Science.gov

Sample records for double barrier qdb

  1. DIII-D Quiescent Double Barrier Regime Experiments and Modeling

    SciTech Connect

    Casper, T.A.; Burrell, K.H.; DeBoo, J.C.; Doyle, E.J.; Gohil, P.; Greenfield, C.M.; Groebner, R.J.; Jayakumar, R.J.; Kaiser, T.B .; Kinsey, J.E.; Lasnier, C.J.; Lao, L.L.; Makowski, M.A.; McKee, G.R.; Moyer, R.A.; Pearlstein, L.D.; Rhodes, T.L.; Rudakov, D.L.; Staebler, G.M.; West, W.P.

    2002-07-01

    Discharges characteristic of the quiescent double barrier (QDB) regime [1] are attractive for development of advanced tokamak (AT) scenarios relevant to fusion reactors [2] and they offer near term advantages for exploring and developing control techniques. We continue to explore the QDB regime in DIII-D to improve understanding of formation and control of these discharges and to explore scaling to steady-state reactors. The formation of an internal transport barrier (ITB) provides a naturally peaked core pressure profile. This peaking in density in combination with the H-mode-like edge barrier and pedestal provide a path to high performance. We have achieved {beta}{sub N}H{sub 89P} {approx} 7 for several energy confinement times ({le} 25 {tau}{sub E}). We discuss here a combination of modeling and experiments using electron cyclotron heating (ECH) and current drive (ECCD) to demonstrate steady state, current-driven equilibria and control of the current distribution, safety factor q, and density profile. Experimental conditions leading to formation of the QDB discharge require establishing two distinct and separated barrier regions, a core region near {rho} {approx} 0.5 and an edge barrier outside {rho} > 0.95, {rho} is the square root of toroidal flux (radial coordinate). A region of higher transport due to a change in polarity of the E x B shearing rate [1] separates the core barrier from the H-mode edge. It is this separation in barriers that so far has required use of counter-NBI to establish QDB conditions. Balanced NBI should also allow this separation of barriers. The edge corresponds to the quiescent H-mode (QH) conditions [3]. In this quiescent edge region, the normally observed transient loss associated with edge-localized-mode (ELM) activity is replaced with a steady particle loss driven by a coherent oscillation residing outside the pedestal region. This edge harmonic oscillation (EHO) [2] typically exhibits 2 or 3 harmonics of a fundamental frequency near 10 kHz. We find this combination of a core ITB and the QH-mode edge to be extremely robust and to produce slowly varying, high performance discharge parameters, Fig. 1, for long durations {approx} 3 s. These conditions are generally limited by the duration of the NBI system and a slow evolution to lower q values as the Ohmic current moves inward on the resistive time scale for diffusion.

  2. {QDB}: an {IDL}-Based Interface to {LASCO} Databases

    NASA Astrophysics Data System (ADS)

    Esfandiari, A. E.; Paswaters, S. E.; Wang, D.; Howard, R. A.

    {QDB} is a collection of {IDL} and {C} routines that provides a query interface to the Large Angle Spectrometric Coronograph (LASCO) databases maintained under the Sybase database management system. {IDL} widgets are used extensively to display the databases, tables, columns, and on-line help. This is a fully automated process---no code modification is required to reflect database changes such as adding/dropping databases, tables, or columns. Standard Query Language ({SQL}) is used to build a query based on the user selection. This query is then passed via Remote SHell (rsh) to two {C} routines that access the Sybase Open Client Database library to execute the query. The result is returned in an {IDL} structure. Another set of {IDL} routines optionally displays or manipulates the data in this structure.

  3. CURRENT DRIVE AND PRESSURE PROFILE MODIFICATION WITH ELECTRON CYCLOTRON POWER IN DIII-D QUIESCENT DOUBLE BARRIER EXPERIMENTS

    SciTech Connect

    CASPER,TA; BURRELL,KH; DOYLE,EJ; GOHIL,P; GREENFIELD,CM; GROEBNER,RJ; JAYAKUMAR,RJ; MAKOWSKI,MA; RHODES,TL; WEST,WP

    2003-07-01

    OAK-B135 High confinement mode (H-mode) operation is a leading scenario for burning plasma devices due to its inherently high energy-confinement characteristics. The quiescent H-mode (QH-mode) offers these same advantages with the additional attraction of more steady edge conditions where the highly transient power loads due to edge localized mode (ELM) activity is replaced by the steadier power and particle losses associated with an edge harmonic oscillation (EHO). With the addition of an internal transport barrier (ITB), the capability is introduced for independent control of both the edge conditions and the core confinement region giving potential control of fusion power production for an advanced tokamak configuration. The quiescent double barrier (QDB) conditions explored in DIII-D experiments exhibit these characteristics and have resulted in steady plasma conditions for several confinement times ({approx} 26 {tau}{sub E}) with moderately high stored energy, {beta}{sub N}H{sub 89} {approx} 7 for 10 {tau}{sub E}.

  4. A double barrier memristive device

    PubMed Central

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-01-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823

  5. A double barrier memristive device.

    PubMed

    Hansen, M; Ziegler, M; Kolberg, L; Soni, R; Dirkmann, S; Mussenbrock, T; Kohlstedt, H

    2015-01-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70??m2 and 2300??m2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823

  6. A double barrier memristive device

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-09-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits.

  7. Double- and triple-barrier Josephson junctions

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Giordano, A.

    2014-11-01

    A generalization of the semi-classical model describing the Josephson dynamics of tri-layer superconducting systems is given by assuming a constant non-null arbitrary superconducting phase for the inner electrode and the presence of inhomogeneities in the superconducting coupling between electrodes. Extension of the model to triple-barrier Josephson junctions is proposed. Integer and fractional Shapiro steps are predicted and their amplitudes are calculated.

  8. Double Barriers and Magnetic Field in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed; Bahlouli, Hocine

    2015-12-01

    We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.

  9. Microscopic nonequilibrium theory of double-barrier Josephson junctions

    NASA Astrophysics Data System (ADS)

    Brinkman, A.; Golubov, A. A.; Rogalla, H.; Wilhelm, F. K.; Kupriyanov, M. Yu.

    2003-12-01

    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Greens function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a nonzero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.

  10. Ferroelectric modulation on resonant tunneling through perovskite double-barriers

    SciTech Connect

    Du, Ruifang; Qiu, Xiangbiao; Li, Aidong; Wu, Di

    2014-04-07

    The negative differential resistance (NDR) due to resonance tunneling is achieved at room temperature in perovskite double-barrier heterostructures composed of a 10 unit-cell-thick SrTiO{sub 3} quantum well sandwiched in two 10 unit-cell-thick LaAlO{sub 3} barriers. The NDR occurs at 1.2?V and does not change with voltage cycling. When the paraelectric SrTiO{sub 3} quantum well is replaced by a ferroelectric BaTiO{sub 3}, the onset of the NDR can be modulated by polarization switching in the ultrathin BaTiO{sub 3}. A polarization pointing to the collector lowers the NDR voltage but a polarization pointing to the emitter increases it. The shift of the NDR voltage is ascribed to reversal of the extra electric field in the quantum well due to the polarization switching.

  11. Double barrier system for an in situ conversion process

    SciTech Connect

    McKinzie, Billy John; Vinegar, Harold J; Cowan, Kenneth Michael; Deeg, Wolfgang Friedrich Johann; Wong, Sau-Wai

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  12. Dynamic properties of double-barrier resonant-tunneling structures

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Ting, C. S.

    1991-01-01

    In this paper we present an approach to the dynamic transport properties of a double-barrier resonant-tunneling system. Based on the nonequilibrium-Green's-function technique and the Feynman-path-integral theory, the essential ingredients of this microstructure will be properly treated in a self-consistent way: the quantum interference across the structure, the nonequilibrium distribution of tunneling electrons driven by the applied bias voltage, and the effect of reservoirs (electrodes). The transient behavior of the tunneling current, immediately after the switching on of a dc bias voltage, is characterized by the building-up process of tunneling electrons in the quantum well. The novel negative differential conductance demonstrates itself as a function of frequency of the small ac signal superimposed upon a dc bias. The imaginary part of admittance is shown to be related to the conductance via a Kronig-Kramers relation.

  13. Double tearing modes in the presence of internal transport barrier

    SciTech Connect

    Zhao, X. M.; Tang, C. J.; Peng, X. D.; Qiu, X. M.

    2011-07-15

    The linear characteristics of double tearing modes (DTMs) in the presence of internal transport barrier (ITB) are investigated in a cylindrical tokamak plasma. A simple model describing density profile of ITB is suggested. Combining the safety factor profile given by Bierwage et al.[Phys. Plasmas 12, 082504 (2005); 14, 022107 (2007)], the DTMs spectra, scaling laws, and relationships between growth rate and density profile factor in the presence of ITB are studied, respectively. The results show that the resistive drift instability occurs in the case of high poloidal mode numbers. A transition from DTMs to the resistive drift instability is observed, and the dependence of DTMs growth rate on the magnetic Reynolds number has changed greatly due to the presence of ITB. In addition, the linear growth rates of the modes including those with low and high poloidal mode number increase when the plasma density profile steepens in the presence of ITB whatever the inter-resonant distance is smaller or larger.

  14. Shot noise in magnetic double-barrier tunnel junctions

    NASA Astrophysics Data System (ADS)

    Szczepa?ski, T.; Dugaev, V. K.; Barna?, J.; Cascales, J. P.; Aliev, F. G.

    2013-04-01

    We calculate shot noise and the corresponding Fano factors in magnetic double-barrier tunnel junctions. Two situations are analyzed: (i) the central metallic layer is nonmagnetic while the external ones are ferromagnetic, and (ii) all of the metallic layers are ferromagnetic. In the latter case, the number of various magnetic configurations of the junctions is larger, which improves the functionality of such devices. The corresponding shot noise and Fano factor are shown to depend on the magnetic configuration of the junctions. The effect of spin relaxation in the central layer is also taken into account. The theoretical results are compared with experimental data on the shot noise in Fe/MgO/Fe/MgO/Fe structures.

  15. Study of double barrier superlattice by synchrotron radiation and double-crystal x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Wang, Y. T.; Jiang, D. S.; Yang, X. P.; Jiang, X. M.; Wu, J. Y.; Xiu, L. S.; Zheng, W. L.

    1996-02-01

    An (AlAs/GaAs/AlAs/AlGaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters. The accurate layer thickness of each sublayer is obtained with an error less than 1 . Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon.

  16. On the generalized Hartman effect for symmetric double-barrier point potentials

    NASA Astrophysics Data System (ADS)

    Lee, Molly A.; Lunardi, Jos T.; Manzoni, Luiz A.; Nyquist, Erik A.

    2015-01-01

    We consider the scattering of a non-relativistic particle by a symmetrical arrangement of two identical barriers in one-dimension, with the barriers given by the well-known four-parameter family of point interactions. We calculate the phase time and the stationary Salecker-Wigner-Peres clock time for the particular cases of a double ? and a double ?' barrier and investigate the off-resonance behavior of these time scales in the limit of opaque barriers, addressing the question of emergence of the generalized Hartman effect.

  17. Comparison of various parametrizations of the double-humped fission barrier

    SciTech Connect

    Bhandari, B.S.; Khaliquzzaman, M. )

    1991-07-01

    The double-humped potential barriers in actinide nuclei in the fission direction have been parametrized using three different procedures, namely, the smoothly joined parabolic segments, third-degree polynomials passing through and with zero slopes at the successive extremum points, and straight-line segments connecting the successive extremum points. The fission penetrabilities through the barriers and the ground-state spontaneous fission half-lives for a wide variety of 25 actinide nuclides have been calculated for these different parametrizations. Our results clearly indicate that while the third-degree polynomial and the straight-line parametrizations of the double-humped fission barrier lead to approximately similar results on the fission penetrability and fission half-lives, the corresponding results using the smoothly joined parabolic segment parametrization differ significantly by almost two to five orders of magnitude depending on the specific type of the fissioning nucleus and on the parameters of its corresponding double-humped fission barrier.

  18. Dissipative charge transport in diffusive superconducting double-barrier junctions

    NASA Astrophysics Data System (ADS)

    Bezuglyi, E. V.; Bratus', E. N.; Shumeiko, V. S.

    2011-05-01

    We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short diffusive normal wire, the length of which is much smaller than the coherence length, and the resistance is much smaller than the resistance of the tunnel barriers. The charge transport regime in such junctions qualitatively depends on a characteristic value ?=?d? of relative phase shifts between the electrons and retroreflected holes accumulated during the dwell time ?d. In the limit of small electron-hole dephasing ??1, our solution recovers a known formula for a short mesoscopic connector extended to the MAR regime. At large dephasing, the subharmonic gap structure in the IVC scales with ?-1, which thus plays the role of an effective tunneling parameter. In this limit, the even gap subharmonics are resonantly enhanced, and the IVC exhibits portions with negative differential resistance.

  19. Vanishing optical isolation barrier in double ion-implanted lithium niobate waveguide

    SciTech Connect

    Sarkisov, S.S.; Williams, E.K.; Ila, D.; Venkateswarlu, P.; Poker, D.B.

    1996-04-01

    Isolation properties at different propagation directions have been studied for an optical barrier between two superposed planar waveguides produced by MeV He{sup +} implantation in LiNbO{sub 3}. The barrier exists while the modes of the double structure propagate along the optic axis. The spacing between the modes measured with a prism coupler features efficiently isolated waveguides. The barrier {open_quote}{open_quote}vanishes{close_quote}{close_quote} when the directional angle between an extraordinary wave and the optic axis exceeds 50{degree}. In this case the mode spacing shows strong coupling between the waveguides that makes the double structure similar to a single waveguide with double thickness. {copyright} {ital 1996 American Institute of Physics.}

  20. Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.; Janardhanam, V.; Leem, Chang-Hyun; Choi, Chel-Jong

    2014-03-01

    The temperature dependent electrical characteristics of Se/n-GaN Schottky barrier diode have been investigated in the temperature range of 130-400 K in the steps of 30 K. The estimated barrier height (?bo) and ideality factor n are found to be 0.46 eV and 3.83 at 130 K, 0.92 eV and 1.29 at 400 K. The ?bo and n are found to be strongly temperature dependent and while the ?bo decreases and the n increase with decreasing temperature. Such behavior of ?bo and n is attributed to Schottky barrier inhomogeneities, explained by the assumption of Gaussian distribution of barrier heights at the metal/semiconductor interface. Experimental results revealed the existence of a double Gaussian distribution with mean barrier height values of 1.33 and 0.90 eV and standard deviations (?o) of 0.0289 and 0.010 V, respectively. The modified ln(Io/T2) - (q2?o2/2k2T2) versus 103/T plot gives ?bo and Richardson constant (A?) values as 1.30 and 0.88 eV, 23.6 and 19.2 A/cm2 K2 at 400 and 130 K, respectively without using the temperature coefficient of the barrier height. Further, the barrier height obtained from C-V method decreases with an increase in temperature. It is also noted that the barrier height value estimated from the C-V method is higher than that estimated from the I-V method at various temperatures. Possible explanations for this discrepancy are presented. The interface state density (Nss) is found to be decreased with an increasing temperature. The reverse-bias leakage current mechanism of Se/n-GaN Schottky diode is investigated. Both Poole-Frenkel and Schottky emissions are described and discussed.

  1. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  2. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  3. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  4. Coherent transmission of nodal Dirac fermions through a graphene-based superconducting double barrier junction

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Wei, Ke-Wei; Yang, Gui; Yang, Yanling

    2013-05-01

    Transport characteristics of relativistic electrons through graphene-based d-wave superconducting double barrier junction and ferromagnet/ d-wave superconductor/normal metal double junction have been investigated based on the Dirac-Bogoliubov-de Gennes equation. We have first presented the results of superconducting double barrier junction. In the subgap regime, both the crossed Andreev and nonlocal tunneling conductance all oscillate with the bias voltage due to the formation of Andreev bound states in the normal metal region. Moreover, the critical voltage beyond which the crossed Andreev conductance becomes to zero decreases with increasing value of superconducting pair potential α. In the presence of the ferromagnetism, the MR through graphene-based ferromagnet/ d-wave superconductor/normal metal double junction has been investigated. It is shown that the MR increases from exchange splitting h 0=0 to h 0= E F (Fermi energy), and then it goes down. At h 0= E F, MR reaches its maximum 100. In contrast to the case of a single superconducting barrier, Andreev bound states also manifest itself in the zero bias MR, which result in a series of peaks except the maximum one at h 0= E F. Besides, the resonance peak of the MR can appear at certain bias voltage and structure parameter. Those phenomena mean that the coherent transmission can be tuned by superconducting pair potential, structure parameter, and external bias voltage, which benefits the spin-polarized electron device based on the graphene materials.

  5. Josephson junction in the double-well potential with a fast-oscillating barrier

    NASA Astrophysics Data System (ADS)

    Keser, Aydin Cem; Radic, Juraj; Galitski, Victor

    2014-03-01

    We present an analysis of the Bose gas in a double-well potential with a fast-oscillating barrier. We study the Floquet spectrum of the system and find the effective time-independent Hamiltonian where the tunneling coefficient gets modified due to the periodic driving. The system realizes a Josephson junction with a high control of the tunneling coefficient (the coefficient can now change sign, which is impossible in the stationary double-well potential). We connect the corresponding Josephson equations with equations of motion for Kapitsa's pendulum and study the ways to dynamically stabilize certain states of the system.

  6. Spin-transfer torque in double tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Wilczy?ski, M.

    2013-01-01

    Spin and charge transport in a double planar tunnel junction with two ferromagnetic barriers and nonmagnetic electrodes is analysed theoretically. Tunnelling current and both in-plane and normal (out-of-plane) components of the spin-transfer torque exerted on ferromagnetic barriers are determined in the free-electron-like model in the coherent tunnelling limit. It is shown that the bias voltage dependence of the current and both components of the torque are nonmonotonic. The current and in-plane torque can be enhanced due to the resonant tunnelling through resonance states located below the Fermi level. These states also lead to oscillations of the current and torque with the thickness of the central layer. The normal torque can change sign with increase of the bias or the thickness of the central layer, which is due to the position change of the resonance states and the spin-splitting of these states. When electrons tunnel via the resonant states, the angular dependence of the torque can deviate strongly from the sinusoidal dependence observed in single junction with ferromagnetic electrodes and nonmagnetic barrier. The maximum of spin torque in the double junction with ferromagnetic barriers is often shifted from the configuration with perpendicular orientation of magnetic moments toward the configurations close to the antiparallel configuration.

  7. Modeling split gate tunnel barriers in lateral double top gated Si-MOS nanostructures

    NASA Astrophysics Data System (ADS)

    Shirkhorshidian, Amir; Bishop, Nathaniel; Young, Ralph; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2012-02-01

    Reliable interpretation of quantum dot and donor transport experiments depends critically on understanding the tunnel barriers separating the localized electron state from the 2DEG regions which serve as source and drain. We analyze transport measurements through split gate point contacts, defined in a double gate enhancement mode Si-MOS device structure. We use a square barrier WKB model which accounts for barrier height dependence on applied voltage. This constant interaction model is found to produce a self-consistent characterization of barrier height and width over a wide range of applied source-drain and gate bias. The model produces similar results for many different split gate structures. We discuss this models potential for mapping between experiment and barrier simulations. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. The effect of higher than double excitations on the F + H2 to FH + H barrier

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Lee, Timothy J.; Taylor, Peter R.

    1989-01-01

    The averaged coupled-pair functional (ACPF) method is used to calculate the barrier height and saddle-point geometry for the reaction F + H2 yields FH + H. The theoretical basis of the calculation method is outlined, and results for both 7-electron and 9-electron correlations are presented in tables and shown to be consistent with a barrier of 1.65 kcal/mol. The ACPF results are found to be in good agreement with the Davidson-corrected multireference CI computations of Bauschlicher et al. (1988) and with the results obtained by Scuseria and Schaefer (1988) using a CI method which accounts for all single, double, triple, and quadruple excitations.

  9. First-principles theory of quantum well resonance in double barrier magnetic tunnel junctions

    SciTech Connect

    Wang, Y.; Lu, Zhong-Yi; Zhang, Xiaoguang; Han, Prof. X. F.

    2006-01-01

    Quantum well (QW) resonances in Fe(001)/MgO/Fe/MgO/Fe double barrier magnetic tunnel junctions are calculated from the first-principles. By including the Coulomb blockade energy due to the finite size islands of the Fe middle layer, we confirm that the oscillatory differential resistance observed in a recent experiment, T. Nozaki et al, Phys. Rev. Lett. {\\bf 96}, 027208 (2006), originates from the QW resonances from the $\\Delta_1$ band of the Fe majority spin channel. The primary source of smearing at low temperatures is shown to be the variation of the Coulomb blockade energy.

  10. Simulation of quantum transport in memory-switching double-barrier quantum-well diodes

    NASA Astrophysics Data System (ADS)

    Gullapalli, K. K.; Miller, D. R.; Neikirk, D. P.

    1994-01-01

    Recent experiments on GaAs/AlAs double-barrier diodes incorporating n-/n+/n- spacer layers have shown that they exhibit two conduction curves that remain distinct across zero bias. Such devices can be reversibly switched between the two conduction curves and retain memory of the curve last switched to, even after short-circuit conditions. In this paper, we model the memory-switching phenomenon using a quantum kinetic formulation based on the Wigner distribution function. To obtain accurate Wigner distribution functions, an improved four-point difference scheme with an upwind bias is used to model the drift term in the equation of motion. The calculations result in two equilibrium (zero-voltage) states in double-barrier diodes incorporating n-/n+/n- spacer layers. Associated with each equilibrium state is a distinct and stable conduction curve. This work is a step toward an understanding of the more complex aspects of the phenomenon, such as state switching when the device is driven far from equilibrium.

  11. Spin-dependent dwell times of electron tunneling through double- and triple-barrier structures

    NASA Astrophysics Data System (ADS)

    Eri?, Marko; Radovanovi?, Jelena; Milanovi?, Vitomir; Ikoni?, Zoran; Indjin, Dragan

    2008-04-01

    We have analyzed the influence of Dresselhaus and Rashba spin-orbit couplings (caused by the bulk inversion asymmetry and the structural asymmetry, respectively) on electron tunneling through a double- and triple-barrier structures, with and without an externally applied electric field. The results indicate that the degree of structural asymmetry and external electric field can greatly affect the dwell times of electrons with opposite spin orientation. This opens up the possibilities of obtaining efficient spin separation in the time domain. The material system of choice is AlxGa1-xSb, and the presented model takes into account the position dependence of material parameters, as well as the effects of band nonparabolicity.

  12. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clment, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diny, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  13. Double Barrier Resonant Tunneling Transistor with a Fully Two Dimensional Emitter

    SciTech Connect

    MOON,J.S.; SIMMONS,JERRY A.; RENO,JOHN L.; BACA,WES E.; BLOUNT,MARK A.; HIETALA,VINCENT M.; JONES,ERIC D.

    2000-07-13

    A novel planar resonant tunneling transistor is demonstrated. The growth structure is similar to that of a double-barrier resonant tunneling diode (RTD), except for a fully two-dimensional (2D) emitter formed by a quantum well. Current is fed laterally into the emitter, and the 2D--2D resonant tunneling current is controlled by a surface gate. This unique device structure achieves figures-of-merit, i.e. peak current densities and peak voltages, approaching that of state-of-the-art RTDs. Most importantly, sensitive control of the peak current and voltage is achieved by gating of the emitter quantum well subband energy. This quantum tunneling transistor shows exceptional promise for ultra-high speed and multifunctional operation at room temperature.

  14. Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Lozovik, Yu. E.; Nikolaev, A. G.; Popov, A. M.

    2004-02-01

    Classification scheme for double-wall carbon nanotubes (DWCNT) based on their symmetry is proposed. According to the scheme each DWCNT ascribes to a family of DWCNTs with the same geometrical parameters: interwall distance, nanotube unit cell length and difference of wall chirality angles. This geometrical parameters, the barriers for the relative rotation of the wall, sliding along the nanotube axis and helical line of 'thread' and threshold forces causing the relative motion of the walls are calculated for a set of DWCNTs. The results of calculations allow to select DWCNTs that can be used in mechanical nanodevices such as nanobearings and of bolt-and-nut pairs. Possibility of orientational melting of DWCNTs with commensurate walls is discussed.

  15. QUIESCENT DOUBLE BARRIER H-MODE PLASMAS IN THE DIII-D TOKAMAK

    SciTech Connect

    K.H. BURRELL; M.E. AUSTIN; D.P. BRENNAN; J.C. DeBOO; E.J. DOYLE; C. FENZI; C. FUCHS; P. GOHIL; R.J. GROEBNER; L.L. LAO; T.C. LUCE; M.A. MAKOWSKI; G.R. McKEE; R.A. MOYER; C.C. PETTY; M. PORKOLAB; C.L.RETTIG; T.L. RHODES; J.C. ROST; B.W. STALLARD; E.J. STRAIT; E.J. SYNAKOWSKI; M.R. WADE; J.G. WATKINS; W.P. WEST

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J.L. Luxon, et al., Plasma Phys. and Contr. Nucl. Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987) Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H{sub 89} = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H{sub 89} values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  16. Hysteresis of tunnel current in w-GaN/AlGaN(0001) double-barrier structures

    SciTech Connect

    Razzhuvalov, A. N. Grinyaev, S. N.

    2008-05-15

    On the basis of a self-consistent solution of the Schroedinger and Poisson equations, the features of the tunnel-current hysteresis in w-GaN/AlGaN(0001) double-barrier structures are investigated. It is shown that the hysteresis loop depends on the mutual orientation of external and internal fields in the well and is wider at the voltage polarity when these fields compensate each other. Within the framework of the single-resonance approximation, a tunnel-current model in the double-barrier structure is developed, and the relation between the hysteresis-loop parameters and resonant states is found. It is established that the hysteresis loop can be relatively wide ({approx}4 V) even in geometrically symmetric structures with the participation of two resonances. In asymmetrical structures, the change in the growth-surface type results in enhancement or suppression of the hysteresis loop depending on the alternation of nonequivalent barriers.

  17. SEMICONDUCTOR MATERIALS Growth of InGaN and double heterojunction structure with InGaN back barrier

    NASA Astrophysics Data System (ADS)

    Linyu, Shi; Jincheng, Zhang; Hao, Wang; Junshuai, Xue; Xinxiu, Ou; Xiaofan, Fu; Ke, Chen; Yue, Hao

    2010-12-01

    We study the growth of an InGaN and AlGaN/GaN/InGaN/GaN double heterojunction structure by metal organic chemical vapor deposition (MOCVD). It is found that the crystal quality of the InGaN back barrier layer significantly affects the electronic property of the AlGaN/GaN/InGaN/GaN double heterojunction. A high crystal quality InGaN layer is obtained by optimizing the growth pressure and temperature. Due to the InGaN layer polarization field opposite to that in the AlGaN layer, an additional potential barrier is formed between the GaN and the InGaN layer, which enhances carrier confinement of the 2DEG and reduces the buffer leakage current of devices. The double heterojunction high-electron-mobility transistors with an InGaN back barrier yield a drain induced barrier lowering of 1.5 mV/V and the off-sate source-drain leakage current is as low as 2.6 ?A/mm at VDS = 10 V.

  18. Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.

  19. Offset in the dark current characteristics of photovoltaic double barrier quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Luna, E.; Guzmn, A.; Muoz, E.

    2005-10-01

    The double barrier quantum well (DBQW) structure based on AlGaAs/AlAs/GaAs represents a promising design for infrared detectors operating in the 3-5 ?m range. Nevertheless, this structure is affected by some unexpected and intriguing features which must be taken into account for its practical operation, i.e. the remarkable photovoltaic (PV) effect observed in detectors doped in the QW and the appearance of anomalies in the dark current ( Id) characteristics at T < 60 K. In this work, we focus on the study of the anomalies in Id, in particular the presence of a non-zero current (offset) at zero bias. We report that the offsets are time independent, with negligible hysteresis effects. Additionally we find a closely link between the offsets and the unintentional PV response. Although so far we do not have any clear explanation for the offset, we have found that its appearance may relate to a change in the preferential escape direction of electrons in the dark, which is related to a change from tunnelling-assisted thermionic emission to tunnelling emission. This interpretation is based on the experimental result that the temperature at which the offset first appears agrees with the transition temperature in the mechanisms controlling Id and with the temperature where a reversal in the electron flux direction is found. These results are reproducibly found in all the DBQW samples we have studied.

  20. In-pile performance of a double-walled tube and a tritium permeation barrier

    NASA Astrophysics Data System (ADS)

    Magielsen, A. J.; Bakker, K.; Chabrol, C.; Conrad, R.; van der Laan, J. G.; Rigal, E.; Stijkel, M. P.

    2002-12-01

    In two recent irradiation experiments in the HFR Petten, tritium permeation rates through representative materials to be used as cooling tubes of the water-cooled lithium-lead blanket have been measured in-pile. These latest experiments in the EXOTIC 8 series (E 8.9 and E 8.10) are made of a double wall tube (DWT) and a T91 tube with an Fe-Al/Al 2O 3 layer acting as tritium permeation barrier (TPB). These tubes contain annular pebble beds of ceramic breeder materials for the helium-cooled pebble bed concept blanket as tritium breeding material. Both experiments are built up of two concentric and independently purged containments allowing on-line tritium release rate and permeation rate measurements. In-pile operation has ended in March 2001 after 450 full power days and resulted in an irradiation damage of approximately 2.6 and 3.2 dpa, respectively in T91 steel. This paper reports on the experimental results obtained for in-pile tritium permeation and discusses the influence of purge gas compositions, temperature and irradiation on tritium permeation through the DWT and TPB.

  1. Long-Range Phase Coherence in Double-Barrier Magnetic Tunnel Junctions with a Large Thick Metallic Quantum Well.

    PubMed

    Tao, B S; Yang, H X; Zuo, Y L; Devaux, X; Lengaigne, G; Hehn, M; Lacour, D; Andrieu, S; Chshiev, M; Hauet, T; Montaigne, F; Mangin, S; Han, X F; Lu, Y

    2015-10-01

    Double-barrier heterostructures are model systems for the study of electron tunneling and discrete energy levels in a quantum well (QW). Until now resonant tunneling phenomena in metallic QWs have been observed for limited thicknesses (1-2 nm) under which electron phase coherence is conserved. In the present study we show evidence of QW resonance states in Fe QWs up to 12 nm thick and at room temperature in fully epitaxial double MgAlO_{x} barrier magnetic tunnel junctions. The electron phase coherence displayed in this QW is of unprecedented quality because of a homogenous interface phase shift due to the small lattice mismatch at the Fe-MgAlO_{x} interface. The physical understanding of the critical role of interface strain on QW phase coherence will greatly promote the development of spin-dependent quantum resonant tunneling applications. PMID:26550750

  2. Resonant level lifetime in GaAs-AlAs double-barrier structures including. Gamma. - X mixing

    SciTech Connect

    Zheng, T.F. ); Cai, W.; Hu, P. ); Lax, M. AT T Bell Laboratories, Murray Hill, New Jersey 07974 ); Shum, K.; Alfano, R.R. )

    1991-06-15

    A quantitative model for calculation of the lifetime of quasibound states, including the {Gamma}-{ital X} transfer, in a AlAs-GaAs-AlAs double-barrier structure is presented. When device is designed that a {Gamma}-like energy level approaches to an {ital X}-like energy level, anticrossing of the {Gamma}-{ital X} transition occurs and the lifetime of the state can be several orders larger than that of a pure {Gamma} system.

  3. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  4. SCC-DFTB Energy Barriers for Single and Double Proton Transfer Processes in the Model Molecular Systems Malonaldehyde and Porphycene

    SciTech Connect

    Walewski, L.; Krachtus, D; Fischer, S.; Smith, Jeremy C; Bala, P.; Lesyng, B.

    2005-09-01

    Self-consistent charge-density functional tight-binding SCC-DFTB is a computationally efficient method applicable to large (bio)molecular systems in which (bio)chemical reactions may occur. Among these reactions are proton transfer processes. This method, along with more advanced ab initio techniques, is applied in this study to compute intramolecular barriers for single and double proton transfer processes in the model systems, malonaldehyde and porphycene, respectively. SCC-DFTB is compared with experimental data and higher-level ab initio calculations. For malonaldehyde, the SCC-DFTB barrier height is 3.1 kcal/mol in vacuo and 4.2 kcal/mol in water solution. In the case of porphycene, the minimum energy pathways for double intramolecular proton transfer were determined using the conjugate peak refinement (CPR) method. Six isomers of porphycene were ordered according to energy. The only energetically allowed pathway was found to connect two symmetrical trans states via an unstable cis-A isomer. The SCC-DFTB barrier heights are 11.1 kcal/mol for the trans-cis-A process, and 7.4 kcal/mol for the reverse cis-A-trans one with the energy difference of 3.7 kcal/mol between the trans- and cis-A states. The method provides satisfactory energy results when compared with reference ab initio and experimental data.

  5. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures

    SciTech Connect

    Savio, Andrea; Poncet, Alain

    2011-02-01

    In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.

  6. Tunneling processes in asymmetric double barrier magnetic tunnel junctions with a thin top MgO layer

    SciTech Connect

    Li, D. L.; Feng, J. F.; Yu, G. Q.; Guo, P.; Wei, H. X.; Han, X. F.; Chen, J. Y.; Coey, J. M. D.

    2013-12-07

    Dynamic conductance dI/dV and inelastic electron tunneling spectroscopy (IETS) d{sup 2}I/dV{sup 2} have been measured at different temperatures for double barrier magnetic tunnel junctions with a thin top MgO layer. The resistance in the antiparallel state exhibits a normal tunnel-like behavior, while the resistance in the parallel state shows metallic-like transport, indicating the presence of pinholes in the thin top MgO layer. Three IETS peaks are the zero-bias anomaly, interface magnons, and barrier phonons in both the parallel and antiparallel states. The zero-bias anomaly is the strongest peak in the parallel state and its intensity decreases with temperature. The magnon has the largest intensity in the antiparallel state and its intensity also decreases with temperature. The origins of the dips and peaks in the dI/dV-V curve are also discussed.

  7. Donor-assisted resonant electron tunneling in double-barrier heterostructures under tilted magnetic fields: A theoretical study

    NASA Astrophysics Data System (ADS)

    Paredes, H.; Beltrán Ríos, C. L.; Arce, J. C.

    2016-02-01

    A theoretical study of the current-voltage characteristics of a double-barrier heterostructure doped with a layer of shallow donors in the middle of the well and subjected to a magnetic field tilted with respect to the growth direction is reported. The parent materials are assumed to possess simple cubic lattices, the electronic structure of the system is modeled by means of a one-band tight-binding Hamiltonian, and the current is evaluated employing the Keldysh nonequilibrium formalism. The results reveal the magnetocompression of the donor wavefunction, in good qualitative agreement with the experimental report of Patané et al [Phys Rev Lett 105 236804 (2010)].

  8. Resonant tunneling through double barrier graphene systems: A comparative study of Klein and non-Klein tunneling structures

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vargas, I.; Madrigal-Melchor, J.; Oubram, O.

    2012-10-01

    We study the resonant tunneling effects through double barrier graphene systems (DBGSs). We have considered two types of DBGSs in order to take into account or rule out Klein tunneling effects: (1) the well-known and documented electrostatic-barrier structures (EBSs) created by means of electrostatic probes that act perpendicularly to the graphene sheet; and (2) substrate-barrier structures (SBSs) built sitting the graphene layer on alternating substrates, such as SiO2 and SiC, which are capable of non-open and open an energy bandgap on graphene. The transfer matrix approach is used to obtain the transmittance, linear-regime conductance, and electronic structure for different set of parameters such as electron energy, electron incident angle, barrier, and well widths. Particular attention is paid to the asymmetric characteristics of the DBGSs, as well as to the main differences between Klein and non-Klein tunneling structures. We find that: (1) the transmission properties can be modulated readily changing the energy and angle of the incident electrons, the widths of the well and barrier regions; (2) the linear-regime conductance is easily enhancing, diminishing, and shifted changing from symmetric to asymmetric DBGSs configuration overall in the case of non-Klein tunneling structures; (3) the conductance shows an oscillatory behavior as function of the well width, with peaks that are directly related to the opening and opening-closure of bound-state subbands for EBSs and SBSs, respectively. Finally, it is important to mention that electrostatic DBGSs or substrate DBGSs could be more suitable depending on a specific application, and in the case of non-Klein tunneling structures, they seem possible considering the sophistication of the current epitaxial growth techniques and whenever substrates that open an energy bandgap on graphene, without diminishing the carrier's mobility, be experimentally discovered.

  9. Quantum noise in ac-driven resonant-tunneling double-barrier structures: Photon-assisted tunneling versus electron antibunching

    NASA Astrophysics Data System (ADS)

    Hammer, Jan; Belzig, Wolfgang

    2011-08-01

    We study the quantum noise of the electronic current in a double-barrier system with a single resonant level. In the framework of the Landauer formalism, we treat the double barrier as a quantum coherent scattering region that can exchange photons with a coupled electric field, e.g., a laser beam or a periodic ac bias voltage. As a consequence of the manifold parameters that are involved in this system, a complicated steplike structure arises in the nonsymmetrized current-current autocorrelation spectrum and a peaklike structure in the cross-correlation spectrum with and without harmonic ac driving. We present an analytic solution for these noise spectral functions obtained by assuming a Breit-Wigner line shape. In detail, we study how the correlation functions are affected by photoassisted tunneling events and discuss the underlying elementary events of charge transfer, where we identify distinct contributions to the individual shot noise. This enables us to clarify the effects of noncentered irradiation of such a structure with light in terms of contributions originating from different sets of coherent scattering channels. Moreover, we show how the noise is influenced by acquiring a scattering phase due to the complex reflection amplitudes that are crucial in the Landauer approach.

  10. Electronic transmission and dwell time on a double barrier system with an accelerating quantum well

    NASA Astrophysics Data System (ADS)

    Aktas, S.; Yilmaz, M.

    2016-01-01

    Resonant tunneling quantum structures consist of asymmetric wells and barriers have been investigated to find their optimized geometrical parameters and potential profile by the numerical calculations. The results show that the widths and the depths of the asymmetric wells have a significant effect on the transmission coefficient and the dwell time. The properties exhibited in this work may establish guidance to the device applications.

  11. Macroscopic quantum tunneling of a Bose-Einstein condensate through double Gaussian barriers

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Urban, Gregor; Weidemller, Matthias; Carr, Lincoln D.

    2015-05-01

    Macroscopic quantum tunneling is one of the great manifestations of quantum physics, not only showing passage through a potential barrier but also emerging in a many-body wave function. We study a quasi-1D Bose-Einstein condensate of Lithium, confined by two Gaussian barriers, and show that in an experimentally realistic potential tens of thousands of atoms tunnel on time scales of 10 to 100 ms. Using a combination of variational and WKB approximations based on the Gross-Pitaevskii or nonlinear Schrdinger equation, we show that many unusual tunneling features appear due to the nonlinearity, including the number of trapped atoms exhibiting non-exponential decay, severe distortion of the barriers by the mean field, and even formation of a triple barrier in certain regimes. In the first 10ms, nonlinear many-body effects make the tunneling rates significantly larger than background loss rates, from 10 to 70 Hz. Thus we conclude that macroscopic quantum tunneling can be observed on experimental time scales. Funded by NSF, AFOSR, the Alexander von Humboldt foundation, and the Heidelberg Center for Quantum Dynamics.

  12. Nonequilibrium Greens Function Approach to Dynamic Properties of Resonant-Tunneling through Double-Barrier Structures

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Ting, C. S.

    In this paper, we review a recently developed approach to the dynamic properties of double barrier resonant tunneling systems, based on the nonequilibrium Greens function technique and the Feynman path integral theory. The transient behavior of tunneling current, immediately after the switch-on of a dc bias voltage, is characterized by the building up process of tunneling electrons in the quantum well. The novel negative differential conductance demonstrates itself as a function of frequency of the small ac signal imposed upon a dc bias. The imaginary part of admittance is shown to be related to the conductance via a Kronig-Kramers relation. The noise characteristics clearly demonstrate a strong time correlation derived from the Pauli exclusion principle and have evident dependence upon the structure parameters and the bias voltage. All those theoretical results are compared with experiments and numerical simulations.

  13. Conductance and resonant tunneling in multi-channel double barrier structures under transverse and longitudinal electric fields

    SciTech Connect

    Pereyra, Pedro Mendoza-Figueroa, M. G.

    2015-03-21

    Transport properties of electrons through biased double barrier semiconductor structures with finite transverse width w{sub y}, in the presence of a channel-mixing transverse electric field E{sub T} (along the y-axis), were studied. We solve the multichannel Schrödinger equation using the transfer matrix method and transport properties, like the conductance G and the transmission coefficients T{sub ij} have been evaluated as functions of the electrons' energy E and the transverse and longitudinal (bias) electric forces, f{sub T} and f{sub b}. We show that peak-suppression effects appear, due to the applied bias. Similarly, coherent interference of wave-guide states induced by the transverse field is obtained. We show also that the coherent interference of resonant wave-guide states gives rise to resonant conductance, which can be tuned to produce broad resonant peaks, implying operation frequencies of the order of 10 THz or larger.

  14. Tunneling magnetoresistance tuned by a vertical electric field in an AA-stacked graphene bilayer with double magnetic barriers

    SciTech Connect

    Wang, Dali; Jin, Guojun

    2013-12-21

    We investigate the effect of a vertical electric field on the electron tunneling and magnetoresistance in an AA-stacked graphene bilayer modulated by the double magnetic barriers with parallel or antiparallel configuration. The results show that the electronic transmission properties in the system are sensitive to the magnetic-barrier configuration and the bias voltage between the graphene layers. In particular, it is found that for the antiparallel configuration, within the low energy region, the blocking effect is more obvious compared with the case for the parallel configuration, and even there may exist a transmission spectrum gap which can be arbitrarily tuned by the field-induced interlayer bias voltage. We also demonstrate that the significant discrepancy between the conductance for both parallel and antiparallel configurations would result in a giant tunneling magnetoresistance ratio, and further the maximal magnetoresistance ratio can be strongly modified by the interlayer bias voltage. This leads to the possible realization of high-quality magnetic sensors controlled by a vertical electric field in the AA-stacked graphene bilayer.

  15. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    NASA Astrophysics Data System (ADS)

    Guo, Hui-Qiang; Tang, Wei-Yue; Liu, Liang; Wei, Jian; Li, Da-Lai; Feng, Jia-Feng; Han, Xiu-Feng

    2015-07-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter ?mag. With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process ?mag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (?) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(?) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. Project supported by the National Basic Research Program of China (Grant Nos.2011CBA00106, 2012CB927400, 2010CB934401, and 2014AA032904), the National High Technology Research and Development Program of China (Grant No.2014AA032904), and the National Natural Science Foundation of China (Grant Nos.11434014 and 11104252).

  16. First passage time distributions of anomalous biased diffusion with double absorbing barriers

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Qiu, Xiaogang

    2014-10-01

    We investigate the first passage time (FPT) problem of anomalous diffusion governed by the Galilei variant fractional diffusion-advection equation in the semi-infinite and finite domains subject to an absorbing boundary condition. We obtain explicit solutions for the FPT distributions and the corresponding Laplace transforms for both zero and constant drift cases by using the method of separation of variables as well as the properties of the Fox H function. An important relation between the FPT distributions corresponding to one and two absorbing barriers is revealed to determine the conditional FPT distributions. It shows that the proportion between the conditional FPT distributions only depends on the general Pclet number. We further discuss the asymptotic behavior of the FPT distributions and confirm our theoretical analysis by numerical results.

  17. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  18. Application of the double-indicator technique for measurement of blood-brain barrier permeability in humans.

    PubMed

    Knudsen, G M

    1994-01-01

    This review examines and evaluates the double-indicator technique for utilization in quantitative measurements of the transport of substances across the human blood-brain barrier (BBB). The classic double-indicator method and its limitations are described along with a new approach for correction of capillary heterogeneity and tracer backflux. This approach considers the total course of the venous outflow curves and involves a short-time experiment model that incorporates calculations of parameters for transport from the blood into the brain and from the brain back to the blood, for the uptake of neurons and glia cells, and for the tracer distribution volume. A modification of the double-indicator technique with intravenous instead of intracarotid bolus injection is discussed along with advantages and limitations of this technique. The application of the method is described and examples are given for D-glucose as well as for some large neutral amino acids and flow tracers. On the basis of the model, it is demonstrated that after crossing the BBB, D-glucose distributes in the brain interstitial fluid volume, and already at the peak of the glucose outflow curves, the apparent extraction is significantly influenced by backflux from the brain. For large neutral amino acids, the permeability from the interstitial fluid space back to the blood is approximately 10 times higher than the permeability from the blood into the brain. Such a difference in permeabilities across the BBB can almost entirely be ascribed to the effect of a nonlinear transport system combined with a relatively small brain amino acid metabolism. This high and rapid backflux causes methodological problems when estimating blood-to-brain transfer of amino acids with traditional in vivo methods. The method is also evaluated for high-permeable substances. Water and the two flow tracers ethyl cysteinate dimer and hexamethylpropyleneamine oxime and the obtained values for brain extraction and distribution volume compare well with those obtained by other methods. Finally, ethical aspects and the future role and possibilities of the double-indicator technique are discussed and related to other methods for determination of BBB permeabilities in the living human brain. PMID:8186068

  19. Double Gaussian distribution of barrier height for FeCrNiC alloy Schottky contacts on p-Si substrates

    NASA Astrophysics Data System (ADS)

    Be?ta?, A. N.; Yaz?c?, S.; Akta?, F.; Abay, B.

    2014-11-01

    The electrical properties of Schottky contact with a quadripartite alloy FeCrNiC on p-Si have been investigated in the temperature range of 80-320 K, for the first time. An abnormal decrease in the apparent barrier height (?ap.) and an increase in the apparent ideality factor (nap.) with a decrease in the temperature were elucidated by the current-voltage (I-V) characteristic of the FeCrNiC/p-Si structure. The conventional Richardson plot exhibits non-linear behaviour at temperature below 180 K with the linear portion to be used for the calculation of activation energy and Richardson constant (A*) as 0.352 eV and 8.3 10-3 A K-2 cm-2, respectively. The observed anomalies were explained on the basis of the thermionic emission (TE) theory by incorporating the concept of inhomogeneous multiple barriers at Metal-Semiconductor (MS) interface. It has been seen that the apparent barrier height ?ap. exhibits double Gaussian distribution (DGD) feature with the mean BH (?barb0) of 0.695 and 0.646 eV, accompanied by their standard deviations (?0) of 0.082 and 0.070 eV in 320-180 K and 180-80 K regions, respectively. These values of the ?barb0 have been confirmed with the modified Richardson plot [ln (J0 /T2) - (q2?02 / 2k2T2) ??vs . ?? 1 / T ] as 0.690 eV and 0.633 eV at the demarcated temperature regions, respectively. Richardson constant A* has also been calculated from the modified Richardson plots as 33.43 A K-2 cm-2 and 28.47 A K-2 cm-2 that belong to two distinct temperature ranges. Their average value exactly matched the theoretical value of 31.6 A K-2 cm-2 for the holes in p-type Si. Our results confirm the predictions of the multiple GD approach of nanoscale spatial BH inhomogeneities at the MS interface.

  20. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    NASA Astrophysics Data System (ADS)

    Hirvikorpi, Terhi; Vh-Nissi, Mika; Harlin, Ali; Salomki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  1. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when ? = ? ? ?{sub r} = ?? ? ? (? is the energy of electrons injected in the RTD, ? is Plancks constant, ? is the ac field frequency, ?{sub r} and ? are the energy and width of the resonance level, respectively), the active polarization current in a field of E ? 2.8??/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ? = 10{sup 12}10{sup 13} s{sup ?1} can reach 10{sup 5}10{sup 6} W/cm{sup 2} in this case.

  2. Double Gaussian distribution of barrier height observed in densely packed GaN nanorods over Si (111) heterostructures

    SciTech Connect

    Mohan, Lokesh; Chandan, Greeshma; Mukundan, Shruthi; Krupanidhi, S. B.; Roul, Basanta

    2014-12-21

    GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current–voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493 K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights.

  3. CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in double barrier magnetic tunnel junctions

    SciTech Connect

    Liu, R. S.; Yang, See-Hun; Jiang, Xin; Zhang, Xiaoguang; Rice, Philip M.; Canali, Carlo M.; Parkin, S. S. P.

    2013-01-01

    We report the spin-dependent quantum well resonant tunneling effect in CoFe/MgO/CoFe/MgO/CoFeB (CoFe) double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be matched to quantum well resonances obtained from calculation. The differential TMR exhibits an oscillatory behavior with a sign change due to the formation of the spin-dependent QW states in the middle CoFe layer. Also, we observe pronounced TMR enhancement at resonant voltages at room temperature, suggesting that it is very promising to achieve high TMR using the spin-dependent QW resonant tunneling effect.

  4. Sign of coupling in barrier-separated Bose-Einstein condensates and stability of double-ring systems

    SciTech Connect

    Brand, J.; Haigh, T. J.; Zuelicke, U.

    2010-02-15

    We revisit recent claims about the instability of nonrotating tunnel coupled annular Bose-Einstein condensates leading to the emergence of angular momentum Josephson oscillation [Phys. Rev. Lett. 98, 050401 (2007)]. It was predicted that all stationary states with uniform density become unstable in certain parameter regimes. By careful analysis, we arrive at a different conclusion. We show that there is a stable nonrotating and uniform ground state for any value of the tunnel coupling and repulsive interactions. The instability of an excited state with {pi} phase difference between the condensates can be interpreted in terms of the familiar snake instability. We further discuss the sign of the tunnel coupling through a separating barrier, which carries significance for the nature of the stationary states. It is found to always be negative for physical reasons.

  5. Application of a double-sided silicon-strip detector as a differential pumping barrier for NESR experiments at FAIR

    NASA Astrophysics Data System (ADS)

    Streicher, B.; Egelhof, P.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kollmus, H.; Krll, Th.; Mutterer, M.; von Schmid, M.; Trger, M.

    2011-10-01

    The presented work focuses on the development of a differential pumping system using double-sided silicon-strip detectors to separate the ultra-high vacuum of a storage ring from subsequent detectors and outgassing components placed in an auxiliary vacuum. Such a technical concept will give the opportunity to use telescope-like detector systems in an ultra-high vacuum environment, such as a storage ring, without enclosing the entire system in a pocket. Therefore, it will enable the detection of recoil particles with the smallest possible energy due to the use of the innermost strip detector as an active window. Our results prove that such an assembly is feasible without having an effect, within experimental errors, on the performance of the strip detector. Vacuum separation better than six orders of magnitude was achieved with the ultra-high vacuum side reaching down to the 10-10 mbar pressure region.

  6. Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires

    NASA Astrophysics Data System (ADS)

    Zervos, Matthew; Feiner, Lou-F

    2004-01-01

    We present a theoretical study of an n-type InAs nanowire with built-in InAs/InP heterojunctions in the effective-mass approximation via self-consistent Poisson-Schrdinger calculations in cylindrical coordinates. Rapid convergence and efficiency are achieved by (i) a suitable transformation of the radial part of the Hamiltonian matrix thereby maintaining symmetry (ii) using quantum mechanical perturbation theory to derive an expression for the change in electron density with electrostatic potential. We calculate the energy levels in a 150 long InAs quantum dot surrounded by 50 long InP barriers within an InAs quantum wire of radius 200 , having a doping level of 31016cm-3 and conduction-band discontinuities of ?ECB=0.6 eV. In equilibrium, the lowest quantum dot state is at 15 meV above the Fermi level and we find that upon variation of the applied collector-emitter voltage VCE, resonance occurs at VCE=88 mV. This is in good agreement with an experimental study of resonant tunneling in a nominally undoped InAs/InP nanowire of similar dimensions grown in the [111] direction, where resonance was detected at VCE=80 mV, and a small shift (<5 mV) in its position occurred upon inverting the voltage polarity. We rule out barrier asymmetry, bandbending due to impurities or defects, and contact effects as being the origin of the resonant-voltage shift, and attribute it to the strain-induced charges at the InP/InAs interfaces. Both InAs and InP segments are shown to be under in-plane compression giving a piezoelectric field of 0.155 meV/ in the InAs quantum dot while resonant tunneling, as calculated, occurs at 84 mV for VCE<0 and at 87 mV for VCE>0. This is in contrast to two-dimensional pseudomorphic heteroepitaxy, where the InP is under in-plane tensile strain yielding a very strong resonance-voltage shift (?5 mV). The small magnitude of the measured shift indicates that in nanowires any strain at the heterointerfaces relaxes within a few atomic layers.

  7. Noninvasive and transient blood-brain barrier opening in the hippocampus of Alzheimer's double transgenic mice using focused ultrasound.

    PubMed

    Choi, James J; Wang, Shougang; Brown, Truman R; Small, Scott A; Duff, Karen E K; Konofagou, Elisa E

    2008-07-01

    The spatio-temporal nature of focused ultrasound-induced blood-brain barrier (BBB) opening as a brain drug delivery method was investigated in Alzheimer's disease model mice. The left hippocampus of transgenic (APP/PS1, n = 3) and nontransgenic (n = 3) mice was sonicated (frequency: 1.525 MHz, peak-negative pressure: 600 kPa, pulse length: 20 ms, duty cycle: 20%, duration: 1 min) in vivo, through their intact skin and skull, after intravenous injection of microbubbles (SonoVue; 25 microl). Sequential, high-field MR images (9.4 Tesla) were acquired before and after injection of gadolinium (Omniscan, 0.75 ml, molecular weight: 573.7 Da) on two separate days for each mouse. Gadolinium deposits through the ultrasound-induced BBB opening in the left hippocampus revealed significant contrast-enhancement in the MRI. On the following day, MRI revealed significant BBB closure within the same region. However, the BBB opening extent and BBB closing timeline varied in different regions within the same sonicated location. This indicates that opening and closing were dependent on the brain region targeted. No significant difference in BBB opening or closing behaviors was observed between the APP/PS1 and the nontransgenic mice. In conclusion, a BBB-impermeable molecule was noninvasively, transiently and reproducibly delivered to the hippocampus of Alzheimer's APP/PS1 mice. PMID:19149463

  8. Middle-layer ferromagnetism-induced transition of the tunnel magneto-resistance in double-barrier magnetic tunnel junctions: A non-equilibrium Green's function study

    NASA Astrophysics Data System (ADS)

    Mathi Jaya, S.; Valsakumar, M. C.

    2015-05-01

    Using the non-equilibrium Green's function modeling of the transport characteristics of tunnel devices, we have found the middle-layer ferromagnetism-induced transition of the tunnel magneto-resistance in double-barrier magnetic tunnel junctions. It is observed from our study that even a weak ferromagnetism of the middle metallic layers is capable of promoting resonant tunnel magneto-resistance in these devices and the strength of the ferromagnetism is found to have strong influence on the bias dependence of the resonant tunnel magneto-resistance. The spin-up and spin-down currents flow in opposite directions for certain band occupancies and at certain bias voltage ranges when there is antiferromagnetic coupling between the electrodes of the tunnel junction. Resonant tunnel magneto-resistance occurs when the net current (sum of spin-up and spin-down currents) becomes very small at situations mentioned above. We have further studied the influence of band occupation of the electrode layers and the many-body interactions present in the electrode region on the spin current and magneto-resistance of these devices.

  9. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways.

    PubMed Central

    Boulton, S J; Jackson, S P

    1996-01-01

    Ku, a heterodimer of polypeptides of approximately 70 kDa and 80 kDa (Ku70 and Ku80, respectively), binds avidly to DNA double-strand breaks (DSBs). Mammalian cells defective in Ku are hypersensitive to ionizing radiation due to a deficiency in DSB repair. Here, we show that the simple inactivation of the Saccharomyces cerevisiae Ku70 homologue (Yku70p), does not lead to increased radiosensitivity. However, yku70 mutations enhance the radiosensitivity of rad52 strains, which are deficient in homologous recombination. Through establishing a rapid and reproducible in vivo plasmid rejoining assay, we show that Yku70p plays a crucial role in the repair of DSBs bearing cohesive termini. Whereas this damage is repaired accurately in YKU70 backgrounds, in yku70 mutant strains terminal deletions of up to several hundred bp occur before ligation ensues. Interestingly, this error-prone DNA repair pathway utilizes short homologies between the two recombining molecules and is thus highly reminiscent of a predominant form of DSB repair that operates in vertebrates. These data therefore provide evidence for two distinct and evolutionarily conserved illegitimate recombination pathways. One of these is accurate and Yku70p-dependent, whereas the other is error-prone and Yku70-independent. Furthermore, our studies suggest that Yku70 promotes genomic stability both by promoting accurate DNA repair and by serving as a barrier to error-prone repair processes. Images PMID:8890183

  10. Fabrication of barrier-type slab waveguides in Er3+-doped tellurite glass by single and double energy MeV N+ ion implantation

    NASA Astrophysics Data System (ADS)

    Bnysz, I.; Zolnai, Z.; Pelli, S.; Berneschi, S.; Nunzi-Conti, G.; Fried, M.; Lohner, T.; Petrik, P.; Brenci, M.; Righini, G. C.

    2012-01-01

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er3+- doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 ?m, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N+ ion implantation was reported recently. Parameters of waveguide fabrication in an Er-doped tungsten-tellurite glass via implantation of N+ ions were optimized. First single-energy implantation at 3.5 MeV with fluences between 1.1016 and 8.1016 ions/cm2 was applied. Waveguide operation up to 1.5 ?m was observed. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.0 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  11. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing.

    PubMed

    Kurczewska, Joanna; Sawicka, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2015-12-30

    The aim of this research was to prepare and characterize an alginate-based wound dressing containing vancomycin immobilized at the silica surface. The silica samples functionalized with amine, diol and carboxylic acid groups were loaded with 7.8, 5.7 and 7.1wt.% of the antibiotic respectively. The immobilized drug was encapsulated in alginate or gelatin/alginate gels and the average concentration of vancomycin was about 10mg per g of the dried gel. The effect of functional organic groups at the silica surface on the release rate of the drug was investigated. Only the drug immobilized at Si-amine in alginate matrix was found to demonstrate slower release from the proposed wound dressing. The in vitro release profiles for other silica carriers did not show significant differences in relation to the free loaded drug. The presence of gelatin had a favourable impact on the slowing down of the drug release from the dressing with a double barrier. All the gels studied with vancomycin immobilized at the silica surface demonstrated antimicrobial activity against various bacteria. A reduction of the drug dose to a half had no effect on changing microbiological activity of gels. PMID:26541298

  12. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial

    PubMed Central

    2012-01-01

    Background Probiotics are an upcoming group of nutraceuticals claiming positive effects on athletes gut health, redox biology and immunity but there is lack of evidence to support these statements. Methods We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (1010 CFU/day, EcologicPerformance or OMNi-BiOTiCPOWER, n?=?11) or placebo (n?=?12) for 14?weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14?weeks. Zonulin and ?1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14?weeks, before and immediately post exercise, to determine carbonyl proteins (CP), malondialdehyde (MDA), total oxidation status of lipids (TOS), tumor necrosis factor-alpha (TNF-?), and interleukin-6 (IL-6). Statistical analysis used multifactorial analysis of variance (ANOVA). Level of significance was set at p??0.1). CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14?weeks of treatment (p?=?0.006). After 14?weeks, CP concentrations were tendentially lower with probiotics (p?=?0.061). TOS was slightly increased above normal in both groups, at baseline and after 14?weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-? concentrations than normal. After 14?weeks TNF-? was tendentially lower in the supplemented group (p?=?0.054). IL-6 increased significantly from pre to post exercise in both groups (p?=?0.001), but supplementation had no effect. MDA was not influenced, neither by supplementation nor by exercise. Conclusions The probiotic treatment decreased Zonulin in feces, a marker indicating enhanced gut permeability. Moreover, probiotic supplementation beneficially affected TNF-? and exercise induced protein oxidation. These results demonstrate promising benefits for probiotic use in trained men. Clinical trial registry http://www.clinicaltrials.gov, identifier: NCT01474629 PMID:22992437

  13. A Paired, Double-Blind, Randomized Comparison of a Moisturizing Durable Barrier Cream to 10% Glycerine Cream in the Prophylactic Management of Postmastectomy Irradiation Skin Care: Trans Tasman Radiation Oncology Group (TROG) 04.01

    SciTech Connect

    Graham, Peter H.; Plant, Natalie; Graham, Jennifer L.; Browne, Lois; Borg, Martin; Capp, Anne; Delaney, Geoff P.; Harvey, Jennifer; Kenny, Lisbeth; Francis, Michael; Zissiadis, Yvonne

    2013-05-01

    Purpose: A previous, unblinded study demonstrated that an alcohol-free barrier film containing an acrylate terpolymer (ATP) was effective in reducing skin reactions compared with a 10% glycerine cream (sorbolene). The different appearances of these products precluded a blinded comparison. To test the acrylate terpolymer principle in a double-blinded manner required the use of an alternative cream formulation, a moisturizing durable barrier cream (MDBC); the study was conducted by the Trans Tasman Radiation Oncology Group (TROG) as protocol 04.01. Methods and Materials: A total of 333 patients were randomized; 1 patient was ineligible and 14 patients withdrew or had less than 7 weeks' observations, leaving 318 for analysis. The chest wall was divided into medial and lateral compartments, and patients were randomized to have MDBC applied daily to the medial or lateral compartment and sorbolene to the other compartment. Weekly observations, photographs, and symptom scores (pain and pruritus) were collected to week 12 or resolution of skin reactions if earlier. Skin dose was confirmed by centrally calibrated thermoluminescent dosimeters. Results: Rates of medial and lateral compartment Common Toxicity Criteria (CTC), version 3, greater than or equal to grade 3 skin reactions were 23% and 41%, but rates by skin care product were identical at 32%. There was no significant difference between MDBC and sorbolene in the primary endpoint of peak skin reactions or secondary endpoints of area-under-the-curve skin reaction scores. Conclusions: The MDBC did not reduce the peak skin reaction compared to sorbolene. It is possible that this is related to the difference in the formulation of the cream compared with the film formulation. Skin dosimetry verification and double blinding are essential for radiation skin care comparative studies.

  14. Capacitance-voltage characteristics and switching time of double barrier resonant tunneling diode fabricated with epi-Si and ?-Al 2O 3

    NASA Astrophysics Data System (ADS)

    Khatun Mst, Halima; Shahjahan, Mohammad; Sawada, Kazuaki; Ishida, Makoto

    2007-01-01

    Capacitance-voltage and conductance-voltage characteristics of resonant tunneling diodes fabricated with epitaxial Si/ ?-Al 2O 3 heterostructure have been studied at room temperature. The capacitance-voltage characteristics of this structure show a large capacitance peak near the resonant tunneling bias. This capacitance peak is considered as quantum capacitance originated from the charge storage in the quantum well of the structure during tunneling process. Capacitance-voltage characteristics also were studied at different frequencies to understand the charge storage mechanism in the resonant tunneling diode structure. Resonant tunneling diodes with different barrier thicknesses were studied and tremendous improvement in the NDR characteristics was observed. A maximum peak-to-valley current ratio of 248 was obtained at room temperature. Using this capacitance value switching time and maximum operational frequency of the RTD structure were determined.

  15. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  16. Barrier RF stacking

    SciTech Connect

    Weiren Chou and Akira Takagi

    2003-02-24

    This paper introduces a new method for stacking beams in the longitudinal phase space. It uses RF barriers to confine and compress beams in an accelerator, provided that the machine momentum acceptance is a few times larger than the momentum spread of the injected beam. This is the case for the Fermilab Main Injector. A barrier RF system employing Finemet cores and high-voltage solid-state switches is under construction. The goal is to double the number of protons per cycle on the production target for Run2 and NuMI experiments.

  17. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified version of the THALES double heterostructure (DH) p-i-n device, but with even wider bandgap barriers inserted at the contact layer/absorber layer interfaces. It is designed to work with either bulk semiconductors or superlattices as the absorber material. The superlattice bandgap can be adjusted to match the desired absorption cutoff wavelength. This infrared detector has the potential of high-sensitivity operation at higher operating temperatures. This would reduce cooling requirements, thereby reducing the power, mass, and volume of the equipment and allowing an increased mission science return.

  18. Microstructures and properties of double-ceramic-layer thermal barrier coatings of La2(Zr0.7Ce0.3)2O7/8YSZ made by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Xiang, Jianying; Huang, Jihua; Zhao, Xingke

    2015-06-01

    A double-ceramic-layer (DCL) thermal barrier coatings (TBC) of La2(Zr0.7Ce0.3)2O7/8YSZ (LZ7C3/8YSZ) was prepared by atmospheric plasma spraying (APS). The phase structure, composition, thermal conductivity, surface and cross-sectional morphologies, adhesion strength and thermal shock behavior of the LZ7C3/8YSZ coating were investigated. The X-ray diffraction pattern showed that the phase structures of top coat LZ7C3 was different from the powder for spraying, which consists of pyrochlore LZ and fluorite LC structures. Main peaks between LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles and approximately equal diffracted intensity. Thermal shock lifetime and adhesion strength of the DCL LZ7C3/8YSZ coating are enhanced significantly as compared to single LZ7C3 coating, and are very close to that of single 8YSZ coating. The mechanisms of performance improvement are considered to be effictive reduction of stress concentration between substrate and LZ7C3 coating by 8YSZ buffer effect, and the gentle thermal gradient initiated at the time of quenching in water. The DCL LZ7C3/8YSZ coating has lower thermal conductivity than 8YSZ, which was only 25% of 8YSZ bulk material and 65% of 8YSZ coating by APS.

  19. Vehicle barrier

    DOEpatents

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  20. Epidermal Barriers

    PubMed Central

    Natsuga, Ken

    2014-01-01

    The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development. PMID:24692192

  1. Resonant thermal transport in semiconductor barrier structures

    NASA Astrophysics Data System (ADS)

    Hyldgaard, P.

    2004-05-01

    I report that thermal single-barrier (TSB) and thermal double-barrier (TDB) structures (formed, for example, by inserting one or two regions of a few Ge monolayers in Si) provide both a suppression of the phonon transport as well as a resonant-thermal-transport effect. I show that high-frequency phonons can experience a traditional double-barrier resonant tunneling in the TDB structures while the formation of Fabry-Perot resonances (at lower frequencies) causes quantum oscillations in the temperature variation of both the TSB and TDB thermal conductances ?TSB and ?TDB.

  2. Barrier analysis

    SciTech Connect

    Trost, W.A.; Nertney, R.J.

    1985-07-01

    ''Barrier Analysis'' was written to support the total MORT Program. It is a reminder to the system safety person or the accident investigator that there are three factors to be considered, when evaluating an accident or a potential accident situation. Those three factors are (1) the energy or environmental condition present, (2) the target, the person or object of value, and (3) the barrier and control, those things that are in place or should be in place to keep the energy and the targets apart. These three factors and their relationships to the MORT chart are discussed.

  3. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  4. Language barriers

    PubMed Central

    Ngwakongnwi, Emmanuel; Hemmelgarn, Brenda R.; Musto, Richard; King-Shier, Kathryn M.; Quan, Hude

    2012-01-01

    Abstract Objective To assess use of regular medical doctors (RMDs), as well as awareness and use of telephone health lines or telehealth services, by official language minorities (OLMs) in Canada. Design Analysis of data from the 2006 postcensal survey on the vitality of OLMs. Setting Canada. Participants In total, 7691 English speakers in Quebec and 12 376 French speakers outside Quebec, grouped into those who experienced language barriers and those with no language barriers. Main outcome measures Health services utilization (HSU) by the presence of language barriers; HSU measures included having an RMD, use of an RMD’s services, and awareness of and use of telephone health lines or telehealth services. Multivariable models examined the associations between HSU and language barriers. Results After adjusting for age and sex, English speakers residing in Quebec with limited proficiency in French were less likely to have RMDs (adjusted odds ratio [AOR] 0.66, 95% CI 0.50 to 0.87) and to use the services of their RMDs (AOR 0.65, 95% CI 0.50 to 0.86), but were more likely to be aware of the existence of (AOR 1.50, 95% CI 1.16 to 1.93) and to use (AOR 1.43, 95% CI 0.97 to 2.11) telephone health lines or telehealth services. This pattern of having and using RMDs and telehealth services was not observed for French speakers residing outside of Quebec. Conclusion Overall we found variation in HSU among the language barrier populations, with lower use observed in Quebec. Age older than 45 years, male sex, being married or in common-law relationships, and higher income were associated with having RMDs for OLMs. PMID:23242902

  5. Reliability Estimation for Double Containment Piping

    SciTech Connect

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  6. Double Vision.

    PubMed

    Lee, Michael S.; Volpe, Nicholas J.

    2001-07-01

    When evaluating a patient with a complaint of double vision, it is important to distinguish monocular versus binocular diplopia, which are differentiated by asking the patient to cover each eye separately. In the setting of binocular double vision, one of the two images disappears when either eye is covered, because diplopia is the result of ocular misalignment. On the other hand, monocular double vision resolves when the affected eye is covered, but remains when the opposite eye is occluded. Causes of monocular diplopia include cataract, refractive error, and retinal disease, which can be managed accordingly by an ophthalmologist. However, an unusual form of monocular double vision can occur in the setting of cortical dysfunction. Cerebral polyopia describes the perception of multiple images and arises from an occipital disturbance. It can occur with migraine headaches and can be accompanied by a homonymous hemianopia. Palinopsia refers to the persistence of an image that is no longer in view (visual perseveration or stroboscopic effect) and results from an occipital lesion as well. The exact mechanism of polyopia and palinopsia are uncertain and both conditions are extremely rare. The majority of this discussion will focus on binocular double vision and its management. The main treatment objective of binocular diplopia is to restore the largest area of single binocular vision. Ideally, patients would be able to achieve single vision in all fields of gaze, but this is not always possible. The majority of patients are treated with either prism lenses or eye muscle surgery. PMID:11389808

  7. [Double responses].

    PubMed

    Mott, G; Dinanian, S; Sebag, C; Drieu, L; Slama, M

    1995-12-01

    Double response is a rare electrocardiographic phenomenon requiring two atrioventricular conduction pathways with very different electrophysiological properties. Double ventricular responses are the usual manifestation: an atrial depolarisation (spontaneous or provoked, anticipated or not) is followed by a first ventricular response dependent on an accessory pathway or a rapid nodal pathway and then a second response resulting from sufficiently delayed transmission through a nodal pathway for the ventricles to have recovered their excitability when the second wave of activation reaches them. A simple curiosity when isolated and occurring under unusual conditions, particularly during electrophysiological investigation of the Wolff-Parkinson-White syndrome, the double response may initiate symptomatic non-reentrant junctional tachycardia when associated with nodal duality and repeating from atria in sinus rhythm. The functional incapacity and resistance to antiarrhythmic therapy may require referral for ablation of the slow pathway. PMID:8729295

  8. Double Meanings.

    ERIC Educational Resources Information Center

    Davis, Jonathan; Davis, Lisa

    2001-01-01

    Discusses the use of double meanings and figurative language or figures of speech in literature and how confusing it can be for beginning readers. Describes class activities that can help students construct, examine, and extend the meaning of what they read and includes a worksheet, evaluation suggestions, and extension activities. (LRW)

  9. Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Cheng, Y. H.; Ko, C. W.; Hsueh, W. J.

    2015-10-01

    This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed to the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.

  10. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  11. Double well isomerization rate constants in solution

    NASA Astrophysics Data System (ADS)

    Zawadzki, Anthony G.; Hynes, James T.

    1985-02-01

    The rate constant k for a double well isomerization in solution is calculated over the entire friction range. The importance of frequency-dependent friction for both the vibrational energy transfer (VET) and barrier passage components of k is described. Rapid suppression of the VET transfer component with increasing degrees of freedom is discussed.

  12. Barrier RF stacking at Fermilab

    SciTech Connect

    Weiren Chou et al.

    2003-06-04

    A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons from the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers--one fixed, another moving--are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned.

  13. Puncture detecting barrier materials

    DOEpatents

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  14. Puncture detecting barrier materials

    DOEpatents

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  15. The Barriers Project.

    ERIC Educational Resources Information Center

    Confederation Coll. of Applied Arts and Technology, Thunder Bay (Ontario).

    In 1987, the Barriers Project was initiated by Confederation College of Applied Arts and Technology to engage 31 selected community colleges in Canada in an organized self-appraisal of institutional barriers to the enrollment of part-time credit students. From the outset, colleges were encouraged to limit their investigation to barriers over which

  16. An Interesting Stein Double-Double Pairing

    NASA Astrophysics Data System (ADS)

    Soon, Andrew

    2007-01-01

    Report on the observation of the double double pairing of two Stein discoveries in Cygnus. Each of the component pairs (STI9001 and STI2471) were discovered by Johan Stein in 1903 and 1909 respectively.

  17. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  18. Double Your Major, Double Your Return?

    ERIC Educational Resources Information Center

    Del Rossi, Alison F.; Hersch, Joni

    2008-01-01

    We use the 2003 National Survey of College Graduates to provide the first estimates of the effect on earnings of having a double major. Overall, double majoring increases earnings by 2.3% relative to having a single major among college graduates without graduate degrees. Most of the gains from having a double major come from choosing fields across

  19. Multilayer moisture barrier

    SciTech Connect

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  20. Coastal barrier reservoirs

    SciTech Connect

    Richardson, J.G.; Sangree, J.B.; Sneider, R.M.

    1988-09-01

    Coastal barriers are long, narrow, wave-built, sandy islands parallel to the shore. Part of the island has a beach, but many have sand dunes and areas of vegetation above the high-tide line. A lagoon or estuary is behind the barrier on the protected side away from the ocean. Coastal barrier reservoirs can hold major accumulations of oil and gas. Coastal barriers can build by three major processes; addition of sand washed onto the beach from breaker bars, addition on one end by sand washed from the other end and moved by riptides, and deposition of sand into the lagoon by waves breaking over the barrier during storms. Galveston Island, offshore Texas, is a good example of a modern coastal barrier. Waves in the Gulf of Mexico have sufficient energy to transport and deposit fine-grained sand on Galveston Island. (Fine-grained sand is the coarsest sand available in upper Texas coastal waters). Other examples of modern coastal barriers are found in the Gulf of California, where medium-sized sands are deposited. An example of an ancient deposit was found in the Elk City field, where the barrier beach was composed of well-sorted gravel and coarse sand.

  1. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  2. Nonadiabatic Processes Near Barriers

    SciTech Connect

    Burgdorfer, J.; Rohringer, N.; Krstic, Predrag S; Reinhold, Carlos O

    2004-07-01

    Non-adiabatic processes in the near-adiabatic limit are controlled by the local dynamics near barriers. The barrier can be a feature of a local potential in coordinate space but can also be an effective dynamical barrier along a generalized "reaction" coordinate. Saddle point potentials represent a special and important case in point. Dynamical barriers give rise to hidden and avoided crossings in adiabatic potential curves. The local dynamics of non-adiabatic transitions is therefore often analyzed in terms of hidden crossings (HC) and avoided crossings (AC) models. We will revisit the theory of local barrier dynamics and present two recent diverse applications in atomic and condensed matter physics: the low-velocity limit of inelastic transitions and the levitation problem in Integer Quantum Hall systems.

  3. Systematics of the deduced fission barriers for the doubly even transactinium nuclei

    SciTech Connect

    Bhandari, B.S.; Bendardaf, Y.B. )

    1992-06-01

    The systematics of the fission barrier shapes of a total of 47 doubly even actinide and transactinide nuclei have been studied using the double-humped fission barrier model. The fission barrier has been parametrized in terms of four smoothly joined parabolic segments. The penetrabilities through such double-humped fission barriers have been calculated in the Wentzel-Kramers-Brillouin approximation, and the various fission half-lives have been determined using the formalism given earlier by Nix and Walker. The various parameters of such fission barriers have been deduced by requiring their simultaneous consistency with the various relevant fission observables, namely, the near-barrier fission cross sections, isomeric energies and isomeric half-lives, where available, and the ground-state spontaneous fission half-lives in the region 90{le}{ital Z}{le}98, and such model calculations with some further justifiable asssumptions have been extended to the region of the still heavier nuclei with {ital Z}{ge}100. The results of our systematic study of the heights of the inner and the outer barriers of the double-humped fission barriers corresponding to such doubly even nuclei suggest that while the height of the inner barrier remains approximately constant in the entire region of such nuclei, the deduced heights of the outer barrier decrease rather sharply and continuously with the increase in the value of the fissility parameter until one reaches the element Rf ({ital Z}=104).

  4. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  5. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper. 2 tabs.

  6. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment, and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  7. Superlattice barrier varactors

    NASA Technical Reports Server (NTRS)

    Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.

    1992-01-01

    SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.

  8. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  9. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  10. Information barriers and authentication.

    SciTech Connect

    MacArthur, D. W.; Wolford, J. K.

    2001-01-01

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  11. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  12. Woods-Saxon Equivalent to a Double Folding Potential

    NASA Astrophysics Data System (ADS)

    Freitas, A. S.; Marques, L.; Zhang, X. X.; Luzio, M. A.; Guillaumon, P.; Condori, R. Pampa; Lichtenthler, R.

    2015-11-01

    A Woods-Saxon equivalent to a double folding potential in the nuclear surface region is obtained for the heavy-ion scattering potential. The Woods-Saxon potential has fixed geometry and was used as a bare potential in the analysis of elastic scattering angular distributions of several stable systems. A new analytical formula for the position and height of the Coulomb barrier is presented, which reproduces the results obtained using double folding potentials. This simple formula has been applied to estimate the fusion cross section above the Coulomb barrier. A comparison with experimental data is presented.

  13. Woods-Saxon Equivalent to a Double Folding Potential

    NASA Astrophysics Data System (ADS)

    Freitas, A. S.; Marques, L.; Zhang, X. X.; Luzio, M. A.; Guillaumon, P.; Condori, R. Pampa; Lichtenthäler, R.

    2016-02-01

    A Woods-Saxon equivalent to a double folding potential in the nuclear surface region is obtained for the heavy-ion scattering potential. The Woods-Saxon potential has fixed geometry and was used as a bare potential in the analysis of elastic scattering angular distributions of several stable systems. A new analytical formula for the position and height of the Coulomb barrier is presented, which reproduces the results obtained using double folding potentials. This simple formula has been applied to estimate the fusion cross section above the Coulomb barrier. A comparison with experimental data is presented.

  14. A double-double/double-single computation package

    Energy Science and Technology Software Center (ESTSC)

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  15. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  16. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  17. Fusion of the {sup 9}Be+{sup 144}Sm System at Near Barrier Energies

    SciTech Connect

    Paes, B.; Gomes, P. R. S.; Lubian, J.; Nunes, V.; Canto, L. F.

    2010-08-04

    We analyze the data for complete fusion of the {sup 9}Be+{sup 144}Sm system at near barrier energies by performing coupled channel calculations using a double-folding potential as the bare potential. We use a recently proposed new method of analysis by the introduction of dimensionless fusion functions. We observe enhancement of the fusion cross section at energies below the Coulomb barrier and suppression above the barrier.

  18. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  19. Chromosome doubling method

    SciTech Connect

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  20. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    SciTech Connect

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  1. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P. (Jemez Springs, NM)

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  2. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  3. A Typology of Career Barriers

    ERIC Educational Resources Information Center

    Lee, Sang Hee; Yu, Kumlan; Lee, Sang Min

    2008-01-01

    While most studies have focused primarily on the correlates of career barriers, research examining specific career barrier typology experienced among college students remains limited. Employing cluster analysis, this study explored the career barrier typology of 318 college students using the Korean college students' Career Barrier Inventory…

  4. Barriers to effective teaching.

    PubMed

    DaRosa, Debra A; Skeff, Kelley; Friedland, Joan A; Coburn, Michael; Cox, Susan; Pollart, Susan; O'connell, Mark; Smith, Sandy

    2011-04-01

    Medical school faculty members are charged with the critical responsibility of preparing the future physician and medical scientist workforce. Recent reports suggest that medical school curricula have not kept pace with societal needs and that medical schools are graduating students who lack the knowledge and skills needed to practice effectively in the 21st century. The majority of faculty members want to be effective teachers and graduate well-prepared medical students, but multiple and complex factors-curricular, cultural, environmental, and financial-impede their efforts. Curricular impediments to effective teaching include unclear definitions of and disagreement on learning needs, misunderstood or unstated goals and objectives, and curriculum sequencing challenges. Student and faculty attitudes, too few faculty development opportunities, and the lack of an award system for teaching all are major culture-based barriers. Environmental barriers, such as time limitations, the setting, and the physical space in which medical education takes place, and financial barriers, such as limited education budgets, also pose serious challenges to even the most committed teachers. This article delineates the barriers to effective teaching as noted in the literature and recommends action items, some of which are incremental whereas others represent major change. Physicians-in-training, medical faculty, and society are depending on medical education leaders to address these barriers to effect the changes needed to enhance teaching and learning. PMID:21346500

  5. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  6. Method of installing subsurface barrier

    SciTech Connect

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  7. Skin barrier in rosacea*

    PubMed Central

    Addor, Flavia Alvim Sant'Anna

    2016-01-01

    Recent studies about the cutaneous barrier demonstrated consistent evidence that the stratum corneum is a metabolically active structure and also has adaptive functions, may play a regulatory role in the inflammatory response with activation of keratinocytes, angiogenesis and fibroplasia, whose intensity depends primarily on the intensity the stimulus. There are few studies investigating the abnormalities of the skin barrier in rosacea, but the existing data already show that there are changes resulting from inflammation, which can generate a vicious circle caused a prolongation of flare-ups and worsening of symptoms. This article aims to gather the most relevant literature data about the characteristics and effects of the state of the skin barrier in rosacea.

  8. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S. (inventor)

    1984-01-01

    A high temperature oxidation resistant, thermal barrier coating system is disclosed for a nickel cobalt, or iron base alloy substrate. An inner metal bond coating contacts the substrate, and a thermal barrier coating covers the bond coating. NiCrAlR, FeCrAlR, and CoCrAlR alloys are satisfactory as bond coating compositions where R=Y or Yb. These alloys contain, by weight, 24.9-36.7% chromium, 5.4-18.5% aluminum, and 0.05 to 1.55% yttrium or 0.05 to 0.53% ytterbium. The coatings containing ytterbium are preferred over those containing yttrium. An outer thermal barrier coating of partial stabilized zirconium oxide (zirconia) which is between 6% and 8%, by weight, of yttrium oxide (yttria) covers the bond coating. Partial stabilization provides a material with superior durability. Partially stabilized zirconia consists of mixtures of cubic, tetragonal, and monoclinic phases.

  9. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  10. Ice barrier construction

    SciTech Connect

    Finucane, R. G.; Jahns, H. O.

    1985-06-18

    A method is provided for constructing spray ice barriers to protect offshore structures in a frigid body of water from mobile ice, waves and currents. Water is withdrawn from the body of water and is sprayed through ambient air which is below the freezing temperature of the water so that a substantial amount of the water freezes as it passes through the air. The sprayed water is directed to build up a mass of ice having a size and shape adapted to protect the offshore structure. Spray ice barriers can also be constructed for the containment of pollutant spills.

  11. Thermal Barrier Coating Workshop

    NASA Technical Reports Server (NTRS)

    Brindley, W. J. (compiler); Lee, W. Y. (compiler); Goedjen, J. G. (compiler); Dapkunas, S. J. (compiler)

    1995-01-01

    This document contains the agenda and presentation abstracts for the Thermal Barrier Coating Workshop, sponsored by NASA, DOE, and NIST. The workshop covered thermal barrier coating (TBC) issues related to applications, processing, properties, and modeling. The intent of the workshop was to highlight the state of knowledge on TBC's and to identify critical gaps in knowledge that may hinder TBC use in advanced applications. The workshop goals were achieved through presentations by 22 speakers representing industry, academia, and government as well as through extensive discussion periods.

  12. Barrier methods of contraception.

    PubMed

    Skrine, R L

    1985-05-01

    Barrier methods of contraception make up an essential part of the present contraceptive range, and doctors need to know in detail how to choose and fit them as well as how to instruct patients in their use. This discussion reviews the mode of action of the barrier method and then focuses on the vaginal diaphragm, the cervical or vault cap, the collatex (Today) sponge, condoms, emotionl problems associated with the use of barrier methods, advantages of barrier methods, and future developments. Barrier methods of contraception are only effective if used consistently and carefully. Failure rates vary greatly between studies, but in selected populations the failure rate for the diaphragm with spermicide can be as low as 1.9/100 woman years (wy) and for the condom 3.6 per 100wy (Vessey et al., 1982). If known user failures are removed, the figure for the condom can drop to as low as 0.4 per 100wy (John, 1973), which compares favorably with that of the combined oral contraceptive. Other studies quote failure rates of 10 per 100wy or more. These methods call for considerable participation by the patient at or before each act of intercourse and there is, therefore, great scope for inefficient use, either as a result of poor instruction or because couples find that they interfere with happy, relaxed sexual activity -- or fear that they may do so. Doctors need to understand the feelings of their patients before recommending them. The aim of a barrier method is to prevent live sperm from meeting the ovum. This is accomplished by the combination of a physical barrier with a spermicide. In the case of the condom, the integrity of the physical barrier is the most important factor, although some patients feel more secure with an additional spermicide. The vaginal barriers used at present do not produce a "water-tight" fit, and the principle is that the spermicide is held over the cervix by the barrier. It is also possible that the device acts partially by holding the alkaline cervical mucus necessary for sperm transportation away from the acid vagina where the sperm is delayed and killed. The choice of available vaginal diaphragms is increasing. Despite some suggestion that the "fit" of a diaphragm is not crucial, supported by the argument that the vagina increses greatly in volume during intercourse, the best available figures for reliability are from studies of family planning clinic patients who have traditionally been fitted with great care. There are no good data about the effectiveness of the cervical and vault caps, and it is better to fit a diaphragm if this is possible. The Today polyurethane foam sponge is impregnated with the spermicide nonoxynol-9 and, as marketed, it is for use as often as desired up to 24 hours, plus 6 hours before final removal to ensure all vaginal sperm are killed. Condoms bearing the British Standards Institute Kitemark have been tested to a high standard an in view of the good results that can be obtained it seems likely that most failures are due to inefficient use. Advantages of barrier methods include some portection from sexually transmitted diseases and a reduction in the incidence of pelvic inflammatory disease. PMID:4011571

  13. On models of double porosity poroelastic media

    NASA Astrophysics Data System (ADS)

    Boutin, Claude; Royer, Pascale

    2015-12-01

    This paper focuses on the modelling of fluid-filled poroelastic double porosity media under quasi-static and dynamic regimes. The double porosity model is derived from a two-scale homogenization procedure, by considering a medium locally characterized by blocks of poroelastic Biot microporous matrix and a surrounding system of fluid-filled macropores or fractures. The derived double porosity description is a two-pressure field poroelastic model with memory and viscoelastic effects. These effects result from the `time-dependent' interaction between the pressure fields in the two pore networks. It is shown that this homogenized double porosity behaviour arises when the characteristic time of consolidation in the microporous domain is of the same order of magnitude as the macroscopic characteristic time of transient regime. Conversely, single porosity behaviours occur when both timescales are clearly distinct. Moreover, it is established that the phenomenological approaches that postulate the coexistence of two pressure fields in `instantaneous' interaction only describe media with two pore networks separated by an interface flow barrier. Hence, they fail at predicting and reproducing the behaviour of usual double porosity media. Finally, the results are illustrated for the case of stratified media.

  14. Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier

    SciTech Connect

    Moon, J.D.; Geum, S.T.

    1998-11-01

    The discharge and ozone generation characteristics of a ferroelectric-ball (FEB) and mica-sheet double barrier were investigated to study the fundamentals of barrier discharges and to establish better conditions for the efficient control of pollutant gases. Five kinds of FEB`s, the dielectric constants of which are 33, 150, 660, 1500, and 10,000, were investigated in atmosphere with various pulse frequencies ranging between 0.2--4.0 kHz. It was found that the double barrier has better discharge characteristics for ozone generation than an FEB single barrier. In addition, ozone generation is greatly influenced by both the dielectric constant of the FEB barrier and the applied pulse frequency. As a result, there were optimum conditions for the dielectric constant and the applied pulse frequency to generate ozone effectively which, for the given experimental conditions, were about {epsilon}{sub r} = 660 and the frequencies higher than 4 kHz.

  15. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S. (inventor)

    1985-01-01

    An oxide thermal barrier coating comprises ZrO3-Yb2O3 that is plasma sprayed onto a previously applied bond coating. The zirconia is partially stabilized with about 124 w/o ytterbia to insure cubic, monoclinic, and terragonal phases.

  16. Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A better than average view of the Great Barrier Reef was captured by SeaWiFS on a recent overpass. There is sunglint northeast of the reef and there appears to be some sort of filamentous bloom in the Capricorn Channel.

  17. Barrier Free Site Design.

    ERIC Educational Resources Information Center

    Dee, Richard K., Ed.

    The booklet provides information for the design and evaluation of a barrier free outdoor environment for handicapped individuals. Section 1 discusses the scope of the study, defines terms, cites pertinent laws and legislation, describes cost/benefit factors, and surveys population statistics. Section 2 considers recommended design details in the

  18. Thermal barrier coating

    DOEpatents

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  19. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  20. Barriers to School Restructuring.

    ERIC Educational Resources Information Center

    Sheane, Kim; Bierlein, Louann

    In 1990, the Arizona legislature initiated the Arizona School Restructuring Pilot Project. This report identifies local- and state-level barriers encountered in the first 2 years. Outcomes are presented for the 15 pilot schools--11 elementary and 4 high schools--that were selected in a competitive grant process. Data were collected through school…

  1. Barriers Regarding Using Technology

    ERIC Educational Resources Information Center

    Boekenoogen, John Russell

    2014-01-01

    The University of Florida (UF) used an open-source course management system (CMS) called Sakai. Sakai was the fourth CMS the university has used to help teach live, blended (or hybrid), and online courses over the past ten years. The objective of this dissertation was to identify what barriers may be preventing university personnel from using

  2. Simulation of low Schottky barrier MOSFETs using an improved Multi-subband Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Valur; Palestri, Pierpaolo; Hellstrm, Per-Erik; Selmi, Luca; stling, Mikael

    2013-01-01

    We present a simple and efficient approach to implement Schottky barrier contacts in a Multi-subband Monte Carlo simulator by using the subband smoothening technique to mimic tunneling at the Schottky junction. In the absence of scattering, simulation results for Schottky barrier MOSFETs are in agreement with ballistic Non-Equilibrium Green's Functions calculations. We then include the most relevant scattering mechanisms, and apply the model to the study of double gate Schottky barrier MOSFETs representative of the ITRS 2015 high performance device. Results show that a Schottky barrier height of less than approximately 0.15 eV is required to outperform the doped source/drain structure.

  3. Stability of barrier buckets with short barrier separations

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2005-04-01

    A barrier bucket with very short or zero rf-barrier separation (relative to the barrier widths) has its synchrotron tune decreasing from a very large value towards the bucket boundary. As a result, chaotic region may form near the bucket center and extends outward under increasing modulation of rf voltage and/or rf phase. Application is made to those barrier buckets used in momentum mining at the Fermilab Recycler Ring.

  4. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  5. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  6. Chaotic correlations in barrier billiards with arbitrary barriers

    NASA Astrophysics Data System (ADS)

    Osbaldestin, A. H.; Adamson, L. N. C.

    2013-06-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation.

  7. Caffeine improves barrier function in male skin.

    PubMed

    Brandner, J M; Behne, M J; Huesing, B; Moll, I

    2006-10-01

    The influence of androgens, especially testosterone and its effector dihydrotestosterone, results in a constitutive disadvantage for male skin, e.g. reduced viability of hair at the scalp and reduced epidermal permeability barrier repair capacity. Dihydrotestosterone can act, among others, as an adenyl cyclase inhibitor. Caffeine on the other hand is an inexpensive and (in regular doses) harmless substance used in various cosmetic products, which can act as a phosphodiesterase inhibitor. To prove the hypothesis that caffeine as a phosphodiesterase inhibitor is able to override testosterone-induced effects on barrier function, we performed a double-blind placebo controlled study with healthy volunteers. In this study, 0.5% caffeine in a hydroxyethylcellulose gel preparation (HEC) was applied on one forearm, HEC without caffeine on the other forearm of male and female volunteers for 7 days and transepidermal water loss (TEWL) was measured before and at the end of the treatment period. Basal TEWL did not differ significantly between male and female subjects but the application of caffeine significantly reduced TEWL in male skin compared with female skin. We conclude that caffeine is beneficial for barrier function in male skin. PMID:18489298

  8. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  9. Apoplastic diffusion barriers in Arabidopsis.

    PubMed

    Nawrath, Christiane; Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, Jos J; Kunst, Ljerka

    2013-12-27

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  10. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  11. Vacuum barrier for excimer lasers

    SciTech Connect

    Shurter, R.P.

    1990-10-10

    This invention is comprised of a barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yearns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  12. Skin Barrier Function

    PubMed Central

    Elias, Peter M.

    2010-01-01

    Like other inflammatory dermatoses, the pathogenesis of atopic dermatitis (AD) has been largely attributed to abnormalities in adaptive immunity. T helper (Th) cell types 1 and 2 cell dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling are thought to account for the chronic, pruritic, and inflammatory dermatosis that characterizes AD. Not surprisingly, therapy has been directed toward ameliorating Th2-mediated inflammation and pruritus. Here, we review emerging evidence that inflammation in AD occurs downstream to inherited and acquired insults to the barrier. Therapy based upon this new view of pathogenesis should emphasize approaches that correct the primary abnormality in barrier function, which drives downstream inflammation and allows unrestricted antigen access. PMID:18606081

  13. Amosphous diffusion barriers

    NASA Technical Reports Server (NTRS)

    Kolawa, E.; So, F. C. T.; Nicolet, M-A.

    1986-01-01

    Amorphous W-Zr and W-N alloys were investigated as diffusion barriers in silicon metallization schemes. Data were presented showing that amorphous W-Zr crystallizes at 900 C, which is 200 C higher than amorphous W-Ni films, and that both films react with metallic overlayers at temperatures far below the crystllization temperature. Also, W-N alloys (crystalline temperature of 600 C) were successfully incorporated as a diffusion barrier in contact structures with both Al and Ag overlayers. The thermal stability of the electrical characteristics of shallow n(+)p junctions significantly improved by incorporating W-N layers in the contact system. One important fact demonstated was the critical influence of the deposition parameters during formation of these carriers.

  14. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  15. Can-Filled Crash Barrier

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1983-01-01

    Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).

  16. Microsoft Word - barriers.doc

    Cancer.gov

    Description and Theoretical Background Definition The concept of perceived barriers has been used in behavioral medicine for a long time in one form or another. The earliest widespread use of the barriers concept was associated with the Health Belief Model, as described in the following section. Websters dictionary defines a barrier as something that impedes or separates.

  17. New options for barrier contraception.

    PubMed

    Yranski, Patricia A; Gamache, Mary E

    2008-01-01

    Barrier contraceptives are a safe alternative to hormonal methods of fertility management. Newer barrier method options include the Today Sponge, the FemCap, and the Lea's Shield. Understanding the use, benefits, and limitations of these barrier methods of birth control will assist women's health care providers to better meet the family planning needs of their patients. PMID:18507612

  18. Barrier breaching device

    DOEpatents

    Honodel, C.A.

    1983-06-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  19. Tight junctions form a barrier in porcine hair follicles.

    PubMed

    Mathes, Christiane; Brandner, Johanna M; Laue, Michael; Raesch, Simon S; Hansen, Steffi; Failla, Antonio V; Vidal, Sabine; Moll, Ingrid; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-02-01

    Follicular penetration has gained increasing interest regarding (i) safety concerns about (environmentally born) xenobiotics available to the hair follicle (HF), e.g. nanomaterials or allergens which should not enter the skin, and (ii) the possibility for non-invasive follicular drug and antigen delivery. However, not much is known about barriers in the HF which have to be surpassed upon uptake and/or penetration into surrounding tissue. Thus, aim of this work was a detailed investigation of this follicular barrier function, as well as particle uptake into the HF of porcine skin which is often used as a model system for human skin for such purposes. We show that follicular tight junctions (TJs) form a continuous barrier from the infundibulum down to the suprabulbar region, complementary to the stratum corneum in the most exposed upper follicular region, but remaining as the only barrier in the less accessible lower follicular regions. In the bulbar region of the HF no TJ barrier was found, demonstrating the importance of freely supplying this hair-forming part with e.g. nutrients or hormones from the dermal microenvironment. Moreover, the dynamic character of the follicular TJ barrier was shown by modulating its permeability using EDTA. After applying polymeric model-nanoparticles (154nm) to the skin, transmission electron microscopy revealed that the majority of the particles were localized in the upper part of the HF where the double-barrier is present. Only few penetrated deeper, reaching regions where TJs act as the only barrier, and no particles were observed in the bulbar, barrier-less region. Lastly, the equivalent expression and distribution of TJ proteins in human and porcine HF further supports the suitability of porcine skin as a predictive model to study the follicular penetration and further biological effects of dermally applied nanomaterials in humans. PMID:26785612

  20. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  1. The magnetic barrier at Venus

    NASA Technical Reports Server (NTRS)

    Zhang, T. L.; Luhmann, J. G.; Russell, C. T.

    1991-01-01

    Altitude profiles of the Venus magnetic barrier are derived here from a statistical analysis of the Pioneer Venus Orbiter magnetometer data. The outer boundary of the magnetic barrier is then compared with the obstacle expected from gasdynamic models of the bow shock, and the stagnation pressure is compared with that expected from gasdynamic theory. The magnetic barrier is strongest at the subsolar point and weakens as expected with increasing solar zenith angle. The existence of a north-south asymmetry in the barrier strength is also demonstrated. The magnetic barrier is about 200 km thick at the subsolar point and 800 km thick at the terminator. The magnetic barrier transfers most of the solar wind dynamic pressure to the ionosphere via the enhanced magnetic pressure. The convected field gasdynamic model predicts the correct bow shock location if the magnetic barrier is treated as the obstacle.

  2. Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ramezani Masir, M.; Vasilopoulos, P.; Peeters, F. M.

    2009-01-01

    We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, ? -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.

  3. Topological Quantum Double

    NASA Astrophysics Data System (ADS)

    Bonneau, Philippe

    Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un prcdent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des diffrentes dfinitions, on adapte ici de la mme manire la dfinition du double quantique. Ce double topologique est alors dualisable et reflexif (mme pour des algbres de dimension infinie). Dans un cas simple on montre, en considrant le double comme la "classe zro" d'une thorie d'extensions, l'unicit de cette structure comme algbre quasi-Hopf.

  4. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  5. Double aortic arch

    MedlinePLUS

    ... occur in other congenital heart defects, including: A chromosome defect Tetralogy of Fallot Transposition of the great ... tests can help diagnose double aortic arch: Chest x-ray Scans that create cross-sectional images of ...

  6. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  7. Stability of barrier buckets with zero RF-barrier separations

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  8. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the surface of filaments because the physical, van der Waals, forces, the basis for their adhesion to the surface, are weak and act over only a short distance. SE can be deployed in a fashion similar to a demersal fishing "longline". Oil can be "caught" by replacing baited hooks and snoods with closely spaced filaments of EMA. Adsorption of floating oil requires the filaments be long enough to reach the surface, and float, as eelgrass at low tide, on the surface for some distance. Laying multiple, parallel, lines of SE offshore, makes it possible to recover each, one at a time, and replace it without breeching the barrier to oil that they form. As EMA is tough and elastic, with a large surface area to volume ratio, by virtue of being formed as an open-cell foam, considerable oil is adsorbed and can be recovered by squeezing the oil out of the filaments. Lines of SE can be redeployed and do not have to be discarded.

  9. Performing a local barrier operation

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  10. Performing a local barrier operation

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value of the counter, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  11. Problems in characterizing barrier performance

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1988-01-01

    The barrier is a synchronization construct which is useful in separating a parallel program into parallel sections which are executed in sequence. The completion of a barrier requires cooperation among all executing processes. This requirement not only introduces the wait for the slowest process delay which is inherent in the definition of the synchronization, but also has implications for the efficient implementation and measurement of barrier performance in different systems. Types of barrier implementation and their relationship to different multiprocessor environments are described. Then the problem of measuring the performance of barrier implementations on specific machine architecture is discussed. The fact that the barrier synchronization requires the cooperation of all processes makes the problem of performance measurement similarly global. Making non-intrusive measurements of sufficient accuracy can be tricky on systems offering only rudimentary measurement tools.

  12. LOUISIANA BARRIER ISLAND EROSION STUDY.

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.; Penland, Shea; Williams, S. Jeffress; Suter, John R.

    1987-01-01

    During 1986, the U. S. Geological Survey and the Louisiana Geological Survey began a five-year cooperative study focused on the processes which cause erosion of barrier islands. These processes must be understood in order to predict future erosion and to better manage our coastal resources. The study area includes the Louisiana barrier islands which serve to protect 41% of the nation's wetlands. These islands are eroding faster than any other barrier islands in the United States, in places greater than 20 m/yr. The study is divided into three parts: geological development of barrier islands, quantitative processes of barrier island erosion and applications of results. The study focuses on barrier islands in Louisiana although many of the results are applicable nationwide.

  13. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  14. Barrier rf systems in synchrotrons

    SciTech Connect

    Chandra M. Bhat

    2004-06-28

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications.

  15. Silicon Carbide Schottky Barrier Diode

    NASA Technical Reports Server (NTRS)

    Zhao, Jian H.; Sheng, Kuang; Lebron-Velilla, Ramon C.

    2004-01-01

    This chapter reviews the status of SiC Schottky barrier diode development. The fundamental of Schottky barrier diodes is first provided, followed by the review of high-voltage SiC Schottky barrier diodes, junction-barrier Schottky diodes, and merged-pin-Schottky diodes. The development history is reviewed ad the key performance parameters are discussed. Applications of SiC SBDs in power electronic circuits as well as other areas such as gas sensors, microwave and UV detections are also presented, followed by discussion of remaining challenges.

  16. Oxygen diffusion barrier coating

    NASA Technical Reports Server (NTRS)

    Unnam, Jalaiah (Inventor); Clark, Ronald K. (Inventor)

    1987-01-01

    A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry

  17. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  18. Anti-pollution barrier

    SciTech Connect

    Webb, M.G.

    1982-05-18

    A barrier is disclosed for impeding the spread of oil spilt on water comprising two angled buoyant rigid elements each of which is moulded onto a respective angled stiffener to form z-shaped members in cross-section. The two zshaped members are positioned back to back so that each is a mirror image of the other. The ends of the angled stiffeners remote from the angled buoyant rigid elements are rotatably connected and the two angled buoyant rig elements are releasably joined by a fastene. A flexible membrane passes around the ends of the angled stiffeners remote from the angled buoyant rigid elements, each end of the membrane being moulded into one of the angled buoyant rigid elements.

  19. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  20. Exposure, Uptake, and Barriers

    NASA Astrophysics Data System (ADS)

    Baeza-Squiban, Armelle; Lanone, Sophie

    The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

  1. Optimization of barriers

    NASA Astrophysics Data System (ADS)

    Lohmann, D.; Kluge, H.; Spiegel, K. H.

    1981-03-01

    A scale model of a SF6 engine fan installed in an anechoic chamber was used to examine diffraction effects behind sound screens. The screens were 22 mm thick covered with a 5 cm layer of mineral wool on the source side. Test data were stored on a 14 track tape device and later displayed using a real time analyzer after averaging 32 spectra with an absolute bandwidth of 20 Hz and, in the case of the double wall, partially also as third octave spectra. The sound screening effect is found to depend mainly on the directional characteristics of the fan due to the diffraction at the edges of the screen. The sound screen should therefore be dimensioned and positioned so that its edges are not in the region of the maxima of the directional characteristics.

  2. Revisting the Double Helix

    SciTech Connect

    Ha, Taekjip

    2010-12-08

    Properties of DNA double helix have been studied for over 60 years. Yet as more sensitive tools become available, fundamental assumptions in our understanding of these properties are being challenged. One such question is over the flexibility of DNA. Looping or bending of DNA on short length scales is essential for many cellular processes but it is highly controversial exactly how flexible the DNA is. Using a new, single-molecule based method, we found that DNA of lengths as short as 50 base pairs can form a circle more than 108 times faster than theoretical predictions. Another question concerns the physical principles governing the reversible, helix-coil transitions of DNA between the double helix and single strands. Using porous nanocontainers, we found that the rate of double helix formation shows an abrupt 100 fold change depending on whether there are 7 or more contiguous base pairs or not.

  3. Double Emulsion Templated Celloidosomes

    NASA Astrophysics Data System (ADS)

    Arriaga, Laura R.; Marquez, Samantha M.; Kim, Shin-Hyun; Chang, Connie; Wilking, Jim; Monroy, Francisco; Marquez, Manuel; Weitz, David A.

    2012-02-01

    We present a novel approach for fabricating celloidosomes, which represent a hollow and spherical three-dimensional self-assembly of living cells encapsulating an aqueous core. Glass- capillary microfluidics is used to generate monodisperse water-in-oil-in-water double emulsion templates using lipids as stabilizers. Such templates allow for obtaining single but also double concentric celloidosomes. In addition, after a solvent removal step the double emulsion templates turn into monodisperse lipid vesicles, whose membrane spontaneously phase separates when choosing the adequate lipid composition, providing the adequate scaffold for fabricating Janus-celloidosomes. These structures may find applications in the development of bioreactors in which the synergistic effects of two different types of cells selectively adsorbed on one of the vesicle hemispheres may be exploited.

  4. Barriers to Universal Higher Education.

    ERIC Educational Resources Information Center

    Ferrin, Richard I.

    This report was prepared as a background paper for a national study of changes in the accessibility of higher education fromm l958 to l968. It out- lines four major barriers to higher education: the financial, the academic, the motivational, and the geographic. Efforts to reduce these barriers have included (1) the creation of junior colleges; (2)

  5. Barriers to Women in Science

    ERIC Educational Resources Information Center

    Butler, Rosemary

    2013-01-01

    The Presiding Officer of the National Assembly for Wales, Rosemary Butler AM, has put the issue of barriers to women in public life at the top of the political agenda in Wales. She has held sessions with women across Wales to find out what those barriers are and how they can be tackled. On International Women's Day in February, she invited

  6. TEST METHODS FOR INJECTABLE BARRIERS

    EPA Science Inventory

    Grouts are becoming increasingly important in producing barriers to contaminated ground water flow at hazardous waste sites. Grouted barriers can be used at depths and under conditions where slurry trenches are impractical. To employ grouts to advantage at waste sites it is neces...

  7. Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier

    SciTech Connect

    Chen, C. H.; Hsueh, W. J.

    2014-01-27

    Tunnel magnetoresistance of magnetic tunnel junction improved by a superlattice barrier composed of alternate layers of a nonmagnetic metal and an insulator is proposed. The forbidden band of the superlattice is used to predict the low transmission range in the superlattice barrier. By forbidding electron transport in the anti-parallel configuration, the tunnel magnetoresistance is enhanced in the superlattice junction. The results show that the tunnel magnetoresistance ratio for a superlattice magnetic tunnel junction is greater than that for traditional single or double barrier junctions.

  8. The fission barrier of 240Pu in the relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Blum, V.; Maruhn, J. A.; Reinhard, P.-G.; Greiner, W.

    1994-03-01

    The potential energy surface of 240Pu has been investigated in the framework of the relativistic mean field theory. The self-consistent field equations were solved numerically on an axially symmetric grid in the coordinate space with the addition of a quadrupole constraint. The double humped fission barrier typical for 240Pu is well reproduced by the model. We discuss the influence of the different parametrizations of the model on the deformed ground state, the first barrier, the deformed isomeric state and the second barrier.

  9. Double-helix stellarator

    SciTech Connect

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  10. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  11. Epistemological barriers to radical behaviorism.

    PubMed

    O'Donohue, W T; Callaghan, G M; Ruckstuhl, L E

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  12. Epistemological barriers to radical behaviorism

    PubMed Central

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  13. Hanford Protective Barriers Program asphalt barrier studies -- FY 1988

    SciTech Connect

    Freeman, H.D.; Gee, G.W.

    1989-05-01

    The Hanford Protective Barrier (HPB) Program is evaluating alternative barriers to provide a means of meeting stringent water infiltration requirements. One type of alternative barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick, which has been shown to be very effective as a barrier for radon gas and, hence, should be equally effective as a barrier for the larger molecules of water. Fiscal Year 1988 studies focused on the selection and formulation of the most promising asphalt materials for further testing in small-tube lysimeters. Results of laboratory-scale formulation and hydraulic conductivity tests led to the selection of a rubberized asphalt material and an admixture of 24 wt% asphalt emulsion and concrete sand as the two barriers for lysimeter testing. Eight lysimeters, four each containing the two asphalt treatments, were installed in the Small Tube Lysimeter Facility on the Hanford Site. The lysimeter tests allow the performance of these barrier formulations to be evaluated under more natural environmental conditions.

  14. SUBSURFACE BARRIER VALIDATION WITH THE SEAFACE SYSTEM

    SciTech Connect

    Sandra Dalvit Dunn

    1997-11-30

    The overall objective of the effort was to develop and demonstrate an integrated methodology and field system to evaluate the integrity of in situ, impermeable barriers constructed in the vadose zone. An autonomous, remotely accessible, automatic monitoring and analysis system was designed and fabricated. It was thoroughly tested under field conditions, and was able to function as designed throughout the test period. Data inversion software was developed with enhanced capabilities over the previous prototype version, and integrated with the monitoring system for real time operation. Analytical simulations were performed to determine the inversion code's sensitivity to model parameters. Numerical simulations were performed to better understand how typical field conditions differ from the ideal model(s) which are used (or have been developed for use) in the inversion code and to further validate the flux limited forward model developed for use with the system. Results from the analytical and numerical assessment of the inversion code showed that the SEAtrace{trademark} approach could locate leaks within 0.4 to 1.2 m. Leak size determination was less accurate, but produced results within a factor of 3 to 8 for leaks in the 2.5 to 10 cm diameter range. The smallest engineered leak in the test 1.1 cm diameter, could be located but its size estimate was high by a factor of 30. Data analysis was performed automatically after each gas scan was completed, yielding results in less than thirty minutes, although the bulk of the results reported required post test data analysis to remove effects of high background concentrations. The field test of the integrated system was problematic, primarily due to unanticipated, unintentional leaks formed in the impermeable liner. The test facility constructed to proof the system was ambitious, initially having 11 engineered leaks of various dimensions that could be independently operated. While a great deal of care went into the construction of the facility to assure there would be no undesired leaks, the primary barrier to diffusion (a 30-mil high density polyethylene membrane) failed. The unanticipated leaks were large enough that tracer gas diffusing from them masked the designed leaks. The test facility was re-excavated and a new membrane installed. Initial tests of this barrier showed that it also leaked near the bottom of the barrier. However, careful control of the subsequent tracer gas injections, coupled with extensive data analysis to minimize the effects of the high background tracer gas concentrations, allowed leak characterization to be completed successfully. The proposed Phase II demonstration for this project is a double wall, jet grouted coffer dam at the Dover Air Force Base Groundwater Remediation Field Laboratory. This barrier will be constructed of multiple thin wall panels (nominally 6 to 10-inch thick) installed to form a vertical right circular cylinder, approximately 30 ft. in diameter. The barrier will be keyed into a clay layer at the 45 ft. depth, forming the bottom of the barrier.

  15. Immunobiological barriers to xenotransplantation.

    PubMed

    Cooper, David K C; Ekser, Burcin; Tector, A Joseph

    2015-11-01

    Binding of natural anti-pig antibodies in humans and nonhuman primates to carbohydrate antigens expressed on the transplanted pig organ, the most important of which is galactose-?1,3-galactose (Gal), activate the complement cascade, which results in destruction of the graft within minutes or hours, known as hyperacute rejection. Even if antibody is removed from the recipient's blood by plasmapheresis, recovery of antibody is associated with acute humoral xenograft rejection. If immunosuppressive therapy is inadequate, the development of high levels of T cell-dependent elicited anti-pig IgG similarly results in graft destruction, though classical acute cellular rejection is rarely seen. Vascular endothelial activation by low levels of anti-nonGal antibody, coupled with dysregulation of the coagulation-anticoagulation systems between pigs and primates, leads to a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. The most successful approach to overcoming these barriers is by genetically-engineering the pig to provide it with resistance to the human humoral and cellular immune responses and to correct the coagulation discrepancies between the two species. Organs and cells from pigs that (i) do not express the important Gal antigen, (ii) express a human complement-regulatory protein, and (iii) express a human coagulation-regulatory protein, when combined with an effective immunosuppressive regimen, have been associated with prolonged pig graft survival in nonhuman primates. PMID:26159291

  16. Double-Glazing Interferometry

    ERIC Educational Resources Information Center

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for

  17. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R. (Albuquerque, NM)

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  18. Design for Double Rainbow

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the…

  19. Michael Heizer: "Double Negative."

    ERIC Educational Resources Information Center

    Kanatani, Kim

    1988-01-01

    Uses a photograph of Michael Heizer's earthwork sculpture "Double Negative" to encourage students in grades 4-6 to discuss ways in which an artist may communicate ideas by creating ultra-large "landscape sculptures." Provides student objectives, background information on the artwork, instructional strategies, and evaluation criteria. (GEA)

  20. Double Helix Revisited.

    ERIC Educational Resources Information Center

    Glickstein, Neil M.

    1995-01-01

    Describes the use of James Watson's book, "The Double Helix," as a multidisciplinary way of introducing students to actual science; the scientific method; dilemmas encountered in the world of research; and the rich setting of personalities, politics, and history in post-World War II Europe. (MKR)

  1. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  2. Double Trouble (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2015-12-01

    (Abstract only) Variable stars with close companions can be difficult to accurately measure and characterize. The companions can create misidentifications, which in turn can affect the perceived magnitudes, amplitudes, periods, and colors of the variable stars. We will show examples of these Double Trouble stars and the impact their close companions have had on our understanding of some of these variable stars.

  3. Rosette (Double Blossom)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosette, or double blossom, is a serious disease of erect blackberries that is limited to the genus Rubus. Rosette may occur on trailing blackberries and dewberries, but rarely on red and black raspberries. In the United States, rosette occurs from New Jersey to Illinois and southwest to Texas and i...

  4. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's

  5. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  6. Double-Glazing Interferometry

    ERIC Educational Resources Information Center

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…

  7. Design for Double Rainbow

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the

  8. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified

  9. Barrier crossing by a star polymer.

    PubMed

    Debnath, Ananya; Sebastian, K L

    2007-11-01

    We analyze the dynamics of a star polymer of F arms trapped in a double well potential. Initially the molecule is confined to one of the minima and can cross over the barrier to the other side. We use the continuum version of the Rouse-Ham model and calculate the rate of crossing using the multidimensional approach due to Langer [Ann. Phys. (N.Y.) 54, 258 (1969)]. Finding the transition state for the process is shown to be equivalent to the solution of Newton's equations for F independent particles, moving in an inverted potential. For each star polymer, there is a critical barrier top curvature, below which the star crosses over in coiled conformation. The value of the critical curvature is determined by the first Rouse mode of the star. If the curvature is greater than this critical value, the saddle point for the crossing is a stretched conformation of the star. For the coiled transition state, the activation energy is proportional to the total arm length of the star. For the stretched transition state, as one increases the length of an arm of the star, the activation energy at first increases and then decreases. This results from the fact that in the stretched state, only one arm of the polymer is stretched across the top of the barrier, while others need not be. We calculate the rate by expanding the energy around the saddle up to second order in the fluctuations. As we use the continuum model, there are infinite modes for the polymer and, consequently, the prefactor has infinite products. We show that these infinite products can be reduced to a simple expression, and evaluated easily. However, the rate diverges near NTc due to the multifurcation, which results in more than one unstable mode. The cure for this divergence is to keep terms up to fourth order in the expansion of energy for these modes. Performing this, we have calculated the rate as a function of the length of the star. It is found that the rate has a nonmonotonic dependence on the length, suggesting that longer stars may actually cross over the barrier faster. PMID:18233677

  10. Tritium/hydrogen barrier development

    SciTech Connect

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments.

  11. Vehicle barrier with access delay

    DOEpatents

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  12. Australia's Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.

    The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.

    Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  14. Subwavelength slit acoustic metamaterial barrier

    NASA Astrophysics Data System (ADS)

    Rubio, Constanza; Candelas, Pilar; Belmar, Francisco; Gomez-Lozano, Vicente; Uris, Antonio

    2015-10-01

    Reduction of noise in the transmission path is a very important environmental problem. The standard method to reduce this noise level is the use of acoustic barriers. In this paper, an acoustic metamaterial based on sound transmission through subwavelength slits, is tailored to be used as an acoustic barrier. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width, embedded in air. Here, both the experimental and the numerical analyses are presented. These analyses have facilitated the identification of the parameters that affect the insertion loss performance. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise in a mechanical plant for buildings where openings for air flow are required as well as industrial noise, without excessive barrier thickness.

  15. INFORMATION BARRIERS - A HISTORICAL PERSPECTIVE

    SciTech Connect

    D. CLOSE; D. MACARTHUR; N. NICHOLAS

    2001-05-01

    The concept ''transparency'' was introduced into the safeguards lexicon in the early 1990s, and the term ''information barrier'' was introduced into the safeguards lexicon in the late 1990s. Although the terms might have been new, the concepts were not. Both concepts have been used by the International Atomic Energy Agency (IAEA) and its inspectors since the early 1980s, but the terms ''transparency'' and ''information barrier'' were not used for those concepts then. The definitions of these concepts have evolved in recent years, and these concepts have been applied to a broader category of special nuclear material measurement problems. The origin and features of the information barrier concept will be traced from an early implementation by the IAEA to the current state-of-the-art information barrier technology used in nonproliferation, arms control, and dismantlement.

  16. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  17. Remeasuring the double helix

    SciTech Connect

    Mathew-Fenn, Rebecca S.; Das, Rhiju; Harbury, Pehr A.B.

    2008-10-20

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  18. Measuring the Double Helix

    SciTech Connect

    Mathew-Fenn, R.S.; Das, R.; Harbury, P.A.B.

    2009-05-26

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  19. The Double Chooz Experiment

    SciTech Connect

    Dracos, Marcos

    2011-10-06

    The Double Chooz reactor neutrino experiment aims at observing the last neutrino oscillation not yet observed and at measuring the corresponding mixing angle {theta}{sub 13}. A relatively big value of this angle will allow the measurement of CP violation in the leptonic sector by the next neutrino oscillation experiments. This disappearance experiment will precisely count the number of anti-neutrinos produced by the two nuclear reactors of the Chooz nuclear plant in France. In a first stage, Double Chooz will only use a far detector which could allow to give a sin{sup 2}(2{theta}{sub 13}) low limit of 0.06. Two years after, a near detector, identical to the far one, will be in operation and allow us to push this limit down to 0.03 by reducing the systematic errors. The status of this experiment is presented in this paper.

  20. Overcoming barriers to patient safety.

    PubMed

    Kalisch, Beatrice J; Aebersold, Michelle

    2006-01-01

    Creating a culture of patient safety is a critical goal of all patient care unit staff. An analysis of the key barriers to patient safety on a typical inpatient unit in an acute care hospital (unclear unit values), the fear of punishment for errors, the lack of systematic analysis of mistakes, the complexity of the nurses' work, and inadequate teamwork are presented. Nine practices to overcome these barriers and achieve patient safety are discussed. PMID:16786829

  1. Thermal Barrier Coating Workshop, 1997

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Compiler)

    1998-01-01

    This document contains papers from the 1997 Thermal Barrier Coatings Workshop, sponsored by the TBC Interagency Coordination Committee. The Workshop was held in Fort Mitchell, Kentucky, May 19-21, 1997. The papers cover the topics of heat transfer and conductivity of thermal barrier coatings, failure mechanisms and characterization of the coatings as well as characterization of coating deposition methods. Speakers included research, development and user groups in academia, industry and government.

  2. Barriers to women's career attainment.

    PubMed

    Wiggins, C

    1995-01-01

    Articles in the literature in the popular and professional journals and periodicals sustain the idea that significant barriers and a glass ceiling exist for women. While recognizing that overt and covert intentional discrimination may be a force in women's lack of career attainment, this work focuses on a network of semi-transparent societal and work world barriers which impede the career success of female healthcare managers. PMID:10153076

  3. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  4. Double shell liner implosions

    NASA Astrophysics Data System (ADS)

    Sorokin, S. A.; Chaikovsky, S. A.

    1997-05-01

    Experiments on the double shell liner (DSL) implosions with and without an initial axial magnetic were performed on the SNOP-3 pulse generator (1.1 MA, 100 ns). In implosions of a DSL without an initial axial magnetic field, high radial compressions of the inner shell were observed, as in previous experiments with an initial axial magnetic field. Possible mechanisms for the formation of the initial azimuthal magnetic field are discussed.

  5. Neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ps, Heinrich; Rodejohann, Werner

    2015-11-01

    We review the potential to probe new physics with neutrinoless double beta decay (A,Z)\\to (A,Z+2)+2{e}-. Both the standard long-range light neutrino mechanism as well as non-standard long-range and short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  6. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  7. Economic alternatives for containment barriers

    SciTech Connect

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-12-31

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control.

  8. Fusion under a complex barrier

    NASA Astrophysics Data System (ADS)

    Sahu, Basudeb; Jamir, I.; Lyngdoh, E. F. P.; Shastry, C. S.

    1998-04-01

    The mechanism of fusion of two heavy nuclei is formulated within the concept of transmission across a mildly absorptive effective fusion barrier (EFB). The intensity of transmitted waves across such a barrier could be represented by the product TRPS where TR stands for the transmission coefficient across the corresponding real barrier and PS is a factor of survival probability against absorption under the complex barrier. The justification of this result and the physical basis of the above EFB transmission model of fusion, which is complementary to the definition of fusion based on absorption in the interior region known as the direct reaction model (DRM), are demonstrated in the case of a complex square well potential with a complex rectangular barrier. Based on a WKB approach, expressions for TR for different partial waves utilizing a realistic nucleus-nucleus potential are derived. Using the resulting expressions for the fusion cross section (?F), the experimental values of ?F and the corresponding data of the average angular momentum of the fused body are explained satisfactorily over a wide range of energy around the Coulomb barrier in various heavy ion systems such as 16O+152,154Sm, 58,64Ni+58,64Ni, 64Ni+92Zr, and 64Ni+100Mo.

  9. Double-beta decay

    SciTech Connect

    Moe, M.K.; Rosen, S.P.

    1989-11-01

    In a double-beta event, two neutrons decay simultaneouly into two protons, two beta rays (electrons) and two antineutrinos. Experimentalists are now searching for another form of double-beta decay, one that does not produce neutrinos or antineutrinos. If such an event is found, it could unravelone of nature's great mysteries: What, if anything, is the mass of the neutrino According to the Standard Model, the neutrino accompanying a negative beta ray is the distinct antiparticle of the one accompanying a positive beta ray. The theories that go beyond the Standard Model and assign a mass to the neutrino, however, predict that the particle emitted with a negative beta ray should be the same as the one emitted with a positive ray. In other words, the neutrino would be its own antiparticle. How can we tell whether these predictions are right Double-beta decay is the ideal process in which to seek an answer to this question. If the neutrino has mass and is its own antiparticle, then the neutrino emitted in the first stage of the process might be reaborbed in the second, yielding a form of decay in which no neutrinos materialize. 8 figs.

  10. Ab initio transport across bismuth selenide surface barriers

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Rungger, Ivan; Droghetti, Andrea; Sanvito, Stefano

    2014-11-01

    We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3 (111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  11. Yucca Mountain engineered barrier system corrosion model (EBSCOM)

    NASA Astrophysics Data System (ADS)

    King, F.; Kolar, M.; Kessler, J. H.; Apted, M.

    2008-09-01

    A revised engineered barrier system model has been developed by the Electric Power Research Institute to predict the time dependence of the failure of the drip shields and waste packages in the proposed Yucca Mountain repository. The revised model is based on new information on various corrosion processes developed by the US Department of Energy and others and for a 20-mm-thick waste package design with a double closure lid system. As with earlier versions of the corrosion model, the new EBSCOM code produces a best-estimate of the failure times of the various barriers. The model predicts that only 15% of waste packages will fail within a period of 1 million years. The times for the first corrosion failures are 40,000 years, 336,000 years, and 375,000 years for the drip shield, waste package, and combination of drip shield and the associated waste package, respectively.

  12. Induction barrier RF and applications in Main Injector

    SciTech Connect

    Chou, W.; Wildman, D.; Takagi, A.; /KEK, Tsukuba

    2006-07-01

    Two induction barrier rf systems have been designed and fabricated at Fermilab and installed in the Main Injector. They use the nanocrystal magnetic alloy called Finemet for the cavities and high voltage fast MOSFET switches for the modulators. Each system delivers {+-}10 kV square pulses at 90 kHz. They have been used for adiabatic beam stacking (beam compression), machine acceptance measurement and gap cleaning in the injection area for magnet protection, and will be tested for fast beam stacking for doubling the proton flux on the NuMI production target. The systems work reliably and cost much less than a resistive barrier rf system. Comparison with a similar system built at KEK reveals many similarities and also some important differences. This work is partially funded by the US-Japan collaborative agreement.

  13. Study of internal transport barrier triggering mechanism in tokamak plasmas

    SciTech Connect

    Dong, J.Q.; Mou, Z.Z.; Long, Y.X.; Mahajan, S.M.

    2004-12-01

    Sheared flow layers driven by magnetic energy, released in tearing-reconnection processes inherent in dissipative magnetohydrodynamics, are proposed as a triggering mechanism for the creation of the internal transport barrier (ITB) in tokamak plasmas. The double tearing mode, mediated by anomalous electron viscosity in configurations with a nonmonotonic safety factor, is investigated as an example. Particular emphasis is placed on the formation of sheared poloidal flow layers in the vicinity of the magnetic islands. A quasilinear simulation demonstrates that the sheared flows induced by the mode have desirable characteristics (lying just outside the magnetic islands), and sufficient levels required for ITB formation. A possible explanation is also proffered for the experimental observation that the transport barriers are preferentially formed in the proximity of low-order rational surfaces.

  14. Targeting molecular hydrogen to mitochondria: barriers and gateways.

    PubMed

    Ostojic, Sergej M

    2015-04-01

    Although the administration of molecular hydrogen (H2, dihydrogen) has been recognized as an effective innovative therapeutic procedure in biomedicine, H2 cellular kinetics and utilization seems to be less understood. In particular, mitochondrial barriers might impact on H2 use in mitochondria-related diseases and conditions. Double-membrane organization of mitochondria and large membrane potential are important elements of mitochondrial stability that control the transport of the molecule into and out of the organelle. In this perspective paper, we advanced possible obstacles and advantages for H2 delivery to mitochondria. PMID:25720951

  15. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    SciTech Connect

    Lan, Yann-Wen E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong E-mail: ywlan@phys.sinica.edu.tw; Chang, Wen-Hao; Li, Yuan-Yao

    2014-09-08

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  16. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations-a critical review.

    PubMed

    Mouele, Emile S Massima; Tijani, Jimoh O; Fatoba, Ojo O; Petrik, Leslie F

    2015-12-01

    The growing global drinking water crisis requires the development of novel advanced, sustainable, and cost-effective water treatment technologies to supplement the existing conventional methods. One such technology is advanced oxidation based on dielectric barrier discharge (DBD). DBD such as single and double planar and single and double cylindrical dielectric barrier configurations have been utilized for efficient degradation of recalcitrant organic pollutants. The overall performance of the different DBD system varies and depends on several factors. Therefore, this review was compiled to give an overview of different DBD configurations vis-a-viz their applications and the in situ mechanism of generation of free reactive species for water and wastewater treatment. Our survey of the literature indicated that application of double cylindrical dielectric barrier configuration represents an ideal and viable route for achieving greater water and wastewater purification efficiency. PMID:26493299

  17. Filaggrin and Skin Barrier Function.

    PubMed

    Kezic, Sanja; Jakasa, Ivone

    2016-01-01

    The skin barrier function is greatly dependent on the structure and composition of the uppermost layer of the epidermis, the stratum corneum (SC), which is made up of flattened anucleated cells surrounded by highly organized and continuous lipid matrix. The interior of the corneocytes consists mainly of keratin filaments aggregated by filaggrin (FLG) protein. Next, together with several other proteins, FLG is cross-linked into a mechanically robust cornified cell envelope providing a scaffold for the extracellular lipid matrix. In addition to its role for the SC structural and mechanical integrity, FLG degradation products account in part for the water-holding capacity and maintenance of acidic pH of the SC, both crucial for the epidermal barrier homoeostasis by regulating activity of multiple enzymes that control desquamation, lipid synthesis and inflammation. The major determinant of FLG expression in the skin are loss-of-function mutations in FLG, the strongest genetic risk factor for atopic dermatitis (AD), an inflammatory skin disease characterized by a reduced skin barrier function. The prevalence of FLG mutations varies greatly among different populations and ranges from about 10% in Northern Europeans to less than 1% in the African populations. An impaired skin barrier facilitates absorption of potentially hazardous chemicals, which might cause adverse effects in the skin, such as contact dermatitis, or systemic toxicity after their passage into blood. In another direction, a leaky epidermal barrier will lead to enhanced loss of water from the skin. A recent study has shown that even subtle increase in epidermal water loss in newborns increases the risk for AD. Although there are multiple modes of action by which FLG might affect skin barrier it is still unclear whether and how FLG deficiency leads to the reduced skin barrier function. This chapter summarizes the current knowledge in this field obtained from clinical studies, and animal and in vitro models of FLG deficiency. PMID:26844893

  18. Graphene-based environmental barriers.

    PubMed

    Guo, Fei; Silverberg, Gregory; Bowers, Shin; Kim, Sang-Pil; Datta, Dibakar; Shenoy, Vivek; Hurt, Robert H

    2012-07-17

    Many environmental technologies rely on containment by engineered barriers that inhibit the release or transport of toxicants. Graphene is a new, atomically thin, two-dimensional sheet material, whose aspect ratio, chemical resistance, flexibility, and impermeability make it a promising candidate for inclusion in a next generation of engineered barriers. Here we show that ultrathin graphene oxide (GO) films can serve as effective barriers for both liquid and vapor permeants. First, GO deposition on porous substrates is shown to block convective flow at much lower mass loadings than other carbon nanomaterials, and can achieve hydraulic conductivities of 5 10(-12) cm/s or lower. Second we show that ultrathin GO films of only 20-nm thickness coated on polyethylene films reduce their vapor permeability by 90% using elemental mercury as a model vapor toxicant. The barrier performance of GO in this thin-film configuration is much better than the Nielsen model limit, which describes ideal behavior of flake-like fillers uniformly imbedded in a polymer. The Hg barrier performance of GO films is found to be sensitive to residual water in the films, which is consistent with molecular dynamics (MD) simulations that show lateral diffusion of Hg atoms in graphene interlayer spaces that have been expanded by hydration. PMID:22717015

  19. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. PMID:26844902

  20. Cytokines and the Skin Barrier

    PubMed Central

    Hnel, Kai H.; Cornelissen, Christian; Lscher, Bernhard; Baron, Jens Malte

    2013-01-01

    The skin is the largest organ of the human body and builds a barrier to protect us from the harmful environment and also from unregulated loss of water. Keratinocytes form the skin barrier by undergoing a highly complex differentiation process that involves changing their morphology and structural integrity, a process referred to as cornification. Alterations in the epidermal cornification process affect the formation of the skin barrier. Typically, this results in a disturbed barrier, which allows the entry of substances into the skin that are immunologically reactive. This contributes to and promotes inflammatory processes in the skin but also affects other organs. In many common skin diseases, including atopic dermatitis and psoriasis, a defect in the formation of the skin barrier is observed. In these diseases the cytokine composition within the skin is different compared to normal human skin. This is the result of resident skin cells that produce cytokines, but also because additional immune cells are recruited. Many of the cytokines found in defective skin are able to influence various processes of differentiation and cornification. Here we summarize the current knowledge on cytokines and their functions in healthy skin and their contributions to inflammatory skin diseases. PMID:23531535

  1. Graphene-Based Environmental Barriers

    PubMed Central

    Guo, Fei; Silverberg, Gregory; Bowers, Shin; Kim, Sang-Pil; Datta, Dibakar; Shenoy, Vivek; Hurt, Robert H.

    2012-01-01

    Many environmental technologies rely on containment by engineered barriers that inhibit the release or transport of toxicants. Graphene is a new, atomically thin, two-dimensional sheet material, whose aspect ratio, chemical resistance, flexibility, and impermeability make it a promising candidate for inclusion in a next generation of engineered barriers. Here we show that ultrathin graphene oxide (GO) films can serve as effective barriers for both liquid and vapor permeants. First, GO deposition on porous substrates is shown to block convective flow at much lower mass loadings than other carbon nanomaterials, and can achieve hydraulic conductivities of 5×10−12 cm/s or lower. Second we show that ultrathin GO films of only 20 nm thickness coated on polyethylene films reduce their vapor permeability by 90% using elemental mercury as a model vapor toxicant. The barrier performance of GO in this thin-film configuration is much better than the Nielsen model limit, which describes ideal behavior of flake-like fillers uniformly imbedded in a polymer. The Hg barrier performance of GO films is found to be sensitive to residual water in the films, which is consistent with molecular dynamics (MD) simulations that show lateral diffusion of Hg atoms in graphene interlayer spaces that have been expanded by hydration. PMID:22717015

  2. Near-barrier quasielastic scattering as a sensitive tool to derive nuclear matter diffuseness

    SciTech Connect

    Crema, E.; Simoes, R. F.; Barioni, A.; Otomar, D. R.; Monteiro, D. S.; Lubian, J.; Gomes, P. R. S.; Shorto, J. M. B.

    2011-08-15

    Quasielastic excitation functions for the {sup 16,18}O + {sup 60}Ni systems were measured at energies near and below the Coulomb barrier, at the backward angle {theta}{sub LAB} = 161 deg. The corresponding quasielastic barrier distributions were derived. The data were compared with predictions from coupled channel calculations using a double-folding potential as a bare potential. For the {sup 16}O-induced scattering, good agreement was obtained for the barrier distribution by using the projectile default nuclear matter diffuseness obtained from the Sao Paulo potential systematic, that is, 0.56 fm. However, for the {sup 18}O-induced scattering, good agreement was obtained only when the projectile nuclear matter diffuseness was changed to 0.62 fm. Therefore, in this paper we show how near-barrier quasielastic scattering can be used as a sensitive tool to derive nuclear matter diffuseness.

  3. Stem cells behind the barrier.

    PubMed

    Cangkrama, Michael; Ting, Stephen B; Darido, Charbel

    2013-01-01

    Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function. PMID:23812084

  4. Deceleration-Limiting Roadway Barrier

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, P. James (Inventor)

    2006-01-01

    Roadway barrier system and method are disclosed for decelerating a moving vehicle in a controlled manner and for retaining the decelerated vehicle. A net or mesh of the roadway barrier system receives and captures the moving vehicle. The net or mesh is secured to anchors by energy absorbing straps. The energy absorbing straps deploy under a tensional load to decelerate the moving vehicle, the straps providing a controlled resistance to the tensional load over a predefined displacement or stroke to bring the moving vehicle to rest. Additional features include a sacrificial panel or sheet in front of the net that holds up the net or mesh while deflecting vehicles that collide only tangentially with the roadway barrier system.

  5. Top-of-barrier electrons

    NASA Astrophysics Data System (ADS)

    Macek, J. H.

    1997-04-01

    The energy and angular distribution of electrons ejected from one-electron species by fast ion impact show two noticable features, namely, the binary encounter ridge and the continuum capture cusp. No other features have been conclusively identified although there has been some contradictory evidence for a third feature, namely, saddle point or top-of-barrier electrons. For electrons ejected from atoms by ions with velocities below the mean electron velocity in the initial state, both the binary encounter ridge and the continuum capture cusp are suppressed. In this region the top-of-barrier mechanism is predicted to contribute strongly to ionization. Theoretical and experimental evidence for the associated top-of-barrier electrons is reviewed.

  6. Firewalls from double purity

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2013-10-01

    The firewall paradox is often presented as arising from double entanglement, but I argue that more generally the paradox is double purity. Near-horizon modes are purified by the interior, in the infalling vacuum. Hence, they cannot also be pure alone, or in combination with any third system, as demanded by unitarity. This conflict arises independently of the Page time, for entangled and for pure states. It implies that identifications of Hilbert spaces cannot resolve the paradox. Traditional complementarity requires the unitary identification of infalling matter with a scrambled subsystem of the Hawking radiation. Extending this map to the infalling vacuum overdetermines the out-state. More general complementarity maps (A=RB, ER=EPR) necessarily fail when the near-horizon zone is pure. I argue that pure-zone states span the microcanonical ensemble, and that this suffices to make the horizon a special place. I advocate that the ability to detect the horizon locally, rather than the degree or probability of violence, is what makes firewalls problematic. Conversely, if the production of matter at the horizon can be dynamically understood and shown to be consistent, then firewalls do not constitute a violation of the equivalence principle.

  7. Living Doubled-Up: Influence of Residential Environment on Educational Participation

    ERIC Educational Resources Information Center

    Hallett, Ronald E.

    2012-01-01

    Homeless youth face many barriers that limit success in the educational process. Subgroups of homeless youth frequently experience the educational process differently depending upon their residential context. Recent years witness the federal government's expanding the definition of homelessness to include youth living doubled-up. This residential…

  8. Living Doubled-Up: Influence of Residential Environment on Educational Participation

    ERIC Educational Resources Information Center

    Hallett, Ronald E.

    2012-01-01

    Homeless youth face many barriers that limit success in the educational process. Subgroups of homeless youth frequently experience the educational process differently depending upon their residential context. Recent years witness the federal government's expanding the definition of homelessness to include youth living doubled-up. This residential

  9. A double hetero[4]helicene composed of two phenothiazines: synthesis, structural properties, and cationic states.

    PubMed

    Sakamaki, Daisuke; Kumano, Daisuke; Yashima, Eiji; Seki, Shu

    2015-11-24

    A novel double hetero[4]helicene consisting of two phenothiazines (1) has been synthesized. The racemization barrier of 1 is high enough for optical separation. We successfully obtained the single crystals of the radical cation salt of ?(+), whose torsion angles were decreased compared to those of the neutral state. PMID:26459965

  10. Enhanced tunneling through nonstationary barriers

    SciTech Connect

    Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.

    2007-11-15

    Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented.

  11. Westinghouse thermal barrier coatings development

    SciTech Connect

    Goedjen, J.G.; Wagner, G.

    1995-12-31

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications.

  12. Success in horizontal barrier developments

    SciTech Connect

    Pettit, P.J.; Ridenour, D.E.; Jalovec, J.

    1996-06-01

    A successful proof of concept demonstration has been conducted of operational methods and tooling for the in situ construction of underground horizontal barriers for the control and containment of groundwater and contamination. The method involves jet grouting with specially adapted tools guided between twin, parallel wells for the placement of a grout beneath a waste site. The objective of the work is to develop reliable methods of constructing extensive, competent horizontal barriers underneath waste sites without excavating or penetrating the waste during the process.

  13. Barrier mechanisms in the Drosophila blood-brain barrier

    PubMed Central

    Hindle, Samantha J.; Bainton, Roland J.

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study. PMID:25565944

  14. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces

    SciTech Connect

    Roul, Basanta; Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B.

    2015-03-15

    We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (φ{sub b}) and the ideally factor (η) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(J{sub s}/T{sup 2}) versus 1/kT showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants (A{sup ∗}) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (σ{sub s}{sup 2}) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(J{sub s}/T{sup 2}) − (q{sup 2}σ{sub s}{sup 2}/2k{sup 2}T{sup 2}) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A{sup ∗}) values 25.5 Acm{sup −2}K{sup −2} and 43.9 Acm{sup −2}K{sup −2}, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.

  15. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Roul, Basanta; Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B.

    2015-03-01

    We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (?b) and the ideally factor (?) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(Js/T2) versus 1/kT showed two temperature regions (region-I: 400-500 K and region-II: 200-350 K) and it provides Richardson constants (A?) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (?s2) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(Js/T2) - (q2?s2/2k2T2) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A?) values 25.5 Acm-2K-2 and 43.9 Acm-2K-2, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.

  16. Systems study on engineered barriers: barrier performance analysis

    SciTech Connect

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  17. Concepts and Mechanisms: Crossing Host Barriers

    PubMed Central

    Doran, Kelly S.; Banerjee, Anirban; Disson, Olivier; Lecuit, Marc

    2013-01-01

    The human body is bordered by the skin and mucosa, which are the cellular barriers that define the frontier between the internal milieu and the external nonsterile environment. Additional cellular barriers, such as the placental and the blood–brain barriers, define protected niches within the host. In addition to their physiological roles, these host barriers provide both physical and immune defense against microbial infection. Yet, many pathogens have evolved elaborated mechanisms to target this line of defense, resulting in a microbial invasion of cells constitutive of host barriers, disruption of barrier integrity, and systemic dissemination and invasion of deeper tissues. Here we review representative examples of microbial interactions with human barriers, including the intestinal, placental, and blood–brain barriers, and discuss how these microbes adhere to, invade, breach, or compromise these barriers. PMID:23818514

  18. Coherent quantum transport in graphene-based normal metal-superconductor double junctions

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Wang, Juntao; Yang, Yanling

    2010-05-01

    Based on the transfer-matrix method, we have investigated the coherent quantum transport in a graphene-based normal metal-insulator-superconductor-insulator-normal metal ( NG/ IG/ SG/ IG/ NG) double junctions with a barrier of thickness d and with a potential strength V0 applied across the barrier region. It is found that all the reflection coefficients in BTK theory as well as conductance spectra of such system oscillate with the external voltage and the barrier strength V0. The oscillation feature of conductance can be tuned largely by the thickness of the superconductor interlayer. These phenomena are essentially different from those found in conventional normal metal-superconductor double junctions. The physical origin for those phenomena has also been analyzed.

  19. Barriers to and Facilitators of Research Utilization: A Survey of Registered Nurses in China

    PubMed Central

    Wang, Li-Ping; Jiang, Xiao-Lian; Wang, Lei; Wang, Guo-Rong; Bai, Yang-Jing

    2013-01-01

    Aims This survey aims to describe the perception of barriers to and facilitators of research utilization by registered nurses in Sichuan province, China, and to explore the factors influencing the perceptions of the barriers to and facilitators of research utilization. Methods A cross sectional survey design and a double cluster sampling method were adopted. A total of 590 registered nurses from 3 tertiary level hospitals in Sichuan province, China, were recruited in a period from September 2006 to January 2007. A modified BARRUERS Scale and a Facilitators Scale were used. Data were analyzed with descriptive statistics, rank transformation test, and multiple linear regression. Results Barriers related to the setting subscale were more influential than barriers related to other subscales. The lack of authority was ranked as the top greatest barrier (15.7%), followed by the lack of time (13.4%) and language barrier (15.0%). Additional barriers identified were the reluctance of patients to research utilization, the lack of funding, and the lack of legal protection. The top three greatest facilitators were enhancing managerial support (36.9%), advancing education to increase knowledge base (21.1%), and increasing time for reviewing and implementing (17.5%), while cooperation of patients to research utilization, establishing a panel to evaluate researches, and funding were listed as additional facilitators. Hospital, educational background, research experience, and knowledge on evidence-based nursing were the factors influencing perceptions of the barriers and facilitators. Conclusions Nurses in China are facing a number of significant barriers in research utilization. Enhancing managerial support might be the most promising facilitator, given Chinese traditional culture and existing health care system. Hospital, educational background, research experience and knowledge on evidence-based nursing should be taken into account to promote research utilization. The BARRIERS Scale should consider funding and involvement of patients in research utilization. PMID:24312380

  20. Simple interpretation of nuclear orientation for Coulomb barrier distributions derived from a realistic effective interaction

    SciTech Connect

    Ismail, M.; Seif, W. M.

    2010-03-15

    A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, {sup 48}Ca, and deformed, {sup 244}Pu, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.

  1. Simple interpretation of nuclear orientation for Coulomb barrier distributions derived from a realistic effective interaction

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.

    2010-03-01

    A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, Ca48, and deformed, Pu244, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.

  2. Colored Flag by Double Refraction.

    ERIC Educational Resources Information Center

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  3. Apple Valley Double Star Workshop

    NASA Astrophysics Data System (ADS)

    Brewer, Mark

    2015-05-01

    The High Desert Astronomical Society hosts an annual double star workshop, where participants measure the position angles and separations of double stars. Following the New Generation Science Standards (NGSS), adopted by the California State Board of Education, participants are assigned to teams where they learn the process of telescope set-up and operation, the gathering of data, and the reduction of the data. Team results are compared to the latest epoch listed in the Washington Double Star Catalog (WDS) and papers are written for publication in the Journal of Double Star Observations (JDSO). Each team presents a PowerPoint presentation to their peers about actual hands-on astronomical research.

  4. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  5. Barrier/Cu contact resistivity

    SciTech Connect

    Reid, J.S.; Nicolet, M.A.; Angyal, M.S.; Lilienfeld, D.; Shacham-Diamand, Y.; Smith, P.M.

    1995-10-17

    The specific contact resistivity of Cu with ({alpha} + {beta})-Ta, TiN, {alpha}-W, and amorphous-Ta{sub 36}Si{sub 14}N{sub 50} barrier films is measured using a novel four-point-probe approach. Geometrically, the test structures consist of colinear sets of W-plugs to act as current and voltage probes that contact the bottom of a planar Cu/barrier/Cu stack. Underlying Al interconnects link the plugs to the current source and voltmeter. The center-to-center distance of the probes ranges from 3 to 200 {micro}m. Using a relation developed by Vu et al., a contact resistivity of roughly 7 {times} 10{sup {minus}9} {Omega} cm{sup 2} is obtained for all tested barrier/Cu combinations. By reflective-mode small-angle X-ray scattering, the similarity in contact resistivity among the barrier films may be related to interfacial impurities absorbed from the deposition process.

  6. Alumina-Enhanced Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Smith, Marnell; Leiser, Dan; Goldstein, Howard

    1989-01-01

    Rigid, fibrous ceramic tile material called "alumina-enhanced thermal barrier" (AETB) extends temperature capability of insulating materials. Material has obvious potential for terrestrial use in kilns, furnaces, heat engines, and other applications in which light weight and high operating temperature are specified. Three kinds of ceramic fibers are blended, molded, and sintered to make refractory tiles.

  7. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  8. Thermal barrier and gas seal

    NASA Technical Reports Server (NTRS)

    Kane, J. O.; Surbat, M.

    1980-01-01

    Resilient baglike seal tolerates thousand-degree temperatures and accommodates small changes in gap size without losing gas-barrier properties; at same time, it maintains smooth aerodynamic surface across gap. Seal includes alumina filler backed by metal plate. Alumina-filled envelope is easily handled and installed, and can be used in high-temperature industrial processes like coal gasification and liquefaction.

  9. Processes of barrier island erosion

    SciTech Connect

    Sallenger, A.H. Jr. ); Williams, S.J. )

    1989-09-01

    During 1986, the US Geological Survey and the Louisiana Geological Survey began a 5-year study of the processes causing the extreme rates (up to 20 m/year) of erosion of Louisiana's barrier islands. These processes must be better understood in order to predict future erosion and to assess management and erosion mitigation plans. The study is divided into three parts: the geologic development of barrier islands, the critical processes leading to erosion, and applications of results. This paper provides an overview of the part of the study on critical processes. The process part includes modeling erosion of the barrier islands due to sea level rise, the net loss of sand offshore, gradients in longshore transport, and overwash. Evidence indicates that the low-lying barrier beaches on much of the Louisiana coast do not approach an equilibrium configuration. These beaches, which, in many places, are not protected by dunes, are overwashed even during moderate storms and apparently are not evolving to a configuration that limits overwash. As a result, even with stable sea level, the beaches will continue to overwash and migrate landward during storms. Commonly used methods of modeling beach response to rising sea level assume beaches approach an equilibrium configuration, hence applying these methods to coastal Louisiana is problematical.

  10. Storm impact for barrier islands

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2000-01-01

    A new scale is proposed that categorizes impacts to natural barrier islands resulting from tropical and extra-tropical storms. The proposed scale is fundamentally different than existing storm-related scales in that the coupling between forcing processes and the geometry of the coast is explicitly included. Four regimes, representing different levels of impact, are defined. Within each regime, patterns and relative magnitudes of net erosion and accretion are argued to be unique. The borders between regimes represent thresholds defining where processes and magnitudes of impacts change dramatically. Impact level 1 is the 'swash' regime describing a storm where runup is confined to the foreshore. The foreshore typically erodes during the storm and recovers following the storm; hence, there is no net change. Impact level 2 is the 'collision' regime describing a storm where the wave runup exceeds the threshold of the base of the foredune ridge. Swash impacts the dune forcing net erosion. Impact level 3 is the 'overwash' regime describing a storm where wave runup overtops the berm or, if present, the foredune ridge. The associated net landward sand transport contributes to net migration of the barrier landward. Impact level 4 is the 'inundation' regime describing a storm where the storm surge is sufficient to completely and continuously submerge the barrier island. Sand undergoes net landward transport over the barrier island; limited evidence suggests the quantities and distance of transport are much greater than what occurs during the 'overwash' regime.

  11. Results of falling barrier analyses

    SciTech Connect

    Fox, G.L.

    1994-10-31

    This document assesses the consequences if the isolation barrier plate is dropped and falls over on the fuel stored in the water-filled K-East basin. The water slows the rate of fall and some canister bending is expected but only a few rods, if any, would get crushed. The basin criticality calculations will not be affected.

  12. Injectable barriers for waste isolation

    SciTech Connect

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K.; Muller, S.J.

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.

  13. Transforming Articulation Barriers in Nursing.

    ERIC Educational Resources Information Center

    Waters, Verle

    Barriers to educational mobility for nurses have existed since the mid-1960s. In 1963, the National League for Nursing (NLN) adopted a position that ruled out articulation of any kind between associate degree in nursing (ADN) and bachelors in science in nursing (BSN) programs. In the mid-1970s, a countermovement took shape, supporting open

  14. Double optical gating

    NASA Astrophysics Data System (ADS)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  15. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  16. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints.

    PubMed

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis; Karakaidos, Panagiotis; Kletsas, Dimitris; Issaeva, Natalia; Vassiliou, Leandros-Vassilios F; Kolettas, Evangelos; Niforou, Katerina; Zoumpourlis, Vassilis C; Takaoka, Munenori; Nakagawa, Hiroshi; Tort, Frederic; Fugger, Kasper; Johansson, Fredrik; Sehested, Maxwell; Andersen, Claus L; Dyrskjot, Lars; Ørntoft, Torben; Lukas, Jiri; Kittas, Christos; Helleday, Thomas; Halazonetis, Thanos D; Bartek, Jiri; Gorgoulis, Vassilis G

    2006-11-30

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression. PMID:17136093

  17. Barrier inhomogeneities and electronic transport of Pt contacts to relatively highly doped n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Huang, Lingqin; Wang, Dejun

    2015-05-01

    The barrier characteristics of Pt contacts to relatively highly doped (1 1018 cm-3) 4H-SiC were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 160-573 K. The barrier height and ideally factor estimated from the I-V characteristics based on the thermionic emission model are abnormally temperature-dependent, which can be explained by assuming the presence of a double Gaussian distribution (GD) of inhomogeneous barrier heights. However, in the low temperature region (160-323 K), the obtained mean barrier height according to GD is lower than the actual mean value from C-V measurement. The values of barrier height determined from the thermionic field emission model are well consistent with those from the C-V measurements, which suggest that the current transport process could be modified by electron tunneling at low temperatures.

  18. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  19. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  20. Correlated double-proton transfer. I. Theory.

    PubMed

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2007-11-01

    The dynamics of double-proton transfer reactions is studied on a model of transfer along two identical hydrogen bonds represented by quartic double-minimum potentials. Correlation between the proton motions is introduced by a coupling term that is bilinear in the two proton coordinates; it is shown that this form properly accounts for the polarity and symmetry of the interaction and correctly reproduces the observed transfer behavior in the strong- and weak-coupling limits. The model allows a universal description of double-proton transfer mechanisms in symmetric systems in terms of the variation of a single parameter, the (dimensionless) coupling between the two hydrogen bonds. The corresponding two-dimensional (2D) transfer potential has up to nine stationary points, depending on the coupling strength. The resulting dynamics and its dependence on temperature and isotopic substitution are studied analytically by instanton techniques for the full range of the correlation parameter whereby the potential has multiple saddle points. For any coupling, the dynamics at high temperatures is dominated by classical transitions over the saddle point of lowest barrier. Strong coupling leads exclusively to synchronous transfer along a single collective coordinate, weak coupling to competition between this synchronous transfer, and stepwise transfer along local coordinates, the relative contributions of these mechanisms being governed by the temperature. Below a certain crossover temperature, transfer dynamics is dominated by the instanton, i.e., the trajectory with maximum tunneling probability. Two types of instanton are found on the 2D potential. The well-known one-dimensional instanton, corresponding to synchronous motion, exists for any coupling. It dominates at low temperatures and is responsible for any observed tunneling splittings, independent of the number of saddle points of the symmetric potential. An alternative 2D instanton, corresponding to asynchronous motion, exists for weak coupling. It is shown that under conditions where 2D tunneling dominates, it is much slower than stepwise transfer. Therefore 2D tunneling trajectories do not contribute significantly to the rate of transfer and can be ignored. The favorable quantitative aspects of the model are illustrated by an application to double-proton rate constants in porphine, which have been measured in a wide range of temperatures. PMID:17994833

  1. Solar UV radiation reduces the barrier function of human skin

    PubMed Central

    Biniek, Krysta; Levi, Kemal; Dauskardt, Reinhold H.

    2012-01-01

    The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SCs mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SCs intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skins natural ability to resist, compromising the critical barrier function of the skin. PMID:23027968

  2. Dynamics of negative hydraulic barriers to prevent seawater intrusion

    NASA Astrophysics Data System (ADS)

    Pool, Mara; Carrera, Jess

    2010-02-01

    Negative hydraulic barriers that intercept inflowing saltwater by pumping near the coast have been proposed as a corrective measure for seawater intrusion in cases where low heads must be maintained. The main disadvantage of these barriers is that they pump a significant proportion of freshwater, leading to contamination with saltwater at the well. To minimize such mixing, a double pumping barrier system with two extraction wells is proposed: an inland well to pump freshwater and a seawards well to pump saltwater. A three-dimensional variable density flow model is used to study the dynamics of the system. The system performs very efficiently as a remediation option in the early stages. Long-term performance requires a well-balanced design. If the pumping rate is high, drawdowns cause saltwater to flow along the aquifer bottom around the seawater well, contaminating the freshwater well. A low pumping rate at the seawards well leads to insufficient desalinization at the freshwater well. A critical pumping rate at the seawater well is defined as that which produces optimal desalinization at the freshwater well. Empirical expressions for the critical pumping rate and salt mass fraction are proposed. Although pumping with partially penetrating wells improves efficiency, the critical pumping rates remain unchanged.

  3. Self-employment as a solution for attitudinal barriers: a case study.

    PubMed

    Quinton, Melanie C

    2014-01-01

    This paper uses a case study to examine attitudinal barriers to employment and underemployment. We follow the career path of PR, a woman with multiple physical impairments, as she seeks financial independence through several employment strategies. In these, she faced attitudinal barriers and employment situations without opportunity for advancement. Eventually, PR opens her own business, turning to an alternative loan program to acquire the funds necessary to purchase a ready-made vehicle that matches her needs for accessible transportation. Use of this vehicle to provide delivery services for her business has more than doubled her income. PMID:24763347

  4. New Galactic Double Periodic Variables

    NASA Astrophysics Data System (ADS)

    Mennickent, R. E.; Rosales, J.

    2014-10-01

    We discovered two new Double Periodic Variables in the ASAS catalogue of variable stars, viz., V495 Cen and V4142 Sgr. Other 3 candidates for Double Periodic Variables were found. All systems have relatively long orbital periods. We present improved ephemerides and disentangled light curves.

  5. PERMEABLE REACTIVE BARRIER TECHNOLOGIES FOR CONTAMINANT REMEDIATION

    EPA Science Inventory

    Environmental scientists are generally familiar with the concept of barriers for restricting the movement of contaminant plumes in ground water. Such barriers are typically constructed of highly impermeable emplacements of materials such as grouts, slurries, or sheet pilings to ...

  6. Natural double inflation

    NASA Astrophysics Data System (ADS)

    Occhionero, F.; Litterio, M.; Capozziello, S.; Amendola, L.

    The astronomical interest of double inflation stems from the possibility it gives of inserting a feature in an otherwise featureless (or scale invariant) perturbation spectrum, precisely at the scale (100 Mpc, say) that goes through the horizon at the (sharp) separations between the two successive inflations. Double inflation occurs when two scalar fields (or inflatons) dominate sequentially the cosmic expansion or when vacuum polarization Ricci scalar R squared added to the Lagrangian is taken into account and only one inflaton ? is present. (This perhaps is more natural as it exploits quantum effects to reduce to one the number of the ad hoc ingredients.) In that case we know from Starobinsky's pioneering work that the first inflation is driven by R rightly called then scalaron under the rules of Fourth Order Gravity, (FOG), while the second is driven by ? under the rules of ordinary General Relativity, (GR). Unfortunately most of the appeal of the scalaron-inflaton scenario in relation to the feature in the perturbation spectrum, is lost because a delicate fine tuning of the value of the (second) inflaton at the beginning of the second inflation is required, in the absence of which the two inflations merge in one and no scale is singled out. In order to overcome this difficulty, we introduce in the Lagrangian density a new scalar coupling between ? and R2, analogous to the well known non minimal coupling between ? and R of canonical GR. We show that in this way the two inflationary episodes of FOG and GR may be neatly distinguished from each other, regardless of the initial value of ?. This is due to the influence of the coupling on the shape of the conformal potential, in which one can easily carve a channel of evolution, consisting in fact of two orthogonal valleys. Then, for most of phase space the attractor is this doubly inflationary trajectory that lies at the bottom of the two valleys (Fig. 1). In fact, in this case the Universe first rolls down to the bottom of the first valley where the inflaton takes the desired value, and then goes on the course sketched above, consisting of the FOG inflation driven by the scalaron and the GR inflation driven by the inflaton. Numerical examples are given (Fig.2). In conclusion it is pointed out that this engineering of the conformal potential may also be exploited, perhaps more interestingly, far beyond the original motivation of this work: for example, to generate bubbles of astrophysical interest in a sort of first-order inflation, which does not have the graceful exit problem of old inflation and has been accordingly nicknamed by us getaway inflation (Fig. 3).

  7. Double Excitations of Helium

    NASA Astrophysics Data System (ADS)

    Menzel, Alexander

    1996-05-01

    The double excitations of helium offer an ideal case for investigating electron dynamics in a three-body system. Our study of the He ^1P^o double excitations comprises measurements of the partial photoionization cross sections ?n (He^+) and the partial photoelectron angular distribution parameters ?n for the series N(K,T)^Ai up to the N=5 threshold. The experiment was performed at the ALS undulator beam line 9.0.1., which provided a photon flux of 2 10^12 photons per second with a small photon energy bandpass of 7 to 12 meV. This level of differentiation, along with the small bandpass, offers the most critical assessment of the dynamics of the two-electron excitations to date. The principal series K=N-2 are clearly delineated in both ?n and ?_n. The ?n show all minor series with N=K-4 very clearly, in contrast to measurements of the total absorption cross section, as well as very weak members with A=-1. Excellent accord between experiment and theory, particularly the hyperspherical close-coupling method, was found for the dynamic properties in all instances, including the interference pattern due to an overlap of N=5 and N=6 series members. Generally, the Rydberg series of resonance-induced profiles vary greatly depending on the final ionic state He^+(n), whereas the peak-to-valley variation in the ?n within a given series N is of similar magnitude for all n. Interestingly, a striking systematic trend is noted through the various series: the resonance-induced profiles for both the ?n and ?n of the photoelectron satellites are virtually identical provided the final ionic state He^+(n), n >= 2, is reached via an excited series N with ?=1, or ?=2, where ?=N-n. This overall pattern might be attributed to the general similarity of states with the same set of approximately good quantum numbers (N-K), A, and T. We tentatively propose an extension of these systematics for higher series N >= 5, although further theoretical work toward understanding these features of the doubly excited states will be needed. The experiment was performed in close collaboration with C.D. Caldwell, M.O. Krause, S.P. Frigo, and S.B. Whitfield. Valuable theoretical contributions were made by J.-Z. Tang and I. Shimamura. Part of the work appeared in Phys. Rev. Lett. 75, 1479 (1995). This work is supported by the National Science Foundation under grants PHY-9207634 and PHY-9507573.

  8. The Visual Double Star Catalogs

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.

    2015-08-01

    In visual double star work, production of the first comprehensive attempt to list all discovered pairs in his accessible sky was prepared by S.W. Burnham in 1906. A double star catalog for the southern hemisphere was prepared by R.T.A. Innes et al. in 1927 and the northern hemisphere catalog was updated by R.G. Aitken and E. Doolittle in 1932. Eventually, this led to Lick Observatory maintaining what became known as the Index Catalogue, an all-sky visual double star database.In 1964, under the aegis of Commission 26, the Lick double star database was transferred to the U.S. Naval Observatory where it was redesignated the Washington Double Star Catalog where it and it's ancillary catalogs, have been maintained for over half a century. The current statistics of the catalog and it's supplements are presented as are the enhancements currently under consideration.

  9. Container lid gasket protective strip for double door transfer system

    DOEpatents

    Allen, Jr., Burgess M

    2013-02-19

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  10. Coherent quantum transport in two-dimensional electron gas/superconductor double junctions with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bai, C.; Yang, Y.-L.; Zhang, X.-D.

    2008-09-01

    Based on the extended Blonder-Tinkham-Klapwijk (BTK) approach, we have investigated the coherent quantum transport in two-dimensional electron gas/superconductor (2DEG/SC) double tunneling junctions in the presence of the Rashba spin-orbit coupling (RSOC). It is found that all the reflection coefficients in BTK theory as well as conductance spectra oscillate with the external voltage and energy. The oscillation feature of conductance can be tuned largely by the RSOC for low insulating barriers, while for high insulating barriers it is almost independent of the RSOC. These phenomena are essentially different from those found in ferromagnet/superconductor double tunneling junctions.

  11. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2010-12-01

    Almost exactly seventy years ago and only one year before his tragic disappearance the ingenious idea of Ettore Majorana is becoming one of the most important step in the development of fundamental physics. The problem of the nature of the neutrino, namely if it is a massless Dirac particle different from its antineutrino or a Majorana particle with finite mass, is discussed. In fact the recent results showing the presence of neutrino oscillations clearly indicates that the difference between the squared mass of neutrinos of different flavours is finite. Neutrinoless double beta decay (DBD) is at present the most powerful tool to determine the effective value of the mass of a Majorana neutrino. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already at least partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is indeed a Majorana particle.

  12. Double acting bit holder

    DOEpatents

    Morrell, Roger J. (Blommington, MN); Larson, David A. (Minneapolis, MN); Ruzzi, Peter L. (Eagan, MN)

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  13. Double Diffusive Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Lee, Brace

    2008-11-01

    Sour gas flares attempt to dispose of deadly H2S gas through combustion. What does not burn rises as a buoyant plume. But the gas is heavier than air at room temperature, so as the rising gas cools eventually it becomes negatively buoyant and descends back to the ground. Ultimately, our intent is to predict the concentrations of the gas at ground level in realistic atmospheric conditions. As a first step towards this goal we have performed laboratory experiments examining the structure of a steady state plume of hot and salty water that rises buoyantly near the source and descends as a fountain after it has cooled sufficiently. We call this a double-diffusive plume because its evolution is dictated by the different (turbulent) diffusivities of heat and salt. A temperature and conductivity probe measures both the salinity and temperature along the centreline of the plume. The supposed axisymmetric structure of the salinity concentration as it changes with height is determined by light-attenuation methods. To help interpret the results, a theory has been successfully adapted from the work of Bloomfield and Kerr (2000), who developed coupled equations describing the structure of fountains. Introducing a new empirical parameter for the relative rates of turbulent heat and salt diffusion, the predictions are found to agree favourably with experimental results.

  14. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  15. Psoriasis genetics: breaking the barrier

    PubMed Central

    Roberson, Elisha D.O.; Bowcock, Anne M.

    2010-01-01

    Psoriasis is a common incurable inflammatory skin disease affecting 23% of the European population. Psoriatic skin contains large numbers of immune cells which produce many cytokines, chemokines and inflammatory molecules. The epidermis divides much faster than normal and has a defective outer layer or barrier which under normal circumstances protects from infection and dehydration. Psoriatic skin is characterized by a distinct set of inflammation and epidermal proliferation and differentiation markers, and it has not been clear if the genetic basis of psoriasis is due to defects of the immune system or the skin. One genetic determinant lies within the major histocompatibility complex class 1 region. Genome-wide association studies have revealed genetic susceptibility factors that play a role in the formation of immune cells found in psoriasis lesions. Others affect epidermal proliferation and the formation of the skins barrier. Hence, genetic components of both the immune system and the epidermis predispose to disease. PMID:20692714

  16. Security barriers with automated reconnaissance

    SciTech Connect

    McLaughlin, James O; Baird, Adam D; Tullis, Barclay J; Nolte, Roger Allen

    2015-04-07

    An intrusion delaying barrier includes primary and secondary physical structures and can be instrumented with multiple sensors incorporated into an electronic monitoring and alarm system. Such an instrumented intrusion delaying barrier may be used as a perimeter intrusion defense and assessment system (PIDAS). Problems with not providing effective delay to breaches by intentional intruders and/or terrorists who would otherwise evade detection are solved by attaching the secondary structures to the primary structure, and attaching at least some of the sensors to the secondary structures. By having multiple sensors of various types physically interconnected serves to enable sensors on different parts of the overall structure to respond to common disturbances and thereby provide effective corroboration that a disturbance is not merely a nuisance or false alarm. Use of a machine learning network such as a neural network exploits such corroboration.

  17. Ductal barriers in mammary epithelium

    PubMed Central

    Owens, Mark B; Hill, Arnold DK; Hopkins, Ann M

    2013-01-01

    Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer. PMID:24665412

  18. The Barriers and Needs of Online Learners

    ERIC Educational Resources Information Center

    Srichanyachon, Napaporn

    2014-01-01

    This study investigated some specific barriers and needs that online students are facing when learning English through WebEx system. It compared students' barriers and needs with their background including gender, computer ownership, and monthly allowance. It also investigated the relationship among computer aptitude, barriers and needs of

  19. Barriers to Mammography among Inadequately Screened Women

    ERIC Educational Resources Information Center

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography

  20. Article Including Environmental Barrier Coating System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  1. 24 CFR 574.645 - Coastal barriers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Coastal barriers. 574.645 Section 574.645 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501,...

  2. 24 CFR 574.645 - Coastal barriers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Coastal barriers. 574.645 Section 574.645 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501,...

  3. 24 CFR 574.645 - Coastal barriers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Coastal barriers. 574.645 Section 574.645 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501,...

  4. Barriers to Mammography among Inadequately Screened Women

    ERIC Educational Resources Information Center

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  5. Use of double gloving to reduce surgical personnel's risk of exposure to bloodborne pathogens: an integrative review.

    PubMed

    Childs, Tammy

    2013-12-01

    Surgical team members are known to have a higher incidence of percutaneous injuries compared with other health care workers, which increases surgical personnel's risk both of exposure to bloodborne pathogens and acquiring bloodborne illnesses. The purpose of this integrative review was to determine whether double gloving reduces the surgical team member's risk of percutaneous injury when compared with single gloving. Factors addressed are double gloving versus single gloving, use of an indicator glove system, optimum levels of protection, and policies and procedures to facilitate compliance with double gloving. Evidence supports the use of double gloving and double gloving with an indicator glove system to decrease the risk of percutaneous injury and therefore is an effective barrier to bloodborne pathogen exposure. Perioperative managers and educators should develop educational methods to support double-gloving compliance; monitor and conduct periodic audits to evaluate compliance; and review and revise quality improvement strategies as necessary to protect surgical employees from percutaneous injuries. PMID:24266931

  6. Flexible pile thermal barrier insulator

    NASA Technical Reports Server (NTRS)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S. (Inventor)

    1978-01-01

    A flexible pile thermal barrier insulator included a plurality of upstanding pile yarns. A generally planar backing section supported the upstanding pile yarns. The backing section included a plurality of filler yarns forming a mesh in a first direction. A plurality of warp yarns were looped around said filler yarns and pile yarns in the backing section and formed a mesh in a second direction. A binder prevented separation of the yarns in the backing section.

  7. Wet Work and Barrier Function.

    PubMed

    Fartasch, Manigé

    2016-01-01

    Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours. PMID:26844906

  8. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  9. Optical properties of magnetoexcitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Schillak, Piotr; Czajkowski, Gerard

    2015-10-01

    Here we investigate the influence of a constant magnetic field on the energy levels and optical properties of excitons in a double quantum disk (quantum molecule). Taking into account the cylindrical symmetry of the double disk we calculate the wave functions and excitonic energies when the external constant magnetic field is applied along the symmetry axis. Having the eigenfunctions and eigenvalues and using the long-wave approximation we can compute all the optical functions. The double quantum dot is considered as one system rather than two interacting dots separated by narrow barrier. The screened Coulomb interaction between an electron and a hole is assumed. Since in the given structure the separation of the relative- and center-of-mass motion of the electron and the hole is not possible, we use an approach where the six-dimensional eigenvalue problem is transformed into the equivalent eigenvalue problem given by the system of the coupled two-dimensional second order differential equations. The so obtained differential equations are solved numerically. As an example, we give detailed results for a InP/InGaP double quantum dot. Satisfactory agreement with the available experimental data is obtained.

  10. Reaction dynamics near the barrier

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2011-10-01

    The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office of Nuclear Physics.

  11. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  12. Cryogenic Barrier Demonstration Project. Final report

    SciTech Connect

    Johnson, L.A.; Yarmak, E.; Long, E.L.

    2000-03-01

    A long-term frozen soil barrier was implemented at the HRE (Homogeneous Reactor Experiment) Pond facility at the Oak Ridge National Laboratory in 1997. This was performed to verify the technical feasibility and costs of deploying a frozen barrier at a radiologically contaminated site. Work began in September 1996 and progressed through to December 1999. The frozen barrier has been operational since November 1997. Verification of the barrier integrity was performed independently by the EPA's SITE Program. This project showed frozen barriers offer a proven technology to retain below grade hazardous substances at relatively low costs with minimal effect on the environment.

  13. Classification of minimally doubled fermions

    SciTech Connect

    Creutz, Michael; Misumi, Tatsuhiro

    2010-10-01

    We propose a method to control the number of species of lattice fermions, which yields new classes of minimally doubled lattice fermions. We show it is possible to control the number of species by handling O(a) Wilson-term-like corrections in fermion actions, which we will term 'twisted-ordering method'. Using this method we obtain new minimally doubled actions with one exact chiral symmetry and exact locality. We classify the known minimally doubled fermions into two types based on the locations of the propagator poles in the Brillouin zone.

  14. Myosin di-phosphorylation and peripheral actin bundle formation as initial events during endothelial barrier disruption

    PubMed Central

    Hirano, Mayumi; Hirano, Katsuya

    2016-01-01

    The phosphorylation of the 20-kD myosin light chain (MLC) and actin filament formation play a key role in endothelial barrier disruption. MLC is either mono- or di-phosphorylated (pMLC and ppMLC) at T18 or S19. The present study investigated whether there are any distinct roles of pMLC and ppMLC in barrier disruption induced by thrombin. Thrombin induced a modest bi-phasic increase in pMLC and a robust mono-phasic increase in ppMLC. pMLC localized in the perinuclear cytoplasm during the initial phase, while ppMLC localized in the cell periphery, where actin bundles were formed. Later, the actin bundles were rearranged into stress fibers, where pMLC co-localized. Rho-kinase inhibitors inhibited thrombin-induced barrier disruption and peripheral localization of ppMLC and actin bundles. The double, but not single, mutation of phosphorylation sites abolished the formation of peripheral actin bundles and the barrier disruption, indicating that mono-phosphorylation of MLC at either T18 or S19 is functionally sufficient for barrier disruption. Namely, the peripheral localization, but not the degree of phosphorylation, is suggested to be essential for the functional effect of ppMLC. These results suggest that MLC phosphorylation and actin bundle formation in cell periphery are initial events during barrier disruption. PMID:26863988

  15. Monitoring subsurface barrier integrity using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Gard, A.; Senum, G.

    1998-06-01

    Subsurface barriers are an extremely promising remediation option to many waste-management problems. It is recognized that monitoring of the barrier is necessary to provide confidence in the ability of the barrier to contain the pollutants. However, the large size and deep placement of subsurface barriers make detection of leaks a challenging task. Therefore, typical geophysical methods are not suitable for the monitoring of an emplaced barrier`s integrity. Perfluorocarbon tracers (PFTs) have been tested as a means of barrier verification at the Hanford geotechnical test facility, where a soil/cement barrier was emplaced around a buried drum. PFTs were injected beneath the drum for three days in the center of the barrier 3 m below grade. The concentration of PFTs in seven external and two internal monitoring wells has been measured as a function of time over a 17-day period. The data have been analyzed through numerical modeling to determine barrier integrity and PFT diffusion rates through the barrier. This paper discusses the experimental design, test results, data analysis, and modeling of PFT transport in the subsurface system.

  16. Double- β decay studies with JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Kolhinen, V. S.; Rahaman, S.; Suhonen, J.

    2014-01-01

    We have applied JYFLTRAP double Penning trap mass spectrometer to study several double- β decay Q values that could be useful for the search of neutrinoless double- β decay and, hence for the determination of neutrino properties.

  17. Entanglement purification with double selection

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2009-10-15

    We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.

  18. Double outlet right ventricle (image)

    MedlinePLUS

    Double outlet right ventricle (DORV) is a congenital heart disease in which the aorta and pulmonary artery rise from the right ventricle. This configuration allows oxygen-poor blood, to be carried throughout the ...

  19. Focused Ion Beam Process for Formation of a Metal/Insulator/Metal Double Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Nakayama, Masayoshi; Yanagisawa, Junichi; Wakaya, Fujio; Gamo, Kenji

    1999-12-01

    An improved method to fabricate a small lateral double tunnel junction which utilizes focused ion beam (FIB) etching and lift-off techniques is proposed. A double layer resist consisting of nitrocellulose and germanium layers was used. Narrow grooves with widths comparable to or narrower than the FIB diameter were formed in a ferromagnetic layer of Ni, and Ni/Ni-oxide/Au/Ni-oxide/Ni and Al/Al-oxide/Ni/Al-oxide/Al double junction structures were fabricated using the proposed method. The measured voltage and current characteristics of the latter structures indicated that double tunnel junctions with a barrier height of 0.61 eV were fabricated and suggest that this is a promising method to fabricate island structures for devices utilizing Coulomb blockade or spin blockade effects.

  20. Single- and double-electron processes in collisions of Xe{sup 23+} ions with helium

    SciTech Connect

    Ding Baowei; Wan Chengliang; Chen Shangwen; Yu Deyang; Ruan Fangfang; Lu Rongchun; Cai Xiaohong; Shao Caojie

    2010-09-15

    We report the measurements of relative cross sections for single capture (SC), double capture (DC), single ionization (SI), double ionization (DI), and transfer ionization (TI) in collisions of Xe{sup 23+} ions with helium atoms in the velocity range of 0.65-1.32 a.u. The relative cross sections show a weak velocity dependence. The cross-section ratio of double- (DE) to single-electron (SE) removal from He, {sigma}{sub DE}/{sigma}{sub SE}, is about 0.45. Single capture is the dominant reaction channel which is followed by transfer ionization, while only very small probabilities are found for pure ionization and double capture. The present experimental data are in satisfactory agreement with the estimations by the extended classical over-barrier (ECB) model.

  1. Alignment in double capture processes

    SciTech Connect

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A. )

    1993-06-05

    The electron spectra emitted when a double capture occurs in N[sup 7+]+He and Ne[sup 8+]+He systems at 10 qkeV collisional energy, allow us to determine the angular distributions of the 3[ell]3[ell] [prime] lines through a special spectra fitting procedure which includes interferences between neighbouring states. It is found that the doubly excited states populated in double capture processes are generally aligned.

  2. Thermally activated resonant tunnelling in GaAs/AlGaAs triple barrier heterostructures

    NASA Astrophysics Data System (ADS)

    Allford, C. P.; Legg, R. E.; O'Donnell, R. A.; Dawson, P.; Missous, M.; Buckle, P. D.

    2015-10-01

    We report the observation of a thermally activated resonant tunnelling feature in the current-voltage characteristics (I(V)) of triple barrier resonant tunnelling structures (TBRTS) due to the alignment of the n = 1 confined states of the two quantum wells within the active region. With great renewed interest in tunnelling structures for high frequency (THz) operation, the understanding of device transport and charge accumulation as a function of temperature is critical. With rising sample temperature, the tunnelling current of the observed low voltage resonant feature increases in magnitude showing a small negative differential resistance region which is discernible even at 293 K and is unique to multiple barrier devices. This behaviour is not observed in conventional double barrier resonant tunnelling structures where the transmission coefficient at the Fermi energy is predominantly controlled by an electric field, whereas in TBRTS it is strongly controlled by the 2D to 2D state alignment.

  3. Ferroelectric Schottky barrier tunnel FET with gate-drain underlap: Proposal and investigation

    NASA Astrophysics Data System (ADS)

    Kale, Sumit; Kondekar, P. N.

    2016-01-01

    In this paper, for the first time, a novel ferroelectric schottky barrier tunnel FET (Fe SB-TFET) is proposed and investigated. The Fe SB-TFET consists of ferroelectric gate stack with highly doped pocket at the source/drain and channel interface. In addition, for the suppression of ambipolar leakage current (IAMB), gate-drain underlap is employed. By using ferroelectric gate stack, we effectively amplified the applied gate voltage to enhance electric field for the reduction of tunneling barrier width at the source side schottky barrier. As a result, the increased tunneling probability improves the device performance in terms of high ION, high ION/IOFF ratio, reduced IAMB and low subthreshold swing (SS) as compared to the conventional SB-TFET having double pocket. We also investigate the influence of highly doped pocket (HDP) doping concentration and length on the device performance.

  4. Channeling chaos by building barriers.

    PubMed

    Chandre, C; Ciraolo, G; Doveil, F; Lima, R; Macor, A; Vittot, M

    2005-02-25

    Chaotic diffusion often represents a severe obstacle for the setup of experiments, e.g., in fusion plasmas or particle accelerators. We present a complete test of a method of control of Hamiltonian chaos, with both its numerical test and its first experimental realization on a paradigm for wave-particle interaction, i.e., a travelling wave tube. The core of our approach is a small apt modification of the system which channels chaos by building barriers to diffusion. Its experimental realization opens the possibility to practically achieve the control of a wide range of systems at a low additional cost of energy. PMID:15783819

  5. Tunneling without barriers with gravity

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi; Sasaki, Misao; Soda, Jiro

    2012-04-01

    We consider the vacuum decay of the flat Minkowski space to an anti-de Sitter space. We find a one-parameter family of potentials that allow exact, analytical instanton solutions describing tunneling without barriers in the presence of gravity. In the absence of gravity, such instantons were found by Linde and rediscovered and discussed by Lee and Weinberg more than a quarter of a century ago. The bounce action is also analytically computed. We discuss possible implications of these new instantons to cosmology in the context of the string theory landscape.

  6. Translocation frequency of double-stranded DNA through a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Bell, Nicholas A. W.; Muthukumar, Murugappan; Keyser, Ulrich F.

    2016-02-01

    Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length-independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation, which includes the contribution of an entropic barrier for polymer entry.

  7. The double burden.

    PubMed

    Faurholt-Jepsen, Daniel

    2013-07-01

    One third of the world's population is latently infected with Mycobacterium tuberculosis, and with the lifestyle changes succeeding the on-going urbanization, populations already burdened by tuberculosis are experiencing a dramatic increase in chronic diseases, with diabetes being a serious challenge. Tuberculosis and diabetes are not only becoming co-existing diseases. In fact, the diseases interact, and there is evidence to suggest that especially diabetes disease increases the susceptibility for developing active tuberculosis disease. Furthermore, it is plausible that tuberculosis leads to, either transient or permanent, impairment of the glucose metabolism, which ultimately will turn into diabetes. A number of studies from the Americas, Europe, Asia, and, most lately, from sub-Saharan Africa have reported strong association between tuberculosis and diabetes; on average, the estimated risk of active tuberculosis is thrice as high among people with diabetes. The study from sub-Saharan Africa was conducted in Tanzania and is the basis of this thesis. Based on available evidence on the association between tuberculosis and diabetes, the primary aim of the study was to assess the role of diabetes for tuberculosis risk, manifestations, treatment outcomes and survival in a Tanzanian population of tuberculosis patients and non-tuberculosis neighbourhood controls. The study was conducted in Mwanza City in northern Tanzania, with a population exceeding half a million inhabitants, with tuberculosis and HIV being common infections in the region, but with little knowledge about the prevalence of diabetes. We recruited newly diagnosed pulmonary tuberculosis patients from spring 2006 and continuously till the fall 2009, with all participating in a nutritional intervention running in parallel with the medical tuberculosis treatment. All participants underwent diabetes and HIV testing as well as a series of measurements such as anthropometric, clinical and paraclinical parameters. The population was followed up during treatment (2 and 5 months) to assess treatment outcome as well as after one year to assess their survival status. Based on data from 1,250 tuberculosis patients and 350 neighbourhood controls, we found that 38 and 21%, respectively, had impaired glycaemia, and that the prevalence of diabetes was 17 and 9% among tuberculosis patients and controls, respectively. This difference in prevalence between patients and controls was equivalent to an adjusted odds ratio of more than four, indicating a strong association between tuberculosis and diabetes. Furthermore, we found that diabetes was associated with tuberculosis among both participants with or without HIV co-infection. Despite the strong association, diabetes had only moderate clinical implications when the tuberculosis patients initiated the tuberculosis treatment; the patients with diabetes co-morbidity had a minor elevation in the immune response and more frequently reported to have fever. Furthermore, diabetes did not seem to delay time to sputum conversion during treatment. Nevertheless, diabetes co-morbidity led to impaired treatment outcome with slower recovery of weight and haemoglobin and a more than four times higher mortality rate within the initial phase of tuberculosis treatment. In conclusion, in the African region, the double burden of tuberculosis and diabetes is becoming a major health problem. Although the tuberculosis incidence has stabilized during the last decade, the increasing incidence of diabetes will possibly interfere with tuberculosis control and may, consequently, make the tuberculosis incidence increase again. Future research strategies should focus on enhanced diagnostic tools to identify tuberculosis patients with diabetes co-morbidity, and on the role of disease-disease, drug-disease and drug-drug interactions between tuberculosis and diabetes diseases and treatments. PMID:23809978

  8. Monitoring of Zero-Valent Iron Permeable Reactive Barriers: Electrical Properties and Barrier Aging

    NASA Astrophysics Data System (ADS)

    Labrecque, D. J.; Adkins, P. L.; Slater, L. D.; Versteeg, R.; Sharpe, R.

    2007-12-01

    An innovative method of groundwater remediation invented in the 1990"s, Permeable Reactive Barriers, use sand-sized grains of scrap iron placed in trenches or injected under pressure to remediate a number of organic and inorganic contaminants. Monitoring the aging of these barriers becomes increasingly important as many of these barriers approach their predicted life spans. In-situ resistivity and induced polarization studies have been conducted at six barriers at four different sites: Monticello, Utah; the Denver Federal Center; Kansas City, Missouri; and East Helena, Montana. As some barriers tend to age dramatically faster than others, for this study we consider low permeability barriers as of greater age, as "old" barriers tend to loose permeability rather than exhaust reactive materials. One complicating factor is that two of the barriers studied appear to have issues related to installation. One site, the former Asarco Smelter Site near East Helena, Montana, has been instrumented with an autonomous monitoring system allowing continuous monitoring of the evolution of a relatively new (less than three years old) barrier. The barrier showed surprisingly rapid evolution over the first year of monitoring with changes in both resistivity and chargeability of tens of percent per month. In general, the electrical properties of all of the barriers studied follow a pattern. New barriers are fairly resistive with in-situ conductivity only a few times background (outside the barrier) values. Older barriers get increasingly conductive, with failed barriers showing values of over 100 S/m. The induced polarization response is more complicated. Chargeability values increase over time for young barriers, are largest for healthy barriers in the middle of their lifespan, and decrease as the barrier ages.

  9. Saving the Barrier by Prevention.

    PubMed

    Weisshaar, Elke

    2016-01-01

    One third of all occupation-related diseases are diseases of the skin, and in most of these cases the skin barrier is involved. Professions such as metalworkers, hairdressers, and health care and construction workers are mainly affected. Among them, contact dermatitis is the leading skin disease. It usually presents as hand eczema caused by or leading to impaired barrier function. All this significantly impacts the function of the hands, reduces the ability to work and especially impairs the patient's quality of life. Diagnostics and therapy are of great importance; in addition, prevention programs are meanwhile an important mainstay of the overall therapeutic concept. They comprise measures of secondary (outpatient) and tertiary (inpatient) prevention. Secondary prevention measures include occupation-tailored teaching and prevention programs, and the dermatologist's examination and report. In severe cases or if therapy is not successful in the long term, or if the diagnosis is not clear, measures of tertiary prevention may come into action. They are offered as an inpatient treatment and prevention program. The aims are prevention of the job loss, but especially to reach a long-term healing up and getting back to normal occupational and leisure life in the sense of attaining full quality of life. During the last years, research in Germany has shown that the different measures of prevention in occupational dermatology are very effective. This integrated concept of an in-/outpatient disease management reveals remarkable pertinent efficacy for patients with severe occupational dermatoses in at-risk professions. PMID:26844907

  10. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia. PMID:26407972

  11. Barriers to Medical Error Reporting

    PubMed Central

    Poorolajal, Jalal; Rezaie, Shirin; Aghighi, Negar

    2015-01-01

    Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan, Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%), lack of proper reporting form (51.8%), lack of peer supporting a person who has committed an error (56.0%), and lack of personal attention to the importance of medical errors (62.9%). The rate of committing medical errors was higher in men (71.4%), age of 5040 years (67.6%), less-experienced personnel (58.7%), educational level of MSc (87.5%), and staff of radiology department (88.9%). Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement. PMID:26605018

  12. Richards Barrier LA Reference Design Feature Evaluation

    SciTech Connect

    N.E. Kramer

    1999-11-17

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and dusting potential. (6) Evaluate drift conditions and configurations to determine the suitability of Richards Barrier installation methodology. (7) Perform cost assessment of barrier material placement. (8) Evaluate the feature with criteria that will be supplied by the License Application Design Selection (LADS) Team. (9) Comment on the use of depleted uranium as a Richards Barrier material.

  13. Double graphene-layer structures for adaptive devices

    NASA Astrophysics Data System (ADS)

    Mitin, V.; Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Shur, M. S.

    2014-06-01

    Among different carbon materials (diamond, graphite, fullerene, carbon nanotubes), graphene and more complex graphene-based structures attracted a considerable attention. The gapless energy spectrum of graphene implies that graphene can absorb and emit photons with rather low energies corresponding to terahertz (THz) and infrared (IR) ranges of the electromagnetic spectrum. In this presentation, the discussion is focused on the double-graphene-layer (double-GL) structures. In these structures, GLs are separated by a barrier layer (Boron Nitride, Silicon Carbide, and so on). Applying voltage between GLs, one can realize the situation when one GL is filled with electrons while the other is filled with holes. The variation of the applied voltage leads to the variations of the Fermi energies and, hence, to the change of the interband and intraband absorption of electromagnetic radiation and to the variation of the tunneling current. The plasma oscillations in double-GL structures exhibit interesting features. This is mainly because each GL serves as the gate for the other GL. The spectrum of the plasma oscillations in the double-GL structures falls into the terahertz range (THz) of frequencies and can be effectively controlled by the bias voltage. In this paper, we discuss the effects of the excitation of the plasma oscillations by incoming THz radiation and by optical radiation of two lasers with close frequencies as well as negative differential conductivity of the N-type and Z-type. These effects can be used in resonant THz detectors and THz photomixers. The models of devices based on double-GL structures as well as their characteristics are discussed.

  14. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ? 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ? 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ? 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  15. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  16. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Di Pietro, A.; Amorini, F.; Figuera, P.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Papa, M.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.; Vidal, A. Maira; Fraile, L. M.; Jeppesen, H.; Voulot, D.; Wenander, F.; Gomez-Camacho, J.; Milin, M.; Raabe, R.; Zadro, M.

    2011-10-01

    In this contribution, results of experiments performed with the three Beryllium isotopes 9,10,11Be on a medium mass 64Zn target, at a center of mass energy of ?1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the 9,10Be reactions. In the 11Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the 11Be case could be attributed to transfer and/or break-up events.

  17. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  18. Tunneling in one-dimensional ideal barriers

    NASA Astrophysics Data System (ADS)

    Kowalski, Jacek M.; Fry, John L.

    1987-10-01

    General properties of the transmission coefficient of an ideal, one-dimensional potential barrier of arbitrary shape are studied. It is proved that an arbitrary symmetric barrier is perfectly transparent for at least one energy in each energy band of the related band problem, where the barrier potential is periodically continued on the whole real axis. Recursion relations are obtained for transmission coefficients of barriers consisting of 2k structural units. They are used in a simple proof showing that transmission coefficients of finite barriers composed of m identical arbitrary structural units have chaotic behavior for almost all energies for m?? in each energy band. There exists, however, becoming more dense with m, a countable set of energies in each energy band where finite repeated barriers are perfectly transparent. The results are illustrated by a numerical example.

  19. Advancements in subsurface barrier wall technology

    SciTech Connect

    Mutch, R.D. Jr.; Ash, R.E. IV; Cavalli, N.J.

    1994-12-31

    Subsurface barrier walls are enjoying a resurgence in popularity as components of site remediation systems largely for two reasons. First, treatment technologies have shown themselves to be incapable of fully managing a large proportion of waste disposal sites, especially large landfills, DNAPL sites, and large industrial plant sites, thus underscoring the importance of site-wide containment technologies such as subsurface barrier walls. The second factor is a parallel advancement in the technologies of barrier wall construction. Advancements, include a variety of geomembrane-based barrier walls, jet grouting techniques, deep soil mixing, and the ability to construct deep barrier walls (greater than 150 feet deep) using interlocking plastic concrete panels. These advancements have led to barrier walls which are not only more impervious, more resistant to chemical attack, and capable of achieving greater depths, but in many cases are less costly than earlier technologies.

  20. Influence of breakup on fusion barrier distributions

    NASA Astrophysics Data System (ADS)

    Patel, D.; Nayak, B. K.; Mukherjee, S.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Gupta, Y. K.; Mukhopadhyay, S.; Prajapati, G.; Danu, L. S.; Rath, P. K.; Desai, V.; Deshmukh, N.; Saxena, A.

    2013-04-01

    Fusion barrier distributions have been extracted from the quasi-elastic scattering excitation functions, measured at backward angle ?lab = 160 in reactions of 6,7Li+209Bi. The present results have been compared with the barrier distributions obtained from the fusion excitation function measurements for the above mentioned systems. The fusion barrier distributions from the quasi-elastic scattering excitation functions have been analyzed with simplified Coupled Channels calculations using Fresco. Inclusions of resonant states for both 6,7Li projectiles improve the predictions to describe the measured quasi-elastic scattering excitation functions and barrier distributions. For both the reactions peak positions of fusion barrier distributions are shifted towards a lower energy side in comparison to that obtained from the fusion excitation function measurements. The observed discrepancy in peak positions of barrier distributions obtained from quasi-elastic scattering and fusion excitation function measurements has been discussed in terms of total reaction threshold distribution.

  1. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  2. High PAE high reliability AlN/GaN double heterostructure

    NASA Astrophysics Data System (ADS)

    Medjdoub, F.; Zegaoui, M.; Linge, A.; Grimbert, B.; Silvestri, R.; Meneghini, M.; Meneghesso, G.; Zanoni, E.

    2015-11-01

    We report on AlN/GaN double heterostructures for high frequency applications. 600 h preliminary reliability assessment has been performed on these emerging RF devices, showing promising millimeter-wave 100 nm gate length GaN-on-Si device stability for the first time. A 150 nm AlN/GaN double heterostructure has been developed and evaluated on SiC substrate. State-of-the-art CW power-added-efficiencies (PAE) up to 40 GHz have been achieved on ultrathin barrier (6 nm) GaN devices while operating at a drain bias exceeding 30 V.

  3. Identification of Key Barriers in Workforce Development

    SciTech Connect

    2008-03-31

    This report documents the identification of key barriers in the development of an adequate national security workforce as part of the National Security Preparedness Project, being performed under a Department of Energy/National Nuclear Security Administration grant. Many barriers exist that prevent the development of an adequate number of propertly trained national security personnel. Some barriers can be eliminated in a short-term manner, whereas others will involve a long-term strategy that takes into account public policy.

  4. WKB approximation for multichannel barrier penetrability

    SciTech Connect

    Hagino, K.; Balantekin, A.B.

    2004-09-01

    Using the method of the local transmission matrix, we generalize the well-known WKB formula for barrier penetrability to multichannel systems. We compare the WKB penetrability with a solution of the coupled-channels equations, and show that the WKB formula works well at energies well below the lowest adiabatic barrier. We also discuss the eigenchannel approach to a multichannel tunneling, which may improve the performance of the WKB formula near and above the barrier.

  5. Barrier paradox in the Klein zone

    SciTech Connect

    De Leo, Stefano; Rotelli, Pietro P.

    2006-04-15

    We study the solutions for a one-dimensional electrostatic potential in the Dirac equation when the incoming wave packet exhibits the Klein paradox (pair production). With a barrier potential we demonstrate the existence of multiple reflections (and transmissions). The antiparticle solutions which are necessarily localized within the barrier region create new pairs with each reflection at the potential walls. Consequently we encounter a new 'paradox' for the barrier because successive outgoing wave amplitudes grow geometrically.

  6. Bubble pressure barrier and electrode composite

    SciTech Connect

    Karas, B.R.; Baumgartner, Ch.E.

    1985-02-19

    Utilizing an organometallic precursor, a metal oxide is formed within the pores of a porous sintered blank substantially uniformly throughout the porosity of the blank producing a porous bubble pressure barrier of predetermined pore size. The barrier is integrally sintered to a face of an electrode, the median pore size of the barrier being significantly smaller than that of the electrode, producing a composite useful as an electrode in a molten carbonate fuel cell. The blank and the electrode are composed of metal.

  7. Bubble pressure barrier and electrode composite

    SciTech Connect

    Koras, B. R.; Baumgartner, C. E.

    1985-03-26

    Utilizing an organometallic precursor, a metal oxide is formed within the pores of a porous sintered blank substantially uniformly throughout the porosity of the blank producing a porous bubble pressure barrier of predetermined pore size. The barrier is integrally sintered to a face of an electrode, the median pore size of the barrier being significantly smaller than that of the electrode, producing a composite useful as an electrode in a molten carbonate fuel cell. The blank and the electrode are composed of metal.

  8. Double copper sheath multiconductor instrumentation cable is durable and easily installed in high thermal or nuclear radiation area

    NASA Technical Reports Server (NTRS)

    Mc Crae, A. W., Jr.

    1967-01-01

    Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.

  9. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.

    PubMed

    Rydberg, Patrik; Lonsdale, Richard; Harvey, Jeremy N; Mulholland, Adrian J; Olsen, Lars

    2014-07-01

    Prediction of epoxide formation in drug metabolism is a difficult but important task, as epoxide formation is linked to drug toxicity. A comparison of the energy barriers for cytochrome P450 mediated epoxidation of alkenes to the barriers for the hydroxylation of an aliphatic carbon atom next to a double bond has been performed using B3LYP and B3LYP-D3. Relevant experimental data on oxidation selectivity has also been assessed. The results show that density functional theory, when using B3LYP-D3, does well in reproducing the experimental trends. Considering that the comparison involves chemical steps with quite different features this is remarkable. We also find that B3LYP consistently underestimates the hydrogen abstraction barriers relative to the epoxidation barriers, and that including a dispersion correction reduces this problem. PMID:25000094

  10. Anti-spacer double patterning

    NASA Astrophysics Data System (ADS)

    Hyatt, Michael; Huang, Karen; DeVilliers, Anton; Slezak, Mark; Liu, Zhi

    2014-03-01

    With extreme UV not ready for HVM for the 20nm and 14nm nodes, double patterning options that extend the use of 193nm immersion lithography beyond the optical resolution limits, such as LELE (Litho-Etch-Litho-Etch) and SADP (Self Aligned Double Patterning), are being used for critical layers for these nodes. LELE requires very stringent overlay capability of the optical exposure tool. The spacer scheme of SADP starts with a conformal film of material around the mandrels and etched along the mandrel sidewalls to form patterns with doubled frequency. SADP, while having the advantage of being a self-aligned process, adds a number of process steps and strict control of the mandrel profile is required. In this paper, we will demonstrate a novel technique - ASDP (Anti-Spacer Double Patterning), which uses only spin-on materials to achieve self-aligned double patterning. After initial resist patterning, an Anti-Spacer Generator (ASG) material is coated on the resist pattern to create the developable spacer region. Another layer of material is then coated and processed to generate the second pattern in between the first resist pattern. We were able to define 37.5nm half pitch pattern features using this technique as well as sub-resolution features for an asymmetric pattern. In this paper we will review the capability of the process in terms of CD control and LWR (line width roughness) and discuss the limitations of the process.

  11. Graphene oxide and laponite composite films with high oxygen-barrier properties

    NASA Astrophysics Data System (ADS)

    Yoo, Jongtae; Lee, Sang Bong; Lee, Chang Kee; Hwang, Sung Wook; Kim, Chaerin; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Shim, Jin Kie

    2014-08-01

    The design and fabrication of oxygen barrier films is important for both fundamental and industrial applications. We prepared three different thin films composed of graphene oxide (GO) and laponite (LN), a typical low cost inorganic clay, with the GO/LN volume ratios of 1.9/0.1, 1.7/0.3 and 1.5/0.5 together with a double layer film of the GO and LN. We found that the films with GO/LN = 1.9/0.1 and the double layers exhibited high oxygen barrier and oxygen transmission rate values that reached 0.55 and 0.37 cm3 per m2 per atm per day, respectively, which were much lower than those of the films prepared from the pure GO, only LN and GO/LN = 1.7/0.3 and 1.5/0.5. This study is important for the design and fabrication of a film from GO-based all inorganic nanomaterials for applications in gas-barrier membranes.The design and fabrication of oxygen barrier films is important for both fundamental and industrial applications. We prepared three different thin films composed of graphene oxide (GO) and laponite (LN), a typical low cost inorganic clay, with the GO/LN volume ratios of 1.9/0.1, 1.7/0.3 and 1.5/0.5 together with a double layer film of the GO and LN. We found that the films with GO/LN = 1.9/0.1 and the double layers exhibited high oxygen barrier and oxygen transmission rate values that reached 0.55 and 0.37 cm3 per m2 per atm per day, respectively, which were much lower than those of the films prepared from the pure GO, only LN and GO/LN = 1.7/0.3 and 1.5/0.5. This study is important for the design and fabrication of a film from GO-based all inorganic nanomaterials for applications in gas-barrier membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03429e

  12. On numerical modeling of capillary barriers

    SciTech Connect

    Oldenburg, C.M.; Pruess, K.

    1993-04-01

    Because of their ability to protect underground regions from wetting by downward infiltration, capillary barriers have been objects of considerable interest. A capillary barrier consists of a layer of fine soil overlying a layer of coarse soil. In unsaturated conditions, infiltrating water may be held in the fine medium by capillary force and resist moving into the coarse layer. If the contact is tilted, infiltrating water in the fine layer will build up and flow downdip along the contact, a process known as capillary diversion. Capillary barriers occur naturally or can be created artifically. Recently progress has been made in the theoretical, laboratory, and field study of capillary barriers. Because of the potential significance of capillary barriers on important questions of hazardous waste isolation, and in light of intriguing results of laboratory and field experiments of capillary barriers as well as the simple theoretical results, numerical experiments are presented of an idealized field-scale capillary barrier system with the objective of further understanding the behavior of capillary barriers. An additional objective is the evaluation of the accuracy with which numerical methods can be expected to model the full complement of complicated flow processes associated with the potential high-level nuclear waste repository at Yucca Mountain. To this end, different mobility weighting schemes and grid orientation effects in the flow in the model capillary barrier system are investigated.

  13. Tandem mirror thermal barrier experimental program plan

    SciTech Connect

    Coensgen, F.H.; Drake, R.P.; Simonen, T.C.

    1980-01-02

    This report describes an experimental plan for the development of the Tandem Mirror Thermal Barrier. Included is: (1) a description of thermal barrier related physics experiments; (2) thermal barrier related experiments in the existing TMX and Phaedrus experiments; (3) a thermal barrier TMX upgrade; and (4) initiation of investigations of axisymmetric magnetic geometry. Experimental studies of the first two items are presently underway. Results are expected from the TMX upgrade by the close of 1981 and from axisymmetric tandem mirror experiments at the end of 1983. Plans for Phaedrus upgrades are developing for the same period.

  14. Carrier transport in unipolar barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Hglund, Linda; Hill, Cory J.; Khoshakhlagh, Arezou; Keo, Sam A.; Fisher, Anita M.; Luong, Edward M.; Liu, John K.; Mumolo, Jason M.; Rafol, B., , Sir; Gunapala, Sarath D.

    2015-06-01

    We examine carrier transport in unipolar barrier infrared photodetectors and discuss aspects of barrier, contact, and absorber properties that can affect minority carrier collection. In a barrier infrared detector the unipolar barrier should block only the majority carriers while allowing the un-impeded flow of the minority carriers. Under the right conditions, unipolar barrier doping can reduce generation-recombination dark current without affecting minority carrier extraction. In an nBn structure, ideally with an electron unipolar barrier, improper barrier doping or barrier-absorber valence band offset could also block minority carriers and result in higher turn-on bias. We also examined the temperature-dependent turn-on bias in an n+Bn device and showed that observed behavior may be attributed to contact doping. Hole mobility in n-doped type-II superlattice (T2SL) is believed to be very low because of the extremely large effective mass along the growth direction. In practice MWIR and LWIR barrier infrared detectors with n-type T2SL absorbers have demonstrated good optical response. A closer inspection of the T2SL band structure offers a possible explanation as to why the hole mobility may not be as poor as suggested by the simple effective mass picture.

  15. Access to the US Department of Veterans Affairs health system: self-reported barriers to care among returnees of Operations Enduring Freedom and Iraqi Freedom

    PubMed Central

    2013-01-01

    Background The U.S. Department of Veterans Affairs (VA) implemented the Polytrauma System of Care to meet the health care needs of military and veterans with multiple injuries returning from combat operations in Afghanistan and Iraq. Studies are needed to systematically assess barriers to use of comprehensive and exclusive VA healthcare services from the perspective of veterans with polytrauma and with other complex health outcomes following their service in Afghanistan and Iraq. These perspectives can inform policy with regard to the optimal delivery of care to returning veterans. Methods We studied combat veterans (n?=?359) from two polytrauma rehabilitation centers using structured clinical interviews and qualitative open-ended questions, augmented with data collected from electronic health records. Our outcomes included several measures of exclusive utilization of VA care with our primary exposure as reported access barriers to care. Results Nearly two thirds of the veterans reported one or more barriers to their exclusive use of VA healthcare services. These barriers predicted differences in exclusive use of VA healthcare services. Experiencing any barriers doubled the returnees odds of not using VA exclusively, the geographic distance to VA barrier resulted in a 7 fold increase in the returnees odds of not using VA, and reporting a wait time barrier doubled the returnees odds of not using VA. There were no striking differences in access barriers for veterans with polytrauma compared to other returning veterans, suggesting the barriers may be uniform barriers that predict differences in using the VA exclusively for health care. Conclusions This study provides an initial description of utilization of VA polytrauma rehabilitation and other medical care for veteran returnees from all military services who were involved in combat operations in Afghanistan or Iraq. Our findings indicate that these veterans reported important stigmatization and barriers to receiving services exclusively from the VA, including mutable health delivery system factors. PMID:24289747

  16. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness

    NASA Astrophysics Data System (ADS)

    Sood, A.; Salih, S.; Roh, D.; Lacharme-Lora, L.; Parry, M.; Hardiman, B.; Keehan, R.; Grummer, R.; Winterhager, E.; Gokhale, P. J.; Andrews, P. W.; Abbott, C.; Forbes, K.; Westwood, M.; Aplin, J. D.; Ingham, E.; Papageorgiou, I.; Berry, M.; Liu, J.; Dick, A. D.; Garland, R. J.; Williams, N.; Singh, R.; Simon, A. K.; Lewis, M.; Ham, J.; Roger, L.; Baird, D. M.; Crompton, L. A.; Caldwell, M. A.; Swalwell, H.; Birch-Machin, M.; Lopez-Castejon, G.; Randall, A.; Lin, H.; Suleiman, M.-S.; Evans, W. H.; Newson, R.; Case, C. P.

    2011-12-01

    The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.

  17. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  18. Biophysics: Breaking the Nanometer Barrier

    SciTech Connect

    Professor Steven Block

    2006-03-20

    A new field of scientific exploration single molecule biophysics is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or optical tweezers, has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his groups construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained in DNA, Blocks group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!

  19. A Polymer Membrane Containing Fe0 as a Contaminant Barrier

    SciTech Connect

    Shimotori, Tsutomu; Nuxoll, Eric E.; Cussler, Edward L.; Arnold, William A.

    2003-11-03

    A polyvinyl alcohol (PVA) membrane containing iron (Fe0) particles was developed and tested as a model barrier for contaminant containment. Carbon tetrachloride, copper (Cu2+), nitrobenzene, 4-nitroacetophenone, and chromate (CrO4 2-) were selected as model contaminants. Compared with a pure PVA membrane, the Fe0/PVA membrane can increase the breakthrough lag time for Cu2+ and carbon tetrachloride by more than 100 fold. The increase in the lag time was smaller for nitrobenzene and 4-nitroacetophenone which stoichiometrically require more iron and for which the PVA membrane has a higher permeability. The effect of Fe0 was even smaller for CrO4 2- because of its slow reaction. Forty-five percent of the iron, based on the content in the dry membrane prior to hydration, was consumed by reaction with Cu2+ and 19% by reaction with carbon tetrachloride. Similarly, 25%, 17%, and 6% of the iron was consumed by nitrobenzene, 4-nitroacetophenone, and CrO4 2-, respectively. These percentages approximately double when the loss of iron during membrane hydration is considered. The permeability of the Fe0/PVA membrane after breakthrough was within a factor of three for that of pure PVA, consistent with theory. These results suggest that polymer membranes with embedded Fe0 have potential as practical contaminant barriers.

  20. Double photoionization of C2+

    NASA Astrophysics Data System (ADS)

    Abdel-Naby, Shahin A.; Pindzola, Michael S.; Colgan, James

    2014-10-01

    The time-dependent close-coupling method is used to study the single photon double ionization of C2+ in support of possible experiments at FLASH/DESY using an EBIT. Energy and angle differential cross sections are calculated to fully investigate the correlated motion of the two photoelectrons. Single energy differential as well as total cross sections are calculated for different incident photon energies in the range of 125-225 eV. Good agreement is found between our results and available R-matrix results for the double ionization of C2+. The study is also extended to the double photoionization along the Be-like isoelectronic sequence (Be-F5+), where good agreement is found when compared with available theoretical calculations and experimental measurements.

  1. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  2. Double patterning compliant logic design

    NASA Astrophysics Data System (ADS)

    Ma, Yuangsheng; Sweis, Jason; Bencher, Chris; Deng, Yunfei; Dai, Huixiong; Yoshida, Hidekazu; Gisuthan, Bimal; Kye, Jongwook; Levinson, Harry J.

    2011-04-01

    Double patterning technology (DPT) is the only solution to enable the scaling for advanced technology nodes before EUV or any other advanced patterning techniques become available. In general, there are two major double patterning techniques: one is Litho-Etch-Litho-Etch (LELE), and the other is sidewall spacer technology, a Self-Aligned Double Patterning technique (SADP). While numerous papers have previously demonstrated these techniques on wafer process capabilities and processing costs, more study needs to be done in the context of standard cell design flow to enable their applications in mass production. In this paper, we will present the impact of DPT on logic designs, and give a thorough discussion on how to make DPT-compliant constructs, placement and routing using examples with Cadence's Encounter Digital Implementation System (EDI System).

  3. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  4. New double soft emission theorems

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-09-01

    We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, nonlinear sigma model and Yang-Mills-Scalar. We use the recently found Cachazo-He-Yuan representation of these theories in order to give a simple proof of the leading order part of all these theorems.

  5. Linear and nonlinear optical properties in asymmetric double semi-V-shaped quantum well

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-10-01

    In this present work, the effects of the structure parameters such as the right-well width and the right-barrier height on the linear, third-order nonlinear and total absorption and refractive index changes of asymmetric double semi-V-shaped quantum well are theoretically studied by using the compact-density matrix approach and iterative method. The electronic structure of this system is obtained by solving Schrödinger equation within the framework of effective mass approximation. Numerical results are presented for a typical GaAs /Alx Ga1-x As asymmetric double semi-V-shaped quantum well. The obtained results show that the right-well width and the right-barrier height have great effects on the optical characteristics of these structures.

  6. Electrical double layer effects on ion transfer reactions.

    PubMed

    Lin, Chuhong; Laborda, Eduardo; Batchelor-McAuley, Christopher; Compton, Richard G

    2016-04-14

    The potential dependence of the thermodynamics and kinetics of ion transfer reactions as influenced by the electrical double layer are studied via two-dimensional free energy surfaces calculated with an extension of the Anderson-Newns Hamiltonian. The Gibbs energy difference between the reduced and oxidized states, the activation barrier and the resulting current-potential curves are investigated as a function of the potential of zero charge and the Debye length, which are applied to characterize the external electric field. It is found that the current-potential curves of different redox systems are distinctly affected by the electrical double layer depending on the charges of the solution-phase and adsorbed species. For the redox couples sensitive to double layer effects, it is shown that the external electric field can cause a decrease in the driving force for the ion transfer process, which leads to the reversible peak current deviating significantly from the ideal, Nernstian predictions and the effective transfer coefficient being less than 1 even though the ion transfer is kinetically fully reversible. PMID:27001630

  7. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  8. STI2679 - Fr. Stein's Neglected Double-Double

    NASA Astrophysics Data System (ADS)

    Smith, Frank

    2010-01-01

    I report the measurement of neglected double STI2679 and two new companion stars "C" and "D". The CCD data images were taken with a 20in f/16.8 Ritchey-Chretien reflector. The observing run was conducted at the National Optical Observatory at Kitt Peak Visitor's Center Advanced Observer Program. Information about instrumentation, methodology, results and notes is included.

  9. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability barrier likely changed the character of volcanism on Mars, maybe preventing the formation of new localized volcanic edifices in the Amazonian.

  10. Attosecond Double-Slit Experiment

    SciTech Connect

    Lindner, F.; Schaetzel, M.G.; Baltuska, A.; Goulielmakis, E.; Walther, H.; Krausz, F.; Milosevic, D.B.; Bauer, D.; Becker, W.; Paulus, G.G.

    2005-07-22

    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.

  11. Topics in Double Field Theory

    NASA Astrophysics Data System (ADS)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  12. Double-branched vortex generator

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Westphal, R. V.; Mehta, R. D.

    1985-01-01

    In order to assess the suitability of using a double branched vortex generator in parametric studies involving vortex interactions, an experimental study of the main vortex and secondary flows produced by a double branched vortex generator was conducted in a 20-by-40 cm indraft wind tunnel. Measurements of the cross flow velocities were made with a five hole pressure probe from which vorticity contours and vortex parameters were derived. The results showed that the optimum configuration consisted of chord extensions with the absence of a centerbody.

  13. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  14. Current driven weak double layers

    NASA Technical Reports Server (NTRS)

    Chanteur, Gerard

    1987-01-01

    Double layers in plasmas can be created by different means. For example, a potential difference forms between two plasmas with different temperatures, in a plasma jet flowing along a converging magnetic field, in a quiescent plasma submitted to an external difference of potential, or in a turbulent plasma carrying an electric charge. The first three cases can be current-free, but not necessarily, although the numerical simulations were made under such conditions for the first two points. Apart from the third case, which is mainly of interest for laboratory experiments, these double layers are good candidates for accelerating the auroral electrons to the few kiloelectron volts observed.

  15. Orientation dependent behavior of the Coulomb barrier parameters for deformed-deformed nuclei

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Adel, A.

    2011-06-01

    The Coulomb barrier parameters (radius, R, and height, V) for the interaction between two deformed nuclei are calculated in phenomenological way in the framework of the double folding model with the realistic M3Y nucleon-nucleon ( NN) interaction. The variations of R and V for the reactions Ar48+Pu238, Mg26+Cm248, Mg26+U238, and Ne22+U238 in the orientation degrees of freedom are investigated. It is found that the distribution of the Coulomb barrier parameters in the orientation degrees of freedom shows almost the same patterns as the sum of the nuclear radii of the interacting nuclei along the direction of the separation vector joining their two centers of mass. The orientation Coulomb barrier radius distribution follows the same variations as the sum of radii while the barrier height distribution follows it inversely. This correlation (anticorrelation) between R ( V) and the nuclear radii of the deformed nuclei dose not give the values of R and V. This suggests a simple and straightforward way to predict the behavior of the barrier parameters with different orders of deformations without performing the heavy numerical calculations necessary when the two nuclei are being deformed. It also allows us to estimate, with reasonable accuracy, the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion reactions, respectively.

  16. DOTS in China - removing barriers or moving barriers?

    PubMed

    Xu, B; Dong, H J; Zhao, Q; Bogg, L

    2006-09-01

    In 1992, China initiated its modern National TB Control Programme (NTP) with DOTS strategy through a project funded by a World Bank loan. Key motives for the revised NTP-DOTS were to reduce financial barriers to patients by removing fee charges for diagnosis and treatment, and to address regressive suppliers' incentives for appropriate referrals. This study aims to assess to what extent China's NTP subsidies are achieving the objective of removing financial barriers to care in terms of patients' expenditure. One county with NTP-DOTS - Jianhu - and one county without - Funing - were selected. A cohort of 493 tuberculosis patients newly diagnosed in 2002 was interviewed by questionnaire. The main outcome measure was tuberculosis patients' expenditure on medical care and transportation/accommodation from the onset of symptoms to treatment completion. During the follow-up period, Funing started implementing NTP-DOTS, which offered a possibility of longitudinal comparison both between counties and within county. Ninety-four per cent (465/493) of subjects were followed-up. The mean total patient's expenditure on TB medical care and transportation/accommodation before TB diagnosis was higher in Jianhu than in Funing (715 vs. 256CNY), whereas it was higher in Funing (835 vs. 157CNY) after diagnosis. After implementing NTP-DOTS in Funing, expenditure after diagnosis decreased slightly whereas expenditure before diagnosis increased remarkably. We found that the market incentive structures in the reformed health system appear to have a stronger regressive effect and may result in prolonged delays before effective treatment can be given. We believe that doctors adapt to new incentive structures, with bonus income being linked to the hospitals' fee-for-service revenue, and find new ways of keeping revenue at the old levels, which reduce or eliminate the intended effect of the subsidies. TB patients suffer a heavy economic burden even in counties where NTP-DOTS treatment is subsidized. The total patient expenditure was reduced only marginally, but shifted substantially from after diagnosis to before diagnosis. The shift could imply delays in diagnosis and treatment with an increased risk of infection transmission. PMID:16940302

  17. Investigation of multi-color, broadband quantum well infrared photodetectors with digital graded superlattice barrier and linear-graded barrier for long wavelength infrared applications

    NASA Astrophysics Data System (ADS)

    Lee, J.-H.; Li, S. S.; Tidrow, M. Z.; Liu, W. K.

    2001-06-01

    We report four different InGaAs/AlGaAs multi-color, broadband (BB) quantum well infrared photodetectors (QWIPs) with digital graded superlattice barrier (DGSLB) and linear-graded barrier (LGB) for long wavelength infrared (LWIR) detection. The two DGSLB-QWIPs were grown using compositionally DGSLB structures with GaAs/Al 0.15Ga 0.85As material system to create a staircase-like band gap variation in the barrier region. A BB spectral response (7-16 ?m) was obtained under positive biases while a normal spectral response ( ?p=11 ?m) was obtained under negative biases in the BB-DGSLB-QWIP. A high sensitivity double barrier (DB)-DGSLB-QWIP with a thin undoped Al 0.15Ga 0.85As DB grown on both side of the quantum well has also been studied. A normal spectral response with peak wavelength at 12 ?m was obtained in this device under both positive and negative biases. In addition, two InGaAs/AlGaAs QWIPs using Al xGa 1-xAs LGB with and without AlGaAs DB layers have also been investigated. For the BB-LGB-QWIP, the BB spectral response was obtained under positive biases while the voltage-tunable multi-color detection with two peaks were obtained at negative biases. A very high responsivity was achieved in the DB-LGB-QWIP.

  18. Rocket Motor Joint Construction Including Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Dunlap, Patrick H., Jr. (Inventor)

    2002-01-01

    A thermal barrier for extremely high temperature applications consists of a carbon fiber core and one or more layers of braided carbon fibers surrounding the core. The thermal barrier is preferably a large diameter ring, having a relatively small cross-section. The thermal barrier is particularly suited for use as part of a joint structure in solid rocket motor casings to protect low temperature elements such as the primary and secondary elastomeric O-ring seals therein from high temperature gases of the rocket motor. The thermal barrier exhibits adequate porosity to allow pressure to reach the radially outward disposed O-ring seals allowing them to seat and perform the primary sealing function. The thermal barrier is disposed in a cavity or groove in the casing joint, between the hot propulsion gases interior of the rocket motor and primary and secondary O-ring seals. The characteristics of the thermal barrier may be enhanced in different applications by the inclusion of certain compounds in the casing joint, by the inclusion of RTV sealant or similar materials at the site of the thermal barrier, and/or by the incorporation of a metal core or plurality of metal braids within the carbon braid in the thermal barrier structure.

  19. Reusable Thermal Barrier for Insulation Gaps

    NASA Technical Reports Server (NTRS)

    Saladee, C. E.

    1985-01-01

    Filler composed of resilient, heat-resistant materials. Thermal barrier nestles snugly in gap between two tiles with minimal protrusion beyond faces of surrounding tiles. When removed from gap, barrier springs back to nearly original shape. Developed for filling spaces between tiles on Space Shuttle, also used in furnaces and kilns.

  20. Bridges and Barriers in Behavioral Consultation.

    ERIC Educational Resources Information Center

    Wilczynski, Susan M.; Mandal, Rebecca L.; Fusilier, Iantha

    2000-01-01

    Study identifies sources of support for consultation and barriers to this service delivery model. Analyzes responses to a consultation survey of 339 members of the National Association of School Psychologists. Results reveal that respondents feel qualified to provide consultation services. Major barriers to consultation include lack of time and

  1. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  2. Over the Barrier in Wave Mechanics.

    ERIC Educational Resources Information Center

    Burge, E. J.

    1984-01-01

    Discusses the transmission of incident energies at a one-dimensional square barrier when energies are greater than the barrier height and the region accommodates a whole number of half wavelengths of psi. Describes sketching the probability density curve, physical interpretation, and special cases. An appendix develops the mathematics in greater

  3. Barriers to entrepreneurship in healthcare organizations.

    PubMed

    Phillips, Frank S; Garman, Andrew N

    2006-01-01

    Entrepreneurship has received little attention in the healthcare industry, perhaps in part because of barriers inherent in the structure and culture of healthcare organizations. Eliminating barriers can help promote entrepreneurial activities to drive continuing innovation and identify new sources of revenue. PMID:16583847

  4. Barriers to Adult Learning: Bridging the Gap

    ERIC Educational Resources Information Center

    Falasca, Marina

    2011-01-01

    A fundamental aspect of adult education is engaging adults in becoming lifelong learners. More often than not, this requires removing barriers to learning, especially those relating to the actual organisational or institutional learning process. This article explores some of the main barriers to adult learning discussed in the literature and…

  5. Eliminating Barriers to Dual Enrollment in Oklahoma

    ERIC Educational Resources Information Center

    Roach, Rick; Gamez Vargas, Juanita; David, Kevin M.

    2015-01-01

    Policy, financial, and transportation barriers have limited participation in dual enrollment for marginalized (low-socioeconomic, first-generation, and ethnic minority) students in Oklahoma. This chapter presents a collaborative effort by education and community leaders that has successfully eliminated these barriers and increased the number of

  6. Eliminating Barriers to Dual Enrollment in Oklahoma

    ERIC Educational Resources Information Center

    Roach, Rick; Gamez Vargas, Juanita; David, Kevin M.

    2015-01-01

    Policy, financial, and transportation barriers have limited participation in dual enrollment for marginalized (low-socioeconomic, first-generation, and ethnic minority) students in Oklahoma. This chapter presents a collaborative effort by education and community leaders that has successfully eliminated these barriers and increased the number of…

  7. Barriers to Library Cooperation in Costa Rica.

    ERIC Educational Resources Information Center

    Torres, Ana C.; Swigger, Keith

    1986-01-01

    Barriers that hinder development of cooperative arrangements among libraries in Costa Rica are identified by studying librarians' perceptions of obstacles. A ranked list of barriers shows that the most important obstacles are related to administration and governance, absence of guidelines, poor public relations, and a limited number of

  8. Access in Action. Breaking down the Barriers.

    ERIC Educational Resources Information Center

    Cowperthwaite, Peter, Ed.; And Others

    This booklet, developed by the Southampton (England) Adult Education Panel, provides a demonstration of how the barriers to education and training that confront disadvantaged adults can be overcome. It identifies 16 barriers to access as follows: money; value dominance in race, gender, or social class; child care; physical disability; bureaucracy;

  9. Barriers to Accessing Services for Young Children

    ERIC Educational Resources Information Center

    Williams, Marian E.; Perrigo, Judith L.; Banda, Tanya Y.; Matic, Tamara; Goldfarb, Fran D.

    2013-01-01

    This study investigates barriers to accessing services for children under age 3 presenting with language delays and behavioral difficulties, including language barriers for Spanish-speaking families. Using a telephone script, researchers called 30 agencies in Los Angeles County, including regional centers (the state network of Part C agencies for

  10. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, George E.; Wemple, Robert P.

    1996-01-01

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.

  11. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, G.E.; Wemple, R.P.

    1996-10-22

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.

  12. Steeplechase Barriers Affect Women Less than Men

    PubMed Central

    Hunter, Iain; Bushnell, Tyler D.

    2006-01-01

    Women began contesting the 3000 m steeplechase during the 1990s using barriers of different dimensions than men. Whenever a new event is introduced for women, consideration should be taken as to whether different technique or training methods should be utilized. This study investigated three aspects of hurdling technique: 1) Differences in the ratio of the landing step to the penultimate step between men and women around each non-water jump steeplechase barrier, 2) differences in step lengths between the four non-water jump barriers, and 3) changes in the step lengths around the barrier throughout the race. The step lengths around the 28 non-water jump barriers of the top seven men and women at the 2003 USA Track and Field Championships were measured using a two-dimensional analysis. A t-test determined any differences between men and women for the ratio of the landing to penultimate steps. A 2x4 repeated measures ANOVA tested for differences between the four non-water jump barriers. Linear regression tested for changes in step lengths throughout the race. Men exhibited a smaller ratio between the lengths of the landing to penultimate steps than women (0.73 0.09 and 0.77 0.10 for men and women respectively, p = 0.002). No step length differences were observed between the four barriers in the step lengths around each barrier (p = 0.192 and p = 0.105 for men and women respectively). Athletes gradually increased the total length of all steps around the barriers throughout the race (R2 = 0.021, p = 0.048 and R2 = 0.137, p < 0.001 for men and women respectively). The smaller ratio between landing to penultimate steps shows that the barriers affect women less than men. There may be a need to train men and women differently for the non-water jump barriers in the steeplechase or slightly alter racing strategy. Key Points Non-water jump barriers disrupt the stride of men more than women. There is no difference between any of the four non-water jump barriers in the step lengths used around each barrier. Stride length gradually increases throughout a 3000m steeplechase race even if race pace is maintain. PMID:24260005

  13. Steeplechase barriers affect women less than men.

    PubMed

    Hunter, Iain; Bushnell, Tyler D

    2006-01-01

    Women began contesting the 3000 m steeplechase during the 1990's using barriers of different dimensions than men. Whenever a new event is introduced for women, consideration should be taken as to whether different technique or training methods should be utilized. This study investigated three aspects of hurdling technique: 1) Differences in the ratio of the landing step to the penultimate step between men and women around each non-water jump steeplechase barrier, 2) differences in step lengths between the four non-water jump barriers, and 3) changes in the step lengths around the barrier throughout the race. The step lengths around the 28 non-water jump barriers of the top seven men and women at the 2003 USA Track and Field Championships were measured using a two-dimensional analysis. A t-test determined any differences between men and women for the ratio of the landing to penultimate steps. A 2x4 repeated measures ANOVA tested for differences between the four non-water jump barriers. Linear regression tested for changes in step lengths throughout the race. Men exhibited a smaller ratio between the lengths of the landing to penultimate steps than women (0.73 0.09 and 0.77 0.10 for men and women respectively, p = 0.002). No step length differences were observed between the four barriers in the step lengths around each barrier (p = 0.192 and p = 0.105 for men and women respectively). Athletes gradually increased the total length of all steps around the barriers throughout the race (R(2) = 0.021, p = 0.048 and R(2) = 0.137, p < 0.001 for men and women respectively). The smaller ratio between landing to penultimate steps shows that the barriers affect women less than men. There may be a need to train men and women differently for the non-water jump barriers in the steeplechase or slightly alter racing strategy. Key PointsNon-water jump barriers disrupt the stride of men more than women.There is no difference between any of the four non-water jump barriers in the step lengths used around each barrier.Stride length gradually increases throughout a 3000m steeplechase race even if race pace is maintain. PMID:24260005

  14. Subterranean barriers including at least one weld

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  15. Multi-layer waste containment barrier

    SciTech Connect

    Smith, A.M.; Gardner, B.M.; Nickelson, D.F.

    1999-10-05

    An apparatus is described for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (1) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (2) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  16. Engineering kinetic barriers in copper metallization

    NASA Astrophysics Data System (ADS)

    Huang, Hanchen; Wei, H. L.; Woo, C. H.; Zhang, X. X.

    2002-12-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusiona direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality.

  17. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie (Pocatello, ID); Gardner, Bradley M. (Idaho Falls, ID); Nickelson, David F. (Idaho Falls, ID)

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  18. The double well mass filter

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2014-02-01

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a "double-well" in effective radial potential in rotating plasma with a sheared rotation profile.

  19. Biphoton double-slit experiment

    SciTech Connect

    Brida, G.; Cagliero, E.; Falzetta, G.; Genovese, M.; Gramegna, M.; Predazzi, E.

    2003-09-01

    In this paper we present a double-slit experiment where two indistinguishable photons produced by type-I parametric down-conversion are each sent to a well-defined slit. Data about the diffraction and interference patterns for coincidences are presented and discussed. An analysis of these data allows a test of standard quantum mechanics against the de Broglie-Bohm theory.

  20. A Double-Minded Fractal

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  1. The double well mass filter

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.; Rax, Jean-Marcel

    2014-02-15

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  2. Natural products: DNA double whammy

    NASA Astrophysics Data System (ADS)

    Gates, Kent S.

    2014-06-01

    The lomaiviticins are exceedingly potent antibiotic agents, but the mechanism responsible for this activity has so far been unclear. Now, efficient generation of double-strand breaks in DNA by lomaiviticin A has been linked to the remarkable cytotoxicity of these diazobenzofluorene-containg natural products.

  3. Diamagnetic susceptibility: An indicator of pressure induced donor localization in a double quantum well

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2016-04-01

    The influence of pressure along the growth axis on carrier localization in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) is studied under strongly coupled regime and isolated regimes of the well. The effective mass approximation combined with variation technique is adopted with the inclusion of mismatches in effective mass and dielectric constants of the well and barrier material. Effect of the barrier and well on carrier localization is investigated by observing the diamagnetic susceptibility (χdia) for various impurity locations (zi) and the critical limit of the barrier (Lb ≈ 50 Å) for tunneling has also been estimated. The effect of Γ-Χ crossover due to the application of pressure on the donor localization is picturized through diamagnetic susceptibility.

  4. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  5. Keepers of the double stars

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-03-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Early catalogues by the Herschels, Struves, and others began with their own discoveries. In 1906 court reporter and amateur astronomer Sherburne Wesley Burnham published a massive double star catalogue containing data from many observers on more than 13,000 systems. Lick Observatory astronomer Robert Grant Aitken produced a much larger catalogue in 1932 and coordinated with Robert Innes of Johannesburg, who catalogued the southern systems. Aitken maintained and expanded Burnham's records of observations on handwritten file cards, and eventually turned them over to the Lick Observatory, where astrometrist Hamilton Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and together they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford had the new 120-inch reflector, the world's second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the United States Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley, and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,200,000 measures of more than 125,000 star systems.

  6. Spin- and valley-polarized transport through ferromagnetic and antiferromagnetic barriers on monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Krstajić, P. M.; Vasilopoulos, P.; Tahir, M.

    2016-01-01

    We study ballistic electron transport through single or double barriers on monolayer MoS2, of width d, in the presence of a ferromagnetic field M or an antiferromagnetic field F. The total conductance gc, its spin-up and spin-down components, and the polarization oscillate with d or the distance b between two barriers. The corresponding oscillation periods are different. The conductance gc versus M decreases in a fluctuating manner with a steep decline at certain value of M. As a function of M the spin polarization Ps oscillates before it becomes 100% while the valley polarization Pv oscillates and steadily increases.

  7. Quadratic ??-corrections to heterotic double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2015-10-01

    We investigate ??-corrections of heterotic double field theory up to quadratic order in the language of supersymmetric O (D, D + dim ? G) gauged double field theory. After introducing double-vielbein formalism with a parametrization which reproduces heterotic supergravity, we show that supersymmetry for heterotic double field theory up to leading order ??-correction is obtained from supersymmetric gauged double field theory. We discuss the necessary modifications of the symmetries defined in supersymmetric gauged double field theory. Further, we construct supersymmetric completion at quadratic order in ??.

  8. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam and the 'beam plasma discharge' is ignited.

  9. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable, and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam, and the beam plasma discharge is ignited.

  10. SCRAPE-OFF LAYER FEATURES OF THE QH-MODE

    SciTech Connect

    LASNIER, C.J.; BURRELL, K.H.; deGRASSIE, J.S.; LEONARD, A.W.; MOYER, R.A.; PORTER, G.D.; WATKINS, J.G.; DIII-D TEAM

    2002-08-01

    The quiescent high confinement (QH-mode) and quiescent double barrier (QDB) modes in DIII-D have long-duration H-mode confinement without ELMs, possibly an alternative operating mode in future tokamaks for avoiding damage by ELMs . Instead of ELMs, there is an edge harmonic oscillation (EHO), which is a continuous electromagnetic mode with associated density fluctuations. The edge pedestal is similar to ELMing H-mode, but at very low density to date. We see C{sup +6} ion temperatures of 3-7 keV in scrape-off layer (SOL), 100 kV/m radial electric fields just inside the separatrix, and a hot area on the divertor baffle whose heating correlates with the presence of the EHO. We attribute the baffle heating to perturbation of trapped ion orbits by the EHO, allowing particles to strike the baffle. The outboard scrape-off layer is wider than the inboard, probably for lack of trapped ions on the inside.

  11. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B.; Andersson, B.

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such ``market barriers`` suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  12. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B. ); Andersson, B. )

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such market barriers'' suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  13. Information barriers for classified measurements

    NASA Astrophysics Data System (ADS)

    Fuller, James

    2003-03-01

    As the world works to significantly reduce inventories of nuclear weapons and nuclear weapons materials, problems of technical assurance in these reductions can become very important. U.S., Russian, and International Atomic Energy Scientists in the last few years have been working on ways to conduct cooperative assurance measurements on classified nuclear weapons items and materials in such a way that a host country's classified information is not revealed, but at the same time provide a monitoring party with good confidence that the measurement results are valid. Information Barriers consist of technology and procedures that accomplish these two concomitant objectives. Without a high degree of assurance in nuclear weapons inventory reductions, the pace will probably slow dramatically. Without what for all practical purposes amounts to an absolute guarantee that weapons information will be protected, authorities will not likely even allow measures to be put into place to provide the necessary assurances. Progress has reached the point that scientists in both the U.S and Russia have been able to win the approval of their respective security agencies to demonstrate relevant radiation measurements on classified nuclear weapons components to foreign counterparts. The history of these events provide an important backdrop from which to recommend further research and development.

  14. Advanced thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  15. Advances in Information Barrier Design.

    SciTech Connect

    Williams, R. B.; Frame, K. C.; Landry, R. P.; MacArthur, D. W.; Smith, M. K.

    2005-01-01

    The concept of an information barrier, or IB, has been widely discussed for a number of years. An IB is used in a measurement system that contains classified information to prevent the release (either intentional or inadvertent) of the classified information while still allowing an inspecting party to reach independent conclusions as to the contents of a storage container. Typically, an IB would be used in a measurement system regime that requires the owner of certain storage containers to declare the contents of the containers (in unclassified terms) and an inspecting party to confirm this declaration. The IB allows the owner's declaration to be confirmed without releasing any classified information to the inspecting party. Most IB design concepts are based on two attribute measruement systems (AMSs) that were built and demonstrated in the US in 1999 and 2000. These IBs relied heavily on simple hardware implementations and performed well in a 'one-time' demonstration mode. However, implementation of an AMS in a long-term verification regime will place a different set of requirements on the entire AMS system - and the IB, in particular. In this paper, they will concentrate on the effects of changing constraints on IB design, new IB concepts that have been developed since the earlier demonstrations, and design concepts that have been developed within a number of related verification regimes.

  16. Overcoming biological barriers with ultrasound

    NASA Astrophysics Data System (ADS)

    Thakkar, Dhaval; Gupta, Roohi; Mohan, Praveena; Monson, Kenneth; Rapoport, Natalya

    2012-10-01

    Effect of ultrasound on the permeability of blood vessels and cell membranes to macromolecules and nanodroplets was investigated using mouse carotid arteries and tumor cells. Model macromolecular drug, FITC-dextran with molecular weight of 70,000 Da was used in experiments with carotid arteries. The effect of unfocused 1-MHz ultrasound and and perfluoro-15-crown-5-ether nanodroplets stabilized with the poly(ethylene oxide)-co-poly(D, L-lactide) block copolymer shells was studied. In cell culture experiments, ovarian carcinoma cells and Doxorubicin (DOX) loaded poly(ethylene oxide)-co-polycaprolactone nanodroplets were used. The data showed that the application of ultrasound resulted in permeabilization of all biological barriers tested. Under the action of ultrasound, not only FITC-dextran but also nanodroplets effectively penetrated through the arterial wall; the effect of continuous wave ultrasound was stronger than that of pulsed ultrasound. In cell culture experiments, ultrasound triggered DOX penetration into cell nuclei, presumably due to releasing the drug from the carrier. Detailed mechanisms of the observed effects require further study.

  17. The immunological barriers to xenotransplantation.

    PubMed

    Vadori, M; Cozzi, E

    2015-10-01

    The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation. PMID:26381044

  18. Thermal barrier coating evaluation needs

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Miller, Robert A.

    1990-01-01

    A 0.025 cm (0.010 in) thick thermal barrier coating (TBC) applied to turbine airfoils in a research gas turbine engine provided component temperature reductions of up to 190 C. These impressive temperature reductions can allow increased engine operating temperatures and reduced component cooling to achieve greater engine performance without sacrificing component durability. The significant benefits of TBCs are well established in aircraft gas turbine engine applications and their use is increasing. TBCs are also under intense development for use in the Low Heat Rejection (LHR) diesel engine currently being developed and are under consideration for use in utility and marine gas turbines. However, to fully utilize the benefits of TBCs it is necessary to accurately characterize coating attributes that affect the insulation and coating durability. The purpose there is to discuss areas in which nondestructive evaluation can make significant contributions to the further development and full utilization of TBCs for aircraft gas turbine engines and low heat rejection diesel engines.

  19. Double Photoionization into Double Core-Hole States in Xe

    SciTech Connect

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Eland, J. H. D.; Aoto, T.; Ito, K.

    2007-05-04

    Double photoionization (DPI) leading to double core-hole states of Xe{sup 2+} 4d{sup -2} has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe{sup 2+} 4d{sup -2} states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe{sup 2+} 4d{sup -2} at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d{sup -2} continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe{sup 2+} 4d{sup -2} components.

  20. Implementation of power barrier option valuation

    NASA Astrophysics Data System (ADS)

    Cahyani, Agatha C. P.; Sumarti, Novriana

    2015-09-01

    Options are financial instruments that can be utilized to reduce risk in stock investment. Barrier options are one of the major types of options actively used in financial markets where its life period depends on the path of the underlying stock prices. The features of the barrier option can be used to modify other types of options. In this research, the barrier option will be implemented into power option, so it is called power barrier option. This option is an extension of the vanilla barrier options where the Call payoff being considered is defined as P C =max (STβ-Kβ,0 ) , and the Put payoff being considered is defined as P P =max (Kβ-STβ,0 ) . Here β > 0 and β ≠ 1, K is the strike price of the option, and ST is the price of the underlying stock at time maturity T. In this paper, we generate the prices of stock using binomial method which is adjusted to the power option. In the conclusion, the price of American power barrier option is more expensive than the price of European power barrier option.

  1. Model assessment of protective barrier designs

    SciTech Connect

    Fayer, M.J.; Conbere, W.; Heller, P.R.; Gee, G.W.

    1985-11-01

    A protective barrier is being considered for use at the Hanford site to enhance the isolation of previously disposed radioactive wastes from infiltrating water, and plant and animal intrusion. This study is part of a research and development effort to design barriers and evaluate their performance in preventing drainage. A fine-textured soil (the Composite) was located on the Hanford site in sufficient quantity for use as the top layer of the protective barrier. A number of simulations were performed by Pacific Northwest Laboratory to analyze different designs of the barrier using the Composite soil as well as the finer-textured Ritzville silt loam and a slightly coarser soil (Coarse). Design variations included two rainfall rates (16.0 and 30.1 cm/y), the presence of plants, gravel mixed into the surface of the topsoil, an impermeable boundary under the topsoil, and moving the waste form from 10 to 20 m from the barrier edge. The final decision to use barriers for enhanced isolation of previously disposed wastes will be subject to decisions resulting from the completion of the Hanford Defense Waste Environmental Impact Statement, which addresses disposal of Hanford defense high-level and transuranic wastes. The one-dimensional simulation results indicate that each of the three soils, when used as the top layer of the protective barrier, can prevent drainage provided plants are present. Gravel amendments to the upper 30 cm of soil (without plants) reduced evaporation and allowed more water to drain.

  2. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  3. Telerobotics in rehabilitation: Barriers to a virtual existence

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Vanderloos, Machiel; Michalowski, Stefan

    1991-01-01

    The topics covered include the following: the need for telerobotics in rehabilitation; barriers to telerobotics technology in rehabilitation and health care; institutional barriers; technical barriers; and a partial view of the future.

  4. Child Health USA 2013: Barriers to Prenatal Care

    MedlinePLUS

    ... Utilization > Barriers to Prenatal Care Barriers to Prenatal Care Narrative Early and adequate prenatal care is important ... Data Mothers Who Experienced Barriers to Receiving Prenatal Care as Early as Desired, by Maternal Age, 2009– ...

  5. Permanent isolation surface barrier development plan

    SciTech Connect

    Wing, N.R.

    1994-01-01

    The exhumation and treatment of wastes may not always be the preferred alternative in the remediation of a waste site. In-place disposal alternatives, under certain circumstances, may be the most desirable alternatives to use in the protection of human health and the environment. The implementation of an in-place disposal alternative will likely require some type of protective covering that will provide long-term isolation of the wastes from the accessible environment. Even if the wastes are exhumed and treated, a long-term barrier may still be needed to adequately dispose of the treated wastes or any remaining waste residuals. Currently, no {open_quotes}proven{close_quotes} long-term barrier is available. The Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) was organized to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site. The permanent isolation barrier technology also could be used at other sites. Permanent isolation barriers use engineered layers of natural materials to create an integrated structure with redundant protective features. Drawings of conceptual permanent isolation surface barriers are shown. The natural construction materials (e.g., fine soil, sand, gravel, riprap, asphalt) have been selected to optimize barrier performance and longevity. The objective of current designs is to use natural materials to develop a maintenance-free permanent isolation surface barrier that isolates wastes for a minimum of 1,000 years by limiting water drainage to near-zero amounts; reducing the likelihood of plant, animal, and human intrusion; controlling the exhalation of noxious gases; and minimizing erosion-related problems.

  6. Double-polysilicon SiGe HBT architecture with lateral base link

    NASA Astrophysics Data System (ADS)

    Fox, A.; Heinemann, B.; Rücker, H.

    2011-06-01

    We present an analysis of a modified double-polysilicon SiGe:C HBT module showing a CML ring oscillator gate delay τD of 2.5 ps, and f T/ fmax/BV CEo values of 300 GHz/350 GHz/1.85 V (Fox et al., 2008) [1]. A key feature of the HBT module is a connection of the extrinsic and intrinsic base regions by lateral epitaxial overgrowth, which aims to overcome the limits of the conventional double-polysilicon architecture in simultaneously reducing RB and CBC. Potential benefits and barriers of the proposed device structure on the way to higher performance are reviewed with regard to the recently demonstrated performance gain of the classical double-polysilicon approach. The paper addresses technological challenges one is faced when the here presented device structure is scaled to minimum device dimensions.

  7. Electron dynamics of molecular double ionization by circularly polarized laser pulses

    SciTech Connect

    Tong, Aihong; Department of Physics and Electronics, Hubei University of Education, Wuhan 430205 ; Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2013-08-21

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by circularly polarized laser pulses with different internuclear distances (R). The results show that the DI mechanism changes from sequential double ionization (SDI) to nonsequential double ionization (NSDI) as the internuclear distance increases. In SDI range, the structure of the electron momentum distribution changes seriously as R increases, which indicates the sensitive dependence of the release times of the two electrons on R. For NSDI, because of the circular polarization, the ionization of the second electron is not through the well-known recollision process but through a process where the first electron ionizes over the inner potential barrier of the molecule, moves directly towards the other nucleus, and kicks out the second electron.

  8. Intestinal barriers to bacteria and their toxins

    SciTech Connect

    Walker, R.I.; Owen, R.L. )

    1990-01-01

    Immunologic and nonimmunologic processes work together to protect the host from the multitude of microorganisms residing within the intestinal lumen. Mechanical integrity of the intestinal epithelium, mucus in combination with secretory antibody, antimicrobial metabolites of indigenous microorganisms, and peristalsis each limit proliferation and systemic dissemination of enteric pathogens. Uptake of microorganisms by Peyer's patches and other intestinal lymphoid structures and translocation circumvent the mucosal barrier, especially in immunosuppressed individuals. Improved understanding of the composition and limitation of the intestinal barrier, coupled with advances in genetic engineering of immunogenic bacteria, development of oral delivery systems, and immunomodulators, now make enhancement of mucosal barriers feasible. 32 references.

  9. Method for forming a barrier layer

    DOEpatents

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  10. Shape change and Peierls barrier of dislocation

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Zhang, Shujun; Bai, Jianhui; Yao, Yin

    2015-12-01

    Shape change and Peierls barrier of dislocation are investigated theoretically in the framework of the improved Peierls-Nabarro model in which the lattice discreteness is considered fully. We found that the dislocation will become narrow as it moves from the energy valley to the barrier top. An expression for the Peierls barrier is proposed based on our calculations without the rigid translation assumption. The results enable us to relate the Peierls stress to the bulk properties of crystals directly and can be easily used in the evaluation of material plasticity.

  11. Tight Junction Proteins: From Barrier to Tumorigenesis

    PubMed Central

    Runkle, E. Aaron; Mu, David

    2013-01-01

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis. PMID:23743355

  12. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePLUS

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? ...

  13. Bifurcation structure of successive torus doubling

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Tsubouchi, Takashi

    2006-01-01

    The authors discuss the “embryology” of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings.

  14. Minimal Doubling and Point Splitting

    SciTech Connect

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  15. Double glazing systems for greenhouses

    SciTech Connect

    Sherry, W.J.; White, J.W.

    1981-01-01

    Utilization of double layer greenhouse glazing systems in place of single layer lapped glass significantly reduced heating requirements. Studies involving air-inflated twin layers of polyethylene or polyester, insulating glass, or extruded double layers of polycarbonate or polymethylmethacrylate indicated the potential for fossil fuel energy savings of 35 to 40% annually, compared to single skin lapped glass. Flux densities of solar radiation were also reduced significantly resulting in lower dry weight accumulations of chrysanthemums. Addition of a twin layer air-inflated polyethylene glazing system to existing glasshouses was also shown to be an effective energy conservation measure related to the floor area to exposed surface area ratio. Significant reductions in cut flower rose yields were observed under this glazing system which strongly indicated that this energy conservation technique is not an economically viable alternative for northern growers of high light requiring crops.

  16. The Objective Double Crystal Spectrometer

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Willis, Thomas D.; Hoover, Richard B.

    1992-01-01

    The solar corona, supernova remnants, the hot diffuse interstellar gas in the Galaxy, galactic halos, and the hot intracluster gas in rich clusters of galaxies, are examples of extended astrophysical plasmas which emit line-rich spectra in the X-ray spectral range from 1.5 to 25 A. These phenomena represent a significant fraction of the baryonic matter in the universe. The study of the composition, structure and dynamics of these astrophysical plasmas requires observations with both high spectral and spatial resolution simultaneously. The Objective Double Crystal Spectrometer, coupled with a grazing incidence X-ray telescope, represents a stigmatic instrument which is highly efficient for the study of such sources. We describe the configuration and performance (spatial resolution, spectral resolution and efficiency) of the Objective Double Crystal spectrometer.

  17. Hierarchy in a double braneworld

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson

    2006-10-15

    We show that the hierarchy between the Planck and the weak scales can follow from the tendency of gravitons and fermions to localize at different edges of a thick double wall embedded in an AdS{sub 5} spacetime without reflection symmetry. This double wall is a stable BPS thick-wall solution with two subwalls located at its edges; fermions are coupled to the scalar field through Yukawa interactions, but the lack of reflection symmetry forces them to be localized in one of the subwalls. We show that the graviton zero-mode wave function is suppressed in the fermion edge by an exponential function of the distance between the subwalls, and that the massive modes decouple so that Newtonian gravity is recuperated.

  18. Applications of dielectric barrier discharges

    SciTech Connect

    Falkenstein, Z.

    1998-12-31

    Dielectric barrier discharges (DBDs) in oxygen and air are well established for the production of large quantities of ozone and are more recently being applied to a wider range of plasmachemical processes. Here, the application of DBDs for ozone synthesis, the non-thermal oxidation of volatile organic compounds (VOCs) in air, the generation of incoherent (V)UV radiation and surface processing (etching, ashing) is presented. The main plasmaphysical features of sinusoidally-driven DBDs (transient, filamented, non-thermal plasmas at atmospheric pressure) are described, and a simple plasmachemical reaction pathway for ozone synthesis are give. Experimental results on the degradation of VOCs (2-propanol, trichloroethylene, carbon tetrachloride), as well as byproduct formation is presented for stand-alone DBD treatment, as well as for simultaneous (V)UV illumination of the discharge. Illumination of the discharge with (V)UV can change the plasmachemistry by enhanced formation of certain species of radicals--and thereby change byproduct formation--but also can change the discharge physics, known as the Joshi effect. As an example for generation of excited dimers and exiplexes for the production of incoherent UV light, experimental results on a XeBr* excimer UV light source are presented. Effects of the total and partial pressure of a Xe/Br{sub 2} system, the gap spacing and the applied driving frequency on the UV radiant efficiency are shown. For the application of DBDs for surface processing, experimental results of photoresist ashing on Si wafers using DBDs in oxygen are shown function of gas pressure, gap spacing and applied frequency.

  19. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  20. Excitonic Josephson effect in double-layer graphene junctions

    NASA Astrophysics Data System (ADS)

    Zenker, B.; Fehske, H.; Beck, H.

    2015-08-01

    We show that double-layer graphene (DLG), where an external potential induces a charge imbalance between n - and p -type layers, is a promising candidate to realize an exciton condensate in equilibrium. To prove this phenomenon experimentally, we suggest coupling two DLG systems, separated by a thin insulating barrier, and measuring the excitonic Josephson effect. For this purpose we calculate the ac and dc Josephson currents induced by tunneling excitons and show that the former only occurs when the gate potentials of the DLG systems differ, irrespective of the phase relationship of their excitonic order parameters. A dc Josephson current develops if a finite order-parameter phase difference exists between two coupled DLG systems with identical gate potentials.

  1. Tunability of magnetization in lateral few electron double quantum dots

    NASA Astrophysics Data System (ADS)

    Qu, Fanyao; Santos, D. R.; Morais, P. C.; Lpez-Richard, V.; Marques, G. E.

    2010-11-01

    We demonstrate theoretically a pathway for electrical control of magnetic properties of tunable lateral double InAs quantum dots containing two-electrons, subjected to spin-orbit interaction (SOI), vertical electrical and magnetic fields. In the regime of low temperature and weak magnetic field, interplay of interdot tunnel coupling and hybridized magnetoelectric effect induces "s"-like behavior of magnetization and a peak of susceptibility which are very sensitive to interdot barrier voltage (VB) and interdot distance (d). Sweeping VB and adjusting d not only impact magnetic phase transition, but also switch electronic and magnetic properties from atomic to molecular in nature. Furthermore, SOI broadens the magnetic field interval of paramagnetic phase and changes magnitude of magnetization and susceptibility.

  2. Thermoelectric properties of symmetric and asymmetric double quantum well structures

    SciTech Connect

    Sur, I. V.

    2009-05-15

    The electronic states and carrier transport in (100)PbTe/Pb {sub 1-x} Eu{sub x} Te double quantum wells are theoretically analyzed. The dependences of the mobility and Seebeck coefficient on the thickness of the internal barrier in symmetric and asymmetric structures are investigated. It was found that at great distance between the wells even small violation of the structure symmetry and essential reconstruction of electron wave functions results in suppression of intersubband scattering with carriers transfer between the wells and provides the correct limit to isolated quantum well in kinetic coefficients. Some possibilities of increasing the thermoelectric power factor are found, and a suitable set of structure parameters is calculated within the proposed model.

  3. Routes to nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Kopold, R.; Becker, W.; Rottke, H.; Sandner, W.

    2000-06-01

    In two recent experiments, the doubly-charged ion's momentum distribution in nonsequential double ionization (NSDI) of helium [1] and neon [2] was measured. Owing to momentum conservation, the ion's momentum is equal and opposite to the total momentum of the two emitted electrons in so much as the momentum transfer from the laser field can be neglected. These data provide additional information about the mechanism responsible for NSDI. Here we present a formalism that allows for the calculation of the quantum mechanical S matrix for NSDI for a given mechanism (such as rescattering or collective tunneling). In the spirit of the strong-field approximation the action integral is approximated so as to implement this mechanism, neglecting at any given time either the binding potential or the electron-field interaction. The procedure is an extension of, e.g., the Lewenstein model for high-harmonic generation or the generalized Keldysh-Faisal-Reiss amplitude [3]. For a rescattering scenario, summing over the difference momentum of the two electrons we obtain a double-peaked distribution of the total momentum in good agreement with [2]. The double-peak structure is much less pronounced in the data for helium [1]. We discuss different scenarios that yield momentum distributions similar to the helium data. [1] Th. Weber et al., Phys. Rev. Lett. 84, 443 (2000); [2] R. Moshammer et al., Phys. Rev. Lett. 84, 447 (2000); [3] A. Lohr et al., Phys. Rev. A 55, R4003 (1997).

  4. Pair extended coupled cluster doubles

    NASA Astrophysics Data System (ADS)

    Henderson, Thomas M.; Bulik, Ireneusz W.; Scuseria, Gustavo E.

    2015-06-01

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  5. Double-Plate Penetration Equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    2000-01-01

    This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.

  6. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  7. Double Photoionization of Lithium Revisited

    NASA Astrophysics Data System (ADS)

    Wehlitz, Ralf; Luki?, Dragan

    2009-05-01

    In a previous paperootnotetextR. Wehlitz, J.B. Bluett , and S.B. Whitfield, Phys. Rev. Lett. 89, 093002 (2002) we believed to have seen oscillations in the double-photoionization cross section of lithium. However, a recent investigation revealed that resonances at twice the photon energy (compared to the near-threshold energy region) are more pronounced than had been expectedootnotetextR. Wehlitz and P.N. Jurani'c, Phys. Rev. A 74, 042721 (2006). This prompted us to revisit the near-threshold region of the lithium double-to-single photoionization ratio. Using a slightly higher energy resolution in a new experiment on the same beamline, we could identify resonances in that ratio due to second-order light. While the second-order light contribution is small, so is the double-photoionization cross section in first-order light near threshold. The ``resonances'' observed near threshold match the inner-shell resonances at twice the photon energy fairly well and can indeed explain the previously seen ``oscillations''.

  8. Field Studies of the Electrical Properties of Permeable Reactive Barriers for Monitoring Barrier Aging

    NASA Astrophysics Data System (ADS)

    Sharpe, R.; Labrecque, D. J.; Slater, L.

    2006-12-01

    Permeable reactive barriers (PRB) are a promising technology for the remediation of groundwater containing a range of organic and inorganic contaminants. Although there are number of different types of reactive barriers, some of the most important are constructed from granular zero valent iron (ZVI). One challenge in the large- scale, long-term implementation of PRBs is to monitor the change in barrier properties over time. For example, mineral precipitates can reduce the effectiveness of the barrier by either insulating the reaction surfaces of the ZVI particles and/or by filling the pore space in the barrier and thus reducing its hydraulic permeability. Previous research has shown that resistivity and induced polarization (IP) measurements are sensitive to corrosion and precipitation due to redox reactions between ions in solution and the ZVI mineral surface. New field studies, supported by additional laboratory studies appear to confirm this work. Resisitivity and IP surveys were conducted at a total of seven barriers at four different sites: the Denver Federal Center; Monticello, Utah; the Kansas City, Missouri Department of Energy site, and the Asarco Smelter Site in East Helena, Montana. These surveys used combinations of surface and borehole surveys to characterized barriers. The surveys are repeated at approximately six-month intervals to provide information on temporal changes. In addition, surveys at the Kansas City barrier followed up on earlier research by providing several years of historical data and a new barrier at East Helena Montana has been instrumented with an autonomous monitoring system allowing continuous monitoring of the barrier electrical properties. Results show an increase in both real and imaginary conductivity as barriers age. For new barriers, the conductivity of ZVI is typically a few tens of mS/m, only modestly higher than that of the background sediments surrounding the barrier. For heavily altered barriers such as the Monticello, Utah barrier, the conductivity is typically tens of S/m, a thousand times higher the unaltered barriers. Field values of chargeability (measured using a 1 Hz primary waveform and an integration window centered at 40 ms) also tend to increase from roughly a 100 mV/V at the East Helena Barrier to about 300 mV/V at Monticello. Other sites tend to be intermediate between these extremes.

  9. The BARRIERS scale -- the barriers to research utilization scale: A systematic review

    PubMed Central

    2010-01-01

    Background A commonly recommended strategy for increasing research use in clinical practice is to identify barriers to change and then tailor interventions to overcome the identified barriers. In nursing, the BARRIERS scale has been used extensively to identify barriers to research utilization. Aim and objectives The aim of this systematic review was to examine the state of knowledge resulting from use of the BARRIERS scale and to make recommendations about future use of the scale. The following objectives were addressed: To examine how the scale has been modified, to examine its psychometric properties, to determine the main barriers (and whether they varied over time and geographic locations), and to identify associations between nurses' reported barriers and reported research use. Methods Medline (1991 to September 2009) and CINHAL (1991 to September 2009) were searched for published research, and ProQuest® digital dissertations were searched for unpublished dissertations using the BARRIERS scale. Inclusion criteria were: studies using the BARRIERS scale in its entirety and where the sample was nurses. Two authors independently assessed the study quality and extracted the data. Descriptive and inferential statistics were used. Results Sixty-three studies were included, with most using a cross-sectional design. Not one study used the scale for tailoring interventions to overcome identified barriers. The main barriers reported were related to the setting, and the presentation of research findings. Overall, identified barriers were consistent over time and across geographic locations, despite varying sample size, response rate, study setting, and assessment of study quality. Few studies reported associations between reported research use and perceptions of barriers to research utilization. Conclusions The BARRIERS scale is a nonspecific tool for identifying general barriers to research utilization. The scale is reliable as reflected in assessments of internal consistency. The validity of the scale, however, is doubtful. There is no evidence that it is a useful tool for planning implementation interventions. We recommend that no further descriptive studies using the BARRIERS scale be undertaken. Barriers need to be measured specific to the particular context of implementation and the intended evidence to be implemented. PMID:20420696

  10. Pharmaceutical Nanoparticles and the Mucin Biopolymer Barrier

    PubMed Central

    Aljayyoussi, Ghaith; Abdulkarim, Muthanna; Griffiths, Peter; Gumbleton, Mark

    2012-01-01

    S U M M A R Y Mucus in the gastrointestinal tract remains a tenacious barrier that restricts the passage of many orally administered compounds into the GITs epithelial layer and consequently into the systemic circulation. This results in significant decreases in the oral bioavailability of many therapeutic molecules. Nanoparticles offer an avenue to surpass this mucus barrier. They can be used as drug carriers to improve the bioavailability of many compounds that are restricted by mucus. Nanoparticles achieve penetration of the mucus barrier through a multitude of properties that they possess as their size, charge density, and surface functional groups which can all be tailored to achieve optimal penetration of the thick and fibrous mucus barrier. This article offers a quick review about the use of nanoparticles as drug carriers to increase mucus penetration in the gastro intestinal tract. PMID:23678457

  11. Barrier function of airway tract epithelium

    PubMed Central

    Ganesan, Shyamala; Comstock, Adam T; Sajjan, Uma S

    2013-01-01

    Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases. PMID:24665407

  12. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  13. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  14. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  15. Contamination Barrier For Contour-Molding Material

    NASA Technical Reports Server (NTRS)

    Adams, James F.

    1988-01-01

    Release agent prevents molding compound from adhering to or contaminating surface. Cleaning agent, Turco 4215 NCLT, forms barrier preventing silicone molding compound from sticking to surface and leaving contaminating residue. Also see MFS-29243.

  16. References Concerning Architectural Barriers in Higher Education.

    ERIC Educational Resources Information Center

    Gust, Tim; Shaheen, Elaine

    A bibliography of references pertaining to architectural barriers to the handicapped is presented. The references center on the importance of architectural design for universities and colleges which make buildings and facilities accessible to, and usable by, the physically handicapped. (NS)

  17. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS

    SciTech Connect

    Y.S. Wu; W. Zhang; L. Pan; J. Hinds; G. Bodvarsson

    2000-10-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow.

  18. DOE UST interim subsurface barrier technologies workshop

    SciTech Connect

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation.

  19. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOEpatents

    Wernsman, Bernard R. (Jefferson Hills, PA)

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  20. The lipid organisation in the skin barrier.

    PubMed

    Bouwstra, J A; Dubbelaar, F E; Gooris, G S; Ponec, M

    2000-01-01

    The main function of the skin is to protect the body against exogenous substances. The skin barrier is located in the outermost layer of the skin, the stratum corneum. This layer consists of keratin enriched cells embedded in lipid lamellae. These lamellae form the main barrier for diffusion of substances through the skin. In diseased skin the barrier function is often impaired. For a full understanding of the properties of the human skin barrier, insight in the stratum corneum lipid organisation is of great importance. In this paper a short description of the lipid organisation in normal human stratum corneum will be given, after which the role the main lipid classes play in the stratum corneum lipid organisation will be described. In addition the effect of cholesterol sulfate and calcium on the lipid organisation will be discussed. Finally a new model, the "sandwich model", will be proposed that describe the localisation of the fluid phases in the stratum corneum. PMID:10884936

  1. Federal Policies in Barrier Island Development.

    ERIC Educational Resources Information Center

    Miller, H. Crane

    1980-01-01

    Current federal policy towards barrier islands is ambivalent, both favoring and regulating development. Alternate policies are presently being examined by Congress and the Department of Interior. Several of these options are discussed in this article. (WB)

  2. THE CONSEQUENCES OF CROSSING BARRIERS AND BOUNDARIES

    EPA Science Inventory

    This is a brief, general ecological theory presentation which explains concepts of physically defining habitational zones, ecological barriers, ecological boundaries and vehicles, plus biologically defining pathogens, hosts, and vectors.

  3. Communicating across barriers at home and abroad

    SciTech Connect

    McDonald, J.W.

    1985-01-01

    This paper intends to catalyze the exchange of experience among technical communicators in meeting the challenge of communicating across a multitude of barriers: linguistic, disciplinary, cultural, political, intellectual, and emotional.

  4. PERMEABLE REACTIVE BARRIERS FOR GROUND WATER REMEDIATION

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. Removal of contaminants from the groundwater plume is achieved by alt...

  5. PERMEABLE REACTIVE BARRIERS FOR GROUNDWATER REMEDIATION

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. Removal of contaminants from the groundwater plume is achieved by alt...

  6. Resilient thermal barrier for high temperatures

    NASA Technical Reports Server (NTRS)

    Frye, J. A.

    1977-01-01

    Abrasion-resistant thermal barrier, consisting of two layers of woven fabric or braided sleeving with bulk insulation sandwiched between, shows excellent resilience even after compression at temperatures above 980C.

  7. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  8. Overcoming Barriers to Shared Decision Making

    MedlinePLUS

    ... your doctor how your cultural or religious beliefs influence your treatment and care decisions. If you need help working through these issues, the palliative care team, a hospital chaplain or a social worker can help. Barrier: Language differences Solution: More ...

  9. Epidermal Permeability Barrier Defects and Barrier Repair Therapy in Atopic Dermatitis

    PubMed Central

    Lee, Hae-Jin

    2014-01-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease perpetuated by gene-environmental interactions and which is characterized by genetic barrier defects and allergic inflammation. Recent studies demonstrate an important role for the epidermal permeability barrier in AD that is closely related to chronic immune activation in the skin during systemic allergic reactions. Moreover, acquired stressors (e.g., Staphylococcus aureus infection) to the skin barrier may also initiate inflammation in AD. Many studies involving patients with AD revealed that defective skin barriers combined with abnormal immune responses might contribute to the pathophysiology of AD, supporting the outside-inside hypothesis. In this review, we discuss the recent advances in human and animal models, focusing on the defects of the epidermal permeability barrier, its immunologic role and barrier repair therapy in AD. PMID:24991450

  10. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  11. Iron Nanoparticles in Reactive Environmental Barriers

    SciTech Connect

    Nuxoll, Eric E.; Shimotori, Tsutomu; Arnold, William A.; Cussler, Edward L.

    2003-09-23

    Zero-valent iron is cheap, environmentally innocuous, and effective at reducing chlorinated organics. It has, as a result, become a popular candidate for remediating aquifers contaminated with trichloroethylene and other halogenated pollutants. In this paper, we discuss one such system, where iron nanoparticles are synthesized and incorporated into polyvinyl alcohol membranes, forming water-permeable barriers to these pollutants. These barriers are tested against a variety of contaminants, including carbon tetrachloride, copper, and chromate.

  12. Allergy as an epithelial barrier disease

    PubMed Central

    2011-01-01

    The objective of this review is to focus on putative modified epithelial functions related to allergy. The dysregulation of the epithelial barrier might result in the allergen uptake, which could be the primary defect in the pathogenesis of allergic reaction. We review the literature of the role of respiratory epithelium as an active barrier, how allergens are transported through it and how it senses the hostile environmental allergens and other dangerous stimuli. PMID:22410284

  13. Liquid junction schottky barrier solar cell

    DOEpatents

    Williams, Richard (Princeton, NJ)

    1980-01-01

    A mixture of ceric ions (Ce.sup.+4) and cerous ions (Ce.sup.+3) in an aqueous electrolyte solution forms a Schottky barrier at the interface between an active region of silicon and the electrolyte solution. The barrier height obtained for hydrogenated amorphous silicon using the Ce.sup.+4 /Ce.sup.+3 redox couple is about 1.7 eV.

  14. Porosity determination of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Van Roode, Mark; Beardsley, Brad

    1988-01-01

    Coating porosity is believed to be a critical factor for the thermal conductivity of thermal barrier coatings (TBCs). A number of different techniques have been used to determine the porosities of thermal barrier coatings for diesel applications as part of a NASA/DOE sponsored study. A comparison is made between methods based on water immersion, optical microscopy, eddy current thickness measurements, and Archimedes principle for TBC porosity determination.

  15. Barriers to employment in severe mental illness.

    PubMed

    Gannon, Donna; Gregory, Nathan

    This article explores two issues related to the barriers to employment for people with severe mental illness: the mental health service user's perspective; and the efficacy of mental health nurses and community mental health teams. It suggests that clinical practice needs to be modified and further research carried out if these barriers are to be removed. This is a summary: the full paper and reference list can be accessed at nursingtimes.net. PMID:17564362

  16. Metal interfaces - Adhesive energies and electronic barriers

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.

    1976-01-01

    We report a fully self-consistent calculation of the electron number density, barrier height and adhesive energy as a function of separation in an aluminum-aluminum (100) contact. The local density approximation is used for exchange and correlation. The electron number density and barrier heights are strong functions of the separation. The range of strong chemical bonding is about 0.2 nm.

  17. Nuclear structure and sub-barrier fusion

    SciTech Connect

    Esbensen, H. . Cyclotron Lab. Argonne National Lab., IL )

    1990-01-01

    The influence of nuclear structure on heavy-ion fusion and elastic scattering, at energies near and below the Coulomb barrier, is discussed within the coupled channels formalism. The coupled channels approach provides a consistent description of the enhancement of sub-barrier fusion and the energy dependence of the effective potential for elastic scattering. This is illustrated by comparison to the data for several systems. 48 refs., 4 figs.

  18. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  19. Double exposure double etch for dense SRAM: a designer's dream

    NASA Astrophysics Data System (ADS)

    Sarma, Chandrasekhar; Gabor, Allen; Halle, Scott; Haffner, Henning; Herold, Klaus; Tsou, Len; Wang, Helen; Zhuang, Haoren

    2008-03-01

    As SRAM arrays become lithographically more aggressive than random logic, they are more and more determining the lithography processes used. High yielding, low leakage, dense SRAM cells demand fairly aggressive lithographic process conditions. This leads to a borderline process window for logic devices. The tradeoff obtained between process window optimization for random logic gates and dense SRAM is not always straightforward, and sometimes necessitates design rule and layout modifications. By delinking patterning of the logic devices from SRAM, one can optimize the patterning processes for these devices independently. This can be achieved by a special double patterning technique that employs a combination of double exposure and double etch (DE2). In this paper we show how a DE2 patterning process can be employed to pattern dense SRAM cells in the 45nm node on fully integrated wafers, with more than adequate overlap of gate line-end onto active area. We have demonstrated that this process has adequate process window for sustainable manufacturing. For comparison purpose we also demonstrate a single exposure single etch solution to treat such dense SRAM cells. In 45nm node, the dense SRAM cell can also be printed with adequate tolerances and process window with single expose (SE) with optimized OPC. This is confirmed by electrical results on wafer. We conclude that DE2 offers an attractive alternative solution to pattern dense SRAM in 45nm and show such a scheme can be extended to 32nm and beyond. Employing DE2 lets designers migrate to very small tip-to-tip distance in SRAM. The selection of DE2 or SE depends on layout, device performance requirements, integration schemes and cost of ownership.

  20. Model assessment of protective barriers: Part 3

    SciTech Connect

    Fayer, M.J.; Rockhold, M.L.; Holford, D.J.

    1992-02-01

    Radioactive waste exists at the US Department of Energy's (DOE's) Hanford Site in a variety of locations, including subsurface grout and tank farms, solid waste burial grounds, and contaminated soil sites. Some of these waste sites may need to be isolated from percolating water to minimize the potential for transport of the waste to the ground water, which eventually discharges to the Columbia River. Multilayer protective barriers have been proposed as a means of limiting the flow of water through the waste sites (DOE 1987). A multiyear research program (managed jointly by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company for the DOE) is aimed at assessing the performance of these barriers. One aspect of this program involves the use of computer models to predict barrier performance. Three modeling studies have already been conducted and a test plan was produced. The simulation work reported here was conducted by PNL and extends the previous modeling work. The purpose of this report are to understand phenomena that have been observed in the field and to provide information that can be used to improve hydrologic modeling of the protective barrier. An improved modeling capability results in better estimates of barrier performance. Better estimates can be used to improve the design of barriers and the assessment of their long-term performance.

  1. Cognitive barriers to calling a smoking quitline

    PubMed Central

    Hughes, John R.; Livingston, Amy; Naud, Shelly; Callas, Peter W.; Peters, Erica N.; Kamon, Jody; Etter, Jean-Francois

    2009-01-01

    Introduction: This study examined cognitive barriers that might prevent cigarette smokers who are interested in quitting from calling a smoking quitline. Methods: Using qualitative and quantitative methods, we developed a 53-item inventory of possible cognitive barriers to quitline access. A total of 641 daily smokers who reported high intentions to stop smoking in the next 30 days completed this inventory and were then prompted to call a toll-free smoking quitline (800-QUIT NOW) on 3 occasions. Two months later, they completed a follow-up phone interview to assess use of the quitline, quit attempts, and smoking status. Results: Exploratory and confirmatory factor analysis of the barrier items revealed a 5-factor solution: stigma, low appraisal of the service, no need for assistance, poor fit with the service, and privacy concerns. Endorsements of barrier factors were generally low. Although several barrier factor scores predicted concurrent intentions to call a quitline in the near future, none prospectively predicted calling the quitline by 2-month follow-up. Discussion: Cognitive barriers to use of quitlines remain elusive. PMID:19793785

  2. Field study plan for alternate barriers

    SciTech Connect

    Freeman, H.D.; Gee, G.W.; Relyea, J.F.

    1989-05-01

    Pacific Northwest Laboratory (PNL) is providing technical assistance in selecting, designing, evaluating, and demonstrating protective barriers. As part of this technical assistance effort, asphalt, clay, and chemical grout will be evaluated for use as alternate barriers. The purpose of the subsurface layer is to reduce the likelihood that extreme events (i.e., 100-year maximum storms, etc.) will cause significant drainage through the barrier. The tests on alternate barriers will include laboratory and field analysis of the subsurface layer performance. This field test plan outlines the activities required to test and design subsurface moisture barriers. The test plan covers activities completed in FY 1988 and planned through FY 1992 and includes a field-scale test of one or more of the alternate barriers to demonstrate full-scale application techniques and to provide performance data on a larger scale. Tests on asphalt, clay, and chemical grout were initiated in FY 1988 in small (30.5 cm diameter) tube-layer lysimeters. The parameters used for testing the materials were different for each one. The tests had to take into account the differences in material characteristics and response to change in conditions, as well as information provided by previous studies. 33 refs., 8 figs., 1 tab.

  3. Stretchable graphene barriers for organic optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Kong, Casey

    This thesis describes the use of a transparent, stretchable gas barrier film used to encapsulate organic devices in order to protect them from chemical degradation. One of the major issues with current organic semiconductor materials is that they are susceptible to degradation when exposed to oxygen and water vapor in the ambient atmosphere. In order to take advantage of these materials, stretchable barrier films must also be developed. Solar cell devices were fabricated using an organic bulk heterojunction blend of poly(3-heptylthiophene) and phenyl-C61-butyric acid methyl ester (P3HpT:PCBM). Stretchable barrier films were fabricated with graphene and polyurethane (PU) using a simple dip coating process. Devices encapsulated with an unstrained graphene/PU barrier film retained 60.6 +/- 3.7% efficiency after 10 days, exhibiting barrier properties similar to that of a control device encapsulated with glass (61.1 +/- 3.2%). Measurements over the course of 1 day showed that graphene/PU films strained up to 20% were still able to maintain 91.5 +/- 2.8% efficiency. Electrical resistance measurements showed that graphene cracks around 6% strain. This work highlights the potential impact graphene/PU barrier films may have on stretchable electronics.

  4. Determining collective barrier operation skew in a parallel computer

    SciTech Connect

    Faraj, Daniel A.

    2015-12-24

    Determining collective barrier operation skew in a parallel computer that includes a number of compute nodes organized into an operational group includes: for each of the nodes until each node has been selected as a delayed node: selecting one of the nodes as a delayed node; entering, by each node other than the delayed node, a collective barrier operation; entering, after a delay by the delayed node, the collective barrier operation; receiving an exit signal from a root of the collective barrier operation; and measuring, for the delayed node, a barrier completion time. The barrier operation skew is calculated by: identifying, from the compute nodes' barrier completion times, a maximum barrier completion time and a minimum barrier completion time and calculating the barrier operation skew as the difference of the maximum and the minimum barrier completion time.

  5. Determining collective barrier operation skew in a parallel computer

    SciTech Connect

    Faraj, Daniel A.

    2015-11-24

    Determining collective barrier operation skew in a parallel computer that includes a number of compute nodes organized into an operational group includes: for each of the nodes until each node has been selected as a delayed node: selecting one of the nodes as a delayed node; entering, by each node other than the delayed node, a collective barrier operation; entering, after a delay by the delayed node, the collective barrier operation; receiving an exit signal from a root of the collective barrier operation; and measuring, for the delayed node, a barrier completion time. The barrier operation skew is calculated by: identifying, from the compute nodes' barrier completion times, a maximum barrier completion time and a minimum barrier completion time and calculating the barrier operation skew as the difference of the maximum and the minimum barrier completion time.

  6. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  7. Finite-time barriers to front propagation in two-dimensional fluid flows.

    PubMed

    Mahoney, John R; Mitchell, Kevin A

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind." PMID:26328575

  8. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    PubMed

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. PMID:26110398

  9. Finite-time barriers to front propagation in two-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  10. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis.

    PubMed

    Yadav, Vandana; Molina, Isabel; Ranathunge, Kosala; Castillo, Indira Queralta; Rothstein, Steven J; Reed, Jason W

    2014-09-01

    Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency. PMID:25217507

  11. ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis[C][W

    PubMed Central

    Yadav, Vandana; Molina, Isabel; Ranathunge, Kosala; Castillo, Indira Queralta; Rothstein, Steven J.; Reed, Jason W.

    2014-01-01

    Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency. PMID:25217507

  12. Attitudinal barriers to participation in oncology clinical trials: factor analysis and correlates of barriers

    PubMed Central

    MANNE, S.; KASHY, D.; ALBRECHT, T.; WONG, Y.-N.; FLAMM, A. LEDERMAN; BENSON, A. B.; MILLER, S.M.; FLEISHER, LINDA; BUZAGLO, J.; ROACH, N.; KATZ, M.; ROSS, E.; COLLINS, M.; POOLE, D.; RAIVITCH, S.; MILLER, D.M.; KINZY, T.G.; LIU, T.; MEROPOL, N.J.

    2015-01-01

    Patient participation in cancer clinical trials is low. Little is known about attitudinal barriers to participation, particularly among patients who may be offered a trial during an imminent initial oncology consult. The aims of the present study were to confirm the presence of proposed subscales of a recently developed cancer clinical trial attitudinal barriers measure, describe the most common cancer clinical trials attitudinal barriers, and evaluate socio-demographic, medical and financial factors associated with attitudinal barriers. A total of 1256 patients completed a survey assessing demographic factors, perceived financial burden, prior trial participation and attitudinal barriers to clinical trials participation. Results of a factor analysis did not confirm the presence of the proposed four attitudinal barriers subscale/factors. Rather, a single factor represented the best fit to the data. The most highly-rated barriers were fear of side-effects, worry about health insurance and efficacy concerns. Results suggested that less educated patients, patients with non-metastatic disease, patients with no previous oncology clinical trial participation, and patients reporting greater perceived financial burden from cancer care were associated with higher barriers. These patients may need extra attention in terms of decisional support. Overall, patients with fewer personal resources (education, financial issues) report more attitudinal barriers and should be targeted for additional decisional support. PMID:24467411

  13. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings

    NASA Astrophysics Data System (ADS)

    Bahroun, K.; Behm, H.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.; Hopmann, Ch

    2014-01-01

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 µm PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiOx-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered.

  14. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    SciTech Connect

    Zhang, J.; Wang, Y. H.; Wang, D. Z.

    2013-08-15

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  15. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, Y. H.; Wang, D. Z.

    2013-08-01

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  16. Identification of the autoantigen HB as the barrier-to-autointegration factor.

    PubMed

    Forné, Ignasi; Carrascal, Montserrat; Martinez-Lostao, Luis; Abian, Joaquin; Rodriguez-Sánchez, Jose Luis; Juarez, Candido

    2003-12-12

    The HB autoantigen, a 10-kDa DNA-binding protein recognized by autoantibodies only when bound to DNA, was identified by two-dimensional electrophoresis. Silver-stained protein spots corresponding to the antigen were excised from two-dimensional electrophoresis gels, digested with trypsin, and analyzed by matrix-assisted laser desorption/ionization-reflectron time of flight and nano-electrospray ionization-ion trap/mass spectrometry. Data base search identified the HB antigen as the barrier-to-autointegration factor, a cellular protein implicated in the cellular cycle that blocks autointegration and promotes intermolecular integration of retrovirus such as the Moloney murine leukemia and the human immunodeficiency type 1 virus. The physicochemical characteristics described for these proteins, their ability to bind double-stranded DNA but not single-stranded DNA, and their nuclear localization confirm that HB and barrier-to-autointegration factor are the same protein. PMID:14523012

  17. Optical Diagnostics of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Majewski, Mark Steven

    The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy levels changes. A fully characterized TGP by laser induced fluorescence will exhibit repeatable radiative lifetimes varying with temperature due to vibrational quenching. Specific TGPs also exhibit temperature dependent spectra due to emission from different energy levels. These spectral trends appear at lower temperatures than the initiation of lifetime dependence, as described in this dissertation. The TGPs were synthesized in-house, by collaborators, or industrial sources. The concentrations of the dopants have been varied, and co-doping was investigated as well. This study has allowed for spectral and temporal characterization of these compounds, combined temperature sensing from 200 C to 1600 C. In addition to the diagnostic capabilities of TGPs, several related topics are discussed. An instrumentation method using double offset boxcar integration to determine the lifetime in realtime is presented. Since the Lanthanide elements have the same basic electronic structure their lifetime trends with temperature are similar. This allows for a nondimensionalization scheme to be applied to the data sets. The efficacy of this scheme is apparent as the data sets collapse into a single curve. Additionally, a mathematical model of the radiative decay lifetime is proposed that uses the phonon distribution of the host ceramic. 'Ibis model accurately predicts the lifetime values of Y2O 3 host compounds. With fitted parameters it is able to capture the lifetime trends of YAG and YVO4 host compounds.

  18. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  19. Who is entitled to double effect?

    PubMed

    Boyle, J

    1991-10-01

    The doctrine of double effect continues to be an important tool in bioethical casuistry. Its role within the Catholic moral tradition continues, and there is considerable interest in it by contemporary moral philosophers. But problems of justification and correct application remain. I argue that if the traditional Catholic conviction that there are exceptionless norms prohibiting inflicting some kinds of harms on people is correct, then double effect is justified and necessary. The objection that double effect is superfluous is a rejection of that normative conviction, not a refutation of double effect itself. This justification suggests the correct way of applying double effect to controversial cases. But versions of double effect which dispense with the absolutism of the Catholic tradition lack justification and fall to the objection that double effect is an unnecessary complication. PMID:1779208

  20. Semiconductor double quantum dot micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187