specialization for processing simple non-speech face gestures, and the left posterior temporal cortex has specialization for processing visual speech gestures. Here, visual speech consonant-vowel (CV) stimuli with controlled perceptual dissimilarities were presented in an electroencephalography (EEG) vMMN paradigm. The vMMNs were obtained using the comparison of event-related potentials (ERPs) for separate CVs in their roles as deviant vs. their roles as standard. Four separate vMMN contrasts were tested, two with the perceptually far deviants (i.e., “zha” or “fa”) and two with the near deviants (i.e., “zha” or “ta”). Only far deviants evoked the vMMN response over the left posterior temporal cortex. All four deviants evoked vMMNs over the right posterior temporal cortex. The results are interpreted as evidence that the left posterior temporal cortex represents speech contrasts that are perceived as different consonants, and the right posterior temporal cortex represents face gestures that may not be perceived as different CVs. PMID:23882205

  9. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    PubMed

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  10. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    PubMed Central

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  11. Preschoolers' Dot Enumeration Abilities Are Markers of Their Arithmetic Competence

    PubMed Central

    Gray, Sarah A.; Reeve, Robert A.

    2014-01-01

    The abilities to enumerate small sets of items (e.g., dots) and to compare magnitudes are claimed to be indexes of core numerical competences that scaffold early math development. Insofar as this is correct, these abilities may be diagnostic markers of math competence in preschoolers. However, unlike magnitude comparison abilities, little research has examined preschoolers' ability to enumerate small sets, or its significance for emerging math abilities; which is surprising since dot enumeration is a marker of school-aged children's math competence. It is nevertheless possible that general cognitive functions (working memory, response inhibition in particular) are associated with preschoolers' math abilities and underlie nascent dot enumeration abilities. We investigated whether preschoolers' dot enumeration abilities predict their non-verbal arithmetic ability, over and above the influence of working memory and response inhibition. Two measures of dot enumeration ability were examined—inverse efficiency and paradigm specific (response time profiles) measures—to determine which has the better diagnostic utility as a marker of math competence. Seventy-eight 42-to-57 month-olds completed dot enumeration, working memory, response inhibition, and non-verbal addition and subtraction tasks. Dot enumeration efficiency predicted arithmetic ability over and above the influence of general cognitive functions. While dot enumeration efficiency was a better predictor of arithmetic ability than paradigm specific response time profiles; the response time profile displaying the smallest subitizing range and steepest subitizing slope, also displayed poor addition abilities, suggesting a weak subitizing profile may have diagnostic significance in preschoolers. Overall, the findings support the claim that dot enumeration abilities and general cognitive functions are markers of preschoolers' math ability. PMID:24714052

  12. Structural analysis of site-controlled InAs/InP quantum dots

    NASA Astrophysics Data System (ADS)

    Fain, B.; Elvira, D.; Le Gratiet, L.; Largeau, L.; Beaudoin, G.; Troadec, D.; Abram, I.; Beveratos, A.; Robert-Philip, I.; Patriarche, G.; Sagnes, I.

    2011-11-01

    We present atomic-scale characterization of site-controlled InAs/InP(001) quantum dots grown by metal-organic chemical vapor deposition using nano-area selective area growth. We have developed for this purpose a process combining e-beam lithography, inductively coupled-plasma etching and focused ion beam etching to isolate a few quantum dots. The size, the shape and the composition of the quantum dots are investigated by Scanning Transmission Electron Microscopy. A comparison with the well-known single self-assembled quantum dots highlights the specificities of our growth mode compared to the Stranski-Krastanov growth mode.

  13. Preparation of stimuli for timbre perception studies.

    PubMed

    Labuschagne, Ilse B; Hanekom, Johan J

    2013-09-01

    Stimuli used in timbre perception studies must be controlled carefully in order to yield meaningful results. During psychoacoustic testing of individual timbre properties, (1) it must be ensured that timbre properties do not co-vary, as timbre properties are often not independent from one another, and (2) the potential influence of loudness, pitch, and perceived duration must be eliminated. A mathematical additive synthesis method is proposed which allows complete control over two spectral parameters, the spectral centroid (corresponding to brightness) and irregularity, and two temporal parameters, log rise-time (LRT) and a parameter characterizing the sustain/decay segment, while controlling for covariation in the spectral centroid and irregularity. Thirteen musical instrument sounds were synthesized. Perceptual data from six listeners indicate that variation in the four timbre properties mainly influences loudness and that perceived duration and pitch are not influenced significantly for the stimuli of longer duration (2 s) used here. Trends across instruments were found to be similar. PMID:23967955

  14. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters. PMID:15684559

  15. The aperture problem in contoured stimuli

    PubMed Central

    Kane, David; Bex, Peter J.; Dakin, Steven C.

    2010-01-01

    A moving object elicits responses from V1 neurons tuned to a broad range of locations, directions, and spatiotemporal frequencies. Global pooling of such signals can overcome their intrinsic ambiguity in relation to the object’s direction/speed (the “aperture problem”); here we examine the role of low-spatial frequencies (SF) and second-order statistics in this process. Subjects made a 2AFC fine direction-discrimination judgement of ‘naturally’ contoured stimuli viewed rigidly translating behind a series of small circular apertures. This configuration allowed us to manipulate the scene in several ways; by randomly switching which portion of the stimulus was presented behind each aperture or by occluding certain spatial frequency bands. We report that global motion integration is (a) largely insensitive to the second-order statistics of such stimuli and (b) is rigidly broadband even in the presence of a disrupted low SF component. PMID:19810794

  16. Photonic water dynamically responsive to external stimuli.

    PubMed

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-01-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this 'photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806

  17. Engineering nanomedicines using stimuli-responsive biomaterials

    PubMed Central

    Wang, Yapei; Byrne, James D.; Napier, Mary E.; DeSimone, Joseph M.

    2012-01-01

    The ability to engineer particles has the potential to shift the paradigm in the creation of new medicines and diagnostics. Complete control over particle characteristics, such as size, shape, mechanical property, and surface chemistry, can enable rapid translation and facilitate the US Food and Drug Administration (FDA) approval of particle technologies for the treatment of cancer, infectious diseases, diabetes, and a host of other major illnesses. The incorporation of natural and artificial external stimuli to trigger the release of drugs enables exquisite control over the release profiles of drugs in a given environment. In this article, we examine several readily scalable top-down methods for the fabrication of shape-specific particles that utilize stimuli-responsive biomaterials for controlled drug delivery. Special attention is given to Particle Replication In Nonwetting Templates (PRINT®) technology and the application of novel triggered-release synthetic and natural polymers. PMID:22266128

  18. Cortical gating of oropharyngeal sensory stimuli.

    PubMed

    Wheeler-Hegland, Karen; Pitts, Teresa; Davenport, Paul W

    2010-01-01

    Somatosensory evoked potentials provide a measure of cortical neuronal activation in response to various types of sensory stimuli. In order to prevent flooding of the cortex with redundant information various sensory stimuli are gated cortically such that response to stimulus 2 (S2) is significantly reduced in amplitude compared to stimulus 1 (S1). Upper airway protective mechanisms, such as swallowing and cough, are dependent on sensory input for triggering and modifying their motor output. Thus, it was hypothesized that central neural gating would be absent for paired-air puff stimuli applied to the oropharynx. Twenty-three healthy adults (18-35 years) served as research participants. Pharyngeal sensory evoked potentials (PSEPs) were measured via 32-electrode cap (10-20 system) connected to SynAmps(2) Neuroscan EEG System. Paired-pulse air puffs were delivered with an inter-stimulus interval of 500 ms to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. Data were analyzed using descriptive statistics and a repeated measures analysis of variance. There were no significant differences found for the amplitudes S1 and S2 for any of the four component PSEP peaks. Mean gating ratios were above 0.90 for each peak. Results supports our hypothesis that sensory central neural gating would be absent for component PSEP peaks with paired-pulse stimuli delivered to the oropharynx. This may be related to the need for constant sensory monitoring necessary for adequate airway protection associated with swallowing and coughing. PMID:21423402

  19. Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks.

    PubMed

    Rosa Salva, Orsola; Regolin, Lucia; Vallortigara, Giorgio

    2012-03-01

    A spontaneous preference for face-like stimuli has been demonstrated in domestic chicks, similar to that shown by human newborns, suggesting evolutionary continuity across species. Inversion of contrast polarity of face-like stimuli abolishes face preferences in human newborns. Here we investigated the effects of contrast polarity inversion and brain lateralization in chicks' preferences for faces. In Experiment 1 face-naïve chicks were tested with a negative face obtained from a stimulus that elicited preferential approach in previous research. As in human newborns, reversal of contrast polarity abolished face-preferences. Experiments 2, 3 and 5 investigated the effect of adding a pupil-like dot within the inner features of the negative and of positive stimuli (a manipulation that re-established face-preference in human newborns). Chicks reacted to this by avoiding the face stimulus. In Experiments 4 and 6 we found that the preference expressed by chicks having only their left eye (right hemisphere) in use changed according to contrast polarity, whereas it remained unaffected in chicks having their right eye in use. Thus, in domestic chicks, as in human beings, a stimulus is perceived as face-like only if it presents the correct luminance pattern expected for a face under natural top-lit illumination and the right hemisphere seems to play a crucial role in this kind of social orienting responses. PMID:22155610

  20. Stark effect in ensembles of polar (0001) Al{sub 0.5}Ga{sub 0.5}N/GaN quantum dots and comparison with semipolar (11−22) ones

    SciTech Connect

    Leroux, M.; Brault, J.; Kahouli, A.; Damilano, B.; Mierry, P. de; Korytov, M.; Maghraoui, D.; Kim, Je-Hyung; Cho, Yong-Hoon

    2014-07-21

    This work presents a continuous-wave photoluminescence study of Al{sub 0.5}Ga{sub 0.5}N/GaN quantum dots grown by ammonia-assisted molecular beam epitaxy on sapphire, either on the wurtzite polar (0001) or the semipolar (11−22) plane. Due to interface polarization discontinuities, the polar dots are strongly red-shifted by the Stark effect and emit in the visible range. Carrier injection screening of the polarization charges has been studied. A model relying on average dot heights and dot height variances, as measured by transmission electron microscopy, is proposed. It can account for the injection dependent luminescence energies and efficiencies. The electric field discontinuity deduced from the fittings is in good agreement with theoretical expectations for our barrier composition. On the contrary, semipolar quantum dot ensembles always emit above the gap of GaN strained to Al{sub 0.5}Ga{sub 0.5}N. Their luminescence linewidth is significantly lower than that of polar ones, and their energy does not shift with injection. Our study then confirms the expected strong decrease of the Stark effect for (11−22) grown (Al,Ga)N/GaN heterostructures.

  1. Spatial Brightness Perception of Trichromatic Stimuli

    SciTech Connect

    Royer, Michael P.; Houser, Kevin W.

    2012-11-16

    An experiment was conducted to examine the effect of tuning optical radiation on brightness perception for younger (18-25 years of age) and older (50 years of age or older) observers. Participants made forced-choice evaluations of the brightness of a full factorial of stimulus pairs selected from two groups of four metameric stimuli. The large-field stimuli were created by systematically varying either the red or the blue primary of an RGB LED mixture. The results indicate that light stimuli of equal illuminance and chromaticity do not appear equally bright to either younger or older subjects. The rank-order of brightness is not predicted by any current model of human vision or theory of brightness perception including Scotopic to Photopic or Cirtopic to Photopic ratio theory, prime color theory, correlated color temperature, V(λ)-based photometry, color quality metrics, linear brightness models, or color appearance models. Age may affect brightness perception when short-wavelength primaries are used, especially those with a peak wavelength shorter than 450 nm. The results suggest further development of metrics to predict brightness perception is warranted, and that including age as a variable in predictive models may be valuable.

  2. Anagrus breviphragma Soyka Short Distance Search Stimuli

    PubMed Central

    Chiappini, Elisabetta; Berzolla, Alessia; Oppo, Annalisa

    2015-01-01

    Anagrus breviphragma Soyka (Hymenoptera: Mymaridae) successfully parasitises eggs of Cicadella viridis (L.) (Homoptera: Cicadellidae), embedded in vegetal tissues, suggesting the idea of possible chemical and physical cues, revealing the eggs presence. In this research, three treatments were considered in order to establish which types of cue are involved: eggs extracted from leaf, used as a control, eggs extracted from leaf and cleaned in water and ethanol, used to evaluate the presence of chemicals soluble in polar solvents, and eggs extracted from leaf and covered with Parafilm (M), used to avoid physical stimuli due to the bump on the leaf surface. The results show that eggs covered with Parafilm present a higher number of parasitised eggs and a lower probing starting time with respect to eggs washed with polar solvents or eggs extracted and untreated, both when the treatments were singly tested or when offered in sequence, independently of the treatment position. These results suggest that the exploited stimuli are not physical due to the bump but chemicals that can spread in the Parafilm, circulating the signal on the whole surface, and that the stimuli that elicit probing and oviposition are not subjected to learning. PMID:26543865

  3. Stimuli-responsive polymersomes for cancer therapy.

    PubMed

    Thambi, Thavasyappan; Park, Jae Hyung; Lee, Doo Sung

    2016-01-01

    Cancer is the leading cause of mortality and remains a major challenge for modern chemotherapy. Recent advances in cancer therapy have made a modest impact on patient survival. Nanomedicine represents an innovative field with significant potential to improve cancer treatment. Nanomedicine utilizes numerous nanoconstructs, including polymersomes, micelles, and drug conjugates, to deliver therapeutic agents at the target site of interest. In particular, polymeric vesicles, also known as polymersomes, are self-assembled amphiphilic polymers in which an aqueous compartment is enclosed by a thick bilayer membrane. Unlike liposomes, polymersomes consist of high-molecular-weight amphiphilic polymer analogues. Since polymersomes are prepared using synthetic amphiphilic polymers, the bilayer membrane thickness can be readily altered by tuning the molecular weight of hydrophobic blocks. As a consequence, the polymersomes prepared from high-molecular-weight amphiphiles strengthen their membranes, making them inherently more stable than liposomes. The intriguing aggregation of polymersomes offers numerous advantages, including stability, tunable membrane properties, and the capability of encapsulating hydrophilic and hydrophobic agents. Owing to these properties, polymersomes are attractive candidates for various applications such as drug delivery, gene therapy, and tissue engineering. Although these properties have placed polymersomes at the forefront of drug delivery applications, to attain an enhanced therapeutic effect polymersomes are supposed to rapidly release the drug at the target site. To fulfill this requirement, stimuli-responsive polymersomes that respond to various internal or external stimuli have been developed. This review focuses on recently developed stimuli-responsive polymersomes and their potential application in cancer therapy. PMID:26456625

  4. Visual stimuli recruit intrinsically generated cortical ensembles

    PubMed Central

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-01-01

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes. PMID:25201983

  5. The influence of stimulus repetition on duration judgments with simple stimuli

    PubMed Central

    Birngruber, Teresa; Schröter, Hannes; Ulrich, Rolf

    2015-01-01

    Two experiments investigated the effects of stimulus repetition vs. stimulus novelty on perceived duration. In a reminder task, a standard and a comparison stimulus were presented consecutively in each trial, and the comparison was either a repetition of the standard or a different stimulus. Pseudowords (Experiment 1) or strings of consonants (Experiment 2) were used as stimuli and the inter-stimulus interval (ISI) between the standard and the comparison was either constant or variable. Participants were asked to judge whether the comparison was shorter or longer than the standard. In both experiments, we observed shorter judged durations for repeated than for novel comparisons whereas the manipulation of the ISI had no pronounced effects on duration judgments. The finding of shorter duration judgments for repeated as compared to novel nonwords replicates the results of a previous study (Matthews, 2011) which employed highly complex stimulus material. The present study shows that changes of simple, semantically meaningless stimuli are sufficient to result in a shorter perceived duration of repeated as compared to novel stimuli. PMID:26347682

  6. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  7. Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing.

    PubMed

    Wu, Pei-Jing; Kuo, Shih-Yu; Huang, Ya-Chi; Chen, Chuan-Pin; Chan, Yang-Hsiang

    2014-05-20

    Semiconducting polymer dots (P-dots) recently have emerged as a new type of ultrabright fluorescent probe with promising applications in biological imaging and detection. With the increasing desire for near-infrared (NIR) fluorescing probes for in vivo biological measurements, the currently available NIR-emitting P-dots are very limited and the leaching of the encapsulated dyes/polymers has usually been a concern. To address this challenge, we first embedded the NIR dyes into the matrix of poly[(9,9-dioctylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PF-BT-DBT) polymer and then enclosed the doped P-dots with polydiacetylenes (PDAs) to avoid potential leakage of the entrapped NIR dyes from the P-dot matrix. These PDA-enclosed NIR-emitting P-dots not only emitted much stronger NIR fluorescence than conventional organic molecules but also exhibited enhanced photostability over CdTe quantum dots, free NIR dyes, and gold nanoclusters. We next conjugated biomolecules onto the surface of the resulting P-dots and demonstrated their capability for specific cellular labeling without any noticeable nonspecific binding. To employ this new class of material as a facile sensing platform, an easy-to-prepare test paper, obtained by soaking the paper into the PDA-enclosed NIR-emitting P-dot solution, was used to sense external stimuli such as ions, temperature, or pH, depending on the surface functionalization of PDAs. We believe these PDA-coated NIR-fluorescing P-dots will be very useful in a variety of bioimaging and analytical applications. PMID:24749695

  8. EEG Oscillation Evidences of Enhanced Susceptibility to Emotional Stimuli during Adolescence

    PubMed Central

    Meng, Xianxin; Liu, Wenwen; Zhang, Ling; Li, Xiang; Yao, Bo; Ding, Xinsheng; Yuan, JiaJin; Yang, Jiemin

    2016-01-01

    Background: Our recent event-related potential (ERP) study showed that adolescents are more emotionally sensitive to negative events compared to adults, regardless of the valence strength of the events. The current work aimed to confirm this age-related difference in response to emotional stimuli of diverse intensities by examining Electroencephalography (EEG) oscillatory power in time-frequency analysis. Methods: Time-frequency analyses were performed on the EEG data recorded for highly negative (HN), moderately negative (MN) and Neutral pictures in 20 adolescents and 20 adults during a covert emotional task. The results showed a significant age by emotion interaction effect in the theta and beta oscillatory power during the 500–600 ms post stimulus. Results: Adolescents showed significantly less pronounced theta synchronization (ERS, 5.5–7.5 Hz) for HN stimuli, and larger beta desynchronization (ERD; 18–20 Hz) for both HN and MN stimuli, in comparison with neutral stimuli. By contrast, adults exhibited no significant emotion effects in theta and beta frequency bands. In addition, the analysis of the alpha spectral power (10.5–12 Hz; 850–950 ms) showed a main effect of emotion, while the emotion by age interaction was not significant. Irrespective of adolescents or adults, HN and MN stimuli elicited enhanced alpha suppression compared to Neutral stimuli, while the alpha power was similar across HN and MN conditions. Conclusions: These results confirmed prior findings that adolescents are more sensitive to emotionally negative stimuli compared to adults, regardless of emotion intensity, possibly due to the developing prefrontal control system during adolescence. PMID:27242568

  9. Elevated Fear Conditioning to Socially Relevant Unconditioned Stimuli in Social Anxiety Disorder

    PubMed Central

    Lissek, Shmuel; Levenson, Jessica; Biggs, Arter L.; Johnson, Linda L.; Ameli, Rezvan; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Objective Though conditioned fear has long been acknowledged as an important etiologic mechanism in social anxiety disorder, past psychophysiological experiments have found no differences in general conditionability among social anxiety patients using generally aversive but socially nonspecific unconditioned stimuli (e.g., unpleasant odors and painful pressure). The authors applied a novel fear conditioning paradigm consisting of socially relevant unconditioned stimuli of critical facial expressions and verbal feedback. This study represents the first effort to assess the conditioning correlates of social anxiety disorder within an ecologically enhanced paradigm. Method Subjects with social anxiety disorder and age- and gender-matched healthy comparison subjects underwent differential classical conditioning. Conditioned stimuli included images of three neutral facial expressions, each of which was paired with one of three audiovisual unconditioned stimuli: negative insults with critical faces (USneg), positive compliments with happy faces (USpos), or neutral comments with neutral faces (USneu). The conditioned response was measured as the fear-potentiation of the startle-blink reflex elicited during presentation of the conditioned stimuli. Results Only social anxiety subjects demonstrated fear conditioning in response to facial expressions, as the startle-blink reflex was potentiated by the CSneg versus both CSneu and CSpos among those with the disorder, while healthy comparison subjects displayed no evidence of conditioned startle-potentiation. Such group differences in conditioning were independent of levels of anxiety to the unconditioned stimulus, implicating associative processes rather than increased unconditioned stimulus reactivity as the active mechanism underlying enhanced conditioned startle-potentiation among social anxiety subjects. Conclusions Results support a conditioning contribution to social anxiety disorder and underscore the importance of

  10. Pattern of cortical activation during processing of aversive stimuli in traumatized survivors of war and torture.

    PubMed

    Catani, Claudia; Adenauer, Hannah; Keil, Julian; Aichinger, Hannah; Neuner, Frank

    2009-09-01

    Posttraumatic stress disorder (PTSD) has been associated with an altered processing of threat-related stimuli. In particular, an attentional bias towards threat cues has been consistently found in behavioral studies. However, it is unclear whether increased attention towards threat cues translates into preferential processing as neurophysiological studies have yielded inconsistent findings. The aim of the present study was to investigate the neocortical activity related to the processing of aversive stimuli in patients with PTSD. 36 survivors of war and torture with PTSD, 21 Trauma Controls and 20 Unexposed Subjects participated in a visual evoked magnetic field study using flickering pictures of varying affective valence as stimulus material. Minimum norm source localization was carried out to estimate the distribution of sources of the evoked neuromagnetic activity in the brain. Statistical permutation analyses revealed reduced steady-state visual evoked field amplitudes over occipital areas in response to aversive pictures for PTSD patients and for Trauma Controls in comparison to unexposed subjects. Furthermore, PTSD patients showed a hyperactivation of the superior parietal cortex selectively in response to aversive stimuli, which was related to dissociative symptoms as well as to torture severity. The results indicate a different pattern of cortical activation driven by aversive stimuli depending on the experience of multiple traumatic events and PTSD. Whereas, a decreased visual processing of aversive stimuli seems to be associated with trauma exposure in general, the superior parietal activity might represent a specific process linked to the diagnosis of PTSD. PMID:19360450

  11. Olfactory Stimuli Increase Presence in Virtual Environments

    PubMed Central

    Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian

    2016-01-01

    Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID

  12. Transformation of the Discriminative and Eliciting Functions of Generalized Relational Stimuli

    PubMed Central

    Dougher, Michael J; Hamilton, Derek A; Fink, Brandi C; Harrington, Jennifer

    2007-01-01

    In three experiments, match-to-sample procedures were used with undergraduates to establish arbitrary relational functions for three abstract visual stimuli. In the presence of samples A, B, and C, participants were trained to select the smallest, middle, and largest member, respectively, of a series of three-comparison arrays. In Experiment 1, the B (choose middle) stimulus was then used to train a steady rate of keyboard pressing before the A (choose smallest) and the C (choose largest) stimuli were presented. Participants pressed slower to A and faster to C than to B. Then B was paired with mild shock in a Pavlovian procedure with skin conductance change as the dependent variable. When presented with A and C, 6 of 8 experimental participants showed smaller skin conductance changes to A and larger skin conductance changes to C than to B. In Experiment 2, A was then used as a sample in a match-to-sample procedure to establish an arbitrary size ranking among four same-sized colored circle comparisons. One of the middle circles was then used to establish a steady rate of pressing before the other circles were presented. Five of 6 participants responded slower to the “smaller” circle and faster to the “larger” circle than they did to the “middle” circle. In Experiment 3, A, B, and C were then presented on a series of test trials requiring participants to pick the comparison that was less than, greater than, or equal to the sample. Novel stimuli were included on some trials. Results indicated that the relational training procedures produced derived relations among the stimuli used in training and that these allowed correct inferences of relative size ranking among novel stimuli. PMID:17970414

  13. Stimuli-responsive chromism in organophosphorus chemistry.

    PubMed

    Reus, Christian; Baumgartner, Thomas

    2016-02-01

    Changes in color are one of the most obvious and easily followed responses that can be induced by an external stimulus. π-Conjugated organophosphorus compounds are on the rise to challenge established systems by opening up new and simple pathways to diversely modified optoelectronic properties--the main challenge for the development of new chromic materials. Relevant stimuli highlighted in this Frontier article include electronic current (electrochromism), light (photochromism), solvent polarity (solvatochromism), aggregation formation (aggregation induced emission, AIE), mechanical force (mechanochromism), temperature (thermochromism), organic solvent vapor (vapochromism), and pH (halochromism). PMID:26286166

  14. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms.

    PubMed

    Henriksen, Sid; Cumming, Bruce G; Read, Jenny C A

    2016-05-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model-a well-known model of V1 binocular complex cells-fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model-adding a point output nonlinearity-is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  15. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms

    PubMed Central

    Cumming, Bruce G.

    2016-01-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model—a well-known model of V1 binocular complex cells—fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model—adding a point output nonlinearity—is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  16. Stimuli-Responsive Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Nature employs a variety of tactics to precisely time and execute the processes and mechanics of life, relying on sequential sense and response cascades to transduce signaling events over multiple length and time scales. Many of these tactics, such as the activation of a zymogen, involve the direct manipulation of a material by a stimulus. Similarly, effective therapeutics and diagnostics require the selective and efficient homing of material to specific tissues and biomolecular targets with appropriate temporal resolution. These systems must also avoid undesirable or toxic side effects and evade unwanted removal by endogenous clearing mechanisms. Nanoscale delivery vehicles have been developed to package materials with the hope of delivering them to select locations with rates of accumulation and clearance governed by an interplay between the carrier and its cargo. Many modern approaches to drug delivery have taken inspiration from natural activatable materials like zymogens, membrane proteins, and metabolites, whereby stimuli initiate transformations that are required for cargo release, prodrug activation, or selective transport. This Perspective describes key advances in the field of stimuli-responsive nanomaterials while highlighting some of the many challenges faced and opportunities for development. Major hurdles include the increasing need for powerful new tools and strategies for characterizing the dynamics, morphology, and behavior of advanced delivery systems in situ and the perennial problem of identifying truly specific and useful physical or molecular biomarkers that allow a material to autonomously distinguish diseased from normal tissue. PMID:25474531

  17. Remindings influence the interpretation of ambiguous stimuli.

    PubMed

    Tullis, Jonathan G; Braverman, Michael; Ross, Brian H; Benjamin, Aaron S

    2014-02-01

    Remindings-stimulus-guided retrievals of prior events-may help us interpret ambiguous events by linking the current situation to relevant prior experiences. Evidence suggests that remindings play an important role in interpreting complex ambiguous stimuli (Ross & Bradshaw Memory & Cognition, 22, 591-605, 1994); here, we evaluate whether remindings will influence word interpretation and memory in a new paradigm. Learners studied words on distinct visual backgrounds and generated a sentence for each word. Homographs were preceded by a biasing cue on the same background three items earlier, preceded by a biasing cue on a different background three items earlier, or followed by a biasing cue on the same background three items later. When biasing cues preceded the homographs on the same backgrounds as the homographs, the meanings of the homographs in learner-generated sentences were consistent with the biasing cues more often than in the other two conditions. These results show that remindings can influence word interpretation. In addition, later memory for the homographs and cues was greater when the meaning of the homograph in the sentence was consistent with the earlier biasing cue, suggesting that remindings enhanced mnemonic performance. Remindings play an important role in how we interpret ambiguous stimuli and enhance memory for the involved material. PMID:23835617

  18. Continuum Models of Stimuli-responsive Gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    Immersed in a solution of small molecules and ions, a network of long-chain polymers may imbibe the solution and swell, resulting in a polymeric gel. Depending on the molecular structure of the polymers, the amount of swelling can be regulated by moisture, mechanical forces, ionic strength, electric field, pH value, and many other types of stimuli. Starting from the basic principles of non-equilibrium thermodynamics, this chapter formulates a field theory of the coupled large deformation and mass transportation in a neutral polymeric gel. The theory is then extended to study polyelectrolyte gels with charge-carrying networks by accounting for the electromechanical coupling and migration of solute ions. While the theoretical framework is adaptable to various types of material models, some representative ones are described through specific free-energy functions and kinetic laws. A specific material law for pH-sensitive gels—a special type of polyelectrolyte gels—is introduced as an example of incorporating chemical reactions in modeling stimuli-responsive gels. Finally, a simplified theory for the equilibrium but inhomogeneous swelling of a polymeric gel is deduced. The theory and the specific material models are illustrated through several examples.

  19. Mimicking biophysical stimuli within bone tumor microenvironment*

    PubMed Central

    Marturano-Kruik, A.; Yeager, K.; Bach, D.; Villasante, A.; Cimetta, E.; Vunjak-Novakovic, G.

    2016-01-01

    In vivo, cells reside in a complex environment regulating their fate and function. Most of this complexity is lacking in standard in vitro models, leading to readouts falling short of predicting the actual in vivo situation. The use of engineering tools, combined with deep biological knowledge, leads to the development and use of bioreactors providing biologically sound niches. Such bioreactors offer new tools for biological research, and are now also entering the field of cancer research. Here we present the development and validation of a modular bioreactor system providing: (i) high throughput analyses, (ii) a range of biological conditions, (iii) high degree of control, and (iv) application of physiological stimuli to the cultured samples. The bioreactor was used to engineer a three-dimensional (3D) tissue model of cancer, where the effects of mechanical stimulation on the tumor phenotype were evaluated. Mechanical stimuli applied to the engineered tumor model activated the mechanotransduction machinery and resulted in measurable changes of mRNA levels towards a more aggressive tumor phenotype. PMID:26737062

  20. Acquisition of matching-to-sample performance in rats using visual stimuli on nose keys.

    PubMed

    Iversen, I H

    1993-05-01

    Steady and blinking white lights were projected on three nose keys arranged horizontally on one wall. The procedure was a conditional discrimination with a sample stimulus presented on the middle key and comparison stimuli on the side keys. Three rats acquired simultaneous "identity matching." Accuracy reached 80% in about 25 sessions and 90% or higher after about 50 sessions. Acquisition progressed through several stages of repeated errors, alteration between comparison keys from trial to trial, preference of specific keys or stimuli, and a gradual lengthening of strings of consecutive trials with correct responses. An analysis of the acquisition curves for individual trial configurations indicated that the matching-to-sample performance possibly consisted of separate discriminations. PMID:8315365

  1. Dual-monitor deterministic hardware for visual stimuli generation in neuroscience experiments.

    PubMed

    Gazziro, Mario; Almeida, Lirio

    2010-01-01

    This article describes the development of a dual-monitor visual stimulus generator that is used in neuroscience experiments with invertebrates such as flies. The experiment consists in the visualization of two fixed images that are displaced horizontally according to the stimulus data. The system was developed using off-the-shelf FPGA kits and it is capable of displaying 640x480 pixels with 256 intensity levels at 200 frames per second (FPS) on each monitor. A Raster plot of the experiment with the superimposed stimuli was generated as the result of this work. A novel architecture was developed, using the same DOT Clock for both monitors, and its implementation generates a perfect synchronism in both devices. PMID:21096378

  2. Nonvolatile Quantum Dot Gate Memory (NVQDM): Tunneling Rate from Quantum Well Channel to Quantum Dot Gate

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed; Heller, Evan; Bansal, Rajeev; Jain, Faquir

    2003-10-01

    In this paper, we compute the tunneling of electrons in a nonvolatile quantum dot memory (NVQDM) cell during the WRITE operation. The transition rate of electrons from a quantum well channel to the quantum dots forming the floating gate is calculated using a recently reported method by Chuang et al.[1]. Tunneling current is computed based on transport of electrons from the channel to the floating quantum dots. The maximum number of electrons on a dot is calculated using surface electric field and break down voltage of the tunneling dielectric material. Comparison of tunneling for silicon oxide and high-k dielectric gate insulators is also described. Capacitance-Voltage characteristics of a NVQDM device are calculated by solving the Schrodinger and Poisson equations self-consistently. In addition, the READ operation of the memory has been investigated analytically. Results for 70 nm channel length Si NVQDMs are presented. Threshold voltage is calculated including the effect of the charge on nanocrystal quantum dots. Current-voltage characteristics are obtained using BSIM3v3 model [2-3]. This work is supported by Office of Navel Research (N00014210883, Dr. D. Purdy, Program Monitor), Connecticut Innovations Inc./TranSwitch (CII # 00Y17), and National Science Foundation (CCR-0210428) grants. [1] S. L. Chuang and N. Holonyak, Appl. Phys. Lett., 80, pp. 1270, 2002. [2] Y. Chen et. al., BSIM3v3 Manual, Elect. Eng. and Comp. Dept., U. California, Berkeley, CA, 1996. [3] W. Liu, MOSFET Models for SPICE Simulation, John Wiley & Sons, Inc., 2001.

  3. MULTIFUNCTIONAL AND STIMULI-SENSITIVE PHARMACEUTICAL NANOCARRIERS

    PubMed Central

    Torchilin, Vladimir

    2011-01-01

    Currently used pharmaceutical nanocarriers, such as liposomes, micelles, and polymeric nanoparticles, demonstrate a broad variety of useful properties, such as longevity in the body; specific targeting to certain disease sites; enhanced intracellular penetration; contrast properties allowing for direct carrier visualization in vivo; stimili-sensitivity, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. In certain cases, the pharmaceutical nanocarriers combine several of the listed properties. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of examples of this kind. The engineering of multifunctional pharmaceutical nanocarriers combining several useful properties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers the current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration, contrast loading, and stimuli sensitivity. PMID:18977297

  4. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  5. Nanoporous frameworks exhibiting multiple stimuli responsiveness

    NASA Astrophysics Data System (ADS)

    Kundu, Pintu K.; Olsen, Gregory L.; Kiss, Vladimir; Klajn, Rafal

    2014-04-01

    Nanoporous frameworks are polymeric materials built from rigid molecules, which give rise to their nanoporous structures with applications in gas sorption and storage, catalysis and others. Conceptually new applications could emerge, should these beneficial properties be manipulated by external stimuli in a reversible manner. One approach to render nanoporous frameworks responsive to external signals would be to immobilize molecular switches within their nanopores. Although the majority of molecular switches require conformational freedom to isomerize, and switching in the solid state is prohibited, the nanopores may provide enough room for the switches to efficiently isomerize. Here we describe two families of nanoporous materials incorporating the spiropyran molecular switch. These materials exhibit a variety of interesting properties, including reversible photochromism and acidochromism under solvent-free conditions, light-controlled capture and release of metal ions, as well reversible chromism induced by solvation/desolvation.

  6. Visual reflex seizures induced by complex stimuli.

    PubMed

    Zifkin, Benjamin G; Inoue, Yushi

    2004-01-01

    Visual reflex seizures induced by complex stimuli may be triggered by patterned and flashing displays that are now ubiquitous. The seizures may be clinically generalized, but unilateral and bilateral myoclonic attacks also may be triggered, especially in patients with juvenile myoclonic epilepsy, and recently, clearly focal reflex occipital lobe seizures have been described. Some seizure-triggering properties of video displays can be identified, such as perceived brightness, pattern, flicker frequency, and color. Knowledge of these is useful in planning individual treatment and in designing regulations for screen content of television broadcasts or for other video displays. Some subjects will also be sensitive to cognitive or action-programming activation, especially when playing video games, and this can increase the chance of seizure triggering. Nonspecific factors such as sleep deprivation, prolonged exposure, and drug or alcohol use also may play a role in reflex seizure occurrence. PMID:14706042

  7. Working memory of emotional stimuli: Electrophysiological characterization.

    PubMed

    Kessel, Dominique; García-Rubio, María J; González, E Kirstin; Tapia, Manuel; López-Martín, Sara; Román, Francisco J; Capilla, Almudena; Martínez, Kenia; Colom, Roberto; Carretié, Luis

    2016-09-01

    Memorizing emotional stimuli in a preferential way seems to be one of the adaptive strategies brought on by evolution for supporting survival. However, there is a lack of electrophysiological evidence on this bias in working memory. The present study analyzed the influence of emotion on the updating component of working memory. Behavioral and electrophysiological indices were measured from a 3-back task using negative, neutral, and positive faces. Electrophysiological data evidenced an emotional influence on the working memory sensitive P3 component, which presented larger amplitudes for negative matching faces compared to neutral ones. This effect originated in the superior parietal cortex, previously reported to be involved in N-back tasks. Additionally, P3 results showed a correlation with reaction times, where higher amplitudes were associated with faster responses for negative matching faces. These findings indicate that electrophysiological measures seem to be very suitable indices of the emotional influence on working memory. PMID:27402441

  8. Memory of Germinant Stimuli in Bacterial Spores

    PubMed Central

    Wang, Shiwei; Faeder, James R.; Setlow, Peter

    2015-01-01

    ABSTRACT Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore’s inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. PMID:26604257

  9. Electrochromic nanocrystal quantum dots.

    PubMed

    Wang, C; Shim, M; Guyot-Sionnest, P

    2001-03-23

    Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence. PMID:11264530

  10. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ardelt, P.-L.; Gawarecki, K.; Müller, K.; Waeber, A. M.; Bechtold, A.; Oberhofer, K.; Daniels, J. M.; Klotz, F.; Bichler, M.; Kuhn, T.; Krenner, H. J.; Machnikowski, P.; Finley, J. J.

    2016-02-01

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k .p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  11. Gating of attention towards food stimuli in binge eating disorder.

    PubMed

    Schmitz, Florian; Naumann, Eva; Biehl, Stefanie; Svaldi, Jennifer

    2015-12-01

    Cognitive models of eating disorders propose that attentional biases for disorder-relevant stimuli contribute to eating disorder pathology. Empirical evidence of a contribution of attentional biases for binge eating disorder (BED) is still scarce. The aim of the present study was to assess attention engagement towards, and disengagement from, food stimuli in overweight females with BED (n = 25) and a group of overweight and obese women without BED (OW; n = 30). Participants completed a rapid serial visual presentation (RSVP) paradigm with food and neutral words as target stimuli. This task can be used to decompose an attentional bias for food stimuli into its stimulus engagement and stimulus disengagement components. Findings indicate that facilitated stimulus engagement for food stimuli over neutral stimuli was more pronounced in the BED group compared to the OW group. Conversely, there were no substantial disengagement effects in either group. Thereby, results support the idea that early attentional processes are biased in BED. PMID:26212270

  12. Posturographic destabilization in eating disorders in female patients exposed to body image related phobic stimuli.

    PubMed

    Forghieri, M; Monzani, D; Mackinnon, A; Ferrari, S; Gherpelli, C; Galeazzi, G M

    2016-08-26

    Human postural control is dependent on the central integration of vestibular, visual and proprioceptive inputs. Psychological states can affect balance control: anxiety, in particular, has been shown to influence balance mediated by visual stimuli. We hypothesized that patients with eating disorders would show postural destabilization when exposed to their image in a mirror and to the image of a fashion model representing their body ideal in comparison to body neutral stimuli. Seventeen females patients attending a day centre for the treatment of eating disorders were administered psychometric measures of body dissatisfaction, anxiety, depression and underwent posturographic measures with their eyes closed, open, watching a neutral stimulus, while exposed to a full length mirror and to an image of a fashion model corresponding to their body image. Results were compared to those obtained by eighteen healthy subjects. Eating disordered patients showed higher levels of body dissatisfaction and higher postural destabilization than controls, but this was limited to the conditions in which they were exposed to their mirror image or a fashion model image. Postural destabilization under these conditions correlated with measures of body dissatisfaction. In eating disordered patients, body related stimuli seem to act as phobic stimuli in the posturographic paradigm used. If confirmed, this has the potential to be developed for diagnostic and therapeutic purposes. PMID:27397012

  13. Caffeine deprivation state modulates coffee consumption but not attentional bias for caffeine-related stimuli.

    PubMed

    Stafford, L D; Yeomans, M R

    2005-11-01

    Previous research has shown that caffeine deprivation state can exert a strong influence on the ability of caffeine to reinforce behaviour. Recent work has also found evidence for an attentional bias in habitual caffeine users. It remains unclear whether deprivation state can influence attentional bias. Here we explored the relationship between caffeine deprivation, attentional bias to caffeine-related stimuli and subsequent caffeine reinforcement measured by consumption of coffee. In three experiments, participants (between-subjects: n=28; within-subjects: n=20, within-subjects: n=20) were preloaded with either caffeine (experiments 1 and 3 : 100 mg; experiment 2 : 150 mg) or placebo, and in experiments 1 and 2 they completed a novel attentional bias task involving pre-attentive word recognition, and in experiment 3 a dot-probe task. In experiments 2 and 3, this was followed by a test of coffee consumption. Greater recognition for caffeine-related words (experiments 1 and 2) and faster reaction times to probes replacing caffeine-related rather than control stimuli (experiment 3) confirmed caffeine-related attentional biases, but in no case was this affected by manipulation of caffeine-deprivation state. Participants in a deprived versus nondeprived state, however, experienced increases in drowsiness and headaches (experiment 2) and reduced alertness (experiment 3). Further, coffee consumption was greatest when participants were caffeine-deprived than when they were nondeprived. Findings are discussed in relation to prevailing theories of drug addiction. PMID:16170233

  14. Differences in the responses of heterozygous carriers of colorblindness and normal controls to briefly presented stimuli.

    PubMed

    Cohn, S A; Emmerich, D S; Carlson, E A

    1989-01-01

    Two experiments were conducted in order to investigate the possible effects of X-inactivation (Lyon, 1961) on female carriers of colorblindness. The results of the first experiment, like those of Grützner et al. (1976), were consistent with the prediction of the Lyon (1961) hypothesis that the retinas of female carriers are composed of mosaic patches of colorblind and normal areas. In this first experiment, rows and columns of colored spots were presented tachistoscopically, and subjects were asked to identify the colors of the spots. In the second experiment, plates from the Ishihara test of colorblindness were presented tachistoscopically and subjects were asked to identify the number which was embedded in the pattern of colored dots. Both experiments support the Lyon hypothesis in that female carriers were found to have more difficulty in perceiving patterns of colored stimuli than did control subjects, and they suggest that the amount of time that a carrier has to scan colored stimuli plays an important role in her ability to accurately perceive them. PMID:2800352

  15. Invisible visual stimuli elicit increases in alpha-band power.

    PubMed

    Bareither, Isabelle; Chaumon, Maximilien; Bernasconi, Fosco; Villringer, Arno; Busch, Niko A

    2014-09-01

    The cerebral cortex responds to stimuli of a wide range of intensities. Previous studies have demonstrated that undetectably weak somatosensory stimuli cause a functional deactivation or inhibition in somatosensory cortex. In the present study, we tested whether invisible visual stimuli lead to similar responses, indicated by an increase in EEG alpha-band power-an index of cortical excitability. We presented subliminal and supraliminal visual stimuli after estimating each participant's detection threshold. Stimuli consisted of peripherally presented small circular patches that differed in their contrast to a background consisting of a random white noise pattern. We demonstrate that subliminal and supraliminal stimuli each elicit specific neuronal response patterns. Supraliminal stimuli evoked an early, strongly phase-locked lower-frequency response representing the evoked potential and induced a decrease in alpha-band power from 400 ms on. By contrast, subliminal visual stimuli induced an increase of non-phase-locked power around 300 ms that was maximal within the alpha-band. This response might be due to an inhibitory mechanism, which reduces spurious visual activation that is unlikely to result from external stimuli. PMID:24872526

  16. Multi-Stimuli Responsive Macromolecules and Their Assemblies

    PubMed Central

    Zhuang, Jiaming; Gordon, Mallory; Ventura, Judy; Li, Longyu; Thayumanavan, S.

    2013-01-01

    In this review, we outline examples that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components. Progress in both fundamental investigation into the phase transformations of these polymers in response to multiple stimuli and their utilization in a variety of pratical applications have been highlighted. Using these examples, we aim to explain the origin of employed mechanisms of stimuli responsiveness which may serve as a guideline to inspire future design of multi-stimuli responsive materials. PMID:23765263

  17. Size-Minimized Quantum Dots for Molecular and Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Wen, Mary M.; Wang, May D.; Nie, Shuming

    Semiconductor quantum dots, tiny light-emitting particles on thenanometer scale, are emerging as a new class of fluorescent labels for a broad range of molecular and cellular applications. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties such as size-tunable light emission, intense signal brightness, resistance to photobleaching, and broadband absorption for simultaneous excitation of multiple fluorescence colors. Here we report new advances in minimizing the hydrodynamic sizes of quantum dots using multidentate and multifunctional polymer coatings. A key finding is that a linear polymer containing grafted amine and thiol coordinating groups can coat nanocrystals and lead to a highly compact size, exceptional colloidal stability, strong resistance to photobleaching, and high fluorescence quantum yields. This has allowed a new generation of bright and stable quantum dots with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near infrared (720 nm). These quantum dots are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size needs to be minimized. Together with the novel properties of new strain-tunable quantum dots, these findings will be especially useful for multicolor and super-resolution imaging at the single-molecule level.

  18. Time- and Space-Order Effects in Timed Discrimination of Brightness and Size of Paired Visual Stimuli

    ERIC Educational Resources Information Center

    Patching, Geoffrey R.; Englund, Mats P.; Hellstrom, Ake

    2012-01-01

    Despite the importance of both response probability and response time for testing models of choice, there is a dearth of chronometric studies examining systematic asymmetries that occur over time- and space-orders in the method of paired comparisons. In this study, systematic asymmetries in discriminating the magnitude of paired visual stimuli are…

  19. Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito

    PubMed Central

    Arthur, Ben J.; Wyttenbach, Robert A.; Harrington, Laura C.; Hoy, Ronald R.

    2010-01-01

    SUMMARY Recent studies demonstrate that mosquitoes listen to each other's wing beats just prior to mating in flight. Field potentials from sound-transducing neurons in the antennae contain both sustained and oscillatory components to pure and paired tone stimuli. Described here is a direct comparison of these two types of response in the dengue vector mosquito, Aedes aegypti. Across a wide range of frequencies and intensities, sustained responses to one- and two-tone stimuli are about equal in magnitude to oscillatory responses to the beats produced by two-tone stimuli. All of these responses are much larger than the oscillatory responses to one-tone stimuli. Similarly, the frequency range extends up to at least the fifth harmonic of the male flight tone for sustained responses to one- and two-tone stimuli and oscillatory responses at the beat frequency of two-tone stimuli, whereas the range of oscillatory response to a one-tone stimulus is limited to, at most, the third harmonic. Thresholds near the fundamental of the flight tone are lower for oscillatory responses than for sustained deflections, lower for males than for females, and within the behaviorally relevant range. A simple model of the transduction process can qualitatively account for both oscillatory and sustained responses to pure and paired tones. These data leave open the question as to which of several alternative strategies underlie flight tone matching behavior in mosquitoes. PMID:20348350

  20. Use of a Remote Eye-Tracker for the Analysis of Gaze during Treadmill Walking and Visual Stimuli Exposition.

    PubMed

    Serchi, V; Peruzzi, A; Cereatti, A; Della Croce, U

    2016-01-01

    The knowledge of the visual strategies adopted while walking in cognitively engaging environments is extremely valuable. Analyzing gaze when a treadmill and a virtual reality environment are used as motor rehabilitation tools is therefore critical. Being completely unobtrusive, remote eye-trackers are the most appropriate way to measure the point of gaze. Still, the point of gaze measurements are affected by experimental conditions such as head range of motion and visual stimuli. This study assesses the usability limits and measurement reliability of a remote eye-tracker during treadmill walking while visual stimuli are projected. During treadmill walking, the head remained within the remote eye-tracker workspace. Generally, the quality of the point of gaze measurements declined as the distance from the remote eye-tracker increased and data loss occurred for large gaze angles. The stimulus location (a dot-target) did not influence the point of gaze accuracy, precision, and trackability during both standing and walking. Similar results were obtained when the dot-target was replaced by a static or moving 2D target and "region of interest" analysis was applied. These findings foster the feasibility of the use of a remote eye-tracker for the analysis of gaze during treadmill walking in virtual reality environments. PMID:26904671

  1. Effects of Emotional Stimuli on Cardiovascular Responses in Patients with Essential Hypertension Based on Brain/Behavioral Systems

    PubMed Central

    Taban Sadeghi, Mohammadreza; Namdar, Hossein; Vahedi, Shahram; Aslanabadi, Naser; Ezzati, Davoud; Sadeghi, Babak

    2013-01-01

    Introduction: Effects of emotional stimuli on hemodynamics in patients with essential hypertension based on brain/behavioral systems have not been studied broadly. Methods: Eighty five essential hypertensive male patients who had completed Carver-White BIS/BAS scale were enrolled to the study. Later, 25 BIS and 25 BAS patients were selected and their blood pressure and heart rate were recorded prior to stimuli induction. Participants were then exposed to stressor pictures. After that, 15 minutes of relaxation and cognitive tasks were performed. Finally, the participants were exposed to pleasant pictures. The blood pressure and heart rate were recorded after presenting of 2 stimuli. Results: Our study showed that BIS patients achieved higher scores in diastolic blood pressure and heart rate in comparison with BAS patients after presenting stressful stimuli. Also, BAS patients achieved lower scores in systolic blood pressure and heart rate in comparison with BIS patients after presenting pleasant stimuli. Conclusion: In summary, BIS patients experience negative emotions more than BAS patients. Therefore, the role of induced mood states is important in relation to physical health. PMID:24404349

  2. The Search for Optimal Visual Stimuli

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ellis, Stephen R. (Technical Monitor)

    1997-01-01

    In 1983, Watson, Barlow and Robson published a brief report in which they explored the relative visibility of targets that varied in size, shape, spatial frequency, speed, and duration (referred to subsequently here as WBR). A novel aspect of that paper was that visibility was quantified in terms of threshold contrast energy, rather than contrast. As they noted, this provides a more direct measure of the efficiency with which various patterns are detected, and may be more edifying as to the underlying detection machinery. For example, under certain simple assumptions, the waveform of the most efficiently detected signal is an estimate of the receptive field of the visual system's most efficient detector. Thus one goal of their experiment Basuto search for the stimulus that the 'eye sees best'. Parenthetically, the search for optimal stimuli may be seen as the most general and sophisticated variant of the traditional 'subthreshold summation' experiment, in which one measures the effect upon visibility of small probes combined with a base stimulus.

  3. Happiness increases distraction by auditory deviant stimuli.

    PubMed

    Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R

    2016-08-01

    Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. PMID:26302716

  4. Anchoring in Numeric Judgments of Visual Stimuli.

    PubMed

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  5. Stimuli-responsive cement-reinforced rubber.

    PubMed

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications. PMID:24734968

  6. Anchoring in Numeric Judgments of Visual Stimuli

    PubMed Central

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  7. Stereotypic vision: how stereotypes disambiguate visual stimuli.

    PubMed

    Correll, Joshua; Wittenbrink, Bernd; Crawford, Matthew T; Sadler, Melody S

    2015-02-01

    Three studies examined how participants use race to disambiguate visual stimuli. Participants performed a first-person-shooter task in which Black and White targets appeared holding either a gun or an innocuous object (e.g., a wallet). In Study 1, diffusion analysis (Ratcliff, 1978) showed that participants rapidly acquired information about a gun when it appeared in the hands of a Black target, and about an innocuous object in the hands of a White target. For counterstereotypic pairings (armed Whites, unarmed Blacks), participants acquired information more slowly. In Study 2, eye tracking showed that participants relied on more ambiguous information (measured by visual angle from fovea) when responding to stereotypic targets; for counterstereotypic targets, they achieved greater clarity before responding. In Study 3, participants were briefly exposed to targets (limiting access to visual information) but had unlimited time to respond. In spite of their slow, deliberative responses, they showed racial bias. This pattern is inconsistent with control failure and suggests that stereotypes influenced identification of the object. All 3 studies show that race affects visual processing by supplementing objective information. PMID:25603373

  8. Relating tribological stimuli to somatosensory electroencephalographic responses.

    PubMed

    Oezguen, Novaf; Schubert, Kristof J; Bergmann, Ronny; Bennewitz, Roland; Strauss, Daniel J

    2015-08-01

    The present study deals with the extraction of neural correlates evoked by tactile stimulation of the human fingertip. A reciprocal sliding procedure was performed using a home-built tribometer while simultaneously electroencephalographic (EEG) data from the somatosensory cortex was recorded. The tactile stimuli were delivered by a sliding block with equidistant, perpendicular ridges. The experiments were designed and performed in a fully passive way to prevent attentional locked influences from the subjects. In order to improve the signal-to-noise ratio (SNR) of event related single-trials (ERPs), nonlocal means in addition to 2D-anisotropic denoising schemes based on tight Gabor frames were applied. This novel approach allowed for an easier extraction of ERP alternations. A negative correlation between the latency of the P100 component of the resulting brain responses and the intensity of the underlying lateral forces was found. These findings lead to the conclusion that an increasing stimulus intensity results in a decreasing latency of the brain responses. PMID:26738177

  9. Psychophysiological Response Patterns to Affective Film Stimuli

    PubMed Central

    Bos, Marieke G. N.; Jentgens, Pia; Beckers, Tom; Kindt, Merel

    2013-01-01

    Psychophysiological research on emotion utilizes various physiological response measures to index activation of the defense system. Here we tested 1) whether acoustic startle reflex (ASR), skin conductance response (SCR) and heart rate (HR) elicited by highly arousing stimuli specifically reflect a defensive state and 2) the relation between resting heart rate variability (HRV) and affective responding. In a within-subject design, participants viewed film clips with a positive, negative and neutral content. In contrast to SCR and HR, we show that ASR differentiated between negative, neutral and positive states and can therefore be considered as a reliable index of activation of the defense system. Furthermore, resting HRV was associated with affect-modulated characteristics of ASR, but not with SCR or HR. Interestingly, individuals with low-HRV showed less differentiation in ASR between affective states. We discuss the important value of ASR in psychophysiological research on emotion and speculate on HRV as a potential biological marker for demarcating adaptive from maladaptive responding. PMID:23646134

  10. Optical properties of CdS and CdS/ZnS quantum dots synthesized by reverse micelle method

    NASA Astrophysics Data System (ADS)

    Lien, Vu Thi Kim; Viet Ha, Chu; Tien Ha, Le; Nhu Dat, Nguyen

    2009-09-01

    The CdS and CdS/ZnS semiconductor quantum dots have been synthesized by reverse micelle method using sodium bis (2-ethylhexyl) sulfosuccinate (AOT) surfactant agent. The quantum dot diameter is about 2.5 to 4 nm depending on the concentration of the surfactant agent. It is interesting that, in contrast to other colloidal methods, the size of quantum dots does not depend on the growth time. The absorption spectra of CdS quantum dots show the narrow size distribution. The photoluminescence (PL) spectra include two bands, the intrinsic emission of CdS nanocrystals and the emission of surface states. There is noticeable increase of the PL intensity and subsequent photostability of CdS/ZnS core-shell quantum dots in comparison with CdS quantum dots without the ZnS shell.

  11. Conditional Reinforcers and Informative Stimuli in a Constant Environment

    ERIC Educational Resources Information Center

    Boutros, Nathalie; Davison, Michael; Elliffe, Douglas

    2009-01-01

    Five pigeons responded on steady-state concurrent variable-interval variable-interval schedules of food presentation in which half of the foods were removed and replaced with nonfood stimuli. Across conditions, the stimuli were either paired or unpaired with food, and the correlation between the ratio of food deliveries on the two alternatives and…

  12. Logical Rules and the Classification of Integral-Dimension Stimuli

    ERIC Educational Resources Information Center

    Little, Daniel R.; Nosofsky, Robert M.; Donkin, Christopher; Denton, Stephen E.

    2013-01-01

    A classic distinction in perceptual information processing is whether stimuli are composed of separable dimensions, which are highly analyzable, or integral dimensions, which are processed holistically. Previous tests of a set of logical-rule models of classification have shown that separable-dimension stimuli are processed serially if the…

  13. Identity Matching-to-Sample with Olfactory Stimuli in Rats

    ERIC Educational Resources Information Center

    Pena, Tracy; Pitts, Raymond C.; Galizio, Mark

    2006-01-01

    Identity matching-to-sample has been difficult to demonstrate in rats, but most studies have used visual stimuli. There is evidence that rats can acquire complex forms of olfactory stimulus control, and the present study explored the possibility that identity matching might be facilitated in rats if olfactory stimuli were used. Four rats were…

  14. Imagery Arousal as a Function of Exposure to Artistic Stimuli.

    ERIC Educational Resources Information Center

    Bilotta, Joseph

    The purpose of this study was to determine to what extent music and art can arouse imagery experiences in an audience. Because of the relationship found between imagery and the arts in past research, it was hypothesized that artistic stimuli would have a greater influence on imagery than other kinds of stimuli (art-information or non-artistic).…

  15. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    ERIC Educational Resources Information Center

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  16. Comparing Methods of Identifying Reinforcing Stimuli in School Consultation

    ERIC Educational Resources Information Center

    Damon, Sharon; Riley-Tillman, T. Chris; Fiorello, Catherine

    2008-01-01

    Reinforcement-based interventions, the most frequently used treatments for school-age children, rely on accurately identifying stimuli that will serve to reinforce appropriate classroom behavior. Research has consistently demonstrated that the results from a forced-choice pairing procedure are the best predictors of reinforcing stimuli.…

  17. Subliminal sexual stimuli facilitate genital response in women.

    PubMed

    Ponseti, Jorge; Bosinski, Hartmut A G

    2010-10-01

    Visual sexual stimuli (VSS) are believed to undergo an automatic process of stimulus appraisal and (genital or subjective) response generation. Consistent with this belief, studies have found that subliminal VSS can facilitate responses to subsequent sexual stimulus presentations. We tested whether subliminal sexual stimuli facilitated a genital response in women and, furthermore, whether this genital response could be modulated by both opposite-sex stimuli and same-sex stimuli (i.e., whether the genital response to subliminal stimuli is category-specific or nonspecific). Twenty heterosexual women underwent vaginal photoplethysmography while being subliminally (20 ms) exposed to same-sex, opposite-sex, and nonsexual slides in a priming experiment. Vaginal pulse amplitude was increased when target stimuli were preceded by both opposite-sex and same-sex priming stimuli relative to nonsexual priming stimuli. This finding suggests that subliminal VSS were subjected to automatic stimulus processing, thereby facilitating nonspecific genital response preparation. Results are discussed in terms of implicit and explicit memory access and the evolutionary benefit of female nonspecific genital response. PMID:20041283

  18. Inverse Target- and Cue-Priming Effects of Masked Stimuli

    ERIC Educational Resources Information Center

    Mattler, Uwe

    2007-01-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses…

  19. Freeze or Flee? Negative Stimuli Elicit Selective Responding

    ERIC Educational Resources Information Center

    Estes, Zachary; Verges, Michelle

    2008-01-01

    Humans preferentially attend to negative stimuli. A consequence of this automatic vigilance for negative valence is that negative words elicit slower responses than neutral or positive words on a host of cognitive tasks. Some researchers have speculated that negative stimuli elicit a general suppression of motor activity, akin to the freezing…

  20. Sex Differences in Response to Visual Sexual Stimuli: A Review

    PubMed Central

    Rupp, Heather A.; Wallen, Kim

    2009-01-01

    This article reviews what is currently known about how men and women respond to the presentation of visual sexual stimuli. While the assumption that men respond more to visual sexual stimuli is generally empirically supported, previous reports of sex differences are confounded by the variable content of the stimuli presented and measurement techniques. We propose that the cognitive processing stage of responding to sexual stimuli is the first stage in which sex differences occur. The divergence between men and women is proposed to occur at this time, reflected in differences in neural activation, and contribute to previously reported sex differences in downstream peripheral physiological responses and subjective reports of sexual arousal. Additionally, this review discusses factors that may contribute to the variability in sex differences observed in response to visual sexual stimuli. Factors include participant variables, such as hormonal state and socialized sexual attitudes, as well as variables specific to the content presented in the stimuli. Based on the literature reviewed, we conclude that content characteristics may differentially produce higher levels of sexual arousal in men and women. Specifically, men appear more influenced by the sex of the actors depicted in the stimuli while women’s response may differ with the context presented. Sexual motivation, perceived gender role expectations, and sexual attitudes are possible influences. These differences are of practical importance to future research on sexual arousal that aims to use experimental stimuli comparably appealing to men and women and also for general understanding of cognitive sex differences. PMID:17668311

  1. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach

    PubMed Central

    Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.

    2014-01-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  2. Rapid temporal recalibration is unique to audiovisual stimuli.

    PubMed

    Van der Burg, Erik; Orchard-Mills, Emily; Alais, David

    2015-01-01

    Following prolonged exposure to asynchronous multisensory signals, the brain adapts to reduce the perceived asynchrony. Here, in three separate experiments, participants performed a synchrony judgment task on audiovisual, audiotactile or visuotactile stimuli and we used inter-trial analyses to examine whether temporal recalibration occurs rapidly on the basis of a single asynchronous trial. Even though all combinations used the same subjects, task and design, temporal recalibration occurred for audiovisual stimuli (i.e., the point of subjective simultaneity depended on the preceding trial's modality order), but none occurred when the same auditory or visual event was combined with a tactile event. Contrary to findings from prolonged adaptation studies showing recalibration for all three combinations, we show that rapid, inter-trial recalibration is unique to audiovisual stimuli. We conclude that recalibration occurs at two different timescales for audiovisual stimuli (fast and slow), but only on a slow timescale for audiotactile and visuotactile stimuli. PMID:25200176

  3. Emotional attention for erotic stimuli: Cognitive and brain mechanisms.

    PubMed

    Sennwald, Vanessa; Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Bianchi-Demicheli, Francesco; Sander, David

    2016-06-01

    It has long been posited that among emotional stimuli, only negative threatening information modulates early shifts of attention. However, in the last few decades there has been an increase in research showing that attention is also involuntarily oriented toward positive rewarding stimuli such as babies, food, and erotic information. Because reproduction-related stimuli have some of the largest effects among positive stimuli on emotional attention, the present work reviews recent literature and proposes that the cognitive and cerebral mechanisms underlying the involuntarily attentional orientation toward threat-related information are also sensitive to erotic information. More specifically, the recent research suggests that both types of information involuntarily orient attention due to their concern relevance and that the amygdala plays an important role in detecting concern-relevant stimuli, thereby enhancing perceptual processing and influencing emotional attentional processes. PMID:26179894

  4. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.

    PubMed

    Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A

    2013-02-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  5. Emotional content of stimuli improves visuospatial working memory.

    PubMed

    González-Garrido, Andrés Antonio; López-Franco, Adriana Liset; Gómez-Velázquez, Fabiola Reveca; Ramos-Loyo, Julieta; Sequeira, Henrique

    2015-01-12

    Processing and storage in visuospatial working memory (VSWM) seem to depend on attention-based mechanisms. In order to explore the effect of attention-attractive stimuli, such as emotional faces on VSWM performance, ERPs were obtained from 20 young adults while reproducing spatial sequences of six facial (happy and neutral) and non-facial control stimuli in inverse order. Behavioral performances revealed that trials with happy facial expressions resulted in a significantly higher amount of correct responses. For positive emotional facial stimuli, N170 amplitude was higher over right temporo-parietal regions, while P2 amplitude was higher over frontal and lower over parietal regions. In addition, LPP amplitude was also significantly higher for this type of stimuli. Both behavioral and electrophysiological results support the notion of the domain-general attention-based mechanism of VSWM maintenance, in which spatial to-be-remembered locations might be influenced by the emotional content of the stimuli. PMID:25445376

  6. The virtual people set: developing computer-generated stimuli for the assessment of pedophilic sexual interest.

    PubMed

    Dombert, Beate; Mokros, Andreas; Brückner, Eva; Schlegl, Verena; Antfolk, Jan; Bäckström, Anna; Zappalà, Angelo; Osterheider, Michael; Santtila, Pekka

    2013-12-01

    The implicit assessment of pedophilic sexual interest through viewing-time methods necessitates visual stimuli. There are grave ethical and legal concerns against using pictures of real children, however. The present report is a summary of findings on a new set of 108 computer-generated stimuli. The images vary in terms of gender (female/male), explicitness (naked/clothed), and physical maturity (prepubescent, pubescent, and adult) of the persons depicted. A series of three studies tested the internal and external validity of the picture set. Studies 1 and 2 yielded good-to-high estimates of observer agreement with regard to stimulus maturity levels by two methods (categorization and paired comparison). Study 3 extended these findings with regard to judgments made by convicted child sexual offenders. PMID:23296092

  7. Violent Reactions from Non-Shock Stimuli

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2007-06-01

    Most reactions are thermally initiated, whether from direct heating or dissipation of energy from mechanical, shock, or electrical stimuli. For other than prompt shock initiation, the reaction must be able to spread through porosity or over large surface area to become more violent than just rupturing any confinement. While burning rates are important, high-strain mechanical properties are nearly so, either by reducing existing porosity or generating additional surface area through fracture. The first example is deflagration-to-detonation transition (DDT) in porous beds. During the early stages, weak compressive waves ahead of the convective ignition front will reduce porosity, thereby restricting the spread of combustion and the pressure buildup. If, however, pressure increases faster than can be relieved by loss of confinement, coalescing compressive waves can initiate reaction at hot spots from rapid pore collapse. This compressive reaction can drive a shockwave that transits to detonation, the most violent reaction in any scenario. It has been shown that reaction violence is reduced in DDT experiments if the binder is softened, either by raising the initial temperature or adding a solvent. An example of the role of mechanical properties in enhancing reaction violence through fracturing occurs when cavities in projectile fills collapse during acceleration in the gun barrel, which is referred to as setback. Explosives with soft rubber binders will deform and undergo mild reaction from shear heating within the explosive and adiabatic compression of any gas in the cavity. Stiff explosives are similarly ignited, but also fracture and generate additional surface area for a violent event. The last example to be considered is slow cook-off, where thermal damage can increase burning rate as well as provide porosity to enhance the pressure buildup. As reaction spreads from the zone of thermal run-away, an explosive binder that resists breakup will limit the violence.

  8. Quantum dots: Rethinking the electronics

    NASA Astrophysics Data System (ADS)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  9. Exploring Combinations of Different Color and Facial Expression Stimuli for Gaze-Independent BCIs

    PubMed Central

    Chen, Long; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2016-01-01

    Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that

  10. Emotional enhancement of immediate memory: Positive pictorial stimuli are better recognized than neutral or negative pictorial stimuli

    PubMed Central

    Chainay, Hanna; Michael, George A.; Vert-pré, Mélissa; Landré, Lionel; Plasson, Amandine

    2012-01-01

    We examined emotional memory enhancement (EEM) for negative and positive pictures while manipulating encoding and retrieval conditions. Two groups of 40 participants took part in this study. Both groups performed immediate implicit (categorization task) and explicit (recognition task) retrieval, but for one group the tasks were preceded by incidental encoding and for the other group by intentional encoding. As indicated by the sensitivity index (dʹ), after incidental encoding positive stimuli were easier to recognize than negative and neutral stimuli. Participants’ response criterion was more liberal for negative stimuli than for both positive and neutral ones, independent of encoding condition. In the implicit retrieval task, participants were slower in categorizing positive than negative and neutral stimuli. However, the priming effect was larger for emotional than for neutral stimuli. These results are discussed in the context of the idea that the effect of emotion on immediate memory enhancement may depend on the intentionality to encode and retrieve information. PMID:22956991

  11. Influence of shape on electron transport in ballistic quantum dots

    NASA Astrophysics Data System (ADS)

    Berry, M. J.; Katine, J. A.; Westervelt, R. M.; Gossard, A. C.

    1994-12-01

    We have investigated the low-temperature (T=0.43-4.25 K) magnetotransport of quantum dots fabricated in the shape of an open circle and a circle having a central bar. The characteristic magnetic fields for both coherent backscattering and conductance fluctuations are strongly shape dependent: both are larger by a factor >=3 in the device with the central bar. Comparison of large and small devices of nominally identical shape shows that characteristic trajectory areas are proportional to the device area.

  12. Numerosity judgments for tactile stimuli distributed over the body surface.

    PubMed

    Gallace, Alberto; Tan, Hong Z; Spence, Charles

    2006-01-01

    A large body of research now supports the claim that two different and dissociable processes are involved in making numerosity judgments regarding visual stimuli: subitising (fast and nearly errorless) for up to 4 stimuli, and counting (slow and error-prone) when more than 4 stimuli are presented. We studied tactile numerosity judgments for combinations of 1-7 vibrotactile stimuli presented simultaneously over the body surface. In experiment 1, the stimuli were presented once, while in experiment 2 conditions of single presentation and repeated presentation of the stimulus were compared. Neither experiment provided any evidence for a discontinuity in the slope of either the RT or error data suggesting that subitisation does not occur for tactile stimuli. By systematically varying the intensity of the vibrotactile stimuli in experiment 3, we were able to demonstrate that participants were not simply using the 'global intensity' of the whole tactile display to make their tactile numerosity judgments, but were, instead, using information concerning the number of tactors activated. The results of the three experiments reported here are discussed in relation to current theories of counting and subitising, and potential implications for the design of tactile user interfaces are highlighted. PMID:16583769

  13. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression

    PubMed Central

    Atchley, Ruth Ann; Chrysikou, Evangelia; Martin, Laura E.; Clair, Alicia A.; Ingram, Rick E.; Simmons, W. Kyle; Savage, Cary R.

    2016-01-01

    Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments. PMID:27284693

  14. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  15. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  16. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  17. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions.

    PubMed

    Li, Libo; Yu, Bin; You, Tianyan

    2015-12-15

    Nitrogen and sulfur co-doped carbon dots (N,S/C-dots) with high fluorescence quantum yields (FLQY, 25%) was successfully synthesized by a one-step microwave-assisted method. In comparison with nitrogen doped C-dots (N/C-dots) prepared using the same method, the resulting N,S/C-dots featured small particle size, uniform surface state, insensitive FL properties to excitation wavelengths and environmental conditions, negligible cytotoxicity and excellent biocompatibility. Simultaneous doping of N and S effectively promoted electron-transfer and coordination interaction between N,S/C-dots and Hg(2+). Thus, when used as fluorescence probe for Hg(2+) label-free detection, the resulting N,S/C-dots showed good detection sensitivity and ion selectivity. The limit of detection was 2 μM; among 15 metal ions investigated, only Fe(3+) showed interference to the Hg(2+) detection. Fortunately, this interference could be effectively shielded using a chelating agent sodium hexametaphoshpate. The applicability of N,S/C-dots as fluorescence probe for Hg(2+) detection in lake water and tap water was demonstrated. Finally, based on its favorable features of negligible cytotoxicity and excellent biocompatibility, the N,S/C-dots were successfully applied to probe Hg(2+) in living cells, which broaden its application in biological system. PMID:26143466

  18. Neurons in Striate Cortex Signal Disparity in Half-Matched Random-Dot Stereograms

    PubMed Central

    Read, Jenny C. A.; Cumming, Bruce G.

    2016-01-01

    Human stereopsis can operate in dense “cyclopean” images containing no monocular objects. This is believed to depend on the computation of binocular correlation by neurons in primary visual cortex (V1). The observation that humans perceive depth in half-matched random-dot stereograms, although these stimuli have no net correlation, has led to the proposition that human depth perception in these stimuli depends on a distinct “matching” computation possibly performed in extrastriate cortex. However, recording from disparity-selective neurons in V1 of fixating monkeys, we found that they are in fact able to signal disparity in half-matched stimuli. We present a simple model that explains these results. This reinstates the view that disparity-selective neurons in V1 provide the initial substrate for perception in dense cyclopean stimuli, and strongly suggests that separate correlation and matching computations are not necessary to explain existing data on mixed correlation stereograms. SIGNIFICANCE STATEMENT The initial step in stereoscopic 3D vision is generally thought to be a correlation-based computation that takes place in striate cortex. Recent research has argued that there must be an additional matching computation involved in extracting stereoscopic depth in random-dot stereograms. This is based on the observation that humans can perceive depth in stimuli with a mean binocular correlation of zero (where a correlation-based mechanism should not signal depth). We show that correlation-based cells in striate cortex do in fact signal depth here because they convert fluctuations in the correlation level into a mean change in the firing rate. Our results reinstate the view that these cells provide a sufficient substrate for the perception of stereoscopic depth. PMID:27559177

  19. Humans can discriminate more than 1 trillion olfactory stimuli.

    PubMed

    Bushdid, C; Magnasco, M O; Vosshall, L B; Keller, A

    2014-03-21

    Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. We determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. On the basis of the results of psychophysical testing, we calculated that humans can discriminate at least 1 trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate. PMID:24653035

  20. Do extraverts process social stimuli differently from introverts?

    PubMed Central

    Fishman, Inna; Ng, Rowena; Bellugi, Ursula

    2011-01-01

    The personality trait of extraversion has been linked to the network of brain systems controlling sensitivity to cues of reward and generating approach behavior in response, but little is known about whether extraverts’ neural circuits are especially sensitive to social stimuli, given their preference for social engagement. Utilizing event-related potential (ERP) methodology, this study demonstrates that variation on the extraversion dimension is associated with the extent to which social stimuli evoke enhanced allocation of attention. Specifically, higher scores on extraversion were found to be associated with higher amplitudes of the P300 component of the ERPs elicited by human faces. This finding suggests that social stimuli carry enhanced motivational significance for individuals characterized by high extraversion, and that individual differences in personality are related to meaningful individual differences in neural responses to social stimuli. PMID:21738558

  1. CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli.

    PubMed

    Wang, Guodong; Zhang, Guohua; Wu, Mengyao

    2015-01-01

    The CLE (CLAVATA3/Endosperm surrounding region-related) peptide family is one of the best-studied secreted peptide families in plants. Accumulated data have revealed that CLE genes play vital roles on stem cell homeostasis in different types of meristems. Additionally, CLE genes have been found to perform various biological roles in plant growth and development, and in response to environmental stimuli. With recent advances on our understanding of CLE peptide function, it is showing that the existence of potential crosstalks of CLE peptides with phytohormones and external stimuli. Complex interactions exist in which CLE petides coordinate with hormones to regulate plant growth and development, and in response to external stimuli. In this article, we present recent advances in cell-cell communication that is mediated by CLE peptides combining with phytohormones and external stimuli, and suggest additional Arabidopsis CLE genes that are likely to be controlled by hormones and environmental cues. PMID:26779239

  2. Transport through graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Güttinger, J.; Molitor, F.; Stampfer, C.; Schnez, S.; Jacobsen, A.; Dröscher, S.; Ihn, T.; Ensslin, K.

    2012-12-01

    We review transport experiments on graphene quantum dots and narrow graphene constrictions. In a quantum dot, electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. The recently isolated two-dimensional carbon allotrope graphene is an interesting host to study quantum phenomena, due to its novel electronic properties and the expected weak interaction of the electron spin with the material. Graphene quantum dots are fabricated by etching mono-layer flakes into small islands (diameter 60-350 nm) with narrow connections to contacts (width 20-75 nm), serving as tunneling barriers for transport spectroscopy. Electron confinement in graphene quantum dots is observed by measuring Coulomb blockade and transport through excited states, a manifestation of quantum confinement. Measurements in a magnetic field perpendicular to the sample plane allowed to identify the regime with only a few charge carriers in the dot (electron-hole transition), and the crossover to the formation of the graphene specific zero-energy Landau level at high fields. After rotation of the sample into parallel magnetic field orientation, Zeeman spin splitting with a g-factor of g ≈ 2 is measured. The filling sequence of subsequent spin states is similar to what was found in GaAs and related to the non-negligible influence of exchange interactions among the electrons.

  3. Spontaneous attention to faces in Asperger syndrome using ecologically valid static stimuli.

    PubMed

    Hanley, Mary; McPhillips, Martin; Mulhern, Gerry; Riby, Deborah M

    2013-11-01

    Previous eye tracking research on the allocation of attention to social information by individuals with autism spectrum disorders is equivocal and may be in part a consequence of variation in stimuli used between studies. The current study explored attention allocation to faces, and within faces, by individuals with Asperger syndrome using a range of static stimuli where faces were either viewed in isolation or viewed in the context of a social scene. Results showed that faces were viewed typically by the individuals with Asperger syndrome when presented in isolation, but attention to the eyes was significantly diminished in comparison to age and IQ-matched typical viewers when faces were viewed as part of social scenes. We show that when using static stimuli, there is evidence of atypicality for individuals with Asperger syndrome depending on the extent of social context. Our findings shed light on the previous explanations of gaze behaviour that have emphasised the role of movement in atypicalities of social attention in autism spectrum disorders and highlight the importance of consideration of the realistic portrayal of social information for future studies. PMID:22987893

  4. Electrodermal and behavioral responses of children with autism spectrum disorders to sensory and repetitive stimuli.

    PubMed

    McCormick, Carolyn; Hessl, David; Macari, Suzanne L; Ozonoff, Sally; Green, Cherie; Rogers, Sally J

    2014-08-01

    Parents frequently report that their children with autism spectrum disorders (ASD) respond atypically to sensory stimuli. Repetitive behaviors are also part of the ASD behavioral profile. Abnormal physiological arousal may underlie both of these symptoms. Electrodermal activity (EDA) is an index of sympathetic nervous system arousal. The goals of this study were twofold: (1) to pilot methods for collecting EDA data in young children and (2) to examine hypothesized relationships among EDA, and sensory symptoms and repetitive behaviors in children with ASD as compared with children with typical development. EDA was recorded on 54 young children with ASD and on 33 children with typical development (TD) during a protocol that included baseline, exposure to sensory and repetitive stimuli, and play. Parents completed standardized questionnaires regarding their child's sensory symptoms and repetitive behaviors. Frequency and type of repetitive behavior during play was coded offline. Comparisons between EDA data for ASD and TD groups indicated no significant between-group differences in any measures. Parents of children with ASD reported more abnormal responses to sensory stimuli and more repetitive behaviors, but scores on these measures were not significantly correlated with EDA or with frequency of observed repetitive behaviors. Parent report of frequency and severity of sensory symptoms was significantly correlated with reports of repetitive behaviors in both groups. Although parents of children with ASD report high levels of sensory symptoms and repetitive behaviors, these differences are not related to measured EDA arousal or reactivity. PMID:24788961

  5. Prism adaptation contrasts perceptual habituation for repetitive somatosensory stimuli.

    PubMed

    Torta, D M; Tatu, M K; Cotroneo, D; Alamia, A; Folegatti, A; Trojan, J

    2016-03-01

    Prism adaptation (PA) is a non-invasive procedure that requires performing a visuo-motor pointing task while wearing prism goggles inducing a visual displacement of the pointed target. This procedure involves a reorganization of sensorimotor coordination, and induces long-lasting effects on numerous higher-order cognitive functions in healthy volunteers and neglect patients. Prismatic displacement (PD) of the visual field can be induced when prisms are worn but no sensorimotor task is required. In this case, it is unlikely that any subsequent reorganization takes place. The effects of PD are short-lived in the sense that they last as long as prisms are worn. In this study we aimed, to the best of our knowledge for the first time, at investigating whether PA and PD induce changes in the perception of intensity of nociceptive and non- nociceptive somatosensory stimuli. We induced, in healthy volunteers, PD (experiment 1), or PA (experiment 2) and asked participants to rate the intensity of the stimuli applied to the hand undergoing the visuo-proprioceptive conflict (experiment 1) or adaptation (experiment 2). Our results indicate that: 1) the visuo-proprioceptive conflict induced by PD does not reduce the perceived intensity of the stimuli, 2) PA prevents perceptual habituation for both nociceptive and non-nociceptive somatosensory stimuli. Moreover, to investigate the possible underlying mechanisms of the effects of PA we conducted a third experiment in which stimuli were applied both at the adapted and the non-adapted hand. In line with the results of experiment 2, we found that perceptual habituation was prevented for stimuli applied onto the adapted hand. Moreover, we observed the same finding for stimuli applied onto the non-adapted hand. This result suggests that the detention of habituation is not merely driven by changes in spatial attention allocation. Taken together, these data indicate that prisms can affect the perceived intensity of somatosensory stimuli

  6. Superconducting Nanotube Dots

    NASA Astrophysics Data System (ADS)

    Schönenberger, Christian

    2007-03-01

    In this talk, I will focus on charge transport in carbon nanotube devices with superconducting source and drain contacts in the finite-bias non-equilibrium transport regime. As contact material, bi-layers of Au and Al were used and transport has been studied at temperatures in the 0.1 K range. Because carbon nanotubes are quantum dots (qdots), we in fact explore the physics of qdots with superconducting contacts, something which only recently became possible thanks to carbon nanotubes and most recently to semiconducting nanowires. In my talk, I will first summarize our pioneering work on multiwalled carbon nanotubes in which we could demonstrate proximity induced effects both in the weak and the strong coupling regime. In the latter an intriguing interplay between superconductivity and Kondo physics appears. Then, I will discuss the physics of multiple Andreev reflection in a situation when only one resonant state is present and compare this with experimental results. Finally, I will compare our early results with our recent measurements on single-wall carbon nanotubes. This work has been supported by the Swiss Institute on Nanoscience, the Swiss National Science Foundation, EU projects DIENOW and HYSWITCH. I gratefully acknowledge contribution of the following persons to this work (in alphabetic order): B. Babic, W. Belzig, C. Bruder, M. R. Buitelaar, J.-C. Cuevas, A. Eichler, L. Forro, J. Gobrecht, M. Gr"aber, M. Iqbal, T. Kontos, A. Levy Yeyati, A. Martin-Rodero, T. Nussbaumer, S. Oberholzer, C. Strunk, H. Scharf, J. Trbovic, E. Vecino, M. Weiss

  7. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials. PMID:26743467

  8. siRNA Delivery by Stimuli-Sensitive Nanocarriers

    PubMed Central

    Salzano, Giuseppina; Costa, Daniel F.; Torchilin, Vladimir P.

    2016-01-01

    Since its discovery in late 1990s, small interfering RNA (siRNA) has become a significant biopharmaceutical research tool and a powerful option for the treatment of different human diseases based on altered gene-expression. Despite promising data from many pre-clinical studies, concrete hurdles still need to be overcome to bring therapeutic siRNAs in clinic. The design of stimuli-sensitive nanopreparations for gene therapy is a lively area of the current research. Compared to conventional systems for siRNA delivery, this type of platform can respond to local stimuli that are characteristics of the pathological area of interest, allowing the release of nucleic acids at the desired site. Acidic pH, abnormal levels of enzymes, altered redox potential and magnetic field are examples of stimuli exploited in the design of stimuli-sensitive nanoparticles. In this review, we discuss on recent stimuli-sensitive strategies for siRNA delivery and we highlight on the potential of combining multiple stimuli-sensitive strategies in the same nano-platform for a better therapeutic outcome. PMID:26486143

  9. Super-size me: self biases increase to larger stimuli.

    PubMed

    Sui, Jie; Humphreys, Glyn W

    2015-04-01

    Prior work has shown that simple perceptual match responses to pairings of shapes and labels are more efficient if the pairing is associated with the participant (e.g., circle-you) than if it is associated with another familiar person (e.g., square-friend). There is a similar advantage for matching associations with high-value rewards (circle-£9) versus low-value rewards (square-£1) (Sui, He, & Humphreys Journal of Experimental Psychology: Human Perception and Performance, 38, 1105-1117, 2012). Here we evaluated the relations between the self- and reward-bias effects by introducing occasional trials in which the size of a shape was varied unexpectedly (large or small vs. a standard medium). Participants favored stimuli that were larger than the standard when stimuli were associated with the self, and this enhancement of self bias was predicted by the degree of self bias that participants showed to standard (medium) sized stimuli. Although we observed a correlation between the magnitudes of the self and reward biases over participants, reward-bias effects were not increased to large stimuli. The data suggest both overlapping and independent components of the self and reward biases, and that self biases are uniquely enhanced when stimuli increase in size, consistent with previously reported motivational biases favoring large stimuli. PMID:25112393

  10. Multisensory numerosity judgments for visual and tactile stimuli.

    PubMed

    Gallace, Alberto; Tan, Hong Z; Spence, Charles

    2007-05-01

    To date, numerosity judgments have been studied only under conditions of unimodal stimulus presentation. It is therefore unclear whether the same limitations on correctly reporting the number of unimodal visual or tactile stimuli presented in a display might be expected under conditions in which participants have to count stimuli presented simultaneously in two or more different sensory modalities. In Experiment 1, we investigated numerosity judgments using both unimodal and bimodal displays consisting of one to six vibrotactile stimuli (presented over the body surface) and one to six visual stimuli (seen on the body via mirror reflection). Participants had to count the number of stimuli regardless of their modality of presentation. Bimodal numerosity judgments were significantly less accurate than predicted on the basis of an independent modality-specific resources account, thus showing that numerosity judgments might rely on a unitary amodal system instead. The results of a second experiment demonstrated that divided attention costs could not account for the poor performance in the bimodal conditions of Experiment 1. We discuss these results in relation to current theories of cross-modal integration and to the cognitive resources and/or common higher order spatial representations possibly accessed by both visual and tactile stimuli. PMID:17727102

  11. Corticospinal Excitability Preceding the Grasping of Emotion-Laden Stimuli

    PubMed Central

    Nogueira-Campos, Anaelli Aparecida; de Oliveira, Laura Alice Santos; Della-Maggiore, Valeria; Esteves, Paula Oliveira; Rodrigues, Erika de Carvalho; D. Vargas, Claudia

    2014-01-01

    Evolutionary theories posit that emotions prime organisms for action. This study examined whether corticospinal excitability (CSE) is modulated by the emotional valence of a to-be-grasped stimulus. CSE was estimated based on the amplitude of motor evoked potentials (MEPs) elicited using transcranial magnetic stimulation (TMS) and recorded on the first dorsal interosseous (FDI) muscle. Participants were instructed to grasp (ACTION condition) or just look at (NO-ACTION condition) unpleasant, pleasant and neutral stimuli. TMS pulses were applied randomly at 500 or 250 ms before a go signal. MEP amplitudes were normalized within condition by computing a ratio for the emotion-laden stimuli by reference to the neutral stimuli. A divergent valence effect was observed in the ACTION condition, where the CSE ratio was higher during the preparation to grasp unpleasant compared to pleasant stimuli. In addition, the CSE ratio was lower for pleasant stimuli during the ACTION condition compared to the NO-ACTION condition. Altogether, these results indicate that motor preparation is selectively modulated by the valence of the stimulus to be grasped. The lower CSE for pleasant stimuli may result from the need to refrain from executing an imminent action. PMID:24732961

  12. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  13. Low Threshold Quantum Dot Lasers.

    PubMed

    Iyer, Veena Hariharan; Mahadevu, Rekha; Pandey, Anshu

    2016-04-01

    Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam. PMID:26978011

  14. Saccadic latency is modulated by emotional content of spatially filtered face stimuli.

    PubMed

    Bannerman, Rachel L; Hibbard, Paul B; Chalmers, Kirsty; Sahraie, Arash

    2012-12-01

    Models of attention and emotion assign a special status to the processing of threat. While evidence for threat-related attentional bias in highly anxious individuals is robust, effects in the normal population are mixed. An important explanation for the absence of threat-related attentional bias in nonanxious individuals may relate to the spatial frequency components of stimuli. Here we report behavioral data from two experiments examining the relationship between spatial frequency components of emotional and neutral faces and fast saccadic orienting behavior. In Experiment 1 participants had to saccade toward a single face, filtered to include mostly low, high or broad spatial frequencies (LSF, HSF or BSF), posing a fearful, happy or neutral expression presented for 20 ms in the periphery. At BSF a general emotional effect was found whereby saccadic responses were faster for fearful and happy faces relative to neutral, with no significant differences between fearful and happy faces. At LSF both fearful and happy faces had shorter saccadic latencies in comparison to neutral, demonstrating an emotional bias consistent with the BSF data. However, at LSF fearful faces resulted in significantly faster saccades than happy faces indicating that this bias was stronger for threat-related faces. There was no difference in saccadic responses between any emotions at HSF. Experiment 2 showed that the emotional bias diminished for inverted stimuli suggesting that the results were not attributable to low-level image properties. The findings suggest an overall advantage in the oculomotor system for orientation to emotional stimuli and at LSF in particular, a significantly faster localization of threat conveyed by the face stimuli in all individuals. PMID:22775132

  15. Excitonic optical properties of wurtzite ZnS quantum dots under pressure

    SciTech Connect

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios; Bester, Gabriel

    2015-03-21

    By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.

  16. Self-assembly drives quantum dot photoluminescence.

    PubMed

    Plain, J; Sonnefraud, Y; Viste, P; Lérondel, G; Huant, S; Royer, P

    2009-03-01

    Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot-quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry. PMID:18792763

  17. Anomalous polarization in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, X. H.; Jiang, H.; Sun, X.; Lin, H. Q.

    2000-04-01

    The coupled quantum dots can be designed to possess negative polarizability in low-lying excited states. In an electric field, the coupled dots are polarized, and the dipole moment of the coupled dots is reversed by absorbing one photon. This photoswitch effect is a new photoinduced phenomenon.

  18. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  19. Reversible Photoswitching of Carbon Dots

    PubMed Central

    Khan, Syamantak; Verma, Navneet Chandra; Gupta, Abhishek; Nandi, Chayan Kanti

    2015-01-01

    We present a method of reversible photoswitching in carbon nanodots with red emission. A mechanism of electron transfer is proposed. The cationic dark state, formed by the exposure of red light, is revived back to the bright state with the very short exposure of blue light. Additionally, the natural on-off state of carbon dot fluorescence was tuned using an electron acceptor molecule. Our observation can make the carbon dots as an excellent candidate for the super-resolution imaging of nanoscale biomolecules within the cell. PMID:26078266

  20. Accommodation and pupil responses to random-dot stereograms.

    PubMed

    Suryakumar, Rajaraman; Allison, Robert

    2016-01-01

    We investigated the dynamics of accommodative and pupillary responses to random-dot stereograms presented in crossed and uncrossed disparity in six visually normal young adult subjects (mean age=25.8±3.1 years). Accommodation and pupil measures were monitored monocularly with a custom built photorefraction system while subjects fixated at the center of a random-dot stereogram. On each trial, the stereogram initially depicted a flat plane and then changed to depict a sinusoidal corrugation in depth while fixation remained constant. Increase in disparity specified depth resulted in pupil constriction during both crossed and uncrossed disparity presentations. The change in pupil size between crossed and uncrossed disparity conditions was not significantly different (p>0.05). The change in pupil size was also accompanied by a small concomitant increase in accommodation. In addition, the dynamic properties of pupil responses varied as a function of their initial (starting) diameter. The finding that accommodation and pupil responses increased with disparity regardless of the sign of retinal disparity suggests that these responses were driven by apparent depth rather than shifts in mean simulated distance of the stimulus. Presumably the need for the increased depth of focus when viewing stimuli extended in depth results in pupil constriction which also results in a concomitant change in accommodation. Starting position effects in pupil response confirm the non-linearity in the operating range of the pupil. PMID:25891121

  1. Behavioral evidence showing the predominance of diffuse pain stimuli over discrete stimuli in influencing perception.

    PubMed

    Anderson, K V; Pearl, G S; Honeycutt, C

    1976-01-01

    This experiment was directed toward determining the relative effectiveness of discrete and diffuse pain stimuli in influencing perception and behavior. Shocks to the footpads were used to activate the discrete pain pathways and shocks to the upper canine teeth to activate the diffuse pain pathways. In the first phase of this experiment, cats were trained to escape from foot shock in a shuttle box. Current applied to the feet was varied in ascending and descending sequences for each animal according to the psychophysical method of limits and each animal was trained until stable thresholds for escape responding were achieved. In the second phase of the experiment, the effect on behavior of simultaneous activation of both the discrete and diffuse pain systems was assessed. The principal finding is this experiment was that excape responding that was well established when foot shock was presented alone was routinely abolished on trials when tooth shock and foot shock were presented together. These results were interpreted as indicating that the diffuse pain system was prepotent in influencing behavior when both the discrete and diffuse pain systems were activated simultaneously. PMID:1011300

  2. Lissajous Rocking Ratchet: Realization in a Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Platonov, Sergey; Kästner, Bernd; Schumacher, Hans W.; Kohler, Sigmund; Ludwig, Stefan

    2015-09-01

    Breaking time-reversal symmetry (TRS) in the absence of a net bias can give rise to directed steady-state nonequilibrium transport phenomena such as ratchet effects. Here we present, theoretically and experimentally, the concept of a Lissajous rocking ratchet based on breaking TRS. Our system is a semiconductor quantum dot with periodically modulated dot-lead tunnel barriers. Broken TRS gives rise to single electron tunneling current. Its direction is fully controlled by exploring frequency and phase relations between the two barrier modulations. The concept of Lissajous ratchets can be realized in a large variety of different systems, including nanoelectrical, nanoelectromechanical, or superconducting circuits. It promises applications based on a detailed on-chip comparison of radio-frequency signals.

  3. Reading Comprehension Strategy: Rainbow Dots

    ERIC Educational Resources Information Center

    Moore, Claire; Lo, Lusa

    2008-01-01

    An action research study was conducted using the Rainbow Dots strategy to evaluate its effectiveness on reading comprehension skills in a third-grade class with students both with and without a specific learning disability. Results of the study indicated that students' overall performances in reading comprehension have increased. Students also…

  4. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  5. Stimuli-responsive smart nanogels for cancer diagnostics and therapy.

    PubMed

    Oishi, Motoi; Nagasaki, Yukio

    2010-04-01

    This article discusses stimuli-responsive poly(ethylene glycol) (PEG)-coated (PEGylated) nanogels and their biomedical applications. Preparation and characterization of stimuli-responsive PEGylated nanogels composed of a crosslinked poly(2-[N,N-diethylamino]ethyl methacrylate) (PEAMA) core and PEG tethered chains are initially described. Stimuli-responsive PEGylated nanogels show unique properties and functions in synchronizing with the reversible volume phase transition of the PEAMA core in response to the extracellular pH (7-6.5) of a tumor environment as well as endosomal/lysosomal pH (6.5-5.0) and temperature. We list several biomedical applications of stimuli-responsive PEGylated nanogels, including (19)F magnetic resonance spectroscopic imaging (MRS/I) probe to visualize acidosis (tumor tissue), intracellular drug and siRNA delivery, antennas for cancer photothermal therapy and apoptosis probe for monitoring response to cancer therapy. Thus, stimuli-responsive PEGylated nanogels can be utilized as smart nanomedicines for cancer diagnostics and therapy. PMID:20394537

  6. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-04-01

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications. PMID:26942693

  7. Differing ERP patterns caused by suction and puff stimuli.

    PubMed

    Choi, Mi-Hyun; Kim, Hyung-Sik; Baek, Ji-Hye; Lee, Jung-Chul; Park, Sung-Jun; Jeong, Ul-Ho; Gim, Seon-Young; You, Ji Hye; Kim, Sung-Pil; Lim, Dae-Woon; Kim, Hyun-Jun; Chung, Soon-Cheol

    2015-05-01

    The present study compared event-related potential (ERP) patterns for two stimuli types, puff and suction, by applying these stimuli to the fingers; ERP patterns for the two stimuli were compared at C3, an area related to somatosensory perception, and at FC5, an area related to motor function. Participants were 12 healthy males in their 20s (mean age=23.1±2.0 years). One session consisted of a Control Phase (3s), a Stimulation Phase (3s), and a Rest Phase (9s). During the Stimulation Phase, a 4-psi suction or puff stimulus was applied to the first joint of the right index finger. After completion of the session, a subjective magnitude test was presented. In all phases, electroencephalography signals were recorded. We extracted maximum positive amplitude and minimum negative amplitude as well as relevant latency values for C3 and FC5 signals. Suction and puff stimuli had similar subjective magnitude scores. For both C3 and FC5, the maximum and minimum amplitude latency was reached earlier for the suction stimulus than for the puff stimulus. In conclusion, when suction and puff stimuli of the same intensity were applied to the fingers, the suction stimulus caused a more sensitive response in the somatosensory area (C3) and motor area (FC5) than did the puff stimulus. PMID:25823997

  8. The distinctiveness of ionic and nonionic bitter stimuli.

    PubMed

    Frank, Marion E; Bouverat, Brian P; MacKinnon, Bruce I; Hettinger, Thomas P

    2004-01-01

    The diverse chemical structures of stimuli that are bitter to humans suggest a need for multiple bitter receptors. Reactions of golden hamsters (Mesocricetus auratus) to 1 mM quinine hydrochloride, 3 mM denatonium benzoate, 180 mM magnesium sulfate, 30-100 mM caffeine, and 1-1.5 mM sucrose octaacetate (SOA) were studied to address whether there are multiple sensations elicited by bitter stimuli. Methods included behavioral generalization of LiCl-induced conditioned taste aversions (CTAs), intake preference tests, and electrophysiological recordings from the chorda tympani (CT) nerve. The five compounds, all bitter to humans, were all innately aversive to hamsters. CTA for the ionic quinine.HCl, denatonium benzoate, and MgSO(4) mutually cross-generalized and these ionic compounds were effective CT stimuli. Yet, the hamsters were much less sensitive to denatonium than humans, requiring a 100,000 times higher concentration for detection. CTA for nonionic caffeine and SOA did not cross-generalize to quinine or the other two ionic stimuli and these nonionic compounds were not effective CT stimuli. SOA and caffeine may elicit aversive reflexes or systemic reactions rather than taste sensations in the animals. Thus, the three ionic and two nonionic compounds form separate aversive stimulus classes in hamsters, neither of which appears to be a close homologue of the human bitter taste. PMID:14741226

  9. Stimuli responsive upconversion luminescence nanomaterials and films for various applications.

    PubMed

    Tsang, Ming-Kiu; Bai, Gongxun; Hao, Jianhua

    2015-03-21

    Upconversion luminescence (UCL) refers to nonlinear optical processes, which can convert near-infrared photons to short-wavelength emission. Recent advances in nanotechnology have contributed to the development of photon upconversion materials as promising new generation candidates of fluorescent bioprobes and spectral converters for biomedical and optoelectronic applications. Apart from the remarkable photoluminescence of the materials under photon excitation, some UCL materials may exhibit intrinsic magnetic, ferroelectric, X-ray absorption properties, and so on. These interesting characteristics provide an opportunity for us to couple a single stimulus or multiple stimuli (electric field, magnetic field, X-ray, electron beam, temperature and pH, etc.) to various types of UCL materials. In this review, we will primarily focus on the stimuli responsive properties of UCL materials beyond light-matter interaction, which can aid both fundamental research and widespread applications of the materials. The mechanisms of the response to various stimuli in the UCL materials are discussed. This article will also highlight recent advances in the development of these materials in response to various stimuli and their applications in multimodal bioimaging, drug delivery and release, electro-optical devices, magnetic, temperature and pH sensors and multiple anti-counterfeiting inks. Lastly, we will present potential directions of future research and challenging issues which arise in expanding the applications of stimuli responsive UCL materials. PMID:25200182

  10. Private Stimuli, Covert Responses, and Private Events: Conceptual Remarks

    PubMed Central

    Tourinho, Emmanuel Zagury

    2006-01-01

    In this article, I discuss the concepts of private stimuli, covert responses, and private events, emphasizing three aspects: the conditions under which private stimuli may acquire discriminative functions to verbal responses, the conditions of unobservability of covert responses, and the complexity of events or phenomena described as private. I argue that the role of private stimuli in the control of self-descriptive verbal responses is dependent on a relation (correlation or equivalence relation) with public stimuli, and that responses vary along a continuum of observability. These remarks on private stimuli and covert responses are introductory to an examination of the varying complexity of phenomena described as private. I argue that private events is a verbal response emitted under the control of phenomena of different degrees of complexity, and I interpret these phenomena, based on the principle of selection by consequences. I introduce the notion of inclusiveness to suggest that some phenomena related to privacy are less or more complex as they include relations of a phylogenetic, ontogenetic, and cultural origin. PMID:22478451

  11. Research trends of stimuli-responsive polymer hydrogels in Japan

    SciTech Connect

    Hirasa, O.

    1993-10-01

    In recent years, biological functions have been increasingly investigated on the molecular and/or atomic level. Synthesis and assemblies of various functional polymers have also been researched. In particular, research of stimuli-responsive polymeric materials having the function and efficiency of a biological system has been of interest. The materials are still in the embryonic period, but there are great expectations surrounding their progress. In this article, the research trends in Japan of stimuli-responsive polymer gel are summarized from the viewpoint of synthesis, fabrication, and applications. On synthesis, researches have been summarized on stimuli including light, heat or temperature, pH or ion, electric field, and chemicals. On fabrication, researches have been summarized on two types of fabrication methods: chemical methods, such as grafting and hybridization; and physical methods, such as blend, microgel, film, fiber and composite. On industrial applications, many attempts have been made in recent years concerning the released control of chemicals, especially drug delivery systems. Controls of adsorption, permeation, and enzyme reaction using stimuli-responsive polymer gels have also been attempted in the chemical engineering and bioengineering fields. On applications to actuators, the construction of some micro-actuating systems has been attempted. The stimuli-responsive polymer gels (chemomechanical gels) are very promising, both in the field of fundamental study and in the field of applied research.

  12. Systematic safety evaluation on photoluminescent carbon dots

    PubMed Central

    2013-01-01

    Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV–vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others. PMID:23497260

  13. Systematic safety evaluation on photoluminescent carbon dots

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Gao, Zhongcai; Gao, Guo; Wo, Yan; Wang, Yuxia; Shen, Guangxia; Cui, Daxiang

    2013-03-01

    Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV-vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others.

  14. Dot-ELISA in diagnosis of schistosomiasis.

    PubMed

    Madwar, M A; Hassan, M M

    1989-12-01

    One microliter of S. mansoni egg antigen was dotted directly on the nitrocellulose paper sheet acting as the adsorbent surface (9 dots/paper). The sera of 25 Egyptian patients and 15 healthy persons (2 microliters of each) were dotted over the antigen dots, then 2 ml of each of the blocking, washing, HRP-conjugated IgG and DAB adding procedures, were added over the nitrocellulose paper in the petri-dish at room temperature. An intact brown circle (by naked-eye) indicates a positive in Dot-ELISA. There is an insignificant dot colour intensities in different clinical stages of S. mansoni infected Egyptians whereas, a direct relation was obtained between egg count and the colour intensity of the dots. The test had 100% sensitivity and 86% specificity thus it appears to be useful for both laboratory and field studies. PMID:2794577

  15. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    SciTech Connect

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-02-14

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.

  16. The P3 produced by auditory stimuli presented in a passive and active condition: modulation by visual stimuli.

    PubMed

    Wronka, Eligiusz; Kuniecki, Michał; Kaiser, Jan; Coenen, Anton M L

    2007-01-01

    The aim of this study was to investigate how the processing of auditory stimuli is affected by the simultaneous presentation of visual stimuli. This was approached in an active and passive condition, during which a P3 was elicited in the human EEG by single auditory stimuli. Subjects were presented tones, either alone or accompanied by the simultaneous exposition of pictures. There were two different sessions. In the first, the presented tones demanded no further cognitive activity from the subjects (passive or 'ignore' session), while in the second session subjects were instructed to count the tones (active or 'count' session). The central question was whether inter-modal influences of visual stimulation in the active condition would modulate the auditory P3 in the same way as in the passive condition. Brain responses in the ignore session revealed only a small P3-like component over the parietal and frontal cortex, however, when the auditory stimuli co-occurred with the visual stimuli, an increased frontal activity in the window of 300-500 ms was observed. This could be interpreted as the reflection of a more intensive involuntary attention shift, provoked by the preceding visual stimulation. Moreover, it was found that cognitive load caused by the count instruction, resulted in an evident P3, with maximal amplitude over parietal locations. This effect was smaller when auditory stimuli were presented on the visual background. These findings might support the thesis that available resources were assigned to the analysis of visual stimulus, and thus were not available to analyze the subsequent auditory stimuli. This reduction in allocation of resources for attention was restricted to the active condition only, when the matching of a template with incoming information results in a distinct P3 component. It is discussed whether the putative source of this effect is a change in the activity of the frontal cortex. PMID:17691223

  17. QCAD simulation and optimization of semiconductor double quantum dots

    SciTech Connect

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  18. Metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots for 1.55 μm applications: Growth, structural, and optical properties

    NASA Astrophysics Data System (ADS)

    Michon, A.; Hostein, R.; Patriarche, G.; Gogneau, N.; Beaudoin, G.; Beveratos, A.; Robert-Philip, I.; Laurent, S.; Sauvage, S.; Boucaud, P.; Sagnes, I.

    2008-08-01

    This contribution reports the metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots with a voluntary V-alloying obtained owing to an additional phosphine flux during InAs quantum dot growth. The quantum dots were studied by photoluminescence and transmission electron microscopy. We show that the additional phosphine flux allows to tune quantum dot emission around 1.55 μm while improving their optical properties. The comparison of the optical and structural properties of the InAsP quantum dots allows to deduce their phosphorus composition, ranging from 0% to 30% when the phosphine/arsine flow ratio is varying between 0 and 50. On the basis of the compositions deduced, we discuss on the effects of the phosphine flow and of the alloying on the quantum dot growth, structural, and optical properties.

  19. Physical and optical dot gain: characterization and relation to dot shape and paper properties

    NASA Astrophysics Data System (ADS)

    Namedanian, Mahziar; Nyström, Daniel; Zitinski Elias, Paula; Gooran, Sasan

    2014-01-01

    The tone value increase in halftone printing commonly referred to as dot gain actually encompasses two fundamentally different phenomena. Physical dot gain refers to the fact that the size of the printed halftone dots differs from their nominal size, and is related to the printing process. Optical dot gain originates from light scattering inside the substrate, causing light exchanges between different chromatic areas. Due to their different intrinsic nature, physical and optical dot gains need to be treated separately. In this study, we characterize and compare the dot gain properties for offset prints on coated and uncoated paper, using AM and first and second generation FM halftoning. Spectral measurements are used to compute the total dot gain. Microscopic images are used to separate the physical and optical dot gain, to study ink spreading and ink penetration, and to compute the Modulation Transfer Function (MTF) for the different substrates. The experimental results show that the physical dot gain depends on ink penetration and ink spreading properties. Microscopic images of the prints reveal that the ink penetrates into the pores and cavities of the uncoated paper, resulting in inhomogeneous dot shapes. For the coated paper, the ink spread on top of the surface, giving a more homogenous dot shape, but also covering a larger area, and hence larger physical dot gain. The experimental results further show that the total dot gain is larger for the uncoated paper, because of larger optical dot gain. The effect of optical dot gain depends on the lateral light scattering within the substrate, the size of the halftone dots, and on the halftone dot shape, especially the dot perimeter.

  20. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@C-dot nanoparticles.

    PubMed

    Guo, Zhen; Zhang, Zhiqiang; Zhang, Wei; Zhou, Lianqun; Li, Haiwen; Wang, Hongmei; Andreazza-Vignolle, Caroline; Andreazza, Pascal; Zhao, Dongxu; Wu, Yihui; Wang, Quanlong; Zhang, Tao; Jiang, Keming

    2014-12-10

    This paper reports the preparation and properties of color-switchable fluorescent carbon nanodots (C-dots). C-dots that emit dark turquoise and green-yellow fluorescence under 365 nm UV illumination were obtained from the hydrothermal decomposition of citric acid. Dark green fluorescent C-dots were obtained by conjugating prepared C-dots to form C-dot@C-dot nanoparticles. After successful conjugation of the C-dots, the fluorescence emission undergoes a blue-shift of nearly 20 nm (∼0.15 eV) under UV excitation at 370 nm. The C-dots emit goldenrod, green-yellow, and gold light under excitation at 455 nm, which shows that the prepared C-dots are color-switchable. Furthermore, conjugation of the C-dots results in enhanced, red-shifted absorption of the π-π* transition of the aromatic sp(2) domains due to the conjugated π-electron system. N incorporation in the carbon structure leads to a degree of dipoles for all the aromatic sp(2) bonds. The enhanced absorption in a wide range from 226 to 601 nm indicates extended conjugation in the C-dot@C-dot structure. The time-resolved average lifetimes for the three different types of C-dots prepared in this study are 7.10, 7.65, and 4.07 ns. The radiative rate (reduced decay lifetime) increases when the C-dots are conjugated in the C-dot@C-dot nanoparticles, leading to the enhanced fluorescence emission. The fluorescence emission of the C-dot@C-dot nanoparticles can be used in applications such as flow cytometry and cell imaging. PMID:25408428

  1. Effects of subliminal symbiotic stimuli on anxiety reduction.

    PubMed

    Malik, R; Krasney, M S; Aldworth, B; Ladd, H W

    1996-06-01

    The present study assessed the effectiveness of subliminal psychodynamic stimuli in reducing anxiety. 50 male and 50 female college students were tachistoscopically exposed to one of five stimuli: MOMMY AND I ARE ONE, DADDY AND I ARE ONE, I AM HAPPY WITH MYSELF, ONE, or a control stimulus MYMMO NAD I REA ENO. It was hypothesized that men would show a significant decrease in anxiety to the MOMMY stimulus, while women were expected to respond favorably to either the MOMMY or DADDY stimulus, or to both. Results showed that the subliminal stimuli did not produce differential effects on anxiety. This finding did not support previous claims for subliminal psychodynamic activation that the stimulation of symbiotic fantasy with the maternal figure produces positive behavioral effects. Despite this negative finding women's response to the MOMMY message was predicted by measures of self-perception. PMID:8774013

  2. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. PMID:26683083

  3. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  4. Attentional processing of faces in ASD: a Dot-Probe study.

    PubMed

    Moore, David J; Heavey, Lisa; Reidy, John

    2012-10-01

    The present study used the Dot-Probe paradigm to explore attentional allocation to faces compared with non-social images in high-functioning individuals with autism spectrum disorder (ASD) and typically developing controls. There was no evidence of attentional bias in either group when stimuli were presented at individually calculated sub-threshold levels. However, at supra-threshold presentation (200 ms), a face bias was found for control participants but not for those with ASD. These results add to evidence of reduced social interest in ASD, relative to controls, and further demonstrate when atypical social processing arises in the attentional time course. PMID:22278029

  5. Sex-Specific Content Preferences for Visual Sexual Stimuli

    PubMed Central

    Rupp, Heather A.; Wallen, Kim

    2009-01-01

    Although experimental studies support that men generally respond more to visual sexual stimuli than do women, there is substantial variability in this effect. One potential source of variability is the type of stimuli used that may not be of equal interest to both men and women whose preferences may be dependent upon the activities and situations depicted. The current study investigated whether men and women had preferences for certain types of stimuli. We measured the subjective evaluations and viewing times of 15 men and 30 women (15 using hormonal contraception) to sexually explicit photos. Heterosexual participants viewed 216 pictures that were controlled for the sexual activity depicted, gaze of the female actor, and the proportion of the image that the genital region occupied. Men and women did not differ in their overall interest in the stimuli, indicated by equal subjective ratings and viewing times, although there were preferences for specific types of pictures. Pictures of the opposite sex receiving oral sex were rated as least sexually attractive by all participants and they looked longer at pictures showing the female actor’s body. Women rated pictures in which the female actor was looking indirectly at the camera as more attractive, while men did not discriminate by female gaze. Participants did not look as long at close-ups of genitals, and men and women on oral contraceptives rated genital images as less sexually attractive. Together, these data demonstrate sex-specific preferences for specific types of stimuli even when, across stimuli, overall interest was comparable. PMID:18719987

  6. Exposure to virtual social stimuli modulates subjective pain reports

    PubMed Central

    Vigil, Jacob M; Torres, Daniel; Wolff, Alexander; Hughes, Katy

    2014-01-01

    BACKGROUND: Contextual factors, including the gender of researchers, influence experimental and patient pain reports. It is currently not known how social stimuli influence pain percepts, nor which types of sensory modalities of communication, such as auditory, visual or olfactory cues associated with person perception and gender processing, produce these effects. OBJECTIVES: To determine whether exposure to two forms of social stimuli (audio and visual) from a virtual male or female stranger modulates cold pressor task (CPT) pain reports. METHODS: Participants with similar demographic characteristics conducted a CPT in solitude, without the physical presence of an experimenter or another person. During the CPT, participants were exposed to the voice and image of a virtual male or female stranger. The voices had analogous vocal prosody, provided no semantic information (spoken in a foreign language) and differed only in pitch; the images depicted a middle-age male or female health care practitioner. RESULTS: Male participants, but not females, showed higher CPT pain intensity when they were exposed to the female stimuli compared with the male stimuli. Follow-up analyses showed that the association between the social stimuli and variability in pain sensitivity was not moderated by individual differences in subjective (eg, self-image) or objective measurements of one’s physical stature. DISCUSSION: The findings show that exposure to virtual, gender-based auditory and visual social stimuli influences exogenous pain sensitivity. CONCLUSION: Further research on how contextual factors, such as the vocal properties of health care examiners and exposure to background voices, may influence momentary pain perception is necessary for creating more standardized methods for measuring patient pain reports in clinical settings. PMID:24911175

  7. Adaptation of spatiotemporal mechanisms by increment and decrement stimuli

    NASA Astrophysics Data System (ADS)

    Purkiss, Todd J.; Demarco, Paul J.

    2002-08-01

    Sawtooth modulation has been used in the past to examine visual sensitivity to luminance increments and decrements. The threshold elevation caused by adaptation depends on the spatial profile of the stimulus field and the polarities of the adaptation and test stimuli. We hypothesized that the adaptation effects reflect a change in the sensitivity of the spatiotemporal channels that detect the stimuli. We used a 2-deg disk centered in a larger surround field. Five levels of contrast between the test field and surround were investigated: equiluminant, three intermediate levels, and dark. At each contrast, observers adapted for 5 s to 2-Hz sawtooth modulation (rapid-on or rapid-off). Immediately after adaptation, thresholds were measured for detection of a single cycle of either a rapid-on or a rapid-off waveform. Varying the contrast of the surround affected observers sensitivity to the polarity of the sawtooth stimulus to the extent that the pattern of sensitivity with the equiluminant surround was the opposite of that with the dark surround. To examine temporal factors, we measured thresholds for slow (500-ms ramps) and fast (8.3-ms pulses) test stimuli. The adaptation effect was preserved with the ramp stimuli but not with the pulse stimuli. Blurring the edge between the test and surround fields in the equiluminant surround condition raised thresholds for all sawtooth test stimuli, suggesting that spatiotemporal channels sensitive to high spatial frequencies and low temporal frequencies facilitate detection in that condition. These findings suggest that adaptation to sawtooth modulation can differentially effect the sensitivity of ON and OFF pathways, but the relative desensitization of each pathway depends on an interaction with the adaptation state of spatiotemporal channels that are involved in detection. 2002 Optical Society of America

  8. Emerging applications of stimuli-responsive polymer materials

    NASA Astrophysics Data System (ADS)

    Stuart, Martien A. Cohen; Huck, Wilhelm T. S.; Genzer, Jan; Müller, Marcus; Ober, Christopher; Stamm, Manfred; Sukhorukov, Gleb B.; Szleifer, Igal; Tsukruk, Vladimir V.; Urban, Marek; Winnik, Françoise; Zauscher, Stefan; Luzinov, Igor; Minko, Sergiy

    2010-02-01

    Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.

  9. Orienting Toward Face-Like Stimuli in Early Childhood.

    PubMed

    Shah, Punit; Happé, Francesca; Sowden, Sophie; Cook, Richard; Bird, Geoffrey

    2015-01-01

    Newborn infants orient preferentially toward face-like or "protoface" stimuli and recent studies suggest similar reflexive orienting responses in adults. Little is known, however, about the operation of this mechanism in childhood. An attentional-cueing procedure was therefore developed to investigate protoface orienting in early childhood. Consistent with the extant literature, 5- to 6-year-old children (n = 25) exhibited orienting toward face-like stimuli; they responded faster when target location was cued by the appearance of a protoface stimulus than when location was cued by matched control patterns. The potential of this procedure to investigate the development of typical and atypical social perception is discussed. PMID:26435013

  10. Pigeons may not remember the stimuli that reinforced their recent behavior.

    PubMed Central

    Schaal, D W; Odum, A L; Shahan, T A

    2000-01-01

    In two experiments the conditioned reinforcing and delayed discriminative stimulus functions of stimuli that signal delays to reinforcement were studied. Pigeons' pecks to a center key produced delayed-matching-to-sample trials according to a variable-interval 60-s (or 30-s in 1 pigeon) schedule (Experiment 1) or a multiple variable-interval 20-s variable-interval 120-s schedule (Experiment 2). The trials consisted of a 2-s illumination of one of two sample key colors followed by delays ranging across phases from 0.1 to 27.0 s followed in turn by the presentation of matching and nonmatching comparison stimuli on the side keys. Pecks to the key color that matched the sample were reinforced with 4-s access to grain. Under some conditions of Experiment 1, pecks to nonmatching comparison stimuli produced a 4-s blackout and the start of the next interval. Under other conditions of Experiment 1 and each condition of Experiment 2, pecks to nonmatching stimuli had no effect and trials ended only when pigeons pecked the other, matching stimulus and received food. The functions relating pretrial response rates to delays differed markedly from those relating matching-to-sample accuracy to delays. Specifically, response rates remained relatively high until the longest delays (15.0 to 27.0 s) were arranged, at which point they fell to low levels. Matching accuracy was high at short delays, but fell to chance at delays between 3.0 and 9.0 s. In Experiment 2, both matching accuracy and response rates remained high over a wider range of delays in the variable-interval 120-s component relative to the variable-interval 20-s component. The difference in matching accuracy between the components was not due to an increased tendency in the variable-interval 20-s component toward proactive interference following short intervals. Thus, under these experimental conditions the conditioned reinforcing and the delayed discriminative functions of the sample stimulus depended on the same

  11. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents.

    PubMed

    Governo, Ricardo Jose Moylan; Prior, Malcolm John William; Morris, Peter Gordon; Marsden, Charles Alexander; Chapman, Victoria

    2007-06-15

    Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing. PMID:17368787

  12. CdS QDs-chitosan microcapsules with stimuli-responsive property generated by gas-liquid microfluidic technique.

    PubMed

    Chen, Yanjun; Yao, Rongyi; Wang, Yifeng; Chen, Ming; Qiu, Tong; Zhang, Chaocan

    2015-01-01

    This article describes a straightforward gas-liquid microfluidic approach to generate uniform-sized chitosan microcapsules containing CdS quantum dots (QDs). CdS QDs are encapsulated into the liquid-core of the microcapsules. The sizes of the microcapsules can be conveniently controlled by gas flow rate. QDs-chitosan microcapsules show good fluorescent stability in water, and exhibit fluorescent responses to chemical environmental stimuli. α-Cyclodextrin (α-CD) causes the microcapsules to deform and even collapse. More interestingly, α-CD induces obvious changes on the fluorescent color of the microcapsules. However, β-cyclodextrin (β-CD) has little influence on the shape and fluorescent color of the microcapsules. Based on the results of scanning electron microscopy, the possible mechanism about the effects of α-CD on the chitosan microcapsules is analyzed. These stimuli-responsive microcapsules are low-cost and easy to be prepared by gas-liquid microfluidic technique, and can be applied as a potential micro-detector to chemicals, such as CDs. PMID:25460598

  13. Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles

    NASA Astrophysics Data System (ADS)

    Semina, M. A.; Golovatenko, A. A.; Rodina, A. V.

    2016-01-01

    We report on a theoretical study of the hole states in II-IV quantum dots of spherical and ellipsoidal shapes, described by smooth potential confinement profiles that can be modeled by Gaussian functions in all three dimensions. The universal dependencies of the hole energy, g factor, and localization length on the quantum dot barrier height, as well as the ratio of effective masses of the light and heavy holes are presented for the spherical quantum dots. The splitting of the fourfold degenerate ground state into two doublets is derived for anisotropic (oblate or prolate) quantum dots. Variational calculations are combined with numerical ones in the framework of the Luttinger Hamiltonian. Constructed trial functions are optimized by comparison with the numerical results. The effective hole g factor is found to be independent of the quantum dot size and barrier height and is approximated by a simple universal expression depending only on the effective mass parameters. The results can be used for interpreting and analyzing experimental spectra measured in various structures with quantum dots of different semiconductor materials.

  14. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  15. Brightness-equalized quantum dots

    NASA Astrophysics Data System (ADS)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  16. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect

    Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  17. Brightness-equalized quantum dots

    PubMed Central

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-01-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices. PMID:26437175

  18. Quantum Dot Light Emitting Diode

    SciTech Connect

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  19. Quantum Dot Light Emitting Diode

    SciTech Connect

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  20. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  1. A Study of the Affective Responses Elicited by Occupational Stimuli

    ERIC Educational Resources Information Center

    Schoon, Craig G.

    1976-01-01

    The semantic differential was used to assess the properties of affect elicited by occupational stimuli. Vocationally committed men studying medicine, business, and engineering responded to a semantic differential containing occupational concepts. Results show a semantic space for all three groups composed of three orthogonal dimensions of affect…

  2. Slowed response to peripheral visual stimuli during strenuous exercise.

    PubMed

    Ando, Soichi; Komiyama, Takaaki; Kokubu, Masahiro; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2016-07-01

    Recently, we proposed that strenuous exercise impairs peripheral visual perception because visual responses to peripheral visual stimuli were slowed during strenuous exercise. However, this proposal was challenged because strenuous exercise is also likely to affect the brain network underlying motor responses. The purpose of the current study was to resolve this issue. Fourteen participants performed a visual reaction-time (RT) task at rest and while exercising at 50% (moderate) and 75% (strenuous) peak oxygen uptake. Visual stimuli were randomly presented at different distances from fixation in two task conditions: the Central condition (2° or 5° from fixation) and the Peripheral condition (30° or 50° from fixation). We defined premotor time as the time between stimulus onset and the motor response, as determined using electromyographic recordings. In the Central condition, premotor time did not change during moderate (167±19ms) and strenuous (168±24ms) exercise from that at rest (164±17ms). In the Peripheral condition, premotor time significantly increased during moderate (181±18ms, P<0.05) and strenuous exercise (189±23ms, P<0.001) from that at rest (173±17ms). These results suggest that increases in Premotor Time to the peripheral visual stimuli did not result from an impaired motor-response network, but rather from impaired peripheral visual perception. We conclude that slowed response to peripheral visual stimuli during strenuous exercise primarily results from impaired visual perception of the periphery. PMID:27080081

  3. Probability of Equivalence Formation: Familiar Stimuli and Training Sequence

    ERIC Educational Resources Information Center

    Arntzen, Erik

    2004-01-01

    The present study was conducted to show how responding in accord with equivalence relations changes as a function of position of familiar stimuli, pictures, and with the use of nonsense syllables in an MTO-training structure. Fifty college students were tested for responding in accord with equivalence in an AB, CB, DB, and EB training structure.…

  4. Developmental Complexity of the Stimuli Included in Mispronunciation Detection Tasks

    ERIC Educational Resources Information Center

    McNeill, Brigid C.; Hesketh, Anne

    2010-01-01

    Background: Phonological representations are important for speech and literacy development. Mispronunciation detection tasks have been proposed as an appropriate measure of phonological representations for children with speech disorder. There has been limited analysis, however, of the developmental complexity of task stimuli. Further, the tasks…

  5. Gradient Shifts with Naturally Occurring Human Face Stimuli

    ERIC Educational Resources Information Center

    Derenne, Adam; Breitstein, R. Michael

    2006-01-01

    The present research examined stimulus generalization and gradient shifts on a dimension involving human faces. Twenty undergraduates were instructed to examine the proportion of the total face length that lay between the tip of the nose and the end of the chin. The face stimuli were images of actual people shown on a computer screen; no face was…

  6. Delivery of continuously-varying stimuli using channelrhodopsin-2

    PubMed Central

    Tchumatchenko, Tatjana; Newman, Jonathan P.; Fong, Ming-fai; Potter, Steve M.

    2013-01-01

    To study sensory processing, stimuli are delivered to the sensory organs of animals and evoked neural activity is recorded downstream. However, noise and uncontrolled modulatory input can interfere with repeatable delivery of sensory stimuli to higher brain regions. Here we show how channelrhodopsin-2 (ChR2) can be used to deliver continuous, subthreshold, time-varying currents to neurons at any point along the sensory-motor pathway. To do this, we first deduce the frequency response function of ChR2 using a Markov model of channel kinetics. We then confirm ChR2's frequency response characteristics using continuously-varying optical stimulation of neurons that express one of three ChR2 variants. We find that wild-type ChR2 and the E123T/H134R mutant (“ChETA”) can pass continuously-varying subthreshold stimuli with frequencies up to ~70 Hz. Additionally, we find that wild-type ChR2 exhibits a strong resonance at ~6–10 Hz. Together, these results indicate that ChR2-derived optogenetic tools are useful for delivering highly repeatable artificial stimuli that mimic in vivo synaptic bombardment. PMID:24367294

  7. Influence of simultaneous gustatory stimuli on orthonasal and retronasal olfaction.

    PubMed

    Welge-Lüssen, Antje; Husner, Alexander; Wolfensberger, Markus; Hummel, Thomas

    2009-04-24

    Orthonasal and retronasal olfaction processes differ. The aim of this study was to examine whether congruent and incongruent simultaneous gustatory stimuli influence orthonasal and retronasal odorant perception, using olfactory event-related potentials as a measure. Thirty-two young, healthy subjects (16 men, 16 women) took part in two test sessions. Olfactory event-related potentials were recorded in response to a food-like odor, vanillin, and to an odor usually not associated with foods, the rose-like phenylethylalcohol. Each session consisted of four randomized blocks of 15 stimuli each which were applied either orthonasally or retronasally. Simultaneously, sweet or sour gustatory stimuli were applied. In response to retronasal vanillin, stimuli latencies P2 of the event-related potentials were significantly shorter in the congruent "sweet condition" than the incongruent "sour condition". In contrast, with orthonasal stimulation, shorter P2 latencies were seen for both odorants in the incongruent condition. Intensity of both odorants was perceived as less pronounced after retronasal stimulation than after orthonasal stimulation. In conclusion, application of a sweet taste significantly enhanced the processing of a congruent olfactory stimulus when presented through the retronasal route. Incongruent simultaneous gustatory stimulation applied during orthonasal olfaction seemed to induce conflict priming, also resulting in faster processing. PMID:19429068

  8. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  9. Infants' Preferential Attention to Sung and Spoken Stimuli

    ERIC Educational Resources Information Center

    Costa-Giomi, Eugenia; Ilari, Beatriz

    2014-01-01

    Caregivers and early childhood teachers all over the world use singing and speech to elicit and maintain infants' attention. Research comparing infants' preferential attention to music and speech is inconclusive regarding their responses to these two types of auditory stimuli, with one study showing a music bias and another one…

  10. Impaired Prioritization of Novel Onset Stimuli in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Keehn, Brandon; Joseph, Robert M.

    2008-01-01

    Background: Deficiency in the adaptive allocation of attention to relevant environmental stimuli is an associated feature of autism spectrum disorder (ASD). Recent evidence suggests that individuals with ASD may be specifically impaired in attentional prioritization of novel onsets. Method: We investigated modulation of attention by novel onset…

  11. Updating Positive and Negative Stimuli in Working Memory in Depression

    ERIC Educational Resources Information Center

    Levens, Sara M.; Gotlib, Ian H.

    2010-01-01

    Difficulties in the ability to update stimuli in working memory (WM) may underlie the problems with regulating emotions that lead to the development and perpetuation of mood disorders such as depression. To examine the ability to update affective material in WM, the authors had diagnosed depressed and never-disordered control participants perform…

  12. Stress improves selective attention towards emotionally neutral left ear stimuli.

    PubMed

    Hoskin, Robert; Hunter, M D; Woodruff, P W R

    2014-09-01

    Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. PMID:25086222

  13. Motor commands induce time compression for tactile stimuli.

    PubMed

    Tomassini, Alice; Gori, Monica; Baud-Bovy, Gabriel; Sandini, Giulio; Morrone, Maria Concetta

    2014-07-01

    Saccades cause compression of visual space around the saccadic target, and also a compression of time, both phenomena thought to be related to the problem of maintaining saccadic stability (Morrone et al., 2005; Burr and Morrone, 2011). Interestingly, similar phenomena occur at the time of hand movements, when tactile stimuli are systematically mislocalized in the direction of the movement (Dassonville, 1995; Watanabe et al., 2009). In this study, we measured whether hand movements also cause an alteration of the perceived timing of tactile signals. Human participants compared the temporal separation between two pairs of tactile taps while moving their right hand in response to an auditory cue. The first pair of tactile taps was presented at variable times with respect to movement with a fixed onset asynchrony of 150 ms. Two seconds after test presentation, when the hand was stationary, the second pair of taps was delivered with a variable temporal separation. Tactile stimuli could be delivered to either the right moving or left stationary hand. When the tactile stimuli were presented to the motor effector just before and during movement, their perceived temporal separation was reduced. The time compression was effector-specific, as perceived time was veridical for the left stationary hand. The results indicate that time intervals are compressed around the time of hand movements. As for vision, the mislocalizations of time and space for touch stimuli may be consequences of a mechanism attempting to achieve perceptual stability during tactile exploration of objects, suggesting common strategies within different sensorimotor systems. PMID:24990936

  14. Positive mood broadens visual attention to positive stimuli

    PubMed Central

    Wadlinger, Heather A.; Isaacowitz, Derek M.

    2010-01-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states. PMID:20431711

  15. Auditory Long Latency Responses to Tonal and Speech Stimuli

    ERIC Educational Resources Information Center

    Swink, Shannon; Stuart, Andrew

    2012-01-01

    Purpose: The effects of type of stimuli (i.e., nonspeech vs. speech), speech (i.e., natural vs. synthetic), gender of speaker and listener, speaker (i.e., self vs. other), and frequency alteration in self-produced speech on the late auditory cortical evoked potential were examined. Method: Young adult men (n = 15) and women (n = 15), all with…

  16. Tagging Multiple Emotional Stimuli: Negative Valence Has Little Benefit

    ERIC Educational Resources Information Center

    Watson, Derrick G.; Blagrove, Elisabeth

    2012-01-01

    Six experiments examined the influence of emotional valence on the tagging and enumeration of multiple targets. Experiments 1, 5 and 6 found that there was no difference in the efficiency of tagging/enumerating multiple negative or positive stimuli. Experiment 2 showed that, when neutral-expression face distractors were present, enumerating…

  17. Superior Detection of Threat-Relevant Stimuli in Infancy

    ERIC Educational Resources Information Center

    LoBue, Vanessa; DeLoache, Judy S.

    2010-01-01

    The ability to quickly detect potential threat is an important survival mechanism for humans and other animals. Past research has established that adults have an attentional bias for the detection of threat-relevant stimuli, including snakes and spiders as well as angry human faces. Recent studies have documented that preschool children also…

  18. Attentional control of the processing of neural and emotional stimuli.

    PubMed

    Pessoa, Luiz; Kastner, Sabine; Ungerleider, Leslie G

    2002-12-01

    A typical scene contains many different objects that compete for neural representation due to the limited processing capacity of the visual system. At the neural level, competition among multiple stimuli is evidenced by the mutual suppression of their visually evoked responses and occurs most strongly at the level of the receptive field. The competition among multiple objects can be biased by both bottom-up sensory-driven mechanisms and top-down influences, such as selective attention. Functional brain imaging studies reveal that biasing signals due to selective attention can modulate neural activity in visual cortex not only in the presence but also in the absence of visual stimulation. Although the competition among stimuli for representation is ultimately resolved within visual cortex, the source of top-down biasing signals likely derives from a distributed network of areas in frontal and parietal cortex. Competition suggests that once attentional resources are depleted, no further processing is possible. Yet, existing data suggest that emotional stimuli activate brain regions "automatically," largely immune from attentional control. We tested the alternative possibility, namely, that the neural processing of stimuli with emotional content is not automatic and instead requires some degree of attention. Our results revealed that, contrary to the prevailing view, all brain regions responding differentially to emotional faces, including the amygdala, did so only when sufficient attentional resources were available to process the faces. Thus, similar to the processing of other stimulus categories, the processing of facial expression is under top-down control. PMID:12433381

  19. Alliesthesia to food cues: heterogeneity across stimuli and sensory modalities.

    PubMed

    Jiang, Tao; Soussignan, Robert; Rigaud, Daniel; Martin, Sylviane; Royet, Jean-Pierre; Brondel, Laurent; Schaal, Benoist

    2008-10-20

    Negative alliesthesia to olfactory and visual stimuli was assessed in 29 normal-weight women who, on alternate days, were either fasting or in a postprandial state after an ad libitum lunch. The participants were alternatively exposed to food and non-food pictures and odorants, and then rated for their hedonic appreciation (liking) and their desire to ingest (wanting) the evoked foods. While negative alliesthesia was observed only for food stimuli, it did not equally affect all food categories in either sensory modality. The stimuli representing foods eaten in typical local main dishes or having high energy density (e.g., pizza, bacon, beef, cheese) evoked clear negative alliesthesia, whereas this was not the case for those less consumed within a customary meal or associated with desserts (i.e., fruits). Furthermore, the visual food stimuli triggered a more negative shift in liking than did the food odours. Finally, the shift in wanting between pre- and post-meal state was more important than the shift in liking. These results suggest that alliesthesia may be influenced by both metabolic and non-metabolic factors. PMID:18675834

  20. A quantum dot in topological insulator nanofilm.

    PubMed

    Herath, Thakshila M; Hewageegana, Prabath; Apalkov, Vadym

    2014-03-19

    We introduce a quantum dot in topological insulator nanofilm as a bump at the surface of the nanofilm. Such a quantum dot can localize an electron if the size of the dot is large enough, ≳5 nm. The quantum dot in topological insulator nanofilm has states of two types, which belong to two ('conduction' and 'valence') bands of the topological insulator nanofilm. We study the energy spectra of such defined quantum dots. We also consider intraband and interband optical transitions within the dot. The optical transitions of the two types have the same selection rules. While the interband absorption spectra have multi-peak structure, each of the intraband spectra has one strong peak and a few weak high frequency satellites. PMID:24590177

  1. Triple quantum dots as charge rectifiers.

    PubMed

    Busl, M; Platero, G

    2012-04-18

    We theoretically analyze electronic spin transport through a triple quantum dot in series, attached to electrical contacts, where the drain contact is coupled to the central dot. We show that current rectification is observed in the device due to current blockade. The current blocking mechanism is originated by a destructive interference of the electronic wavefunction at the drain dot. There, the electrons are coherently trapped in a singlet two-electron dark state, which is a coherent superposition of the electronic wavefunction in the source dot and in the dot isolated from the contacts. Its formation gives rise to zero current and current rectification as the voltage is swept. We analyze this behavior analytically and numerically for both zero and finite magnetic dc fields. On top of that, we include phenomenologically a finite spin relaxation rate and calculate the current numerically. Our results show that triple dots in series can be designed to behave as quantum charge rectifiers. PMID:22442135

  2. The Blue Dots Initiative and Roadmapping Exercise

    NASA Astrophysics Data System (ADS)

    Coudé du Foresto, V.

    2010-10-01

    The Blue Dots initiative (a grassroot effort to build a scientific community in Europe around the exoplanet theme) is introduced. The Blue Dots activities include the elaboration of a roadmap towards the spectroscopic characterization of habitable exoplanets, a summary of which is presented here. While the roadmap will need to be updated regularly, it is expected that the methodology developed within Blue Dots will provide a durable framework for the elaboration of future revisions.

  3. Numerical renormalization group study of a dissipative quantum dot

    NASA Astrophysics Data System (ADS)

    Glossop, M. T.; Ingersent, K.

    2007-03-01

    We study the quantum phase transition (QPT) induced by dissipation in a quantum dot device at the degeneracy point. We employ a Bose-Fermi numerical renormalization group approach [1] to study the simplest case of a spinless resonant-level model that couples the charge density on the dot to a dissipative bosonic bath with density of states B(φ)ŝ. In anticipation of future experiments [2] and to assess further the validity of theoretical techniques in this rapidly developing area, we take the conduction-electron leads to have a pseudogap density of states: ρ(φ) |φ|^r, as considered in a very recent perturbative renormalization group study [3]. We establish the conditions on r and s such that a QPT arises with increasing dissipation strength --- from a delocalized phase, where resonant tunneling leads to large charge fluctuations on the dot, to a localized phase where such fluctuations are frozen. We present results for the single-particle spectrum and the response of the system to a local electric field, extracting critical exponents that depend in general on r and s and obey hyperscaling relations. We make full comparison with results of [3] where appropriate. Supported by NSF Grant DMR-0312939. [1] M. T. Glossop and K. Ingersent, PRL 95, 067202 (2005); PRB (2006). [2] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E. Ulloa, PRL 97, 096603 (2006). [3] C.-H. Chung, M. Kir'can, L. Fritz, and M. Vojta (2006).

  4. Biexciton induced refractive index changes in a semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Shojaei, S.

    2015-06-01

    We present a detailed theoretical study of linear and third order nonlinear refractive index changes in a optically driven disk-like GaN quantum dot. In our numerical calculations, we consider the three level system containing biexciton, exciton, and ground states and use the compact density matrix formalism and iterative method to obtain refractive index changes. Variational method through effective mass approximation are employed to calculate the ground state energy of biexciton and exciton states. The evolution of refractive index changes around one, two and three photon resonance is investigated and discussed for different quantum dot sizes and light intensities. Size-dependent three-photon nonlinear refractive index change versus incident photon energy compared to that of two-photon is obtained and analyzed. As main result, we found that around resonance frequency at exciton-biexciton transition the quantum confinement has great influence on the linear change in refractive index so that for very large quantum dots, it decreases. Moreover, it was found that third order refractive index changes for three photon process is strongly dependent on QD size and light intensity. Our study reveals that considering our simple model leads to results which are in good agreement with other rare numerical results. Comparison with experimental results has been done.

  5. Electrical vestibular stimuli to enhance vestibulo-motor output and improve subject comfort.

    PubMed

    Forbes, Patrick A; Dakin, Christopher J; Geers, Anoek M; Vlaar, Martijn P; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-01-01

    Electrical vestibular stimulation is often used to assess vestibulo-motor and postural responses in both clinical and research settings. Stochastic vestibular stimulation (SVS) is a recently established technique with many advantages over its square-wave counterpart; however, the evoked muscle responses remain relatively small. Although the vestibular-evoked responses can be enhanced by increasing the stimulus amplitude, subjects often perceive these higher intensity electrical stimuli as noxious or painful. Here, we developed multisine vestibular stimulation (MVS) signals that include precise frequency contributions to increase signal-to-noise ratios (SNR) of stimulus-evoked muscle and motor responses. Subjects were exposed to three different MVS stimuli to establish that: 1) MVS signals evoke equivalent vestibulo-motor responses compared to SVS while improving subject comfort and reducing experimentation time, 2) stimulus-evoked vestibulo-motor responses are reliably estimated as a linear system and 3) specific components of the cumulant density time domain vestibulo-motor responses can be targeted by controlling the frequency content of the input stimulus. Our results revealed that in comparison to SVS, MVS signals increased the SNR 3-6 times, reduced the minimum experimentation time by 85% and improved subjective measures of comfort by 20-80%. Vestibulo-motor responses measured using both EMG and force were not substantially affected by nonlinear distortions. In addition, by limiting the contribution of high frequencies within the MVS input stimulus, the magnitude of the medium latency time domain motor output response was increased by 58%. These results demonstrate that MVS stimuli can be designed to target and enhance vestibulo-motor output responses while simultaneously improving subject comfort, which should prove beneficial for both research and clinical applications. PMID:24392130

  6. The effect of repeated laser stimuli to ink-marked skin on skin temperature-recommendations for a safe experimental protocol in humans.

    PubMed

    Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it. PMID:26793428

  7. The effect of repeated laser stimuli to ink-marked skin on skin temperature—recommendations for a safe experimental protocol in humans

    PubMed Central

    Madden, Victoria J.; Catley, Mark J.; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it. PMID:26793428

  8. Charge state hysteresis in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-01

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  9. Entanglement and Quantum Optics with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Burgers, A. P.; Schaibley, J. R.; Steel, D. G.

    2015-06-01

    Quantum dots (QDs) exhibit many characteristics of simpler two-level (or few level) systems, under optical excitation. This makes atomic coherent optical spectroscopy theory and techniques well suited for understanding the behavior of quantum dots. Furthermore, the combination of the solid state nature of quantum dots and their close approximation to atomic systems makes them an attractive platform for quantum information based technologies. In this chapter, we will discuss recent studies using direct detection of light emitted from a quantum dot to investigate coherence properties and confirm entanglement between the emitted photon and an electron spin qubit confined to the QD.

  10. Charge state hysteresis in semiconductor quantum dots

    SciTech Connect

    Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-03

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  11. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-01

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. PMID:26548450

  12. Thermoelectric energy harvesting with quantum dots.

    PubMed

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics. PMID:25549281

  13. The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    PubMed Central

    Brodeur, Mathieu B.; Dionne-Dostie, Emmanuelle; Montreuil, Tina; Lepage, Martin

    2010-01-01

    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli. PMID:20532245

  14. Interhemispheric collaboration during digit and dot number-matching in younger and older adults.

    PubMed

    Patel, Urvi J; Barakat, Brandon K; Romero, Ruben; Apodaca, Daniel; Hellige, Joseph B; Cherry, Barbara J

    2014-11-01

    Digit and dot number-matching stimuli were used to replicate findings reported for younger adults by Patel and Hellige (2007) and to explore whether performance would differ for younger versus older participants. Participants were to make numerical matches of digits only, dots only, and digits and dots mixed conditions to determine whether reaction time (RT), percentage error, and efficiency scores that combine latency and accuracy for match trials were better on within- versus across-hemisphere trials. Sixty-six younger and 42 older participants were screened with the Mini-Mental State Examination (MMSE) and the Geriatric Depression Scale. They performed the three experimental conditions and were assessed with Digit Span Forward and Backward subscales from the Wechsler Adult Intelligence Scale-III. Results for younger adults demonstrated a within-hemisphere advantage for the Digits and Mixed conditions and an across-hemisphere advantage for the Dots condition, consistent with previous literature. Older participants showed a stronger within-hemisphere advantage for the Digits condition compared with younger participants and no advantage for within- or across-hemisphere processing for the Mixed condition when RT was considered, but they performed similarly to younger adults when efficiency scores were used and showed a relative across-hemisphere advantage for the Dots condition. Although RT suggests age-related differences in how information is distributed across the hemispheres of the brain, more comprehensive efficiency scores indicate that younger and older adults appear to use similar strategies in the coordination of interhemispheric transfer of information. MMSE scores regardless of age were related to type of task but not to across- versus within-hemisphere performance. PMID:25133318

  15. Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1

    PubMed Central

    Lima, Bruss; Singer, Wolf; Chen, Nan-Hui

    2010-01-01

    Gamma synchronization has generally been associated with grouping processes in the visual system. Here, we examine in monkey V1 whether gamma oscillations play a functional role in segmenting surfaces of plaid stimuli. Local field potentials (LFPs) and spiking activity were recorded simultaneously from multiple sites in the opercular and calcarine regions while the monkeys were presented with sequences of single and superimposed components of plaid stimuli. In accord with the previous studies, responses to the single components (gratings) exhibited strong and sustained gamma-band oscillations (30–65 Hz). The superposition of the second component, however, led to profound changes in the temporal structure of the responses, characterized by a drastic reduction of gamma oscillations in the spiking activity and systematic shifts to higher frequencies in the LFP (∼10% increase). Comparisons between cerebral hemispheres and across monkeys revealed robust subject-specific spectral signatures. A possible interpretation of our results may be that single gratings induce strong cooperative interactions among populations of cells that share similar response properties, whereas plaids lead to competition. Overall, our results suggest that the functional architecture of the cortex is a major determinant of the neuronal synchronization dynamics in V1. PMID:19812238

  16. Basic Emotions in the Nencki Affective Word List (NAWL BE): New Method of Classifying Emotional Stimuli

    PubMed Central

    Wierzba, Małgorzata; Riegel, Monika; Wypych, Marek; Jednoróg, Katarzyna; Turnau, Paweł; Grabowska, Anna; Marchewka, Artur

    2015-01-01

    The Nencki Affective Word List (NAWL) has recently been introduced as a standardized database of Polish words suitable for studying various aspects of language and emotions. Though the NAWL was originally based on the most commonly used dimensional approach, it is not the only way of studying emotions. Another framework is based on discrete emotional categories. Since the two perspectives are recognized as complementary, the aim of the present study was to supplement the NAWL database by the addition of categories corresponding to basic emotions. Thus, 2902 Polish words from the NAWL were presented to 265 subjects, who were instructed to rate them according to the intensity of each of the five basic emotions: happiness, anger, sadness, fear and disgust. The general characteristics of the present word database, as well as the relationships between the studied variables are shown to be consistent with typical patterns found in previous studies using similar databases for different languages. Here we present the Basic Emotions in the Nencki Affective Word List (NAWL BE) as a database of verbal material suitable for highly controlled experimental research. To make the NAWL more convenient to use, we introduce a comprehensive method of classifying stimuli to basic emotion categories. We discuss the advantages of our method in comparison to other methods of classification. Additionally, we provide an interactive online tool (http://exp.lobi.nencki.gov.pl/nawl-analysis) to help researchers browse and interactively generate classes of stimuli to meet their specific requirements. PMID:26148193

  17. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    PubMed

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format. PMID:26287499

  18. Multi-Ethnic Differences in Responses to Laboratory Pain Stimuli among Children

    PubMed Central

    Lu, Qian; Zeltzer, Lonnie; Tsao, Jennie

    2013-01-01

    Objective A growing body of literature suggests ethnic differences in experimental pain. However, these studies largely focus on adults and the comparison between Caucasians and African-Americans. The primary aim of this study is to determine ethnic differences in laboratory induced pain in a multi-ethnic child sample. Methods Participants were 214 healthy children (mean age = 12.7, SD= 3.0 yrs). Ninety-eight Caucasian, 58 Hispanic, 34 African-American, and 24 Asian children were exposed to four trials of pressure and radiant heat pain stimuli. Pain responses were assessed with self-report measures (i.e., pain intensity and unpleasantness) and behavioral observation (i.e., pain tolerance). Results Asians demonstrated more pain sensitivity than Caucasians, who evidenced more pain sensitivity than African-Americans and Hispanics. The results hold even after controlling for age, sex, SES, and experimenter’s ethnicity. Asians also showed higher anticipatory anxiety compared with other ethnic groups. Anticipatory anxiety accounted for some ethnic differences in pain between Asians, Hispanics, and African Americans. Conclusions By examining response to laboratory pain stimuli in children representing multiple ethnicities, an understudied sample, the study reveals unique findings compared to the existing literature. These findings have implications for clinicians who manage acute pain in children from diverse ethnic backgrounds. Future investigations should examine mechanisms that account for ethnic differences in pain during various developmental stages. PMID:23668844

  19. Age-related differences in attention and memory toward emotional stimuli.

    PubMed

    Bi, Dandan; Han, Buxin

    2015-09-01

    From the perspectives of time perception and motivation, socioemotional selectivity theory (SST) postulates that in comparison with younger adults, older adults tend to prefer positive stimuli and avoid negative stimuli. Currently the cross-cultural consistency of this positivity effect (PE) is still not clear. While empirical evidence for Western populations is accumulating, the validation of the PE in Asians is still rare. The current study compared 28 younger and 24 older Chinese adults in the processing of emotional information. Eye-tracking and recognition data of participants in processing pictures with positive, negative, or neutral emotional information sampled from the International Affection Picture System were collected. The results showed less negative bias for emotional attention in older adults than in younger adults, whereas for emotional recognition, only younger adults showed a negative bias while older adults showed no bias between negative and positive emotional information. Overall, compared with younger adults, emotional processing was more positive in older adults. It was concluded that Chinese older adults show a PE. PMID:26354156

  20. Spin-spin and spin-orbit interaction effects of two-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Rezaei, G.; Taghizadeh, S. F.; Shahedi, Z.

    2014-09-01

    Simultaneous effects of spin-spin and spin-orbit interactions on the energy spectrum of a two-electron spherical quantum dot with parabolic confinement and under the influence of external electric and magnetic fields are investigated. We have calculated energy eigenvalues and eigenvectors of the system for different spin states. Results show that effects of spin-spin interactions are negligible in comparison with those of the spin-orbit interactions. Spin-orbit interaction splits energy levels and removes degeneracy of different spin states. Moreover it is seen that energy eigenvalues and levels splitting strongly depend on the external magnetic field and the dot dimensions.

  1. Stimuli-responsive supramolecular polymers in aqueous solution.

    PubMed

    Ma, Xiang; Tian, He

    2014-07-15

    CONSPECTUS: Aiming to construct various novel supramolecular polymeric structures in aqueous solution beyond small supramolecular self-assembly molecules and develop functional supramolecular polymeric materials, research interest on functional supramolecular polymers has been prevailing in recent years. Supramolecular polymers are formed by bridging monomers or components together via highly directional noncovalent interactions such as hydrogen bonding, hydrophobic interaction, π-π interaction, metal-ligand coordination, electrostatic interaction, and so forth. They can be easily functionalized by employing diverse building components with specific functions besides the traditional polymeric properties, a number of which are responsive to such external stimuli as pH variance, photoirradiation, chemically or electrochemically redox with the controllable conformation or construction switching, polymerization building and rebuilding, and function adjustment reversibly owing to the reversibility of noncovalent interactions. Supramolecular polymers are "soft matters" and can be functionalized with specific properties such as morphology adjustment, controllable luminescence, shape memory, self-healing, and so forth. Supramolecular polymers constructed based on macrocycle recognition and interlocked structures represent one typical branch of the supramolecular polymer family. Cyclodextrin (CD), cucurbituril (CB), and hydrophilic calixarene derivatives are usually employed to construct hydrophilic supramolecular polymers in aqueous solution. Stimuli-responsive hydrophilic supramolecular polymers, constructed in aqueous solution particularly, can be promising candidates for mimicking biocompatible or vital functional materials. This Account mainly focuses on the recent stimuli-responsive supramolecular polymers based on the host-guest interaction in aqueous solution. We describe the hydrophilic supramolecular polymers constructed via hydrophobic effects, electrostatic

  2. Determining angles of incidence and heights of quantum dot faces by analyzing X-ray diffuse and specular scattering

    NASA Astrophysics Data System (ADS)

    Goray, L. I.; Chkhalo, N. I.; Tsyrlin, G. E.

    2009-04-01

    Scattering of X rays by structures with multilayer ensembles of quantum dots MBE-grown in the In(Ga)As-GaAs system is studied by high-resolution grazing X-ray reflectometry. The peaks of the diffuse scattering intensity are discovered for the first time in structures with both vertically uncorrelated and vertically correlated quantum dots. It is shown that the position of the peak is totally determined by angle of inclination of the quantum dot pyramidal faces (the so-called blaze condition for diffraction gratings), which was theoretically predicted earlier. Comparison with the results of scattering simulation carried out by the technique of boundary integral equations indicates that a simple geometrical condition allows one to exactly determine the value of from the position of the intensity peak, the shape of which depends on many parameters. As follows from the theory and experiment, the width and height of the peaks for samples with vertically correlated quantum dots are larger than for those with uncorrelated dots. The roughness and interdiffusion of interfaces and the height of quantum dots are found from the position and amplitude of Bragg peaks. Thus, the conventional application of high-resolution grazing X-ray reflectometry is extended in this work to determination of the quantum dot geometry.

  3. Chords and harmonies in mixed optical and acoustical stimuli

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Dannenberg, Florian; Dörfler, Joachim; Weber, Bernhard; Weyer, Cornelia; Gercke-Hahn, Harald; Freimuth, Steffen; Heucke, Sören; Gutzmann, Holger Ludwig

    2014-09-01

    The paper is a follow up of the work presented in last year's Optics and Music session on the perception of coherence between low frequency power modulated light and periodical acoustic stimuli. The composition of chords and harmonies from power modulated light sources and their effect as stand-alone stimulus and in conjunction with the equivalent acoustic signal is discussed. Of special interest here is the modulation near perceptible flicker frequency. The substitution of acoustical chord components by their optical counterpart and vice versa is investigated. Further, concepts of a training application for trombone players and other instrumentalists are presented: since the mean slide of the trombone does not have fixed positions, the note must be found and two players might influence each other. The possibility of helping them to synchronize by optical stimuli derived from their playing is investigated. Beside possible applications in emotional reinforcing multimedia oriented entertainment and training support for musicians, again implications for occupational medicine are discussed.

  4. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    PubMed Central

    Torchilin, Vladimir P.

    2015-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  5. Tagging multiple emotional stimuli: negative valence has little benefit.

    PubMed

    Watson, Derrick G; Blagrove, Elisabeth

    2012-06-01

    Six experiments examined the influence of emotional valence on the tagging and enumeration of multiple targets. Experiments 1, 5 and 6 found that there was no difference in the efficiency of tagging/enumerating multiple negative or positive stimuli. Experiment 2 showed that, when neutral-expression face distractors were present, enumerating negative targets was faster overall, but was only more efficient for small numbers of targets. Experiments 3 and 4 determined that this negative target advantage was most likely caused by increased attentional guidance to negatively-valenced stimuli and was not based on simple visual feature differences. The findings suggest that a multiple-target negative stimulus advantage will only occur under conditions of attentional competition, and for relatively small numbers of targets. The results are discussed in relation to theories of multiple- and single-item processing, threat-priority mechanisms, and the types of representations that support different attentional tasks. PMID:22201468

  6. Functional stimuli responsive hydrogel devices by self-folding

    NASA Astrophysics Data System (ADS)

    Yoon, ChangKyu; Xiao, Rui; Park, JaeHyun; Cha, Jaepyeong; Nguyen, Thao D.; Gracias, David H.

    2014-09-01

    We describe a photolithographic approach to create functional stimuli responsive, self-folding, microscale hydrogel devices using thin, gradient cross-linked hinges and thick, fully cross-linked panels. The hydrogels are composed of poly (N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) with reversible stimuli responsive properties just below physiological temperatures. We show that a variety of three-dimensional structures can be formed and reversibly actuated by temperature or pH. We experimentally characterized the swelling and mechanical properties of pNIPAM-AAc and developed a finite element model to rationalize self-folding and its variation with hinge thickness and swelling ratio. Finally, we highlight applications of this approach in the creation of functional devices such as self-folding polymeric micro-capsules, untethered micro-grippers and thermally steered micro-mirror systems.

  7. Preparation and Characterization of Stimuli-Responsive Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Shixing; Zhou, Yang; Guan, Wen; Ding, Bingjun

    2008-08-01

    In this work, the main attention was focused on the synthesis of stimuli-responsive magnetic nanoparticles (SR-MNPs) and the influence of glutathione concentration on its cleavage efficiency. Magnetic nanoparticles (MNPs) were first modified with activated pyridyldithio. Then, MNPs modified with activated pyridyldithio (MNPs-PDT) were conjugated with 2, 4-diamino-6-mercaptopyrimidine (DMP) to form SR-MNPs via stimuli-responsive disulfide linkage. Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize MNPs-PDT. The disulfide linkage can be cleaved by reduced glutathione (GHS). The concentration of glutathione plays an important role in controlling the cleaved efficiency. The optimum concentration of GHS to release DMP is in the millimolar range. These results had provided an important insight into the design of new MNPs for biomedicine applications, such as drug delivery and bio-separation.

  8. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    PubMed

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels. PMID:25045782

  9. Effects of practice on identification of multidimensional stimuli.

    PubMed

    Shieh, K K; Lai, C J

    1996-10-01

    This study investigated the effects of practice on the identification of multidimensional stimuli. Subjects were instructed to perform a two dimensional identification task. The stimuli could be identified either physically or connotatively. There were two orders of reporting the two dimensions of a stimulus. Analysis showed that method of identification and order of report significantly affected speed of identification. Physical identification was faster than identification of meaning. An appropriate order of report shortened response times, and increased practice reduced response times. Practice in multidimensional identification seemed to follow the same laws and trends of unidimensional performance. The effects of practice on multimensional identification could be represented by straight lines if response times were plotted against the logarithm of the number of trials as noted in unidimensional performance. Further, practice attenuated initial differences in response times between physical identification and identification of meaning. PMID:8902016

  10. Imagery vividness, hypnotic susceptibility, and the perception of fragmented stimuli.

    PubMed

    Wallace, B

    1990-02-01

    Two experiments were conducted to determine the role of hypnotic susceptibility level (high or low) and imaging ability (vivid or poor) in the performance of gestalt closure tasks. In Experiment 1, subjects were required to identify fragmented stimuli in the Closure Speed Test and in the Street Test. In Experiment 2, subjects reported on fragmented stimuli that were projected to the right eye and subsequently produced an afterimage. Individuals were asked to identify the composite if possible and to report on the duration of the afterimage. In both experiments, hypnotic susceptibility level and imaging ability affected reports of gestalt closure. The greatest number of correct closures was reported by those who were both high in hypnotic susceptibility and vivid in imaging ability. In addition, in the second experiment, this group also reported the longest enduring afterimage. These results are discussed in terms of the processes required to perform in a gestalt closure task. PMID:2319447

  11. Classical conditioning through auditory stimuli in Drosophila: methods and models

    PubMed Central

    Menda, Gil; Bar, Haim Y.; Arthur, Ben J.; Rivlin, Patricia K.; Wyttenbach, Robert A.; Strawderman, Robert L.; Hoy, Ronald R.

    2011-01-01

    SUMMARY The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness. PMID:21832129

  12. Effects of rectilinear acceleration, optokinetic and caloric stimuli in space

    NASA Technical Reports Server (NTRS)

    Vonbaumgarten, R.

    1981-01-01

    The set of experiments comprising the Spacelab 1ES201 package designed to investigate the human vestibular system and equilibratory function in weightlessness are described. The specific objectives of the experiments include: (1) the determination of the threshold of perception of linear oscillatory motion; (2) measurement of physiological and subjective responses to supra threshold, linear and angular motion stimuli; (3) study of the postural adjustments, eye movements, and illusions of attitude and motion evoked by optokinetic stimuli, (i.e., moving visual patterns) in order to assess visual/vestibular interactions; (4) examination of the effect of thermal stimulations of the vestibular apparatus to determine if the eye movements elicited by the 'caloric test' are used by a density gradient in the semicircular canal; and (5) investigation of the pathogenesis of space motion sickness by recording signs and symptoms during the course of vestibular stimulation and, specifically, when the test subject is exposed to sustained, linear oscillatory motion.

  13. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    PubMed

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells. PMID:26781285

  14. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-01-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  15. Single-dot optical emission from ultralow density well-isolated InP quantum dots

    SciTech Connect

    Ugur, A.; Hatami, F.; Masselink, W. T.; Vamivakas, A. N.; Lombez, L.; Atatuere, M.

    2008-10-06

    We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

  16. Memory bias for schema-related stimuli in individuals with bulimia nervosa.

    PubMed

    Legenbauer, Tanja; Maul, Bärbel; Rühl, Ilka; Kleinstäuber, Maria; Hiller, Wolfgang

    2010-03-01

    This study investigates whether individuals with bulimia nervosa (BN) have a memory bias in relation to explicit memory (cued and free recall vs. verbal and pictorial recognition tasks). Twenty-five participants diagnosed with BN and 27 normal controls (NC) were exposed to body-related, food-related, and neutral TV commercials, and then recall and recognition rates were assessed. Poorer recognition and recall of body-related stimuli was found for BN in comparison to NC, suggesting a memory bias. Results are discussed in relation to previous studies, along with suggestions as to how future studies can gain more insight into dysfunctions in information processing that can lead to the maintenance of eating disorders. PMID:20099307

  17. System of Personal Identification by Using Tactile Stimuli

    NASA Astrophysics Data System (ADS)

    Park, Young-Il; Uchida, Masafumi

    In present, personal identfication system have been used to input identification-numbers and passwords by keyboards and touch panels. When a user enters their identification-numbers and passwords an observer could easily see the user's secret details. In this report, new personal identification, which system constitutes tactile sense information using tactile stimuli and based on the cardinal trait of the tactile sense, is proposed.

  18. Interpersonal touch suppresses visual processing of aversive stimuli

    PubMed Central

    Kawamichi, Hiroaki; Kitada, Ryo; Yoshihara, Kazufumi; Takahashi, Haruka K.; Sadato, Norihiro

    2015-01-01

    Social contact is essential for survival in human society. A previous study demonstrated that interpersonal contact alleviates pain-related distress by suppressing the activity of its underlying neural network. One explanation for this is that attention is shifted from the cause of distress to interpersonal contact. To test this hypothesis, we conducted a functional MRI (fMRI) study wherein eight pairs of close female friends rated the aversiveness of aversive and non-aversive visual stimuli under two conditions: joining hands either with a rubber model (rubber-hand condition) or with a close friend (human-hand condition). Subsequently, participants rated the overall comfortableness of each condition. The rating result after fMRI indicated that participants experienced greater comfortableness during the human-hand compared to the rubber-hand condition, whereas aversiveness ratings during fMRI were comparable across conditions. The fMRI results showed that the two conditions commonly produced aversive-related activation in both sides of the visual cortex (including V1, V2, and V5). An interaction between aversiveness and hand type showed rubber-hand-specific activation for (aversive > non-aversive) in other visual areas (including V1, V2, V3, and V4v). The effect of interpersonal contact on the processing of aversive stimuli was negatively correlated with the increment of attentional focus to aversiveness measured by a pain-catastrophizing scale. These results suggest that interpersonal touch suppresses the processing of aversive visual stimuli in the occipital cortex. This effect covaried with aversiveness-insensitivity, such that aversive-insensitive individuals might require a lesser degree of attentional capture to aversive-stimulus processing. As joining hands did not influence the subjective ratings of aversiveness, interpersonal touch may operate by redirecting excessive attention away from aversive characteristics of the stimuli. PMID:25904856

  19. Lack of sleep affects the evaluation of emotional stimuli.

    PubMed

    Tempesta, Daniela; Couyoumdjian, Alessandro; Curcio, Giuseppe; Moroni, Fabio; Marzano, Cristina; De Gennaro, Luigi; Ferrara, Michele

    2010-04-29

    Sleep deprivation (SD) negatively affects various cognitive performances, but surprisingly evidence about a specific impact of sleep loss on subjective evaluation of emotional stimuli remains sparse. In the present study, we assessed the effect of SD on the emotional rating of standardized visual stimuli selected from the International Affective Picture System. Forty university students were assigned to the sleep group (n=20), tested before and after one night of undisturbed sleep at home, or to the deprivation group, tested before and after one night of total SD. One-hundred and eighty pictures (90 test, 90 retest) were selected and categorized as pleasant, neutral and unpleasant. Participants were asked to judge their emotional reactions while viewing pictures by means of the Self-Assessment Manikin. Subjective mood ratings were also obtained by means of Visual Analog Scales. No significant effect of SD was observed on the evaluation of pleasant and unpleasant stimuli. On the contrary, SD subjects perceived the neutral pictures more negatively and showed an increase of negative mood and a decrease of subjective alertness compared to non-deprived subjects. Finally, an analysis of covariance on mean valence ratings of neutral pictures using negative mood as covariate confirmed the effect of SD. Our results indicate that sleep is involved in regulating emotional evaluation. The emotional labeling of neutral stimuli biased toward negative responses was not mediated by the increase of negative mood. This effect can be interpreted as an adaptive reaction supporting the "better safe than sorry" principle. It may also have applied implications for healthcare workers, military and law-enforcement personnel. PMID:20117179

  20. Brain response to visual sexual stimuli in homosexual pedophiles

    PubMed Central

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269

  1. Temporal sensitivity. [time dependent human perception of visual stimuli

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1986-01-01

    Human visual temporal sensitivity is examined. The stimuli used to measure temporal sensitivity are described and the linear systems theory is reviewed in terms of temporal sensitivity. A working model which represents temporal sensitivity is proposed. The visibility of a number of temporal wave forms, sinusoids, rectangular pulses, and pulse pairs, is analyzed. The relation between spatial and temporal effects is studied. Temporal variations induced by image motion and the effects of light adaptation on temporal sensitivity are considered.

  2. Equivalence-Equivalence: Matching Stimuli with Same Discriminative Functions

    ERIC Educational Resources Information Center

    Carpentier, Franck; Smeets, Paul M.; Barnes-Holmes, Dermot

    2004-01-01

    Previous studies have shown that after being trained on A-B and A-C match-to-sample tasks, adults match not only same-class B and C stimuli (equivalence) but also BC compounds with same-class elements and with different-class elements (BC-BC). The assumption was that the BC-BC performances are based on matching equivalence and nonequivalence…

  3. Rapid DOTS expansion in India.

    PubMed Central

    Khatri, G. R.; Frieden, Thomas R.

    2002-01-01

    Since late 1998 the coverage of the DOTS strategy in India has been expanded rapidly. In both 2000 and 2001 the country probably accounted for more than half the global increase in the number of patients treated under DOTS and by early 2002 more than a million patients were being treated in this way in India. As a result, nearly 200 000 lives were saved. The lessons learnt relate to the importance of the following elements of the programme: (1) getting the science right and ensuring technical excellence; (2) building commitment and ensuring the provision of funds and flexibility in their utilization; (3) maintaining focus and priorities; (4) systematically appraising each area before starting service delivery; (5) ensuring an uninterrupted drug supply; (6) strengthening the established infrastructure and providing support for staff; (7) supporting the infrastructure required in urban areas; (8) ensuring full-time independent technical support and supervision, particularly during the initial phases of implementation; (9) monitoring intensively and giving timely feedback; and (10) continuous supervision. Tuberculosis (TB) control still faces major challenges in India. To reach its potential, the control programme needs to: continue to expand so as to cover the remaining half of the country, much of which has a weaker health infrastructure than the areas already covered; increase its reach in the areas already covered so that a greater proportion of patients is treated; ensure sustainability; improve the patient-friendliness of services; confront TB associated with human immunodeficiency virus (HIV) infection. It is expected that HIV will increase the number of TB cases by at least 10% and by a considerably higher percentage if HIV becomes much more widespread. India's experience shows that DOTS can achieve high case-detection and cure rates even with imperfect technology and often with an inadequate public health infrastructure. However, this can only happen if the

  4. Fertility of beef cattle females with mating stimuli around insemination.

    PubMed

    Rodriguez, R O; Rivera, M J

    1999-01-29

    An experiment was conducted to test the hypothesis that sterile mounts around insemination improves pregnancy rate to artificial insemination (AI) and to define the effects of age, season, time to complete AI and time of day of insemination. A total of 178 Simbrah females were randomly assigned by calving date and body condition to one of three treatments during two consecutive years: (1) mating stimuli with a sterile bull at the time the cows were detected in estrus; (2) mating stimuli immediately after completing AI; (3) without mating stimuli. All cows and heifers were maintained under the same conditions of handling and feeding within the two breeding seasons (winter 1995 and summer 1996). Vasectomized bulls were used for the sterile mounts. Cows and heifers that were given a sterile mount at the time of detection of estrus, had an increased pregnancy rate (60.0%) compared with females given a sterile mount after completing AI (25.4%) or females without the sterile mount (35.6%) (P < 0.01). Age, season, time to complete AI and time of day of AI were all non-significant (P > 0.05). Therefore, there is a biostimulatory effect of mating at the time beef cattle females are detected in estrus, on pregnancy rates to AI. PMID:10090564

  5. Hemispheric specialization in dogs for processing different acoustic stimuli.

    PubMed

    Siniscalchi, Marcello; Quaranta, Angelo; Rogers, Lesley J

    2008-01-01

    Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions. PMID:18843371

  6. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications.

    PubMed

    Ng, Kenneth K; Shakiba, Mojdeh; Huynh, Elizabeth; Weersink, Robert A; Roxin, Áron; Wilson, Brian C; Zheng, Gang

    2014-08-26

    Photoacoustic imaging provides high-resolution images at depths beyond the optical diffusion limit. To broaden its utility, there is need for molecular sensors capable of detecting environmental stimuli through alterations in photoacoustic signal. Photosynthetic organisms have evolved ingenious strategies to optimize light absorption through nanoscale ordered dye aggregation. Here, we use this concept to synthesize a stimuli-responsive nanoswitch with a large optical absorbance and sensing capabilities. Ordered dye aggregation between light-harvesting porphyrins was achieved through intercalation within thermoresponsive nanovesicles. This causes an absorbance red-shift of 74 nm and a 2.7-fold increase in absorptivity of the Qy-band, with concomitant changes in its photoacoustic spectrum. This spectral feature can be reversibly switched by exceeding a temperature threshold. Using this thermochromic property, we noninvasively determined a localized temperature change in vivo, relevant for monitoring thermal therapies of solid tumors. Similar strategies may be applied alongside photoacoustic imaging, to detect other stimuli such as pH and enzymatic activity. PMID:25046406

  7. Oxytocin facilitates protective responses to aversive social stimuli in males

    PubMed Central

    Striepens, Nadine; Scheele, Dirk; Kendrick, Keith M.; Becker, Benjamin; Schäfer, Lea; Schwalba, Knut; Reul, Jürgen; Maier, Wolfgang; Hurlemann, René

    2012-01-01

    The neuropeptide oxytocin (OXT) can enhance the impact of positive social cues but may reduce that of negative ones by inhibiting amygdala activation, although it is unclear whether the latter causes blunted emotional and mnemonic responses. In two independent double-blind placebo-controlled experiments, each involving over 70 healthy male subjects, we investigated whether OXT affects modulation of startle reactivity by aversive social stimuli as well as subsequent memory for them. Intranasal OXT potentiated acoustic startle responses to negative stimuli, without affecting behavioral valence or arousal judgments, and biased subsequent memory toward negative rather than neutral items. A functional MRI analysis of this mnemonic effect revealed that, whereas OXT inhibited amygdala responses to negative stimuli, it facilitated left insula responses for subsequently remembered items and increased functional coupling between the left amygdala, left anterior insula, and left inferior frontal gyrus. Our results therefore show that OXT can potentiate the protective and mnemonic impact of aversive social information despite reducing amygdala activity, and suggest that the insula may play a role in emotional modulation of memory. PMID:23074247

  8. Development of infant contrast sensitivity to chromatic stimuli.

    PubMed

    Morrone, M C; Burr, D C; Fiorentini, A

    1993-12-01

    We have monitored the development of contrast sensitivity to equiluminant red-green chromatic patterns by monitoring visual evoked potentials (VEPs) in 13 infants. The results confirm our previous report [Morrone, Burr and Fiorentini, Proceedings of the Royal Society B, 242 (1990a)] that, before 7-8 weeks of age, there was no response to purely chromatic stimuli, while at the same age luminance stimuli of 20% contrast produced reliable responses. At all ages (even before the onset of a chromatic response) the colour mixture to yield equiluminance was similar to that of adults, suggesting that the relative proportion and efficacy of medium- and long-wave cones is similar for infants as for adults. For both luminance and chromatic stimuli, amplitude increased roughly linearly with log-contrast, so sensitivity thresholds could be predicted by linear extrapolation to the abscissa. Detailed contrast sensitivity curves were measured for four infants at various ages. The results show that luminance and chromatic contrast sensitivity develop independently at different rates, probably reflecting differential development of postreceptoral neural mechanisms. PMID:8249333

  9. Attention modulates the dorsal striatum response to love stimuli.

    PubMed

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. PMID:23097247

  10. Non-nutritive sweeteners are not super-normal stimuli

    PubMed Central

    Antenucci, Rachel G.; Hayes, John E.

    2014-01-01

    Background It is often claimed that non-nutritive sweeteners (NNS) are ‘sweeter than sugar’, with the implicit implication high potency sweeteners are super-normal stimuli that encourage exaggerated responses. This study aimed to investigate the perceived sweetness intensity of a variety of nutritive (Sucrose, Maple Syrup, and Agave Nectar) and NNS (Acesulfame-K (AceK), Rebaudioside A (RebA), Aspartame, and Sucralose) in a large cohort of untrained participants using contemporary psychophysical methods. Methods Participants (n=401 total) rated the intensity of sweet, bitter, and metallic sensations for nutritive and NNS in water using the general labeled magnitude scale (gLMS). Results Sigmoidal Dose-Response functions were observed for all stimuli except AceK. That is, sucrose follows a sigmoidal function if the data are not artifactually linearized via prior training. More critically, there is no evidence that NNS have a maximal sweetness (intensity) greater than sucrose; indeed, the maximal sweetness for AceK, RebA and Sucralose were significantly lower than for concentrated sucrose. For these sweeteners, mixture suppression due to endogenous dose-dependent bitter or metallic sensations appears to limit maximal perceived sweetness. Conclusions In terms of perceived sweetness, non-nutritive sweeteners cannot be considered super-normal stimuli. These data do not support the view that non-nutritive sweeteners hijack or over-stimulate sweet receptors to product elevated sweet sensations. PMID:24942868

  11. A dual-stimuli-responsive fluorescent switch ultrathin film.

    PubMed

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-28

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices. PMID:26400734

  12. Goldfish and oscars have comparable responsiveness to dipole stimuli

    NASA Astrophysics Data System (ADS)

    Nauroth, Ines Eva; Mogdans, Joachim

    2009-12-01

    The relative roles of the fish lateral line and inner ear for the perception of hydrodynamic stimuli are poorly investigated. Here, we studied responsiveness to a 100 Hz vibrating sphere (dipole stimulus) of goldfish and oscars, two species that differ in peripheral lateral line morphology, inner ear morphology, mechanical linkage between inner ear and swim bladder, and inner ear sensitivity. We measured unconditioned dipole-evoked changes in breathing activity in still water and in the presence of a 5-cm s-1 background flow. In still water, individuals from both species responded to sound pressure levels (SPLs) between 92 and 109 dB SPL re 1 μPaRMS. Responsiveness was not affected by background flow or by temporary inactivation of the lateral line. The data suggest that fish with different lateral line and inner ear morphologies have similar sensitivities to vibrating sphere stimuli and can detect and respond to dipole sources equally well in still water and in moderate background flows. Moreover, behavioral responses were not dependent on a functional lateral line, suggesting that in this type of experiment, the inner ear is the dominant sense organ for the perception of hydrodynamic stimuli.

  13. Expectations accelerate entry of visual stimuli into awareness.

    PubMed

    Pinto, Yair; van Gaal, Simon; de Lange, Floris P; Lamme, Victor A F; Seth, Anil K

    2015-01-01

    How do expectations influence transitions between unconscious and conscious perceptual processing? According to the influential predictive processing framework, perceptual content is determined by predictive models of the causes of sensory signals. On one interpretation, conscious contents arise when predictive models are verified by matching sensory input (minimizing prediction error). On another, conscious contents arise when surprising events falsify current perceptual predictions. Finally, the cognitive impenetrability account posits that conscious perception is not affected by such higher level factors. To discriminate these positions, we combined predictive cueing with continuous flash suppression (CFS) in which the relative contrast of a target image gradually increases over time. In four experiments we established that expected stimuli enter consciousness faster than neutral or unexpected stimuli. These effects are difficult to account for in terms of response priming, pre-existing stimulus associations, or the attentional mechanisms that cause asynchronous temporal order judgments (of simultaneously presented stimuli). Our results further suggest that top-down expectations play a larger role when bottom-up input is ambiguous, in line with predictive processing accounts of perception. Taken together, our findings support the hypothesis that conscious access depends on verification of perceptual predictions. PMID:26114676

  14. The Commonality of Loss Aversion across Procedures and Stimuli

    PubMed Central

    Kim, Byoung W.; Gilman, Jodi M.; Kuster, John K.; Blood, Anne J.; Kuhnen, Camelia M.

    2015-01-01

    Individuals tend to give losses approximately 2-fold the weight that they give gains. Such approximations of loss aversion (LA) are almost always measured in the stimulus domain of money, rather than objects or pictures. Recent work on preference-based decision-making with a schedule-less keypress task (relative preference theory, RPT) has provided a mathematical formulation for LA similar to that in prospect theory (PT), but makes no parametric assumptions in the computation of LA, uses a variable tied to communication theory (i.e., the Shannon entropy or information), and works readily with non-monetary stimuli. We evaluated if these distinct frameworks described similar LA in healthy subjects, and found that LA during the anticipation phase of the PT-based task correlated significantly with LA related to the RPT-based task. Given the ease with which non-monetary stimuli can be used on the Internet, or in animal studies, these findings open an extensive range of applications for the study of loss aversion. Furthermore, the emergence of methodology that can be used to measure preference for both social stimuli and money brings a common framework to the evaluation of preference in both social psychology and behavioral economics. PMID:26394306

  15. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  16. STED nanoscopy with fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-05-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ~50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

  17. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  18. STED nanoscopy with fluorescent quantum dots

    PubMed Central

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-01-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ∼50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging. PMID:25980788

  19. Semiconductor double quantum dot micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

  20. Taste coding of complex naturalistic taste stimuli and traditional taste stimuli in the parabrachial pons of the awake, freely licking rat.

    PubMed

    Sammons, Joshua D; Weiss, Michael S; Victor, Jonathan D; Di Lorenzo, Patricia M

    2016-07-01

    Several studies have shown that taste-responsive cells in the brainstem taste nuclei of rodents respond to sensory qualities other than gustation. Such data suggest that cells in the classical gustatory brainstem may be better tuned to respond to stimuli that engage multiple sensory modalities than to stimuli that are purely gustatory. Here, we test this idea by recording the electrophysiological responses to complex, naturalistic stimuli in single neurons in the parabrachial pons (PbN, the second neural relay in the central gustatory pathway) in awake, freely licking rats. Following electrode implantation and recovery, we presented both prototypical and naturalistic taste stimuli and recorded the responses in the PbN. Prototypical taste stimuli (NaCl, sucrose, citric acid, and caffeine) and naturalistic stimuli (clam juice, grape juice, lemon juice, and coffee) were matched for taste quality and intensity (concentration). Umami (monosodium glutamate + inosine monophosphate) and fat (diluted heavy cream) were also tested. PbN neurons responded to naturalistic stimuli as much or more than to prototypical taste stimuli. Furthermore, they convey more information about naturalistic stimuli than about prototypical ones. Moreover, multidimensional scaling analyses showed that across unit responses to naturalistic stimuli were more widely separated than responses to prototypical taste stimuli. Interestingly, cream evoked a robust and widespread response in PbN cells. Collectively, these data suggest that natural foods are more potent stimulators of PbN cells than purely gustatory stimuli. Probing PbN cells with pure taste stimuli may underestimate the response repertoire of these cells. PMID:27121585

  1. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    SciTech Connect

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.

  2. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rath, Arup K.; Lasanta, Tania; Bernechea, Maria; Diedenhofen, Silke L.; Konstantatos, Gerasimos

    2014-02-01

    Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties, carrier lifetime, and mobility, in a facile way.

  3. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy

    SciTech Connect

    Rath, Arup K.; Lasanta, Tania; Bernechea, Maria; Diedenhofen, Silke L.; Konstantatos, Gerasimos

    2014-02-10

    Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties, carrier lifetime, and mobility, in a facile way.

  4. Biocompatible Quantum Dots for Biological Applications

    SciTech Connect

    Rosenthal, Sandra; Chang, Jerry; Kovtun, Oleg; McBride, James; Tomlinson, Ian

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  5. Photoluminescence of a quantum-dot molecule

    SciTech Connect

    Kruchinin, Stanislav Yu.; Rukhlenko, Ivan D.; Baimuratov, Anvar S.; Leonov, Mikhail Yu.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-01-07

    The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation processes taking place in the nanostructure components. We formulate a theory of low-temperature, stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent on the geometric, material, and relaxation parameters of the quantum-dot molecule. These parameters are explicitly contained in the analytical expression for the photoluminescence differential cross section derived in the paper. The developed theory and expression obtained are essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently coupled quantum systems.

  6. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  7. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  8. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  9. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    NASA Astrophysics Data System (ADS)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  10. Blood Compatibility Evaluations of Fluorescent Carbon Dots.

    PubMed

    Li, Sha; Guo, Zhong; Zhang, Yi; Xue, Wei; Liu, Zonghua

    2015-09-01

    Because of their unique advantages, fluorescent carbon dots are gaining popularity in various biomedical applications. For these applications, good biosafety is a prerequisite for their use in vivo. Studies have reported the preliminary biocompatibility evaluations of fluorescent carbon dots (mainly cytotoxicity); however, to date, little information is available about their hemocompatibility, which could impede their development from laboratory to bedside. In this work, we evaluated the hemocompatibility of fluorescent carbon dots, which we prepared by hydrothermal carbonization of α-cyclodextrin. The effects of the carbon dots on the structure and function of key blood components were investigated at cellular and molecular levels. In particular, we considered the morphology and lysis of human red blood cells, the structure and conformation of the plasma protein fibrinogen, the complement activation, platelet activation, and in vitro and in vivo blood coagulation. We found that the carbon dots have obvious concentration-dependent effects on the blood components. Overall, concentrations of the fluorescent carbon dots at ≤0.1 mg/mL had few adverse effects on the blood components, but at higher doses, the carbon dots impair the structure and function of the blood components, causing morphological disruptions and lysis of red blood cells, interference in the local microenvironments of fibrinogen, activation of the complement system, and disturbances in the plasma and whole blood coagulation function in vitro. However, the carbon dots tend to activate platelets only at low concentrations. Intravenous administration of the carbon dots at doses up to 50 mg/kg did not impair the blood coagulation function. These results provide valuable information for the clinical application of fluorescent carbon dots. PMID:26269934

  11. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    SciTech Connect

    Yuan, Zhimin; Yang, Ping

    2013-07-15

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling.

  12. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  13. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    PubMed Central

    He, Ji-Wei; Liu, Hanli; Peng, Yuan Bo

    2015-01-01

    Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy

  14. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli.

    PubMed

    He, Ji-Wei; Liu, Hanli; Peng, Yuan Bo

    2015-01-01

    Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO₂), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO₂ were more reliably attributed to brief stimuli, whereas a sustained decrease in SO₂ was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy

  15. Skin conductance responses to masked conditioned stimuli: phylogenetic/ontogenetic factors versus direction of threat?

    PubMed

    Flykt, Anders; Esteves, Francisco; Ohman, Arne

    2007-03-01

    Evolutionarily old threat stimuli are likely to require less conscious information processing than threat stimuli of a more recent date. To test this proposal two differential conditioning experiments, with biological threat stimuli (e.g. snakes) in half the groups and cultural threat stimuli (e.g. guns) in the other half, were conducted. The conditioned (CS+) and the control (CS-) stimuli were backward masked during the extinction phase to prevent conscious recognition. The differential skin conductance responding for both biological and cultural threat stimuli survived the masking procedure when the conditioned stimuli were directed towards the participants (Experiment 1), but for neither type of CS when stimuli were not directed towards the participants (Experiment 2). These findings are discussed in relation to the previous finding by Ohman and co-workers and in relation to imminence of threat. PMID:17049710

  16. Processing Two Dimensions of Nonspeech Stimuli: The Auditory-Phonetic Distinction Reconsidered

    ERIC Educational Resources Information Center

    Blechner, Mark J.; And Others

    1976-01-01

    Nonspeech stimuli were varied along two dimensions--intensity and rise time. In a series of speeded classification tasks, subjects were asked to identify the stimuli in terms of one of these dimensions. (Editor)

  17. Quantity estimation and comparison in western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Vonk, Jennifer; Torgerson-White, Lauri; McGuire, Molly; Thueme, Melissa; Thomas, Jennifer; Beran, Michael J

    2014-05-01

    We investigated the quantity judgment abilities of two adult male western lowland gorillas (Gorilla gorilla gorilla) by presenting discrimination tasks on a touch-screen computer. Both gorillas chose the larger quantity of two arrays of dot stimuli. On some trials, the relative number of dots was congruent with the relative total area of the two arrays. On other trials, number of dots was incongruent with area. The gorillas were first tested with static dots, then with dots that moved within the arrays, and finally on a task where they were required to discriminate numerically larger subsets within arrays of moving dots. Both gorillas achieved above-chance performance on both congruent and incongruent trials with all tasks, indicating that they were able to use number as a cue even though ratio of number and area significantly controlled responding, suggesting that number was not the only relevant dimension that the gorillas used. The pattern of performance was similar to that found previously with monkeys and chimpanzees but had not previously been demonstrated in gorillas within a computerized test format, and with these kinds of visual stimuli. PMID:24271957

  18. Evaluating Preference for Familiar and Novel Stimuli across a Large Group of Children with Autism

    ERIC Educational Resources Information Center

    Kenzer, Amy L.; Bishop, Michele R.

    2011-01-01

    This study examined relative preference for familiar and novel stimuli for 31 children with autism. Preference surveys, completed by 39 staff members, identified high and low preference familiar stimuli for each participant. Novel stimuli were selected by experimenters and included items that were not reported on a preference survey for that…

  19. Do Live versus Audio-Recorded Narrative Stimuli Influence Young Children's Narrative Comprehension and Retell Quality?

    ERIC Educational Resources Information Center

    Kim, Young-Suk Grace

    2016-01-01

    Purpose: The primary aim of the present study was to examine whether different ways of presenting narrative stimuli (i.e., live narrative stimuli versus audio-recorded narrative stimuli) influence children's performances on narrative comprehension and oral-retell quality. Method: Children in kindergarten (n = 54), second grade (n = 74), and fourth…

  20. Teaching children with autism to engage in conversational exchanges: script fading with embedded textual stimuli.

    PubMed Central

    Sarokoff, R A; Taylor, B A; Poulson, C L

    2001-01-01

    A multiple baseline across three sets of stimuli was used to assess the effects of a script-fading procedure using embedded text to teach 2 children with autism to engage in conversation statements about the stimuli. Both students stated all the scripted statements, and unscripted statements also increased. Generalization was assessed with novel peers and with untrained stimuli. PMID:11317993

  1. Understanding the Effects of Moving Visual Stimuli on Unilateral Neglect Following Stroke

    ERIC Educational Resources Information Center

    Plummer, Prudence; Dunai, Judith; Morris, Meg E.

    2006-01-01

    Moving visual stimuli have been shown to reduce unilateral neglect (ULN), however, the mechanisms underlying these effects remain poorly understood. This study compared lateralised and non-lateralised moving visual stimuli to investigate whether the spatial characteristics or general alerting properties of moving visual stimuli are responsible for…

  2. Assessment of the Relatedness of Equivalent Stimuli through a Semantic Differential

    ERIC Educational Resources Information Center

    Bortoloti, Renato; de Rose, Julio C.

    2009-01-01

    If stimulus equivalence is a model of meaning, abstract stimuli should acquire the meaning of meaningful stimuli equivalent to them. In Experiment 1, college students matched faces expressing emotions to arbitrary pictures, forming three classes of equivalent stimuli, each comprising an emotional expression and three arbitrary pictures. Semantic…

  3. PC-compatible computer-generated stimuli for video-task testing

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1990-01-01

    A program for automatic computer generation of novel nonverbal stimuli is described. The program, STIMGEN, allows menu-driven control over the type and appearance of stimuli. Data are presented in which two monkeys matched to sample with high accuracy using stimuli generated with STIMGEN. These data are interpreted to support the usefulness and value of automatic stimulus generation in a variety of applications.

  4. Bears "Count" Too: Quantity Estimation and Comparison in Black Bears (Ursus Americanus).

    PubMed

    Vonk, Jennifer; Beran, Michael J

    2012-07-01

    Studies of bear cognition are notably missing from the comparative record despite bears' large relative brain size and interesting status as generalist carnivores facing complex foraging challenges, but lacking complex social structures. We investigated the numerical abilities of three American black bears (Ursus Americanus) by presenting discrimination tasks on a touch-screen computer. One bear chose the larger of two arrays of dot stimuli, while two bears chose the smaller array of dots. On some trials the relative number of dots was congruent with the relative total area of the two arrays. On other trials number of dots was incongruent with area. All of the bears were above chance on trials of both types with static dots. Despite encountering greater difficulty with dots that moved within the arrays, one bear was able to discriminate numerically larger arrays of moving dots, and a subset of moving dots from within the larger array, even when area and number were incongruent. Thus, although the bears used area as a cue to guide responding, they were also able to use number as a cue. The pattern of performance was similar to that found previously with monkeys, and suggests that bears may also show other forms of sophisticated quantitative abilities. PMID:22822244

  5. Thermoregulatory responses during exercise and a hot water immersion and the affective responses to peripheral thermal stimuli

    NASA Astrophysics Data System (ADS)

    Fujishima, K.

    1986-03-01

    Tympanic (Tty), mean skin (¯Tsk) and mean body (¯Tb) temperatures and heart rate (HR) increased more in low Vo2 max group (LG) than in high Vo2 max group (HG) during exercise. The regression coefficient of body temperatures (Tty and ¯Tb) on HR and the increased rate of heat storage were larger in LG than in HG during exercise. The local sweat rate (per min/cm2) during a hot water bath exhibited a considerable large quantity in comparison with the amount during exercise. Internal and skin temperatures during a hot water bath increased more immediately than those during exercise. The levels of comfort sensation during the preovulatory phase in women and pre-exercise period in men were higher at 40‡C than at 20‡C as peripheral thermal stimulus. The levels during the postovulatory and post-exercise phases in the same subjects were higher with the cool stimuli than with the warm stimuli. Above results suggest that thermoregulatory responses during submaximal exercise are different according to physical fitness and that these responses are different from those during hot water immersion. In addition, these suggest that the scores of thermal sensation with warm and cool stimuli are different during the pre- and post-ovulatory phases and the pre- and post-exercise periods.

  6. A dual-stimuli-responsive fluorescent switch ultrathin film

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  7. Quantum Dots in Gated Nanowires and Nanotubes

    NASA Astrophysics Data System (ADS)

    Churchill, Hugh Olen Hill

    This thesis describes experiments on quantum dots made by locally gating one-dimensional quantum wires. The first experiment studies a double quantum dot device formed in a Ge/Si core/shell nanowire. In addition to measuring transport through the double dot, we detect changes in the charge occupancy of the double dot by capacitively coupling it to a third quantum dot on a separate nanowire using a floating gate. We demonstrate tunable tunnel coupling of the double dot and quantify the strength of the tunneling using the charge sensor. The second set of experiments concerns carbon nanotube double quantum dots. In the first nanotube experiment, spin-dependent transport through the double dot is compared in two sets of devices. The first set is made with carbon containing the natural abundance of 12C (99%) and 13C (1%), the second set with the 99% 13C and 1% 12C. In the devices with predominantly 13C, we find evidence in spin-dependent transport of the interaction between the electron spins and the 13C nuclear spins that was much stronger than expected and not present in the 12C devices. In the second nanotube experiment, pulsed gate experiments are used to measure the timescales of spin relaxation and dephasing in a two-electron double quantum dot. The relaxation time is longest at zero magnetic field and goes through a minimum at higher field, consistent with the spin-orbit-modified electronic spectrum of carbon nanotubes. We measure a short dephasing time consistent with the anomalously strong electron-nuclear interaction inferred from the first nanotube experiment.

  8. Parasympathetic Stimuli on Bronchial and Cardiovascular Systems in Humans

    PubMed Central

    Zannin, Emanuela; Pellegrino, Riccardo; Di Toro, Alessandro; Antonelli, Andrea; Dellacà, Raffaele L.; Bernardi, Luciano

    2015-01-01

    Background It is not known whether parasympathetic outflow simultaneously acts on bronchial tone and cardiovascular system waxing and waning both systems in parallel, or, alternatively, whether the regulation is more dependent on local factors and therefore independent on each system. The aim of this study was to evaluate the simultaneous effect of different kinds of stimulations, all associated with parasympathetic activation, on bronchomotor tone and cardiovascular autonomic regulation. Methods Respiratory system resistance (Rrs, forced oscillation technique) and cardio-vascular activity (heart rate, oxygen saturation, tissue oxygenation index, blood pressure) were assessed in 13 volunteers at baseline and during a series of parasympathetic stimuli: O2 inhalation, stimulation of the carotid sinus baroreceptors by neck suction, slow breathing, and inhalation of methacholine. Results Pure cholinergic stimuli, like O2 inhalation and baroreceptors stimulation, caused an increase in Rrs and a reduction in heart rate and blood pressure. Slow breathing led to bradycardia and hypotension, without significant changes in Rrs. However slow breathing was associated with deep inhalations, and Rrs evaluated at the baseline lung volumes was significantly increased, suggesting that the large tidal volumes reversed the airways narrowing effect of parasympathetic activation. Finally inhaled methacholine caused marked airway narrowing, while the cardiovascular variables were unaffected, presumably because of the sympathetic activity triggered in response to hypoxemia. Conclusions All parasympathetic stimuli affected bronchial tone and moderately affected also the cardiovascular system. However the response differed depending on the nature of the stimulus. Slow breathing was associated with large tidal volumes that reversed the airways narrowing effect of parasympathetic activation. PMID:26046774

  9. Napping Promotes Inter-Session Habituation to Emotional Stimuli

    PubMed Central

    Pace-Schott, Edward F.; Shepherd, Elizabeth; Spencer, Rebecca M.C.; Marcello, Matthew; Tucker, Matthew; Propper, Ruth E.; Stickgold, Robert

    2010-01-01

    The effects of a daytime nap on inter-session habituation to aversive visual stimuli were investigated. Healthy young adult volunteers viewed repeated presentations of highly negative and emotionally neutral (but equally arousing) International Affective Picture System (IAPS) photographs during two afternoon sessions separated by 2.5 hrs. Half of the photographs were shown at both sessions (Repeated Sets) and half differed between sessions (Novel Sets). For each stimulus presentation, evoked skin conductance response (SCR), heart rate deceleration (HRD) and corrugator supercilii EMG response (EMG), were computed and range corrected using respective maximum session-1 responses. Following each presentation, subjects rated each photograph on dimensions of pleasantness and arousability. During the inter-session interval, Nap subjects had a 120-min polysomnographically monitored sleep opportunity, whereas Wake subjects watched a non-stimulating video. Nap and Wake subjects did not differ in their subjective ratings of photographs. However, for Repeated-Set photographs, Nap subjects demonstrated greater inter-session habituation in SCR and EMG but a trend toward lesser inter-session habituation in HRD. These group differences were absent for Novel-Set photographs. Group differences across all measures were greater for negative stimuli. Occurrence of SWS during the nap was associated with greater inter-session habituation of EMG whereas occurrence of REM was associated with lesser inter-session habituation of SCR to negative stimuli. Sleep may therefore promote emotional adjustment at the level of somatic responses. Physiological but not subjective inter-session habituation to aversive images was enhanced by a daytime nap. PMID:20969968

  10. Impact of Emotion on Consciousness: Positive Stimuli Enhance Conscious Reportability

    PubMed Central

    Rømer Thomsen, Kristine; Lou, Hans C.; Joensson, Morten; Hyam, Jonathan A.; Holland, Peter; Parsons, Christine E.; Young, Katherine S.; Møller, Arne; Stein, Alan; Green, Alex L.; Kringelbach, Morten L.; Aziz, Tipu Z.

    2011-01-01

    Emotion and reward have been proposed to be closely linked to conscious experience, but empirical data are lacking. The anterior cingulate cortex (ACC) plays a central role in the hedonic dimension of conscious experience; thus potentially a key region in interactions between emotion and consciousness. Here we tested the impact of emotion on conscious experience, and directly investigated the role of the ACC. We used a masked paradigm that measures conscious reportability in terms of subjective confidence and objective accuracy in identifying the briefly presented stimulus in a forced-choice test. By manipulating the emotional valence (positive, neutral, negative) and the presentation time (16 ms, 32 ms, 80 ms) we measured the impact of these variables on conscious and subliminal (i.e. below threshold) processing. First, we tested normal participants using face and word stimuli. Results showed that participants were more confident and accurate when consciously seeing happy versus sad/neutral faces and words. When stimuli were presented subliminally, we found no effect of emotion. To investigate the neural basis of this impact of emotion, we recorded local field potentials (LFPs) directly in the ACC in a chronic pain patient. Behavioural findings were replicated: the patient was more confident and accurate when (consciously) seeing happy versus sad faces, while no effect was seen in subliminal trials. Mirroring behavioural findings, we found significant differences in the LFPs after around 500 ms (lasting 30 ms) in conscious trials between happy and sad faces, while no effect was found in subliminal trials. We thus demonstrate a striking impact of emotion on conscious experience, with positive emotional stimuli enhancing conscious reportability. In line with previous studies, the data indicate a key role of the ACC, but goes beyond earlier work by providing the first direct evidence of interaction between emotion and conscious experience in the human ACC. PMID

  11. 49 CFR 178.345 - General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT 407 (§ 178.347), and DOT 412 (§ 178.348) cargo tank....345 General design and construction requirements applicable to Specification DOT 406 (§ 178.346),...

  12. Quantum dot circuits: Single-electron switch and few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Chan, Ian Hin-Yun

    A strongly capacitively-coupled parallel double quantum dot was studied as a single-electron switch. The double dot was fabricated in a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. An electrically-floating coupling gate increased capacitive-coupling between the dots, while an etched trench prevented tunnel-coupling between them. Split Coulomb blockade peaks were observed in each dot, and the Coulomb blockade conductance of the double dot formed a hexagonal pattern characteristic of coupled dots. A fractional peak splitting f = 0.34 was measured, which corresponds to a fractional capacitive-coupling alpha ≡ CINT/CSigma = 0.20. This is an order of magnitude larger than reported for similar lateral quantum dots, and shows that the coupling gate works. The strong capacitive-coupling in our device allowed the charge state of one dot to strongly influence the conductance of the other dot and enabled it to work as a single-electron switch. By moving in a combination of gate voltages, electrons are induced in one dot (the "trigger" dot) only. In response to the change in the charge state, the conductance of the other dot (the "switched" dot) is turned on and off. The abruptness of the conductance switching in gate voltage (the switching lineshape) is determined by how well charge is quantized on the trigger dot, and was found to follow tanh and arctan forms for (respectively) good and poor charge quantization in the trigger dot. A few-electron tunnel-coupled series double dot was studied for possible application to quantum computing. The device was fabricated in a square-well 2DEG in a GaAs/AlGaAs heterostructure. The dots were emptied of electrons in order to define the absolute number of electrons in the dot. Finite bias Coulomb blockade measurements on each dot showed that the last Coulomb blockade diamonds did not close and thus that both dots could be emptied. A three-dimensional conductance measurement of one dot in the one sidegate and the

  13. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.

    1975-01-01

    Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.

  14. Hydrophilic-oleophobic stimuli-responsive materials and surfaces

    NASA Astrophysics Data System (ADS)

    Howarter, John A.

    Due to their high surface energy, hydrophilic surfaces are susceptible to contamination which is difficult to remove and often ruins the surface. Hydrophilic-oleophobic coatings have a diverse engineering potential including applications as self-cleaning surfaces, extended life anti-fog coatings, and environmental remediation in the selective filtration of oil-in-water mixtures. A successful design model for hydrophilic-oleophobic behavior has been developed using perfluorinated surfactants covalently bound to a surface. Within this design model, a variety of materials have been explored which the surfactants are covalently bound to a substrate; similarly, the surfactants may also be incorporated as a monomer into bulk copolymers. Surfactant based surfaces exhibited simultaneous hydrophilicity, necessary for anti-fogging, and oleophobicity, necessary for contamination resistance. The combination of these features rendered the surface as self-cleaning. Surfactant based brushes, composed of polyethylene glycol and perfluorinated constituents were grafted on to silica surfaces. The relationship between brush density and stimuli-responsiveness was determined by varying grafting conditions. The resultant surfaces were characterized with respect to chemical composition, brush thickness, and wetting behavior of water and hexadecane. Optimized surfaces exhibited stimuli-responsive behavior such that the surfaces will be wetted by water but not by oil. Surfactants were incorporated into random copolymers to create self-cleaning polymers which could be easily coated on to surfaces post-synthesis. Acrylic acid, methyl methacrylate, and hydroxyethyl methacrylate were used as comonomers; feed ratio was varied to establish compositional limits of stimuli-responsive behavior. Polymer composition dictated coating durability and self-cleaning performance as determined by water and hexadecane contact angle. The ability of select coatings to mitigate fogging was assessed in two

  15. Dorsal horn spatial representation of simple cutaneous stimuli.

    PubMed

    Brown, P B; Millecchia, R; Lawson, J J; Stephens, S; Harton, P; Culberson, J C

    1998-02-01

    A model of lamina III-IV dorsal horn cell receptive fields (RFs) has been developed to visualize the spatial patterns of cells activated by light touch stimuli. Low-threshold mechanoreceptive fields (RFs) of 551 dorsal horn neurons recorded in anesthetized cats were characterized by location of RF center in cylindrical coordinates, area, length/width ratio, and orientation of long axis. Best-fitting ellipses overlapped actual RFs by 90%. Exponentially smoothed mean and variance surfaces were estimated for these five variables, on a grid of 40 points mediolaterally by 20/segment rostrocaudally in dorsal horn segments L4-S1. The variations of model RF location, area, and length/width ratio with map location were all similar to previous observations. When elliptical RFs were simulated at the locations of the original cells, the RFs of real and simulated cells overlapped by 64%. The densities of cell representations of skin points on the hindlimb were represented as pseudocolor contour plots on dorsal view maps, and segmental representations were plotted on the standard views of the leg. Overlap of modeled and real segmental representations was at the 84% level. Simulated and observed RFs had similar relations between area and length/width ratio and location on the hindlimb: r(A) = 0.52; r(L/W) = 0.56. Although the representation of simple stimuli was orderly, and there was clearly only one somatotopic map of the skin, the representation of a single point often was not a single cluster of active neurons. When two-point stimuli were simulated, there usually was no fractionation of response zones or addition of new zones. Variation of stimulus size (area of skin contacted) produced less variation of representation size (number of cells responding) than movement of stimuli from one location to another. We conclude that stimulus features are preserved poorly in their dorsal horn spatial representation and that discrimination mechanisms that depend on detection of such

  16. Searching for optimal stimuli: ascending a neuron's response function.

    PubMed

    Koelling, Melinda Evrithiki; Nykamp, Duane Q

    2012-12-01

    Many methods used to analyze neuronal response assume that neuronal activity has a fundamentally linear relationship to the stimulus. However, some neurons are strongly sensitive to multiple directions in stimulus space and have a highly nonlinear response. It can be difficult to find optimal stimuli for these neurons. We demonstrate how successive linear approximations of neuronal response can effectively carry out gradient ascent and move through stimulus space towards local maxima of the response. We demonstrate search results for a simple model neuron and two models of a highly selective neuron. PMID:22580579

  17. [Separation of certain local stimuli on a nerve net].

    PubMed

    Gutman, S R

    1980-01-01

    Possibility for discerning a local stimulus (monochromatic colour, pure tone, injection etc), and the evaluation of the stimulus closeness to the local one on the neuron net were shown earlier. The present work solves the problem of discerning the signal composed of several local stimuli, which allows to approximate the initial signal by the sum Gaussian. The results explain possible evaluation of overtones of the sound signal and similar psychophysical effects. A model is described of "tuning" the receptor to one of several simultaneously acting signals produced by different sources. The structure of the neuron nets which realize the problems under analysis is discussed. PMID:7417579

  18. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.; Benson, P.

    1975-01-01

    Subjects were asked to count the number of times a 'target' sound occurred in lists of speech sounds (pa or ba) or pure tones (250 or 600 c/sec) in which one of the sounds (the 'frequent') appeared about four times as often as the target. The response to both targets and frequents were separately averaged from electrodes at vertex at symmetrical left and right parietal locations. The expected sequence of deflections, including P3 waves with about 350 msec latency, was found in the responses to target stimuli. Very little difference was found between the right and left hemispheric responses to speech or pure tones, either frequent or target.

  19. Magnon-driven quantum dot refrigerators

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  20. Entangled exciton states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  1. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  2. Concentration-mediated multicolor fluorescence polymer carbon dots.

    PubMed

    Jeong, Chan Jin; Lee, Gibaek; In, Insik; Park, Sung Young

    2016-05-01

    Polymer dots (PDs) showing concentration-mediated multicolor fluorescence were first prepared from sulfuric acid-treated dehydration of Pluronic® F-127 in a single step. Pluronic-based PDs (P-PDs) showed high dispersion stability in solvent media and exhibited a fluorescence emission that was widely tunable from red to blue by adjusting both the excitation wavelengths and the P-PD concentration in an aqueous solution. This unique fluorescence behavior of P-PDs might be a result of cross-talk in the fluorophores of the poly(propylene glycol)-rich core inside the P-PD through either energy transfer or charge transfer. Reconstruction of the surface energy traps of the P-PDs mediated through aggregation may lead to a new generation of carbon-based nanomaterials possessing a fluorescence emission and tunable by adjusting the concentration. These structures may be useful in the design of multifunctional carbon nanomaterials with tunable emission properties according to a variety of internal or external stimuli. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26492942

  3. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  4. Optophononics with coupled quantum dots.

    PubMed

    Kerfoot, Mark L; Govorov, Alexander O; Czarnocki, Cyprian; Lu, Davis; Gad, Youstina N; Bracker, Allan S; Gammon, Daniel; Scheibner, Michael

    2014-01-01

    Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture. PMID:24534815

  5. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  6. [Event-related synchronization and desynchronization of EEG during appraisal of threatening and pleasant visual stimuli in high anxious subjects].

    PubMed

    Aftans, L I; Pavlov, S V; Reva, N V; Varlamov, A A

    2004-01-01

    The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing. PMID:15481384

  7. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    PubMed Central

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  8. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  9. Emotional stimuli exert parallel effects on attention and memory.

    PubMed

    Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris

    2013-01-01

    Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval. PMID:22974274

  10. Response time to colored stimuli in the full visual field

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Dawson, L. M.; Galvan, T.; Reid, L. M.

    1975-01-01

    Peripheral visual response time was measured in seven dark adapted subjects to the onset of small (45' arc diam), brief (50 msec), colored (blue, yellow, green, red) and white stimuli imaged at 72 locations within their binocular field of view. The blue, yellow, and green stimuli were matched for brightness at about 2.6 sub log 10 units above their absolute light threshold, and they appeared at an unexpected time and location. These data were obtained to provide response time and no-response data for use in various design disciplines involving instrument panel layout. The results indicated that the retina possesses relatively concentric regions within each of which mean response time can be expected to be of approximately the same duration. These regions are centered near the fovea and extend farther horizontally than vertically. Mean foveal response time was fastest for yellow and slowest for blue. Three and one-half percent of the total 56,410 trials presented resulted in no-responses. Regardless of stimulus color, the lowest percentage of no-responses occurred within 30 deg arc from the fovea and the highest within 40 deg to 80 deg arc below the fovea.

  11. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  12. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics

    NASA Astrophysics Data System (ADS)

    Ehrick, Jason D.; Deo, Sapna K.; Browning, Tyler W.; Bachas, Leonidas G.; Madou, Marc J.; Daunert, Sylvia

    2005-04-01

    Certain proteins undergo a substantial conformational change in response to a given stimulus. This conformational change can manifest in different manners and result in an actuation, that is, catalytic or signalling event, movement, interaction with other proteins, and so on. In all cases, the sensing-actuation process of proteins is initiated by a recognition event that translates into a mechanical action. Thus, proteins are ideal components for designing new nanomaterials that are intelligent and can perform desired mechanical actions in response to target stimuli. A number of approaches have been undertaken to mimic nature's sensing-actuating process. We now report a new hybrid material that integrates genetically engineered proteins within hydrogels capable of producing a stimulus-responsive action mechanism. The mechanical effect is a result of an induced conformational change and binding affinities of the protein in response to a stimulus. The stimuli-responsive hydrogel exhibits three specific swelling stages in response to various ligands offering additional fine-tuned control over a conventional two-stage swelling hydrogel. The newly prepared material was used in the sensing, and subsequent gating and transport of biomolecules across a polymer network, demonstrating its potential application in microfluidics and miniaturized drug-delivery systems.

  13. Food-associated Stimuli Enhance Barrier Properties of Gastrointestinal Mucus

    PubMed Central

    Yildiz, Hasan M.; Speciner, Lauren; Ozdemir, Cafer; Cohen, David E.; Carrier, Rebecca L.

    2015-01-01

    Orally delivered drugs and nutrients must diffuse through mucus to enter the circulatory system, but the barrier properties of mucus and their modulation by physiological factors are generally poorly characterized. The main objective of this study was to examine the impact of physicochemical changes occurring upon food ingestion on gastrointestinal (GI) mucus barrier properties. Lipids representative of postprandial intestinal contents enhanced mucus barriers, as indicated by a 10 – 142-fold reduction in the transport rate of 200 nm microspheres through mucus, depending on surface chemistry. Physiologically relevant increases in [Ca2+] resulted in a 2 - 4-fold reduction of transport rates, likely due to enhanced cross-linking of the mucus gel network. Reduction of pH from 6.5 to 3.5 also affected mucus viscoelasticity, reducing particle transport rates approximately 5 – 10-fold. Macroscopic visual observation and micro-scale lectin staining revealed mucus gel structural changes, including clumping into regions into which particles did not penetrate. Histological examination indicated food ingestion can prevent microsphere contact with and endocytosis by intestinal epithelium. Taken together, these results demonstrate that GI mucus barriers are significantly altered by stimuli associated with eating and potentially dosing of lipid-based delivery systems; these stimuli represent broadly relevant variables to consider upon designing oral therapies. PMID:25907034

  14. Healable thermoset polymer composite embedded with stimuli-responsive fibres

    PubMed Central

    Li, Guoqiang; Meng, Harper; Hu, Jinlian

    2012-01-01

    Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable. PMID:22896563

  15. Preferences for and against stimuli paired with food.

    PubMed Central

    Mazur, J E

    1999-01-01

    Pigeons were presented with a concurrent-chains schedule in which terminal-link entries were assigned to two response keys on a percentage basis. The terminal links were fixed delays that sometimes ended with food and sometimes did not. In most conditions, 80% of the terminal links were assigned to one key, but a smaller percentage of the terminal links ended with food for this key, so the number of food reinforcers delivered by the two alternatives was equal. When the same terminal-link stimuli (orange houselights) were used for both alternatives, the pigeons showed a preference for whichever alternative delivered more frequent terminal links. When different terminal-link stimuli (green vs. red houselights) were used for the two alternatives, the pigeons showed a preference for whichever alternative delivered fewer terminal links when terminal-link durations were long, and no systematic preferences when terminal-link durations were short. This pattern of results was consistent with the predictions of Grace's (1994) contextual choice model. Preference for the alternative that delivered more frequent terminal links was usually stronger in the first few sessions of a condition than at the end of a condition, suggesting that the conditioned reinforcing effect of the additional terminal-link presentation was, in part, transitory. PMID:10418156

  16. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    PubMed

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. PMID:23639519

  17. Nonconvulsive status epilepticus in rats: impaired responsiveness to exteroceptive stimuli.

    PubMed

    Mikulecká, A; Krsek, P; Hlinák, Z; Druga, R; Mares, P

    2000-12-20

    An animal model of human complex partial status epilepticus induced by lithium chloride and pilocarpine administration was developed in our laboratory. The objective of the study was to provide a detailed analysis of both ictal and postictal behavior and to quantify seizure-related morphological damage. In order to determine the animal's responsiveness to either visual or olfactory stimuli, adult male rats were submitted to the following behavioral paradigms: the object response test, the social interaction test, and the elevated plus-maze test. The rotorod test was used to evaluate motor performance. Two weeks after status epilepticus, brains were morphologically examined and quantification of the brain damage was performed. Profound impairment of behavior as well as responsiveness to exteroceptive stimuli correlated with the occurrence of epileptic EEG activity. When the epileptic EEG activity ceased, responsiveness of the pilocarpine-treated animals was renewed. However, remarkable morphological damage persisted in the cortical regions two weeks later. This experimental study provides support for the clinical evidence that even nonconvulsive epileptic activity may cause brain damage. We suggest that the model can be used for the study of both functional and morphological consequences of prolonged nonconvulsive seizures. PMID:11099755

  18. Food-associated stimuli enhance barrier properties of gastrointestinal mucus.

    PubMed

    Yildiz, Hasan M; Speciner, Lauren; Ozdemir, Cafer; Cohen, David E; Carrier, Rebecca L

    2015-06-01

    Orally delivered drugs and nutrients must diffuse through mucus to enter the circulatory system, but the barrier properties of mucus and their modulation by physiological factors are generally poorly characterized. The main objective of this study was to examine the impact of physicochemical changes occurring upon food ingestion on gastrointestinal (GI) mucus barrier properties. Lipids representative of postprandial intestinal contents enhanced mucus barriers, as indicated by a 10-142-fold reduction in the transport rate of 200 nm microspheres through mucus, depending on surface chemistry. Physiologically relevant increases in [Ca(2+)] resulted in a 2-4-fold reduction of transport rates, likely due to enhanced cross-linking of the mucus gel network. Reduction of pH from 6.5 to 3.5 also affected mucus viscoelasticity, reducing particle transport rates approximately 5-10-fold. Macroscopic visual observation and micro-scale lectin staining revealed mucus gel structural changes, including clumping into regions into which particles did not penetrate. Histological examination indicated food ingestion can prevent microsphere contact with and endocytosis by intestinal epithelium. Taken together, these results demonstrate that GI mucus barriers are significantly altered by stimuli associated with eating and potentially dosing of lipid-based delivery systems; these stimuli represent broadly relevant variables to consider upon designing oral therapies. PMID:25907034

  19. Task attention facilitates learning of task-irrelevant stimuli.

    PubMed

    Huang, Tsung-Ren; Watanabe, Takeo

    2012-01-01

    Attention plays a fundamental role in visual learning and memory. One highly established principle of visual attention is that the harder a central task is, the more attentional resources are used to perform the task and the smaller amount of attention is allocated to peripheral processing because of limited attention capacity. Here we show that this principle holds true in a dual-task setting but not in a paradigm of task-irrelevant perceptual learning. In Experiment 1, eight participants were asked to identify either bright or dim number targets at the screen center and to remember concurrently presented scene backgrounds. Their recognition performances for scenes paired with dim/hard targets were worse than those for scenes paired with bright/easy targets. In Experiment 2, eight participants were asked to identify either bright or dim letter targets at the screen center while a task-irrelevant coherent motion was concurrently presented in the background. After five days of training on letter identification, participants improved their motion sensitivity to the direction paired with hard/dim targets improved but not to the direction paired with easy/bright targets. Taken together, these results suggest that task-irrelevant stimuli are not subject to the attentional control mechanisms that task-relevant stimuli abide. PMID:22563424

  20. Polymer-based stimuli-responsive nanosystems for biomedical applications.

    PubMed

    Joglekar, Madhura; Trewyn, Brian G

    2013-08-01

    The application of organic polymers and inorganic/organic hybrid systems in numerous fields of biotechnology has seen a considerable growth in recent years. Typically, organic polymers with diverse structures, compositional variations and differing molecular weights have been utilized to assemble polymeric nanosystems such as polymeric micelles, polymersomes, and nanohydrogels with unique features and structural properties. The architecture of these polymeric nanosystems involves the use of both hydrophobic and hydrophilic polymeric blocks, making them suitable as vehicles for diagnostic and therapeutic applications. Recently, "smart" or "intelligent" polymers have attracted significant attention in the biomedical field wherein careful introduction of specific polymeric modalities changes a banal polymeric nanosystem to an advanced stimuli-responsive nanosystem capable of performing extraordinary functions in response to an internal or external trigger such as pH, temperature, redox, enzymes, light, magnetic, or ultrasound. Further, incorporation of inorganic nanoparticles such as gold, silica, or iron oxide with surface-bound stimuli-responsive polymers offers additional advantages and multifunctionality in the field of nanomedicine. This review covers the physical properties and applications of both organic and organic/inorganic hybrid nanosystems with specific recent breakthroughs in drug delivery, imaging, tissue engineering, and separations and provides a brief discussion on the future direction. PMID:23843342

  1. Response of Morris-Lecar neurons to various stimuli

    NASA Astrophysics Data System (ADS)

    Wang, Hengtong; Wang, Longfei; Yu, Lianchun; Chen, Yong

    2011-02-01

    We studied the responses of three classes of Morris-Lecar neurons to sinusoidal inputs and synaptic pulselike stimuli with deterministic and random interspike intervals (ISIs). It was found that the responses of the output frequency of class 1 and 2 neurons showed similar evolution properties by varying input amplitudes and frequencies, whereas class 3 neuron exhibited substantially different properties. Specifically, class 1 and 2 neurons display complicated phase locking (p : q, p>q, denoting output action potentials per input spikes) in low-frequency sinusoidal input area when the input amplitude is above their threshold, but a class 3 neuron does not fire action potentials in this area even if the amplitude is much higher. In the case of the deterministic ISI synaptic injection, all the three classes of neurons oscillate spikes with an arbitrary small frequency. When increasing the input frequency (both sinusoidal and deterministic ISI synaptic inputs), all neurons display 1 : 1 phase locking, whereas the response frequency decreases even fall to zero in the high-frequency input area. When the random ISI synaptic pulselike stimuli are injected into the neurons, one can clearly see the low-pass filter behaviors from the return map. The output ISI distribution depends on the mean ISI of input train as well as the ISI variation. Such different responses of three classes of neurons result from their distinct dynamical mechanisms of action potential initiation. It was suggested that the intrinsic dynamical cellular properties are very important to neuron information processing.

  2. Escape and aggregation responses of three echinoderms to conspecific stimuli.

    PubMed

    Campbell, A C; Coppard, S; D'Abreo, C; Tudor-Thomas, R

    2001-10-01

    In marine invertebrates, waterborne chemical stimuli mediate responses including prey detection and predator avoidance. Alarm and flight, in response to damaged conspecifics, have been reported in echinoderms, but the nature of the stimuli involved is not known. The responses of Asterias rubens Linnaeus, Psammechinus miliaris (Gmelin), and Echinus esculentus Linnaeus to conspecifics were tested in a choice chamber against a control of clean seawater (no stimulus). All three species showed statistically significant movement toward water conditioned by whole animals or homogenate of test epithelium. P. miliaris and E. esculentus displayed a statistically significant avoidance reaction, moving away from conspecific coelomic fluid, gut homogenate, and gonad homogenate. A. rubens was indifferent to conspecific coelomic fluid, pyloric cecum homogenate, and gonad homogenate but moved away from cardiac gut homogenate. P. miliaris was indifferent to gametes, but the other two species were significantly attracted to them. No species showed preference for one particular side of the chamber during trials to balance water flow. These echinoderms can distinguish between homogenates of conspecific tissues that might be exposed when a predator damages the test, and those that may emanate from the exterior surface during normal activities. PMID:11687389

  3. Stimuli-responsive nanoparticles for targeting the tumor microenvironment.

    PubMed

    Du, Jinzhi; Lane, Lucas A; Nie, Shuming

    2015-12-10

    One of the most challenging and clinically important goals in nanomedicine is to deliver imaging and therapeutic agents to solid tumors. Here we discuss the recent design and development of stimuli-responsive smart nanoparticles for targeting the common attributes of solid tumors such as their acidic and hypoxic microenvironments. This class of stimuli-responsive nanoparticles is inactive during blood circulation and under normal physiological conditions, but is activated by acidic pH, enzymatic up-regulation, or hypoxia once they extravasate into the tumor microenvironment. The nanoparticles are often designed to first "navigate" the body's vascular system, "dock" at the tumor sites, and then "activate" for action inside the tumor interstitial space. They combine the favorable biodistribution and pharmacokinetic properties of nanodelivery vehicles and the rapid diffusion and penetration properties of smaller drug cargos. By targeting the broad tumor habitats rather than tumor-specific receptors, this strategy has the potential to overcome the tumor heterogeneity problem and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors. PMID:26341694

  4. Chemical force microscopy of stimuli-responsive adhesive copolymers

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Ngo, T. Chinh; Derclaye, Sylvie; Kalinova, Radostina; Mincheva, Rosica; Dubois, Philippe; Leclère, Philippe; Dufrêne, Yves F.

    2013-12-01

    Atomic force microscopy with chemically sensitive tips was used to investigate the hydrophobic and electrostatic interaction forces of a stimuli-responsive adhesive polymer, and their dynamic changes in response to water immersion and salt concentration. Block copolymer-filled coatings were obtained by incorporating an amphiphilic block copolymer containing a polydimethylsiloxane (PDMS) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix. Topographic images of fresh samples revealed the presence of nanoscale domains associated with the presence of copolymers, covered by a thin layer of PDMS. Prolonged (30 days) immersion in aqueous solution led to the exposure of the hydrophilic PDMAEMA chains on the surface. Using adhesion force mapping with hydrophobic tips, we showed that fresh samples were uniformly hydrophobic, while aged samples exhibited lower surface hydrophobicity and featured nanoscale hydrophilic copolymer domains. Force mapping with negatively charged tips revealed remarkable salt-dependent force plateau signatures reflecting desorption of polyelectrolyte copolymer chains. These nanoscale experiments show how solvent-induced conformational changes of stimuli-responsive copolymers can be used to modulate surface adhesion.

  5. Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components

    PubMed Central

    2014-01-01

    While most of the studies on molecular machines have been performed in solution, interfacing these supramolecular systems with solid-state nanostructures and materials is very important in view of their utilization in sensing components working by chemical and photonic actuation. Host polymeric materials, and particularly polymer nanofibers, enable the manipulation of the functional molecules constituting molecular machines and provide a way to induce and control the supramolecular organization. Here, we present electrospun nanocomposites embedding a self-assembling rotaxane-type system that is responsive to both optical (UV–vis light) and chemical (acid/base) stimuli. The system includes a molecular axle comprised of a dibenzylammonium recognition site and two azobenzene end groups and a dibenzo[24]crown-8 molecular ring. The dethreading and rethreading of the molecular components in nanofibers induced by exposure to base and acid vapors, as well as the photoisomerization of the azobenzene end groups, occur in a similar manner to what observed in solution. Importantly, however, the nanoscale mechanical function following external chemical stimuli induces a measurable variation of the macroscopic mechanical properties of nanofibers aligned in arrays, whose Young’s modulus is significantly enhanced upon dethreading of the axles from the rings. These composite nanosystems show therefore great potential for application in chemical sensors, photonic actuators, and environmentally responsive materials. PMID:25264943

  6. EEG Responses to Auditory Stimuli for Automatic Affect Recognition.

    PubMed

    Hettich, Dirk T; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  7. Disruption of postural readaptation by inertial stimuli following space flight

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.

    1999-01-01

    Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.

  8. Response variations to Stroop color-word stimuli.

    PubMed

    Izawa, C; Silver, N C

    1988-05-01

    Reaction times (RTs) and net interference measures were obtained for 64 Stroop color-word stimuli from 8 common colors. Subjects were 64 college students, 32 of each sex. The incongruous stimulus was designated as either the ink interpretation different from the word or the word interpretation different from the ink. Consistently large variations within Stroop stimuli and Word x Ink interactions were found. Complex qualitative and quantitative differences were revealed between sexes. Females had faster RTs, but showed no significant superiority in measured net interference. The derived rank orders of net interference between sexes were correlated when using the ink, but not when using the word. Neither word nor ink were related in ranking RTs. For net interference, however, derived RTs were highly related for women using the ink interpretation, but not when using the word; they were unrelated for men using either interpretation. Two interrference types were highly correlated for women, but not for men. An additional experiment with a color-blind group cast an interesting light on the issue. Our Stroop data, rank ordered by sex for each measure, may assist viable theory constructions, including the context-dependent interaction hypothesis. PMID:3402729

  9. Effects of Olfactory Stimuli on Urge Reduction in Smokers

    PubMed Central

    Sayette, Michael A.; Parrott, Dominic J.

    2013-01-01

    This study examined the possibility that exposure to olfactory stimuli can reduce self-reported urge to smoke. After an initial assessment of self-reported urge, nicotine-deprived smokers evaluated the pleasantness of a series of 8 odors. Facial expressions during odor presentations were coded with P. Ekman and W. V. Friesen’s (1978a) Facial Action Coding System. After odor administration, participants were exposed to smoking cues. Next, participants were administered their most pleasant, least pleasant, or a control odor (water) and reported their urge to smoke. Results indicated that sniffing either a pleasant or unpleasant odor reduced reported urge to smoke relative to the control odor. Reported pleasantness of the odors did not differentially affect urge reduction. Odors eliciting negative-affect-related expressions, however, were less effective than odors that did not elicit negative-affect-related expressions in reducing reported urge. Results of this preliminary investigation provide support for the consideration of odor stimuli as an approach to craving reduction. PMID:10340155

  10. Electrophysiological evidence for automatic processing of erroneous stimuli.

    PubMed

    Mesika, David; Tzur, Gabriel; Berger, Andrea

    2014-07-01

    In a paradigm combining color-word Stroop and misspelled words processing, spelling mistakes were placed in half the Stroop stimuli. Participants were presented with words written in different ink colors and asked to identify the color of the ink while ignoring the word meaning. Importantly, whether the word was correctly spelled or not was completely irrelevant to the task. The spelling manipulation did not change the phonology or semantic meaning of the words. Congruency and spelling correctness were manipulated orthogonally and interacted at the behavioral level. Event-related potentials showed a very early processing of misspelled words. The present findings are in line with the idea of anterior cingulate cortex (ACC) involvement in cognitive monitoring, expressed mainly in the theta frequency band. The present study demonstrates that this monitoring mechanism is elicited automatically, in other words, this mechanism perceives erroneous stimuli even when they are absolutely irrelevant to the participant׳s task. At later processing stages, the same central monitoring mechanism is also involved in the detection/resolution of conflict. PMID:24751991

  11. Empathic behavioral and physiological responses to dynamic stimuli in depression.

    PubMed

    Schneider, Daniel; Regenbogen, Christina; Kellermann, Thilo; Finkelmeyer, Andreas; Kohn, Nils; Derntl, Birgit; Schneider, Frank; Habel, Ute

    2012-12-30

    Major depressive disorder (MDD) is strongly linked to social withdrawal and interpersonal problems which characterize the disorder and further aggravate symptoms. Investigating the nature of impaired emotional-social functioning as a basis of interpersonal functioning in MDD has been widely restricted to static stimuli and behavioral emotion recognition accuracy. The present study aimed at examining higher order emotional processes, namely empathic responses and its components, emotion recognition accuracy and affective responses in 28 MDD patients and 28 healthy control participants. The dynamic stimulus material included 96 short video clips depicting actors expressing basic emotions by face, voice prosody, and sentence content. Galvanic skin conductance measurements revealed implicit processes in the multimethod assessment of empathy. Overall, patients displayed lower empathy, emotion accuracy, and affective response rates than controls. Autonomous arousal was higher in patients. A generalized emotion processing deficit is in line with the "emotional context insensitivity" (ECI) theory which proposes decreased overall responsiveness to emotional stimuli. The dissociation between hypo-reactivity in explicit and hyper-reactivity in implicit measures of emotion processing can be related to the "limbic-cortical dysregulation" model of depression. Our findings support the dissociation of autonomic and subjective emotional responses which may account for interpersonal as well as emotional deficits in depression. PMID:22560057

  12. MEG brain activities reflecting affection for visual food stimuli.

    PubMed

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  13. Task Attention Facilitates Learning of Task-Irrelevant Stimuli

    PubMed Central

    Huang, Tsung-Ren; Watanabe, Takeo

    2012-01-01

    Attention plays a fundamental role in visual learning and memory. One highly established principle of visual attention is that the harder a central task is, the more attentional resources are used to perform the task and the smaller amount of attention is allocated to peripheral processing because of limited attention capacity. Here we show that this principle holds true in a dual-task setting but not in a paradigm of task-irrelevant perceptual learning. In Experiment 1, eight participants were asked to identify either bright or dim number targets at the screen center and to remember concurrently presented scene backgrounds. Their recognition performances for scenes paired with dim/hard targets were worse than those for scenes paired with bright/easy targets. In Experiment 2, eight participants were asked to identify either bright or dim letter targets at the screen center while a task-irrelevant coherent motion was concurrently presented in the background. After five days of training on letter identification, participants improved their motion sensitivity to the direction paired with hard/dim targets improved but not to the direction paired with easy/bright targets. Taken together, these results suggest that task-irrelevant stimuli are not subject to the attentional control mechanisms that task-relevant stimuli abide. PMID:22563424

  14. Nanoparticle role on the repeatability of stimuli-responsive nanocomposites

    PubMed Central

    Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Repeatability of the responsiveness with time is one important concern for effective durable functions of stimuli-responsive materials. Although the increase in the yield and tensile strength of the hybrid composite materials by nanoparticle (NP) incorporation has been reported, exact NP effect on stimuli-responsiveness is rarely reported. In this study, a set of nanoscale actuating system is demonstrated by a thermo-sensitive process operated by polyethylene glycol (PEG) linked by gold nanoparticle (AuNP). This designed nanocomposite exclusively provides an artificial on/off gate function for selective passages of permeate molecules. The results demonstrate high repetition efficiency with sharp responding in a timely manner. In terms of the morphology changes induced by repeated swelling-deswelling mechanics, the nanocomposite exhibits phase separation between AuNP clusters and PEG domains. This leads to a delay in responsiveness in a cumulative way with time. Acting as stable junction points in the nanocomposite network structures, the incorporated AuNPs contribute to maintain repeatability in responsiveness. This study contributes to new-concept smart material design and fundamental understanding on the hybrid nanomaterials for various applications in terms of a dynamic mechanical behavior. PMID:25315841

  15. Late Positive Potential ERP Responses to Social and Nonsocial Stimuli in Youth with Autism Spectrum Disorder.

    PubMed

    Benning, Stephen D; Kovac, Megan; Campbell, Alana; Miller, Stephanie; Hanna, Eleanor K; Damiano, Cara R; Sabatino-DiCriscio, Antoinette; Turner-Brown, Lauren; Sasson, Noah J; Aaron, Rachel V; Kinard, Jessica; Dichter, Gabriel S

    2016-09-01

    We examined the late positive potential (LPP) event related potential in response to social and nonsocial stimuli from youths 9 to 19 years old with (n = 35) and without (n = 34) ASD. Social stimuli were faces with positive expressions and nonsocial stimuli were related to common restricted interests in ASD (e.g., electronics, vehicles, etc.). The ASD group demonstrated relatively smaller LPP amplitude to social stimuli and relatively larger LPP amplitude to nonsocial stimuli. There were no group differences in subjective ratings of images, and there were no significant correlations between LPP amplitude and ASD symptom severity within the ASD group. LPP results suggest blunted motivational responses to social stimuli and heightened motivational responses to nonsocial stimuli in youth with ASD. PMID:27344337

  16. An evaluation of the effects of matched stimuli on behaviors maintained by automatic reinforcement.

    PubMed Central

    Piazza, C C; Adelinis, J D; Hanley, G P; Goh, H L; Delia, M D

    2000-01-01

    The purpose of the current investigation was to extend the literature on matched stimuli to three dissimilar forms of aberrant behavior (dangerous climbing and jumping, saliva manipulation, and hand mouthing). The results of functional analyses suggested that each behavior was automatically reinforced. Preference assessments were used to identify two classes of stimuli: items that matched the hypothesized sensory consequences of aberrant behavior (matched stimuli) and items that produced sensory consequences that were not similar to those produced by the aberrant behavior (unmatched stimuli). The effects of providing continuous and noncontingent access to either the most highly preferred matched or the most highly preferred unmatched stimuli were assessed relative to a condition in which no stimuli were available. Overall results suggested that providing access to items that matched the hypothesized sensory consequences of aberrant behavior may be more effective than simply selecting stimuli either arbitrarily or based on the results of preference assessments alone. PMID:10738949

  17. Nanomaterials: Earthworms lit with quantum dots

    NASA Astrophysics Data System (ADS)

    Tilley, Richard D.; Cheong, Soshan

    2013-01-01

    Yeast, bacteria and fungi have been used to synthesize a variety of nanocrystals. Now, the metal detoxification process in the gut of an earthworm is exploited to produce biocompatible cadmium telluride quantum dots.

  18. Responses of primate cortical neurons to unitary and binary taste stimuli.

    PubMed

    Miyaoka, Y; Pritchard, T C

    1996-01-01

    statistics (cluster, principal axis factor, and multidimensional analysis) were used to analyze the data. Cluster analysis enabled us to divide the 82 taste neurons into groups on the basis of response similarity. Each of the four largest groups was dominated by neurons that responded best to one of the four basic taste stimuli: Suc, NaCl, QHCl, and HCl (ranked in descending order); the fifth largest cluster contained neurons that responded best to MSG. Principal axis factor analysis demonstrated that 80.8% of the total variance could be accounted for by three factors. Neurons responding best to Suc, NaCl, and QHCl each were closely associated with one of those three factors, but the loadings of the HCl-best neurons were evenly distributed across all three factors. The communality coefficient of these three factors was > 80% for the Suc-, NaCl-, HCl-, and QHCl-best neurons; the MSG-best neurons, by comparison, had very few high loadings on any of these three factors and a correspondingly low communality coefficient of 40.4%, a difference that was statistically significant from the other four groups. Thus the three factors related to Suc-, NaCl-, HCl-, and QHCl-best neurons are not relevant to MSG-best neurons. We used multidimensional analysis to arrange the neurons that responded best to Suc, NaCl, HCl, QHCl, and MSG into five loosely arranged and partially overlapping clusters. A multidimensional space based on stimulus similarity showed that MSG was as different from the four basic taste stimuli as they were from one another. 5. Mixture suppression, a common observation in human psychophysical experiments, was examined at the neurophysiological level by including binary tastants in the stimulus battery. The average response of 19 Suc-best neurons to 1.0 M Suc (4.1 spikes/s) decreased to near 0 when the solvent was changed from DW to either 0.03 M MSG or 0.03 M NaCl. Similar decrements were observed in NaCl- and MSG-best neurons tested with Suc/NaCl mixtures. PMID:8822566

  19. The Motivating Effect of Antecedent Stimuli on the Web Shop: A Conjoint Analysis of the Impact of Antecedent Stimuli at the Point of Online Purchase

    ERIC Educational Resources Information Center

    Fagerstrom, Asle

    2010-01-01

    This article introduces the concept of motivating operation (MO) to the field of online consumer research. A conjoint analysis was conducted to assess the motivating impact of antecedent stimuli on online purchasing. Stimuli tested were in-stock status, price, other customers' reviews, order confirmation procedures, and donation to charity. The…

  20. Effect of stimuli presentation method on perception of room size using only acoustic cues

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey Barnabas

    People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.

  1. Subliminal presentation of emotionally negative vs positive primes increases the perceived beauty of target stimuli.

    PubMed

    Era, Vanessa; Candidi, Matteo; Aglioti, Salvatore Maria

    2015-11-01

    Emotions have a profound influence on aesthetic experiences. Studies using affective priming procedures demonstrate, for example, that inducing a conscious negative emotional state biases the perception of abstract stimuli towards the sublime (Eskine et al. Emotion 12:1071-1074, 2012. doi: 10.1037/a0027200). Moreover, subliminal happy facial expressions have a positive impact on the aesthetic evaluation of abstract art (Flexas et al. PLoS ONE 8:e80154, 2013). Little is known about how emotion influences aesthetic perception of non-abstract, representational stimuli, especially those that are particularly relevant for social behaviour, like human bodies. Here, we explore whether the subliminal presentation of emotionally charged visual primes modulates the explicit subjective aesthetic judgment of body images. Using a forward/backward masking procedure, we presented subliminally positive and negative, arousal-matched, emotional or neutral primes and measured their effect on the explicit evaluation of perceived beauty (high vs low) and emotion (positive vs negative) evoked by abstract and body images. We found that negative primes increased subjective aesthetic evaluations of target bodies or abstract images in comparison with positive primes. No influence of primes on the emotional dimension of the targets was found, thus ruling out an unspecific arousal effect and strengthening the link between emotional valence and aesthetic appreciation. More specifically, that subliminal negative primes increase beauty ratings compared to subliminal positive primes indicates a clear link between negative emotions and positive aesthetic evaluations and vice versa, suggesting a possible link between negative emotion and the experience of sublime in art. The study expands previous research by showing the effect of subliminal negative emotions on the subjective aesthetic evaluation not only of abstract but also of body images. PMID:26238406

  2. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung.

    PubMed

    Woo, Min-Ah; Lee, Sang-Myung; Kim, Gunsung; Baek, JongHo; Noh, Mi Suk; Kim, Ji Eun; Park, Sung Jin; Minai-Tehrani, Arash; Park, Se-Chang; Seo, Yeong Tai; Kim, Yong-Kwon; Lee, Yoon-Sik; Jeong, Dae Hong; Cho, Myung-Haing

    2009-02-01

    Immunoassays using nanomaterials have been rapidly developed for the analysis of multiple biomolecules. Highly sensitive and biocompatible surface enhanced Raman spectroscopy-active nanomaterials have been used for biomolecule analysis by many research groups in order to overcome intrinsic problems of conventional immunoassays. We used fluorescent surface-enhanced Raman spectroscopic dots (F-SERS dots) to detect biomolecules in this study. The F-SERS dots are composed of silver nanoparticle-embedded silica nanospheres, organic Raman tagging materials, and fluorescent dyes. The F-SERS dots demonstrated highly sensitive, selective, and multifunctional characteristics for multiplex targeting, tracking, and imaging of cellular and molecular events in the living organism. We successfully applied F-SERS dots for the detection of three cellular proteins, including CD34, Sca-1, and SP-C. These proteins are simultaneously expressed in bronchioalveolar stem cells (BASCs) in the murine lung. We analyzed the relative expression ratios of each protein in BASCs since external standards were used to evaluate SERS intensity in tissue. Quantitative comparisons of multiple protein expression in tissue were first attempted using SERS-encoded nanoprobes. Our results suggested that immunoassays using F-SERS dots offered significant increases in sensitivity and selectivity. Such immunoassays may serve as the primary next-generation labeling technologies for the simultaneous analysis of multiple biomolecules. PMID:19117480

  3. Renormalization in Periodically Driven Quantum Dots.

    PubMed

    Eissing, A K; Meden, V; Kennes, D M

    2016-01-15

    We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump. PMID:26824557

  4. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  5. Exploring Extragalactic Emission: The Hα Dot Survey

    NASA Astrophysics Data System (ADS)

    Rampalli, Rayna; Salzer, John Joseph

    2016-01-01

    The Hα Dot Survey was established as a result of finding point sources of strong line emission in the data obtained for the ALFALFA Hα Survey (Van Sistine et al. 2015). In the latter survey, broad-band R and narrow-band Hα filters were used to examine target galaxies from the ALFALFA blind HI survey (Giovanelli et al. 2005, Haynes et al. 2011). In the process of reducing the ALFALFA Hα Survey data the "Hα Dots" were discovered (Kellar et al. 2008, 2012). Using specialized image analysis tools, a large population of dots has already been detected in the more than 1500 ALFALFA Hα narrow-band images taken with the 0.9m WIYN and 2.1m KPNO telescopes. Follow-up spectra of over 200 Hα Dots discovered from the 0.9m images reveal that these objects are a mix of nearby low-luminosity star-forming galaxies, compact starbursts and Seyfert 2 galaxies at intermediate redshifts, and high-redshift QSOs. Here we present the first list of Hα Dots detected using 2.1m telescope data. The 2.1m images yield a sample of Dots that average almost two magnitudes fainter than those detected with the 0.9m. The current REU project is designed to characterize the set of Hα Dots detected in the deeper 2.1m telescope images, while the broad goals of the Hα Dot Survey include the desire to understand better the chemical evolution of galaxies over cosmic time. This project was supported in part by the NSF REU grant 1358980, by the Maria Mitchell Association (Nantucket, MA), and by the Massachusetts Space Grant Consortium.

  6. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  7. Electrical control of quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Laird, Edward Alexander

    This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

  8. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics. PMID:26178963

  9. Quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Heteroepitaxy--atomically aligned growth of a crystalline film atop a different crystalline substrate--is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned `dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  10. Formation and ordering of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Atkinson, Paola; Schmidt, Oliver G.; Bremner, Stephen P.; Ritchie, David A.

    2008-10-01

    Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).

  11. Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases.

    PubMed

    Khan, M Shahnawaz; Pandey, Sunil; Talib, Abou; Bhaisare, Mukesh Lavkush; Wu, Hui-Fen

    2015-10-01

    Delivery of therapeutic agents using water-soluble, highly biocompatible Carbon dots (C-dots) is an efficient strategy to control drug release under physiological milieu. Dopamine hydrochloride (DA), the most important inotropic vasopressor agent used in neurological diseases. In our study DA is anchored to water-soluble carbon dots for controlled release under mimicked in vitro physiological conditions. The tenure of the DA release at pH 7.4 was greatly extended to 60 h for C-dots-DA, in comparison with the control DA alone. The statistical calculation was used to comprehend the release pattern of the DA, which exhibited the pattern of Hixson-Crowell model of release. In order to understand the impact of the C-dots-DA conjugate under physiological conditions, Neuro 2A cells were taken under consideration. The conjugate C-dots-DA was found to be biocompatible against Neuro 2A cells. The survival rate was found to be 74% at maximum concentration of 9 μg mL(-1). In vivo toxicity was studied using thin section of tissues after staining with Hematoxyline and Eosin Yellow (H&E). As per microscopic observations, conjugates did not inflict any anatomical distortions or hostile effects on tissues. Body weight of mice was also taken into consideration after injecting 20 μg mL(-1) of nano-conjugates via tail vein. The impact of nano-conjugate on body weight was found to be negligible after 45 days of observation. PMID:26186107

  12. Efficient delivery of quantum dots in live cells by gold nanoparticle mediated photoporation

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Joris, Freya; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C.; Skirtach, Andre G.; Braeckmans, Kevin

    2015-03-01

    There is considerable interest in using Quantum Dots (QDs) as fluorescent probes such for cellular imaging due to unique advantages in comparison with conventional molecular dyes. However, cytosolic delivery of QDs into live cells remains a major challenge. Here we demonstrate highly efficient delivery of PEG-coated QDs into live cells by means of laser-induced vapour nanobubbles. Using this procedure we succeeded in high-throughput loading of ~80% of cells while maintaining a cell viability of ~85%.

  13. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    PubMed

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. PMID:27153184

  14. Lateral Quantum Dots for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    House, Matthew Gregory

    The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. Using this double quantum dot design, we fabricated devices which combined a silicon double quantum dot with a superconducting microwave resonator. The microwave resonator was found to be sensitive to two-dimensional electrons in the transistor channel, which we measured and characterized. We developed a new method for extracting information from random telegraph signals, which are produced when we observe thermal fluctuations of electrons in quantum dots. The new statistical method, based on the hidden Markov model, allows us to detect spin-dependent effects in such fluctuations even though we are not able to directly observe the electron spin. We use this analysis technique on data from two experiments involving gallium arsenide quantum dots and use it to measure spin-dependent tunneling rates. Our results advance the

  15. PREFACE: Stimuli Stimuli

    NASA Astrophysics Data System (ADS)

    Queisser, Hans J.

    2011-01-01

    Tributes are paid to Zhores Alferov by presenting personal anecdotes from the fields, where Alferov performed his pioneering research: masers, lasers, solar cells and heterojunctions. What a pleasure and honor to pay tribute to Zhores Alferov in this Festschrift. Member of a remarkable laboratory and originator of imaginative and useful ideas for semiconductor physics and technology; a happy birthday! I would like to use this opportunity to ramble a little about the physics of masers, lasers, heterojunctions, solar cells— all themes of such vital importance in Alferov's career—and also tangible in my own endeavors. I start out with an anecdote of a colloquium presentation in my youthful days at Göttingen. The Physics Colloquium at Göttingen University presented a serious weekly meeting. Werner Heisenberg and Carl Friedrich von Weizsäcker attended, often Wolfgang Pauli visited from Zurich; Otto Hahn always sat in the first row, on the left corner— and he smoked his cigar. I had just obtained my doctorate [1]— it was 1958, and my boss Rudolf Hilsch ordered me to contribute a colloquium talk. He hoped that I would report on color centers in alkali halides or review experiments on quenched amorphous bismuth, a surprising superconductor [2], or on my own dissertation [1], all recent results of our team. I, however, being an avid reader of the latest American physics literature, begged to differ. The English language gave me no problems because I had in 1951/52 spent a year at the University of Kansas. This experience in the friendly American Midwest provided me with a definite linguistic advantage over most of my German fellow students. I was fascinated by those very first reports on the maser, this molecular amplifier using ammonia for stimulated emission, and therefore decided, quite to the chagrin of my boss Hilsch, to choose this particular topic for a report at the Colloquium. So I went to the rostrum in the small auditorium 'Hörsaal II' and delivered a well-rehearsed talk. The audience was intrigued by this new principle of stimulated coherent microwave radiation [3]. Friedrich Hund, famous for his 'rule' was then our theory professor, he sat in the second row. He was very surprised, and asked me in the discussion if he had understood correctly. If it were true what I had just suggested, then the maser coherence length would go from the Earth to the Moon. I paused a little, pondered and observed my microwave-conscious friends in the audience nodding encouragingly. 'Yes, sir; I think so!' 'I don't believe it', Hund retorted. How could a youngster react? I remained silent and obediently, quite imperceptibly shrugged my shoulders. After the talk, Professor Lamla, an editor of a science journal came to congratulate me and asked for a manuscript. I delivered [4]. This item on my early publication list may have contributed to the fact that I was hired in 1959 by William Shockley to join his fledgling company Shockley Transistor in this old apricot barn on 391 South San Antonio Road in Mountain View, California [5]. I knew that it would be extremely difficult to extend the frequency into the optical regime, you have to fight against the square of the frequency. Nevertheless, I refrained from making the statement in my paper that reaching an optical maser might be hopeless [4]. 'Never say never' is an appropriate adage, not only for seniors. A young colleague, who had also written a review paper, dared to support a more pessimistic view [6]. He anticipated in his very last sentence that stimulated emission would probably prevail merely in the microwave regime. This defeatist attitude seemed to have ruled throughout Germany, as already preached in the famous textbooks by Pohl [7], and also assumed by physics Professor Hellwege at Darmstadt, who was the leading expert regarding luminescence of materials such as ruby crystals; yet Maiman and others surpassed him [8]. Silicon came next for me, working, for example, with Shockley on the theory of maximal efficiency for solar cells, not really a topic regarding coherent r

  16. PREFACE: Stimuli Stimuli

    NASA Astrophysics Data System (ADS)

    Queisser, Hans J.

    2011-01-01

    Tributes are paid to Zhores Alferov by presenting personal anecdotes from the fields, where Alferov performed his pioneering research: masers, lasers, solar cells and heterojunctions. What a pleasure and honor to pay tribute to Zhores Alferov in this Festschrift. Member of a remarkable laboratory and originator of imaginative and useful ideas for semiconductor physics and technology; a happy birthday! I would like to use this opportunity to ramble a little about the physics of masers, lasers, heterojunctions, solar cells— all themes of such vital importance in Alferov's career—and also tangible in my own endeavors. I start out with an anecdote of a colloquium presentation in my youthful days at Göttingen. The Physics Colloquium at Göttingen University presented a serious weekly meeting. Werner Heisenberg and Carl Friedrich von Weizsäcker attended, often Wolfgang Pauli visited from Zurich; Otto Hahn always sat in the first row, on the left corner— and he smoked his cigar. I had just obtained my doctorate [1]— it was 1958, and my boss Rudolf Hilsch ordered me to contribute a colloquium talk. He hoped that I would report on color centers in alkali halides or review experiments on quenched amorphous bismuth, a surprising superconductor [2], or on my own dissertation [1], all recent results of our team. I, however, being an avid reader of the latest American physics literature, begged to differ. The English language gave me no problems because I had in 1951/52 spent a year at the University of Kansas. This experience in the friendly American Midwest provided me with a definite linguistic advantage over most of my German fellow students. I was fascinated by those very first reports on the maser, this molecular amplifier using ammonia for stimulated emission, and therefore decided, quite to the chagrin of my boss Hilsch, to choose this particular topic for a report at the Colloquium. So I went to the rostrum in the small auditorium 'Hörsaal II' and delivered a well-rehearsed talk. The audience was intrigued by this new principle of stimulated coherent microwave radiation [3]. Friedrich Hund, famous for his 'rule' was then our theory professor, he sat in the second row. He was very surprised, and asked me in the discussion if he had understood correctly. If it were true what I had just suggested, then the maser coherence length would go from the Earth to the Moon. I paused a little, pondered and observed my microwave-conscious friends in the audience nodding encouragingly. 'Yes, sir; I think so!' 'I don't believe it', Hund retorted. How could a youngster react? I remained silent and obediently, quite imperceptibly shrugged my shoulders. After the talk, Professor Lamla, an editor of a science journal came to congratulate me and asked for a manuscript. I delivered [4]. This item on my early publication list may have contributed to the fact that I was hired in 1959 by William Shockley to join his fledgling company Shockley Transistor in this old apricot barn on 391 South San Antonio Road in Mountain View, California [5]. I knew that it would be extremely difficult to extend the frequency into the optical regime, you have to fight against the square of the frequency. Nevertheless, I refrained from making the statement in my paper that reaching an optical maser might be hopeless [4]. 'Never say never' is an appropriate adage, not only for seniors. A young colleague, who had also written a review paper, dared to support a more pessimistic view [6]. He anticipated in his very last sentence that stimulated emission would probably prevail merely in the microwave regime. This defeatist attitude seemed to have ruled throughout Germany, as already preached in the famous textbooks by Pohl [7], and also assumed by physics Professor Hellwege at Darmstadt, who was the leading expert regarding luminescence of materials such as ruby crystals; yet Maiman and others surpassed him [8]. Silicon came next for me, working, for example, with Shockley on the theory of maximal efficiency for solar cells, not really a topic regarding coherent radiation [9]. Once, however, a discussion evolved during one of those nearly dreaded hamburger lunches with Shockley at Kirk's charcoal restaurant on El Camino Real in Mountain View. Those frugal lunches ended with a demanding one-on-one interrogation, stricter and tougher than any doctoral oral examination. 'What, you do not know of Einstein's A and B coefficients?' Next afternoon I dutifully looked them up in the Stanford physics library. My first, rather indirect contacts with semiconductor heterojunctions occurred in this former apricot barn of Shockley's. Improving junction transistors required a maximum of the emitter efficiency. The emitter-to-base junction should carry only a forward current, no particles should flow from base to emitter [10]. This requirement can be met with a heterojunction: some other semiconductor material covering the silicon. Shockley had already contemplated this possibility while still at Bell Laboratories [11]. One day, a physicist by the name of Herbert Krömer visited us. This young man had also studied at Göttingen, especially with the memorable theoretician Richard Becker, whom we all admired. Krömer had in Princeton contributed to the theoretical understanding [12] of such wide-gap emitter/base junctions, and Shockley urgently wanted to hire him. But Herb preferred to join Varian Associates, just up the road in Palo Alto. Later, it was my great pleasure to attend the Nobel Festivities for Herb and Zhores Alferov in Stockholm. In the early sixties, I became a Member of Technical Staff at the Bell Laboratories in Murray Hill, New Jersey. Now, compound semiconductors, such as gallium arsenide, had to attract my interest. By the time of the mid-sixties, helium/neon-lasers were quite the vogue; Bell Labs actually established a little workshop with a production line to fabricate them and spread them throughout the departments. 'The solution in search of a problem', as sceptics joked about this new light source, was of vital interest to us because of the high frequencies to carry plenty of information channels. Transmission of laser light straight through the air, from Building 1 to Building 2 at Murray Hill, however, showed that the atmosphere was by far too unstable. We discussed silver-plated tubes and glass fibers, which eventually became so unbelievably pure that nowadays they provide a wealth of inexpensive communication channels. A gas laser did not appear to emerge into a viable, convenient engineering solution, nor did the ruby. A diode laser source had to be developed. I used laser-induced photoluminescence to search for more efficient GaAs materials, which resulted in detecting crystals with amphoteric silicon doping of very high output in the near-infrared [13]. This invention was patented in 37 countries and provided millions of diodes, such as for TV remote control devices. I had to sign off my inventor's reward for one US dollar, which I actually did not even receive. (In earlier years, patentors obtained one silver dollar; but not anymore!) Yet my little diodes, however efficient, could not be stimulated to emit coherent light, alas! Together with my colleagues and friends Morton Panish and Craig Casey, later famous textbook authors on diode lasers [14], we searched for solutions, although colleagues at the famed RCA Laboratories in Princeton had predicted that a laser diode was impossible [15]. I remember one morning when Mort told us of a talk he had just heard at a meeting in New York City, where our friendly competitors at the IBM Labs in Yorktown Heights, NY had suggested that heterojunctions could nicely confine and concentrate carriers, maybe also photons. Such heterojunctions were then tried in Panish's lab to be grown via liquid-phase epitaxy, Stan Sumski being the expert technician. At that time, the Leningraders, under leadership of Zhores Alferov were working hard and highly successfully with this crystal growth technique. We were very much impressed by the success in Leningrad. Liquid-phase epitaxy yields, in principle, exceedingly pure crystals, but we were unhappy about the principal lack of direct monitoring during this growth process, which we deemed absolutely necessary for obtaining reproducible heterojunctions with tightly controlled small dimensions. Ultrahigh-vacuum epitaxy seemed to be the inescapable solution. Delicate molecular beams had to be gently used and monitored! What a costly proposition! I clearly remember the day when Mort and I went to the Laboratory director John Galt. A little bit fearful and subdued, we explained our project. No, not expensive, rather a very expensive idea! We anxiously watched John with his usual stern demeanour; he paused and contemplated: 'All right, we do it—go ahead!' Construction for equipment needed for the Molecular Beam Epitaxy (MBE) began, and in Al Cho, an excellent new employee was hired for this task. A little later I left Bell Labs, this fabulous 'Mecca of Solid State' for a physics professorship at the Goethe University in Frankfurt-on-the-Main in Germany. Meanwhile, successful work on semiconductor lasers bore ample fruit worldwide. In Frankfurt, I used gas laser sources for photoluminescence diagnostics of elemental and compound semiconductors. With my astute doctoral student 'Teddy' Güttler, for example, we observed impurity photoluminescence in Au-doped silicon and concluded that doping of solar cells with deep impurities would not be beneficial for cell efficiency; just the opposite would happen because of increased carrier recombination [16]. In 1968, Western Germany experienced an ultra-left-wing student rebellion. Frankfurt students violently attacked me and accused me of war research since I used lasers, obviously a deadly weapon of mass destruction. Dieter Bimberg, our co-editor of this Festschrift, will undoubtedly remember those happenings when he was a doctoral candidate. In 1968, we all assembled in Moscow for the International Conference on the Physics of Semiconductors; what a unique opportunity to meet so many Russian colleagues, including this intellectual elite from the most remarkable Joffe Institute, with Zhores Alferov a major player. In 1970, I became a founding director of the Max-Planck-Institute for Solid State Research at Stuttgart, in the Southwest of Germany. There I eventually succeeded—against massive opposition—to establish a group for MBE, which became truly successful under the very capable leadership of Klaus Ploog [17], to whom was bestowed a prize of the Seibold-Foundation for Japan-Germany Science Cooperation. Klaus von Klitzing's group in our Max-Planck-Institute in Stuttgart relies on MBE to the present day for research on the quantum Hall effect [18]. Equally, my former doctoral student Horst Stormer had to utilize excellent MBE for his Nobel-Prize winning research on the fractional quantum Hall effect [18]. We fondly remember one congenial dinner party at our Stuttgart house, with Zhores Alferov and Helmut Lotsch as our valued guests; it must have been in the mid-seventies. My wife Inge had prepared a dessert in the shape of the title page of the Springer journal Applied Physics, with chocolate and orange cream. Herr Lotsch had won Alferov to become part of our board of editors, a most valuable connection to the excellence of Soviet semiconductor research! Many Japanese colleagues, especially from industrial electronics labs came to learn the tricks of MBE from us in Stuttgart; the German electronics industry, however, was reluctant and remained completely disinterested—but the French equipment maker RIBER was our staunch ally, and this company grew with the international acceptance of MBE for small, high-frequency devices. One diligent young visitor at my Stuttgart laboratories, Ozamu Kumagai from the SONY Corporation, did especially well. Back at home, he most cleverly devised novel technologies for efficient and low-cost production of laser diodes and thus earned a promotion to Vice Presidency. One of the most recent, gratifying encounters with Zhores Alferov happened to me in a cozy retreat in the forests near Madrid, with Antonio Luque being our gracious host for a solar cell symposium. We Stuttgarters had hoped to use multi-pair generation in perfected silicon solar cells [19], but a better chance to capture more photons from the solar spectrum exists most likely in multi-junction cells [20], with fancy tunnel-contacts interconnecting between heterojunctions. We shall see if this approach might eventually lead to more efficient, yet still economical solar energy conversion. Semiconductor heterojunctions for communications and consumers! Many of Alferov's present activities in St Petersburg and Berlin are governed by this magic modern prefix nano, which might one day also provide some applications in solar cells; but we have yet to carefully investigate [21]! References [1] Queisser H J 1958 Z.Physik 152 507 and 495 [2] Buckel W and Hilsch R 1956 Z. Physik 146 27 [3] Wittke J P 1957 Proc. IRE 45 291 with references to earlier work [4] Queisser H J 1959 Naturwiss. 46 394 [5] Queisser H J 1988 The Conquest of the Microchip (Cambridge, MA: Harvard University Press) [6] Wolf H C and Agnew Z 1958 Physik 10 480 [7] Pohl R W Optik (Heidelberg: Springer) [8] Yariv A 1968 Quantum Electronics (New York: Wiley) [9] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 [10] For details, see Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn (Hoboken, NJ: Wiley) [11] Shockley W 1951 US Patent Specification 2.569.347 [12] Krömer H 1957 Proc. IRE 45 1535 [13] Queisser H J 1966 J. Appl. Phys. 37 2909 (this paper was withheld internally for some time due to the patent application: US Pat.3.387.163) [14] Panish M B and Casey C H 1978 Heterostructure Lasers (New York: Academic) [15] Kressel H Private communications [16] Güttler G and Queisser H J 1996 J. Appl. Phys. 40 4994 [17] Ploog K and Graf K 1984 MBE of III-V Compounds (Berlin: Springer) [18] For recent coverage, see Chakraborty T and Pietiläinen P 1995 The Quantum Hall Effect (Berlin: Springer) [19] Werner J H, Kolodinski S and Queisser H J 1993 Phys. Rev. Lett. 72 3851 [20] Yamaguchi M 2002 Physica E 14 84 [21] Queisser H J 2002 Physica E 14 1 and many other contributions in this issue

  17. Impaired Autonomic Responses to Emotional Stimuli in Autoimmune Limbic Encephalitis

    PubMed Central

    Schröder, Olga; Schriewer, Elisabeth; Golombeck, Kristin S.; Kürten, Julia; Lohmann, Hubertus; Schwindt, Wolfram; Wiendl, Heinz; Bruchmann, Maximilian; Melzer, Nico; Straube, Thomas

    2015-01-01

    Limbic encephalitis (LE) is an autoimmune-mediated disorder that affects structures of the limbic system, in particular, the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs) to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2) antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings). The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala. PMID:26648907

  18. Executive control suppresses pupillary responses to aversive stimuli.

    PubMed

    Cohen, Noga; Moyal, Natali; Henik, Avishai

    2015-12-01

    Adaptive behavior depends on the ability to effectively regulate emotional responses. Continuous failure in the regulation of emotions can lead to heightened physiological reactions and to various psychopathologies. Recently, several behavioral and neuroimaging studies showed that exertion of executive control modulates emotion. Executive control is a high-order operation involved in goal-directed behavior, especially in the face of distractors or temptations. However, the role of executive control in regulating emotion-related physiological reactions is unknown. Here we show that exercise of executive control modulates reactivity of both the sympathetic and the parasympathetic components of the autonomic nervous system. Specifically, we demonstrate that both pupillary light reflex and pupil dilation for aversive stimuli are attenuated following recruitment of executive control. These findings offer new insights into the very basic mechanisms of emotion processing and regulation, and can lead to novel interventions for people suffering from emotion dysregulation psychopathologies. PMID:26410694

  19. Massively parallel neural encoding and decoding of visual stimuli.

    PubMed

    Lazar, Aurel A; Zhou, Yiyin

    2012-08-01

    The massively parallel nature of video Time Encoding Machines (TEMs) calls for scalable, massively parallel decoders that are implemented with neural components. The current generation of decoding algorithms is based on computing the pseudo-inverse of a matrix and does not satisfy these requirements. Here we consider video TEMs with an architecture built using Gabor receptive fields and a population of Integrate-and-Fire neurons. We show how to build a scalable architecture for video Time Decoding Machines using recurrent neural networks. Furthermore, we extend our architecture to handle the reconstruction of visual stimuli encoded with massively parallel video TEMs having neurons with random thresholds. Finally, we discuss in detail our algorithms and demonstrate their scalability and performance on a large scale GPU cluster. PMID:22397951

  20. Smart nanocontainers: progress on novel stimuli-responsive polymer vesicles.

    PubMed

    Feng, Anchao; Yuan, Jinying

    2014-04-01

    In the past decade, polymer vesicles prepared by self-assembly techniques have attracted increasing scientific interest based on their unique features highlighted with tunable membrane properties, versatility, stability, and capacity of transporting hydrophilic as well as hydrophobic species. Polymersomes exhibit intriguing potential applications such as cell mimicking dimensions and functions, tunable delivery vehicles, for the templating of biomineralization, nanoreactors, and as scaffolds for biological conjugation. In this Feature Article, an overview of the preparation and application of recently developed "smart" polymer vesicles, which can respond to the novel external stimuli, including carbon dioxide (CO2), electrochemical potential, ultrasound, enzyme, near-infrared light, and magnetic field is given. The response mechanism and morphology change are explored with specific focus on the functionalization of various domains of the polymer vesicles. In addition, the current limitations are explored as well as the challenges facing the development of these nanostructures toward real-world applications. PMID:24522966

  1. Startle modulation before, during and after exposure to emotional stimuli.

    PubMed

    Dichter, Gabriel S; Tomarken, Andrew J; Baucom, Brian R

    2002-02-01

    Although affective modulation of the startle reflex is a highly replicable effect, the majority of studies have administered startle probes during exposure to affective stimuli. To examine more comprehensively the temporal course of startle potentiation, we assessed blink modulation before, during and immediately after exposure to positive, negative and neutral pictures. During each trial, cues about the affective content of pictures were presented, after which acoustic startle probes were delivered either before picture onset, during picture onset or immediately after picture offset. As expected, we observed a linear relation between picture valence and startle amplitude during picture viewing. Surprisingly, startle amplitude was larger while anticipating pleasant and unpleasant pictures relative to neutral pictures. No significant effects were observed during the offset phase. These results indicate that startle modulation is conditional upon temporal factors linked to stimulus onset and offset. PMID:11809522

  2. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy.

    PubMed

    Tian, Li; Lu, Linfeng; Qiao, Yang; Ravi, Saisree; Salatan, Ferandre; Melancon, Marites P

    2016-01-01

    An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed. PMID:27455336

  3. Stimuli Responsive Ionogels for Sensing Applications—An Overview

    PubMed Central

    Kavanagh, Andrew; Byrne, Robert; Diamond, Dermot; Fraser, Kevin J.

    2012-01-01

    This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL) confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed. PMID:24957961

  4. Stimuli-Responsive Peptide-based Triblock and Star Copolymers

    NASA Astrophysics Data System (ADS)

    Ray, Jacob; Naik, Sandeep; Johnson, Ashley; Ly, Jack; Savin, Daniel

    2011-03-01

    Stimuli-responsive copolymers demonstrate diverse aggregation behavior in aqueous solution. In general, the molecular architecture and the balance of hydrophilic and hydrophobic volumes influence morphology. This study involves polypeptide-based ABA linear triblock and AB2 star copolymer (which structurally resemble phospholipids) amphiphiles. Model systems for this study are poly(L-lysine)-b-poly(propylene oxide)-b-poly(L-lysine) (KPK) triblocks and poly(L-glutamate) (PE) based star copolymers. Extensive studies with KPK systems have resulted in morphological transitions by modifying pH, and we hypothesize that a change in individual chain conformation is the driving force for these transitions. Preliminary results for PE-based star copolymers with various hydrophobic moieties suggest polymersome (vesicle) formation. Light scattering (dynamic and static) and TEM were used to determine aggregate size and morphology as a function of pH; furthermore, circular dichroism (CD) spectroscopy was used to measure helix-to-coil transitions of the polypeptide blocks.

  5. Stimuli-responsive polypeptide-based triblock copolymers

    NASA Astrophysics Data System (ADS)

    Ray, Jacob; Naik, Sandeep; Savin, Daniel

    2010-03-01

    Stimuli-responsive copolymers demonstrate diverse aggregation behavior in aqueous solution, where the molecular architecture and hydrophilic/hydrophobic content influences morphology. The solution morphology of poly(lysine)-b-poly(propylene oxide)-b-poly(lysine) (KPK) triblock copolymers with high lysine content (> 75 wt.%) will be compared with complementary KP diblock copolymers in the same phase range. Light scattering and TEM were used to determine aggregate size and morphology as a function of pH and temperature; furthermore, circular dichroism was used to measure helix-to-coil transitions of the K blocks. PK diblocks in this composition range yield spherical micelles over the entire pH range whereas KPK systems appear to exhibit morphological transitions with changing pH.

  6. A ferrocene-based multiple-stimuli responsive organometallogel.

    PubMed

    He, Ting; Li, Kun; Wang, Na; Liao, Ye-Xin; Wang, Xin; Yu, Xiao-Qi

    2014-06-01

    Three new ferrocene-peptide compounds were designed and prepared. We investigated their gelling abilities and found that two of them were capable of gelling various organic solvents, especially alcohols. Gels also formed in mixed alcohol-water solvents, which decreased the critical gelation concentration (CGC) of the gels. Compound 1, comprised of a dipeptide (Phe-Phe) and ferrocene, acted as a novel low-molecular-weight gelator in the formation of metallogel 1 in isopropanol-water (v/v = 1 : 1). This gelation was found to be reversible under redox stimuli; changing of the redox state of ferrocene induced a reversible gel-sol phase transition. Additionally, gel 1 responded to β-CD as a result of host-guest interactions between this compound and ferrocene. With the addition of β-CD, the gel network gradually broke down, as demonstrated by SEM. PMID:24691460

  7. Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems

    PubMed Central

    Marten, Gernot U; Gelbrich, Thorsten

    2010-01-01

    Summary A novel active biocatalytic reaction system is proposed by covalently immobilizing porcine pancreas trypsin within the thermoresponsive polymer shell of superparamagnetic Fe3O4 nanoparticles. Active ester-functional nanocarriers suitable for the immobilization of amino functional targets are obtained in a single polymerization step by grafting-from copolymerization of an active ester monomer from superparamagnetic cores. The comonomer, oligo(ethylene glycol) methyl ether methacrylate, has excellent water solubility at room temperature, biocompatibility, and a tunable lower critical solution temperature (LCST) in water. The phase separation can alternatively be initiated by magnetic heating caused by magnetic losses in ac magnetic fields. The immobilization of porcine pancreas trypsin to the core–shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. The enzymatic activity of the obtained biocatalyst system can be influenced by outer stimuli, such as temperature and external magnetic fields, by utilizing the LCST of the copolymer shell. PMID:20978622

  8. Response of juvenile scalloped hammerhead sharks to electric stimuli.

    PubMed

    Kajiura, Stephen M; Fitzgerald, Timothy P

    2009-01-01

    Sharks can use their electrosensory system to detect electric fields in their environment. Measurements of their electrosensitivity are often derived by calculating the voltage gradient from a model of the charge distribution for an ideal dipole. This study measures the charge distribution around a dipole in seawater and confirms the close correspondence with the model. From this, it is possible to predict how the sharks will respond to dipolar electric fields comprised of differing parameters. We tested these predictions by exposing sharks to different sized dipoles and levels of applied current that simulated the bioelectric fields of their natural prey items. The sharks initiated responses from a significantly greater distance with larger dipole sizes and also from a significantly greater distance with increasing levels of electric current. This study is the first to provide empirical evidence supporting a popular theoretical model and test predictions about how sharks will respond to a variety of different electric stimuli. PMID:19097876

  9. What boxing-related stimuli reveal about response behaviour.

    PubMed

    Ottoboni, Giovanni; Russo, Gabriele; Tessari, Alessia

    2015-01-01

    When two athletes meet inside the ropes of the boxing ring to fight, their cognitive systems have to respond as quickly as possible to a manifold of stimuli to assure victory. In the present work, we studied the pre-attentive mechanisms, which form the basis of an athlete's ability in reacting to an opponent's punches. Expert boxers, beginner boxers and people with no experience of boxing performed a Simon-like task where they judged the colour of the boxing gloves worn by athletes in attack postures by pressing two lateralised keys. Although participants were not instructed to pay attention to the direction of the punches, beginner boxers' responses resembled a defence-related pattern, expert boxers' resembled counterattacks, whereas non-athletes' responses were not influenced by the unrelated task information. Results are discussed in the light of an expertise-related action simulation account. PMID:25385452

  10. Affective response to a set of new musical stimuli.

    PubMed

    Hill, W Trey; Palmer, Jack A

    2010-04-01

    Recently, a novel set of musical stimuli was developed in an attempt to bring more rigor to a paradigm which often falls under scientific scrutiny. Although these musical clips were validated in terms of recognition for emotion, valence, and arousal, the clips were not specifically tested for their ability to elicit certain affective responses. The present study examined self-reported "elation" among 82 participants after listening to one of two types of the musical clips; 47 listened to happy music and 35 listened to sad music. Individuals who listened to happy music reported significantly higher "elation" than individuals who listened to the sad music. These results support the idea that music can elicit certain affective state responses. PMID:20524563

  11. Affective Simon effects using facial expressions as affective stimuli.

    PubMed

    De Houwer, J; Hermans, D; Eelen, P

    1998-01-01

    Two experiments are reported in which facial expressions were presented and participants were asked to respond with the word POSITIVE or NEGATIVE on the basis of a relevant feature of the facial stimuli while ignoring the valence of the expression. Results showed that reaction times were influenced by the match between the valence of the facial expression and the valence of the correct response when the identity of the presented person had to be determined in order to select the correct response, but not when the gender of the presented person was relevant. The present experiments illustrate the flexibility of the affective Simon paradigm and provide a further demonstration of the generalizability of the affective Simon effect. PMID:9677856

  12. Altered processing of sensory stimuli in patients with migraine.

    PubMed

    de Tommaso, Marina; Ambrosini, Anna; Brighina, Filippo; Coppola, Gianluca; Perrotta, Armando; Pierelli, Francesco; Sandrini, Giorgio; Valeriani, Massimiliano; Marinazzo, Daniele; Stramaglia, Sebastiano; Schoenen, Jean

    2014-03-01

    Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes. PMID:24535465

  13. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  14. Brain wave synchronization and entrainment to periodic acoustic stimuli.

    PubMed

    Will, Udo; Berg, Eric

    2007-08-31

    As known, different brainwave frequencies show synchronies related to different perceptual, motor or cognitive states. Brainwaves have also been shown to synchronize with external stimuli with repetition rates of ca. 10-40 Hz. However, not much is known about responses to periodic auditory stimuli with periodicities found in human rhythmic behavior (i.e. 0.5-5 Hz). In an EEG study we compared responses to periodic stimulations (drum sounds and clicks with repetition rates of 1-8 Hz), silence, and random noise. Here we report inter-trial coherence measures taken at the Cz-electrode that show a significant increase in brainwave synchronization following periodic stimulation. Specifically, we found (1) a tonic synchronization response in the delta range with a maximum response at 2 Hz, (2) a phasic response covering the theta range, and (3) an augmented phase synchronization throughout the beta/gamma range (13-44 Hz) produced through increased activity in the lower gamma range and modulated by the stimulus periodicity. Periodic auditory stimulation produces a mixture of evoked and induced, rate-specific and rate-independent increases in stimulus related brainwave synchronization that are likely to affect various cognitive functions. The synchronization responses in the delta range may form part of the neurophysiological processes underlying time coupling between rhythmic sensory input and motor output; the tonic 2 Hz maximum corresponds to the optimal tempo identified in listening, tapping synchronization, and event-interval discrimination experiments. In addition, synchronization effects in the beta and gamma range may contribute to the reported influences of rhythmic entrainment on cognitive functions involved in learning and memory tasks. PMID:17709189

  15. Effects of sequential stimuli on Halobacterium salinarium photobehavior.

    PubMed Central

    Lucia, S; Ferraro, M; Cercignani, G; Petracchi, D

    1996-01-01

    We analyzed the motor photoresponses of Halobacterium salinarium to different test stimuli applied after a first photophobic response produced by a step-down of red-orange light (prestimulus). We observed that pulses given with a suitable delay after the prestimulus produced unusual responses. Pulses of blue, green, or red-orange light, each eliciting no response when applied alone, produced a secondary photophobic response when applied several seconds after the prestimulus; the same occurred with a negative blue pulse (rapid shut-off and turning on of a blue light). Conversely, no secondary photophobic response was observed when the test stimulus was a step (a step-up for red-orange light, a step-down for blue light) of the same wavelength and intensity. When the delay was varied, different results were obtained with different wavelengths; red-orange pulses were typically effective in producing a secondary photophobic response, even with a delay of 2 s, whereas the response to a blue pulse was suppressed when the test stimulus was applied within 5 s after the prestimulus. The secondary photophobic response to pulses was abolished by reducing the intensity of the prestimulus without affecting the primary photophobic response. These results, some of which were previously reported in the literature as inverse effects, must be produced by a facilitating mechanism depending on the prestimulus itself, the occurrence of reversals being per se ineffective. The fact that red-orange test stimuli are facilitated even at the shortest delay, whereas those of different wavelengths become effective only after several seconds, suggests that the putative mechanism of the facilitating effect is specific for different signaling pathways. PMID:8874029

  16. Visual laterality in dolphins: importance of the familiarity of stimuli

    PubMed Central

    2012-01-01

    Background Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality. Results We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (Tursiops truncatus) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence. Conclusion Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system

  17. Resting state EEG delta-beta coherence in relation to anxiety, behavioral inhibition, and selective attentional processing of threatening stimuli.

    PubMed

    Putman, Peter

    2011-04-01

    Variability in human resting state electroencephalography (EEG) may reflect emotion regulation processes (for a review, see Knyazev, 2007). For instance, it has been suggested that correlation between slow (1-3 Hz) and fast (13-30 Hz) activity (or δ-β coherence) may reflect functional synchronization between limbic and cortical brain systems. Indirect support comes from several studies reporting relationships between δ-β coherence and subjectively reported behavioral inhibition and state anxiety. The present study sought to extend this work and tested the prediction that objectively, experimentally, measured threat-selective attention should also be related to δ-β coherence. EEG frequency band power and dot probe task performance were assessed in forty healthy women and results demonstrated a negative association between delta-beta coherence and automatic, anxiety-driven attentional avoidance of threatening pictorial stimuli. These first reported objective measures for cognitive-emotional behavior obtained in relation to delta-beta coherence provide additional support for the hypothesis that this EEG parameter may reflect emotion regulation processes and supports suggestions that δ-β coherence may be a useful tool in the experimental study of affect and psychopathology. In addition, results showed an unexpected negative association between δ-β coherence and self-reported trait anxiety (but no association with behavioral inhibition). PMID:21277914

  18. (In,Mn)As multilayer quantum dot structures

    SciTech Connect

    Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George

    2014-12-08

    (In,Mn)As multilayer quantum dots structures were grown by molecular beam epitaxy using a Mn selective doping of the central parts of quantum dots. The study of the structural and magneto-optical properties of the samples with three and five layers of (In,Mn)As quantum dots has shown that during the quantum dots assembly, the out-diffusion of Mn from the layers with (In,Mn)As quantum dots can occur resulting in the formation of the extended defects. To produce a high quality structures using the elaborated technique of selective doping, the number of (In,Mn)As quantum dot layers should not exceed three.

  19. A Comparison of Cognitive Teaching Stimuli in a First Grade Classroom.

    ERIC Educational Resources Information Center

    Sigrest, Christine E.

    A study assessed the effectiveness of three cognitive levels of instruction with first graders--three-dimensional (3-D) instruction using real objects, two-dimensional (2-D) instruction using picture representations, and verbal instruction. The study population included 18 first-grade students between the ages of 6 and 8 at a small elementary city…

  20. Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI

    PubMed Central

    van der Zwaag, Wietske; Gruetter, Rolf; Martuzzi, Roberto

    2015-01-01

    Studying body representations in the brain helps us to understand how we humans relate to our own bodies. The in vivo mapping of the somatosensory cortex, where these representations are found, is greatly facilitated by the high spatial resolution and high sensitivity to brain activation available at ultra-high field. In this study, the use of different stimulus types for somatotopic mapping of the digits at ultra-high field, specifically manual stroking and mechanical stimulation, was compared in terms of sensitivity and specificity of the brain responses. Larger positive responses in digit regions of interest were found for manual stroking than for mechanical stimulation, both in terms of average and maximum t-value and in terms of number of voxels with significant responses to the tactile stimulation. Responses to manual stroking were higher throughout the entire post-central sulcus, but the difference was especially large on its posterior wall, i.e. in Brodmann area 2. During mechanical stimulation, cross-digit responses were more negative than during manual stroking, possibly caused by a faster habituation to the stimulus. These differences indicate that manual stroking is a highly suitable stimulus for fast somatotopic mapping procedures, especially if Brodmann area 2 is of interest. PMID:26285027

  1. Submonolayer Quantum Dot Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  2. Beyond DOtS: avenues ahead in the management of tuberculosis.

    PubMed

    Chaudhury, Ranjit Roy; Thatte, Urmila

    2003-01-01

    India has almost 30% of the global burden of tuberculosis (TB)--one person dies of the disease every minute in our country. India has mounted the second-largest DOTS programme in the world to control this disease. However, DOTS has its limitations and newer approaches have been developed over the years to overcome the global burden of tuberculosis. Problems with health facilities, patients, drugs and the disease itself constitute some of the hurdles in the implementation of the DOTS programme. In an attempt to go beyond DOTS, the WHO launched the 'Stop TB Initiative' in 1988. Against the background of irrational antituberculosis drug use, which contributes to increasing drug resistance, the effective involvement of private healthcare providers is imperative to achieve better geographical and patient coverage for the implementation of DOTS. The WHO is currently addressing the issue of involving private practitioners in tuberculosis control in a programme called Public-Private Mix DOTS (PPM DOTS). The Stop TB Initiative is also active in the area of dual infection with HIV and tuberculosis, and the initiatives that have been taken in this area include 'ProTEST', community contribution to tuberculosis care, and development and dissemination of training materials and guidelines. The DOTS-Plus strategy for the management of multidrug resistant (MDR)-TB and the establishment of the Green Light Committee to review project applications in this area are initiatives taken to curb the problem of drug resistance in tuberculosis. Even decades after the introduction of the DOTS strategy, much needs to be done to expand the services to the entire population; it is now essential to develop strategies that go beyond DOTS. PMID:14765625

  3. Peptide-mediated cellular delivery of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Gemmill, Kelly Boeneman; Muttenthaler, Markus; Delehanty, James; Deschamps, Jeff; Susumu, Kimihiro; Stewart, Michael; Dawson, Philip; Huston, Alan; Medintz, Igor

    2013-05-01

    CdSe/ZnS semiconductor quantum dots (QDs) are ideal materials for biological sensing and cellular imaging applications due to their superior photophysical properties in comparison to fluorescent proteins or dyes and their ease of conjugation to biological materials. We have previously developed a number of in vitro FRET based biosensors in the laboratory for detection of proteases and biological and chemical agents. We would like to expand these biosensing capabilities into cellular systems, requiring development of QD cellular delivery techniques. Peptide mediated cellular delivery of QDs is ideal as peptides are small, easily conjugated to QDs, easily manipulated and synthesized, and can be designed with "handles" for further chemical conjugation with other cargo. Here we discuss four cell delivery peptides that facilitate QD uptake in live cells. Understanding these peptides will help us design better nanoparticle cellular delivery systems and advance our capabilities for in vivo biosensing.

  4. Profiling the local carrier concentration across a semiconductor quantum dot

    SciTech Connect

    Walrath, J. C.; Lin, Yen-Hsiang; Huang, S.; Goldman, R. S.

    2015-05-11

    We profile the local carrier concentration, n, across epitaxial InAs/GaAs quantum dots (QDs) consisting of 3D islands on top of a 2D alloy layer. We use scanning thermoelectric microscopy to measure a profile of the temperature gradient-induced voltage, which is converted to a profile of the local Seebeck coefficient, S. The S profile is then converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. Our combined computational-experimental approach suggests a reduced carrier concentration in the QD center in comparison to that of the 2D alloy layer. The relative roles of free carrier trapping and/or dopant expulsion are discussed.

  5. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  6. Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots.

    PubMed

    Song, Zhiping; Lin, Tianran; Lin, Lihua; Lin, Sen; Fu, Fengfu; Wang, Xinchen; Guo, Liangqia

    2016-02-18

    Stimuli-responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV-light illumination. Here, we introduced metal-free water-soluble graphitic carbon nitride quantum dots (g-CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g-CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high-level information coding and protection by using water-soluble g-CNQDs as invisible security ink. PMID:26797811

  7. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles.

    PubMed

    Herzog, F; Heedt, S; Goerke, S; Ibrahim, A; Rupprecht, B; Heyn, Ch; Hardtdegen, H; Schäpers, Th; Wilde, M A; Grundler, D

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields. PMID:26740509

  8. Electronic structure and electron correlation in weakly confining spherical quantum dot potentials

    NASA Astrophysics Data System (ADS)

    Kimani, Peter Borgia Ndungu

    The electronic structure and electron correlations in weakly confining spherical quantum dots potentials are investigated. Following a common practice, the investigation starts with the restricted Hartree-Fock (HF) approximation. Then electron correlation is added in steps in a series of approximations based on the single particle Green's function approach: (i) Second-order Green function (GF) (ii) 2ph-Tamm-Dancoff approximation (TDA) and (iii) an extended version thereof (XTDA) which introduces ground-state correlation into the TDA. The study includes as well Hartree-Fock V (N-1) potential approximation in which framework the Hartree-Fock virtual orbitals are calculated in the field of the N-1 electrons as opposed to the regular but unphysical N-electron field Hartree-Fock calculation of virtual orbitals. For contrast and comparison, the same approximation techniques are applied to few-electron closed-shell atoms and few-electron negative ions for which pertinent data is readily available. The results for the weakly confining spherical quantum dot potentials and the standard atomic systems exhibit fundamental similarities as well as significant differences. For the most part the results of these calculations are in favor of application of HF, GF, and TDA techniques in the modeling of three-dimensional weakly confining quantum dot potentials. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots such as the increased binding of electrons with higher angular momentum and the modified shell filling sequences.

  9. Low Temperature Photoluminescence Kinetics of Double-Ring Structured GaAs Quantum Dots.

    PubMed

    Myoung, Soung; Mun, Ok Mi; Yim, Sang-Youp; Kim, Jong Su

    2015-11-01

    This work is focused on spectroscopically characterizing kinetic properties of concentric quantum-ring complexes of GaAs quantum dots. Quantum-ring (or double-ring) GaAs quantum dots, embedded in an Al0.3Ga0.7As barrier layer, were grown by a droplet epitaxy method during molecular beam epitaxy on a GaAs (001) substrate. Emission peaks of photoluminescence spectra with different excitation power, were measured as 702 nm at 0.17 mW and 690 nm at 400 mW, were blue-shifted as the excitation power increased. In addition, excitation laser power dependence of time-resolved photoluminescence of double-ring GaAs quantum dots at 10 K under 400 nm excitation wavelength was performed, revealing that photoluminescence lifetime slowly decreased in comparison to that of single disc-like quantum dots as excitation power increased, implying that carrier transfer between inner ring and outer ring could slow down the decay process. The luminescence lifetime at 10 K increased from 245 to 409 ps in the range from 0.17 to 400 mW of excitation power. PMID:26726575

  10. A Comparison of Methods for Teaching Receptive Language to Toddlers with Autism

    ERIC Educational Resources Information Center

    Vedora, Joseph; Grandelski, Katrina

    2015-01-01

    The use of a simple-conditional discrimination training procedure, in which stimuli are initially taught in isolation with no other comparison stimuli, is common in early intensive behavioral intervention programs. Researchers have suggested that this procedure may encourage the development of faulty stimulus control during training. The current…

  11. Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli

    PubMed Central

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim

    2013-01-01

    Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions. PMID:23825112

  12. Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli.

    PubMed

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim

    2013-09-01

    Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions. PMID:23825112

  13. Attentional Biases toward Face-Related Stimuli among Face Dissatisfied Women: Orienting and Maintenance of Attention Revealed by Eye-Movement

    PubMed Central

    Kou, Hui; Su, Yanhua; Bi, Taiyong; Gao, Xiao; Chen, Hong

    2016-01-01

    The present study was aimed to examine attentional biases toward attractive and unattractive faces among face dissatisfied women. Twenty-seven women with high face dissatisfaction (HFD) and 27 women with low face dissatisfaction (LFD) completed a visual dot-probe task while their eye-movements were tracking. Under the condition of faces-neutral stimuli (vases) pairs, compared to LFD women, HFD women directed their first fixations more often toward faces, directed their first fixations toward unattractive faces more quickly, and had longer first fixation duration on such faces. All participants had longer overall gaze duration on attractive faces than on unattractive ones. Our behavioral data revealed that HFD women had difficulty in disengaging their attention from faces. However, there are no group differences in stimulus pairs containing an attractive and an unattractive face. In sum, when faces were paired with neutral stimuli (vases) HFD women showed an attention pattern characterized by orienting and maintenance, at least initially, toward unattractive faces but showed overall attention maintenance to attractive ones, but any attention bias wasn’t found in attractive - unattractive face pairs. PMID:27445892

  14. Preparation of pH-stimuli-responsive PEG-TGA/TGH-capped CdTe QDs and their application in cell labeling.

    PubMed

    Du, Yan; Yang, Dongzhi; Sun, Shian; Zhao, Ziming; Tang, Daoquan

    2015-08-01

    A pH-sensitive and double functional nanoprobe was designed and synthesized in a water-soluble system using thioglycolic acid (TGA) and mercapto-acetohydrazide (TGH) as the stabilizers. TGA is biocompatible because the carboxyl group is easily linked to biological macromolecules. At the same time, the hydrazide on TGH reacts with the aldehyde on poly(ethylene glycol) (PEG) and forms a hydrazone bond. The hydrazone bond ruptured at specific pH values and exhibited pH-stimuli-responsive characteristics. As an optical imaging probe, the PEG-TGA/TGH-capped CdTe quantum dots (QDs) had high quality, with a fluorescence efficiency of 25-30%, and remained stable for at least five months. This pH-responsive factor can be used for the effective release of CdTe QDs under the acidic interstitial extracellular environment of tumor cells. This allows the prepared pH-stimuli-responsive nanoprobes to show fluorescence signals for use in cancer cell imaging. PMID:25244429

  15. Vortex Gyrotropic Motion in patterned Ferromagnetic Dots

    NASA Astrophysics Data System (ADS)

    Ding, Junjia; Lapa, Pavel; Chair, Trupti; Posada, Chrystian; Hoffmann, Axel; Novosad, Valentine

    A vortex state consists of a large region of in-plane curling magnetization and a small core region with out-of-plane magnetization. The gyrotropic oscillation frequency of the vortex core is known to be weakly dependent to the core position (which is adjustable by changing the applied field) and can only be efficiently tuned by changing the dimension of the dots. Here, we demonstrated that the vortex gyrotropic frequency can be stepwise tuned by introducing a vortex barrier to a regular ferromagnetic dot. Systematical investigations of the dynamic response of the engineered dots have been performed as a function of the outer dot diameter, barrier diameter and the barrier profile using both microwave absorption spectroscopy and micromagnetic simulation. We found that the vortex frequency is mostly dependent on the outer diameter of the dot when the core is outside the barrier, while it is more rely on the dimension of the barrier when the core is inside the barrier. This approach certainly gives several additional freedoms to adjust the vortex gyrotopic frequency and opens extra perspectives for spintronic applications. This work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division.

  16. A Safe Haven: Investigating Social-Support Figures as Prepared Safety Stimuli.

    PubMed

    Hornstein, Erica A; Fanselow, Michael S; Eisenberger, Naomi I

    2016-08-01

    Although fear-conditioning research has demonstrated that certain survival-threatening stimuli, namely prepared fear stimuli, are readily associated with fearful events, little research has explored whether a parallel category exists for safety stimuli. We examined whether social-support figures, who have typically benefited survival, can serve as prepared safety stimuli, a category that has not been explored previously. Across three experiments, we uncovered three key findings. First, social-support figures were less readily associated with fear than were strangers or neutral stimuli (in a retardation-of-acquisition test). Second, social-support stimuli inhibited conditional fear responses to other cues (in a summation test), and this inhibition continued even after the support stimulus was removed. Finally, these effects were not simply due to familiarity or reward because both familiar and rewarding stimuli were readily associated with fear, whereas social-support stimuli were not. These findings suggest that social-support figures are one category of prepared safety stimuli that may have long-lasting effects on fear-learning processes. PMID:27324266

  17. A Basis for Identifying Stimuli Which Control Behaviors in Natural Settings

    ERIC Educational Resources Information Center

    Patterson, G. R.

    1974-01-01

    Describes procedures for identifying stimuli in the natural environment whose presence was associated with altered probabilities for both the initiation and persistence of noxious responses. (Author/SDH)

  18. Alleged Approach-Avoidance Conflict for Food Stimuli in Binge Eating Disorder

    PubMed Central

    Leehr, Elisabeth J.; Schag, Kathrin; Brinkmann, Amelie; Ehlis, Ann-Christine; Fallgatter, Andreas J.; Zipfel, Stephan; Giel, Katrin E.; Dresler, Thomas

    2016-01-01

    Objective Food stimuli are omnipresent and naturally primary reinforcing stimuli. One explanation for the intake of high amounts of food in binge eating disorder (BED) is a deviant valuation process. Valuation of food stimuli is supposed to influence approach or avoidance behaviour towards food. Focusing on self-reported and indirect (facial electromyography) valuation process, motivational aspects in the processing of food stimuli were investigated. Methods We compared an overweight sample with BED (BED+) with an overweight sample without BED (BED-) and with normal weight controls (NWC) regarding their self-reported and indirect (via facial electromyography) valuation of food versus non-food stimuli. Results Regarding the self-reported valuation, the BED+ sample showed a significantly stronger food-bias compared to the BED- sample, as food stimuli were rated as significantly more positive than the non-food stimuli in the BED+ sample. This self-reported valuation pattern could not be displayed in the indirect valuation. Food stimuli evoked negative indirect valuation in all groups. The BED+ sample showed the plainest approach-avoidance conflict marked by a diverging self-reported (positive) and indirect (negative) valuation of food stimuli. Conclusions BED+ showed a deviant self-reported valuation of food as compared to BED-. The valuation process of the BED+ sample seems to be characterized by a motivational ambivalence. This ambivalence should be subject of further studies and may be of potential use for therapeutic interventions. PMID:27045169

  19. Interpretative bias in spider phobia: Perception and information processing of ambiguous schematic stimuli.

    PubMed

    Haberkamp, Anke; Schmidt, Filipp

    2015-09-01

    This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. PMID:26276153

  20. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.