Science.gov

Sample records for double integrator oscillator

  1. BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT

    DOEpatents

    Haase, J.A.

    1961-01-24

    A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.

  2. Multichannel applications of double relaxation oscillation SQUIDs

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Ho; Kwon, Hyukchan; Kim, Jin-Mok; Park, Yong-Ki

    2001-12-01

    Double relaxation oscillation SQUIDs (DROSs) provided high flux-to-voltage transfers of larger than 1 mV Φ0-1 and simple flux-locked loop circuits were used for SQUID operation. We constructed two multichannel systems based on DROSs. The first system is a 40-channel planar gradiometer system consisting of integrated first-order pickup coils. average noise level of the 40 channels is 1 fT cm-1 Hz-1/2 at 100 Hz, corresponding to a field noise of 4 fT Hz-1/2, operating inside a magnetically shielded room. The second one is a 37-channel magnetometer system with 37 integrated magnetometers distributed on a spherical surface and measures field component normal to the head surface. The average noise of the magnetometers is 3 fT Hz-1/2 at 100 Hz. The two systems were applied to measure neuromagnetic fields.

  3. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J.; Smith, Arlee V.

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  4. Dynamic stabilization in the double-well duffing oscillator

    PubMed

    Kim; Kim

    2000-06-01

    Bifurcations associated with stability of the saddle fixed point of the Poincare map, arising from the unstable equilibrium point of the potential, are investigated in a forced Duffing oscillator with a double-well potential. One interesting behavior is the dynamic stabilization of the saddle fixed point. When the driving amplitude is increased through a threshold value, the saddle fixed point becomes stabilized via a pitchfork bifurcation. We note that this dynamic stabilization is similar to that of the inverted pendulum with a vertically oscillating suspension point. After the dynamic stabilization, the double-well Duffing oscillator behaves as the single-well Duffing oscillator, because the effect of the central potential barrier on the dynamics of the system becomes negligible. PMID:11088331

  5. Tristability and self-oscillations in a double resonator system

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Golubev, G. P.; Golubchenko, V. P.; Luchinsky, D. G.

    1991-01-01

    A system consisting of two coupled Fabry-Perot resonators, one of them nonlinear, with an additional feedback between them is studied experimentally and theoretically. The dependence between the phase shift δφ of the resonator 2 and the laser-induced thermal load Q applied to the resonator 1 is essentially nonlinear. This nonlinearity of the additional feedback in the double resonator system is shown to make possible its self-oscillations and the existence of the tristable 8-shaped hysteresis curves. The frequencies of the observed self-oscillations are in the range from 100 Hz to 100 kHz, their shapes varying from sinusoidal to square and sawtooth.

  6. Frequency-doubling optoelectronic oscillator based on destructive interference

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Chen, Fushen; Fan, Mengqiu; Li, Chengxin; Dong, Qimeng

    2015-12-01

    A frequency-doubling optoelectronic oscillator (OEO) using two cascaded modulators based on destructive interference is proposed and experimentally demonstrated. In the proposed system, we utilize a cascaded modulator including a phase modulator and an intensity modulator, which implements a carrier-suppressed double-sideband modulation based on destructive interference to generate a frequency-doubled microwave signal. Meanwhile, the phase modulator is connected by a chirp fiber Bragg grating in the loop, which forms a microwave photonic filter to select the fundamental frequency signal in the OEO loop. As a result, a frequency-doubled microwave signal at 17.9 and 20.5 GHz is generated, respectively. The phase noises and the long-term stability of the generated microwave signals are also investigated.

  7. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator

    PubMed Central

    Nandi, Rabindranath; Pattanayak, Sandhya; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ωo) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θe) for the integrator and low active ωo-sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear fo variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  8. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  9. Aharonov-Bohm oscillation modes in double-barrier nanorings

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Yu, Xiquan; Dai, Zhensheng; Hu, Xiao

    2003-02-01

    The energy spectrum and Aharonov-Bohm (AB) effect in a two-dimensional nanoring interrupted by two identical barriers are studied, and a way of labeling a state according to the node numbers of the wave function in the absence of magnetic flux is introduced. It is found that a magnetic flux φ can modify both the phase and amplitude of wave functions due to the presence of the barriers. AB oscillations are strongly affected by the double barriers, and there are two modes of strong AB oscillations, named O and X modes. The energy levels of O and X modes are occasionally degenerate at φ=0 and 0.5, respectively, and the corresponding wave functions of both degenerate states are localized and can be greatly modified by a small change of φ. The O mode of AB oscillations, which does not exist in the parallel double-barrier ring usually used in experiments, presents an interesting picture and suggests other related phenomena.

  10. Synchronization of period-doubling oscillations in vascular coupled nephrons

    NASA Astrophysics Data System (ADS)

    Laugesen, J. L.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2011-09-01

    The mechanisms by which the individual functional unit (nephron) of the kidney regulates the incoming blood flow give rise to a number of nonlinear dynamic phenomena, including period-doubling bifurcations and intra-nephron synchronization between two different oscillatory modes. Interaction between the nephrons produces complicated and time-dependent inter-nephron synchronization patterns. In order to understand the processes by which a pair of vascular coupled nephrons synchronize, the paper presents a detailed analysis of the bifurcations that occur at the threshold of synchronization. We show that, besides infinite cascades of saddle-node bifurcations, these transitions involve mutually connected cascades of torus and homoclinic bifurcations. To illustrate the broader range of occurrence of this bifurcation structure for coupled period-doubling systems, we show that a similar structure arises in a system of two coupled, non-identical Rössler oscillators.

  11. Axisymmetric oscillation modes of a double droplet system

    SciTech Connect

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) the pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.

  12. Axisymmetric oscillation modes of a double droplet system

    DOE PAGESBeta

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  13. Double Ramification Cycles and Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

  14. Two integrator loop quadrature oscillators: A review

    PubMed Central

    Soliman, Ahmed M.

    2012-01-01

    A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper. PMID:25685396

  15. Double-Balanced Graphene Integrated Mixer with Outstanding Linearity.

    PubMed

    Lyu, Hongming; Wu, Huaqiang; Liu, Jinbiao; Lu, Qi; Zhang, Jinyu; Wu, Xiaoming; Li, Junfeng; Ma, Teng; Niu, Jiebin; Ren, Wencai; Cheng, Huiming; Yu, Zhiping; Qian, He

    2015-10-14

    A monolithic double-balanced graphene mixer integrated circuit (IC) has been successfully designed and fabricated. The IC adopted the cross-coupled resistive mixer topology, integrating four 500 nm-gate-length graphene field-effect transistors (GFETs), four on-chip inductors, and four on-chip capacitors. Passive-first-active-last fabrication flow was developed on 200 mm CMOS wafers. CMOS back-end-of-line processes were utilized to realize most fabrication steps followed by GFET-customized processes. Test results show excellent output spectrum purity with suppressed radio frequency (RF) and local oscillation (LO) signals feedthroughs, and third-order input intercept (IIP3) reaches as high as 21 dBm. The results are compared with a fabricated single-GEFT mixer, which generates IIP3 of 16.5 dBm. Stand-alone 500 nm-gate-length GFETs feature cutoff frequency 22 GHz and maximum oscillation frequency 20.7 GHz RF performance. The double-balanced mixer IC operated with off-chip baluns realizing a print-circuit-board level electronic system. It demonstrates graphene's potential to compete with other semiconductor technologies in RF front-end applications. PMID:26378374

  16. Internal upconversion and doubling of an optical parametric oscillator to extend the tuning range.

    NASA Technical Reports Server (NTRS)

    Campillo, A. J.

    1972-01-01

    Efficient extension of the tuning range of a 1.09-1.95-micron parametric oscillator to 0.435-0.975 microns by upconversion and doubling internally to the oscillator cavity is reported. Unlike previously studied external mixing, internal upconversion and doubling yielded uniform powers of 30 and 60 kW, respectively, over the entire extended tuning range with an unfocused 2-mm ruby laser pump beam of 750 kW.-

  17. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    SciTech Connect

    Schulze-Halberg, Axel E-mail: xbataxel@gmail.com; Wang, Jie

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  18. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    SciTech Connect

    Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.

  19. Period-doubling cascades of canards from the extended Bonhoeffer-van der Pol oscillator

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Hikihara, Takashi

    2010-08-01

    This Letter investigates the period-doubling cascades of canards, generated in the extended Bonhoeffer-van der Pol oscillator. Canards appear by Andronov-Hopf bifurcations (AHBs) and it is confirmed that these AHBs are always supercritical in our system. The cascades of period-doubling bifurcation are followed by mixed-mode oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is clarified that the period-doubling bifurcations arise from a narrow parameter value range at which the original canard in the non-extended equation is observed.

  20. Non-integrability of restricted double pendula

    NASA Astrophysics Data System (ADS)

    Stachowiak, Tomasz; Szumiński, Wojciech

    2015-12-01

    We consider two special types of double pendula, with the motion of masses restricted to various surfaces. In order to get quick insight into the dynamics of the considered systems the Poincaré cross sections as well as bifurcation diagrams have been used. The numerical computations show that both models are chaotic which suggests that they are not integrable. We give an analytic proof of this fact checking the properties of the differential Galois group of the system's variational equations along a particular non-equilibrium solution.

  1. Integrated reservoir management doubles Nigerian field reserves

    SciTech Connect

    Akinlawon, Y.; Nwosu, T.; Satter, A.; Jespersen, R.

    1996-10-01

    An integrated alliance across disciplines, companies and countries enabled Texaco to conduct a comprehensive reservoir analysis of the North Apoi/Funiwa field in Nigeria. Recommendations implemented in 3 months doubled the book reserves of this mature field. The paper discusses the objectives, the integration of organizations, reservoir analysis, and conclusions. The conclusions made from the integrated study are: (1) 3-D seismic data dramatically improved reservoir description. (2) OOIP is considerably more than the booked values and reserves additions are substantial. (3) Significant value has been added to TOPCON`s assets as a result of teamwork and a multidisciplinary approach to evaluating the reservoirs and optimizing the scenarios for reservoir management. (4) Teamwork and integration of professionals, data, technology and tools was critical to the projects success. (5) The study set an example for effective and expeditious technology transfer and applications. (6) Partnering of TOPCON, DPR, NAPIMS, EPTD and SSI resulted in a quick cycle time and set an excellent example of integration and alliance.

  2. Double Chooz and the search for short range anti-neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Hartmann, Francis X.

    2009-06-01

    The Double Chooz Experiment seeks to search for short range antineutrino oscillations from the nuclear reactors at the Chooz Nuclear Power Station operated by Electricite de France in Northeastern France. The measurements are of interest to constraining the value for θ13 in current neutrino oscillation models. New scintillator types based on beta-diketone and pH stabilized carboxylic acid chemistry are described. New results from the study of these scintillators in the context of the detector design are reported.

  3. The Double Red Giant Binary With Odd Oscillations

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Orosz, Jerome A.; Latham, David W.; Jackiewicz, Jason

    2015-01-01

    Red giants in eclipsing binaries are excellent tools for studying the interplay among stellar evolution, binarity, and solar-like oscillations. We present a detailed look at one unique system composed of two red giants, KIC 9246715. One of the stars exhibits solar-like oscillations that are weaker than expected, and the other shows none at all. To address this oddity, we combine four years of Kepler light curves, radial velocity curves for both stars, and stellar atmosphere models for each star's extracted spectrum. Our final, well-constrained photodynamic model yields new physical insights for both stars in the binary, puts asteroseismology to the test, and paves the way for detailed studies of other red giant eclipsing binaries with main-sequence companions. This work summarizes the main results of a new paper by Rawls et al.

  4. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration.

    PubMed

    Backus, Alexander R; Schoffelen, Jan-Mathijs; Szebényi, Szabolcs; Hanslmayr, Simon; Doeller, Christian F

    2016-02-22

    Integration of separate memories forms the basis of inferential reasoning--an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition. PMID:26832442

  5. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  6. Bayesian inference to characterize Josephson oscillations in a double-well trap

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha; Rajapakse, Renuka

    2015-08-01

    We use quantum trajectories to simulate Josephson oscillations of atomic condensates between the two sides of a double-well potential. In the simulations the atoms in both wells are monitored using off-resonant light scattering, and the ultimate outcome of our thought experiment is a sequence of photon counts probing the numbers of the atoms in each potential well. We show how to reconstruct the Josephson oscillations from the observed photon counts using Bayesian inference, and study the oscillations quantitatively by averaging the inferred time-dependent oscillation amplitude over a large number of realizations. Scaling behaviors that characterize the oscillations are uncovered and related to physics principles such as measurement back-action. It turns out that the scalings hold true for quite small atom numbers, so that in this sense four atoms in a potential well may already make a Bose-Einstein condensate.

  7. Self-seeding of a pulsed double-grating Ti:sapphire laser oscillator

    SciTech Connect

    Tamura, Koji

    2008-04-01

    A self-seeded pulsed double-grating Ti:sapphire laser oscillator consisting of a grazing incidence cavity geometry with a pair of gratings and a standing-wave cavity pumped by a frequency-doubled Nd:YAG laser was developed and characterized. With self-seeding, narrow-linewidth single-longitudinal-mode (SLM) operation and SLM scanning were possible with a reduced lasing threshold, which was desirable for the intended applications.

  8. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.

    PubMed

    Chu, Yizhuo; Wang, Dongxing; Zhu, Wenqi; Crozier, Kenneth B

    2011-08-01

    The strong coupling between localized surface plasmons and surface plasmon polaritons in a double resonance surface enhanced Raman scattering (SERS) substrate is described by a classical coupled oscillator model. The effects of the particle density, the particle size and the SiO2 spacer thickness on the coupling strength are experimentally investigated. We demonstrate that by tuning the geometrical parameters of the double resonance substrate, we can readily control the resonance frequencies and tailor the SERS enhancement spectrum. PMID:21934853

  9. Path Integral for Dirac oscillator with generalized uncertainty principle

    SciTech Connect

    Benzair, H.; Boudjedaa, T.; Merad, M.

    2012-12-15

    The propagator for Dirac oscillator in (1+1) dimension, with deformed commutation relation of the Heisenberg principle, is calculated using path integral in quadri-momentum representation. As the mass is related to momentum, we then adapt the space-time transformation method to evaluate quantum corrections and this latter is dependent from the point discretization interval.

  10. Frequency multiplying optoelectronic oscillator based on nonlinearly-coupled double loops.

    PubMed

    Xu, Wei; Jin, Tao; Chi, Hao

    2013-12-30

    We propose and demonstrate a frequency multiplying optoelectronic oscillator with nonlinearly-coupled double loops based on two cascaded Mach-Zehnder modulators, to generate high frequency microwave signals using only low-frequency devices. We find the final oscillation modes are only determined by the length of the master oscillation loop. Frequency multiplying signals are generated via nonlinearly-coupled double loops, the output of one loop being used to modulate the other. In the experiments, microwave signals at 10 GHz with -121 dBc/Hz phase noise at 10 kHz offset and 20 GHz with -112.8 dBc/Hz phase noise at 10 kHz offset are generated. Meanwhile, their side-mode suppression ratios are also evaluated and the maximum ratio of 70 dB is obtained. PMID:24514845

  11. Millimeter-band oscillations based on resonant tunneling in a double-barrier diode at room temperature

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Sollner, T. C. L. G.; Goodhue, W. D.; Parker, C. D.

    1987-01-01

    A double-barrier diode at room temperature has yielded oscillations with fundamental frequencies up to 56 GHz and second harmonics up to 87 GHz. The output powers at these frequencies were about 60 and 18 microW, respectively. These results are attributed to a recent improvement in the material parameters of the device and to the integration of the device into a waveguide resonator. The most successful diode to date has thin (about 1.5 nm) AlAs barriers, a 4.5-nm-wide GaAs quantum well, and 2 x 10 to the 17th/cu cm doping concentration in the n-GaAs outside the barriers. This particular diode is expected to oscillate at frequencies higher than those achieved by any reported p-n tunnel diode.

  12. Merging droplets in double nanocontact spin torque oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Dun; Liu, Yaowen; Zhou, Y.; Mohseni, S. M.; Chung, S.; Åkerman, J.

    2016-03-01

    We demonstrate how magnetic droplet soliton pairs, nucleated by two separated nanocontact (NC) spin torque oscillators, can merge into a single droplet soliton. A detailed description of the magnetization dynamics of this merger process is obtained by micromagnetic simulations: A droplet pair with a steady-state in-phase spin precession is generated through the spin-transfer torque effect underneath two separate NCs, followed by a gradual expansion of the droplets' volume and the out-phase of magnetization on the inner side of the two droplets, resulting in the droplets merging into a larger droplet. This merger occurs only when the NC separation is smaller than a critical value. A transient breathing mode is observed before the merged droplet stabilizes into a steady precession state. The precession frequency of the merged droplet is lower than that of the droplet pair, consistent with its larger size. Merged droplets can again break up into droplet pairs at high enough magnetic field with a strong hysteretic response.

  13. Self-excited oscillation of rotating double-walled carbon nanotubes.

    PubMed

    Cai, Kun; Yin, Hang; Qin, Qing H; Li, Yan

    2014-05-14

    The oscillatory behavior of a double-walled carbon nanotubes with a rotating inner tube is investigated using molecular dynamics simulation. In the simulation, one end of the outer tube is assumed to be fixed and the other is free. Without any prepullout of the rotating inner tube, it is interesting to observe that self-excited oscillation can be triggered by nonequilibrium attraction of the ends of two tubes. The oscillation amplitude increases until it reaches its maximum with decrease of the rotating speed of the inner tube. The oscillation of a bitube is sensitive to the gap between two walls. Numerical results also indicate that the zigzag/zigzag commensurate model with a larger gap of >0.335 nm can act as a terahertz oscillator, and the armchair/zigzag incommensurate model plays the role of a high amplitude oscillator with the frequency of 1 GHz. An oblique chiral model with a smaller gap of <0.335 nm is unsuitable for the oscillator because of the steep damping of oscillation. PMID:24742354

  14. A non-PRE double-peaked burst with oscillations: burning front propagation and stalling

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2006-01-01

    Non-photospheric-radius-expansion (non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames from a rotational pole on the neutron star surface, as we argued in a previous study. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that our model (with ignition at high latitudes) can qualitatively explain the observed burst profile, and spectral evolution. Moreover, the evolution of the source radius inferred from the data shows a strong signature of temporary stalling of the burning front, which is an essential ingredient of our model. This implies that an understanding of thermonuclear flame spreading on neutron stars can be achieved by a simultaneous study of the evolution of intensity and spectrum of these bursts. We also report the discovery of millisecond period brightness oscillations from this burst, which is the first such observation from a non-PRE double-peaked burst. Our model can explain the corresponding oscillation amplitude during the first (weaker) peak, and the absence of oscillations during the second peak. We discuss how observations of oscillations during non-PRE double-peaked bursts provide an additional t 001 for understanding thermonuclear flame spreading successfully.

  15. An application of integral inequality to second order nonlinear oscillation

    NASA Astrophysics Data System (ADS)

    Kwong, Man Kam; Wong, James S. W.

    A simple result concerning integral inequalities enables us to give an alternative proof of Waltman's theorem: lim t → ∞ ∝ t0a( s) ds = ∞ implies oscillation of the second order nonlinear equation y″( t) + a( t) f( y( t)) = 0; to prove an analog of Wintner's theorem that relates the nonoscillation of the second order nonlinear equations to the existence of solutions of some integral equations, assuming that lim t → ∞ ∝ t0a( s) ds exists; and to give an alternative proof and to extend a result of Butler. An often used condition on the coefficient a( t) is given a more familiar equivalent form and an oscillation criterion involving this condition is established.

  16. Integrated Ring Oscillators based on high-performance Graphene Inverters

    PubMed Central

    Schall, Daniel; Otto, Martin; Neumaier, Daniel; Kurz, Heinrich

    2013-01-01

    The road to the realization of complex integrated circuits based on graphene remains an open issue so far. Current graphene based integrated circuits are limited by low integration depth and significant doping variations, representing major road blocks for the success of graphene in future electronic devices. Here we report on the realization of graphene based integrated inverters and ring oscillators. By using an optimized process technology for high-performance graphene transistors with local back-gate electrodes we demonstrate that complex graphene based integrated circuits can be manufactured reproducibly, circumventing problems associated with doping variations. The fabrication process developed here is scalable and fully compatible with conventional silicon technology. Therefore, our results pave the way towards applications based on graphene transistors in future electronic devices. PMID:24005257

  17. Wavelength Tuning Characteristics of Idler Waves in Terahertz-Wave Parametric Oscillator Using Optical Double Resonance

    NASA Astrophysics Data System (ADS)

    Takida, Yuma; Ohira, Tatsuya; Tadokoro, Yuzuru; Kumagai, Hiroshi; Nashima, Shigeki

    We experimentally investigated the wavelength tuning of oscillating idler (Stokes) waves by slightly translating the position of a mirror constituting an enhancement cavity in a terahertz (THz)-wave parametric oscillator (TPO) with optical double resonance. The wide tuning range of the idler wavelength was from 781.5 to 787.3 nm, corresponding to the frequency range of THz (signal) waves from 0.7 to 3.5 THz. The measured intersecting angle between pump and idler waves was in good agreement with the theoretical calculation of the noncollinear phase-matching condition in all the above tuning range.

  18. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices. PMID:24145429

  19. Pneumatic oscillator circuits for timing and control of integrated microfluidics

    PubMed Central

    Duncan, Philip N.; Nguyen, Transon V.; Hui, Elliot E.

    2013-01-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices. PMID:24145429

  20. Intrinsic frequency doubling in an MgO-based spin torque oscillator.

    SciTech Connect

    Muduli, P. K.; Heinonen, O. G.; Akerman, J.

    2011-01-01

    We show that the frequency of a magnetic tunnel junction (MTJ)-based spin torque oscillator (STO) can be doubled and the first harmonic entirely suppressed by orienting the free and fixed layer magnetizations in an antiparallel (AP) state. The angular dependence of the harmonics allows us to extract the free layer precession angle, which follows a parabolic decrease from a maximum of 20{sup o} in the AP state to about 10{sup o} at 25{sup o} of misalignment. Frequency-doubling provides both a promising way for increasing the frequency of MTJ-STOs and a means for high-rate frequency shift keying using only a small magnetic field.

  1. Josephson junction in the double-well potential with a fast-oscillating barrier

    NASA Astrophysics Data System (ADS)

    Keser, Aydin Cem; Radic, Juraj; Galitski, Victor

    2014-03-01

    We present an analysis of the Bose gas in a double-well potential with a fast-oscillating barrier. We study the Floquet spectrum of the system and find the effective time-independent Hamiltonian where the tunneling coefficient gets modified due to the periodic driving. The system realizes a Josephson junction with a high control of the tunneling coefficient (the coefficient can now change sign, which is impossible in the stationary double-well potential). We connect the corresponding Josephson equations with equations of motion for Kapitsa's pendulum and study the ways to dynamically stabilize certain states of the system.

  2. Maki-Nakagawa-Sakata parameters from neutrino oscillations, single beta decay, and double beta decay

    SciTech Connect

    Matsuda, K.; Takeda, N.; Fukuyama, T.; Nishiura, H.

    2001-07-01

    We examine the constraints on the Maki-Nakagawa-Sakata lepton mixing matrix from the present and future experimental data of neutrino oscillation, tritium beta decay, and neutrinoless double beta decay for the Majorana neutrinos. We show that the small mixing angle solutions for solar neutrino problem are disfavored for small averaged mass ({l_angle}m{sub {nu}}{r_angle}) of neutrinoless double beta decay ({le}0.01 eV) in the inverse neutrino mass hierarchy scenario. This is the case even in the normal mass hierarchy scenario except for a very restrictive value of the averaged neutrino mass ({ovr m{sub {nu}}}) of single beta decay. The lower mass bound for {ovr m{sub {nu}}} is given from the present neutrino oscillation data. We obtain some relations between {l_angle}m{sub {nu}}{r_angle} and {ovr m{sub {nu}}}. The constraints on the Majorana CP violating phases are also given.

  3. Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang-Feng; Xu, Liang; Lin, Qing-Feng; Zhong, Xin; Han, Hai-Nian; Wei, Zhi-Yi

    2013-05-01

    We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.

  4. RF photonic front-end integrating with local oscillator loop.

    PubMed

    Yu, H; Chen, M; Gao, H; Yang, S; Chen, H; Xie, S

    2014-02-24

    Broadband Radio frequency (RF) photonic front-ends are one of the vital applications of the microwave photonics. A tunable and broadband RF photonic front-end integrating with the optoelectronic oscillator (OEO) based local oscillator has been proposed and experimentally demonstrated, in which only one phase modulator (PM) is employed thanks to the characteristic of the PM. The silicon-on-insulator based narrow-bandwidth band-pass filter is introduced for signal processing. The application condition of the proposed RF photonic front-end has been discussed and the performance of the front-end has also been measured. The SFDR at a frequency of about 7.02 GHz is measured to be 88.6 dB-Hz(2/3). PMID:24663712

  5. Force distribution for double-walled carbon nanotubes and gigahertz oscillators

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Hill, James M.

    2007-09-01

    Advances in nanotechnology have led to the creation of many nano-scale devices and carbon nanotubes are representative materials to construct these devices. Double-walled carbon nanotubes with the inner tube oscillating can be used as gigahertz oscillators and form the basis of possible nano-electronic devices that might be instrumental in the micro-computer industry which are predominantly based on electron transport phenomena. There are many experiments and molecular dynamical simulations which show that a wave is generated on the outer cylinder as a result of the oscillation of the inner carbon nanotube and that the frequency of this wave is also in the gigahertz range. As a preliminary to analyze and model such devices, it is necessary to estimate accurately the resultant force distribution due to the inter-atomic interactions. Here we determine some new analytical expressions for the van der Waals force using the Lennard Jones potential for general lengths of the inner and outer tubes. These expressions are utilized together with Newton’s second law to determine the motion of an oscillating inner tube, assuming that any frictional effects may be neglected. An idealized and much simplified representation of the Lennard Jones force is used to determine a simple formula for the oscillation frequency resulting from an initial extrusion of the inner tube. This simple formula is entirely consistent with the existing known behavior of the frequency and predicts a maximum oscillation frequency occurring when the extrusion length is (L 2 L 1)/2 where L 1 and L 2 are the respective half-lengths of the inner and outer tubes (L 1 < L 2).

  6. KIC 9246715: The Double Red Giant Eclipsing Binary with Odd Oscillations

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason; Orosz, Jerome A.; Corsaro, Enrico; Beck, Paul G.; Mosser, Benoît; Latham, David W.; Latham, Christian A.

    2016-02-01

    We combine Kepler photometry with ground-based spectra to present a comprehensive dynamical model of the double red giant eclipsing binary KIC 9246715. While the two stars are very similar in mass ({M}1={2.171}-0.008+0.006 {M}⊙ , {M}2={2.149}-0.008+0.006 {M}⊙ ) and radius ({R}1={8.37}-0.07+0.03 {R}⊙ , {R}2={8.30}-0.03+0.04 {R}⊙ ), an asteroseismic analysis finds one main set of solar-like oscillations with unusually low-amplitude, wide modes. A second set of oscillations from the other star may exist, but this marginal detection is extremely faint. Because the two stars are nearly twins, KIC 9246715 is a difficult target for a precise test of the asteroseismic scaling relations, which yield M = 2.17 ± 0.14 M⊙ and R = 8.26 ± 0.18 R⊙. Both stars are consistent with the inferred asteroseismic properties, but we suspect the main oscillator is Star 2 because it is less active than Star 1. We find evidence for stellar activity and modest tidal forces acting over the 171 day eccentric orbit, which are likely responsible for the essential lack of solar-like oscillations in one star and weak oscillations in the other. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. This system is a useful case study and paves the way for a detailed analysis of more red giants in eclipsing binaries, an important benchmark for asteroseismology.

  7. Reconfigurable optoelectronic oscillator incorporating a double-coupling recirculating delay line

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Xin; Chen, Fu-Shen; Zhang, Jia-Hong

    2014-07-01

    A reconfigurable optoelectronic oscillator (OEO) based on a double-coupling recirculating delay line (DC-RDL) is analyzed and experimentally demonstrated. In the proposed OEO, an incoherent two-tap microwave photonic filter is formed by an amplified spontaneous emission (ASE) source, a Mach-Zehnder modulator, a DC-RDL, and a polarization beam splitter (PBS) to realize selection of the oscillation mode. Specifically, the incoherence is implemented using an ASE broadband laser source and a DC-RDL, and the high sidemode suppression performance can be achieved by employing the dual-loops system between the dual output of the DC-RDL and the PBS. A detailed theoretical analysis is provided and is verified by the experiment. The single-sideband phase noise, the frequency tunability, and the long-term stability of the generated microwave signal are investigated. In addition, the frequency independent of the phase noise is also experimentally observed.

  8. Effect of dipole-dipole interaction on self-control magnetization oscillation in double-domain nanomagnets

    NASA Astrophysics Data System (ADS)

    Gao, Y. J.; Guo, Y. J.; Liu, J.-M.

    2012-03-01

    A double-domain model with long-range dipole-dipole interaction is proposed to investigate the self-oscillation of magnetization in nano-magnetic systems driven by self-controlled spin-polarized current. The dynamic behavior of magnetization oscillation is calculated by a modified Landau-Lifshitz-Gilbert equation in order to evaluate the effects of the long-range dipole-dipole interaction. While the self-oscillation of magnetization can be maintained substantially, several self-oscillation regions are experienced as the dipole-dipole interaction increases gradually.

  9. A double FEL oscillator: A possible scheme for a photon-photon collider

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Torre, A.

    2013-08-01

    Exploration of the mutual scattering of photons in vacuum is considered as a fundamental test of the quantum electrodynamics theory. In this connection, we propose a "double" free-electron laser oscillator as a possible device for head-on photon-photon collisions. The device is conceived to comprise two undulator sections within the same cavity, where then two laser beams are produced by two counterpropagating electron beams. The latter are in turn exploited to produce gamma photons by backward Compton scattering of the intracavity FEL radiation itself. A preliminary analysis of the collision rate of the backscattered photons is presented specifically at the maximum of the relevant cross section.

  10. Coupled frequency-doubling optoelectronic oscillator based on polarization modulation and polarization multiplexing

    NASA Astrophysics Data System (ADS)

    Cai, Shuhong; Pan, Shilong; Zhu, Dan; Tang, Zhenzhou; Zhou, Pei; Chen, Xiangfei

    2012-03-01

    A coupled frequency-doubling optoelectronic oscillator (OEO) is proposed and experimentally demonstrated, which is constructed based on the perfect combination of polarization modulation and polarization multiplexing. A fundamental microwave signal at 9.95 GHz or a frequency-doubled microwave signal at 19.9 GHz is generated with a wavelength-independent sidemode-suppression ratio (SMSR) as high as 78 dB obtained. The phase noise of the generated 19.9-GHz signal is - 103.45 dBc/Hz at 10-kHz frequency offset, indicating a good short-term stability. The proposed scheme is simple and flexible, which can find applications in radars and wireless communications.

  11. Spin-orbit interaction for the double ring-shaped oscillator

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng; You, Yuan; Dong, Shi-Hai

    2016-08-01

    The spin-orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m = 0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m ≠ 0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases | m | = 2 , 3 , 4 , …. We note that around the critical value b0, the energy levels are reversed. We also discuss some special cases for η = 2 , 3 , 4 , 5 , 6 , …, and the b = 0 , c > 0. It should be pointed out that the parameter b0 is relevant for the angular part parameter b in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter c corresponds to the angular part parameter in double ring-shaped potential and the η is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.

  12. Oscillations up to 1.40 THz from Resonant-Tunneling-Diode-Based Oscillators with Integrated Patch Antennas

    NASA Astrophysics Data System (ADS)

    Koyama, Yasushi; Sekiguchi, Ryota; Ouchi, Toshihiko

    2013-06-01

    Oscillations from 1.02 to 1.40 THz were observed at room temperature from resonant-tunneling-diode (RTD)-based oscillators with integrated patch antennas by improving the mesa structure and tuning the length of the antenna and the feed point location of the RTD. A two-step post structure realized a reduction of series resistance of the RTD, and the oscillation frequency significantly increased with the feed point closer to the center of patch antenna at around 1 THz. Experimental results agreed well with the analysis.

  13. Oscillations, period doublings, and chaos in CO oxidation and catalytic mufflers.

    PubMed

    Marek, Milos; Schejbal, Matyás; Kocí, Petr; Nevoral, Vladislav; Kubícek, Milan; Hadac, Otto; Schreiber, Igor

    2006-09-01

    Early experimental observations of chaotic behavior arising via the period-doubling route for the CO catalytic oxidation both on Pt(110) and Ptgamma-Al(2)O(3) porous catalyst were reported more than 15 years ago. Recently, a detailed kinetic reaction scheme including over 20 reaction steps was proposed for the catalytic CO oxidation, NO(x) reduction, and hydrocarbon oxidation taking place in a three-way catalyst (TWC) converter, the most common reactor for detoxification of automobile exhaust gases. This reactor is typically operated with periodic variation of inlet oxygen concentration. For an unforced lumped model, we report results of the stoichiometric network analysis of a CO reaction subnetwork determining feedback loops, which cause the oscillations within certain regions of parameters in bifurcation diagrams constructed by numerical continuation techniques. For a forced system, numerical simulations of the CO oxidation reveal the existence of a period-doubling route to chaos. The dependence of the rotation number on the amplitude and period of forcing shows a typical bifurcation structure of Arnold tongues ordered according to Farey sequences, and positive Lyapunov exponents for sufficiently large forcing amplitudes indicate the presence of chaotic dynamics. Multiple periodic and aperiodic time courses of outlet concentrations were also found in simulations using the lumped model with the full TWC kinetics. Numerical solutions of the distributed model in two geometric coordinates with the CO oxidation subnetwork consisting of several tens of nonlinear partial differential equations show oscillations of the outlet reactor concentrations and, in the presence of forcing, multiple periodic and aperiodic oscillations. Spatiotemporal concentration patterns illustrate the complexity of processes within the reactor. PMID:17014241

  14. 241-AZ Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  15. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  16. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  17. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  18. Oscillation of electron mobility in parabolic double quantum well structure due to applied electric field

    SciTech Connect

    Sahoo, Narayan; Sahu, Trinath

    2014-12-15

    We show that oscillation of low temperature electron mobility μ can be obtained by applying an electric field F along the growth direction of the asymmetrically barrier delta doped Al{sub x}Ga{sub 1-x}As parabolic double quantum well structure. The drastic changes in the subband Fermi energies and distributions of subband wave functions as a function of F yield nonmonotonic intra- and intersubband scattering rate matrix elements mediated by intersubband effects. The oscillatory enhancement of μ, which is attributed to the subband mobilities governed by the ionized impurity scattering, magnifies with increase in well width and decrease in height of the parabolic structure potential. The results can be utilized for nanoscale low temperature device applications.

  19. Contact process on generalized Fibonacci chains: infinite-modulation criticality and double-log periodic oscillations.

    PubMed

    Barghathi, Hatem; Nozadze, David; Vojta, Thomas

    2014-01-01

    We study the nonequilibrium phase transition of the contact process with aperiodic transition rates using a real-space renormalization group as well as Monte Carlo simulations. The transition rates are modulated according to the generalized Fibonacci sequences defined by the inflation rules A → ABk and B → A. For k=1 and 2, the aperiodic fluctuations are irrelevant, and the nonequilibrium transition is in the clean directed percolation universality class. For k≥3, the aperiodic fluctuations are relevant. We develop a complete theory of the resulting unconventional "infinite-modulation" critical point, which is characterized by activated dynamical scaling. Moreover, observables such as the survival probability and the size of the active cloud display pronounced double-log periodic oscillations in time which reflect the discrete scale invariance of the aperiodic chains. We illustrate our theory by extensive numerical results, and we discuss relations to phase transitions in other quasiperiodic systems. PMID:24580177

  20. Double-pass pumped extracavity optical parametric oscillator with passive optical feedback suppression

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Algahtani, M.; Rusak, A. A.; Orlovich, V. A.; Dashkevich, V. I.; El-Desouki, M.

    2016-04-01

    We demonstrate a simple way of building a compact eye-safe laser source based on a double-pass pumped extracavity optical parametric oscillator (EOPO) without an optical Faraday isolator. A Nd:KGW pump laser (PL) and the KTP EOPO located close to the PL are designed with stable cavities, while the 100% end system mirrors form an unstable cavity with sufficiently high threshold at 1067 nm. At the 6.6 J pump of the Nd:KGW laser, the EOPO output energy obtained at 1577 nm is 14.7 mJ, corresponding to the conversion efficiency of 33% with respect to the fundamental. The pulse width is 7 ns and the output beam divergence is 3 times diffraction limit.

  1. Integration of a Self-Coherence Algorithm into DISAT for Forced Oscillation Detection

    SciTech Connect

    Follum, James D.; Tuffner, Francis K.; Amidan, Brett G.

    2015-03-03

    With the increasing number of phasor measurement units on the power system, behaviors typically not observable on the power system are becoming more apparent. Oscillatory behavior on the power system, notably forced oscillations, are one such behavior. However, the large amounts of data coming from the PMUs makes manually detecting and locating these oscillations difficult. To automate portions of the process, an oscillation detection routine was coded into the Data Integrity and Situational Awareness Tool (DISAT) framework. Integration into the DISAT framework allows forced oscillations to be detected and information about the event provided to operational engineers. The oscillation detection algorithm integrates with the data handling and atypical data detecting capabilities of DISAT, building off of a standard library of functions. This report details that integration with information on the algorithm, some implementation issues, and some sample results from the western United States’ power grid.

  2. Double-shell tank waste transfer facilities integrity assessment plan

    SciTech Connect

    Hundal, T.S.

    1998-09-30

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements.

  3. Numerical simulation for designing tuned liquid dampers to damp out double-pendulum oscillations

    NASA Astrophysics Data System (ADS)

    Pinot, P.; Genevès, G.

    2011-06-01

    This paper presents a simplified dynamic analytical model based on the Lagrangian formalism to describe the annular sloshing damper behavior used to damp out free oscillations of a double-pendulum system. A simulation program using this model has been developed with the mathematical software MATLAB®. This simulation method is applied to design dampers for the mass and coil suspensions of the French watt balance experiment. The motion of each suspension is equivalent to a double-pendulum motion having two main natural frequencies for each configuration considered. The shape of the damper used is a ring composed of one or two concentric annular channels partially filled with a liquid (water for instance). The depth of the liquid must be adjusted in each channel in order to tune the resonance frequency of the liquid to a natural frequency of the suspension. Two corrective parameters determined experimentally have been added to our model in order to yield results in fair agreement with experiment. The numerical simulation based on our analytical model has provided useful information for designing annular sloshing dampers as efficient as possible for the experiment concerned. Furthermore, this method can be used to study any pendulous load system behavior and to design appropriate sloshing dampers.

  4. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  5. Design of a novel integrated position sensor based on Hall effects for linear oscillating actuator

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Yan, Liang; Jiao, Zongxia

    2015-07-01

    Linear oscillating actuator provides linear reciprocate motion directly without other auxiliary components, which is suitable for high integration applications in aerospace industry. Accurate position control is essential for linear oscillating motor and relies on concise measurement of mover position. However, most position measurements are dependent on external complicated sensors, which hinders further integration of linear oscillating actuation system. In this paper, a novel position sensing system for linear oscillating actuator based on Hall effects is proposed to achieve accurate and high integration measurement simultaneously. Axial sensing magnetic field with approximately linear relationship with position is created for direct and convenient measurement. Analytical model of sensing magnetic field is set up for optimization and validated by finite element method and experimental results. Finally, sensing magnets are integrated into motor prototype for experiments. Dynamic position results are tested in experiments and prove to be effective and accurate for position sensing with short-stroke.

  6. Design of a novel integrated position sensor based on Hall effects for linear oscillating actuator.

    PubMed

    Wang, Tianyi; Yan, Liang; Jiao, Zongxia

    2015-07-01

    Linear oscillating actuator provides linear reciprocate motion directly without other auxiliary components, which is suitable for high integration applications in aerospace industry. Accurate position control is essential for linear oscillating motor and relies on concise measurement of mover position. However, most position measurements are dependent on external complicated sensors, which hinders further integration of linear oscillating actuation system. In this paper, a novel position sensing system for linear oscillating actuator based on Hall effects is proposed to achieve accurate and high integration measurement simultaneously. Axial sensing magnetic field with approximately linear relationship with position is created for direct and convenient measurement. Analytical model of sensing magnetic field is set up for optimization and validated by finite element method and experimental results. Finally, sensing magnets are integrated into motor prototype for experiments. Dynamic position results are tested in experiments and prove to be effective and accurate for position sensing with short-stroke. PMID:26233402

  7. Nonlinear processes upon doubling the period of self-modulation oscillations in a solid-state ring laser

    SciTech Connect

    Zolotoverkh, I I; Kamysheva, A A; Kravtsov, N V; Lariontsev, E G; Firsov, V V; Chekina, S N

    2008-10-31

    Nonlinear phenomena appearing in a solid-state ring laser upon approaching the period-doubling bifurcation point of self-modulation oscillations and inside the doubling region are studied theoretically and experimentally. The bifurcation appears due to the parametric interaction of self-modulation oscillations of the first kind with relaxation oscillations. It is found that the bifurcation diagrams, time dependences of the intensities and power spectrum can significantly differ for counterpropagating waves because of the amplitude nonreciprocity of the ring resonator and the inequality of the moduli of the feedback coefficients. It is shown that when the self-modulation period is doubled, the widths of spectral peaks corresponding the self-modulation frequency and the fundamental relaxation frequency decrease. Noise precursors of doubling bifurcation are studied. It is found that the distance between the peaks of noise precursors increases with increasing the noise intensity. It is demonstrated experimentally that the noise modulation leads to the bifurcation point displacement, which increases with increasing the noise. (nonlinear optical phenomena)

  8. Tunable optoelectronic oscillator incorporating a carrier phase-shifted double sideband modulation system

    NASA Astrophysics Data System (ADS)

    Li, Chengxin; Chen, Fushen; Zhang, Jiahong

    2016-01-01

    A tunable optoelectronic oscillator (OEO) implemented by using a carrier phase-shifted double sideband modulation (CPS-DSB) system consisting of an optical coupler (OC), a Mach-Zehnder modulator (MZM) biased at the minimum transmission point, a polarization beam splitter (PBS), and a tunable optical delay line (TODL) is proposed and experimentally demonstrated. The key device in the system is the CPS-DSB system, which functions in conjunction with a chirped fiber Bragg grating (CFBG) in the loop form a high-Q microwave photonic filter (MPF). Through simply adjusting the TODL, the central frequency of the MPF is shifted and the frequency tunability of the OEO can be realized. A detailed theoretical analysis is provided and the results are confirmed by an experiment. A microwave signal with a frequency-tuning range from 7.24 to 14.05 GHz is generated. The phase noise, the long-term stability and the side-mode suppression performance of the generated microwave signal are also investigated.

  9. An experimental double relaxation oscillation superconducting quantum interference device with on-chip feedback

    NASA Astrophysics Data System (ADS)

    Podt, M.; Flokstra, J.; Rogalla, H.

    2004-04-01

    A wide-band double relaxation oscillation superconducting quantum interference device (DROS) with on-chip digital flux locked loop (FLL) circuitry, a Smart DROS, has been realized and experimentally investigated. The key element of the FLL circuitry is a superconducting up-down counter. In order to maximize the flux slew rate, the Smart DROS has been optimized with respect to the coupling between the DROS and the up-down counter, and the quantization unit of the feedback flux. For the Smart DROS with an inductance of 280 pH the flux quantization unit was 5 × 10-2 PHgr0. The experiments showed proper operation of the superconducting up-down counter. The full functionality of the complete Smart DROS in a closed loop was demonstrated. For operation at a clock frequency of 100 MHz, a maximum flux slew rate of 5 × 106 PHgr0 s-1 was calculated from the measured parameters. Numerical simulations showed that the Smart DROS allows a maximum flux slew rate up to 108 PHgr0 s-1 by reducing the area of the Josephson junctions.

  10. Application of the double paddle oscillator for quantifying environmental, surface mass variation

    NASA Astrophysics Data System (ADS)

    Wei, Haoyan; Pomeroy, Joshua

    2016-04-01

    Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an ultra-high vacuum (UHV) environmental chamber equipped with in situ film deposition, (multi)gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artefacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest. These tools are designed to allow us to comparatively evaluate how different materials gain or lose mass due to precisely controlled environmental excursions, with a long term goal of measuring changes in absolute mass. Herein, we provide a detailed experimental description of the apparatus, an evaluation of the initial performance, and demonstration measurements using nitrogen adsorption and desorption directly on the DPO.

  11. Application of the double paddle oscillator for quantifying environmental, surface mass variation

    PubMed Central

    Wei, Haoyan; Pomeroy, Joshua

    2016-01-01

    Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an UHV (ultra-high vacuum) environmental chamber equipped with in situ film deposition, (multi)gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artifacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in-situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest. These tools are designed to allow us to comparatively evaluate how different materials gain or lose mass due to precisely controlled environmental excursions, with a long term goal of measuring changes in absolute mass. Herein, we provide a detailed experimental description of the apparatus, an evaluation of the initial performance, and demonstration measurements using nitrogen adsorption and desorption directly on the DPO. PMID:27212736

  12. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  13. Analytic double product integrals for all-frequency relighting.

    PubMed

    Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun

    2013-07-01

    This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods. PMID:22802121

  14. Oscillators based on double-walled armchair@zigzag carbon nanotubes containing inner tubes with different helical rises.

    PubMed

    Zeng, Yong-Hui; Jiang, Wu-Gui; Qin, Qing H

    2016-03-01

    A novel approach is presented to improve the oscillatory behavior of oscillators based on double-walled carbon nanotubes containing rotating inner tubes applied with different helical rises. The influence of the helical rise on the oscillatory amplitude, frequency, and stability of inner tubes with different helical rises in armchair@zigzag bitubes is investigated using the molecular dynamics method. Our simulated results show that the oscillatory behavior is very sensitive to the applied helical rise. The inner tube with h = 10 Å has the most ideal hexagon after the energy minimization and NVT process in the armchair@zigzag bitubes, superior even to the inner tube without a helical rise, and thus it exhibits better oscillatory behavior compared with other modes. Therefore, we can apply an appropriate helical rise on the inner tube to produce a stable and smooth oscillator based on double-walled carbon nanotubes. PMID:26855175

  15. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    SciTech Connect

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.

  16. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    DOE PAGESBeta

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymore » and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.« less

  17. Absolute Stellar Parameters of KIC 09246715: A Double-giant Eclipsing System with a Solar-like Oscillator

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Konacki, M.

    2015-11-01

    We present our results of a combined analysis of radial velocity and light curves (LCs) of a double-lined spectroscopic and eclipsing binary KIC 09246715, observed photometrically by the Kepler satellite and spectroscopically with the OAO-1.88 m telescope with the HIgh-Dispersion Echelle Spectrograph. The target was claimed to be composed of two red giants, one of which is showing solar-like oscillations. We have found that the mass and radius of the primary are {M}1=2.169+/- 0.024 {M}⊙ and {R}1=8.47+/- 0.13 {R}⊙ , and of the secondary are {M}2=2.143+/- 0.025 {M}⊙ and {R}2=8.18+/- 0.09 {R}⊙ , which confirms their double-giant status. Our secondary is the star to which the oscillations were attributed. Results of its previous asteroseismic analysis are in agreement with ours, only significantly less precise, but the subsequent LC-based study failed to derive the correct mass and radius of our primary. KIC 09246715 is one of the rare cases where asteroseismic parameters of a solar-like oscillator were confirmed by an independent method and only the third example of a Galactic double-giant eclipsing binary with masses and radii measured with precision below 2%.

  18. Integrable order parameter dynamics of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Pritula, G. M.; Prytula, V. I.; Usatenko, O. V.

    2016-02-01

    We study the nonlinear dynamics of globally coupled nonidentical oscillators in the framework of two order parameter (mean field and amplitude-frequency correlator) reduction. The main result of the paper is the exact solution of a corresponding nonlinear system on a two-dimensional invariant manifold. We present a complete classification of phase portraits and bifurcations, obtain explicit expressions for invariant manifolds (a limit cycle among them) and derive analytical solutions for arbitrary initial data and different regimes.

  19. Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator.

    PubMed

    My, Thu-Hien; Drag, Cyril; Bretenaker, Fabien

    2008-07-01

    A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485 mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355 nm for the idler, 876 and 975 nm for the signal, and between 585 and 678 nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser. PMID:18594663

  20. Stable time integration suppresses unphysical oscillations in the bidomain model

    NASA Astrophysics Data System (ADS)

    Torabi Ziaratgahi, Saeed; Marsh, Megan; Sundnes, Joakim; Spiteri, Raymond

    2014-07-01

    The bidomain model is a popular model for simulating electrical activity in cardiac tissue. It is a continuum-based model consisting of non-linear ordinary differential equations (ODEs) describing spatially averaged cellular reactions and a system of partial differential equations (PDEs) describing electrodiffusion on tissue level. Because of this multi-scale, ODE/PDE structure of the model, operator-splitting methods that treat the ODEs and PDEs in separate steps are natural candidates as numerical solution methods. Second-order methods can generally be expected to be more effective than first-order methods under normal accuracy requirements. However, the simplest and the most commonly applied second-order method for the PDE step, the Crank--Nicolson (CN) method, may generate unphysical oscillations. In this paper, we investigate the performance of a two-stage, L-stable singly diagonally implicit Runge--Kutta method for solving the PDEs of the bidomain model. Numerical experiments show that the enhanced stability property of this method leads to more physically realistic numerical simulations compared to both the CN and backward Euler methods.

  1. GENERAL: Period-Doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Pan, Wei-Zhen; Zhang, Rong-Bo

    2009-05-01

    The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in detail. With the aid of some numerical simulation tools such as bifurcation diagrams and Poincaré maps, the different routes to chaos and various shapes of strange attractors are observed. To characterize chaotic behavior of this oscillator system, the spectrum of Lyapunov exponent and Lyapunov dimension are also employed.

  2. Frequency-dependent study of solid 4He contained in a rigid double-torus torsional oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Shin, Jaeho; Kim, Eunseong

    2015-10-01

    The rigid double-torus torsional oscillator (TO) is constructed to reduce any elastic effects inherent to complicated TO structures, allowing explicit probing for a genuine supersolid signature. We investigated the frequency- and temperature-dependent response of the rigid double-torus TO containing solid 4He with 0.6-ppb 3He and 300-ppb 3He . We did not find evidence to support the frequency-independent contribution proposed to be a property of supersolid helium. The frequency-dependent contribution which comes from the simple elastic effect of solid helium coupled to the TO is essentially responsible for the entire response. The magnitude of the period drop is linearly proportional to f2, indicating that the responses observed in this TO are mostly caused by the overshoot of "soft" solid helium against the wall of the torus. Dissipation of the rigid TO is vastly suppressed compared to that of nonrigid TOs.

  3. PROGRESS IN HANFORDS DOUBLE SHELL TANK (DST) INTEGRITY PROJECT

    SciTech Connect

    BERMAN HS

    2008-01-22

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Paneled by Brookhaven National Laboratory during the late 1990s. These guidelines established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and

  4. Integrable nonlinear parity-time-symmetric optical oscillator

    NASA Astrophysics Data System (ADS)

    Hassan, Absar U.; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.

    2016-04-01

    The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.

  5. Lasing and transport in a multilevel double quantum dot system coupled to a microwave oscillator

    NASA Astrophysics Data System (ADS)

    Karlewski, Christian; Heimes, Andreas; Schön, Gerd

    2016-01-01

    We study a system of two quantum dots, each with several discrete levels, which are coherently coupled to a microwave oscillator. They are attached to electronic leads and coupled to a phonon bath, both leading to inelastic processes. For a simpler system with a single level in each dot it has been shown that a population inversion can be created by electron tunneling, which in a resonance situation leads to lasing-type properties of the oscillator. In the multilevel system several resonance situations may arise, some of them relying on a sequence of tunneling processes which also involve nonresonant, inelastic transitions. The resulting photon number in the oscillator and the current-voltage characteristic are highly sensitive to these properties and accordingly can serve as a probe for microscopic details.

  6. Noise-induced transitions in a double-well oscillator with nonlinear dissipation

    NASA Astrophysics Data System (ADS)

    Semenov, Vladimir V.; Neiman, Alexander B.; Vadivasova, Tatyana E.; Anishchenko, Vadim S.

    2016-05-01

    We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.

  7. Noise-induced transitions in a double-well oscillator with nonlinear dissipation.

    PubMed

    Semenov, Vladimir V; Neiman, Alexander B; Vadivasova, Tatyana E; Anishchenko, Vadim S

    2016-05-01

    We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator. PMID:27300883

  8. Neuronal oscillations form parietal/frontal networks during contour integration

    PubMed Central

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13–30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  9. An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-01-01

    Transportation of objects using overhead cranes can induce pendulum motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories (SNL) has shown that oscillation damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific, full-scale implementation of the damped oscillation methods for the Oak Ridge National Laboratory (ORNL) Advanced Integrated Maintenance System (AIMS). Hardware and software requirements and constraints for proper operation are discussed. Finally, test results and lessons learned are presented. 5 refs., 4 figs.

  10. Interpretation of pile-oscillation measurements by the integral data assimilation technique

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Archier, P.; Gruel, A.; Leconte, P.; Bernard, D.

    2011-02-01

    The Integral Data Assimilation (IDA) was designed to deduce values of infinite dilute neutron cross-sections from specific integral measurements. Performances of the IDA procedure are demonstrated with pile-oscillation measurements carried out on 155Gd in the pool type reactor MINERVE (CEA Cadarache, France). At low neutron energies, the Integral Data Assimilation is based on the Neutron Resonance Shape Analysis technique routinely used in neutron spectroscopy measurements. As a result of the IDA analysis, a value of (61 900±1500) b has been obtained for the 155Gd thermal capture cross-section at ( Eth=25.3 meV).

  11. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  12. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    SciTech Connect

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  13. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE PAGESBeta

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  14. Beta, but Not Gamma, Band Oscillations Index Visual Form-Motion Integration

    PubMed Central

    Aissani, Charles; Martinerie, Jacques; Yahia-Cherif, Lydia; Paradis, Anne-Lise; Lorenceau, Jean

    2014-01-01

    Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept) or as pairs of bars oscillating independently along cardinal axes (unbound percept). We found that beta (15–25 Hz), but not gamma (55–85 Hz) oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level. PMID:24781862

  15. On the oscillation death phenomenon in a double pendulum system with autoparametric interaction

    NASA Astrophysics Data System (ADS)

    Kovacic, I.; Zukovic, M.; Cartmell, M. P.

    2012-08-01

    This study is concerned with autoparametric interaction in a four degree of freedom damped mechanical system consisting of two identical pendula fitted onto a horizontal massive rod which can oscillate vertically and rotationally. One pendulum is harmonically excited. The equations of motion indicate that autoparametric interaction is possible by means of typical external and internal resonance conditions involving the system natural frequencies and excitation frequency. An intriguing phenomenon is demonstrated when the unforced pendulum is decoupled and no energy goes into it, as a result of which it stops oscillating. Numerical simulations are carried out to determine when and why this phenomenon occurs for a different excitation magnitude as well as for zero and non-zero initial conditions of the unforced pendulum.

  16. Double Path Interference and Magnetic Oscillations in Cooper Pair Transport through a Single Nanowire.

    PubMed

    Mironov, S V; Mel'nikov, A S; Buzdin, A I

    2015-06-01

    We show that the critical current of the Josephson junction consisting of superconducting electrodes coupled through a nanowire with two conductive channels can reveal the multiperiodic magnetic oscillations. The multiperiodicity originates from the quantum mechanical interference between the channels affected by both the strong spin-orbit coupling and the Zeeman interaction. This minimal two-channel model is shown to explain the complicated interference phenomena observed recently in Josephson transport through Bi nanowires. PMID:26196639

  17. Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control.

    PubMed

    Lamour, Tobias P; Sun, Jinghua; Reid, Derryck T

    2010-05-01

    We describe a formal approach to the wavelength stabilization of a synchronously pumped ultrafast optical parametric oscillator using proportional-integral feedback control. Closed-loop wavelength stabilization was implemented by using a position-sensitive detector as a sensor and a piezoelectric transducer to modify the cavity length of the oscillator. By characterizing the frequency response of the loop components, we constructed a predictive model of the controller which showed formally that a proportional-only feedback was insufficient to eliminate the steady state error, consistent with experimental observations. The optimal proportional and integral gain coefficients were obtained from a numerical optimization of the controller model that minimized the settling time while also limiting the overshoot to an acceptable value. Results are presented showing effective wavelength and power stabilization to levels limited only by the relative intensity noise of the pump laser. PMID:20515118

  18. Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits

    ERIC Educational Resources Information Center

    Harden, Joshua; Joshi, Amitabh; Serna, Juan D.

    2011-01-01

    Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…

  19. The Use of Phase-Lag Derivatives in the Numerical Integration of ODEs with Oscillating Solutions

    SciTech Connect

    Anastassi, Z. A.; Vlachos, D. S.; Simos, T. E.

    2008-09-01

    In this paper we consider the fitting of the coefficients of a numerical method, not only due to the nullification of the phase-lag, but also to its derivatives. We show that the method gains efficiency with each derivative of the phase-lag nullified for various problems with oscillating solutions. The analysis of the local truncation error analysis and the stability of the methods show the importance of zero phase-lag derivatives when integrating oscillatory differential equations.

  20. Linewidth oscillations in a nanometer-size double-slit interference experiment with single electrons

    NASA Astrophysics Data System (ADS)

    Barrachina, R. O.; Frémont, F.; Fossez, K.; Gruyer, D.; Helaine, V.; Lepailleur, A.; Leredde, A.; Maclot, S.; Scamps, G.; Chesnel, Jean-Yves

    2010-06-01

    In this article we provide experimental evidence of an interference phenomenon that, to the best of our knowledge, has so far not been observed with either matter or light. In a nanometer-sized version of Feynman’s famous two-slit “thought” experiment with single electrons, we managed to observe that the width of a quasi-monochromatic line oscillates with the detection angle. Furthermore, we find that it occurs in counterphase with the line intensity. We discuss the underlying mechanism that produces this unexpected result.

  1. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  2. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  3. Yellow laser light generation by frequency doubling of the output from a master oscillator fiber power amplifier system

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Marques, Carlos; Nogueira, Rogério; Romano, Valerio

    2015-03-01

    We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.

  4. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations

    PubMed Central

    Liddle, Elizabeth B.; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J.; Robson, Siân E.; Hall, Emma L.; Morris, Peter G.

    2016-01-01

    Abstract Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long‐range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks. Hum Brain Mapp 37:1361‐1374, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853904

  5. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations.

    PubMed

    Liddle, Elizabeth B; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J; Robson, Siân E; Hall, Emma L; Morris, Peter G; Liddle, Peter F

    2016-04-01

    Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks. Hum Brain Mapp 37:1361-1374, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853904

  6. Integrable generalizations of oscillator and Coulomb systems via action-angle variables

    NASA Astrophysics Data System (ADS)

    Hakobyan, T.; Lechtenfeld, O.; Nersessian, A.; Saghatelian, A.; Yeghikyan, V.

    2012-01-01

    Oscillator and Coulomb systems on N-dimensional spaces of constant curvature can be generalized by replacing their angular degrees of freedom with a compact integrable (N-1)-dimensional system. We present the action-angle formulation of such models in terms of the radial degree of freedom and the action-angle variables of the angular subsystem. As an example, we construct the spherical and pseudospherical generalization of the two-dimensional superintegrable models introduced by Tremblay, Turbiner and Winternitz and by Post and Winternitz. We demonstrate the superintegrability of these systems and give their hidden constant of motion.

  7. Spike Train Dynamics Underlying Pattern Formation in Integrate-and-Fire Oscillator Networks

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.; Coombes, S.

    1998-09-01

    A dynamical mechanism underlying pattern formation in a spatially extended network of integrate-and-fire oscillators with synaptic interactions is identified. It is shown how in the strong coupling regime the network undergoes a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. The separation of these orbits in phase space results in a spatially periodic pattern of mean firing rate across the network that is modulated by deterministic fluctuations of the instantaneous firing rate.

  8. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals

    PubMed Central

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-01-01

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573

  9. Painlevé analysis, Lie symmetries, and integrability of coupled nonlinear oscillators of polynomial type

    NASA Astrophysics Data System (ADS)

    Lakshmanan, M.; Sahadevan, R.

    1993-03-01

    In recent investigations on nonlinear dynamics, the singularity structure analysis pioneered by Kovalevskaya, Painlevé and contempories, which stresses the meromorphic nature of the solutions of the equations of motion in the complex-time plane, is found to play an increasingly important role. Particularly, soliton equations have been found to be associated with the so-called Painlevé property, which implies that the solutions are free from movable critical points/manifolds. Finite-dimensional integrable dynamical systems have also been found to possess such a property. In this review, after briefly presenting the historical developments and various features of the Painlevé (P) method, we demonstrate how it provides an effective tool in the analysis of nonlinear dynamical systems, starting from simple examples. We apply this method to several important coupled nonlinear oscillators governed by generic Hamiltonians of polynomial type with two, three and arbitrary ( N) degrees of freedom and classify all the P-cases. Sufficient numbers of involutive integrals of motion for each of the P-cases are constructed by employing other direct methods. In particular, we examine the question of integrability from the viewpoint of symmetries, explicitly demonstrate the existence of nontrivial extended Lie symmetries for the P-cases, and obtain the required integrals of motion by direct integration of symmetries. Furthermore, we briefly explain how the singularity structure analysis can be used to understand some of the intrinsic properties of nonintegrability and chaos with special reference to the two-coupled quartic anharmonic oscillators and Henon-Heiles systems.

  10. Underlying mechanisms for normal heat transport in one-dimensional anharmonic oscillator systems with a double-well interparticle interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2016-04-01

    Previous studies have suggested a crossover from superdiffusive to normal heat transport in one-dimensional (1D) anharmonic oscillator systems with a double-well type interatomic interaction like V(ξ )=-{ξ2}/2+{ξ4}/4 , when the system temperature is varied. In order to better understand this unusual manner of thermal transport, here we perform a direct dynamics simulation to examine how the spreading processes of the three physical quantities, i.e. the heat, the total energy and the momentum, would depend on temperature. We find three main points that are worth noting. (i) The crossover from superdiffusive to normal heat transport is well verified from a new perspective of heat spread. (ii) The spreading of the total energy is found to be very distinct from heat diffusion, especially under some temperature regimes, energy is strongly localized, while heat can be superdiffusive. So one should take care to derive a general connection between the heat conduction and energy diffusion. (iii) In a narrow range of temperatures, the spreading of momentum implies clear unusual non-ballistic behaviors; however, such unusual transport of momentum cannot be directly related to the normal transport of heat. An analysis of phonon spectra suggests that one should also take the effects of phonon softening into account. All of these results may provide insights into establishing the connection between the macroscopic heat transport and the underlying dynamics in 1D systems.

  11. Frequency-dependent Study of Ultrapure Solid 4He by Using Rigid Double-pendulum Torsional Oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Shin, Jaeho; Kim, Eunseong

    2015-03-01

    The physical origin of the period drop found in the torsional oscillator (TO) containing solid 4He was previously interpreted as the appearance of supersolidity. The current consensus is that the increase in the shear modulus leads to the period anomaly. Further studies show that the stiffening effect in TO can be amplified if a TO is not properly designed to be ``rigid.'' In this study, we designed a rigid double-pendulum TO. High purity solid 4He sample (0.6ppb) was grown by the block capillary method. The resonant period of TO starts to decrease from the empty cell data at 80mK. The ratio of the resonant period changes to the total mass loading are 3 . 8 ×10-5 and 2 . 6 ×10-4 for 1st and 2nd mode, respectively. Unlike recent experiment, we could not found a frequency-independent period drop. The upper bound for the putative supersolid fraction is less than 4 ×10-6 . The dissipation peak accompanied with the period drop was also analyzed with Cole-Cole plot and ωτ plot. We conclude that major contribution for the anomalous TO responses comes from the elastic effect.

  12. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    SciTech Connect

    Peng, B.; Urazuka, Y.; Chen, H.; Oyabu, S.; Otsuki, H.; Tanaka, T. Matsuyama, K.

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The result indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.

  13. Phase-locked cluster oscillations in periodically forced integrate-and-fire-or-burst neuronal populations

    NASA Astrophysics Data System (ADS)

    Langdon, Angela J.; Breakspear, Michael; Coombes, Stephen

    2012-12-01

    The minimal integrate-and-fire-or-burst neuron model succinctly describes both tonic firing and postinhibitory rebound bursting of thalamocortical cells in the sensory relay. Networks of integrate-and-fire-or-burst (IFB) neurons with slow inhibitory synaptic interactions have been shown to support stable rhythmic states, including globally synchronous and cluster oscillations, in which network-mediated inhibition cyclically generates bursting in coherent subgroups of neurons. In this paper, we introduce a reduced IFB neuronal population model to study synchronization of inhibition-mediated oscillatory bursting states to periodic excitatory input. Using numeric methods, we demonstrate the existence and stability of 1:1 phase-locked bursting oscillations in the sinusoidally forced IFB neuronal population model. Phase locking is shown to arise when periodic excitation is sufficient to pace the onset of bursting in an IFB cluster without counteracting the inhibitory interactions necessary for burst generation. Phase-locked bursting states are thus found to destabilize when periodic excitation increases in strength or frequency. Further study of the IFB neuronal population model with pulse-like periodic excitatory input illustrates that this synchronization mechanism generalizes to a broad range of n:m phase-locked bursting states across both globally synchronous and clustered oscillatory regimes.

  14. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    NASA Technical Reports Server (NTRS)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  15. Integration of GMR-based spin torque oscillators and CMOS circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Tingsu; Eklund, Anders; Sani, Sohrab; Rodriguez, Saul; Malm, B. Gunnar; Åkerman, Johan; Rusu, Ana

    2015-09-01

    This paper demonstrates the integration of giant magnetoresistance (GMR) spin torque oscillators (STO) with dedicated high frequency CMOS circuits. The wire-bonding-based integration approach is employed in this work, since it allows easy implementation, measurement and replacement. A GMR STO is wire-bonded to the dedicated CMOS integrated circuit (IC) mounted on a PCB, forming a (GMR STO + CMOS IC) pair. The GMR STO has a lateral size of 70 nm and more than an octave of tunability in the microwave frequency range. The proposed CMOS IC provides the necessary bias-tee for the GMR STO, as well as electrostatic discharge (ESD) protection and wideband amplification targeting high frequency GMR STO-based applications. It is implemented in a 65 nm CMOS process, offers a measured gain of 12 dB, while consuming only 14.3 mW and taking a total silicon area of 0.329 mm2. The measurement results show that the (GMR STO + CMOS IC) pair has a wide tunability range from 8 GHz to 16.5 GHz and improves the output power of the GMR STO by about 10 dB. This GMR STO-CMOS integration eliminates wave reflections during the signal transmission and therefore exhibits good potential for developing high frequency GMR STO-based applications, which combine the features of CMOS and STO technologies.

  16. Integration-free interval doubling for Riccati equation solutions

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Sidhu, G. S.

    1976-01-01

    Various algorithms are given for the case of constant coefficients. The algorithms are based on two ideas: first, relate the Re solution with general initial conditions to anchored RE solutions; and second, when the coefficients are constant the anchored solutions have a basic shift-invariance property. These ideas are used to construct an integration free superlinearly convergent iterative solution to the algebraic RE. The algorithm, arranged in square-root form, is thought to be numerically stable and competitive with other methods of solving the algebraic RE.

  17. An Excitable Signal Integrator Couples to an Idling Cytoskeletal Oscillator to Drive Cell Migration

    PubMed Central

    Huang, Chuan-Hsiang; Tang, Ming; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.

    2013-01-01

    It is generally believed that cytoskeletal activities drive random cell migration while signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving Scar/Wave, Arp 2/3, and actin binding proteins, is only capable of generating rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI3K, and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, displaying wave propagation, refractoriness, and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of “pacemaker” signal transduction and “idling motor” cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration. PMID:24142103

  18. Extended RKN-type methods for numerical integration of perturbed oscillators

    NASA Astrophysics Data System (ADS)

    Yang, Hongli; Wu, Xinyuan; You, Xiong; Fang, Yonglei

    2009-10-01

    In this paper, extended Runge-Kutta-Nyström-type methods for the numerical integration of perturbed oscillators with low frequencies are presented, which inherit the framework of RKN methods and make full use of the special feature of the true flows for both the internal stages and the updates. Following the approach of J. Butcher, E. Hairer and G. Wanner, we develop a new kind of tree set to derive order conditions for the extended Runge-Kutta-Nyström-type methods. The numerical stability and phase properties of the new methods are analyzed. Numerical experiments are accompanied to show the applicability and efficiency of our new methods in comparison with some well-known high quality methods proposed in the scientific literature.

  19. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  20. Integration-free interval doubling for Riccati equation solutions

    NASA Technical Reports Server (NTRS)

    Sidhu, G. S.; Bierman, G. J.

    1977-01-01

    Starting with certain identities obtained by Reid (1972) and Redheffer (1962) for general matrix Riccati equations (RE's), we give various algorithms for the case of constant coefficients. The algorithms are based on two ideas - first, relate the RE solution with general initial conditions to anchored RE solutions; and second, when the coefficients are constant, the anchored solutions have a basic shift-invariance property. These ideas are used to construct an integration-free, superlinearly convergent iterative solution to the algebraic RE. Preliminary numerical experiments show that our algorithms, arranged in square-root form, provide a method that is numerically stable and appears to be competitive with other methods of solving the algebraic RE.

  1. Study on integrated vehicle navigation system of "Beidou" Double-Star/DR

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Liu, Jianye; Zhai, Linpei; Xiu, Jihong

    2005-12-01

    Vehicle navigation is the corn element of Intelligent Transport System. The integrated system of "Beidou" Double-star/DR is studied in this paper according to the present state of vehicle navigation in our country. "Beidou" Double-star navigation position system is one regional satellite position system built up by our country, which can provide rapidly not only highly precision position and brevity telegram service. However, when the vehicles go around the tall buildings, high mountain area, wayside trees and in the tunnels, all signal may not be received. If the satellite navigation position system is used only, the precision will be reduced. Therefore, this paper proposes a nonlinear self-adaptive Kalman filter model and its algorithm for a Double-star/DR integrated navigation system in land vehicles, and verifies effectively the algorithm and scheme through the means of simulation. Next, this paper introduces map match approach. The roads are segmented and character information is brought out. Then, proper search rules and map match algorithm are adopted. According to the current vehicle position information that Double-Star/DR system provides, the nearest road can be found in the map database. The vehicle position will be matched and displayed on the road. The result of the experiment shows that the Double-Star/DR integrated algorithm and map match can improve reliability and the precision of vehicle navigation system efficiently.

  2. White Noise Path Integral Treatment of a Two-dimensional Dirac Oscillator in a Uniform Magnetic Field

    SciTech Connect

    Bastatas, Lyndon D.; Bornales, Jinky B.

    2008-06-18

    White noise path integral prescription is applied to solve the Dirac equation for a two-dimensional Dirac oscillator in a uniform magnetic field. The energy spectrum obtained agrees with the result obtained by Villalba and Maggiolo using the differential approach.

  3. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  4. Unsteady Annular Viscous Flows Between Oscillating Cylinders. Part I: Computational Solutions Based on a Time-Integration Method

    NASA Astrophysics Data System (ADS)

    Mateescu, D.; Païdoussis, M. P.; Belanger, F.

    1994-07-01

    The paper presents 2-D and 3-D computational solutions for unsteady annular viscous flows with oscillating boundaries. A time-integration method based on a three-time-level implicit semi-discretization is first formulated in cylindrical coordinates for solving the time-dependent incompressible Navier-Stokes equations. This methods uses a pseudo-time integration with artificial compressibility to advance the solution between consecutive real time levels, and a finite-difference spatial discretization based on a stretched staggered grid. A decoupling procedure based on a factored ADI scheme with lagged nonlinearities reduces the problem to the solution of scalar tridiagonal systems. As a result, this method displays very good computing efficiency and accuracy in all numerical examples analysed. The method is first validated for axisymmetric flow over an annular backstep, by comparison with previous results, and is then employed to analyse 2-D unsteady annular flows due to transverse oscillations of the outer boundary. The results obtained with this method are free of spurious, numerically induced, oscillations in the unsteady pressure, which otherwise arise if a Crank-Nicolson scheme is used instead for time-discretization.The 3-D case of oscillating boundaries in annular axial flow is also analysed with this method by considering a fully developed viscous axial flow between two concentric cylinders when the central portion of the outer cylinder executes transverse translational oscillations; the computational solution thus obtained is of interest in the study of flow-induced vibration problems in such configurations.

  5. Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald

    2016-03-01

    Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.

  6. Micromagnetic model analysis of integrated single-pole-type head with tilted spin-torque oscillator for high-frequency microwave-assisted magnetic recording

    SciTech Connect

    Katayama, Takuto; Kanai, Yasushi; Yoshida, Kazuetsu; Greaves, Simon; Muraoka, Hiroaki

    2015-05-07

    The spin-torque oscillator (STO) is the most important component in microwave-assisted magnetic recording. Some requirements for the STO are: large amplitude and stable oscillation, small injected current, and oscillation at a frequency that excites resonance in a recording medium. It is also necessary for the STO oscillation to closely follow the head coil current. In this paper, STOs were integrated into write heads and micromagnetic analyses carried out to obtain a write head structure with stable STO oscillation that could follow a high-frequency head coil current.

  7. Beating Analysis of Shubnikov de Haas Oscillation in In0.53Ga0.47As Double Quantum Well toward Spin Filter Applications

    NASA Astrophysics Data System (ADS)

    Koga, Takaaki; Matsuura, Toru; Faniel, Sébastien; Souma, Satofumi; Mineshige, Shunsuke; Sekine, Yoshiaki; Sugiyama, Hiroki

    We recently determined the values of intrinsic spin-orbit (SO) parameters for In0.52Al0.48As/In0.53Ga0.47As(10nm)/In0.52Al0.48As (InGaAs/InAlAs) quantum wells (QW), lattice-matched to (001) InP, from the weak localization/antilocalization analysis of the low-temperature magneto-conductivity measurements [1]. We have then studied the subband energy spectra for the InGaAs/InAlAs double QW system from beatings in the Shubnikov de Haas (SdH) oscillations. The basic properties obtained here for the double QW system provides useful information for realizing nonmagnetic spin-filter devices based on the spin-orbit interaction [2].

  8. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  9. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    NASA Technical Reports Server (NTRS)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  10. Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels

    NASA Astrophysics Data System (ADS)

    Chen, Yangqing; Yu, Fang; Yang, Chang; Song, Jinyan; Tang, Longhua; Li, Mingyu; He, Jian-Jun

    2015-06-01

    Fast and accurate quantitative measurement of biologically relevant molecules has been demonstrated for medical diagnostics and drug applications in photonic integrated circuits. Herein, we reported a highly-sensitive optical biosensor based on cascaded double-microring resonators. The sensor was integrated with microfluidic channels and investigated with its label-free detection capability. With a wavelength resolution of 0.47 nm, the measured binding capacity of the antibody on the surface exhibits reliable detection limit down to 7.10 μg/mL using human immunoglobulin G (hIgG).

  11. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-01-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  12. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be

  13. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  14. GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations.

    PubMed

    Zhang, Luyan; Meng, Lei; Wu, Wencheng; Wang, Jiankang

    2015-01-01

    Clonal species are common among plants. Clonal F1 progenies are derived from the hybridization between 2 heterozygous clones. In self- and cross-pollinated species, double crosses can be made from 4 inbred lines. A clonal F1 population can be viewed as a double cross population when the linkage phase is determined. The software package GACD (Genetic Analysis of Clonal F1 and Double cross) is freely available public software, capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in clonal F1 and double cross populations. Three functionalities are integrated in GACD version 1.0: binning of redundant markers (BIN); linkage map construction (CDM); and QTL mapping (CDQ). Output of BIN can be directly used as input of CDM. After adding the phenotypic data, the output of CDM can be used as input of CDQ. Thus, GACD acts as a pipeline for genetic analysis. GACD and example datasets are freely available from www.isbreeding.net. PMID:26503825

  15. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  16. A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND SUZAKU

    SciTech Connect

    Caballero, I.; Barragan, L.; Wilms, J.; Kreykenbohm, I.; Ferrigno, C.; Klochkov, D.; Suchy, S.; Santangelo, A.; Staubert, R.; Zurita Heras, J. A.; Kretschmar, P.; Fuerst, F.; Rothschild, R.; Finger, M. H.; Camero-Arranz, A.; Makishima, K.; Enoto, T.; Iwakiri, W.; and others

    2013-02-20

    The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of {approx}450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.

  17. Double-integrating-sphere system for measuring the optical properties of tissue.

    PubMed

    Pickering, J W; Prahl, S A; van Wieringen, N; Beek, J F; Sterenborg, H J; van Gemert, M J

    1993-02-01

    A system is described and evaluated for the simultaneous measurement of the intrinsic optical properties of tissue: the scattering coefficient, the absorption coefficient, and the anisotropy factor. This system synthesizes the theory of two integrating spheres and an intervening scattering sample with the inverse adding-doubling algorithm, which employs the adding-doubling solution of the radiative transfer equation to determine the optical properties from the measurement of the light flux within each sphere and of the unscattered transmission. The optical properties may be determined simultaneously, which allows for measurements to be made while the sample undergoes heating, chemical change, or some otherexternal stimulus. An experimental validation of the system with tissue phantoms resulted in the determination of the optical properties with a < 5% deviation when the optical density was between 1 and 10 and the albedo was between 0.4 and 0.95. PMID:20802704

  18. A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

    NASA Astrophysics Data System (ADS)

    Seer, Qiu Han; Nandong, Jobrun

    2016-03-01

    This paper presents a new control strategy which unifies the direct and indirect multi-scale control schemes via a double-loop control structure. This unified control strategy is proposed for controlling a class of highly nonminimum-phase processes having both integrating and unstable modes. This type of systems is often encountered in fed-batch fermentation processes which are very difficult to stabilize via most of the existing well-established control strategies. A systematic design procedure is provided where its applicability is demonstrated via a numerical example.

  19. Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities

    SciTech Connect

    BECKER, D.L.

    2000-05-23

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

  20. Numerical integration of nearly-Hamiltonian systems. [Van der Pol oscillator and perturbed Keplerian motion

    NASA Technical Reports Server (NTRS)

    Bond, V. R.

    1978-01-01

    The reported investigation is concerned with the solution of systems of differential equations which are derived from a Hamiltonian function in the extended phase space. The problem selected involves a one-dimensional perturbed harmonic oscillator. The van der Pol equation considered has an exact asymptotic value for its amplitude. Comparisons are made between a numerical solution and a known analytical solution. In addition to the van der Pol problem, known solutions regarding the restricted problem of three bodies are used as examples for perturbed Keplerian motion. The extended phase space Hamiltonian discussed by Stiefel and Scheifele (1971) is considered. A description is presented of two canonical formulations of the perturbed harmonic oscillator.

  1. Double Power Laws in the Event-integrated Solar Energetic Particle Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.

    2016-04-01

    A double power law or a power law with exponential rollover at a few to tens of MeV nucleon‑1 of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon‑1 is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.

  2. Electro-optic spectral tuning in a fan-out double-prism domain periodically poled lithium niobate intracavity optical parametric oscillator.

    PubMed

    Chang, W K; Chung, H P; Lin, Y Y; Chen, Y H

    2016-08-15

    We report on the design and experimental demonstration of an electro-optically tunable, pulsed intracavity optical parametric oscillator (IOPO) based on a unique fan-out double-prism domain periodically poled lithium niobate (DPD PPLN) in a diode-pumped Nd:YVO4 laser. The PPLN device combines the functionalities of fan-out and ramped duty-cycle domain structured nonlinear crystals, working simultaneously as a continuous grating-period quasi-phase-matched optical parametric downconverter and an electro-optic beam deflector/Q switch in the laser system. When driving the fan-out DPD PPLN with a voltage pulse train and varying the DC offset of the pulse train, a pulsed IOPO was realized with its signal and idler being electro-optically tunable over the 1880 and 2453 nm bands at spectral tuning rates of 13.5 (measured) and 25.8 (calculated) nm/(kV/mm), respectively. PMID:27519119

  3. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  4. An accurate spline polynomial cubature formula for double integration with logarithmic singularity

    NASA Astrophysics Data System (ADS)

    Bichi, Sirajo Lawan; Eshkuvatov, Z. K.; Long, N. M. A. Nik; Bello, M. Y.

    2016-06-01

    The paper studied the integration of logarithmic singularity problem J (y ¯)= ∬ ∇ζ (y ¯)l o g |y ¯-y¯0*|d A , where y ¯=(α ,β ), y¯0=(α0,β0) the domain ∇ is rectangle ∇ = [r1, r2] × [r3, r4], the arbitrary point y ¯∈∇ and the fixed point y¯0∈∇. The given density function ζ(y ¯), is smooth on the rectangular domain ∇ and is in the functions class C2,τ (∇). Cubature formula (CF) for double integration with logarithmic singularities (LS) on a rectangle ∇ is constructed by applying type (0, 2) modified spline function DΓ(P). The results obtained by testing the density functions ζ(y ¯) as linear and absolute value functions shows that the constructed CF is highly accurate.

  5. Integrating experiential learning into a double degree masters program in nursing and health informatics.

    PubMed

    Borycki, Elizabeth M; Frisch, Noreen; Kushniruk, Andre W; McIntyre, Marjorie; Hutchinson, David

    2012-01-01

    In Canada there are few nurses who have advanced practice competencies in nursing informatics. This is a significant issue for regional health authorities, governments and electronic health record vendors in Canada who are implementing electronic health records. Few Schools of Nursing provide formalized opportunities for nurses to develop informatics competencies. Many of these opportunities take the form of post-baccalaureate certificate programs or individual undergraduate or graduate level courses in nursing. The purpose of this paper will be to: (1) describe the health and human resource issues in this area in Canada, (2) provide a brief overview of the design and development of a new, innovative double degree program at the intersection of nursing and health informatics that interleaves cooperative learning, (3) describe the integration of cooperative learning into this new program, and (4) outline the lessons learned in integrating cooperative education into such a graduate program. PMID:24199044

  6. Double integrating sphere system for optical parameter determination of industrial suspensions

    NASA Astrophysics Data System (ADS)

    Keränen, Ville T. J.; Mäkynen, Anssi J.

    2008-06-01

    The main objective of this study was to construct a double integrating sphere system and to verify its performance using Intralipid fat emulsion. The final goal was to be able to determine optical properties of various turbid suspensions with the proposed system. Online measurements even would have been possible as backscattering and forward scattering were measured simultaneously. The measured suspension was injected in a cuvette placed between two integrating spheres and illuminated with a laser through the first sphere. The diameter of the spheres was 8" and the diameter of the sample port could have been varied up to 2.5". The cuvette was made of plastic and optical grade glass and its diameter was sufficient to cover the sample port area. The sample thickness in the measurement cuvette was 5 mm. Optical powers were detected using fiber coupled photodiodes. There was one diode for each sphere and one for the unscattered light at the opposite end of the sphere system facing towards the laser. The measured optical powers were converted to absorption coefficient, scattering coefficient and if possible to anisotropy using an inverse adding-doubling method. The results measured for the Intralipid using the described system corresponded with those documented in published literature. A number of pulp samples with unknown optical properties were measured with encouraging results. However, the differences between different pulps and fillers are so small that, in the future, the focus will be in error source elimination to achieve reasonable accuracy.

  7. Errors of analysis of parameters of complex oscillation regimes using point sequences of the integrate-and-fire model

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Pavlova, O. N.; Mohammad, Ya. Kh.

    2015-11-01

    The problem of calculation of dynamical parameters of chaotic regimes of self-sustained oscillations using point processes is discussed. The "integrate-and-fire" model is used to exemplify the constraints of the method for attractor reconstruction using a sequence of time intervals between the time instants of pulse generation. The conditions of validity for calculation of the largest Lyapunov exponent and recommendations for the most accurate determination of dynamical parameters for complex oscillatory regimes in dynamical systems reconstruction using point processes are formulated.

  8. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  9. Investigating the Long-term Variability of 4U1705-44; Evidence for an Underlying Nonlinear Double-Welled Oscillator

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2016-04-01

    The bright low-mass X-ray binary 4U1705-44 exhibits long-term semi-periodic variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese X-ray All-Sky Monitor (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through the present. The combined ASM-MAXI data provides a continuous time series over fifty times the length of the timescale of interest. The phase space embedding of the flux versus its first derivative shows a strong resemblance to a double-welled nonlinear oscillator. When comparing our time series against well-known nonlinear oscillators, we find that 4U1705-44 exhibits behavior akin to the Duffing oscillator. Topological analysis can help us identify ‘fingerprints’ in the phase space of a system unique to its equations of motion. If such ‘fingerprints’ are the same between two systems, then their equations of motion must be closely related. We therefore found a range of parameters for which the Duffing oscillator closely follows the time evolution of 4U1705-44 and from this range chose 6 different numerical Duffing time series. We can extract low-period, unstable periodic orbits from both the 4U1705-44 and numerical Duffing time series and compare their topological information in phase space, such as their relative rotation rates. We argue that the associated period-1 orbit in 4U1705-44 has a period between 130 and 170 days. The driving periods of our 6 numerical time series correspond to 140 to 175 days. Assigning a logical sequence name to each orbit, the relative rotation rates can be compiled into a unique ‘intertwining’ matrix. The numerical Duffing time series and the 4U1705-44 intertwining matrices are identical, which provides strong evidence that they share the same underlying template. The implications of this equivalence suggests that we can look to the Duffing equation to describe the X

  10. Stereoscopic Oscillations of the n-InGaAs/GaAs Double Quantum Well Magnetoresistance Under Tilted Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Arapov, Yu. G.; Neverov, V. N.; Podgornyh, S. M.; Shelushinina, N. G.; Harus, G. I.; Zvonkov, B. N.; Uskova, E. A.

    Precise scanning of the (B⊥,B‖)-plane while measuring magnetoresistance of the n-InGaAs/GaAs double quantum well (DQW) reveals a number of peculiarities connected with intricate DQW energy spectrum, which are analyzed on the basis of quasiclassical calculations. Magnetic breakdown effects are also considered. Peaks due to the latter mechanism reveal spin-splittings (in spite of lower mobilities as compared with the traditional n-GaAs/AlGaAs DQWs) corresponding to an enhanced effective Lande g-factor.

  11. Integrating the circadian oscillator into the life of the cyanobacterial cell

    PubMed Central

    Golden, Susan S.

    2009-01-01

    In two decades the study of circadian rhythms in cyanobacteria has gone from observations of phenomena in intractable species to the development of a model organism for mechanistic study, atomic-resolution structures of components, and reconstitution of a circadian biochemical oscillation in vitro. With sophisticated biochemical, biophysical, genetic, and genomic tools in place, the circadian clock of the unicellular cyanobacterium Synechococcus elongatus is poised to be the first for which a systems-level understanding can be achieved. PMID:18419290

  12. The effect of oscillating-energy manual therapy on lateral epicondylitis: a randomized, placebo-control, double-blinded study.

    PubMed

    Nourbakhsh, Mohammad Reza; Fearon, Frank J

    2008-01-01

    Symptoms of lateral epicondylitis (LE) are attributed to degenerative changes and inflammatory reactions in the common extensor tendon induced by microscopic tears in the tissue after repetitive or overload functions of the wrist and hand extensor muscles. Conventional treatments, provided on the premise of inflammatory basis of LE, have shown 39-80% failure rate. An alternative approach suggests that symptoms of LE could be due to active tender points developed in the origin of hand and wrist extensor muscles after overuse or repetitive movements. Oscillating-energy Manual Therapy (OEMT), also known as V-spread, is a craniosacral manual technique that has been clinically used for treating tender points over the suture lines in the skull. Considering symptoms of LE may result from active tender points, the purpose of this study was to investigate the effect of OEMT on pain, grip strength, and functional abilities of subjects with chronic LE. Twenty-three subjects with chronic LE (>3mo) between ages of 24 and 72 years participated in this study. Before their participation, all subjects were screened to rule out cervical and other pathologies that could possibly contribute to their lateral elbow pain. Subjects who met the inclusion criteria were randomized into treatment and placebo treatment groups by a second (treating) therapist. Subjects were blinded to their group assignment. Subjects in the treatment group received OEMT for six sessions. During each treatment session, first a tender point was located through palpation. After proper hand placement, the therapist focused the direction of the oscillating energy on the localized tender point. Subjects in the placebo group underwent the same procedure, but the direction of the oscillating energy was directed to an area above or below the tender points, not covering the affected area. Jamar Dynamometer, Patient Specific Functional Scale (PSFS), and Numeric Rating Scale (NRS) were used to measure grip strength

  13. Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series

    NASA Astrophysics Data System (ADS)

    Karagulyan, G. A.

    1996-04-01

    A new integral estimate for rectangular partial sums of double Fourier series is obtained. The main result of the paper is the following.Theorem. For any f\\in L\\log L(\\mathbf T^2) and \\delta>0 there exists a set E_{\\delta,f}\\in\\mathbf T^2, \\vert E_{\\delta,f}\\vert>(2\\pi)^2-\\delta such that \\displaystyle 1)\\quad\\int_{E_{\\delta,f}}\\exp\\biggl\\lbrack\\frac{c_1\\delta\\vert ......L(\\mathbf T^2)}}\\biggr\\rbrack^{1/2}\\,dx\\,dy\\leqslant C_2, \\qquad N,M=1,2,\\dots, \\displaystyle 2)\\quad\\lim_{N,M\\to\\infty}\\int_{E_{\\delta,f}}\\bigl\\lbrack\\exp(\\vert S_{N,M}(x,y,f)-f(x,y)\\vert)^{1/2}-1\\bigr\\rbrack\\,dx\\,dy=0. This theorem yields estimates almost everywhere for rectangular sums of double Fourier series and convergence in L^p on sets of large measure.

  14. Double-shell tank integrity assessments ultrasonic test equipment performance test

    SciTech Connect

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  15. A low-voltage boost converter using a forward converter with integrated Meissner oscillator

    NASA Astrophysics Data System (ADS)

    Woias, P.; Islam, M.; Heller, S.; Roth, R.

    2013-12-01

    This paper describes a novel boost converter to be used with energy harvesters that provide only low output voltages. The device is self-supplied from electric power delivered to its input. With peak power conversion efficiencies above 30% at start-up voltages down to 10 mV this circuit sets best values in comparison with the state-of-the-art. This is achieved by the novel combination of a Meissner oscillator, used as stand-alone in most low-voltage step-up converters today, with a forward converter usually applied in high power systems.

  16. Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy.

    PubMed

    Brinkmann, Maximilian; Janfrüchte, Sarah; Hellwig, Tim; Dobner, Sven; Fallnich, Carsten

    2016-05-15

    We present a fiber-based optical parametric oscillator (FOPO) pumped by a fiber-coupled laser diode. The FOPO consisted of a photonic crystal fiber to convert the pump pulses via four-wave mixing and a dispersive resonator formed by a single-mode fiber. Via dispersion filtering, output pulses with a bandwidth of about 3 nm, a temporal duration of about 8 ps and a pulse energy of up to 22 nJ could be generated. By changing the repetition frequency of the pump laser diode by about ±1  kHz, the wavelength of the output pulses could be tuned between 1130 and 1310 nm within 8 μs, without the need to change the length of the resonator. Therewith, the FOPO should especially be suited for hyperspectral imaging, while its all-electronic control constitutes a promising approach to a turnkey and alignment-free light source. PMID:27176960

  17. Recoupling of native homonuclear dipolar couplings in magic-angle-spinning solid-state NMR by the double-oscillating field technique

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Niels Chr.

    2010-08-01

    A new solid-state NMR method, the double-oscillating field technique (DUO), that under magic-angle-spinning conditions produces an effective Hamiltonian proportional to the native high-field homonuclear dipole-dipole coupling operator is presented. The method exploits one part of the radio frequency (rf) field to recouple the dipolar coupling interaction with a relatively high scaling factor and to eliminate offset effects over a reasonable bandwidth while in the recoupling frame, the other part gives rise to a sufficiently large longitudinal component of the residual rf field that averages nonsecular terms and in addition ensures stability toward rf inhomogeneity and rf miscalibration. The capability of the DUO experiment to mediate transfer of polarization is described theoretically and compared numerically and experimentally with finite pulse rf driven recoupling and experimentally with dipolar-assisted rotational resonance. Two-dimensional recoupling experiments were performed on antiparallel amyloid fibrils of the decapeptide SNNFGAILSS with the FGAIL fragment uniformly labeled with C13 and N15.

  18. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  19. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  20. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action.

    PubMed

    Novembre, Giacomo; Sammler, Daniela; Keller, Peter E

    2016-08-01

    Shared knowledge and interpersonal coordination are prerequisites for most forms of social behavior. Influential approaches to joint action have conceptualized these capacities in relation to the separate constructs of co-representation (knowledge) and self-other entrainment (coordination). Here we investigated how brain mechanisms involved in co-representation and entrainment interact to support joint action. To do so, we used a musical joint action paradigm to show that the neural mechanisms underlying co-representation and self-other entrainment are linked via a process - indexed by EEG alpha oscillations - regulating the balance between self-other integration and segregation in real time. Pairs of pianists performed short musical items while action familiarity and interpersonal (behavioral) synchronization accuracy were manipulated in a factorial design. Action familiarity referred to whether or not pianists had rehearsed the musical material performed by the other beforehand. Interpersonal synchronization was manipulated via congruent or incongruent tempo change instructions that biased performance timing towards the impending, new tempo. It was observed that, when pianists were familiar with each other's parts, millisecond variations in interpersonal synchronized behavior were associated with a modulation of alpha power over right centro-parietal scalp regions. Specifically, high behavioral entrainment was associated with self-other integration, as indexed by alpha suppression. Conversely, low behavioral entrainment encouraged reliance on internal knowledge and thus led to self-other segregation, indexed by alpha enhancement. These findings suggest that alpha oscillations index the processing of information about self and other depending on the compatibility of internal knowledge and external (environmental) events at finely resolved timescales. PMID:27449708

  1. The uniform asymptotic swallowtail approximation - Practical methods for oscillating integrals with four coalescing saddle points

    NASA Technical Reports Server (NTRS)

    Connor, J. N. L.; Curtis, P. R.; Farrelly, D.

    1984-01-01

    Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.

  2. The Role of Gamma Band Oscillations and Synchrony on Rubber Hand Illusion and Crossmodal Integration

    ERIC Educational Resources Information Center

    Kanayama, Noriaki; Sato, Atsushi; Ohira, Hideki

    2009-01-01

    The rubber hand illusion represents an illusory experience during the mislocalization of own hand when correlated visuotactile stimuli are presented to the actual and fake hands. The visuotactile integration process appears to cause this illusion; the corresponding brain activity was revealed in many studies. In this study, we investigated the…

  3. Evaluation of Ultrasonic Measurement Variation in the Double-Shell Tank Integrity Project

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Crawford, Susan L.; Munley, John T.

    2010-01-12

    Washington River Protection Solutions (WRPS) under contract from the U.S. Department of Energy (DOE) is responsible for assessing the condition of the double-shell tanks (DST) on the Hanford nuclear site. WRPS has contracted with AREVA Federal Services LLC (AFS) to perform ultrasonic testing (UT) inspections of the 28 DSTs to assess the condition of the tanks, judge the effects of past corrosion control practices, and satisfy a regulatory requirement to periodically assess the integrity of the tanks. Since measurement inception in 1997, nine waste tanks have been examined twice (at the time of this report) providing UT data that can now be compared over specific areas. During initial reviews of these two comparable data sets, average UT wall-thickness measurement reductions were noted in most of the tanks. This variation could be a result of actual wall thinning occurring on the waste-tanks walls, or some other unexplained anomaly resulting from measurement error due to causes such as the then-current measurement procedures, operator setup, or equipment differences. WRPS contracted with the Pacific Northwest National Laboratory (PNNL) to assist in understanding why this variation exists and where it stems from.

  4. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  5. Double-pump-pass singly resonant optical parametric oscillator for efficient generation of infrared light at 2300 nm based on PPMgSLT

    NASA Astrophysics Data System (ADS)

    Lee, Seungmin; Rhee, Bum Ku

    2015-02-01

    The pump laser was a cw-diode-pumped, acousto-optically Q-switched Nd:YAG laser. The laser had a pulse width of ~85 ns when operating at 10 kHz repetition rates. For infrared output of 2300 nm, we used 35-mm-long PPMgSLT which has a grating period of 32.7 μm for the first-order quasi-phase matching, resulting in the signal wavelength of 1980 nm at the crystal temperature of 76.5oC. Our optical parametric oscillator (OPO) was of a simple linear extra-cavity structure, formed by two flat dichroic mirrors with a separation of ~45 mm. The input coupling mirror had a high transmission of 98% for the pump, high reflectance of 98% at the signal and idler wavelengths, whereas the output coupler had a high reflectance of 98% at the pump wavelength. Hence, the OPO can be considered as singly resonant with double-pass pumping. In order to find an optimum reflectance for the efficient generation of infrared radiation of 2300 nm, we used the three different output mirrors whose reflectivity are ranging from 90% to 38% at the signal wavelength. We measured the signal and idler power as a function of the pumping power of Nd:YAG laser for three different output couplers. A maximum extraction efficiency with an optimum reflectance of output mirror was 27% for the idler, corresponding to 5.6 W of average output power. The fluctuations in the idler root-mean-square output power were measured to be below 1.5%. Our result is comparable with the recent one based on PPLN even with a simple cavity.

  6. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  7. Integration of non-communicable diseases in health care: tackling the double burden of disease in African settings

    PubMed Central

    Temu, Florence; Leonhardt, Marcus; Carter, Jane; Thiam, Sylla

    2014-01-01

    Sub-Saharan African countries now face the double burden of Non Communicable and Communicable Diseases. This situation represents a major threat to fragile health systems and emphasises the need for innovative integrative approaches to health care delivery. Health services need to be reorganised to address populations’ needs holistically and effectively leverage resources in already resource-limited settings. Access and delivery of quality health care should be reinforced and implemented at primary health care level within the framework of health system strengthening. Competencies need to be developed around services provided rather than specific diseases. New models of integration within the health sector and other sectors should be explored and further evidence generated to inform policy and practice to combat the double burden. PMID:25419329

  8. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  9. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    NASA Astrophysics Data System (ADS)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  10. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  11. Lagrange-type modeling of continuous dielectric permittivity variation in double-higher-order volume integral equation method

    NASA Astrophysics Data System (ADS)

    Chobanyan, E.; Ilić, M. M.; Notaroš, B. M.

    2015-05-01

    A novel double-higher-order entire-domain volume integral equation (VIE) technique for efficient analysis of electromagnetic structures with continuously inhomogeneous dielectric materials is presented. The technique takes advantage of large curved hexahedral discretization elements—enabled by double-higher-order modeling (higher-order modeling of both the geometry and the current)—in applications involving highly inhomogeneous dielectric bodies. Lagrange-type modeling of an arbitrary continuous variation of the equivalent complex permittivity of the dielectric throughout each VIE geometrical element is implemented, in place of piecewise homogeneous approximate models of the inhomogeneous structures. The technique combines the features of the previous double-higher-order piecewise homogeneous VIE method and continuously inhomogeneous finite element method (FEM). This appears to be the first implementation and demonstration of a VIE method with double-higher-order discretization elements and conformal modeling of inhomogeneous dielectric materials embedded within elements that are also higher (arbitrary) order (with arbitrary material-representation orders within each curved and large VIE element). The new technique is validated and evaluated by comparisons with a continuously inhomogeneous double-higher-order FEM technique, a piecewise homogeneous version of the double-higher-order VIE technique, and a commercial piecewise homogeneous FEM code. The examples include two real-world applications involving continuously inhomogeneous permittivity profiles: scattering from an egg-shaped melting hailstone and near-field analysis of a Luneburg lens, illuminated by a corrugated horn antenna. The results show that the new technique is more efficient and ensures considerable reductions in the number of unknowns and computational time when compared to the three alternative approaches.

  12. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-09-01

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus

  13. Fully Integrated Ultra-Low Voltage Step-up Converter with Voltage Doubling LC-Tank for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroğlu, Ali

    2015-12-01

    This paper reports the design, fabrication, and validation of a novel integrated interface circuit for ultra-low voltage step up converter in 0.18 μm CMOS technology. The circuit does not use off-chip components. Fully integrated centre-tap differential inductors are introduced in the proposed LC oscillator design to achieve 38% area reduction compared to the use of four separate inductors. The efficiency of the system is hence enhanced through the elimination of clock buffer circuits traditionally utilized to drive the step-up converter. The experimental results prove that the system can self-start, and step 0.25 V up to 1.7 V to supply a 46 μW load with 15.5% efficiency. The minimum validated input voltage is 0.15 V, which is boosted up to 1.2 V under open circuit conditions.

  14. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  15. A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction centred at the origin: double degeneracy and level crossing

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Fassari, Silvestro; Rinaldi, Fabio

    2013-09-01

    We rigorously define the self-adjoint Hamiltonian of the harmonic oscillator perturbed by an attractive δ‧-interaction, of strength β, centred at 0 (the bottom of the confining parabolic potential), by explicitly providing its resolvent. Our approach is based on a ‘coupling constant renormalization’, related to a technique originated in quantum field theory and implemented in the rigorous mathematical construction of the self-adjoint operator representing the negative Laplacian perturbed by the δ-interaction in two and three dimensions. The way the δ‧-interaction enters in our Hamiltonian corresponds to the one originally discussed for the free Hamiltonian (instead of the harmonic oscillator one) by P Sěba. It should not be confused with the δ‧-potential perturbation of the harmonic oscillator discussed, e.g., in a recent paper by Gadella, Glasser and Nieto (also introduced by P Sěba as a perturbation of the one-dimensional free Laplacian and recently investigated in that context by Golovaty, Hryniv and Zolotaryuk). We investigate in detail the spectrum of our perturbed harmonic oscillator. The spectral structure differs from that of the one-dimensional harmonic oscillator perturbed by an attractive δ-interaction centred at the origin: the even eigenvalues are not modified at all by the δ‧-interaction. Moreover, all the odd eigenvalues, regarded as functions of β, exhibit the rather remarkable phenomenon called ‘level crossing’ after first producing the double degeneracy of all the even eigenvalues for the value \\beta = \\beta _0 = \\frac{{2\\sqrt \\pi }}{{B\\left( {\\frac{3}{4},\\frac{1}{2}} \\right)}} \\cong 1.47934(B( ·, ·) being the beta function). Dedicated to Professor Gianfausto Dell'Antonio on the occasion of his 80th birthday.

  16. A novel H-plane filter using double-layer substrate integrated waveguide with defected ground structures

    NASA Astrophysics Data System (ADS)

    Aghayari, Hassan; Komjani, Nader; Molaei Garmjani, Nima

    2013-06-01

    The novel double layer substrate integrated waveguide (SIW) technology is used for realisation of conventional H-plane filter, which is manufactured in waveguide. This proposed filter is totally realised in double layer dielectric substrate with metallic vias and fabricated using a standard printed circuit board (PCB) process. In previous studies, prototypes of E-plane and H-plane filter were designed and fabricated in standard waveguides. The H-plane type of those two has the same frequency response as that of the E-plane type, while its cross section is one-quarter. Similarly, the SIW H-plane filter, which is presented in this article, has the same dispersion characteristics as that of waveguide filter while its dimensions are very shorter. Moreover, by using a sandwich model of double layer SIW, the interleaved metal vane is fabricated between two substrates easily. We can also improve the frequency response of the SIW H-plane filter using defected ground structure (DGS). Therefore, in DGS SIW H-plane filter, which is presented, the return loss and insertion loss in passband are less than conventional H-plane filter. The improvement of the spurious response is the other trait of DGS SIW H-plane filter.

  17. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N's F09

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (Meteorological Satellites) Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  18. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  19. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC; initial tests, calibration, and characteristics

    NASA Astrophysics Data System (ADS)

    Helhel, S.; Khamitov, I.; Kahya, G.; Bayar, C.; Kaynar, S.; Gumerov, R.

    2015-10-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian-Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabilities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limitations as well as its linearity. An instrumental intrinsic polarization was determined for the 1 × 5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2 %, and position angle as 1.9∘. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  20. Investigations of an integrated angular velocity measurement and attitude control system for spacecraft using magnetically suspended double-gimbal CMGs

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Han, Bangcheng

    2013-06-01

    This paper presents an integrated angular velocity measurement and attitude control system of spacecraft using magnetically suspended double-gimbal control moment gyros (MSDGCMGs). The high speed rotor of MSDGCMG is alleviated by a five-degree-of-freedom permanent magnet biased AMB control system. With this special rotor supported manner, the MSDGCMG has the function of attitude rate sensing as well as attitude control. This characteristic provides a new approach to a compact light-weight spacecraft design, which can combine these two functions into a single device. This paper discusses the principles and implementations of AMB-based angular velocity measurement. Spacecraft dynamics with DGMSCMG actuators, including the dynamics of magnetically suspended high-speed rotor, the dynamics of inner gimbal and outer gimbal, as well as the determination method of spacecraft angular velocity are modeled, respectively. The effectiveness of the proposed integrated system is also validated numerically and experimentally.

  1. Robust synchronisation tracking control of networked Euler-Lagrange systems using reference trajectory estimation based on virtual double-integrators

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Jiang; Qin, Pan

    2016-07-01

    This paper considers the problem of distributed synchronisation tracking control of multiple Euler-Lagrange systems on a directed graph which contains a spanning tree with the leader node being the root. To design the high performance distributed controllers, a virtual double-integrator is introduced in each agent and is controlled by a virtual distributed linear high-gain synchronisation tracking controller, so that the position and velocity of each agent track those of the reference trajectory with arbitrarily short transient time and small ultimate tracking error. Then taking the double-integrator's position and velocity as the estimates of those of the reference trajectory, in each generalised coordinate of each Euler-Lagrange agent, a local controller with a disturbance observer and a sliding mode control term is designed, to suppress the mutual interactions among the agents and the modelling uncertainties. The boundedness of the overall signals and the synchronisation tracking control performance are analysed, and the conditions for guaranteed control performance are clarified. Simulation examples are provided to demonstrate the performance of the distributed controllers.

  2. Double depth-enhanced 3D integral imaging in projection-type system without diffuser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jiao, Xiao-xue; Sun, Yu; Xie, Yan; Liu, Shao-peng

    2015-05-01

    Integral imaging is a three dimensional (3D) display technology without any additional equipment. A new system is proposed in this paper which consists of the elemental images of real images in real mode (RIRM) and the ones of virtual images in real mode (VIRM). The real images in real mode are the same as the conventional integral images. The virtual images in real mode are obtained by changing the coordinates of the corresponding points in elemental images which can be reconstructed by the lens array in virtual space. In order to reduce the spot size of the reconstructed images, the diffuser in conventional integral imaging is given up in the proposed method. Then the spot size is nearly 1/20 of that in the conventional system. And an optical integral imaging system is constructed to confirm that our proposed method opens a new way for the application of the passive 3D display technology.

  3. Modelling and simulation of subthreshold behaviour of cylindrical surrounding double gate MOSFET for enhanced electrostatic integrity

    NASA Astrophysics Data System (ADS)

    Verma, Jay Hind Kumar; Haldar, Subhasis; Gupta, R. S.; Gupta, Mridula

    2015-12-01

    In this paper, a physics based model has been presented for the Cylindrical Surrounding Double Gate (CSDG) Nano-wire MOSFET. The analytical model is based on the solution of 2-D Poisson's equation in a cylindrical coordinate system using super-position technique. CSDG MOSFET is a cylindrical version of double gate MOSFET which offers maximum gate controllability over the channel. It consists of an inner gate and an outer gate. These gates render effective charge control inside the channel and also provide excellent immunity to short channel effects. Surface potential and electric field for inner and outer gate are derived. The impact of channel length on electrical characteristics of CSDG MOSFET is analysed and verified using ATLAS device simulator. The model is also extended for threshold voltage modelling using extrapolation method in strong inversion region. Drain current and transconductance are compared with conventional Cylindrical Surrounding Gate (CSG) MOSFET. The excellent electrical performance makes CSDG MOSFET promising candidates to extend CMOS scaling roadmap beyond CSG MOSFET.

  4. Zebrafish Class 1 Phosphatidylinositol Transfer Proteins: PITPβ and Double Cone Cell Outer Segment Integrity in Retina

    PubMed Central

    Ile, Kristina E.; Kassen, Sean; Cao, Canhong; Vihtehlic, Thomas; Shah, Sweety D.; Mousley, Carl J.; Alb, James G.; Huijbregts, Richard P.H.; Stearns, George W.; Brockerhoff, Susan E.; Hyde, David R.; Bankaitis, Vytas A.

    2010-01-01

    Phosphatidylinositol transfer proteins (PITPs) in yeast coordinate lipid metabolism with the activities of specific membrane trafficking pathways. The structurally unrelated metazoan-specific PITPs (mPITPs), on the other hand, are an under-investigated class of proteins. It remains unclear what biological activities mPITPs discharge, and the mechanisms by which these proteins function are also not understood. The soluble class 1 mPITPs include the PITPα and PITPβ isoforms. Of these, the β-isoforms are particularly poorly characterized. Herein, we report the use of zebrafish as a model vertebrate for the study of class 1 mPITP biological function. Zebrafish express PITPα and PITPβ-isoforms (Pitpna and Pitpnb, respectively) and a novel PITPβ-like isoform (Pitpng). Pitpnb expression is particularly robust in double cone cells of the zebrafish retina. Morpholino-mediated protein knockdown experiments demonstrate Pitpnb activity is primarily required for biogenesis/maintenance of the double cone photoreceptor cell outer segments in the developing retina. By contrast, Pitpna activity is essential for successful navigation of early developmental programs. This study reports the initial description of the zebrafish class 1 mPITP family, and the first analysis of PITPβ function in a vertebrate. PMID:20545905

  5. Fractional oscillator.

    PubMed

    Stanislavsky, A A

    2004-11-01

    We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586

  6. Development of silicon microforce sensors integrated with double meander springs for standard hardness test instruments

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Doering, Lutz; Daus, Alwin; Brand, Uwe; Frank, Thomas; Peiner, Erwin

    2015-05-01

    Silicon microforce sensors, to be used as a transferable standard for micro force and depth scale calibrations of hardness testing instruments, are developed using silicon bulk micromachining technologies. Instead of wet chemical etching, inductively coupled plasma (ICP) cryogenic deep reactive ion etching (DRIE) is employed in the sensor fabrication process leading to more precise control of 300 μm deep structures with smooth sidewall profiles. Double meander springs are designed flanking to the boss replacing the conventional rectangular springs and thereby improving the system linearity. Two full p-SOI piezoresistive Wheatstone bridges are added on both clamped ends of the active sensors. To realize passive force sensors two spring-mass elements are stacked using glue and photoresist as joining materials. Correspondingly, although plastic deformation seems to occur when the second spring is contacted, the kink effect (i.e., abrupt increase of stiffness) is obviously observed from the first test of the passive stack sensor.

  7. Current-induced electrical self-oscillations across out-of-plane threshold switches based on VO2 layers integrated in crossbars geometry

    NASA Astrophysics Data System (ADS)

    Beaumont, A.; Leroy, J.; Orlianges, J.-C.; Crunteanu, A.

    2014-04-01

    Electrically activated metal-insulator transition (MIT) in vanadium dioxide (VO2) is widely studied from both fundamental and practical points of view. It can give valuable insights on the currently controversial phase transition mechanism in this material and, at the same time, allows the development of original MIT-based electronic devices. Electrically triggered insulator-metal transitions are demonstrated in novel out-of-plane, metal-oxide-metal type devices integrating a VO2 thin film, upon applying moderate threshold voltages. It is shown that the current-voltage characteristics of such devices present clear negative differential resistance effects supporting the onset of continuous, current-driven phase oscillations across the vanadium dioxide material. The frequencies of these self-sustained oscillations are ranging from 90 to 300 kHz and they may be tuned by adjusting the injected current. A phenomenological model of the device and its command circuit is developed, and allows to extract the analytical expressions of the oscillation frequencies and to simulate the electrical oscillatory phenomena developed across the VO2 material. Such out-of-plane devices may further contribute to the general understanding of the driving mechanism in metal-insulator transition materials and devices, a prerequisite to promising applications in high speed/high frequency networks of oscillatory or resistive memories circuits.

  8. Current-induced electrical self-oscillations across out-of-plane threshold switches based on VO{sub 2} layers integrated in crossbars geometry

    SciTech Connect

    Beaumont, A.; Leroy, J.; Crunteanu, A.

    2014-04-21

    Electrically activated metal-insulator transition (MIT) in vanadium dioxide (VO{sub 2}) is widely studied from both fundamental and practical points of view. It can give valuable insights on the currently controversial phase transition mechanism in this material and, at the same time, allows the development of original MIT-based electronic devices. Electrically triggered insulator-metal transitions are demonstrated in novel out-of-plane, metal-oxide-metal type devices integrating a VO{sub 2} thin film, upon applying moderate threshold voltages. It is shown that the current-voltage characteristics of such devices present clear negative differential resistance effects supporting the onset of continuous, current-driven phase oscillations across the vanadium dioxide material. The frequencies of these self-sustained oscillations are ranging from 90 to 300 kHz and they may be tuned by adjusting the injected current. A phenomenological model of the device and its command circuit is developed, and allows to extract the analytical expressions of the oscillation frequencies and to simulate the electrical oscillatory phenomena developed across the VO{sub 2} material. Such out-of-plane devices may further contribute to the general understanding of the driving mechanism in metal-insulator transition materials and devices, a prerequisite to promising applications in high speed/high frequency networks of oscillatory or resistive memories circuits.

  9. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  10. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  11. Performance of double three-dimensional rigid barriers used to create an acoustic space—A normal derivative integral equationapproach

    NASA Astrophysics Data System (ADS)

    António, J.; Tadeu, A.; Castro, I.

    2013-06-01

    This paper simulates the propagation of sound generated by point pressure sources in the vicinity of double three-dimensional (3D) barriers, placed so as to create an indoor acoustic space. The barriers are assumed to be very thin rigid elements. The problem is solved by developing and implementing a 3D Boundary Element Method formulation using a normal derivative integral equation (TBEM), thereby allowing the definition of models in which only the discretization of the barriers as single open surfaces is required. The TBEM is formulated in the frequency domain and the resulting hypersingular terms are computed analytically. After the verification of the model against two-and-a-half-dimensional (2.5D) BEM solutions, several numerical applications are described to illustrate the applicability and usefulness of the proposed approaches. Different barrier shape geometries and their relative position with respect to a lateral wall are analyzed to evaluate the performance of double 3D rigid barriers in the creation of an acoustic space.

  12. Integrative transcriptomics and proteomics analysis of longissimus dorsi muscles of Canadian double-muscled Large White pigs.

    PubMed

    Liu, Shuqin; Han, Wenpeng; Jiang, Shunyan; Zhao, Chunjiang; Wu, Changxin

    2016-02-10

    Canadian double-muscled Large White pigs are characterized by notable muscle mass, showing high daily gain and lean rate and good meat quality. In order to identify the major genes or proteins involved in muscle hyperplasia and hypertrophy, three pairs of full-sib pigs with extreme muscle mass difference from Canadian Large White were selected as experimental animals at 3 months age. The phenotypic differences of longissimus dorsi muscles (LD) were investigated with microarray and proteomics (2-DE, MALDI-TOF-MS), and results were verified by real-time PCR and western bolting respectively. The gene expressing profiling identified 57 and 260 and 147 differently expressed genes (DEGs) from the three pairs respectively with Bayesian statistics and significant analysis of microarrays (SAM) (p<0.05, q<0.05, fold>2). From the network of these DEGs, some major genes were displayed, such as EGF, PPARG, FN1, SERPINE1, MYC, JUN, involved in Wnt, MAPK and TGF-β signal pathway respectively, which mainly participated in cell differentiation and proliferation. In parallel, proteomics analyses revealed 50 differently expressed protein (DEP) spots with mass spectrum, and 33 spots of them were found annotated, which took part in energy metabolism and the structure and contraction of muscle fiber. In brief, our integrated study provides a good foundation for the further study on the genetic mechanism of the double muscle traits in pigs. PMID:26602029

  13. Ex vivo optical characterization of in vivo grown tissues on dummy sensor implants using double integrating spheres measurement

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Goodarzi, Mohammad; Aernouts, Ben; Gellynck, Karolien; Vlaminck, Lieven; Bockstaele, Ronny; Cornelissen, Maria; Ramon, Herman; Saeys, Wouter

    2014-05-01

    Near infrared spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. NIR measurements can be performed in vivo with an implantable single-chip based optical NIR sensor. However, the application of NIR spectroscopy for accurate estimation of the analyte concentration in highly scattering biological systems still remains a challenge. For instance, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues allow only a small fraction of the collimated light to pass, this might result in a large reduction of the light throughput. To quantify the effect of presence of a thin tissue layer in the optical path, the bulk optical properties of tissue samples grown on sensor dummies which had been implanted for several months in goats were characterized using Double Integrating Spheres and unscattered transmittance measurements. The measured values of diffuse reflectance, diffuse transmittance and collimated transmittance were used as input to Inverse Adding-Doubling algorithm to estimate the bulk optical properties of the samples. The estimates of absorption and scattering coefficients were then used to calculate the light attenuation through a thin tissue layer. Based on the lower reduction in unscattered transmittance and higher absorptivity of glucose molecules, the measurement in the combination band was found to be the better option for the implantable sensor. As the tissues were found to be highly forward scattering with very low unscattered transmittance, the diffuse transmittance measurement based sensor configuration was recommended for the implantable glucose sensor.

  14. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  15. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  16. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  17. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    SciTech Connect

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  18. Silicon/PVDF integrated double detector: application to obstacle detection in automotive

    NASA Astrophysics Data System (ADS)

    Simonne, Jean-Jacques; Pham, Vui V.; Esteve, Daniel; Alaoui-Amine, Mohammed; Bousbiat, Essaid

    1991-02-01

    The design of an integrated sensing system including a Silicon photodiode and a thermal pyroelectric detector is presented. The influence of a thermal insulator between both detectors to provide a good sensitivity to the structure is discussed through a simple model accounting for heat absorption and heat loss characteristics of the structure. An experimental set up is finally descnbed and investigated to be transposed and adapted in a car to obstacle detection. I .

  19. Current sheet oscillations in the magnetic filament approach

    SciTech Connect

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2012-06-15

    Magnetic filament approach is applied for modeling of nonlinear 'kink'-like flapping oscillations of thin magnetic flux tubes in the Earth's magnetotail current sheet. A discrete approximation for the magnetic flux tube was derived on a basis of the Hamiltonian formulation of the problem. The obtained system of ordinary differential equations was integrated by method of Rosenbrock, which is suitable for stiff equations. The two-dimensional exact Kan's solution of the Vlasov equations was used to set the background equilibrium conditions for magnetic field and plasma. Boundary conditions for the magnetic filament were found to be dependent on the ratio of the ionospheric conductivity and the Alfven conductivity of the magnetic tube. It was shown that an enhancement of this ratio leads to the corresponding increase of the frequency of the flapping oscillations. For some special case of boundary conditions, when the magnetic perturbations vanish at the boundaries, the calculated frequency of the 'kink'-like flapping oscillations is rather close to that predicted by the 'double gradient' analytical model. For others cases, the obtained frequency of the flapping oscillations is somewhat larger than that from the 'double gradient' theory. The frequency of the nonlinear flapping oscillations was found to be a decreasing function of the amplitude.

  20. Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents

    SciTech Connect

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.

  1. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    PubMed

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  2. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

    PubMed Central

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  3. A low-phase-noise Ka-band push-push voltage-controlled oscillator using CMOS/glass-integrated passive device technologies.

    PubMed

    Wang, Sen

    2014-09-01

    In this paper, a Ka-band CMOS push-push voltage- controlled oscillator (VCO) integrated into a glass-integrated passive device (GIPD) process is presented. The transformer, λ/4 transmission line, and inductors of the VCO are realized in the GIPD process, achieving superior performances, and therefore improve the phase noise of the VCO. Moreover, the transformer-based VCO is a differential Hartley topology to further reduce the phase noise and chip area. Operating at 1.8 V supply voltage, the VCO core consumes merely 3.8 mW of dc power. The measured phase noise is -109.18 dBc/Hz at 1 MHz offset from the 30.84 GHz oscillation frequency. The push-push VCO also demonstrates a 24.5 dB fundamental rejection, and exhibits an 8.4% tuning range. Compared with recently published CMOS-based VCOs, it is observed that the proposed VCO exhibits excellent performance under low power consumption. PMID:25167145

  4. Updates in the Global/Regional Integrated Model system (GRIMs)-Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M. S.; Park, H.; Park, S. H.; Hong, S. Y.

    2014-12-01

    The Global/Regional Integrated Model system (GRIMs)-double Fourier series (DFS) spectral dynamical core has been developed to overcome the limitation of traditional spectral model using spherical harmonics in terms of computational cost at very high resolution. Recently, the GRIMs-DFS dynamical core was updated in two respects: (1) better scalability on high-performance computing platform; and (2) reduction of numerical time-stepping error. To improve the parallel efficiency, the archived wave domain was designed not to be sliced in the meridional direction, but to be decomposed in the horizontal and vertical directions. Although the computational cost slightly increased due to the requirement of temporary work array, the revised DFS dynamical core yielded higher scalability in terms of the wall-clock-time than the original one. In addition, its efficiency gain became greater with the increase of horizontal resolution when the number of processors is increased. The Robert-Asselin-Williams (RAW) time filter has been proposed as a simple improvement to the widely used Robert-Asselin filter, in order to reduce time-stepping errors in semi-implicit leapfrog integration. This new approach was implemented into the GRIMs-DFS dynamical core and its impact was quantitatively evaluated on medium-range forecast and seasonal ensemble prediction frameworks. Preliminary results showed that the RAW time-filter properly reduced spurious light rainfalls that might be produced from unphysical computational mode generated by leap-frog time stepping. Further details will be presented in the conference.

  5. Relaxation dynamics of ultracold bosons in a double-well potential: Thermalization and prethermalization in a nearly integrable model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2015-09-01

    We numerically investigate the relaxation dynamics in an isolated quantum system of interacting bosons trapped in a double-well potential after an integrability breaking quench. Using the statistics of the spectrum, we identify the postquench Hamiltonian as nonchaotic and close to integrability over a wide range of interaction parameters. We demonstrate that the system exhibits thermalization in the context of the eigenstate thermalization hypothesis (ETH). We also explore the possibility of an initial state to delocalize with respect to the eigenstates of the postquench Hamiltonian even for energies away from the middle of the spectrum. We observe distinct regimes of equilibration process depending on the initial energy. For low energies, the system rapidly relaxes in a single step to a thermal state. As the energy increases towards the middle of the spectrum, the relaxation dynamics exhibits prethermalization and the lifetime of the metastable states grows. Time evolution of the occupation numbers and the von Neumann entropy in the mode-partitioned system underpins the analyses of the relaxation dynamics.

  6. Cycle-Averaged Phase-Space States for the Harmonic and the Morse Oscillators, and the Corresponding Uncertainty Relations

    ERIC Educational Resources Information Center

    Nicolaides, Cleanthes A.; Constantoudis, Vasilios

    2009-01-01

    In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…

  7. Characterizing the Long-Term Variability of X-ray Binary 4U1705-44Evidence for an Underlying Double-Welled Nonlinear Oscillator

    NASA Astrophysics Data System (ADS)

    Phillipson-Nichols, Rebecca A.; Boyd, Patricia T.; Smale, Alan P.

    2015-01-01

    4U 1705-44 is a bright low mass x-ray binary (LMXB) containing a neutron star and a close, low mass companion. The Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor obtained approximately 14 years of daily monitoring on 4U 1705-44 in the 2-20 keV energy range. Understanding the x-ray variability of 4U1705-44 is critical to the study of all low mass x-ray binaries because they share many of the same global characteristics in their high-amplitude transitions and non-periodic variability. After comparing the longterm light curve and phase space trajectories of 4U1705-44 to various nonlinear oscillators, the Duffing Oscillator was revealed to be a strong candidate to describe these systems. The parameters of the Duffing equation were optimized and six solutions sharing the same characteristics as 4U1705-44 were found. Striking commonalities were revealed via a phase-space analysis of both 4U1705-44 and the six Duffing solutions: the low-order driving period is no less than 87 days and spans up to 180 days, which is seenand highlighted in the power spectra, zero-crossings and close returns analysis of4U1705-44. Furthermore, the driving frequency of all six Duffing solutions tend toconverge to a range of 3.6 - 4.5, corresponding to driving periods in the range from 130 to 175 days, in agreement with that found in 4U1705-44. Nonlinear analysis methods such as close returns and zero-crossings of the Duffing solutions also show the same trends. This strongly suggests that 4U1705-44 shares the same topological characteristics as the Duffing equation. With further analysis, we hope to develop a model to explain why 4U1705-44 shares the unique topology of the Duffing Oscillator specifically, rather than those of other families of nonlinear differential equations.

  8. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  9. Integrated Solar Disk Oscillation Measurements Using the Magneto-Optical Filter: Tests with a Two Station Network

    NASA Technical Reports Server (NTRS)

    Cacciani, Alessandro; Rosati, P.; Ricci, D.; Marquedant, R.; Smith, E.

    1988-01-01

    The magneto-optical filter (MOF) was used to get high and intermediate l-modes of solar oscillations. For very low l-modes the imaging capability of the MOF is still attractive since it allows a pixel by pixel intensity normalization. However, a crude attempt to get very low l power spectra from Dopplergrams obtained at Mt. Wilson gave noisy results. This means that a careful analysis of all the factors potentially affecting high resolution Dopplergrams should be accomplished. In order to better investigate this problem, a nonimaging channel using the lock-in amplifier technique was considered. Two systems are now operational, one at JPL and the other at University of Rome. Observations in progress are used to discuss the MOF stability, the noise level, and the possible application in asteroseismology.

  10. Galactic oscillations

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1991-01-01

    Long-lived oscillations that act like normal modes are described. The total kinetic energy is found to vary with time by amounts far in excess of the fluctuations expected from the virial theorem, and the variation shows periodic patterns that suggest oscillations. Experimental results indicate that oscillation amplitudes depend on the nature of the model. It is noted that it is difficult to answer questions about likely amplitudes in real galaxies with any confidence at the present time.

  11. Retained functional integrity of bull spermatozoa after double freezing and thawing using PureSperm density gradient centrifugation.

    PubMed

    Maxwell, W M C; Parrilla, I; Caballero, I; Garcia, E; Roca, J; Martinez, E A; Vazquez, J M; Rath, D

    2007-10-01

    The main aim of this study was to compare the motility and functional integrity of bull spermatozoa after single and double freezing and thawing. The viability and morphological integrity of spermatozoa selected by PureSperm density gradient centrifugation after cryopreservation of bovine semen in two commercial extenders (Experiment 1) and the function of bull spermatozoa before and after a second freezing and thawing assisted by PureSperm selection (Experiment 2) were examined. On average, 35.8 +/- 12.1% of sperm loaded onto the PureSperm density gradient were recovered after centrifugation. In Experiment 1, post-thaw motility and acrosome integrity were higher for spermatozoa frozen in Tris-egg yolk extender than in AndroMed, whether the assessments were made immediately after thawing [80.4 +/- 12.7 vs 47.6 +/- 19.0% motile and 78.8 +/- 8.3 vs 50.1 +/- 19.5% normal apical ridge (NAR), p < 0.05] or after preparation on the gradient (83.3 +/- 8.6 vs 69.4 +/- 15.9% motile and 89.5 +/- 7.2 vs 69.1 +/- 11.4% NAR, p < 0.05). For semen frozen in Tris-egg yolk extender, selection on the PureSperm gradient did not influence total motility but significantly improved the proportion of acrosome-intact spermatozoa. After the gradient, both the total motility and percentage of normal acrosomes increased for spermatozoa frozen in AndroMed (Minitüb Tiefenbach, Germany). In Experiment 2, there was no difference in sperm motility after the first and second freeze-thawing (82.9 +/- 12.7 vs 68.8 +/- 18.7%). However, the proportion of acrosome-intact spermatozoa was significantly improved by selection through the PureSperm gradient, whether measured by phase contrast microscopy (78.9 +/- 9.7 vs 90.4 +/- 4.0% NAR, p < 0.05) or flow cytometry (53.4 +/- 11.7 vs 76.3 +/- 6.0% viable acrosome-intact spermatozoa, p < 0.001). The improvement in the percentage of spermatozoa with normal acrosomes was maintained after resuspension in the cooling extender and cooling to 4 degrees C (88

  12. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  13. An integral topical gel for cellulite reduction: results from a double-blind, randomized, placebo-controlled evaluation of efficacy

    PubMed Central

    Dupont, Eric; Journet, Michel; Oula, Marie-Laure; Gomez, Juan; Léveillé, Claude; Loing, Estelle; Bilodeau, Diane

    2014-01-01

    Background Cellulite is a serious cosmetic concern for most of the 90% of women affected by it. Objective To assess the clinical efficacy of a complex integral anti-cellulite gel. Methods This double-blind, randomized, placebo-controlled study involved 44 healthy women, aged 25–55 years. Subjects had a normal to slightly overweight body mass index and presented slight to moderate cellulite on their thighs, buttocks, and/or hips at baseline. Subjects were randomly assigned to either the treated or placebo group and accordingly applied the active product or placebo on their hips, stomach, buttocks, and thighs, twice daily for 3 months. Skin tonicity, orange-peel aspect, and stubborn cellulite were assessed at day 0, 28, 56, and 84. A self-evaluation questionnaire was completed by all volunteers. Results At the end of the study, an average of 81% of the subjects applying the active product presented improvement in their cellulite condition versus 32% for the placebo group (all descriptors and sites combined). At day 84, skin tonicity, orange-peel appearance, and stubborn cellulite were improved in a significant manner (P<0.05) over placebo, on all studied areas. Skin tonicity improved on average by +41% for buttocks, +35% for hips, and +31% for thighs. Orange peel appearance was reduced on average by −25% for buttocks, −22% for hips, and −22% for thighs. Stubborn cellulite was reduced on average by −19% for buttocks, −24% for hips, and −22% for thighs. Circumference measurements decreased in a significant manner (P<0.05) over placebo, for the abdomen (average value of −1.1 cm) and thighs (average value of −0.8 cm). The product was well tolerated and perceived by the volunteers themselves as better performing than placebo on all criteria. Conclusion All results validate the efficacy of the present integral formulation to significantly reduce signs of cellulite and reshape the silhouette. PMID:24600240

  14. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  15. Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model.

    PubMed

    Saccomandi, Paola; Larocca, Enza Stefania; Rendina, Veneranda; Schena, Emiliano; D'Ambrosio, Roberto; Crescenzi, Anna; Di Matteo, Francesco Maria; Silvestri, Sergio

    2016-08-01

    The investigation of laser-tissue interaction is crucial for diagnostics and therapeutics. In particular, the estimation of tissue optical properties allows developing predictive models for defining organ-specific treatment planning tool. With regard to laser ablation (LA), optical properties are among the main responsible for the therapy efficacy, as they globally affect the heating process of the tissue, due to its capability to absorb and scatter laser energy. The recent introduction of LA for pancreatic tumor treatment in clinical studies has fostered the need to assess the laser-pancreas interaction and hence to find its optical properties in the wavelength of interest. This work aims at estimating optical properties (i.e., absorption, μ a , scattering, μ s , anisotropy, g, coefficients) of neuroendocrine pancreas tumor at 1064 nm. Experiments were performed using two popular sample storage methods; the optical properties of frozen and paraffin-embedded neuroendocrine tumor of the pancreas are estimated by employing a double-integrating-sphere system and inverse Monte Carlo algorithm. Results show that paraffin-embedded tissue is characterized by absorption and scattering coefficients significantly higher than frozen samples (μ a of 56 cm(-1) vs 0.9 cm(-1), μ s of 539 cm(-1) vs 130 cm(-1), respectively). Simulations show that such different optical features strongly influence the pancreas temperature distribution during LA. This result may affect the prediction of therapeutic outcome. Therefore, the choice of the appropriate preparation technique of samples for optical property estimation is crucial for the performances of the mathematical models which predict LA thermal outcome on the tissue and lead the selection of optimal LA settings. PMID:27147075

  16. On the Kernel function of the integral equation relating the lift and downwash distributions of oscillating finite wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Runyan, Harry L; Woolston, Donald S

    1955-01-01

    This report treats the Kernel function of an integral equation that relates a known prescribed downwash distribution to an unknown lift distribution for a harmonically oscillating finite wing in compressible subsonic flow. The Kernel function is reduced to a form that can be accurately evaluated by separating the Kernel function into two parts: a part in which the singularities are isolated and analytically expressed and a nonsingular part which may be tabulated. The form of the Kernel function for the sonic case (Mach number 1) is treated separately. In addition, results for the special cases of Mach number of 0 (incompressible case) and frequency of 0 (steady case) are given. The derivation of the integral equation which involves this Kernel function is reproduced as an appendix. Another appendix gives the reduction of the form of the Kernel function obtained herein for the three-dimensional case to a known result of Possio for two-dimensional flow. A third appendix contains some remarks on the evaluation of the Kernel function, and a fourth appendix presents an alternate form of expression for the Kernel function.

  17. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  18. A substrate integrated folded waveguide (SIFW) H-plane band-pass filter with double H-plane septa based on LTCC.

    PubMed

    Wang, Zhengwei; Bu, Shirong; Luo, Zhengxiang

    2012-03-01

    In this paper, a novel substrate integrated folded waveguide (SIFW) H-plane band-pass filter based on low-temperature co-fired ceramic technology (LTCC) is proposed which employs double H-plane septa of a short-ended evanescent waveguide as an impedance inverter. The filter has advantages of convenient integration, compact, low cost, mass-producibility, and ease of fabrication, and it also has frequency responses similar to those of traditional E-plane double-iris waveguide band-pass filters. To validate the new proposed topology, a three-pole narrowband band-pass filter is designed and fabricated using half-wavelength resonators. A comparison between measured results and simulated results shows good agreement. PMID:22481793

  19. Microelectronic oscillator

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1969-01-01

    Bipolar transistor operated in a grounded base configuration is used as the inductor in a microelectronic oscillator. This configuration is employed using thin-film hybrid technology and is also applicable to monolithic technology.

  20. Raindrop oscillations

    NASA Technical Reports Server (NTRS)

    Beard, K. V.

    1982-01-01

    A model of the change in shape of a raindrop is presented. Raindrops measured by two orthogonal cameras were classified by shape and orientation to determine the nature of the oscillation. A physical model based on potential energy was then developed to study the amplitude variation of oscillating drops. The model results show that oscillations occur about the equilibrium axis ratio, but the time average axis ratio if significantly more spherical for large amplitudes because of asymmetry in the surface potential energy. A generalization of the model to oscillations produced by turbulence yields average axis ratios that are consistent with the camera measurements. The model results for average axis ratios were applied to rainfall studies with a dual polarized radar.

  1. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  2. Non-Newtonian mechanics of oscillation centers

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2008-10-15

    Classical particles oscillating in high-frequency or static fields effectively exhibit a modified rest mass m{sub eff} which determines the oscillation center motion. Unlike the true mass, m{sub eff} depends on the field parameters and can be a nonanalytic function of the particle average velocity and the oscillation energy; hence non-Newtonian ''metaplasmas'' that permit a new type of plasma maser, signal rectification, frequency doubling, and one-way walls.

  3. Gamma Oscillation in Schizophrenia

    PubMed Central

    O'Donnell, Brian F.; Youn, Soyoung; Kwon, Jun Soo

    2011-01-01

    Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia. PMID:22216037

  4. Squeezed states of damped oscillator chain

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.

  5. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  6. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  7. Oscillators: Old and new perspectives

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Jayanta K.; Roy, Jyotirmoy

    2014-02-01

    We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies that are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.

  8. Oscillators: Old and new perspectives

    SciTech Connect

    Bhattacharjee, Jayanta K.; Roy, Jyotirmoy

    2014-02-11

    We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies that are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.

  9. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  10. Multi-Reanalysis Comparison of Variability in Analysis Increment of Column-Integrated Water Vapor Associated with Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Yokoi, S.

    2014-12-01

    This study conducts a comparison of three reanalysis products (JRA-55, JRA-25, and ERA-Interim) in representation of Madden-Julian Oscillation (MJO), focusing on column-integrated water vapor (CWV) that is considered as an essential variable for discussing MJO dynamics. Besides the analysis fields of CWV, which exhibit spatio-temporal distributions that are quite similar to satellite observations, CWV tendency simulated by forecast models and analysis increment calculated by data assimilation are examined. For JRA-55, it is revealed that, while its forecast model is able to simulate eastward propagation of the CWV anomaly, it tends to weaken the amplitude, and data assimilation process sustains the amplitude. The multi-reanalysis comparison of the analysis increment further reveals that this weakening bias is probably caused by excessively weak cloud-radiative feedback represented by the model. This bias in the feedback strength makes anomalous moisture supply by the vertical advection term in the CWV budget equation too insensitive to precipitation anomaly, resulting in reduction of the amplitude of CWV anomaly. ERA-Interim has a nearly opposite feature; the forecast model represents excessively strong feedback and unrealistically strengthens the amplitude, while the data assimilation weakens it. These results imply the necessity of accurate representation of the cloud-radiative feedback strength for a short-term MJO forecast, and may be evidence to support the argument that this feedback is essential for the existence of MJO. Furthermore, this study demonstrates that the multi-reanalysis comparison of the analysis increment will provide useful information for identifying model biases and, potentially, for estimating parameters that are difficult to estimate solely from observation data, such as gross moist stability.

  11. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  12. Memcapacitor model and its application in a chaotic oscillator

    NASA Astrophysics Data System (ADS)

    Guang-Yi, Wang; Bo-Zhen, Cai; Pei-Pei, Jin; Ti-Ling, Hu

    2016-01-01

    A memcapacitor is a new type of memory capacitor. Before the advent of practical memcapacitor, the prospective studies on its models and potential applications are of importance. For this purpose, we establish a mathematical memcapacitor model and a corresponding circuit model. As a potential application, based on the model, a memcapacitor oscillator is designed, with its basic dynamic characteristics analyzed theoretically and experimentally. Some circuit variables such as charge, flux, and integral of charge, which are difficult to measure, are observed and measured via simulations and experiments. Analysis results show that besides the typical period-doubling bifurcations and period-3 windows, sustained chaos with constant Lyapunov exponents occurs. Moreover, this oscillator also exhibits abrupt chaos and some novel bifurcations. In addition, based on the digital signal processing (DSP) technology, a scheme of digitally realizing this memcapacitor oscillator is provided. Then the statistical properties of the chaotic sequences generated from the oscillator are tested by using the test suit of the National Institute of Standards and Technology (NIST). The tested randomness definitely reaches the standards of NIST, and is better than that of the well-known Lorenz system. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271064, 61401134, and 60971046), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ12F01001 and LQ14F010008), and the Program for Zhejiang Leading Team of S&T Innovation, China (Grant No. 2010R50010).

  13. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  14. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  15. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure. PMID:26429008

  16. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    SciTech Connect

    Ivanov, Sergei D. Grant, Ian M.; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  17. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Grant, Ian M.; Marx, Dominik

    2015-09-01

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  18. Review of observations relevant to solar oscillations

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1982-01-01

    Recent solar oscillation observations and methods used are described. Integrated or almost integrated sunlight (Sun as a star observation) was observed. The most certain observations are in the 5 minute range. The p-mode and g-mode oscillations are expected from 3 to more than 300 minutes. The possible period ranges are described into the three intervals: (1) the 5 minute range for which the most dramatic and certain results are reported; (2) the 10 to 20 minute range for which solar diameter oscillations are reported; and (3) the 160 minute oscillation found in velocity and several other quantities.

  19. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  20. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy.

    PubMed

    Hu, Feng; Zhang, Yan; Chen, Guangcun; Li, Chunyan; Wang, Qiangbin

    2015-02-25

    In this work, a novel type of nanomedical platform, the double-walled Au nanocage/SiO(2) nanorattle, is successfully fabricated by combining two "hollow-excavated strategies"--galvanic replacement and "surface-protected etching". The rational design of double-walled nanostructure based on gold nanocages (AuNCs) and hollow SiO(2) shells functionalized respectively with p-aminothiophenol (pATP) and Tat peptide simultaneously renders the nanoplatforms three functionalities: 1) the whole nanorattle serves as a high efficient drug carrier thanks to the structural characteristics of AuNC and SiO(2) shell with hollow interiors and porous walls; 2) the AuNC with large electromagnetic enhancement acts as a sensitive surface-enhanced Raman scattering (SERS) substrate to track the internalization process of the nanorattles by human MCF-7 breast cancer cells, as well as an efficient photothermal transducer for localized hyperthermia cancer therapy due to the strong near-infrared absorption; 3) Tat-functionalized SiO(2) shell not only improves biocompatibility and cell uptake efficiency resulting in enhanced anticancer efficacy but also prevents the AuNCs from aggregation and provides the stability of AuNCs so that the SERS signals can be used for cell tracking in high fidelity. The reported chemistry and the designed nanostructures should inspire more interesting nanostructures and applications. PMID:25348096

  1. Stable local oscillator module.

    SciTech Connect

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  2. Fundamental Oscillation up to 1.42 THz in Resonant Tunneling Diodes by Optimized Collector Spacer Thickness

    NASA Astrophysics Data System (ADS)

    Kanaya, Hidetoshi; Sogabe, Riku; Maekawa, Takeru; Suzuki, Safumi; Asada, Masahiro

    2014-05-01

    We report an increase in the oscillation frequency of terahertz oscillators using AlAs/InGaAs double-barrier resonant tunneling diodes (RTDs) by optimizing the collector spacer thickness. For high-frequency oscillation of RTDs, the electron delay time, which is composed of the dwell time in the resonance region and the transit time in the collector depletion region, must be reduced. Although the transit time is reduced by a thin collector spacer, the capacitance increases. Thus, an optimum thickness of collector spacer layer exists. In this report, we investigate the dependence of oscillation frequency on the collector spacer thickness. The RTDs were integrated with 20-μm-long slot antennas, and oscillations up to 1.1, 1.42, and 1.29 THz were obtained for spacer thicknesses of 25, 12, and 6 nm, respectively. The optimum spacer thickness for high-frequency oscillation was around 12 nm. The highest frequency in this experiment was 1.42 THz oscillation, with an output power of ~1 μW. We also extracted the electron velocity in the collector depletion region and the dwell time from the dependence of the delay time on the collector spacer thickness.

  3. Double Sided Irradiation for Laser-assisted Shearing of Ultra High Strength Steels with Process Integrated Hardening

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus; Weinbach, Matthias

    Most small or medium sized parts produced in mass production are made by shearing and forming of sheet metal. This technology is cost effective, but the achievable quality and geometrical complexity are limited when working high and highest strength steel. Based on the requirements for widening the process limits of conventional sheet metal working the Fraunhofer IPT has developed the laser-assisted sheet metal working technology. With this enhancement it is possible to produce parts made of high and highest strength steel with outstanding quality, high complexity and low tool wear. Additionally laser hardening has been implemented to adjust the mechanical properties of metal parts within the process. Currently the process is limited to lower sheet thicknesses (<2 mm) to maintain short cycle times. To enable this process for larger geometries and higher sheet thicknesses the Fraunhofer IPT developed a system for double sided laser-assisted sheet metal working within progressive dies.

  4. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.

    PubMed

    Kleinert, H; Zatloukal, V

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration. PMID:24329213

  5. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    NASA Astrophysics Data System (ADS)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140–220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are ‑2.688 dBm at 210 GHz and ‑2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  6. Multi-directional ultra-high sensitive pressure sensor based on the integration of optimized double 60° bend waveguides and modified center-defect photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Yang, Daquan; Tian, Huiping; Huang, Lijun; Zhang, Pan; Ji, Yuefeng

    2015-06-01

    In the previous work [1], we have proposed a method to realize multi-directional pressure sensor. This follow-up work provides an optimized structure design based on the integration of double 60° bend waveguides and modified center-defect photonic crystal microcavity to further improve sensitivity. By applying two-dimensional finite difference time domain technologies (2D-FDTD) and finite-element methods (FEM), we systematically investigate the variations of optical properties under applied pressure. Linear relationships between the resonant wavelength shift and the applied pressure are obtained in three directions. The ultra-high sensitivities and the low minimum detectable pressure in longitudinal, transverse and upright directions are 39.7 nm/μN and 1.08 nN, 30.20 nm/μN and 1.43 nN, and 0.12 nm/nN and 0.36 nN respectively.

  7. Double integration of current transients in response to an abrupt change of applied bias: Application to dielectrics

    NASA Astrophysics Data System (ADS)

    Thurzo, I.; Barančok, D.; Haluška, M.

    1995-11-01

    The depolarization current transients are processed in two consecutive steps: initially the feedback capacitor of a charge-to-voltage converter (QVC) is charged by the transient current, which is followed by integrating the output of the QVC via a gated integrator operated in the mode of exponential averaging. Unlike charge transient spectroscopy [QTS; J. W. Farmer, C. D. Lamp, and J. M. Meese, Appl. Phys. Lett. 41, 1063 (1982)], intended originally for high-resistivity semiconductors, the gate aperture duration is set to intervals comparable to the rate window. Since a single channel of our advanced system represents an unrestored time-domain filter, output signals of the three gated integrators are properly combined in an analog mixer, to get a second-order filter [Crowell and Alipanahi, Solid-State Electron. 24, 25 (1980)]. Apart from the selectivity improvement, our multichannel scheme eliminates parasitic charges due to leaky dielectrics. The formalism of the evaluation of kinetic parameters of dipoles is applied to experimentally observed relaxation peaks from Gd-doped CaF2 crystals.

  8. Global study of Rayleigh-Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Chen, Hebai; Zou, Lan

    2016-04-01

    In this paper we investigate the global dynamics of Rayleigh-Duffing oscillators with global parameters, including equilibria at both finity and infinity, existences and coexistence of limit cycles and homoclinic loops. In fact, this oscillator will occur Hopf bifurcations, homoclinic bifurcations and double limit cycle bifurcations. Moreover, we find that the homoclinic bifurcation of this oscillator is special which is a gluing bifurcation. The global bifurcation diagram and all phase portrait are given, and numerical simulations are shown to verify our analysis finally.

  9. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  10. Dynamical properties and chaos synchronization of improved Colpitts oscillators

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Chedjou, J. C.; Kenne, G.; Kyamakya, K.

    2012-07-01

    In this paper, the dynamics and synchronization of improved Colpitts oscillators designed to operate in ultrahigh frequency range are considered. The model is described by a continuous time four-dimensional autonomous system with an exponential nonlinearity. The system is integrated numerically and various bifurcation diagrams and corresponding graphs of largest 1D Lyapunov exponent are plotted to summarize different scenarios leading to chaos. It is found that the oscillator moves from the state of fixed point motion to chaos via the usual paths of period-doubling, intermittency and interior crisis routes when monitoring the bias (i.e. power supply) in tiny ranges. In order to promote chaos-based synchronization designs of this type of oscillators, a synchronization strategy based upon the design of a nonlinear state observer is successfully adapted. The suggested approach enables synchronization to be achieved via a scalar transmitted signal which represents a suitable feature for communication applications. Numerical simulations are performed to demonstrate the effectiveness and feasibility of the proposed technique.