Science.gov

Sample records for double neutron star

  1. Fast Radio Bursts from the Inspiral of Double Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Wu, Xue-Feng; Dai, Zi-Gao; Wang, Fa-Yin

    2016-05-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  2. CONSTRAINTS ON NATAL KICKS IN GALACTIC DOUBLE NEUTRON STAR SYSTEMS

    SciTech Connect

    Wong, Tsing-Wai; Willems, Bart; Kalogera, Vassiliki E-mail: b-willems@northwestern.ed

    2010-10-01

    Since the discovery of the first double neutron star (DNS) system in 1975 by Hulse and Taylor, there are currently eight confirmed DNS in our galaxy. For every system, the masses of both neutron stars, the orbital semimajor axis, and eccentricity are measured, and proper motion is known for half of the systems. Using the orbital parameters and kinematic information, if available, as constraints for all systems, we investigate the immediate progenitor mass of the second-born neutron star (NS2) and the magnitude of the supernova kick it received at birth, with the primary goal to understand the core-collapse mechanism leading to neutron star formation. Compared to earlier studies, we use a novel method to address the uncertainty related to the unknown radial velocity of the observed systems. For PSR B1534+12 and PSR B1913+16, the kick magnitudes are 150-270 km s{sup -1} and 190-450 km s{sup -1} (with 95% confidence), respectively, and the progenitor masses of the NS2 are 1.3-3.4 M{sub sun} and 1.4-5.0 M{sub sun} (95%), respectively. These suggest that the NS2 was formed by an iron core-collapse supernova in both systems. For PSR J0737 - 3039, on the other hand, the kick magnitude is only 5-120 km s{sup -1} (95%), and the progenitor mass of the NS2 is 1.3-1.9 M{sub sun} (95%). Because of the relatively low progenitor mass and kick magnitude, the formation of the NS2 in PSR J0737 - 3039 is potentially connected to an electron capture supernova of a massive O-Ne-Mg white dwarf. For the remaining five Galactic DNS, the kick magnitude ranges from several tens to several hundreds of km s{sup -1}, and the progenitor mass of the NS2 can be as low as {approx}1.5 M{sub sun} or as high as {approx}8 M{sub sun}. Therefore, in these systems it is not clear which type of supernova is more likely to form the NS2.

  3. Formation of double neutron star systems as implied by observations

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Piran, Tsvi

    2016-03-01

    Double Neutron Stars (DNS) have to survive two supernovae (SNe) and still remain bound. This sets strong limits on the nature of the second collapse in these systems. We consider the masses and orbital parameters of the DNS population and constrain the two distributions of mass ejection and kick velocities directly from observations with no a priori assumptions regarding evolutionary models and/or the types of the SNe involved. We show that there is strong evidence for two distinct types of SNe in these systems, where the second collapse in the majority of the observed systems involved small mass ejection (ΔM ≲ 0.5 M⊙) and a corresponding low-kick velocity (vk ≲ 30 km s-1). This formation scenario is compatible, for example, with an electron-capture SN. Only a minority of the systems have formed via the standard SN scenario involving larger mass ejection of ˜2.2 M⊙ and kick velocities of up to 400 km s-1. Due to the typically small kicks in most DNS (which are reflected by rather low proper motion), we predict that most of these systems reside close to the Galactic disc. In particular, this implies that more NS-NS mergers occur close to the Galactic plane. This may have non-trivial implications to the estimated merger rates of DNS and to the rate of LIGO/VIRGO detections.

  4. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  5. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  6. Neutron Stars

    NASA Technical Reports Server (NTRS)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  7. THE DOUBLE PULSAR: EVIDENCE FOR NEUTRON STAR FORMATION WITHOUT AN IRON CORE-COLLAPSE SUPERNOVA

    SciTech Connect

    Ferdman, R. D.; Kramer, M.; Stappers, B. W.; Lyne, A. G.; Stairs, I. H.; Breton, R. P.; McLaughlin, M. A.; Freire, P. C. C.; Possenti, A.; Kaspi, V. M.; Manchester, R. N.

    2013-04-10

    The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4 hr orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well as the low system eccentricity and proper motion, point to a different evolutionary scenario compared to most other known double neutron star systems. We describe analysis of the pulse profile shape over 6 years of observations and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to be a near-orthogonal rotator with an average separation between its spin and magnetic axes of 90 Degree-Sign {+-} 11 Degree-Sign {+-} 5 Degree-Sign . Furthermore, we find a mean 95% upper limit on the misalignment between its spin and orbital angular momentum axes of 3. Degree-Sign 2, assuming that the observed emission comes from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron capture onto an O-Ne-Mg core.

  8. Formation of the Double Neutron Star System PSR J1930-1852

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2016-01-01

    The spin period (185 ms) and period derivative (1.8× {10}-17 {{s}} {{{s}}}-1) of the recently discovered double neutron star (DNS) system PSR J1930-1852 indicate that the pulsar was mildly recycled through the process of Roche-lobe overflow. This system has the longest orbital period (45 days) of the known DNS systems, and can be formed from a helium star-NS binary if the initial mass of the helium star was ≲ 4.0{M}⊙ ; otherwise, the helium star would never fill its Roche-lobe. At the moment of the supernova explosion, the mass of the helium star was ≲ 3.0{M}⊙ . We find that the probability distribution of the velocity kick imparted to the new-born neutron star has a maximum at about 30 {km} {{{s}}}-1 (and a tail up to 260 {km} {{{s}}}-1), indicating that this NS probably received a low kick velocity at birth.

  9. On the galactic and cosmic merger rate of double neutron stars.

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Lorimer, D. R.

    1996-11-01

    Previous calculations of the merging rate of double neutron star systems similar to the Hulse-Taylor binary pulsar B1913+16 have assumed lifetimes based on the sum of the radio pulsar spin-down age and the time-scale on which the binary system merges as a result of gravitational radiation losses. Here we demonstrate that this method underestimates the merging rate, and that a more reliable calculation can be made from the radio lifetimes of these systems which are shorter by a factor of about 3. Using the latest estimates for the number of double neutron star systems in the Galaxy, we find the rate of such mergers to be ˜8×10-6 yr-1. Following earlier extrapolations made by Curran & Lorimer for all galaxies out to 100 Mpc, we find the lower limit to the event rate of neutron star mergers detectable by the advanced LIGO gravitational wave detector to be approximately 0.3 per year.

  10. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

    PubMed

    Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R

    2003-12-01

    The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe). PMID:14654834

  11. Demagnified gravitational waves from cosmological double neutron stars and gravitational wave foreground cleaning around 1 Hz

    SciTech Connect

    Seto, Naoki

    2009-11-15

    Gravitational waves (GWs) from cosmological double neutron star binaries (NS+NS) can be significantly demagnified by the strong gravitational lensing effect, and the proposed future missions such as the Big Bang Observer or Deci-hertz Interferometer Gravitational Wave Observatory might miss some of the demagnified GW signals below a detection threshold. The undetectable binaries would form a GW foreground, which might hamper detection of a very weak primordial GW signal. We discuss the outlook of this potential problem, using a simple model based on the singular isothermal sphere lens profile. Fortunately, it is expected that, for a presumable merger rate of NS+NSs, the residual foreground would be below the detection limit {omega}{sub GW,lim}{approx}10{sup -16} realized with the Big Bang Observer/Deci-hertz Interferometer Gravitational Wave Observatory by correlation analysis.

  12. The gravitational-wave signal generated by a galactic population of double neutron-star binaries

    NASA Astrophysics Data System (ADS)

    Yu, Shenghua; Jeffery, C. Simon

    2015-04-01

    We investigate the gravitational wave (GW) signal generated by a population of double neutron-star (DNS) binaries with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky Way-type galaxy has been studied as a function of star formation history, initial mass function (IMF) and metallicity and of the binary-star common-envelope ejection process. The model provides birthrates, merger rates and total number of DNS as a function of time. The GW signal produced by this population has been computed and expressed in terms of a hypothetical space GW detector (eLISA) by calculating the number of discrete GW signals at different confidence levels, where `signal' refers to detectable GW strain in a given frequency-resolution element. In terms of the parameter space explored, the number of DNS-originating GW signals is greatest in regions of recent star formation, and is significantly increased if metallicity is reduced from 0.02 to 0.001, consistent with Belczynski et al. Increasing the IMF power-law index (from -2.5 to -1.5) increases the number of GW signals by a large factor. This number is also much higher for models where the common-envelope ejection is treated using the α-mechanism (energy conservation) than when using the γ-mechanism (angular-momentum conservation). We have estimated the total number of detectable DNS GW signals from the Galaxy by combining contributions from thin disc, thick disc, bulge and halo. The most probable numbers for an eLISA-type experiment are 0-1600 signals per year at S/N ≥ 1, 0-900 signals per year at S/N ≥ 3, and 0-570 at S/N ≥ 5, coming from about 0-65, 0-60 and 0-50 resolved DNS, respectively.

  13. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  14. CYG X-3: A GALACTIC DOUBLE BLACK HOLE OR BLACK-HOLE-NEUTRON-STAR PROGENITOR

    SciTech Connect

    Belczynski, Krzysztof; Bulik, Tomasz; Mandel, Ilya; Sathyaprakash, B. S.; Zdziarski, Andrzej A.; Mikolajewska, Joanna

    2013-02-10

    There are no known stellar-origin double black hole (BH-BH) or black-hole-neutron-star (BH-NS) systems. We argue that Cyg X-3 is a very likely BH-BH or BH-NS progenitor. This Galactic X-ray binary consists of a compact object, wind-fed by a Wolf-Rayet (W-R) type companion. Based on a comprehensive analysis of observational data, it was recently argued that Cyg X-3 harbors a 2-4.5 M {sub Sun} black hole (BH) and a 7.5-14.2 M {sub Sun} W-R companion. We find that the fate of such a binary leads to the prompt ({approx}< 1 Myr) formation of a close BH-BH system for the high end of the allowed W-R mass (M {sub W-R} {approx}> 13 M {sub Sun }). For the low- to mid-mass range of the W-R star (M {sub W-R} {approx} 7-10 M {sub Sun }) Cyg X-3 is most likely (probability 70%) disrupted when W-R ends up as a supernova. However, with smaller probability, it may form a wide (15%) or a close (15%) BH-NS system. The advanced LIGO/VIRGO detection rate for mergers of BH-BH systems from the Cyg X-3 formation channel is {approx}10 yr{sup -1}, while it drops down to {approx}0.1 yr{sup -1} for BH-NS systems. If Cyg X-3 in fact hosts a low-mass black hole and massive W-R star, it lends additional support for the existence of BH-BH/BH-NS systems.

  15. Physics of gamma-ray bursts and multi-messenger signals from double neutron star mergers

    NASA Astrophysics Data System (ADS)

    Gao, He

    My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission observed by telescopes in different wavelengths. I have carried out three investigations to understand GRB prompt emission and afterglow. Chapter 2 develops a new method, namely, "Stepwise Filter Correlation" method, to decompose the variability components in a light curve. After proving its reliability through simulations, we apply this method to 266 bright GRBs and find that the majority of the bursts have clear evidence of superposition of fast and slow variability components. Chapter 3 gives a complete presentation of the analytical approximations for synchrotron self-compton emission for all possible orders of the characteristic synchrotron spectral breaks (nua, nu m, and nuc). We identify a "strong absorption" regime whennua > nuc, and derive the critical condition for this regime. The external shock theory is an elegant theory to model GRB afterglows. It invokes a limit number of model parameters, and has well predicted spectral and temporal properties. Chapter 4 gives a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes. This complete reference will serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data and identify new physics when the models fail. Milti-messenger signals from double neutron star merger: As the multi-messenger era of astronomy ushers in, the second part of the dissertation studies the possible electromagnetic (EM) and neutrino emission counterparts of double neutron star mergers. Chapter 6 suggests that if double neutron star mergers leave behind a massive magnetar rather than a black hole, the magnetar wind could push the ejecta launched during the merger process, and under certain conditions, accelerates it to a relativistic speed. Such a magnetar-powered ejecta, when interacting with the ambient medium, would develop a bright broad-band afterglow due to external shock synchrotron radiation. We study this physical scenario in detail, and present the predicted X-ray, optical and radio light curves for a range of magnetar and ejecta parameters. Chapter 7 applies the model to interpret one optical transient discovered recently. In chapter 8, we show that protons accelerated in the external shock would interact with photons generated in the dissipating magnetar wind and emit high energy neutrinos and photons. We find that PeV neutrinos could be emitted from the shock front as long as the ejecta could be accelerated to a relativistic speed. These events would contribute to the diffuse Pev neutrino background and sub-Tev gamma-ray background.

  16. Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry

    NASA Astrophysics Data System (ADS)

    Martinez, J. G.; Stovall, K.; Freire, P. C. C.; Deneva, J. S.; Jenet, F. A.; McLaughlin, M. A.; Bagchi, M.; Bates, S. D.; Ridolfi, A.

    2015-10-01

    To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured as having a mass ratio close to unity (q ≥ 0.91). Here, we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: the mass of the pulsar is Mp = 1.559 ± 0.005 M⊙ and that of its companion is {M}{{c}}=1.174+/- 0.004 M⊙ q = 0.75. If this companion is also an NS, as indicated by the orbital eccentricity of the system (e = 0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin period derivative of \\dot{{\\text{}}P} = (1.8616±0.0007)×10-19 s s-1 from these, we derive a characteristic age of ˜ 4.1×109 years and a magnetic field of ˜ 2.9×109 G, i.e., this pulsar was mildly recycled by the accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus, NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during an NS-NS merger: it is now evident that we should not assume that all DNS systems are symmetric.

  17. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.

  18. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  19. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  20. JET COLLIMATION IN THE EJECTA OF DOUBLE NEUTRON STAR MERGERS: A NEW CANONICAL PICTURE OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Nagakura, Hiroki; Sekiguchi, Yuichiro; Shibata, Masaru; Hotokezaka, Kenta; Ioka, Kunihito

    2014-04-01

    The observations of jet breaks in the afterglows of short gamma-ray bursts (SGRBs) indicate that the jet has a small opening angle of ≲ 10°. The collimation mechanism of the jet is a longstanding theoretical problem. We numerically analyze the jet propagation in the material ejected by a double neutron star (NS) merger, and demonstrate that if the ejecta mass is ≳ 10{sup –2} M {sub ☉}, the jet is well confined by the cocoon and emerges from the ejecta with the required collimation angle. Our results also suggest that there are some populations of choked (failed) SGRBs or new types of events with low luminosity. By constructing a model for SGRB 130603B, which is associated with the first kilonova/macronova candidate, we infer that the equation of state of NSs would be soft enough to provide sufficient ejecta to collimate the jet, if this event is associated with a double NS merger.

  1. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  2. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  3. General relativity and neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2016-01-01

    General Relativity affects all major aspects of neutron star structure and evolution including radiation from the surface, neutron star models, evolution in compact binaries. It is widely used for neutron star mass measurements and for studying properties of superdense matter in neutron stars. Observations of neutron stars help testing General Relativity and planning gravitational wave experiments. No deviations from Einstein Theory of Gravity have been detected so far from observations of neutron stars.

  4. A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11agg?

    SciTech Connect

    Wu, Xue-Feng; Gao, He; Ding, Xuan; Zhang, Bing; Dai, Zi-Gao; Wei, Jian-Yan

    2014-01-20

    The Palomar Transient Factory (PTF) team recently reported the discovery of a rapidly fading optical transient source, PTF11agg. A long-lived scintillating radio counterpart was identified, but the search for a high-energy counterpart showed negative results. The PTF team speculated that PTF11agg may represent a new class of relativistic outbursts. Here we suggest that a neutron star (NS)-NS merger system with a supra-massive magnetar central engine could be a possible source to power such a transient, if our line of sight is not on the jet axis direction of the system. These systems are also top candidates for gravitational wave sources to be detected in the advanced LIGO/Virgo era. We find that the PTF11agg data could be explained well with such a model, suggesting that at least some gravitational wave bursts due to NS-NS mergers may be associated with such a bright electromagnetic counterpart without a γ-ray trigger.

  5. Post-Newtonian diagnosis of quasiequilibrium configurations of neutron star-neutron star and neutron star-black hole binaries

    SciTech Connect

    Berti, Emanuele; Iyer, Sai; Will, Clifford M.

    2008-01-15

    We use a post-Newtonian diagnostic tool to examine numerically generated quasiequilibrium initial data sets for nonspinning double neutron star and neutron star-black hole binary systems. The post-Newtonian equations include the effects of tidal interactions, parametrized by the compactness of the neutron stars and by suitable values of 'apsidal' constants, which measure the degree of distortion of stars subjected to tidal forces. We find that the post-Newtonian diagnostic agrees well with the double neutron star initial data, typically to better than half a percent except where tidal distortions are becoming extreme. We show that the differences could be interpreted as representing small residual eccentricity in the initial orbits. In comparing the diagnostic with preliminary numerical data on neutron star-black hole binaries, we find less agreement.

  6. Neutron stars - General review

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  7. Double Star Sketching

    NASA Astrophysics Data System (ADS)

    Perez, Jeremy; Argyle, R. W.

    The details of your growing record of double star observations can easily be kept in a spreadsheet with columns included for position angle, separation, magnitude, and color. Those entries provide the raw data needed to describe your stellar journeys. However, the essence of what draws you to doubles may not be as obvious when you review your notes. What inspires you to observe double stars? Is it the challenge of resolving a close pair, or pulling a faint secondary out of its companion's glare? Or is it the stunning beauty of a colorful duo or closely matched twins? Do you enjoy tracking the progress of short-period doubles? All of these passions and more can be readily captured by sketches in a way that vividly supplements your tabular data.

  8. Neutron Star Cooling: II

    NASA Astrophysics Data System (ADS)

    Tsuruta, Sachiko

    It was more than 70 years ago when Baade and Zwicky [3] speculated that an exotic star consisting mostly of neutrons, now known as a neutron star, may be formed when a normal star collapses through a supernova explosion. During the subsequent years in the 1930s several theorists, including Oppenheimer and Volkoff [35], discussed the properties of neutron stars. However, it was not until the late 1950s to the early 1960s, when curiosity on such a hypothetical object revived [11,73]. As far as I am aware Cameron [11] is the first author who discussed thermodynamic problems of neutron stars. This article's author chose to explore this problem as one of the projects on neutron stars as her PhD thesis [59]. The research started as a purely theoretical endeavor, but before the calculations were completed we learned of the discovery of the first Galactic X-ray source Sco X-1, which was soon followed by the second such Galactic X-ray source detection, this time in the Crab supernova remnant [15]. It was immediately suggested by several theorists [19, 59, 66] that these strong X-ray sources might be neutron stars, because if these X-rays are blackbody radiation as expected, the radius of the emitting region has to be as small as 10 km (because the temperature is so high), just the correct size predicted for a neutron star.1

  9. Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Belczynski, K.

    2015-11-01

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10-100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  10. Possible high-energy neutrino and photon signals from gravitational wave bursts due to double neutron star mergers

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Wu, Xue-Feng; Dai, Zi-Gao

    2013-08-01

    As the technology of gravitational-wave and neutrino detectors becomes increasingly mature, a multimessenger era of astronomy is ushered in. Advanced gravitational-wave detectors are close to making a ground-breaking discovery of gravitational-wave bursts (GWBs) associated with mergers of double neutron stars (NS-NS). It is essential to study the possible electromagnetic and neutrino emission counterparts of these GWBs. Recent observations and numerical simulations suggest that at least a fraction of NS-NS mergers may leave behind a massive millisecond magnetar as the merger product. Here we show that protons accelerated in the forward shock powered by a magnetar wind pushing the ejecta launched during the merger process would interact with photons generated in the dissipating magnetar wind and emit high-energy neutrinos and photons. We estimate the typical energy and fluence of the neutrinos from such a scenario. We find that ˜PeV neutrinos could be emitted from the shock front as long as the ejecta could be accelerated to a relativistic speed. The diffuse neutrino flux from these events, even under the most optimistic scenarios, is too low to account for the two events announced by the IceCube Collaboration, but it is only slightly lower than the diffuse flux of GRBs, making it an important candidate for the diffuse background of ˜PeV neutrinos. The neutron-pion decay of these events make them a moderate contributor to the sub-TeV gamma-ray diffuse background.

  11. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  12. Strangeness in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Weber, Fridolin; Ho, Alexander; Negreiros, Rodrigo P.; Rosenfield, Philip

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is not accessible to relativistic heavy ion collision experiments.

  13. The Violent Neutron Star

    NASA Astrophysics Data System (ADS)

    Watts, A. L.

    2012-12-01

    Neutron stars enable us to study both the highest densities and the highest magnetic fields in the known Universe. In this article I review what can be learned about such fundamental physics using magnetar bursts. Both the instability mechanisms that trigger the bursts, and the subsequent dynamical and radiative response of the star, can be used to explore stellar and magnetospheric structure and composition.

  14. The evolution and birth properties of the most massive stars as progenitors of double neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    De Mink, Selma

    Improving our understanding of the evolution of most massive stars from their birth marked by the onset of nuclear burning until their death marked by their final explosions is crucial for predicting an understanding the nature and rate of detectable gravitational wave sources. I will highlight several recent advancements in this area triggered by the combination of theoretical work and new large spectroscopic surveys of massive stars. I will discuss (a) new constraints on the initial conditions: the binary frequency, distribution of separations, mass ratios, eccentricities and rotation rates, (b) ongoing attempts to understand the potentially drastic effects of mixing induced by stellar rotation and its consequences for the final core masses and (c) attempts to find observational constraints for stars with 100-500 solar masses.

  15. Neutron star crusts

    NASA Technical Reports Server (NTRS)

    Lorenz, C. P.; Ravenhall, D. G.; Pethick, C. J.

    1993-01-01

    We calculate properties of neutron star matter at subnuclear densities using an improved nuclear Hamiltonian. Nuclei disappear and the matter becomes uniform at a density of about 0.6n(s), where n(s) of about 0.16/cu fm is the saturation density of nuclear matter. As a consequence, the mass of matter in the crusts of neutron stars is only about half as large as previously estimated. In about half of that crustal mass, nuclear matter occurs in shapes very different from the roughly spherical nuclei familiar at lower densities. The thinner crust and the unusual nuclear shape have important consequences for theories of the rotational and thermal evolution of neutron stars, especialy theories of glitches.

  16. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  17. Apple Valley Double Star Workshop

    NASA Astrophysics Data System (ADS)

    Brewer, Mark

    2015-05-01

    The High Desert Astronomical Society hosts an annual double star workshop, where participants measure the position angles and separations of double stars. Following the New Generation Science Standards (NGSS), adopted by the California State Board of Education, participants are assigned to teams where they learn the process of telescope set-up and operation, the gathering of data, and the reduction of the data. Team results are compared to the latest epoch listed in the Washington Double Star Catalog (WDS) and papers are written for publication in the Journal of Double Star Observations (JDSO). Each team presents a PowerPoint presentation to their peers about actual hands-on astronomical research.

  18. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  19. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  20. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  1. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  2. Hyperons in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2016-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  3. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.

  4. The Visual Double Star Catalogs

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.

    2015-08-01

    In visual double star work, production of the first comprehensive attempt to list all discovered pairs in his accessible sky was prepared by S.W. Burnham in 1906. A double star catalog for the southern hemisphere was prepared by R.T.A. Innes et al. in 1927 and the northern hemisphere catalog was updated by R.G. Aitken and E. Doolittle in 1932. Eventually, this led to Lick Observatory maintaining what became known as the Index Catalogue, an all-sky visual double star database.In 1964, under the aegis of Commission 26, the Lick double star database was transferred to the U.S. Naval Observatory where it was redesignated the Washington Double Star Catalog where it and it's ancillary catalogs, have been maintained for over half a century. The current statistics of the catalog and it's supplements are presented as are the enhancements currently under consideration.

  5. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  6. Compactness of Neutron Stars.

    PubMed

    Chen, Wei-Chia; Piekarewicz, J

    2015-10-16

    Recent progress in the determination of both masses and radii of neutron stars is starting to place stringent constraints on the dense matter equation of state. In particular, new theoretical developments together with improved statistical tools seem to favor stellar radii that are significantly smaller than those predicted by models using purely nucleonic equations of state. Given that the underlying equation of state must also account for the observation of 2M⊙ neutron stars, theoretical approaches to the study of the dense matter equation of state are facing serious challenges. In response to this challenge, we compute the underlying equation of state associated with an assumed mass-radius template similar to the "common radius" assumption used in recent studies. Once such a mass-radius template is adopted, the equation of state follows directly from the implementation of Lindblom's algorithm; assumptions on the nature or composition of the dense stellar core are not required. By analyzing mass-radius profiles with a maximum mass consistent with observation and common radii in the 8-11 km range, a lower limit on the stellar radius of a 1.4M⊙ neutron star of RNS≳10.7  km is required to prevent the equation of state from violating causality. PMID:26550859

  7. Keepers of the double stars

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-03-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Early catalogues by the Herschels, Struves, and others began with their own discoveries. In 1906 court reporter and amateur astronomer Sherburne Wesley Burnham published a massive double star catalogue containing data from many observers on more than 13,000 systems. Lick Observatory astronomer Robert Grant Aitken produced a much larger catalogue in 1932 and coordinated with Robert Innes of Johannesburg, who catalogued the southern systems. Aitken maintained and expanded Burnham's records of observations on handwritten file cards, and eventually turned them over to the Lick Observatory, where astrometrist Hamilton Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and together they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford had the new 120-inch reflector, the world's second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the United States Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley, and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,200,000 measures of more than 125,000 star systems.

  8. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  9. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  10. Grand unification of neutron stars.

    PubMed

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field. PMID:20404205

  11. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  12. Neutron Star Physics and EOS

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2016-02-01

    Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  13. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not clear how effective it is or on what timescale a buried field might re-emerge. One piece of evidence in favor of accretion-driven field reduction is the fact that NSs in LMXBs, which are older systems (> 108 yr), have mostly low fields and NSs in HMXBs, which are younger systems (107 - 108 yr), have higher fields. This may be an indication that accretion-driven field reduction or decay has not had enough time to operate in HMXBs but has in LMXBs. However, there does not seem to be any evidence of decaying fields in either the LMXB or HMXB populations; e.g. smaller magnetic fields in older systems. On the other hand, CCOs are very young so if they acquired their low fields through mass fallback accretion, the field submergence would have had to operate on much faster timescales than it apparently does in LMXBs. But as we continue to find new species in the NS zoo, one of these may someday be the "Rosetta Stone" that will give us the clues for solving these puzzles.

  14. Children's Literature on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Struck, James

    Children's literature is simple discussion of complicated issues. Neutron stars are discussed in several children's books. Using libraries in Chicago, I will review children's books on neutron stars and compare the literature to literature from scientific discussions of neutron stars on sites like the Chandra site, Hubble Space Telescope site and NASA site. The result will be a discussion of problems and issues involved in discussion of neutron stars. Do children's books leave material out? Do children's books discuss recent observations? Do children's books discuss anything discredited or wrong? How many children's books are in resources like World Cat, the Library of Congress catalog, and the Chicago Public Library catalog? Could children's books be useful to present some of your findings or observations or projects? Children's books are useful for both children and scientist as they present simplified discussion of topics, although sometimes issues are simplified too much.

  15. Neutron star evolution and emission

    SciTech Connect

    Epstein, R.I.; Edwards, B.C.; Haines, T.J.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  16. Delta isobars in neutron stars

    NASA Astrophysics Data System (ADS)

    Pagliara, Giuseppe; Drago, Alessandro; Lavagno, Andrea; Pigato, Daniele

    2015-05-01

    The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  17. Neutron star news and puzzles

    NASA Astrophysics Data System (ADS)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  18. WIMP annihilation and cooling of neutron stars

    SciTech Connect

    Kouvaris, Chris

    2008-01-15

    We study the effect of WIMP annihilation on the temperature of a neutron star. We shall argue that the released energy due to WIMP annihilation inside the neutron stars might affect the temperature of stars older than 10x10{sup 6} years, flattening out the temperature at {approx}10{sup 4} K for a typical neutron star.

  19. The nuclear physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2014-05-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  20. The nuclear physics of neutron stars

    SciTech Connect

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  1. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  2. Observational constraints on neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Lamb, Frederick K.

    2016-03-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method.

  3. Neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1991-01-01

    The radiation of neutron stars is powered by accretion, rotation, or internal heat; accreting black holes are thought to be the central engines of AGNs and of a handful of binary X-ray sources in the Galaxy. The evolution of a neutron star depends on the coupling between the rotating neutron and proton fluids in the interior, and between these fluids and the crust; it also depends on the magnetic and thermal properties of the star. Significant progress has been made in recent years in the understanding of radial and disk accretion by black holes. Radiation from pair plasmas may make an important contribution to the X- and gamma-ray spectra of AGNs and black holes in binary systems.

  4. The neutron star mass distribution

    SciTech Connect

    Kiziltan, Bülent; Kottas, Athanasios; De Yoreo, Maria; Thorsett, Stephen E.

    2013-11-20

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ☉} and 1.55 M {sub ☉}, suggesting significant mass accretion (Δm ≈ 0.22 M {sub ☉}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ∼2.1 M {sub ☉} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ☉} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  5. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  6. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.

  7. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  8. Chandra Observations of Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a brief review of Chandra observations of neutron stars, with a concentration on neutron stars in supernova remnants. The early Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  9. Isolated neutron stars as seen by Athena

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina; Pavlov, George

    2015-09-01

    The X-ray emission from the surfaces of isolated neutron stars and from the neutron star's immediate surroundings is not well understood. Partly, this is due to a lack of spectral resolution and sensitivity of current X-ray detectors. In our poster, we present simulations of neutron star X-ray emission as Athena may see it. We employ the latest Athena instrument response and up-to-date neutron star atmosphere models. This will allow us to evaluate the impact Athena can have on the investigations of neutron star properties, such as the composition of their surface layers, their magnetic fields, and the physics of their magnetospheres and ambient matter.

  10. Induced gravitational collapse in FeCO Core-Neutron star binaries and Neutron star-Neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Aimuratov, Y.; Bianco, C. L.; Enderli, M.; Kovacevic, M.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Wang, Y.

    2015-10-01

    We review the recent progress in understanding the nature of gamma-ray bursts (GRBs). The occurrence of GRB is explained by the Induced Gravitational Collapse (IGC) in FeCO Core-Neutron star binaries and Neutron star-Neutron star binary mergers, both processes occur within binary system progenitors. Making use of this most unexpected new paradigm, with the fundamental implications by the neutron star (NS) critical mass, we find that different initial configurations of binary systems lead to different GRB families with specific new physical predictions confirmed by observations.

  11. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  12. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  13. Neutron stars as cosmic hadron physics laboratories

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1985-01-01

    Extensive observations of Her-1 with the Exosat satellite have led to a new understanding of both the dynamics of neutron-star superfluids and the free precession of neutron stars. Detailed microscopic calculations on neutron matter and the properties of the pinned crustal superfluid are provided to serve as a basis for comparing theory with observation on neutron stars. Topics discussed include the Hadron matter equation of state, neutron star structure, Hadron superfluids, the vortex creep theory, Vela pulsar glitches, astrophysical constraints on neutron matter energy gaps, the 35 day periodicity of Her-1, and the neutron matter equation of state. It is concluded that since the post-glitch fits and the identification of the 35th periodicity in Her X-1 as stellar wobble require a rigid neutron matter equation of state, the astrophysical evidence for such an equation seems strong, as well as that for an intermediate Delta(rho) curve.

  14. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  15. Accreting Neutron Stars as Astrophysical Laboratories

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2004-01-01

    In the last year, we have made an extremely important breakthrough in establishing the relationship between thermonuclear burst oscillations in accreting neutron stars and the stellar spin. More broadly, we have continued t o make significant scientific progress in all four of the key focus areas identified in our original proposal: (1) the disk-magnetosphere interaction in neutron stars, (2) rapid variability in accreting neutron stars, (3) physics of accretion flows, and (4) fundamental properties of neutron stars. A list of all publications that have arising from this work since the start of our program is given.

  16. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  17. On the conversion of neutron stars into quark stars

    NASA Astrophysics Data System (ADS)

    Pagliara, Giuseppe

    2014-03-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of 1053 erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  18. Double Planet Meets Triple Star

    NASA Astrophysics Data System (ADS)

    2002-08-01

    High-Resolution VLT Image of Pluto Event on July 20, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about the tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon , measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet . At the current distance of nearly 4,500 million km from the Earth, Pluto's disk subtends a very small angle in the sky, 0.107 arcsec. It is therefore very seldom that Pluto - during its orbital motion - passes exactly in front of a comparatively bright star. Such events are known as "occultations" , and it is difficult to predict exactly when and where on the Earth's surface they are visible. Stellar occultations When Pluto moves in front of a star, it casts a "shadow" on the Earth's surface within which an observer cannot see the star, much like the Earth's Moon hides the Sun during a total solar eclipse. During the occultation event, Pluto's "shadow" also moves across the Earth's surface. The width of this shadow is equal to Pluto's diameter, i.e. about 2300 km. One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by American astronomers Steve W. McDonald and James L. Elliot (Massachussetts Institute of Technology [MIT], Cambridge, USA). Further refinements provided by other observers later showed that the first event would be visible from South America on July 20, 2002 , while a second one on August 21 was expected to be observable in the Pacific basin, from the western coast of North America down to Hawaii and New Zealand. A stellar occultation provides a useful opportunity to study the planetary atmosphere, by means of accurate photometric measurements of the dimming of the stellar light, as the planet moves in front of the star. The observed variation of the light intensity and colour provides crucial information about the structure (atmospheric layers) and composition of different gases and aerosols. More information is available in the Appendix below. The July 20 occultation ESO PR Photo 21a/02 ESO PR Photo 21a/02 [Preview - JPEG: 400 x 477 pix - 65k] [Normal - JPEG: 800 x 953 pix - 224k] Caption : PR Photo 21c/02 shows the path of Pluto's shadow (grey region) during the July 20, 2002 occultation. The shadow has a diameter of about 2300 km and moves from right to left; the timings along the central line are indicated in one-minute intervals (Universal Time - UT). The width of the gray area corresponds to the regions where more than 50% of the light from the star P126 A was attenuated by Pluto's atmosphere. The dotted lines indicate where the stellar flux was attenuated by more than 10%. The maximum duration of the occultation (for observers located at the middle of the shadow track) was about 3 min. The plot is based on astrometric measurements posted at the MIT site. Once completely analyzed, the VLT NACO images will provide significantly better accuracy on the location of this track and therefore a solid basis for the interpretation of the photometric observations obtained with other telescopes. In order to profit from the rare opportunity to learn more about Pluto and its atmosphere, a large campaign involving more than twenty scientists and engineers from the Paris Observatory and associated institutions [1] was organized to observe the July 20, 2002, event involving an occultation of a star of visual magnitude 11 (i.e., about 100 times fainter than what can be perceived with then unaided eye), referred to as "P126" in McDonald and Elliot's catalogue. In May 2002, preparatory observations showed that star to be double, with the brighter component of the system ( "P126 A" ) being likely to be occulted by Pluto, as seen from South America. However, because of the duplicity, the predictions of exactly where the shadow of Pluto would sweep the ground were uncertain by about 0.1 arcsec in the sky, corresponding to more than 2000 km on the ground. The NACO images ESO PR Photo 21b/02 ESO PR Photo 21b/02 [Preview - JPEG: 400 x 469 pix - 47k] [Normal - JPEG: 800 x 937 pix - 208k] ESO PR Photo 21c/02 ESO PR Photo 21c/02 [Preview - JPEG: 400 x 467 pix - 53k] [Normal - JPEG: 800 x 933 pix - 232k] Caption : PR Photo 21b/02 shows one of the images obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory in connection with a stellar occultation by Pluto on July 20, 2002. The star was found to be triple - the three components (A, B and C), as well as Pluto and its moon, Charon, are indicated in PR Photo 21c/02 for easy orientation. The images are based on data available from the NACO data webpage. See the text for details. In the end, the close approach (an "appulse" in astronomical terminology) of Pluto and P126 A was indeed observed from various sites in South America, with several mobile telescopes and also including major facilities at the ESO La Silla and Paranal Observatories. In particular, unique and very sharp images were obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope . One of the NACO images is shown in PR Photos 21b-c/02 . These images were made during the final adjustments of the NACO instrument and in anticipation of the upcoming science verification observations. All frames are now publicly available from the NACO data webpage on the ESO site. The NACO image shown was obtained in infrared light (in the K-band at wavelength 2.2 µm) on July 20, 2002, some 45 min before Pluto's shadow passed north of Paranal ( Photo 21a/02) . The orientation is such that North is up, and East is left. The small sky field measures about 7 x 7 arcsec 2. The pixel size is 0.027 arcsec, and the achieved image sharpness corresponds to the theoretical limit (the diffraction limit) with a telescope of this size and at this wavelength (0.07 arcsec). The object at the centre is the star P126 A of K-magnitude 9.5 (see also Photo 21c/02 where the objects are identified), while the brighter object at the right is the companion star P126 B , 2.25 arcsec away. As P126 B is very red (of stellar type M), it appears brighter than P126 A at this infrared wavelength - the opposite is true in visible light. The intensity of the left part of the image has been multiplied by a factor of approximately 35 in order to better display Pluto and its moon Charon , located some 0.5 arcsec to the lower left (SE) of the planet. Note also the faint star "P126 C" , at this moment very close to Pluto; it is probably a (physical) member of the P126 system. A closer inspection of the original image shows that the disk of Pluto (with a diameter of 0.107 arscec and covering 16 NACO pixels) is (barely) resolved. Many images were taken by NACO prior to the occultation. They will allow to retrace the precise motion of Pluto relative to P126 A, thereby improving the mapping of the motion of Pluto's shadow on the ground, cf. Photo 21a/02 . This is important in order to apply the correct geometrical circumstances for the interpretation of the photometric observations. A first evaluation of the NACO data indicates that the Paranal site "missed" the upper layers of Pluto's atmosphere by a mere 200 km or so - this is equivalent to no more than one hundredth of an arcsec as projected on the sky. More information A full report on the NACO observations and other results by the present group of astronomers, also from the subsequent occultation of another star on August 21, 2002, that was extensively observed with the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea (Hawaii, USA), is available at this URL: http://despa.obspm.fr/~sicardy/pluton/results.html Other sharp NACO images have been published recently, e.g. ESO PR 25/01 , ESO PR Photos 04a-c/02 and ESO PR Photos 19a-c/02. Note [1]: The group from the Observatoire de Paris and other observatories is lead by Bruno Sicardy and also includes François Colas, Thomas Widemann, Françoise Roques, Christian Veillet, Jean-Charles Cuillandre, Wolfgang Beisker, Cyril Birnbaum, Kate Brooks, Audrey Delsanti, Pierre Drossart, Agnès Fienga, Eric Gendron, Mike Kretlow, Anne-Marie Lagrange, Jean Lecacheux, Emmanuel Lellouch, Cédric Leyrat, Alain Maury, Elisabeth Raynaud, Michel Rapaport, Stefan Renner and Mathias Schultheis . From ESO participated Nancy Ageorges, Olivier Hainaut, Chris Lidman and Jason Spyromilio . Contact Bruno Sicardy LESIA - Observatoire de Paris France Phone: +33-1-45 07 71 15 email: bruno.sicardy@obspm.fr Appendix: Stellar occultations and Pluto's atmosphere Stellar occultations are presently the only way to probe Pluto's tenuous atmosphere . When the star moves behind the planet, the stellar rays suffer minute deviations as they are refracted (i.e., bent and defocussed) by the planet's atmospheric layers. This effect, together with the large distance to the planet, manifests itself as a gradual decline of observed intensity of the stellar light, rather than an abrupt drop as this would be the case if the planet had no atmosphere. Pluto's atmosphere was first detected on August 19, 1985, during a stellar occultation observed from Israel and then studied in more detail from Australia and from the Kuiper Airborne Observatory (KAO) during another such event on July 9, 1988. However, Pluto's atmosphere is still not well understood. It appears to be mostly composed of a dominant gas of atomic weight 28, probably molecular nitrogen (N 2 ). Near-IR solar reflection spectra have since shown a small presence of methane (CH 4 ), probably at a level of about 1% relative to nitrogen. The 1988 occultation clearly revealed two different layers in Pluto's atmosphere, a rather smooth and isothermal outer part, and a more complex one near the planet's surface, with the possible presence of an inversion layer (in which the temperature increases with altitude) or possibly haze of photochemical origin. The present observations aimed at discriminating between the current theoretical models of Pluto's atmosphere by means of detailed measurements of the changing intensity and colour of the stellar light, as the star is seen through progressively lower layers of the planet's atmosphere. Another important issue is the question of whether Pluto's atmosphere has changed since 1988. In the intervening 14 years, the planet has moved away from the Sun in its elliptic orbit, whereby there has been a change in the insolation (solar flux) of about 6%. This effect might possibly have caused changes in the surface temperature and in the overall atmospheric structure of Pluto. However, any firm conclusions will have to await a complete and careful evaluation of all available observations. ESO PR Photos 21a-c/02 may be reproduced, if credit is given to the European Southern Observatory (ESO).

  19. Planetary Systems Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  20. Following the Temperature of a Neutron Star

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2013-09-01

    Chandra observations of the neutron star in Cas A have revealed a stunning decrease in its X-ray flux and surface temperature over the course of less than 10 years. This rapid cooling implies the onset of a phase change to neutron superfluidity in the neutron star interior, and places strong constraints on nucleon pairing and the neutron star mass. We propose an observation of 1WGA J1713.4-3949, the young neutron star in the supernova remnant G347.3-0.5, to search for any evidence of a similar associated flux decline since its initial observation in Chandra Cycle 1. Detection of such cooling will strengthen constraints on the complex physics of neutron star interiors.

  1. The Nuclear Physics of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2007-10-01

    The neutron radius of a heavy nucleus is a fundamental nuclear-structure observable that remains elusive. Progress in this arena has been limited by the exclusive use of hadronic probes that are hindered by large and controversial uncertainties in the reaction mechanism. The finite nucleus - a system that is 18 order of magnitude smaller and 55 orders of magnitude lighter than a neutron star - may be used as a miniature surrogate to establish important correlations between its neutron skin and several neutron-star properties. Indeed, a nearly model-independent correlation develops between the neutron skin of ^208Pb and the transition density between the liquid mantle and the solid crust in the neutron star. The implications of the proposed purely electroweak Parity Radius EXperiment (PREX) at the Jefferson Laboratory on neutron-star structure will be reviewed and connections to other fields, such as atomic and condensed-matter physics, will be established.

  2. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    SciTech Connect

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-09-20

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  3. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  4. Measurements of Neglected Double Stars:February 2015 Report

    NASA Astrophysics Data System (ADS)

    Carro, Joseph

    2015-07-01

    This article presents measurements of 44 double stars. The stars were selected from the Washington Double Star Catalog published by the United States Naval Observatory. The photographs were taken by remote telescopes. The measurements were done by the author.

  5. Thermonuclear runaways on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1979-01-01

    Thermonuclear runaways which develop when neutron stars of 0.476 solar masses accrete hydrogen-rich material at 10 to the -10th and 2 x 10 to the -9th solar masses/year have been followed using a numerical model. It is found that a thermal instability occurs at densities in excess of 10 to the 5th g/cu cm and that the maximum accumulated mass required to initiate the runaway is 0.7 x 10 to the -12th and 2.1 x 10 to the -12th solar masses for the mass accretion rates of 10 to the -10th and 2 x 10 to the -9th solar masses/year, respectively. Heating the of the neutron star envelope by hydrogen burning leads to the ignition of helium. The nonequilibrium burning of helium by a combination of (alpha, p), (p, gamma), and (alpha, gamma) reactions involving O-14, O-15, and other heavy nuclei provides the energy for an X-ray burst. The gross properties of these models bear suggestive resemblance to those observed for some X-ray burst sources.

  6. Nonstandard thermal evolution of neutron stars

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Tsuruta, Sachiko; Nomoto, Ken'ichi

    1994-01-01

    A neutron star may cool much faster than through the 'standard' scenario. Here we calculate thermal evolution of neutron stars through various 'nonstandard' fast cooling scenarios, and the results are compared with the currently up-dated observational data. We discuss the possibility of distinguishing between the standard and various, different nonstandard scenarios, through the current and future X-ray satellite observations.

  7. Neutron Star Interior Composition Explorer (NICE)

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  8. The Lives of the Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Kiziloglu, U.; van Paradijs, Jan

    The book covers many aspects of current research on neutron stars in an evolutionary perspective, such as supernovae and supernova remnants, radio pulsars, X-ray binaries, cooling of neutron stars, magnetic-field decay, optical counterparts and populations (statistics and birth rates).

  9. Close Double Stars from Occultation Video Recordings

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; George, Anthony; Loader, Brian; Herald, David Russell

    2015-08-01

    Astronomers around the world, both amateur and professional, have been recording lunar and asteroidal occultations of close double stars during the past several years using inexpensive but quite sensitive video cameras that are now available. Several new double stars have been discovered, and the parameters of many close systems have been determined. Besides rather good measurements of the relative magnitudes of the components, the actual separations and position angles can be measured if observations of the same event are made from two or more separate stations. These observations collected by the International Occultation Timing Association (IOTA) are published in the Journal of Double Star Observations. Recently, IOTA has encouraged the observation of occultations of stars in the Kepler 2 program, which is interested in data about close duplicity that affects their analyses for exoplanet transits.

  10. The delay time distribution of massive double compact star mergers

    NASA Astrophysics Data System (ADS)

    Mennekens, N.; Vanbeveren, D.

    2016-04-01

    To investigate the temporal evolution of binary populations, in general, and double compact-star binaries and mergers, in particular, within a galactic evolution context, a very straightforward method is obviously to implement a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully and consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delay time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively in the past decade. In the present paper we present the DTD for merging double neutron-star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for producing r-process elements, and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.

  11. Hamilton Jeffers and the Double Star Catalogues

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-01-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Court reporter and amateur astronomer Shelburne Wesley Burnham (1838-1921) published a massive double star catalogue containing more than 13,000 systems in 1906. The next keeper of the double stars was Lick Observatory astronomer Robert Grant Aitken (1864-1951), who produced a much larger catalogue in 1932. Aitken maintained and expanded Burnham’s records of observations on handwritten file cards, eventually turning them over to Lick Observatory astrometrist Hamilton Moore Jeffers (1893-1976). Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby (1921-2002), he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford (1905-2002) had the new 120-inch reflector, the world’s second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the U.S. Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley (1935-1997), and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,000,000 measures of more than 100,000 pairs.

  12. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  13. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the neutron star as evidenced by X-ray flaring (almost certainly caused by accretion) that occurred during the authors observations.Magnetic EffectsWhat could cause the truncation of the disk? The authors believe the most likely factor is pressure from the neutron stars sizable magnetic field, pushing the inner edge of the disk out. They calculate that a field strength of roughly 5*108 Gauss (for comparison, a typical refrigerator magnet has a field strength of ~100 G!) would be necessary to hold the inner edge this far out. This is consistent with previous estimates for the field of the neutron star in Aquila X-1.The authors point out that magnetic field lines could also explain how the neutron star is still accreting material despite the gap between it and its disk: gas could be channeled along field lines from the inner edge of the disk which is roughly co-rotating with the neutron star onto the neutron star poles.The observations of Aquila X-1s truncated disk are an important step toward confirming models of how neutron stars magnetic fields interact with their accretion disks in X-ray binaries.CitationAshley L. King et al 2016 ApJ 819 L29. doi:10.3847/2041-8205/819/2/L29

  14. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039. PMID:15904205

  15. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  16. Magnetic fields in superconducting neutron stars.

    PubMed

    Lander, S K

    2013-02-15

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star's magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement. PMID:25166363

  17. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  18. Double Degenerate Binary Stars: Constraining the Masses of Compact Objects

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Wachter, Stefanie

    1999-08-01

    Double degenerates are binary stars containing two compact objects (white dwarfs, neutron stars, or WD+NS). Like other binary stars, double degenerates offer an opportunity to accurately determine the masses of the binary components. The upper limit NS mass, for example, has important implications for our understanding of the equation of state of matter at high (nuclear) density. Double degenerates are also important as probes of gravitational radiation and general relativity. The emission of gravitational radiation may cause some double degenerates to merge on timescales less than a Hubble time. Such merging systems may be progenitors of type Ia supernovae. We propose two observing runs on the CTIO 1.5m telescope (+ CCD imager) to investigate double degenerates. The first run (1 night) will be used to search for eclipses in the P_orb=1.4 h WD+WD binary WD 0957-666. Detection of eclipses could be used in conjunction with existing spectroscopic data to determine the sizes of the WDs and provide checks of the theoretical WD mass-radius relation. The second run (2 nights) will be used to search for optical counterparts to three radio pulsars believed to be NS+WD binaries. If the WD components in these systems can be identified optically, then future investigations can provide constraints on the elusive NS mass.

  19. Experimental approach to neutron stars

    SciTech Connect

    Leifels, Yvonne

    2014-05-09

    The equation of state (EOS) of nuclear matter is of fundamental importance in many areas of nuclear physics and astrophysics In the laboratory, there are different means to study the nuclearmatter equation of state and its density dependence in particular: nuclear masses, neutron skins, pygmy resonance, and nuclear structure at the drip line give access to nuclear matter properties at densities lower than and at saturation density ρ0. Heavy ion reactions at energies above 0.1 AGeV are the only means to study nuclear matter at densities larger than normal nuclear matter density ρ0. In the beamenergy range of 0.1 to 2A GeV nuclear matter is compressed upto three times ρ0. Access to nuclear matter properties is achieved by simulating nuclear collisions by means of microscopic transport codes, or statistical or hydrodynamicalmodels. Characteristics of heavy-ion collisions are discussed, and experimental observables which allow to constrain nuclear matter properties by comparing experimental results with those of transport codes are presented. Special emphasis will be given to the density dependence of the symmetry energy which is the most relevant connection between neutron stars and heavy ion collisions.

  20. Gravitational waves from low mass neutron stars

    SciTech Connect

    Horowitz, C. J.

    2010-05-15

    Low mass neutron stars may be uniquely strong sources of gravitational waves. The neutron star crust can support large deformations for low mass stars. This is because of the star's weaker gravity. We find maximum ellipticities {epsilon} (fractional difference in moments of inertia) that are 1000 times larger, and maximum quadrupole moments Q{sub 22} over 100 times larger, for low mass stars than for 1.4M{sub {center_dot}}neutron stars. Indeed, we calculate that the crust can support an {epsilon} as large as 0.005 for a minimum mass neutron star. A 0.12M{sub {center_dot}}star, that is maximally strained and rotating at 100 Hz, will produce a characteristic gravitational wave strain of h{sub 0}=2.1x10{sup -24} at a distance of 1 kpc. The gravitational wave detector Advanced LIGO should be sensitive to such objects through out the Milky Way Galaxy. A low mass neutron star could be uniquely identified from a large observed spin down rate and its discovery would have important implications for general relativity, supernova mechanisms, and possibly nucleosynthesis.

  1. Gravitational Waves from Neutron Stars: A Review

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.

    2015-09-01

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  2. LARGE-MASS NEUTRON STARS WITH HYPERONIZATION

    SciTech Connect

    Jiang Weizhou; Li Baoan; Chen Liewen

    2012-09-01

    Within a density-dependent relativistic mean-field model and using in-medium meson-hadron coupling constants and meson masses, we explore the effects of in-medium hyperon interactions on the properties of neutron stars. We found that hyperonic constituents in large-mass neutron stars cannot be simply ruled out, while the recently measured mass of the millisecond pulsar J1614-2230 can significantly constrain in-medium hyperon interactions. In addition, we discuss the effects of nuclear symmetry energy on hyperonization in neutron stars.

  3. DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS

    SciTech Connect

    East, William E.; Pretorius, Frans

    2012-11-20

    We study dynamical capture binary neutron star mergers as may arise in dense stellar regions such as globular clusters. Using general-relativistic hydrodynamics, we find that these mergers can result in the prompt collapse to a black hole or in the formation of a hypermassive neutron star, depending not only on the neutron star equation of state but also on impact parameter. We also find that these mergers can produce accretion disks of up to a tenth of a solar mass and unbound ejected material of up to a few percent of a solar mass. We comment on the gravitational radiation and electromagnetic transients that these sources may produce.

  4. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  5. Double Star Measurements for 2009

    NASA Astrophysics Data System (ADS)

    Smith, Frank

    2010-10-01

    I report the measurement of 19 WDS binary systems in 2009. The observations were conducted with the AREO2 robotic telescope located at the GRAS Observatory, Mayhill, NM, USA . Discussion includes remarks on several John Herschel "neglected" doubles. Information about instrumentation and methodology and results is included.

  6. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  7. Neutron-star matter within the energy-density functional theory and neutron-star structure

    SciTech Connect

    Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  8. Neutron Star Compared to Manhattan - Duration: 11 seconds.

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  9. Transport coefficients in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  10. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  11. Neutron stars: A taste of pasta?

    NASA Astrophysics Data System (ADS)

    Newton, William G.

    2013-07-01

    Comparing quantitative calculations of the magnetic field decay of neutron stars and their corresponding spin evolution with observations suggests a high degree of disorder in the inner crust, which might provide evidence for nuclear 'pasta'.

  12. Astrophysics: Weighing in on neutron stars

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman

    2010-10-01

    The more massive a neutron star is, the greater the constraints it places on the nature of the matter at its core. The discovery of a new mass record holder has strengthened those constraints considerably. See Letter p.1081

  13. Plasma magnetosphere of deformed magnetized neutron star

    NASA Astrophysics Data System (ADS)

    Rayimbaev, J. R.; Ahmedov, B. J.; Juraeva, N. B.; Rakhmatov, A. S.

    2015-04-01

    The plasma magnetosphere surrounding a rotating magnetized neutron star described by non-Kerr spacetime metric in slow rotation approximation has been studied. First we have studied the vacuum solutions of the Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star with dipolar magnetic configuration. Then for the magnetospheric model we have derived second-order differential equation for electrostatic potential from the system of Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star. Analytical solutions of Goldreich-Julian (GJ) charge density along open field lines of slowly rotating magnetized non-Kerr neutron star have been obtained which indicate the modification of an accelerating electric field, charge density along the open field lines and radiating losses of energy of the neutron star by the deformation parameter.

  14. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  15. Population Synthesis of isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gullón Juanes, Miguel

    2015-12-01

    Neutron Stars present a wide variety from the observational point of view. The advent of new and powerful detectors and instruments has opened a new era where the classical picture of neutrons stars seen as radio-pulsars has been modified with new classes such as magnetars, X-ray Isolated Neutron Stars (XINSs) or Central Compact Objects (CCOs) in Supernova Remnants . In addition to the more than 2500 sources detected in the radio band, more than two hundred have also been detected as X-ray and gamma-ray sources. This number is expected to increase in the near future. Despite this apparent diversity, some studies demand a theory able to explain the different classes in terms of the same physical scenario (Kaspi, 2010), in which the evolution of the magnetic field appears to play an important role (Viganò et al., 2013). The Population Synthesis of Neutron Stars, which is the central subject of this thesis, is an interesting approach to understand the problem, as both intrinsic properties and observational biases are taken into account. These technique is based on Monte Carlo methods, applied to simulate the whole population of neutron stars. The main objective of the thesis has been to perform a multi-wavelength study of the different populations of Neutron Stars focusing in the effects of magneto-thermal evolution. This report consists of a global summary of the objectives, methods and main results of the thesis. It is structured as follows. The first chapter gives an introduction to Neutron Stars. Chapter two is a description of the method of Population Synthesis of Neutron Stars. In chapter three a global discussion of the main results is presented. Chapter four closes the report with the conclusions. An appendix is also included which constitutes a description of a method based on the pulsar current analysis.

  16. Hydrodynamical evolution of coalescing binary neutron stars

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1992-01-01

    The hydrodynamics of the final merging of two neutron stars and the corresponding gravitational wave emission is studied in detail. Various test calculations are presented, including the compressible Roche and Darwin problems and the head-on collision of two polytropes. A complete coalescence calculation is presented for the simplest case of two identical neutron stars, represented by Gamma = 2 polytropes, in a circular orbit, with their spins aligned and synchronized with the orbital rotation.

  17. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  18. Thermonuclear flashes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1979-01-01

    Observations of X-ray bursts from binary pulsars and globular clusters are reviewed. The previously proposed hypothesis is considered that such X-ray bursts result from thermonuclear flashes on accreting neutron stars. A general scenario for this mechanism is outlined, and numerical computations of the evolution of the surface layers of an accreting neutron star are discussed. The relation of these calculations to X-ray bursts and other phenomena is examined. Possible improvements in the numerical calculations are suggested.

  19. Chandra Observations of Isolated Neutron Stars

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin

    2006-01-01

    We present a review of the first six years of Chandra X-ray Observatory observations of isolated neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present a (biased) overview of six years of these observations, highlighting new discoveries made possible by the Observatory's unique capabilities.

  20. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  1. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  2. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  3. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1). f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation. The nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91 (2011)’ with the measuring value of one-way velocity of light (H05-0020-08) to replace the infinity value of light speed measured by Galileo in 1607, thereby the mass m in NM will become variable m. Or else, the energy of electron in accelerator should not larger than 0.51Mev which conflict with the experimental fact. According to the variable mass and the definition of force we again get Eq.(1) from NM without hypothesis, i.e., NM is generalized in which Galileo coordinates transformation and the action at a distance will be of no effect. Eq.(1) has more reliable experimental base and generalized NM may be applied to the high-speed and the microscopic conditions. Because of the result of a test of GR with use of a hydrogen-maser frequency standard in a spacecraft launched nearly vertically upward to 10000 km (R. F. C. Vessot et.al., Phys. Rev. Lett. 45, 2081(1980)), the isotropy of one-way velocity of light had been validated at the 1*10 (-10) level (D2.4-0030-12, H0.1-0009-12, H0.2-0008-12). Again from the Lorentz transformation (H01-0006 -08) and the uncertainty principle (H05-0036-10) deduced from the metrical results of Doppler effects, SR and QM, thereby QFT and GR all become the inferential theorems from generalized NM. Eq.(1) is as a bridge to join the modern physics and classical physics. In my paper ‘Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction’ (D31-0054-10): According to QFT the gravitation is the statistic average pressure collided by net virtual neutrinos nuν _{0} flux, the net nuν _{0} flux can press a part freedom electrons in plasma of ionosphere into the surface of celestial bodies. The static electric force of redundant positive ions prevents electrons further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field. In the solar surface plasma add the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  4. Dynamical stability of nascent neutron stars

    NASA Astrophysics Data System (ADS)

    Liu, Yuk Tung

    This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs. Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27. Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value β d ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy. All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post- Newtonian (1PN) order. The structures of the ON models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these ON neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value β d. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

  5. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  6. Convection in newly born neutron stars

    NASA Astrophysics Data System (ADS)

    Keil, W.

    Two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate that quasi-Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star (PNS) within less than 1 s and can lead to a significant increase of the neutrino fluxes.

  7. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  8. Nucleosynthesis in Supernovae and Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Thielemann, Friedrich-K.

    2001-11-01

    Astrophysical nucleosynthesis sites are the big bang and stellar objects. Stars contribute to galactic nucleosynthesis via hydrostatic burning phases in stellar evolution and explosive stellar events. Here we concentrate on type II supernova explosions - SNe II, the endpoints in the evolution of massive stars, and some events in binary stellar systems, e.g. type Ia supernovae - SNe Ia, and binary neutron star mergers. Emphasis is given to discuss the major nuclear physics issues involved.

  9. Thermonuclear processes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1981-01-01

    Theoretical models for X-ray burst sources that invoke thermonuclear flashes on the surface layers of an accreting neutron star are discussed. The historical development of X-ray burst observation is summarized, and a physical picture of a neutron star undergoing accretion is drawn. Detailed numerical computations of the evolution of the surface layers of such a star are reviewed. The need for general relativistic corrections to the model is pointed out. Finally, comparisons are made with observations of X-ray bursts, the rapid burster, fast X-ray transients, X-ray pulsars, and gamma-ray burst sources.

  10. Determining neutron star masses using weak microlensing

    NASA Astrophysics Data System (ADS)

    Tian, Lanlan; Mao, Shude

    2012-12-01

    The masses of stars, including stellar remnants, are almost exclusively known from binary systems. In this paper, we study the gravitational microlensing of faint background galaxies caused by isolated neutron stars (pulsars). We show that the resulting distortions in the surface brightness can be used to determine the masses of neutron stars. Because of their different evolutionary histories, isolated neutron stars might have different masses from those in binary systems, which can thus provide a unique insight into their equation of states under extreme physical conditions. Having searched the existing pulsar catalogues, we have found one promising pair, consisting of a nearby pulsar and a background galaxy. This method will become more practical for the next-generation optical and radio surveys and telescopes.

  11. Forecasting neutron star temperatures: predictability and variability.

    PubMed

    Page, Dany; Reddy, Sanjay

    2013-12-13

    It is now possible to model thermal relaxation of neutron stars after bouts of accretion during which the star is heated out of equilibrium by nuclear reactions in its crust. Major uncertainties in these models can be encapsulated in modest variations of a handful of control parameters that change the fiducial crustal thermal conductivity, specific heat, and heating rates. Observations of thermal relaxation constrain these parameters and allow us to predict longer term variability in terms of the neutron star core temperature. We demonstrate this explicitly by modeling ongoing thermal relaxation in the neutron star XTE J1701-462. Its future cooling, over the next 5 to 30 years, is strongly constrained and depends mostly on its core temperature, uncertainties in crust physics having essentially been pinned down by fitting to the first three years of observations. PMID:24483640

  12. Limiting rotational period of neutron stars

    NASA Astrophysics Data System (ADS)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  13. HYPERACCRETING NEUTRON STAR DISKS AND NEUTRINO ANNIHILATION

    SciTech Connect

    Zhang Dong; Dai, Z. G. E-mail: dzg@nju.edu.c

    2009-09-20

    Newborn neutron stars surrounded by hyperaccreting and neutrino-cooled disks may exist in some gamma-ray bursts and/or supernovae. In this paper, we further study the structure of such a neutron star disk based on the two-region (i.e., inner and outer) disk scenario following our previous work, and calculate the neutrino annihilation luminosity from the disk in various cases. We investigate the effects of the viscosity parameter {alpha}, energy parameter {epsilon} (measuring the neutrino cooling efficiency of the inner disk), and outflow strength on the structure of the entire disk as well as the effect of emission from the neutron star surface boundary emission on the total neutrino annihilation rate. The inner disk satisfies the entropy-conservation self-similar structure for the energy parameter {epsilon} {approx_equal} 1 and the advection-dominated structure for {epsilon} < 1. An outflow from the disk decreases the density and pressure but increases the thickness of the disk. Moreover, compared with the black hole disk, the neutrino annihilation luminosity above the neutron star disk is higher, and the neutrino emission from the boundary layer could increase the neutrino annihilation luminosity by about one order of magnitude higher than the disk without boundary emission. The neutron star disk with the advection-dominated inner disk could produce the highest neutrino luminosity while the disk with an outflow has the lowest. Although a heavily mass-loaded outflow from the neutron star surface at early times of neutron star formation prevents the outflow material from being accelerated to a high bulk Lorentz factor, an energetic ultrarelativistic jet via neutrino annihilation can be produced above the stellar polar region at late times if the disk accretion rate and the neutrino emission luminosity from the surface boundary layer are sufficiently high.

  14. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  15. Improved microphysics in neutron star merger simulations

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-09-01

    Neutron star mergers are expected to be among the main sources of gravitational waves detectable by the Advance LIGO/VIRGO/KAGRA detector network. In many cases, these mergers are also likely to power bright electromagnetic transients, including short gamma-ray bursts and ``kilonovae,'' the optical/infrared emission due to the radioactive decay of neutron rich elements in material unbound by the merger. These EM counterparts can provide important information on the environment in which the merger takes place and the nature of the binary, and their detection could shed a light on the origin of short gamma-ray bursts and of r-process elements. Numerical simulations of neutron star mergers using general relativistic codes are required to understand the merger dynamics, the impact of the equation of state of the neutron star on the gravitational wave signal, and the potential of a given binary to power electromagnetic counterparts to that signal. Until recently, however, general relativistic codes used very simple models for the neutron star - often a simple gamma-law equation of state without any additional microphysics. Although sufficient to model the gravitational wave signal before merger, this cannot be used to follow the post-merger evolution of the system, or even some aspects of the disruption of the neutron star. To do so, nuclear-theory based equations of state with temperature and composition dependence have to be used, and the effects of neutrinos and magnetic fields should be taken into account. In this talk, I will discuss current efforts to include more advanced microphysics in general relativistic simulations, what we can do so far, and what the remaining computational challenges are. I will also show how existing numerical simulations have helped us constrain the outcome of neutron star mergers, and what remains to be done in order to extract as much information as possible from upcoming gravitational wave and electromagnetic observations. Neutron star mergers are expected to be among the main sources of gravitational waves detectable by the Advance LIGO/VIRGO/KAGRA detector network. In many cases, these mergers are also likely to power bright electromagnetic transients, including short gamma-ray bursts and ``kilonovae,'' the optical/infrared emission due to the radioactive decay of neutron rich elements in material unbound by the merger. These EM counterparts can provide important information on the environment in which the merger takes place and the nature of the binary, and their detection could shed a light on the origin of short gamma-ray bursts and of r-process elements. Numerical simulations of neutron star mergers using general relativistic codes are required to understand the merger dynamics, the impact of the equation of state of the neutron star on the gravitational wave signal, and the potential of a given binary to power electromagnetic counterparts to that signal. Until recently, however, general relativistic codes used very simple models for the neutron star - often a simple gamma-law equation of state without any additional microphysics. Although sufficient to model the gravitational wave signal before merger, this cannot be used to follow the post-merger evolution of the system, or even some aspects of the disruption of the neutron star. To do so, nuclear-theory based equations of state with temperature and composition dependence have to be used, and the effects of neutrinos and magnetic fields should be taken into account. In this talk, I will discuss current efforts to include more advanced microphysics in general relativistic simulations, what we can do so far, and what the remaining computational challenges are. I will also show how existing numerical simulations have helped us constrain the outcome of neutron star mergers, and what remains to be done in order to extract as much information as possible from upcoming gravitational wave and electromagnetic observations. Einstein Fellow.

  16. Boundary layers of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail

    I would like to present an overview of observational results of studies of X-ray emission of boundary/spreading layer on neutron stars. The boundary/spreading layer is a part of the accretion flow in X-ray binaries with neutron stars, where the rapidly rotating matter of the accretion disk decelerates and settles to the neutron star surface. It was shown that in spite of complexity of physical conditions in the boundary layer, properties of its emission can be effectively used to put constrains on physical parameters of neutron stars. This ensures a rising level of interest in measurements of the boundary layer emission. In spite of that, during long period of time it was hardly possible to measure its energy spectrum in a model independent way. I will demonstrate that it is possible to do with the help of combined spectral timing information on X-ray emission of neutron stars. It will be shown that the emission of the boundary/spreading layer has virtually constant shape over large variations of its total luminosity which supports existing theoretical ideas of its structue in radiation pressure dominated regime.

  17. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  18. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  19. Neutron star dynamics and gravitational waves

    NASA Astrophysics Data System (ADS)

    Kokkotas, Kostas D.; Gaertig, Erich; Colaiuda, Antonella

    2010-04-01

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would open the gravitational-wave window to our Universe and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Among the best candidate sources for gravitational waves are the oscillations, but mainly the rotational instabilities of neutron stars which can emit quite strong gravitational wave signals via which one may reveal the details of their structure. Magnetars also are neutron stars with ultra strong magnetic field whose periodic flaring activity is associated with starquakes. They are also a potential source of gravitational waves while even the quasi-periodic oscillations (QPOs) observed in the electromagnetic spectrum can reveal the details of their structure.

  20. Neutron Star Dynamics and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Colaiuda, A.; Gaertig, E.

    2010-07-01

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would open the gravitational-wave window to our Universe and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Among the best candidate sources for gravitational waves are the oscillations, but mainly the rotational instabilities of neutron stars which can emit quite strong gravitational wave signals via which one may reveal the details of their structure. Magnetars also are neutron stars with ultra strong magnetic field whose periodic flaring activity is associated with starquakes. They are also a potential source of gravitational waves while even the quasi-periodic oscillations (QPOs) observed in the electromagnetic spectrum can reveal the details of their structure.

  1. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  2. Dark-matter admixed neutron stars

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2011-11-01

    We study the hydrostatic equilibrium configuration of an admixture of degenerate dark matter and normal nuclear matter by using a general relativistic two-fluid formalism. We consider non-self-annihilating dark matter particles of mass ˜1GeV. The mass-radius relations and moments of inertia of these dark-matter admixed neutron stars are investigated and the stability of these stars is demonstrated by performing a radial perturbation analysis. We find a new class of compact stars which consists of a small normal matter core with radius of a few kilometers embedded in a ten-kilometer-sized dark matter halo. These stellar objects may be observed as extraordinarily small neutron stars that are incompatible with realistic nuclear matter models.

  3. Magnetic field evolution in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.

    2015-10-01

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  4. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties. PMID:24702357

  5. r-Process in Neutron Star Mergers.

    PubMed

    Freiburghaus; Rosswog; Thielemann

    1999-11-10

    The production site of the neutron-rich heavy elements that are formed by rapid neutron capture (the r-process) is still unknown despite intensive research. Here we show detailed studies of a scenario that has been proposed earlier by Lattimer & Schramm, Symbalisty & Schramm, Eichler et al., and Davies et al., namely the merger of two neutron stars. The results of hydrodynamic and full network calculations are combined in order to investigate the relevance of this scenario for r-process nucleosynthesis. Sufficient material is ejected to explain the amount of r-process nuclei in the Galaxy by decompression of neutron star material. Provided that the ejecta consist of matter with a proton-to-nucleon ratio of Ye approximately 0.1, the calculated abundances fit the observed solar r-pattern excellently for nuclei that include and are heavier than the A approximately 130 peak. PMID:10525469

  6. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  7. Chandra Observations of Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  8. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  9. The Outcome of Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-10-01

    Black hole-neutron star and neutron star-neutron star mergers are among the main sources of gravitational waves which will be detected in the coming years by the Advanced LIGO/VIRGO/KAGRA observatories. In some cases, these mergers can also power bright electromagnetic emissions: they are the most likely progenitors of short gamma-ray bursts, and the radioactive decay of neutron-rich material ejected by the merger can power optical/infrared transients days after the merger. Finally, they may provide important constraints on the equation of state of cold dense matter, and on the source of heavy elements in the universe. I will discuss the general relativistic simulations which are required to properly model these events, and what they have told us so far about the outcome of neutron star mergers. I will also discuss efforts to improve the physical realism of the simulations by improving the treatment of the most important effects beyond general relativistic hydrodynamics: magnetic fields, neutrinos, and the properties of nuclear matter.

  10. Merger of Magnetized Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Hirschmann, Eric; Neilsen, David; Palenzuela, Carlos

    2016-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. We also incorporate the effects of neutrino transport and tabular equations of state to describe the degenerate matter. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  11. Oscillations of general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Comer, G. L.; Langlois, D.

    2002-11-01

    We develop a general formalism to treat, in general relativity, the nonradial oscillations of a superfluid neutron star about static (non-rotating) configurations. The matter content of these stars can, as a first approximation, be described by a two-fluid model: one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars; the other fluid is a conglomerate of all charged constituents (crust nuclei, protons, electrons, etc.). We use a system of equations that governs the perturbations both of the metric and of the matter variables, whatever the equation of state for the two fluids. The entrainment effect is explicitly included. We also take the first step towards allowing for the superfluid to be confined to a part of the star by allowing for an outer envelope composed of ordinary fluid. We derive and implement the junction conditions for the metric and matter variables at the core-envelope interface, and briefly discuss the nature of the involved phase transition. We then determine the frequencies and gravitational-wave damping times for a simple model equation of state, incorporating entrainment through an approximation scheme which extends present Newtonian results to the general relativistic regime. We investigate how the quasinormal modes of a superfluid star are affected by changes in the entrainment parameter, and unveil a series of avoided crossings between the various modes. We provide a proof that, unless the equation of state is very special, all modes of a two-fluid star must radiate gravitationally. We also discuss the future detectability of pulsations in a superfluid star and argue that it may be possible (given advances in the relevant technology) to use gravitational-wave data to constrain the parameters of superfluid neutron stars.

  12. Constraining neutron star matter with quantum chromodynamics

    SciTech Connect

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-10

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  13. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  14. Reflecting Telescopes and Double Star Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher; Argyle, R. W.

    Even a cursory reading of the literature of visual double star astronomy is sufficient to show that the field has long been heavily dominated by the refractor, which remains the instrument of choice for many visual observers. It is not, indeed, hard to find statements backed by the highest authority alleging that for this type of observation a reflector must be of substantially larger aperture to match the performance of a refractor of given size. There is, however, no basis whatever in optical theory for such claims nor, as will shortly be seen, do actual results at the eyepiece sustain this perception of the reflecting telescope as second-class citizen. This chapter will demonstrate that, and how, a reflector of good optical quality, maintained in proper adjustment, can be fully the equal aperture-for-aperture of the best refractor, matching the latter's resolution to the uttermost limits of visual double star astronomy, at least on fairly equal pairs. It is not amiss to recall at this point that the study of binary stars was founded by Herschel with reflecting telescopes and that its current limits have largely been set by recent observations with reflecting systems, both in terrestrial speckle interferometry and in the Hipparcos orbital observatory.

  15. Neutron Star Observations and the Equation of State

    SciTech Connect

    Lattimer, James M.

    2009-05-07

    This talk reviews limits to the properties of neutron stars established from physical considerations such as causality and stability. In addition, it summarizes recent attempts to determine realistic bounds to the equation of state (EOS) from a simultaneous measurement of a neutron star's mass and radius. Observational constraints on the neutron star radius from thermal emission, seismology, spin-orbit coupling, and tidal effects in mergers are discussed. Possible constraints from neutron star cooling, including neutrino emissions, are discussed.

  16. Strange Stars, Neutron Stars and Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Horvath, J. E.

    1990-11-01

    RESUMEN. Se ha conjeturado que una partlecula de dieciocho quarks, sin Carga, sin espi'n y sin colar (quark-alfa) podri'a ser estable a ba5as tern peraturas y presiones aiTh COfl respecto a materia extrafla. Presentamos en este trabajo la estmctura de estrellas extraflas incluyendo los efectos y apariencia de parti'culas uark-alfa en las capas exteriores. La estruc tura interna ya no es hoinogenea del centro a la superficie, sino que muestra un centro de materia extrafla, capas s6lidas y una costra delgada de materia normal en la superficie. La superficie de materia nonnal permite la fornaci6n de una magnetosfera, la que se piensa sea el sitlo en donde ocurre la emisi6n del pulsar. La superficie de superflui'do ayuda a explicar el fen6rneno de `glitch', el cual ba sido observado en muchos pulsares. Se discute la ecuaci6n de estado para rnateria quark-alfa relevante en este regimen. ABSTIZACT:It has been conjectured that an quark, uncharged, spinless and colorless particle Cquark-alpha) could be stable at low pressures and temperatures even with respect to strange matter. We present in work tlie structure of stars including the effects of the appearance of quark-alpi' particles ii their outer layers. The internal structure is no longer from tlie center to the surface, but show a strange matter core, a solid and superfluid layers and a thin crust of normal matter at the surface. The normal matter surface allows tlie fon tion of a magnetosphere, whicl is to be tl place where pulsar emission occurs. A superfluid layer helps to explain tlie glitch , wlflch has been observed in . equation of state for quark-alpha matter relevant in regime is also discussed. Keq LA)OtL : ARY S - OF STATF - ?.ACT

  17. Chandra Observations of Supernova Remnants and Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2002-01-01

    We present a brief overview of Chandra observations of supernova remnants and neutron stars, with emphasis on neutron stars in supernova remnants. The Chandra images demonstrate the importance of angular resolution in separating the neutron star emission from the surrounding nebulosity.

  18. Neutron Stars and Pulsar: Three Years of Chandra Operations

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a brief review of Chandra Observations of neutron stars, with a concentration on neutron stars in supernova remnants. Three years of Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  19. Neutron stars - A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  20. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  1. The Mystery of the Lonely Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars must have formed in our own galaxy, the Milky Way. However, most of these are now invisible, having since long cooled down and become completely inactive while fading out of sight. An unsual neutron star - RX J1856.5-3754 Some years ago, the X-ray source RX J1856.5-3754 was found by the German ROSAT X-ray satellite observatory. Later observations with the Hubble Space Telescope (cf. STScI-PR97-32 ) detected extremely faint optical emission from this source and conclusively proved that it is an isolated neutron star [3]. There is no sign of the associated supernova remnant and it must therefore be at least 100,000 years "old". Most interestingly, and unlike younger isolated neutron stars or neutron stars in binary stellar systems, RX J1856.5-3754 does not show any sign of activity whatsoever, such as variability or pulsations. As a unique member of its class, RX J1856.5-3754 quickly became the centre of great interest among astronomers. It apparently presented the first, very welcome opportunity to perform detailed studies of the structure of a neutron star, without the disturbing influence of ill-understood activity. One particular question arose immediately. The emission of X-rays indicates a very high temperature of RX J1856.5-3754 . However, from the moment of their violent birth, neutron stars are thought to lose energy and to cool down continuously. But then, how can an old neutron star like this one be so hot? One possible explanation is that some interstellar material, gas and/or dust grains, is being captured by its strong gravitational field. Such particles would fall freely towards the surface of the neutron star and arrive there with about half the speed of light. Since the kinetic energy of these particles is proportionate to the second power of the velocity, even small amounts of matter would deposit much energy upon impact, thereby heating the neutron star. The spectrum of RX J1856.5-3754 The new VLT study by van Kerkwijk and Kulkarni of RX J1856.5-3754 was first aimed at taking optical spectra, in order to study its structure. The astronomers hoped to find in its spectrum some "signatures", i.e., emission or absorption lines and/or bands, that might provide information about the physical conditions on its surface. While the chances for this were admittedly rather slim, a detection of such spectral features would be a real break-through in the study of neutron stars. If present in the spectrum, they could for instance be used to measure directly the immense strength of the gravitational field on the surface, expected to be about 10 12 times stronger than that on the surface of the Earth. Moreover, it might be possible to determine the gravitational redshift , a relativistic effect whereby the light quanta (photons) that are emitted from the surface lose about 20% of their energy as they escape from the neutron star. Their wavelength is consequently red-shifted by that amount. The spectral observations were difficult, first of all because of the extreme faintness of RX J1856.5-3754 . But even though an excellent spectrum was obtained with the multi-mode FORS1 instrument at VLT ANTU, it was indeed quite featureless and no spectral features were seen. Surprises from RX J1856.5-3754 Nevertheless, as it often happens in astronomy, these observations did bring surprises. The first was that the neutron star had obviously moved on the sky since the HST had observed it in 1997. From positional measurements and the assumed distance, approx. 200 light-years, RX J1856.5-3754 was found to be moving with a velocity of about 100 km/s [4]. However, at such a high speed, it is hard to imagine how it would be able to catch much interstellar matter, whose infall might heat the surface as described above. The puzzle was deepening! Another surprise was that the spectra showed very faint emission from the neighbourhood of the neutron star. The measured wavelengths identified these emission lines as H-alpha and H-beta , two of the so-called Balmer lines that originate in hydrogen atoms. Most likely, the strong radiation from the very hot surface of the neutron star is ionizing hydrogen atoms (separating them in a proton and an electron) in the surroundings, a process that also takes place near very hot, normal stars. The observed emission is then produced when, at a later time, the protons and electrons again (re)combine into hydrogen atoms. Interestingly, a simple estimate of the hydrogen density near the neutron star that is needed to produce the observed glow indicates the presence of about one hundred hydrogen atoms per cubic centimetre. This is no less than one hundred times the usual density in the interstellar medium. So maybe the surface of RX J1856.5-3754 could still be heated by infalling hydrogen atoms? VLT images of the RX J1856.5-3754 region With the inferred hydrogen density near the neutron star, about one thousand years on the average will elapse between the moment of ionization by the passing neutron star and the subsequent re-unification of a proton with an electron to form a hydrogen atom. During this time, however, the fast-moving neutron star will have covered a substantial distance. For this reason, it is expected that much of the hydrogen emission will not be seen very close to the neutron star, but rather along its "recent" trajectory in space. ESO PR Photo 23a/00 ESO PR Photo 23a/00 [Preview - JPEG: 400 x 474 pix - 192k] [Normal - JPEG: 800 x 948 pix - 622k] [Full-Res - JPEG: 1975 x 2340 pix - 2.2Mb] ESO PR Photo 23b/00 ESO PR Photo 23b/00 [Preview - JPEG: 400 x 472 pix - 184k] [Normal - JPEG: 800 x 944 pix - 424k] Caption : False-colour composite photo of the sky field with the lonely neutron star RX J1856.5-3754 and the related cone-shaped nebula. It is based on a series of exposures obtained with the multi-mode FORS2 instrument at VLT KUEYEN through three different optical filters: R (29 exposures of 136 sec each; ~1.1 hrs total; here rendered as green); H-alpha (19; 1020 sec; ~5.5 hrs; red); and B (10; 138 sec; ~0.4 hrs; blue). The seeing was good to excellent during the exposures (0.66 arcsec on average). The trails of some moving objects, most likely asteroids in the solar system, are seen in the field with intermittent blue, green and red colours. The large field ( PR Photo 23a/00 ) measures 6.6 x 6.7 arcmin 2 , with 0.2 arcsec/pixel. For clarity, a smaller area around the neutron star and the cone ("bowshock") nebula has been enlarged in PR Photo 23b/00 . The object is at the centre of the circle and the neutron star is indicated with an arrow; the field measures 80 x 80 arcsec 2. North is to the lower right and East is upper right. The motion of the neutron star as seen on the sky (see the text) is towards East, exactly in the direction indicated by the nebula. In order to test these ideas, additional observing time was granted on the VLT to obtain very "deep", direct images that would attempt to map the hydrogen glow. They were carried out by ESO staff astronomers at Paranal in "service mode". Exposures lasting more than five hours in total were taken through a narrow optical filter that isolates the H-alpha hydrogen emission. In addition, shorter exposures were taken through B(lue) and R(ed) filters. The exposures have been combined into the false-colour PR Photos 23a-b/00 . Legions of stars are seen in the photos. This is partly because of the extraordinary light sensitivity of the VLT, and partly because a star-forming region is located in this direction. Stars like our Sun appear whitish, relatively cool stars emit little blue light and appear more reddish, while hot stars appear blue. The photos clearly show a lot of diffuse light, especially in the lower left area. This is most likely starlight reflected off interstellar dust grains. The cone-shaped nebula near RX J1856.5-3754 A small area, just a little above and to the right of the centre of PR Photo 23a/00 , has been enlarged in PR Photo 23b/00 . It shows a small, cone-shaped nebula never seen before - this is the emission from hydrogen atoms near the neutron star RX J1856.5-3754 . The star itself is the very faint, blue object very close to the top of the cone. The shape of the cone is like that of a "bowshock" from a ship, plowing through water. Similarly shaped cones have been found around fast-moving radio pulsars and massive stars, cf. e.g., ESO PR 01/97. However, for those objects, the bowshock forms because of a strong outflow of particles from the star or the pulsar (a "stellar wind"), that collides with the interstellar matter. Because of this analogy, one may think that a "wind" also blows from RX J1856.5-3754 . However, for this a new hypothesis would have to be invoked. An alternative, perhaps more plausible possibility is that when the surrounding hydrogen atoms are ionized, the resulting electrons and protons acquire substantial velocities, heating the interstellar gas near the passing neutron star. The heated gas expands and pushes aside the surrounding cooler gas. In the end, this process may lead to a geometrical shape similar to that caused by a stellar wind. Whither RX J1856.5-3754? At present, it is still uncertain whether the observed density of the surrounding interstellar matter is sufficient to heat RX J1856.5-3754 to the observed temperature. However, it is possible that sometimes in the past the neutron star managed to collect more matter during its travel through interstellar space, was heated, and is now slowly cooling down. In another million years or so, it will become undetectable, until it happens to pass through another dense interstellar region. And so on... Notes [1]: Images of the Crab Nebula and its pulsar from VLT KUEYEN and FORS2 are available in ESO PR 17/99. [2]: In fact, a neutron star is like one big atom with a diameter of 10-20 kilometres, and weighing about as much as the Sun. The mean density is an unimaginable 10 15 g/cm 3. Thus, a pinhead of neutron star material (1 millimetre across) weighs almost 1 million tons, or about as much as the largest oil carrier ever built, fully loaded. [3]: The apparent visual magnitude of RX J1856.5-3754 is 25.6, or nearly 100 million times fainter than what can be perceived with the unaided eye in a dark sky. [4]: The motion of RX J1856.5-3754 was also found by Frederick M. Walter (Stony Brook, New York, USA), who also determined the distance, cf. the corresponding research article that is now available on the web.

  2. Close Double Star Speckle Interferometry Program

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Hardersen, Paul; Buchheim, Robert; Mohanan, Kakkala; Church, Rebecca; Weise, Eric; Richards, Joe; Rowe, David; Johnson, Jolyon

    2013-05-01

    A speckle interferometry program has been initiated to observe close double stars. The goals of the program are to advance scientific knowledge, provide students with a cutting-edge research experience, and develop a relatively low cost speckle instrument based on Andor's Luca-S EMCCD camera. Two pilot runs at Pinto Valley Observatory and one at Leeward Community College have allowed us to refine our instrumentation and observational techniques in preparation for runs, hopefully, on a 2.1 meter telescope at Kitt Peak National Observatory this fall and the 4.1 meter SOAR telescope at Cerro Tololo Interamerican Observatory next summer.

  3. The Motion of Cassiopeia A's Neutron Star

    NASA Astrophysics Data System (ADS)

    DeLaney, Tracey; Satterfield, J.; Chatterjee, S.

    2013-06-01

    We used data from the High Resolution Camera on the Chandra X-ray Observatory to measure the proper motion of the neutron star in Cassiopeia A over a baseline of 10 years. Due to a lack of external registration sources, we used the slow-moving quasi-stationary flocculi (QSFs) for registration. Using a number of different techniques (centroiding, Gaussian fitting, chi-square, Cash statistic), we find that our measurement is dominated by the morphology changes of the QSFs over the 10-yr period. Our measurement indicates that the neutron star is moving at 450 +/- 200 km/s in the south-southeast direction. Given the measurement difficulties, we are pleased that our measurement is completely consistent with the inferred proper motion of the neutron star based on its offset from the center of expansion of the optical ejecta. The neutron star motion does not seem to align with any of the major structures in Cas A, such as the jets and the Fe-rich ejecta to the north and southeast.

  4. High energy radiation from neutron stars

    SciTech Connect

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs. (GHT)

  5. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  6. Tidal Love Numbers of Neutron Stars

    SciTech Connect

    Hinderer, Tanja

    2008-04-20

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  7. General relativistic neutron stars with twisted magnetosphere

    NASA Astrophysics Data System (ADS)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2015-03-01

    Soft gamma-ray repeaters and anomalous X-ray pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here, we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided, to investigate the effects of different current distributions on the overall magnetic field structure.

  8. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-04-01

    The lowest neutron star masses currently measured are in the range 1.0 - 1.1~M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. (2014) recently found empirical formulas relating the mass and surface redshift of nonrotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. (2014) to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  9. Measuring Visual Double Stars with Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to produce four published research papers on seven visual double star systems and have our data added to the Washington Double Star Catalog. A school can adopt these techniques to do visual double star research with a minimal investment.

  10. Confirming a substellar companion candidate around a neutron star

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina; Luhman, Kevin

    2014-08-01

    In a search for substellar companions around young neutron stars, we found an indication for a very faint near-infrared source at the position of the isolated neutron star RXJ0806.4-4123. The suspected near-IR source cannot be the neutron star itself because the latter is much too faint to be detected. Recent Herschel 160 microm observations of the field point to an additional dusty belt around the neutron star. The outer location of the dusty belt could be explained by the presence of a substellar companion around the neutron star. We propose deeper near-infrared observations with FLAMINGOS-2 to confirm that the near-infrared source is real. The observation could provide the first direct detection of a substellar companion around a neutron star. However, even a non-detection would be interesting to constrain evolution models of the dusty belt around the neutron star.

  11. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  12. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    PubMed

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. PMID:24508199

  13. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  14. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  15. Why neutron stars have three hairs

    NASA Astrophysics Data System (ADS)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  16. Convective Instability in Proto-Neutron Stars

    NASA Astrophysics Data System (ADS)

    Miralles, Juan A.; Pons, José A.; Urpin, Vadim A.

    2000-11-01

    The linear hydrodynamic stability of proto-neutron stars (PNSs) is considered, taking into account dissipative processes such as neutrino transport and viscosity. We obtain the general instability criteria, which differ essentially from the well-known Ledoux criterion used in previous studies. We apply the criteria to evolutive models of PNSs that, in general, can be subject to the various known regimes such as neutron fingers and convective instabilities. Our results indicate that the fingers instability arises in a more extended region of the stellar volume and lasts a longer time than expected.

  17. Second Double Star satellite successfully launched

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Tan Ce ("Explorer") 2 was launched from the Taiyuan spaceport west of Beijing (Zhangye province) using a Long March 2C rocket. The launch, initially scheduled for today 26 July, took place one day earlier in order to avoid adverse weather conditions expected in the days to come. The spacecraft will join Tan Ce 1, which was launched on 29 December 2003, to complete the Double Star configuration. About 8 hours after launch the two solid booms holding the magnetometers were successfully deployed. In the next few weeks, all spacecraft sub-systems will be checked out and the commissioning of the on-board scientific instrument will follow. Double Star will operate alongside ESAs quartet of Cluster satellites to closely study the interaction between the solar wind and the Earths magnetic field. Together, these missions will provide the most detailed view to date. TC-1 is already returning a wealth of scientific data. Back in January, both missions tracked a coronal mass ejection from the Sun and gathered valuable data about the Earth's bow shock. Tan Ce 2 reached its nominal orbit, with perigee at 682 km, apogee at 38279 km and inclination of 90.1 deg. The positions and orbit of the Double Star satellites have been carefully defined to enable exploration of the magnetosphere on a larger scale than is possible with Cluster alone. One example of this coordinated activity is the study of the substorms that produce aurorae. The exact region where these emissions of brightness form is still unclear, but the simultaneous high-resolution measurements combined under these two missions are expected to provide an answer. ESA is contributing eight scientific instruments to the mission, seven of which are Cluster-derived units. These are the first ever European experiments to fly on a Chinese satellite. ESA will also be providing ground segment support, four hours each day, via its Villafranca satellite tracking station in Spain. Scientific cooperation between China and ESA goes back quite a long way. A first Agreement signed back in 1980 facilitated the exchange of scientific information. Thirteen years later, the collaboration focused on a specific mission, Cluster, to study the Earth's magnetosphere. Then, in 1997, came a big step forward. The CNSA invited ESA to participate in the Double Star dual-satellite mission to study the Earths magnetic field, from a perspective different but complementary to Cluster's. The Agreement to carry out this joint mission was signed on 9 July 2001 by ESAs then Director General Antonio Rodot and CNSA Administrator Luan Enjie. For Professor David Southwood, ESAs Science Programme Director: Todays successful launch marks the culmination of these joint efforts and a further important step forward in this historic collaboration between China and Europe.

  18. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-03-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H - He, He - C, C - Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts - Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modeling the evolution of neutron stars.

  19. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  20. The Fascinating World of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2009-07-01

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters in the journey from the low-density crust to the high-density core.

  1. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  2. Mergers of Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven; Neilsen, David; Palenzuela, Carlos

    2016-04-01

    We present results from fully relativistic simulations of binary neutron star mergers varying the tabular equation of state used to approximate the degenerate material and the mass ratio. The simulations incorporate both magnetic fields and the effects of neutrino cooling. In particular, we examine the amount and properties of material ejected from the merger. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  3. The Numerical Evolution of Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes

    2000-10-01

    The present work investigates the numerical evolution of linearized oscillations of non-rotating, spherically symmetric neutron stars within the framework of general relativity. We derive the appropriate equations using the (3+1)-formalism. We first focus on the evolution of radial oscillations, which do not emit gravitational waves. We demonstrate how to handle a numerical instability that also occurs in the non-radial case, when the stellar model is constructed based on a realistic equation of state. We devise a coordinate transformation that not only removes this instability but also provides much more accurate results. [...] The main part deals with the evolution of non-radial oscillations (l >= 2) of neutron stars. Here, we compare different formulations of the equations and discuss how they have to be numerically dealt with in order to avoid instabilities at the origin. We present results for various polytropic stellar models and different initial data. [...] In the last part of this thesis we consider a physical mechanism for exciting oscillations of neutron stars. We use the time dependent gravitational field of a small point mass mu that orbits the neutron star to induce stellar oscillations. With this particle we have a physical means which removes the arbitrariness in choosing the initial data. [...] By sampling various orbital parameters of the particle we show that in general the particle is not able to excite any w-modes. It is only for speeds very close to the speed of light that the w-mode is a significant part of the wave signal.

  4. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1989-01-01

    The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.

  5. Topological characterization of neutron star crusts

    NASA Astrophysics Data System (ADS)

    Dorso, C. O.; Giménez Molinelli, P. A.; López, J. A.

    2012-11-01

    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy-ion reactions. After the model is shown to produce a plethora of the so-called pasta shapes, a series of techniques borrowed from nuclear physics, condensed matter physics, and topology is used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way.

  6. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  7. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  8. Charged Ising model of neutron star matter

    NASA Astrophysics Data System (ADS)

    Hasnaoui, K. H. O.; Piekarewicz, J.

    2013-08-01

    Background: The inner crust of a neutron star is believed to consist of Coulomb-frustrated complex structures known as nuclear pasta that display interesting and unique low-energy dynamics.Purpose: To elucidate the structure and composition of the neutron-star crust as a function of temperature, density, and proton fraction.Methods: A new lattice-gas model, the charged Ising model (CIM), is introduced to simulate the behavior of neutron-star matter. Preliminary Monte Carlo simulations on 303 lattices are performed for a variety of temperatures, densities, and proton fractions.Results: Results are obtained for the heat capacity, pair-correlation function, and static structure factor for a variety of conditions appropriate to the inner stellar crust.Conclusions: Although relatively simple, the CIM captures the essence of Coulomb frustration that is required to simulate the subtle dynamics of the inner stellar crust. Moreover, the computationally demanding long-range Coulomb interactions have been precomputed at the appropriate lattice sites prior to the start of the simulation, resulting in enormous computational gains. This work demonstrates the feasibility of future CIM simulations involving a large number of particles as a function of density, temperature, and proton fraction.

  9. Magnetically driven crustquakes in neutron stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Andersson, N.; Antonopoulou, D.; Watts, A. L.

    2015-05-01

    Crustquake events may be connected with both rapid spin-up `glitches' within the regular slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field decay builds up stresses in a neutron star's crust, as the elastic shear force resists the Lorentz force's desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-breaking induced by a changing magnetic-field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models. Universally, we find that the crust is most liable to break if the magnetic field has a strong toroidal component, in which case the epicentre of the crustquake is around the equator. We calculate the energy released in a crustquake as a function of the fracture depth, finding that it is independent of field strength. Crust-breaking is, however, associated with a characteristic local field strength of 2.4 × 1014 G for a breaking strain of 0.001, or 2.4 × 1015 G at a breaking strain of 0.1. We find that even the most luminous magnetar giant flare could have been powered by crustal energy release alone.

  10. On the cooling of globally-neutral neutron stars

    NASA Astrophysics Data System (ADS)

    de Carvalho, Sheyse M.; Rueda, Jorge A.; Ruffini, Remo

    2014-09-01

    We compute the thermal evolution of neutron stars by taking into account the strong, weak, electromagnetic and gravitational interactions within the framework of general relativity and by satisfying the condition of global, but not local, charge neutrality. We focus on the isothermal phase following the thermal relaxation of the star and compare the result with observational data from isolated neutron stars.

  11. CD Double Star Measures: Jack Jones Memorial Observatory Report #3

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    2010-10-01

    This paper submits 114 CCD measurements of 92 multiple star systems for inclusion in the WDS. Observations were made during the calendar year 2007. Measurements were obtained using either an SBIG ST-7 CCD camera or an SBIG ST-8 CCD camera and an 11-inch SCT. Selected double stars are discussed. Negative findings are included for certain stars.

  12. Mesoscopic pinning forces in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Seveso, S.; Pizzochero, P. M.; Grill, F.; Haskell, B.

    2016-02-01

    The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed in a sea of free electrons and neutrons. As the neutrons are superfluid, their angular momentum is carried by an array of quantized vortices. These vortices can pin to the nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to store angular momentum which can then be released catastrophically, giving rise to a pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the lattice can exert on the vortices, as this allows us to estimate the angular momentum that can be exchanged during a glitch. In this paper, we perform, for the first time, a detailed and quantitative calculation of the pinning force per unit length acting on a vortex immersed in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider realistic vortex tensions, allow for displacement of the nuclei and average over all possible orientations of the crystal with respect to the vortex. We find that, as expected, the mesoscopic pinning force becomes weaker for longer vortices and is generally much smaller than previous estimates, based on vortices aligned with the crystal. Nevertheless, the forces we obtain still have maximum values of the order of fpin ≈ 1015 dyn cm-1, which would still allow for enough angular momentum to be stored in the crust to explain large Vela glitches, if part of the star is decoupled during the event.

  13. Neutronic effects on tungsten-186 double neutron capture

    NASA Astrophysics Data System (ADS)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the target (beyond 0.4 mm depth) does not decrease as would be expected due to neutron attenuation. This observation was explained by the fact elevated temperatures in the interior of the target result in an increase in the 188W yield through Doppler broadening of cross sections, compensating for reduced yield due to neutron attenuation. Finally, this work supports earlier analyses that questioned the accuracy of the 187W thermal cross section and resonance integral.

  14. Many faces of young neutron stars

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam

    The hardware aspect of this thesis consists in the design, fabrication and assembly of twin analog Flexible Filter Banks at Caltech. These are user-friendly, workhorse, radio-pulsar search and timing instruments. Novel features include the flexibility in configuring channel center-frequencies and widths, the rapid sampling down to 25 ?s and a total instrument bandwidth ranging from a narrow 0.2 MHz to a mammoth 100 MHz. Frequency synthesis is used to downconvert, detect and sample the telescope receiver bandpass as 32 separate time-series in each polarization. The collected data are later subjected to standard pulsar search and timing algorithms in software.The vital scientific issue addressed here is the nature of young neutron stars. In the standard picture, young neutron stars are rapidly spinning radio-luminous pulsars, which may also display pulsed emission at high X-ray and ?-ray energies. However there is no evidence that all neutron stars are born according to this standard picture. We present radio or X-ray investigations of steady nebular emission produced by three clearly non-standard and ill-understood objects. In all likelihood, these are young neutron stars, a notion upheld by their association with young Galactic supernova remnants.Based on its display of high energy transients, the soft ?-ray repeater SGR 1806-20 is posited to be a seismically active "magnetar", i.e., a neutron star with a super-strong magnetic field (10[superscript 15] G) nearly three orders of magnitude greater than pulsar dipolar fields. Our VLA observations of fleeting small-scale structure around SGR 1806-20 provide intriguing, although preliminary, support for the magnetar model. In time, similar observations could unravel the riddle of soft ?-ray repeaters and possibly establish the reality of magnetars.X-ray observations of the remnant of the historical supernova of 386 A.D., SNR G 11.2-0.3 are presented. The nature of an embedded underlumnious plerion discovered in these observations argues for a central neutron star very different from the prototypical Crab pulsar. The urgency to undertake a large scale study of young and hollow Galactic shells in broadband X-rays with fine spatial resolution is elucidated.X-ray spectroscopy of the object 1E 1207.4-5209 at the core of the large remnant PKS 1209-51/52 has revealed a non-thermal source with a very steep spectrum. After considering various scenarios for lE 1207.4-5209, we conclude that its spectral signature, its lack of optical emission and its position at the center of a supernova remnant make it a source similar to the mysterious anomalous X-ray pulsars.A large and sensitive search for radio pulsar companions of massive stars was undertaken. Primary motivation stems from the recent discovery of binary radio pulsar B 1259-63 as the first member of such a population and a "missing link" in the current models of evolution. Prevalent expectations, based on binary evolution scenarios, suggested that many more such systems should exist and would be uncovered in sensitive targeted searches. Together with other smaller searches, this survey uncovered no pulsars orbiting early-type stars. We conclude that such binary systems must be rare.

  15. Accretion Acceleration of Neutron Stars and Effects of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Fu, Yan-yan; Zhang, Yue-zhu; Wei, Yi-huan; Zhang, Cheng-min; Yu, Shao-hua; Pan, Yuan-yue; Guo, Yuan-qi; Wang, De-hua

    2016-01-01

    In this paper we studied the neutron star's spin acceleration in the accretion process of the neutron star binary system, and the relation how the spin period changes with the accreted mass. We analyzed further the evolutions of both magnetic field and spin period of a neutron star, and compared the modeled results with the observational data of pulsars, to show that they are consistent with each other. Based on above studies, we investigated the effect of gravitational radiation on the spin-up process of a neutron star, and derived the change rate of the neutron star's spin period in the accretion process. We also estimated the critical angular velocity Ωcr, at which the accretion torque is balanced by that of gravitational radiation, and discussed the influence of gravitational radiation on the neutron star's spin evolution.

  16. Relativistic density functional theory for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    In 1939 Oppenheimer and Volkoff demonstrated using Einstein's theory of general relativity that a neutron star supported exclusively by neutron degeneracy pressure will collapse into a black hole if its mass exceeds seven tenths of a solar mass. Seventy five years after such a pioneering prediction the existence of neutron stars with masses as large as two solar masses has been firmly established. This fact alone highlights the critical role that nuclear interactions play in explaining the structure of neutron stars. Indeed, a neutron star is a gold mine for the study of nuclear phenomena that span an enormous range of densities and neutron-proton asymmetries. Physical phenomena over such diverse scales are best described by a formalism based on Relativistic Density Functional Theory. In this contribution I focus on the synergy between theory, experiment, and observation that is needed to elucidate the myriad of exotic states of matter that are believed to exist in a neutron star.

  17. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  18. On the properties of matter in neutron stars

    NASA Technical Reports Server (NTRS)

    Boerner, G.

    1973-01-01

    A qualitative description of the interior of a neutron star is presented, giving attention also to the validity of the 'isotropic fluid' approximation. The atmosphere and surface of a neutron star are considered together with aspects concerning nuclear and solid state physics in the crust, the liquid interior, the hyperon core, neutron star models, and pulsar observations. Accretion processes are also investigated, taking into account such topics as the Eddington limit, accretion rates, the death of pulsars, changes of the surface composition of neutron stars by accretion, questions of X-ray emission, and aspects of gamma radiation emission.

  19. Binary neutron star mergers: Simulations with arbitrarily spinning stars

    NASA Astrophysics Data System (ADS)

    Tsatsin, Petr

    The starting point of any general relativistic numerical simulation is a solution of the Hamiltonian and momentum constraints that (ideally) represents an astrophysically realistic scenario. This dissertation presents a new method to produce initial data sets for binary neutron stars with arbitrary spins and orbital eccentricities. The method only provides approximate solutions to the constraints. However, it was shown that the corresponding constraint violations subside after a few orbits, becoming comparable to those found in evolutions of standard conformally flat, helically symmetric binary initial data. This dissertation presents the first spinning neutron star binary simulations in circular orbits with a orbital eccentricity less then 0.01. The initial data sets corresponding to binaries with spins aligned, zero and anti-aligned with the orbital angular momentum were evolved in time. These simulations show the orbital "hang-up" effect previously seen in binary black holes. Additionally, they show orbital eccentricities that can be up to one order of magnitude smaller than those found in helically symmetric initial sets evolutions.

  20. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  1. Tidal polarizability effects in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Bernuzzi, S.; Nagar, A.; Balmelli, S.; Dietrich, T.; Ujevic, M.

    2015-05-01

    Using the analytical effective-one-body model and nonlinear 3+1 numerical relativity simulations, we investigate binary neutron star mergers. It is found that, for nonspinning binaries, both the mass-rescaled gravitational wave frequency at merger and the specific binding energy at merger almost uniquely depend on the tidal coupling constants κT2, which are functions of the stars’ Love numbers, compactnesses and mass ratio. These relations are quasiuniversal in the sense that there is an additional dependence on the spins, which is linear for realistic spins values χ ≲ 0.1. In the effective-one-body model, the quasiuniversality is a direct consequence of the conservative dynamics of tidally interacting bodies. In the context of gravitational wave astronomy, our findings may be used to constrain the neutron stars’ equation of state using waveforms that accurately model the merger.

  2. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  3. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds. PMID:3580540

  4. Light curves from binary neutron star coalescence

    NASA Astrophysics Data System (ADS)

    Ortiz, Nestor; Green, Stephen; Lehner, Luis; Ponce, Marcelo; HAD Collaboration

    2015-04-01

    Evolution of binary neutron stars, and the extraction of associated gravitational waveforms, have acquired certain maturity using numerical simulations. In this work we look to augment the observational predictions by extracting electromagnetic counterparts. That is, given results from a merger simulation, we produce a photon emission sky map. Our ray-tracing algorithm employ the two-pole caustic model of gamma-ray emission from the binary system's magnetosphere. The combined measurement of both gravitational and electromagnetic wave signals provides additional information to characterize the merger.

  5. HYDROMAGNETIC INSTABILITIES IN RELATIVISTIC NEUTRON STARS

    SciTech Connect

    Lasky, Paul D.; Zink, Burkhard; Kokkotas, Kostas D.; Glampedakis, Kostas

    2011-07-01

    We model the nonlinear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  6. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  7. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  8. Neutron star coupling to its environment

    NASA Technical Reports Server (NTRS)

    Salvati, Marco; Pacini, Franco

    1987-01-01

    A discussion is undertaken of the outward flow generated by rotation-powered neutron stars, giving attention to the identification of particle, wave, and time-steady EMF components of the flow, the estimation of their densities, and the assessment of their contributions to the global energetics. It is concluded that a firm qualitative understanding of pulsar behavior has been achieved in the matters of magnetospheric structure, pair-production, the fate of large-amplitude waves, and the asymptotic behavior of the wind.

  9. Accretion of matter onto highly magnetized neutron stars: Final report, July 1-September 30, 1985

    SciTech Connect

    Hernquist, L.

    1986-06-01

    A final report is given of two research projects dealing with magnetic fields of neutron stars. These are the modulation of thermal x-rays from cooling neutron stars and plasma instabilities in neutron star accretion columns. (DWL)

  10. Properties of high-density matter in neutron stars

    NASA Astrophysics Data System (ADS)

    Weber, Fridolin; Contrera, Gustavo A.; Orsaria, Milva G.; Spinella, William; Zubairi, Omair

    2014-07-01

    This short review aims at giving a brief overview of various states of matter that have been suggested to exist in the ultra-dense centers of neutron stars. Particular emphasis is put on the role of quark deconfinement in neutron stars and on the possible existence of compact stars made of absolutely stable strange quark matter (strange stars). Astrophysical phenomena, which distinguish neutron stars from quark stars, are discussed and the question of whether or not quark deconfinement may occur in neutron stars is investigated. Combined with observed astrophysical data, such studies are invaluable to delineate the complex structure of compressed baryonic matter and to put firm constraints on the largely unknown equation of state of such matter.

  11. Probing dense matter in neutron stars with axial w modes

    SciTech Connect

    Chatterjee, Debarati; Bandyopadhyay, Debades

    2009-07-15

    We study the problem of extracting information about composition and equation of state of dense matter in neutron star interior using axial w modes. We determine complex frequencies of axial w modes for a set of equations of state involving hyperons as well as Bose-Einstein condensates of antikaons adopting the continued fraction method. Hyperons and antikaon condensates result in softer equations of state leading to higher frequencies and lower damping times of first axial w modes than those of the nuclear matter case. The presence of condensates may lead to the appearance of a new stable branch of superdense stars beyond the neutron star branch called the third family. The existence of the same mass compact stars in both branches is known as neutron star twins. Further investigation of twins reveals that first axial w-mode frequencies of superdense stars in the third family are higher than those of the corresponding twins in the neutron star branch.

  12. Theory of Radiation Transfer in Neutron Star Atmospheres

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.

  13. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  14. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    PubMed

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency. PMID:27203312

  15. Washington Double Star Catalog Cross Index (1950 position sort)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A machine-readable version of the Washington Catalog of Visual Double Stars (WDS) was prepared in 1984 on the basis of a data file that was collected and maintained for more than a century by a succession of double-star observers. Although this catalog is being continually updated, a new copy for distribution is not expected to be available for a few years. The WDS contains DM numbers, but many of these are listed only in the notes, which makes it difficult to search for double-star information, except by position. Hence, a cross index that provides complete DM identifications is desirable, and it appears useful to add HD numbers for systems in that catalog. Aitken Double Star (ADS) numbers were retained from the WDS, but no attempt was made to correct these except for obvious errors.

  16. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  17. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-06-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.

  18. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  19. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    SciTech Connect

    Taniguchi, Keisuke; Shibata, Masaru

    2010-05-15

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  20. Transient radio bursts from rotating neutron stars.

    PubMed

    McLaughlin, M A; Lyne, A G; Lorimer, D R; Kramer, M; Faulkner, A J; Manchester, R N; Cordes, J M; Camilo, F; Possenti, A; Stairs, I H; Hobbs, G; D'Amico, N; Burgay, M; O'Brien, J T

    2006-02-16

    The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4-7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 x 10(13) G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and gamma-ray wavelengths. PMID:16482150

  1. Anisotropic pressure and hyperons in neutron stars

    NASA Astrophysics Data System (ADS)

    Sulaksono, A.

    2015-01-01

    We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core.

  2. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  3. Transition density and pressure in hot neutron stars

    SciTech Connect

    Xu Jun; Chen Liewen; Ko, Che Ming; Li Baoan

    2010-05-15

    Using the momentum-dependent effective interaction (MDI) for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and the liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.

  4. Neutron Star Structure in the Presence of Scalar Fields

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2004-01-01

    Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the apparent acceleration of the universe implied by the supernovae surveys, we present models of neutron star structure including the contribution of a (massless) scalar field to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein -- scalar field -- hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter--scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field affects both the maximum neutron star mass and Its radius, the latter increasing with the value of the above coupling constant. We also compute particle and photon geodesics in the geometry of these neutron stars as well as to the geometry of black holes with different values of the scalar field. Our results may be testable with timing observations of accreting neutron stars.

  5. The Thermodynamic Functions in Curved Space of Neutron Star

    NASA Astrophysics Data System (ADS)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  6. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR 1055-52 all show evidence of baryon pairing down to their very centers.

  7. BDB - A database of double and multiple stars

    NASA Astrophysics Data System (ADS)

    Oblak, E.; Debray, B.; Lastennet, E.; Kundera, T.

    2002-06-01

    A data base for double and multiple stars is developed at Besancon Observatory, since 1995. It aims to make available to astronomers, via Internet, the data of all categories of binary stars. We present the current structure of the base as well as its development prospects: integration of data, automatic links of bases and national and international collaborations.

  8. Nuclear Matter Equations of State and the Neutron Stars

    SciTech Connect

    Urbanec, M.; Stuchlik, Z.; Betak, E.

    2008-05-12

    The equations of state (EoS) of relativistic asymmetric nuclear matter are obtainable from assumed form of the interaction Lagrangian. They are one of important inputs to describe the neutron stars. The structure of the neutron stars, i.e. the density of matter and the pressure as functions of radial distance starting from their values at the center of a star, is straightforwardly dependent on EoS. Similarly, a limitation on the total mass of the neutron star can be obtained therefrom. Thus, EoS and the underlying nucleon interactions can be tested also by the means of astronomical observations.

  9. Do hyperons exist in the interior of neutron stars?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Vidaña, Isaac

    2016-02-01

    In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called "hyperon puzzle", go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  10. NARROW ATOMIC FEATURES FROM RAPIDLY SPINNING NEUTRON STARS

    SciTech Connect

    Bauboeck, Michi; Psaltis, Dimitrios; Oezel, Feryal E-mail: dpsaltis@email.arizona.edu

    2013-04-01

    Neutron stars spinning at moderate rates ({approx}300-600 Hz) become oblate in shape and acquire a nonzero quadrupole moment. In this paper, we calculate the profiles of atomic features from such neutron stars using a ray-tracing algorithm in the Hartle-Thorne approximation. We show that line profiles acquire cores that are much narrower than the widths expected from pure Doppler effects for a large range of observer inclinations. As a result, the effects of both the oblateness and the quadrupole moments of neutron stars need to be taken into account when aiming to measure neutron-star radii from rotationally broadened lines. Moreover, the presence of these narrow cores substantially increases the likelihood of detecting atomic lines from rapidly spinning neutron stars.

  11. Gravitational wave afterglow in binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Kokkotas, Kostas D.; Pnigouras, Pantelis

    2015-11-01

    We study in detail the f -mode secular instability for rapidly rotating neutron stars, putting emphasis on supramassive models which do not have a stable nonrotating counterpart. Such neutron stars are thought to be the generic outcome of the merger of two standard-mass neutron stars. In addition, we take into account the effects of a strong magnetic field and r -mode instability, that can drain a substantial amount of angular momentum. We find that the gravitational wave signal emitted by supramassive neutron stars can reach above the Advanced LIGO sensitivity at distance of about 20 Mpc, and the detectability is substantially enhanced for the Einstein Telescope. The event rate will be of the same order as the merging rates, while the analysis of the signal will carry information for the equation of state of the postmerging neutron stars and the strength of the magnetic fields.

  12. Modeling the Electromagnetic and Gravitational Radiation from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Neilsen, David; Hanna, Chad; Lehner, Luis; Palenzuela, Carlos; Thompson, Christopher; Motl, Patrick

    2012-03-01

    The dynamics of magnetized neutron stars both in binaries and in isolation are modeled with a novel numerical approach able to capture the dynamics of the star(s) and of the surrounding plasma. The stellar dynamics incorporate ideal MHD which appropriately models the regime in which the fluid pressure dominates that of the magnetic field, while the stellar exterior is modeled within the force free approach (magnetic pressure largely dominates that of the fluid). The approach is shown to approach certain known solutions. An intense electromagnetic outburst is observed for the collapsing, rotating star. The approach is also applied to the coalescence of a neutron star binary.

  13. Mass and radius formulas for low-mass neutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro; Ohnishi, Akira

    2014-05-01

    Neutron stars, produced at the death of massive stars, are often regarded as giant neutron-rich nuclei. This picture is especially relevant for low-mass (below about solar mass, M_⊙) neutron stars, where non-nucleonic components are not expected to occur. Due to the saturation property of nucleonic matter, leading to the celebrated liquid-drop picture of atomic nuclei, empirical nuclear masses and radii can be approximately expressed as a function of atomic mass number. It is, however, not straightforward to express masses and radii of neutron stars even in the low-mass range where the structure is determined by a balance between the pressure of neutron-rich nucleonic matter and gravity. Such expressions would be of great use given possible simultaneous mass and radius measurements. Here we successfully construct theoretical formulas for the masses and radii of low-mass neutron stars from various models that are consistent with empirical masses and radii of stable nuclei. In this process, we discover a new equation-of-state parameter that characterizes the structure of low-mass neutron stars. This parameter, which plays a key role in connecting the mass-radius relation of the laboratory nuclei to that of the celestial objects, could be constrained from future observations of low-mass neutron stars.

  14. Energy Density Functional for Nuclei and Neutron Stars

    SciTech Connect

    Erler, J.

    2013-01-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

  15. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  16. Measuring Double Stars with the Modified Video Drift Method

    NASA Astrophysics Data System (ADS)

    Iverson, Ernest W.; Nugent, Richard L.

    2015-05-01

    The usefulness of a common CCTV video camera for measuring the position angle and separation of a double star is limited by the camera sensitivity and telescope aperture. The video drift method is enhanced by using an integrating camera but frame integrations longer than 0.132 seconds (4 frames) are impractical. This is due to the target stars elongating (streaking) and moving in incremental steps. A simple modification to the Video Drift Method and corresponding VidPro analysis program significantly increases the magnitude at which double stars can be measured. Double stars down to magnitude +16 have been measured with a 14-inch (35.6-cm) telescope using this method compared to magnitude +12 using the original video drift method under comparable seeing conditions.

  17. Relativistic tidal properties of neutron stars

    SciTech Connect

    Damour, Thibault; Nagar, Alessandro

    2009-10-15

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient G{mu}{sub l}=[length]{sup 2l+1} measuring the lth-order mass multipolar moment GM{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-electric tidal field G{sub a{sub 1}}{sub ...a{sub I}}; (ii) a gravito-magnetic-type coefficient G{sigma}{sub l}=[length]{sup 2l+1} measuring the lth spin multipole moment GS{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-magnetic tidal field H{sub a{sub 1}}{sub ...a{sub I}}; and (iii) a dimensionless 'shape' Love number h{sub l} measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients G{mu}{sub l}/R{sup 2l+1}, G{sigma}{sub l}/R{sup 2l+1}, and h{sub l} (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c{identical_to}GM/(c{sub 0}{sup 2}R) (where we indicate by c{sub 0} the speed of light). In particular, G{mu}{sub l}/R{sup 2l+1}{approx}k{sub l} is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c{sup BH}=1/2. The shape Love number h{sub l} is also found to significantly decrease as c increases, though it does not vanish in the formal limit c{yields}c{sup BH}, but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of {mu}{sub l} and {sigma}{sub l} as c{yields}c{sup BH} is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  18. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion. PMID:23888033

  19. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  20. DOUBLE STARS IN THE USNO CCD ASTROGRAPHIC CATALOG

    SciTech Connect

    Hartkopf, William I.; Mason, Brian D.; Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L.; Hsu, Danley E-mail: bdm@usno.navy.mil E-mail: nz@usno.navy.mil

    2013-10-01

    The newly completed Fourth USNO CCD Astrographic Catalog (UCAC4) has proven to be a rich source of double star astrometry and photometry. Following initial comparisons of UCAC4 results against those obtained by speckle interferometry, the UCAC4 catalog was matched against known double stars in the Washington Double Star Catalog in order to provide additional differential astrometry and photometry for these pairs. Matches to 58,131 pairs yielded 61,895 astrometric and 68,935 photometric measurements. Finally, a search for possible new common proper motion (CPM) pairs was made using new UCAC4 proper motion data; this resulted in 4755 new potential CPM doubles (and an additional 27,718 astrometric and photometric measures from UCAC and other sources)

  1. Neutron Star Discovered Where a Black Hole Was Expected

    NASA Astrophysics Data System (ADS)

    2005-11-01

    A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA's Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought. Scientists found this neutron star -- a dense whirling ball of neutrons about 12 miles in diameter -- in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun. ESO Optical Image of Westerlund 1 ESO Optical Image of Westerlund 1 "Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars," said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters. When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it. "This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets," said J. Simon Clark of the Open University in the United Kingdom. Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age. Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron stars and black holes are the end stages in the evolution of a star, so their progenitors must have been among the most massive stars in the cluster. Muno and colleagues discovered a pulsing neutron star in a cluster of stars known as Westerlund 1. This cluster contains a hundred thousand or more stars in a region only 30 light years across, which suggests that all the stars were born in a single episode of star formation. Based on optical properties such as brightness and color some of the normal stars in the cluster are known to have masses of about 40 suns. Since the progenitor of the neutron star has already exploded as a supernova, its mass must have been more than 40 solar masses. 2MASS Infrared Image of Westerlund 1 2MASS Infrared Image of Westerlund 1 Introductory astronomy courses sometimes teach that stars with more than 25 solar masses become black holes -- a concept that until recently had no observational evidence to test it. However, some theories allow such massive stars to avoid becoming black holes. For example, theoretical calculations by Alexander Heger of the University of Chicago and colleagues indicate that extremely massive stars blow off mass so effectively during their lives that they leave neutron stars when they go supernovae. Assuming that the neutron star in Westerlund 1 is one of these, it raises the question of where the black holes observed in the Milky Way and other galaxies come from. Other factors, such as the chemical composition of the star, how rapidly it is rotating, or the strength of its magnetic field might dictate whether a massive star leaves behind a neutron star or a black hole. The theory for stars of normal chemical composition leaves a small window of initial masses - between about 25 and somewhat less than 40 solar masses - for the formation of black holes from the evolution of single massive stars. The identification of additional neutron stars or the discovery of black holes in young star clusters should further constrain the masses and properties of neutron star and black hole progenitors. The work described by Muno was based on two Chandra observations on May 22 and June 18, 2005. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  2. Theoretical Study of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  3. Cosmic rays from binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kundt, W.

    1983-02-01

    The acceleration mechanism of cosmic rays is discussed. Parker's (1965, 1979) suggestion that buoyant reordering of magnetic flux tubes is the dominant transport mechanism of cosmic rays out of the galactic disk is reinforced. Arguments that the cosmic ray sources are located inside the molecular cloud layer are presented, and the shock accretion model as the primary mechanism of cosmic ray acceleration is argued against. A model of cosmic ray acceleration is presented in which the ionic component of the rays is injected by young binary neutron stars whose rotating magnetospheres act like grindstones in the wind of their companion. The model appears versatile enough to be consistent with the observed abundance anomalies. While pulsars are probably not the dominant source of cosmic ray nuclei, they may be the dominant source of cosmic ray electrons and positrons above about 30 GeV.

  4. ECCENTRIC BLACK-HOLE-NEUTRON-STAR MERGERS

    SciTech Connect

    Stephens, Branson C.; East, William E.; Pretorius, Frans

    2011-08-10

    Within the next few years gravitational waves (GWs) from merging black holes (BHs) and neutron stars (NSs) may be directly detected, making a thorough theoretical understanding of these systems a high priority. As an additional motivation, these systems may represent a subset of short-duration gamma-ray burst progenitors. BH-NS mergers are expected to result from primordial, quasi-circular inspiral as well as dynamically formed capture binaries. The latter channel allows mergers with high eccentricity, resulting in a richer variety of outcomes. We perform general relativistic simulations of BH-NS interactions with a range of impact parameters, and find significant variation in the properties of these events that have potentially observable consequences, namely, the GW signature, remnant accretion disk mass, and amount of unbound material.

  5. Shear viscosity in magnetized neutron star crust

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Yakovlev, D. G.

    2015-12-01

    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  6. Deterministic chaos in accreting neutron star systems

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Atmanspacher, H.; Demmel, V.; Scheingraber, H.; Voges, W.

    This review contains a brief introduction to the terminology of deterministic chaos, and a summary of important properties and definitions of strange attractors. A method is described how to reconstruct the attractor from experimental data. Using synthetic data, the specific problems associated with the reconstruction are examined. As an observational example, analysis of data from the accreting neutron star system Her X-1 is described. Finally, the authors discuss the physical interpretation of these observations, the possible implications for the description of the system from a general point of view, the specific implication for the pulse shape and pulse to pulse variations, and possible approaches towards a better understanding of both accretion disc and accretion column.

  7. Proton acceleration in neutron star magnetospheres

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Katz, J. I.; Diamond, P. H.

    1992-01-01

    To explain the emission of TeV and PeV gamma rays from accreting X-ray binary sources, protons must be accelerated to several times the gamma-ray energy. It is shown here that at certain times, the plasma in the accretion column of the neutron star may form a deep enough pool that the top portion becomes unstable to convective motions in spite of the strong magnetic field. The resulting turbulence produces fluctuations in the strength of the magnetic field that travel up the accretion column, taking energy out to the region of the energetic protons. The protons resonantly absorb this energy and are accelerated to high energies. Including the synchrotron radiation losses of the protons, it is shown that they can be accelerated to energies that are high enough to explain the gamma-ray observations.

  8. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  9. Transient phenomena from accreting magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Klochkov, Dmitry

    In this contribution, I will review the recent progress in the research of accreting magnetized neutron stars (observed as X-ray pulsars) based on the study of their variability on different time scales. Specifically, I will focus on the properties of the X-ray emitting region. In recent years, the high-quality observational data accumulated with the new generation of X-ray observatories have triggered a renewed interest in these systems. The new studies are primarily focused on the detailed structure of the two physical regions of the objects: (i) the emitting area above the polar caps of the neutron star and (ii) the magnetospheric boundary, where the infalling matter couples to the accretoŕs magnetic field. The modulation of the matter supply from the binary companion as well as the instabilities in the accretion flow lead to the transient character of the majority of X-ray pulsars. The observations show that the "persistent" pulsars also exhibit numerous types of variabilities over a broad range of time scales (off-states, pulse-to-pulse variability, switches of spectral states, alternation of the pulsar's spin-up/spin-down episodes etc.). Of particular importance are the observed variations of the cyclotron absorption features (cyclotron lines), whose centroid energies are directly proportional to the magnetic field strength at the site of the line formation. The detailed studies of these variabilities have lead to the development of new theoretical models describing the physics in the emitting region and at the magnetospheric boundary. It has been proposed that the configuration and geometry of the two areas may change abruptly when the mass accretion rate reaches certain critical values. Such changes cause transitions between different accretion modes. A particular mode is expected to be characterized by certain variability patterns and can thus be inferred from the observations. I will describe these recent observations and the models which are aimed at understanding the pulsar variability and thus the pulsar physics.

  10. Magnetic Fields of Neutron Stars in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail; Mereghetti, Sandro

    2015-10-01

    A substantial fraction of the known neutron stars resides in X-ray binaries—systems in which one compact object accretes matter from a companion star. Neutron stars in X-ray binaries have magnetic fields among the highest found in the Universe, spanning at least the range from ˜108 to several 1013 G. The magnetospheres around these neutron stars have a strong influence on the accretion process, which powers most of their emission. The magnetic field intensity and geometry, are among the main factors responsible for the large variety of spectral and timing properties observed in the X-ray energy range, making these objects unique laboratories to study the matter behavior and the radiation processes in magnetic fields unaccessible on Earth. In this paper we review the main observational aspects related to the presence of magnetic fields in neutron star X-ray binaries and some methods that are used to estimate their strength.

  11. Breaking Strain of Neutron Star Crust and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Kadau, Kai

    2009-05-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  12. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  13. On neutron star structure and the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1983-01-01

    The millisecond pulsar is the first observed example of a neutron star spinning rapidly enough to approach the Jacobi bifurcation point and thus affords the possibility of constraining neutron star physics. The pulsar must be rotating below the critical frequency at which its equilibrium configuration would become nonaxisymmetric, since the lifetime of this configuration against decay by gravitational radiation is very short. This critical frequency may be used to set a lower limit of 2 x 10 to the 14th g/cu cm on the density of the star. If the mass is 0.5-1.5 solar mass, several of the stiffer neutron star equations of state may be ruled out, and the radius should be less than 16 km. The condition for axisymmetry also imposes an upper limit on the rotation rate to which neutron stars may be spun up by accretion disks in binary systems.

  14. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  15. Towards real neutron star seismology: accounting for elasticity and superfluidity

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Andersson, N.

    2012-01-01

    We study the effects of an elastic crust on the oscillation spectrum of superfluid neutron stars. Within the two-fluid formalism, we consider Newtonian stellar models that include the relevant constituents of a mature neutron star. The core is formed by a mixture of superfluid neutrons and a conglomerate of charged particles, while the inner crust is described by a lattice of nuclei permeated by superfluid neutrons. We linearize the Poisson and the conservation equations of non-rotating superfluid stars and study the effects of elasticity, entrainment and composition stratification on the shear and acoustic modes. In both the core and the crust, the entrainment is derived from recent results for the nucleon effective mass. Solving the perturbation equations as an eigenvalue problem, we find that the presence of superfluid neutrons in the crust and their large effective mass may have significant impact on the star's oscillation spectrum.

  16. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  17. Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars

    SciTech Connect

    Aguilera, Deborah N.; Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Pons, Jose A.

    2009-03-06

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B > or approx. 10{sup 13} G. At a density of {rho}{approx_equal}10{sup 12}-10{sup 14} g/cm{sup 3}, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature {approx_equal}10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

  18. NEUTRON STAR STRUCTURE IN THE PRESENCE OF SCALAR FIELDS

    SciTech Connect

    Crawford, James P.; Kazanas, Demosthenes

    2009-08-20

    Motivated by the possible presence of scalar fields on cosmological scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein-scalar field-hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results can provide limits to the scalar field-matter coupling through spectro-temporal observations of accreting or isolated neutron stars.

  19. Neutron Star Structure In The Presence of Scalar Fields

    NASA Technical Reports Server (NTRS)

    Crawford, James P.; Kazanas, Demosthenes

    2004-01-01

    Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein - scalar field - hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results may be testable with the recent timing observations of accreting neutron stars.

  20. Compositional freeze-out of neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2009-12-01

    We have investigated the crustal properties of neutron stars without fallback accretion. We have calculated the chemical evolution of the neutron star crust in three different cases (a modified Urca process without the thermal influence of a crust, a thick crust and a direct Urca process with a thin crust) in order to determine the detailed composition of the envelope and atmosphere as the nuclear reactions freeze out. Using a nuclear reaction network up to technetium, we calculate the distribution of nuclei at various depths of the neutron star. The nuclear reactions quench when the cooling time-scale is shorter than the inverse of the reaction rate. Trace light elements among the calculated isotopes may have enough time to float to the surface before the layer crystallizes and form the atmosphere or envelope of the neutron star. The composition of the neutron star envelope determines the total photon flux from the surface, and the composition of the atmosphere determines the emergent spectrum. Our calculations using each of the three cooling models indicate that without accretion of fallback the neutron star atmospheres are dependent on the assumed cooling process of the neutron star. Each of the cooling methods has different elements composing the atmosphere: for the modified Urca process, the atmosphere is 28Si, the thick crust has an atmosphere of 50Cr and the thin crust has an atmosphere of 40Ca. In all the three cases, the atmospheres are composed of elements which are lighter than iron.

  1. Compositional Freeze-Out of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2010-01-01

    We have investigated the crustal properties of neutron stars without fallback accretion. We have calculated the chemical evolution of the neutron star crust in three different cases (a modified Urca process without the thermal influence of a crust, a thick crust, and a direct Urca process with a thin crust) in order to determine the detailed composition of the envelope and atmosphere as the nuclear reactions freeze out. Using a nuclear reaction network up to technetium, we calculate the distribution of nuclei at various depths of the neutron star. The nuclear reactions quench when the cooling timescale is shorter than the inverse of the reaction rate. Trace light elements among the calculated isotopes may have enough time to float to the surface before the layer crystallizes and form the atmosphere or envelope of the neutron star. The composition of the neutron star envelope determines the total photon flux from the surface, and the composition of the atmosphere determines the emergent spectrum. Our calculations using each of the three cooling models indicate that without accretion of fallback the neutron star atmospheres are dependent on the assumed cooling process of the neutron star. Each of the cooling methods have different elements composing the atmosphere: for the modified Urca process the atmosphere is 28Si, the thick crust has an atmosphere of 50Cr, and the thin crust has an atmosphere of 40Ca. In all three cases the atmospheres are composed of elements which are lighter then iron.

  2. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  3. Astrophysical observations and future projects of neutron stars and magnetars

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki

    2014-09-01

    Neutron stars are enigmatic compact objects characterized by dense nuclear matter, rapid stellar rotation, and strong magnetic fields. Such an extreme environment has provided an accessible astrophysical laboratory to test fundamental physics. Recent astronomical observations from radio to gamma-rays have revealed a remarkable diversity of neutron stars: e.g., rotation-powered pulsars, accretion-powered pulsars, and magnetically-powered sources. Among important physical parameters of neutron stars, a wide range of magnetic field from 104 T to 1011 T is thought to be one principal cause of the diversity. Especially, enigmatic X-ray sources, Soft Gamma Repeater (SGRs) and Anomalous X-ray Pulsar (AXPs), are now considered to have extremely strong magnetic field reaching 1010-1011 T, and thus, dubbed as ``magnetars.'' They emerge mainly in the X-ray frequency with intense giant flares, short bursts, and X-ray outbursts. Unlike for rotation-powered or accretion-powered pulsars, the bulk of their X-ray emission appears to be powered by their super-strong magnetic fields. At this talk, I will review recent high energy astrophysical observations of strongly-magnetized neutron stars, and also overview approved future missions to approach the neutron star science, for example, Astro-H (launch in 2015) which realizes the high energy resolution and the Neutron star Interior Composition ExploreR Mission (NICER, launch in late 2016) mission which is dedicated to determine the equation of state of neutron stars.

  4. Spin paramagnetic deformation of a neutron star

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  5. MAGNETIC INTERACTIONS IN COALESCING NEUTRON STAR BINARIES

    SciTech Connect

    Piro, Anthony L.

    2012-08-10

    It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The electromotive force generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R{sub space}. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R{sub space} is large, electric dissipation as great as {approx}10{sup 46} erg s{sup -1} (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient. When R{sub space} is small, electric dissipation largely occurs in the surface layers of the magnetic NS. This can reach {approx}10{sup 49} erg s{sup -1} during the final {approx}1 s before merger, similar to the energetics and timescales of short gamma-ray bursts. In addition, for dipole fields greater than Almost-Equal-To 10{sup 12} G and a small R{sub space}, magnetic torques spin up the magnetized NS. This drains angular momentum from the binary and accelerates the inspiral. A faster coalescence results in less orbits occurring before merger, which would impact matched-filtering gravitational-wave searches by ground-based laser interferometers and could create difficulties for studying alternative theories of gravity with compact inspirals.

  6. Lev Landau and the concept of neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-03-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores.

  7. The spin evolution of neutron stars with the superfluid core

    NASA Astrophysics Data System (ADS)

    Barsukov, D. P.; Goglichidze, O. A.; Tsygan, A. I.

    2013-06-01

    We investigate the neutron stars spin evolution (breaking, inclination angle evolution and radiative precession), taking into account the superfluidity of the neutrons in the star core. The neutron star is treated as a two-component system consisting of a `charged' component (including the crust and the core protons, electrons and normal neutrons) and a core superfluid neutron component. The components are supposed to interact through the mutual friction force. We assume that the `charged' component rotates rigidly. The neutron superfluid velocity field is calculated directly from linearized hydrodynamical equations. It is shown that the superfluid core accelerates the evolution of inclination angle and makes all pulsars evolve to either the orthogonal or coaxial state. However, rapid evolution seems to contradict the observation data. Obtained results together with the observations may allow us to examine the superfluid models.

  8. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic luminosity with orbital angular velocity varies between the power 4 for nonspinning stars and the power 1.5 for rapidly spinning millisecond pulsars near contact. Our derived scalings and magnetospheres can be used to help understand electromagnetic signatures from merging neutron stars to be observed by Advanced LIGO.

  9. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  10. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  11. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  12. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  13. Rotating neutron stars with exotic cores: masses, radii, stability

    NASA Astrophysics Data System (ADS)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L.

    2016-03-01

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2 M ⊙ . The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered.

  14. Gamow's calculation of the neutron star's critical mass revised

    NASA Astrophysics Data System (ADS)

    Ludwig, Hendrik; Ruffini, Remo

    2014-09-01

    It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau's work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9 M ⊙, not the one he declared, namely, 1.5 M ⊙. Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow's calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow's approach to other early and modern approaches to the problem.

  15. Neutron Stars as a Source of the Short-Lived Nuclides in Ap-star Atmospheres

    SciTech Connect

    Gopka, Vera F.; Andrievsky, Sergey M.; Ulyanov, Oleg M.

    2008-05-21

    We propose a new explanation of some magnetic chemically peculiar (MCP) star anomalies, which is based on an assumption that such stars be the close binary systems with a secondary component being a neutron star. Within this hypothesis one can naturally explain the main anomalous features of MCP stars: first of all, an existence of the short-lived radioactive isotopes detected in some stars (like Przybylski's star (PS) and HR465), and some others peculiarities. Also we can assume the presence of the electron-positron annihilation emission lines (0.511 MeV) in the gamma spectrum of some MCP stars.

  16. Chandra Captures Neutron Star Action - Duration: 61 seconds.

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  17. Probing the faint end of the isolated neutron star population

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina

    2010-09-01

    Isolated neutron stars are of supreme value but are extremely difficult to find, mainly due to the problem of source confusion in the usually large X-ray positional errors. This proposal aims to take advantage of the superb spatial resolution of Chandra to search for isolated neutron stars with thermal X-ray emission in the Chandra archive. Applying our latest population synthesis model we estimate that several such objects are lurking in the archive, with the highest likelihood for faint sources. Such objects will allow to probe the unexplored faint population of cooling isolated neutron stars. The initial candidates from the Chandra Source Catalogue are also faint enough to tap the expected elusive population of ISM-accreting neutron stars.

  18. Hadron-quark crossover and hot neutron stars at birth

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-02-01

    We construct a new isentropic equation of state (EOS) at finite temperature, "Rover," on the basis of the hadron-quark crossover at high density. By using the new EOS, we study the structure of hot neutron stars at birth with typical lepton fraction (Y_l=0.3-0.4) and typical entropy per baryon (hat {S}=1{-}2). Due to the gradual appearance of quark degrees of freedom at high density, the temperature T and the baryon density ρ at the center of hot neutron stars with hadron-quark crossover are found to be smaller than those without the crossover by a factor of two or more. Typical energy release due to the contraction of a hot neutron star to a cold neutron star with mass M=1.4 M_{⊙} is shown to be about 0.04 M_{⊙}, with a spin-up rate of about 14%.

  19. Phase separation in the crust of accreting neutron stars.

    PubMed

    Horowitz, C J; Berry, D K; Brown, E F

    2007-06-01

    Nucleosynthesis, on the surface of accreting neutron stars, produces a range of chemical elements. We perform molecular dynamics simulations of crystallization to see how this complex composition forms new neutron star crust. We find chemical separation, with the liquid ocean phase greatly enriched in low atomic number elements compared to the solid crust. This phase separation should change many crust properties such as the thermal conductivity and shear modulus. PMID:17677319

  20. New results in black hole-neutron star merger models

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2010-10-01

    I report on the SXS group's recent progress in using numerical general relativity to model one of the most violent and fascinating events in nature: the devouring of a neutron star by a black hole. I will discuss our efforts to simulate more representative and generic binary configurations and also our efforts to incorporate more realistic neutron star microphysics. Our numerical simulations allow us to predict post-merger states and gravitational wave signals.

  1. Static and rotating neutron stars fulfilling all fundamental interactions

    NASA Astrophysics Data System (ADS)

    Belvedere, Riccardo; Rueda, Jorge A.; Ruffini, Remo

    2014-09-01

    We summarize the key ingredients of a new neutron star model fulfilling global, but not local, charge neutrality. The model is described by what we have called the Einstein-Maxwell-Thomas-Fermi equations, which account for the strong, weak, electromagnetic, and gravitational interactions, as well as thermodynamical equilibrium, within the framework of general relativity and relativistic nuclear mean field theory. We show the results for both static and uniformly-rotating neutron stars and discuss some astrophysical implications.

  2. R-mode constraints from neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Papazoglou, M. C.; Moustakidis, C. C.

    2016-03-01

    The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppenheimer-Volkoff equations with special emphasis on the Tolman VII solution. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity \\varOmegac depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor S and also the effect of the nuclear equation of state, via the slope parameter L, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity \\varOmegac to the radius, the parameter L and the factor {S}. We also investigated the possibility to measure the radius of a neutron star and the factor {S} with the help of accurate measures of \\varOmegac and the neutron star temperature. Finally, we studied the effects of the mutual friction on the instability window and discussed the results in comparison with previous similar studies.

  3. Properties of Dense Matter in Neutron Stars and Supernovae

    SciTech Connect

    Shen, H.; Wang, Y. N.; Wen, W.

    2010-08-12

    We study the equation of state (EOS) of nuclear matter at finite temperature density with various proton fractions for use in supernova simulations. The properties of nuclear matter with both uniform and non-uniform distributions are studied consistently. We also discuss the EOS of neutron star matter at zero temperature in a wide density range including hyperons antikaons quarks. The EOS of neutron star matter could be softened by incorporating these new degrees of freedom.

  4. Structured mixed phase is favored in neutron stars

    SciTech Connect

    Christiansen, Michael B.; Glendenning, Norman K.

    2003-01-01

    We give a general thermodynamical argument showing that in neutron stars, the Coulomb structured mixed phase is always favored for any first order phase transition involving systems in equilibrium with baryon number and electric charge as the two independent components. This finding is likely to have important consequences for many neutron star properties, e.g., glitch phenomena, transport and superfluid properties, r-mode instabilities, and the braking index.

  5. Do pions condense in neutron-star matter

    SciTech Connect

    Wheeler, J W; Gleeson, A M

    1983-04-01

    Pion condensates in neutron-star matter, formed either as new modes, or on states identifiable with those of the free pion are studied. A description of neutron-star matter at finite temperature is formulated upon a suitable basis of realistic interactions in a modified background field description, and leads to the onset of a pion condensate between the density of nuclear matter and the density of free hadrons. This condensate, however, is blocked when strange hadrons are incorporated in the description.

  6. The neutrino ground state in a neutron star

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Tytgat, Michel H. G.

    1999-05-01

    We address a recent claim that the stability of neutron stars implies a lower bound on the mass of the neutrino. We argue that the result obtained by some previous authors is due to an improper summation of an infrared-sensitive series and that a non-perturbative ``resummation'' of the series yields a finite and well-behaved result. The stability of neutron stars thus gives no lower bound on the mass of the neutrino.

  7. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  8. Instability windows and evolution of rapidly rotating neutron stars.

    PubMed

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M

    2014-04-18

    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures. PMID:24785021

  9. Spin Crystals may be commonly formed from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2015-04-01

    Neutron Stars may be a Crystal of Neutrons. One has to consider what would happen to this matter if Neutron Stars do not commonly collapse into Black Holes, but rather tear apart. One idea is that the Neutrons would separate and become single Neutrons, or lose an Electron and become Hydrogen with one or more Neutrons or Heavy and Super Heavy water. Perhaps the Graviton plays a role in crushing and packing the matter together, and there is another particle that keeps track of the Crystal structure of the packed Neutrons. We could call this particle the Neutron Crystal Particle. We may know something about it already, in that the Nuclei as we know them have what are know as Magic Numbers of stability. Are there other series that occur but are very rare here? Magic Number series that occur around Black Holes and perhaps in Comets or other bodies that seem to be made of water. When the Neutrons from Neutron Stars break up perhaps they form Spin Crystals, which are like Crystals but are not localized, they fly off in all directions, but are connected through the NCP. One way to test this would be to irradiate a Comet with an X-ray laser since this sort of Crystal could be forced to Fission. Perhaps Comet tails are the result of a Nuclear Reaction with the Sun.

  10. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    PubMed

    Bauswein, A; Janka, H-T

    2012-01-01

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year. PMID:22304250

  11. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1995-01-01

    This grant deals with several topics related to the dynamics of systems containing a compact object. Most of our research in 1994 dealt with systems containing Neutron Stars (NS's), but we also addressed systems containing a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's) Low Mass X-Ray Binaries (LMX's) and Cataclysmic Variables (CV's). We also dealt with one aspect of NS structure, namely NS superfluidity. A large fraction of our research dealt with irradiation-driven winds from companions. These winds turned out to be of some importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's.

  12. Hydrodynamical Neutron Star Kicks in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Wongwathanarat, Annop; Janka, Hans-Thomas; Mller, Ewald

    2010-12-01

    Using three-dimensional (3D) simulations of neutrino-powered supernova explosions, we show that the hydrodynamical kick scenario proposed by Scheck et al. on the basis of two-dimensional (2D) models can yield large neutron star (NS) recoil velocities also in 3D. Although the shock stays relatively spherical, standing accretion-shock and convective instabilities lead to a globally asymmetric mass and energy distribution in the post-shock layer. An anisotropic momentum distribution of the ejecta is built up only after the explosion sets in. Total momentum conservation implies the acceleration of the NS on a timescale of 1-3 s, mediated mainly by long-lasting, asymmetric accretion downdrafts and the anisotropic gravitational pull of large inhomogeneities in the ejecta. In a limited set of 15 M sun models with an explosion energy of about 1051 erg, this stochastic mechanism is found to produce kicks from <100 km s-1 to gsim500 km s-1, and kicks gsim1000 km s-1 seem possible. Strong rotational flows around the accreting NS do not develop in our collapsing, non-rotating progenitors. The NS spins therefore remain low with estimated periods of ~500-1000 ms and no alignment with the kicks.

  13. Gravitational radiation during coalescence of neutron stars

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2013-07-01

    The coalescence of components of a binary star with equal masses ( M 1 = M 2 = M ⊙) and moving in circular orbits is considered. The equation of state for degenerate neutrons is used, leading to the equation of state for an ideal gas. The initial model has zero temperature, corresponding to a polytrope with n = 1.5. To reduce the required computational time, the initial close binary is constructed using the self-consistent field method. The computations use Newtonian gas dynamics, but the back reaction of the gravitational radiation is taken into account in a PN2.5 post-Newton approximation, obtained using ADM formalism. This makes it possible to apply previous experienceof constructing high-order Godunov-type difference schemes, which are suitable for end-to-end calculations of discontinuous solutions of the gas-dynamics equations on a fixed Eulerian grid. The Poisson equations were solved using an original spherical-function expansion method. The 3D computations yielded the parameters of the gravitational signal. Near the radiation maximum, the strain amplitude is rh ˜ 4 × 104 cm, the power maximum is 4 × 1054 erg/s, and the typical radiation frequency is ≳1 kHz. The energy carried away by gravitational waves is ≳1052 erg. These parameters are of interest, since they form an inherent part of a rotational mechanism for the supernova explosion. They are also of interest for the planning of gravitational-wave detection experiments.

  14. Resonant shattering of neutron star crusts.

    PubMed

    Tsang, David; Read, Jocelyn S; Hinderer, Tanja; Piro, Anthony L; Bondarescu, Ruxandra

    2012-01-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (SGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ∼10{46}-10{47}  erg of energy seconds before the merger of a NS-NS or NS-black-hole binary. Such properties are consistent with Swift/BAT detections of SGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. PMID:22304251

  15. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Klus, H.; Coe, M. J.; Andersson, Nils

    2014-02-01

    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P ≳ 100 s) pulsars must possess either extremely weak (B < 1010 G) or extremely strong (B > 1014 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggest their magnetic field penetrates into the superconducting core of the neutron star.

  16. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and superconducting material," said Peter Shternin of the Ioffe Institute in St Petersburg, Russia, leader of a team with a paper accepted in the journal Monthly Notices of the Royal Astronomical Society. Both teams show that this rapid cooling is explained by the formation of a neutron superfluid in the core of the neutron star within about the last 100 years as seen from Earth. The rapid cooling is expected to continue for a few decades and then it should slow down. "It turns out that Cas A may be a gift from the Universe because we would have to catch a very young neutron star at just the right point in time," said Page's co-author Madappa Prakash, from Ohio University. "Sometimes a little good fortune can go a long way in science." The onset of superfluidity in materials on Earth occurs at extremely low temperatures near absolute zero, but in neutron stars, it can occur at temperatures near a billion degrees Celsius. Until now there was a very large uncertainty in estimates of this critical temperature. This new research constrains the critical temperature to between one half a billion to just under a billion degrees. Cas A will allow researchers to test models of how the strong nuclear force, which binds subatomic particles, behaves in ultradense matter. These results are also important for understanding a range of behavior in neutron stars, including "glitches," neutron star precession and pulsation, magnetar outbursts and the evolution of neutron star magnetic fields. Small sudden changes in the spin rate of rotating neutron stars, called glitches, have previously given evidence for superfluid neutrons in the crust of a neutron star, where densities are much lower than seen in the core of the star. This latest news from Cas A unveils new information about the ultra-dense inner region of the neutron star. "Previously we had no idea how extended superconductivity of protons was in a neutron star," said Shternin's co-author Dmitry Yakovlev, also from the Ioffe Institute. The cooling in the Cas A neutron star was first discovered by co-author Craig Heinke, from the University of Alberta, Canada, and Wynn Ho from the University of Southampton, UK, in 2010. It was the first time that astronomers have measured the rate of cooling of a young neutron star. Page's co-authors were Prakash, James Lattimer (State University of New York at Stony Brook), and Andrew Steiner (Michigan State University.) Shternin's co-authors were Yakovlev, Heinke, Ho, and Daniel Patnaude (Harvard-Smithsonian Center for Astrophysics.) More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  17. Searching for New Double Stars with a Computer

    NASA Astrophysics Data System (ADS)

    Bryant, T. V.

    2015-04-01

    The advent of computers with large amounts of RAM memory and fast processors, as well as easy internet access to large online astronomical databases, has made computer searches based on astrometric data practicable for most researchers. This paper describes one such search that has uncovered hitherto unrecognized double stars.

  18. Neutron Stars Join The Black Hole Jet Set

    NASA Astrophysics Data System (ADS)

    2007-06-01

    NASA's Chandra X-ray Observatory has revealed an X-ray jet blasting away from a neutron star in a binary system. This discovery may help astronomers understand how neutron stars as well as black holes can generate powerful beams of relativistic particles. The jet was found in Circinus X-1, a system where a neutron star is in orbit around a star several times the mass of the Sun, about 20,000 light years from Earth. A neutron star is an extremely dense remnant of an exploded star consisting of tightly packed neutrons. Many jets have been found originating near black holes - both the supermassive and stellar-mass variety - but the Circinus X-1 jet is the first extended X-ray jet associated with a neutron star in a binary system. This detection shows that the unusual properties of black holes - such as presence of an event horizon and the lack of an actual surface - may not be required to form powerful jets. "Gravity appears to be the key to creating these jets, not some trick of the event horizon," said Sebastian Heinz of the University of Wisconsin at Madison, who led the study. The discovery of this jet with Chandra also reveals how efficient neutron stars can be as cosmic power factories. Heinz and his colleagues estimate that a surprisingly high percentage of the energy available from material falling onto the neutron star is converted into powering the jet. "In terms of energy efficiency across the Universe, this result shows that neutron stars are near the top of the list," said Norbert Schulz, a coauthor from the Massachusetts Institute of Technology in Cambridge. "This jet is almost as efficient as one from a black hole." The Chandra results also help to explain the origin of diffuse lobes of radio emission previously detected around Circinus X-1. The team found the X-ray jets of high-energy particles are powerful enough to create and maintain these balloons of radio-emitting gas. "We've seen enormous radio clouds around supermassive black holes at the centers of galaxies," said Heinz. "What's unusual here is that this pocket-sized version, relatively speaking, is being powered by a neutron star, not a black hole." The main evidence for the newly found jet comes in two extended features in the Chandra data. These two fingers of X-ray emission are separated by about 30 degrees and may represent the outer walls of a wide jet. When overlapped with radio images, these X-ray features, which are at least five light years from the neutron star, closely trace the outline of the radio jet. Another interpretation is that these two features represent two separate, highly collimated jets produced at different times by a precessing neutron star. That is, the neutron star wobbles like a top as it spins and the jet fires at different angles at different times. Jet precession is also consistent with radio observations taken at different times, which show varying orientation angles of the jet. If the precession scenario is correct, Circinus X-1 would possess one of the longest, narrowest jets found in X-ray binary systems to date, representing yet another way in which neutron stars can rival and even outdo their larger black hole relatives. These results will appear in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  19. Astronomers Discover Most Massive Neutron Star Yet Known

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered the most massive neutron star yet found, a discovery with strong and wide-ranging impacts across several fields of physics and astrophysics. "This neutron star is twice as massive as our Sun. This is surprising, and that much mass means that several theoretical models for the internal composition of neutron stars now are ruled out," said Paul Demorest, of the National Radio Astronomy Observatory (NRAO). "This mass measurement also has implications for our understanding of all matter at extremely high densities and many details of nuclear physics," he added. Neutron stars are the superdense "corpses" of massive stars that have exploded as supernovae. With all their mass packed into a sphere the size of a small city, their protons and electrons are crushed together into neutrons. A neutron star can be several times more dense than an atomic nucleus, and a thimbleful of neutron-star material would weigh more than 500 million tons. This tremendous density makes neutron stars an ideal natural "laboratory" for studying the most dense and exotic states of matter known to physics. The scientists used an effect of Albert Einstein's theory of General Relativity to measure the mass of the neutron star and its orbiting companion, a white dwarf star. The neutron star is a pulsar, emitting lighthouse-like beams of radio waves that sweep through space as it rotates. This pulsar, called PSR J1614-2230, spins 317 times per second, and the companion completes an orbit in just under nine days. The pair, some 3,000 light-years distant, are in an orbit seen almost exactly edge-on from Earth. That orientation was the key to making the mass measurement. As the orbit carries the white dwarf directly in front of the pulsar, the radio waves from the pulsar that reach Earth must travel very close to the white dwarf. This close passage causes them to be delayed in their arrival by the distortion of spacetime produced by the white dwarf's gravitation. This effect, called the Shapiro Delay, allowed the scientists to precisely measure the masses of both stars. "We got very lucky with this system. The rapidly-rotating pulsar gives us a signal to follow throughout the orbit, and the orbit is almost perfectly edge-on. In addition, the white dwarf is particularly massive for a star of that type. This unique combination made the Shapiro Delay much stronger and thus easier to measure," said Scott Ransom, also of NRAO. The astronomers used a newly-built digital instrument called the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), attached to the GBT, to follow the binary stars through one complete orbit earlier this year. Using GUPPI improved the astronomers' ability to time signals from the pulsar severalfold. The researchers expected the neutron star to have roughly one and a half times the mass of the Sun. Instead, their observations revealed it to be twice as massive as the Sun. That much mass, they say, changes their understanding of a neutron star's composition. Some theoretical models postulated that, in addition to neutrons, such stars also would contain certain other exotic subatomic particles called hyperons or condensates of kaons. "Our results rule out those ideas," Ransom said. Demorest and Ransom, along with Tim Pennucci of the University of Virginia, Mallory Roberts of Eureka Scientific, and Jason Hessels of the Netherlands Institute for Radio Astronomy and the University of Amsterdam, reported their results in the October 28 issue of the scientific journal Nature. Their result has further implications, outlined in a companion paper, scheduled for publication in the Astrophysical Journal Letters. "This measurement tells us that if any quarks are present in a neutron star core, they cannot be 'free,' but rather must be strongly interacting with each other as they do in normal atomic nuclei," said Feryal Ozel of the University of Arizona, lead author of the second paper. There remain several viable hypotheses for the internal composition of neutron stars, but the new results put limits on those, as well as on the maximum possible density of cold matter. The scientific impact of the new GBT observations also extends to other fields beyond characterizing matter at extreme densities. A leading explanation for the cause of one type of gamma-ray burst -- the "short-duration" bursts -- is that they are caused by colliding neutron stars. The fact that neutron stars can be as massive as PSR J1614-2230 makes this a viable mechanism for these gamma-ray bursts. Such neutron-star collisions also are expected to produce gravitational waves that are the targets of a number of observatories operating in the United States and Europe. These waves, the scientists say, will carry additional valuable information about the composition of neutron stars. "Pulsars in general give us a great opportunity to study exotic physics, and this system is a fantastic laboratory sitting out there, giving us valuable information with wide-ranging implications," Ransom explained. "It is amazing to me that one simple number -- the mass of this neutron star -- can tell us so much about so many different aspects of physics and astronomy," he added.

  20. The companion candidate near Fomalhaut - a background neutron star?

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Hohle, M. M.; Ginski, C.; Schmidt, J. G.; Hambaryan, V. V.; Schmidt, T. O. B.

    2015-03-01

    The directly detected planetary mass companion candidate close to the young, nearby star Fomalhaut is a subject of intense discussion. While the detection of common proper motion led to the interpretation as Jovian-mass companion, later non-detections in the infrared raised doubts. Recent astrometric measurements indicate a belt crossing or highly eccentric orbit for the object, if a companion, making the planetary interpretation potentially even more problematic. In this study we discuss the possibility of Fomalhaut b being a background object with a high proper motion. By analysing the available photometric and astrometric data of the object, we show that they are fully consistent with a neutron star: neutron stars are faint, hot (blue), and fast moving. Neutron stars with an effective temperature of the whole surface area being 112 000-126 500 K (with small to negligible extinction) at a distance of roughly 11 pc (best fit) would be consistent with all observables, namely with the photometric detections in the optical, with the upper limits in the infrared and X-rays, as well as with the astrometry (consistent with a distances of 11 pc or more and high proper motion as typical for neutron stars) and non-detection of pulsation (not beamed). We consider the probability of finding an unrelated object or even a neutron star nearby and mostly co-aligned in proper motion with Fomalhaut A and come to the conclusion that this is definitely well possible.

  1. Hydromagnetic Equilibria and their Evolution in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas

    2014-08-01

    The strongest known magnetic fields are found in neutron stars. I briefly discuss how they are inferred from observations, as well as the evidence for their time-evolution. I go on to show how these extremely strong fields are actually weak in terms of their effects on the stellar structure. This is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes, perhaps pointing to an evolutionary connection. I suggest that a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) could be established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, because, depending on temperature and magnetic field strength, beta decays will keep adjusting the composition to the chemical equilibrium state, or ambipolar diffusion will decouple the charged component from the neutrons. Therefore, the still open question regarding stable hydromagnetic equilibria in barotropic fluids will become relevant for the evolution, at least for magnetar fields, which are likely too strong to be stabilized by the solid crust.

  2. HUBBLE SEES A NEUTRON STAR ALONE IN SPACE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    his is the first direct look, in visible light, at a lone neutron star, as seen by NASA's Hubble Space Telescope. The Hubble results show the star is very hot (1.2 million degrees Fahrenheit at the surface), and can be no larger than 16.8 miles (28 kilometers) across. These results prove that the object must be a neutron star, because no other known type of object can be this hot, small, and dim (below 25th magnitude). The first clue that there was a neutron star at this location came in 1992, when the ROSAT (the Roentgen Satellite) found a bright X-ray source without any optical counterpart in optical sky surveys. Hubble's Wide Field Planetary Camera 2 was used in October 1996 to undertake a sensitive search for the optical object, and found a stellar pinpoint of light within only 2 arc seconds (1/900th the diameter of the Moon) of the X-ray position. Astronomers haven't directly measured the neutron star's distance, but fortunately the neutron star lies in front of a molecular cloud known to be about 400 light-years away in the southern constellation Corona Australis. Credit: Fred Walter (State University of New York at Stony Brook), and NASA

  3. Limits on self-interacting dark matter from neutron stars.

    PubMed

    Kouvaris, Chris

    2012-05-11

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints on the WIMP self-interactions which in some cases are by several orders of magnitude stricter than the ones from the bullet cluster. PMID:23003023

  4. Fast radio bursts: the last sign of supramassive neutron stars

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Rezzolla, Luciano

    2014-02-01

    Context. Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmological distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. Aims: We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking. The neutron star is initially above the critical mass for non-rotating models and is supported by rapid rotation. As magnetic braking constantly reduces the spin, the neutron star will suddenly collapse to a black hole several thousand to million years after its birth. Methods: We discuss several formation scenarios for supramassive neutron stars and estimate the possible observational signatures making use of the results of recent numerical general-relativistic calculations. Results: While the collapse will hide the stellar surface behind an event horizon, the magnetic-field lines will snap violently. This can turn an almost ordinary pulsar into a bright radio "blitzar": accelerated electrons from the travelling magnetic shock dissipate a significant fraction of the magnetosphere and produce a massive radio burst that is observable out to z > 0.7. Only a few per cent of the neutron stars need to be supramassive in order to explain the observed rate. Conclusions: We suggest the intriguing possibility that fast radio bursts might trace the solitary and almost silent formation of stellar mass black holes at high redshifts. These bursts could be an electromagnetic complement to gravitational-wave emission and reveal a new formation and evolutionary channel for black holes and neutron stars that are not seen as gamma-ray bursts. If supramassive neutron stars are formed at birth and not by accretion, radio observations of these bursts could trace the core-collapse supernova rate throughout the universe.

  5. The Nature of the Double Star M40

    NASA Astrophysics Data System (ADS)

    Nugent, Richard L.

    2002-04-01

    WNC 4 is listed as a double star in the literature dating back to 1869. Charles Messier catalogued this object as M40 in his famous list. Using new TYCHO-2 and other data, the minimum distance to the pair is found to be 170 +/- 70 pc. The new parallax and proper motion data failed to support any assumption that the two stars in the pair are gravitationally connected. The observed position angle changes of the pair can be explained by the TYCHO-2 proper motions of two optically aligned stars instead of real orbital motion. If the components were gravitationally connected, the data suggest a minimum separation of 5,000 AU, and a minimum period of 232,000 years, which is highly improbable for a true visual binary star system.

  6. Supergiant pulses from extragalactic neutron stars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Wasserman, Ira

    2016-03-01

    We consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances. What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate ˜103-104sky-1 d-1? The burst rate is comparable to the NS formation rate in a Hubble volume, requiring only one per NS if they are bright enough. Radiation physics suggests a closer population, requiring more bursts per NS and increasing the chances for repeats. Bursts comprise sub-ns, coherent shot pulses superposed incoherently to produce ms-duration ˜1 Jy amplitudes; each shot pulse can be much weaker than 1 Jy, placing less restrictive requirements on the emission process. None the less, single shot pulses are similar to the extreme, unresolved (<0.4 ns) MJy shot pulse seen from the Crab pulsar, consistent with coherent curvature radiation emitted near the light cylinder by an almost neutral clump with net charge ˜± 1021e and total energy ≳ 1023 erg. Bursts from Gpc distances require incoherent superposition of {˜ } 10^{12}d_Gpc^2 shot pulses or a total energy ≳ 10^{35} d_Gpc^2 erg. The energy reservoir near the light cylinder limits the detection distance to ≲ few × 100 Mpc for a fluence ˜1 Jy ms unless conditions are more extreme than for the Crab pulsar, such as in magnetars. We discuss contributions to dispersion measures from galaxy clusters and we propose tests for the overall picture presented.

  7. The Case of the Neutron Star With a Wayward Wake

    NASA Astrophysics Data System (ADS)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron star were outside the confines of the remnant, its inferred speed would be a sluggish 20,000 miles per hour. Also, the measured temperature of the neutron star matches that of one born at the same time of the supernova remnant. What then, could cause the misaligned, or wayward, neutron star wake? The authors speculate that perhaps the doomed progenitor star was moving at a high speed before it exploded, so that the explosion site was not at the observed center of the supernova remnant. Fast moving gusts of gas inside the supernova remnant have further pushed the neutron star's wake out of alignment. Observations of J0617 in the next 10 years should put this idea to the test. "If the neutron star was born off-center and if the wake is being pushed around by cross-winds, the neutron star should be moving close to vertically, away from the center of the supernova remnant. Now we wait and see," said Gaensler. Chandra X-ray Image of J0617 in IC 443 Chandra X-ray Image of J0617 in IC 443 Another group, led by Margarita Karovska, also of the CfA, has concentrated on other, previously unnoticed intriguing features of J0617. At a recent conference on neutron stars in London, England, they announced their findings, which include a thin filament of cooler gas that appears to extend from the neutron star along the long axis of its wake, and a second point-like feature embedded in the X-ray nebula around the neutron star. "There are a number of puzzling observational features associated with this system crying out for longer observations," said Karovska. Other members of the Gaensler team were S. Chatterjee and P. O. Slane (CfA), E. van der Swaluw (Royal Netherlands Meteorological Institute), F. Camilo (Columbia University), and J. P. Hughes (Rutgers University). Karovska's team included T. Clarke (Naval Research Laboratory), G. Pavlov (Penn State University), and M.C. Weisskopf and V. Zavlin of the Marshall Space Flight Center, Huntsville, Ala. which also manages the Chandra program for NASA's Science Mission Directorate. The Smithsonian Astrophysical Observatory provides science support and controls flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov

  8. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    SciTech Connect

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-15

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the strange matter hypothesis and the existence of strange stars should be possible.

  9. The Fate of the Compact Remnant in Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-01

    Neutron star (binary neutron star and neutron star-black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  10. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1982-01-01

    A Lagrangian, fully implicit, one-dimensional hydrodynamic computer code is used to evolve thermonuclear runaways in the accreted hydrogen-rich envelopes of 1.0-solar-mass neutron stars with radii of 10 km and 20 km. The simulations produce outbursts lasting from approximately 750 seconds to approximately one week. The peak effective temperatures and luminosities are 2.6 x 10 to the 7th K and 8 x 10 to the 4th solar luminosities for the 10 km study and 5.3 x 10 to the 6th K and 600 solar luminosities for the 20 km study. It is found that hydrodynamic expansion on the 10 km neutron star produced a precursor lasting approximately 0.0001 second. The study assumes that the bursters and transient X-ray sources occur as a result of mass transfer from a secondary onto a neutron star in a fashion analogous to the nova phenomena. The peak temperatures and luminosities are found to be inversely proportional to the radius of the neutron stars and the calculations here, together with those in the literature, indicate that the actual radii of most neutron stars must be closer to 10 km than 20 km.

  11. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  12. BDB - a database for all types of double stars

    NASA Astrophysics Data System (ADS)

    Oblak, E.; Debray, B.; Kundera, T.

    2004-07-01

    We present the general characteristics of a database for binary and multiple stars from all observational categories, specifically designed to address the awkward topics of the identification of stellar components. BDB is based on a modular architecture to allow the easy integration of data from various sources. We describe in particular the set up of connections with other double star databases through the Internet. Additional tools are being developped for the processing of image data. The implementation of standards for the connection of BDB with Virtual Observatory projects is reviewed.

  13. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (φ – φ{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  14. Quasiequilibrium black hole-neutron star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2007-04-15

    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a {gamma}=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M{sub irr}{sup BH}/M{sub ADM,0}{sup NS}=1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M{sub B}{sup NS}/M{sub B}{sup max}=83% and 56%, where M{sub B}{sup max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.

  15. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-01

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars. PMID:16598251

  16. Neutron star natal kicks and the long-term survival of star clusters

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  17. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star`s equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  18. Neutron star matter in an effective model

    SciTech Connect

    Jha, T. K.; Raina, P. K.; Panda, P. K.; Patra, S. K.

    2006-11-15

    We study an equation of state (EOS) for dense matter in the core of a compact star with hyperons and calculate the star's structure in an effective model using a mean-field approach. With varying incompressibility and effective nucleon mass, we analyze the resulting EOS with hyperons in {beta} equilibrium and their underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of a compact star lies in the range 1.21-1.96M{sub {center_dot}} for the different EOS obtained in the model.

  19. f-Mode Instability in Relativistic Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gaertig, E.; Glampedakis, K.; Kokkotas, K. D.; Zink, B.

    2011-09-01

    We present the first calculation of the basic properties of the f-mode instability in rapidly rotating relativistic neutron stars, adopting the Cowling approximation. By accounting for dissipation in neutron star matter, i.e., shear or bulk viscosity and superfluid mutual friction, we calculate the associated instability window. For our specific stellar model, a relativistic polytrope, we obtain a minimum gravitational growth time scale (for the dominant ℓ=m=4 mode) of the order of 103-104s near the Kepler frequency ΩK while the instability is active above ˜0.92ΩK and for temperatures ˜(109-2×1010)K, characteristic of newborn neutron stars.

  20. Thermonuclear Burning as a Probe of Neutron Star

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2008-01-01

    Thermonuclear fusion is a fundamental process taking place in the matter transferred onto neutron stars in accreting binary systems. The heat deposited by nuclear reactions becomes readily visible in the X-ray band when the burning is either unstable or marginally stable, and results in the rich phenomenology of X-ray bursts, superbursts, and mHz quasiperiodic oscillations. Fast X-ray timing observations with NASA's Rossi X-ray Timing Explorer (RXTE) over the past decade have revealed a wealth of new phenomena associated with thermonuclear burning on neutron stars, including the discovery of nuclear powered pulsations during X-ray bursts and superbursts. I will briefly review our current observational and theoretical understanding of these new phenomena, with an emphasis on recent findings, and discuss what they are telling us about the structure of neutron stars.

  1. Modelling the magnetic field configuration of neutron stars

    NASA Astrophysics Data System (ADS)

    Ciolfi, R.

    2014-09-01

    The properties of the extremely strong magnetic fields of neutron stars affect in a unique way their evolution and the associated phenomenology. Due to the lack of constraints from direct observations, our understanding of the magnetic field configuration in neutron star interiors depends on the progress in theoretical modelling. Here we discuss the effort in building models of magnetized neutron stars focussing on some of the recent results. In particular, we comment on the instability of purely poloidal and purely toroidal magnetic field configurations and on the evidence in favour of the so-called twisted-torus solutions. We conclude with an outlook on the present status of the field and future directions.

  2. Observational constraints of the compactness of isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Hambaryan, V.; Neuhäuser, R.; Suleimanov, V.; Werner, K.

    2014-03-01

    We report on our observational attempt to constrain the compactness of the isolated neutron stars via X-ray spin phase-resolved spectroscopy. There are seven thermally emitting neutron stars known from X-ray and optical observations, which are young (up to few Myrs), nearby (hundreds of pc), and radio-quiet with blackbody-like X-ray spectra. A model with a condensed iron surface and partially ionized hydrogen-thin atmosphere allows us to fit simultaneously the observed general spectral shape and the broad absorption feature (observed at 0.3 keV) in different spin phases. We constrain a number of physical properties of the X-ray emitting areas, including their temperatures, magnetic field strengths at the poles, and their distribution parameters. In addition, we place some constraints on the geometry of the emerging X-ray emission and the gravitational redshift of three isolated neutron stars.

  3. Ultrarelativistic electromagnetic counterpart to binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-01-01

    We propose a possibility of ultrarelativistic electromagnetic counterparts to gravitational waves from binary neutron star mergers at nearly all the viewing angles. Our proposed mechanism relies on the merger-shock propagation accelerating a smaller mass in the outer parts of the neutron star crust to a larger Lorentz factor ? with smaller energy 1047?-1 erg. This mechanism is difficult to resolve by current 3D numerical simulations. The outflows emit synchrotron flares for seconds to days by shocking the ambient medium. Ultrarelativistic flares shine at an early time and in high-energy bands, potentially detectable by current X-ray to radio instruments, such as Swift XRT and Pan-STARRS, and even in low ambient density 10-2 cm-3 by EVLA. The flares probe the merger position and time, and the merger types as black hole-neutron star outflows would be non-/mildly relativistic.

  4. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  5. Persistent crust-core spin lag in neutron stars

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2015-06-01

    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun-down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  6. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  7. Gamma-ray bursts and neutron star field decay

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter; Blumenthal, George; Chuang, Kuan-Wen; Hurley, Kevin; Kargatis, Vincent; Liang, Edison; Linder, Eric

    1992-01-01

    Assuming a Galactic origin of gamma-ray bursts, we use pulsar data to calculate the spatial distribution of neutron stars and determine the sampling depths of current detectors. Based on these distance limits, we calculate the corresponding age distribution of Galactic neutron stars and apply an exponential field decay model to test whether the observed high incidence rate of cyclotron lines is consistent with suggested field decay time scales of order 10 exp 7 years. We find that the properties of the observed population of gamma-ray bursts are inconsistent with the idea that bursts originate at arbitrary times on neutron stars whose fields decay on time scales shorter than about 10 exp 9 years. Possible interpretations of this inconsistency are discussed.

  8. Gravitational Waves from Magnetized Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca

    2010-02-01

    Binary neutron stars are among the most important sources of gravitational waves which are expected to be detected by the current or next generation of gravitational wave detectors, such as LIGO and Virgo, and they are also thought to be at the origin of very important astrophysical phenomena, such as short gamma-ray bursts. In order to describe the dynamics of these events one needs to solve the full set of general relativistic magnetohydrodynamics equations through the use of parallel numerical codes. I will report on some recent results obtained with the use of the fully general relativistic magnetohydrodynamic code Whisky in simulating binary neutron stars which inspiral and merge forming an hypermassive neutron star which eventually collapses to form a black hole surrounded by a torus. I will in particular describe how the magnetic fields can affect the dynamics and consequently the gravitational waves emitted by these systems and discuss about their detectability by current and future gravitational-wave detectors. )

  9. General Relativistic Simulations of Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca; Link, David; Font, José A.

    2011-08-01

    Binary neutron star mergers are one of the possible candidates for the central engine of short gamma-ray bursts (GRBs) and they are also powerful sources of gravitational waves. We have used our fully general relativistic hydrodynamical code Whisky to investigate the merger of binary neutron star systems and we have in particular studied the properties of the tori that can be formed by these systems, their possible connection with the engine of short GRBs and the gravitational wave signals that detectors such as advanced LIGO will be able to detect. We have also shown how the mass of the torus varies as a function of the total mass of the neutron stars composing the binary and of their mass ratio and we have found that tori sufficiently massive to power short GRBs can indeed be formed.

  10. Effects of hyperons in binary neutron star mergers.

    PubMed

    Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru

    2011-11-18

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that even for the hyperonic EOS, a hypermassive neutron star is first formed after the merger for the typical total mass ≈2.7M(⊙), and subsequently collapses to a black hole (BH). It is shown that hyperons play a substantial role in the postmerger dynamics, torus formation around the BH, and emission of gravitational waves (GWs). In particular, the existence of hyperons is imprinted in GWs. Therefore, GW observations will provide a potential opportunity to explore the composition of neutron star matter. PMID:22181867

  11. The magnetosphere of oscillating neutron stars in general relativity

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar B.; Ahmedov, Bobomurat J.; Miller, John C.

    2009-05-01

    Just as a rotating magnetized neutron star has material pulled away from its surface to populate a magnetosphere, a similar process can occur as a result of neutron-star pulsations rather than rotation. This is of interest in connection with the overall study of neutron star oscillation modes but with a particular focus on the situation for magnetars. Following a previous Newtonian analysis of the production of a force-free magnetosphere in this way Timokhin et al., we present here a corresponding general-relativistic analysis. We give a derivation of the general relativistic Maxwell equations for small-amplitude arbitrary oscillations of a non-rotating neutron star with a generic magnetic field and show that these can be solved analytically under the assumption of low current density in the magnetosphere. We apply our formalism to toroidal oscillations of a neutron star with a dipole magnetic field and find that the low current density approximation is valid for at least half of the oscillation modes, similarly to the Newtonian case. Using an improved formula for the determination of the last closed field line, we calculate the energy losses resulting from toroidal stellar oscillations for all of the modes for which the size of the polar cap is small. We find that general relativistic effects lead to shrinking of the size of the polar cap and an increase in the energy density of the outflowing plasma. These effects act in opposite directions but the net result is that the energy loss from the neutron star is significantly smaller than suggested by the Newtonian treatment.

  12. Merging ``real'' neutron stars for gravitational waves and electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2014-03-01

    Having more-or-less succeeded in learning to stably evolve Einstein's equations, numerical relativity is taking the leap to including the physics of neutron stars, which will enable us to construct truly realistic pictures of neutron star-neutron star and black hole-neutron star binary mergers. The neutron star profile affects late inspirals and mergers, leaving its imprint on gravitational waveforms and electromagnetic counterpart signals. Furthermore, we expect neutrino radiation, magnetic field, and nuclear recombination effects to drive the post-merger evolution. In this talk, I will describe some recent neutron star merger simulations combining nuclear physics and general relativity. The goal is to connect assumptions about the nuclear equation of state and the premerger binary to resulting binary trajectories, matter outflows, accretion disk dynamics, and neutrino energy output. These can then hopefully be connected to observable signals in the form of gravitational waves, kilonovae, and gamma ray bursts. It is found that an interesting variety of disks, outflows, and neutrino bursts are possible. Connections to observables are being attempted by tracking nuclear reactions in tidal ejecta and estimating energy injection to gamma ray bursts from neutrino annihilation and other sources. Meanwhile, non-vacuum inspiral simulations are finally approaching the length and accuracy needed for interesting comparisons with binary black hole waveforms and post-Newtonian predictions, these being steps toward a reliable characterization of the imprint of the nuclear equation of state on the gravitational waves. The speaker acknowledges support from NASA Grant No. NNX11AC37G and NSF Grant PHY-1068243.

  13. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star's equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  14. Double Star Research: A Student-Centered Community of Practice

    NASA Astrophysics Data System (ADS)

    Johnson, Jolyon

    2016-06-01

    Project and team-based pedagogies are increasingly augmenting lecture-style science classrooms. Occasionally, university professors will invite students to tangentially partcipate in their research. Since 2006, Dr. Russ Genet has led an astronomy research seminar for community college and high school students that allows participants to work closely with a melange of professional and advanced amatuer researchers. The vast majority of topics have centered on measuring the position angles and searations of double stars which can be readily published in the Journal of Double Star Observations. In the intervening years, a collaborative community of practice (Wenger, 1998) formed with the students as lead researchers on their projects with the guidance of experienced astronomers and educators. The students who join the research seminar are often well prepared for further STEM education in college and career. Today, the research seminar involves multile schools in multiple states with a volunteer educator acting as an assistant instructor at each location. These assistant instructors interface with remote observatories, ensure progress is made, and recruit students. The key deliverables from each student team include a published research paper and a public presentation online or in-person. Citing a published paper on scholarship and college applications gives students' educational carreers a boost. Recently the Journal of Double Star Observations published its first special issue of exlusively student-centered research.

  15. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGESBeta

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  16. X-ray spectra from convective photospheres of neutron stars

    SciTech Connect

    Zavlin, V.E.; Pavlov, G.G. |; Shibanov, Yu.A.; Rogers, F.J.; Iglesias, C.A.

    1996-01-17

    We present first results of modeling convective photospheres of neutron stars. We show that in photospheres composed of the light elements convection arises only at relatively low effective temperatures ({le}3 - 5 x 10{sup 4} K), whereas in the case of iron composition it arises at T{sub eff}{le} 3 x 10{sup 5}K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. Thus, it should be taken into account for the proper interpretation of EUV/soft-X-ray observations of the thermal radiation from neutron stars.

  17. Hydrogen molecules and chains in a magnetic neutron star atmosphere.

    NASA Astrophysics Data System (ADS)

    Dong, Lai; Salpeter, E. E.; Shapiro, S. L.

    The authors study the electronic structures of different forms of hydrogen in a typical superstrong magnetic field (B ≡ 1012G) found on the surface of a neutron star, including atoms, poly-molecules Hn (n = 2,3,4,...), molecular ions (H+2) and negative ions (H-). They also consider the excitations of H2 molecules. They estimate the equilibrium abundances of different forms of H in a neutron star atmosphere and find that H atoms and molecules will be present if the atmosphere is cool (Teff ≡ 105-106K).

  18. GRAVITATIONAL WAVES AND THE MAXIMUM SPIN FREQUENCY OF NEUTRON STARS

    SciTech Connect

    Patruno, Alessandro; Haskell, Brynmor; D'Angelo, Caroline

    2012-02-10

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity L{sub X} when considering an enlarged sample size of millisecond X-ray pulsars.

  19. On the growth of temperature within neutron stars

    SciTech Connect

    Urpin, V.A.; Iakovlev, D.G.

    1980-04-01

    Analytic expressions are obtained that describe the variation of the temperature in the degenerate layers of the shell of a neutron star with electron heat conduction. The relativistic expression is used for the coefficient of thermal conductivity, and a possible crystallization of the ions is taken into account. For a neutron star with solar mass of 1 and radius of 10 km, the central temperature is calculated as a function of luminosity. It is shown that for sufficiently large luminosity the main temperature difference occurs across the layer of degenerate relativistic gas.

  20. X-ray bursts and neutron-star thermonuclear flashes

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1977-01-01

    A description is presented of a model concerning the production of X-ray bursts by thermonuclear flashes in the freshly accreted matter near the surface of an accreting neutron star. An investigation is conducted regarding the physical processes relevant to such thermonuclear flashes. It is concluded that thermonuclear flashes may account for some, but not all, of the observed X-ray burst sources. Attention is given to a neutron star undergoing accretion of mass from a binary stellar companion, aspects of energetics, nuclear reactions, and heat transport mechanisms.

  1. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  2. The Many Faces - and Phases - of Neutron Stars

    SciTech Connect

    Piekarewicz, J.

    2007-10-26

    Understanding the equation of state (EOS) of nuclear matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters as one travels from the low-density crust to the high-density core.

  3. LOCV approach and core-crust transition in neutron stars

    NASA Astrophysics Data System (ADS)

    Bigdeli, M.; Elyasi, S.

    2015-03-01

    In this paper, we have calculated the core-crust transition parameters and the location of inner edge for crust in the neutron stars. We have also investigated the structural properties of neutron stars, such as mass and radius for the core and crust, the moment of inertia, and its crustal fraction. Here we have employed the lowest-order constrained variational approach and used the UV14 + TNI and AV18 potentials to compute the equation of state of nuclear matter. Finally, we have compared our results with those of other techniques.

  4. On the spreading layer emission in luminous accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail G.; Suleimanov, Valery F.; Poutanen, Juri

    2013-09-01

    Emission of the neutron star surface potentially contains information about its size and thus of vital importance for high-energy astrophysics. In spite of the wealth of data on the emission of luminous accreting neutron stars, the emission of their surfaces is hard to disentangle from their time-averaged spectra. A recent X-ray transient source XTE J1701-462 has provided a unique data set covering the largest ever observed luminosity range for a single source and showing type I (thermonuclear) X-ray bursts. In this paper, we extract the spectrum of the neutron star surface (more specifically, the spectrum of the boundary layer between the inner part of the accretion disc and the neutron star surface) with the help of maximally spectral model-independent method. We show compelling evidences that the energy spectrum of the boundary layer stays virtually the same over factor of 20 variations of the source luminosity. It is rather wide and cannot be described by a single-temperature blackbody spectrum, probably because of the inhomogeneity of the boundary layer and a spread in the colour temperature. The observed maximum colour temperature of the boundary/spreading layer emission of kT ≈ 2.4-2.6 keV is very close to the maximum observed colour temperature in the photospheric radius expansion X-ray bursts, which is set by the limiting Eddington flux at the neutron star surface. The observed stability of the boundary layer spectrum and its maximum colour temperature strongly supports theoretical models of the boundary/spreading layers on surfaces of luminous accreting neutron stars, which assume the presence of a region emitting at the local Eddington limit. Variations in the luminosity in that case lead to changes in the size of this region, but affect less the spectral shape. Elaboration of this model will provide solid theoretical grounds for measurements of the neutron star sizes using the emission of the boundary/spreading layers of luminous accreting neutron stars.

  5. Black Hole - Neutron Star Binary Simulations at Georgia Tech

    NASA Astrophysics Data System (ADS)

    Haas, Roland

    2009-05-01

    Mixed compact object binaries consisting of a black hole and a neutron star are expected to be not only one of the primary sources of gravitational radiation to be observed by interferometric detectors but also the central engine of short gamma-ray bursts. We report on the status of our effort at Georgia Tech to model these mixed binary systems using the moving puncture method. The results are obtained with an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics Whisky code. We present preliminary results of gravitational waveforms and the disruption of the neutron star for simple polytropic equations of state.

  6. X-Ray Emission from Pulsars and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Becker, Werner

    The idea of neutron stars can be traced back to the early 1930s, when Subrahmanyan Chandrasekhar discovered that there is no way for a collapsed stellar core with a mass more than 1.4 times the solar mass, M, to hold itself up against gravity once its nuclear fuel is exhausted. This implies that a star left with M › 1.4 M (the Chandrasekhar limit) would keep collapsing and eventually disappear from view.

  7. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence with an 11 to 1 confidence for high-mass systems. We, finally, find that combining multiple lower signal-to-noise ratio detections (stacking) must be handled with caution since it could fail in cases where the prior information dominates over new information from the data.

  8. Dynamical model of the magnetic field of neutron stars

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dixon, D. D.; Kaus, P. E.

    1992-02-01

    Attention is given to a dynamical model of the magnetization of a neutron star. The model exhibits three distinct behaviors, as characterized in the 2D parameter space of the two relevant parameters. In one region of the parameter space, the magnetization, and correspondingly the magnetic field, behaves erratically and nonperiodically, occasionally producing large pulses of the directional electric and magnetic field. It is suggested that this field is associated with 'bursters', very energetic gamma-rich pulses of the order of 1-s duration, and believed to emanate from solo neutron stars. A second region of parameter space shows the magnetization precessing at a constant period around the spin or conserved angular momentum direction. The third region is a 'dead' region, where the magnetization is aligned with the spin axis, and the star is nonradiating. The model suggests a life history of a neutron star in which the star typically evolves initially from a burster, later becoming a pulsar, and ending as a dead star.

  9. Extreme neutron stars from Extended Theories of Gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  10. Model-independent inference of neutron star radii from moment of inertia measurements

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2016-03-01

    A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron star structure. We determine the maximum and minimum values possible for the moment of inertia of a neutron star of a given radius based on physical stability arguments, assuming knowledge of the equation of state only at densities below the nuclear saturation density. If the equation of state is trusted up to the nuclear saturation density, we find that a measurement of the moment of inertia will place absolute bounds on the radius of PSR J0737-3039A to within ±1 km. The resulting combination of moment of inertia, mass, and radius measurements for a single source will allow for new, stringent constraints on the dense-matter equation of state.

  11. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  12. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  13. Neutron sources and neutron-capture paths in asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Maria, Lugaro

    2016-04-01

    Roughly half of the abundances of the elements heavier than iron in the cosmos are produced by slow neutron captures (the s process) in hydrostatic conditions when the neutron density is below roughly 1013 n/cm-3. While it is observationally well confirmed that asymptotic giant branch (AGB) stars are the main site of the s process, we are still facing many problems in the theoretical models and nuclear inputs. Major current issues are the effect of stellar rotation and magnetic fields and the determination of the rate of the neutron source reactions. I will present these problems and discuss the observational constraints that can help us to solve them, including spectroscopically derived abundances, meteoritic stardust, and stellar seismology. Further, I will present evidence that the s process is not the only neutron-capture process to occur in AGB stars: an intermediate process is also required to explain recent observations of post-AGB stars.

  14. Role of Nucleonic Fermi Surface Depletion in Neutron Star Cooling

    NASA Astrophysics Data System (ADS)

    Dong, J. M.; Lombardo, U.; Zhang, H. F.; Zuo, W.

    2016-01-01

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner-Hartree-Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron 3PF2 superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  15. Oscillations and surface physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.

    Accreting neutron stars (NSs) show recurrent nuclear flashes, called type IX- ray bursts. An exciting recent discovery is millisecond oscillations seen in the rise and tail of the X-ray burst light curves, or burst oscillations. If these oscillations are confirmed as resulting from an oscillatory mode of the NS, they would allow a powerful investigation into the interior layers of NSs in a way analogous to what has been done with seismology for the earth and sun. This has inspired us to make a detailed study of accreting NS oscillation modes, so as to understand how the modes reflect the NS structure and also to try to explain the burst oscillations. Burst oscillations clearly show that the bursting properties of NSs are not spherically symmetric. This motivates a study of non-spherical perturbations on the surfaces of NSs accreting helium-rich fuel. We find that a shallow surface wave in the hot upper burning layers is driven unstably by an increase in the nuclear reactions during the oscillation. Our discovery of an unstable mode in a thermally stable atmosphere shows that non-radial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts. We next study a wave associated with the interface between the NS ocean and crust, the crustal interface wave. It is shown to act like a shallow ocean wave, but with a large radial displacement at the ocean/crust boundary due to flexing of the crust, which lowers its frequency. We then consider the properties of oscillations on a NS cooling from an X-ray burst. Our calculations show that a surface wave in the shallow burning layer transitions into a crustal interface wave as the envelope cools, a new and previously uninvestigated phenomenon. When we include rotational modifications, the mode frequencies and drifts are consistent with those observed for burst oscillations. The large NS spin ( [approximate] 270--620 Hz) needed to make this match implies that accreting NSs are spinning at frequencies [approximate] 4 Hz above the burst oscillation. The most exciting implication of this result is that the observed drifts can be used to learn about the composition and temperature of NS crusts. Finally, we calculate the photon energy dependence of the pulsed amplitude of surface modes. Simple approximations demonstrate that it depends most strongly on the bursting NS surface temperature. This result compares well with full integrations that include Doppler shifts from rotation and general relativistic corrections to photon propagation. We show that it agrees with the energy dependence of burst oscillations, lending further support to the hypothesis that burst oscillations originate from surface waves. The critical test of the mode hypothesis for burst oscillations would be a measurement of their energy dependence from an accreting millisecond pulsar. x

  16. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; Van Winckel, H.; De Smedt, K.; Karakas, A. I.; Käppeler, F.

    2015-11-01

    Aims: We explore modifications to the current scenario for the slow neutron-capture process (the s-process) in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ≃-1.2) and low initial mass (≃ 1-1.5 M⊙) in the Large and Small Magellanic Clouds. Methods: We calculated the stellar evolution and nucleosynthesis for a 1.3 M⊙ star with [Fe/H] = -1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. Results: No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered, the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Conclusions: Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.

  17. Further stable neutron star models from f(R) gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  18. Gamma-ray bursts from neutron star mergers

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi

    1993-01-01

    Binary neutron stars merger (NS(sup 2)M) at cosmological distances is probably the only gamma-ray bursts model based on an independently observed phenomenon which is known to be taking place at a comparable rate. We describe this model, its predictions and some open questions.

  19. Old isolated neutron stars - Fire burns and cauldron bubbles

    NASA Astrophysics Data System (ADS)

    Treves, A.; Colpi, M.; Lipunov, V. M.

    1993-03-01

    Isolated magnetic neutron stars are considered at the end of the phase of coherent pulsar emission when accretion from the interstellar medium becomes important but rotation affects the inflow dynamics. When the centrifugal acceleration at the Alfven radius exceeds the gravitational one, a process of piling up of matter is expected to take place, yielding the compression of the magnetospheric boundary. Prompt matter infall to the neutron star surface occurs when the gravitational energy density has increased with time to overcome the centrifugal barrier. Recurrence times are estimated, and it is suggested that the aging neutron star can undergo accretion with intermittent or quasi-cycling behavior when passing from the isolated radio pulsar phase to quiescent steady accretion over the life time of the Galaxy. An analogous process of build up of the magnetodipole energy is envisaged and it is proposed that a relativistic jet may form. Although on energetic scales much more modest, the picture has some resemblance to the cauldron model of SS 433. The consequences for the detectability of old isolated neutron stars are briefly discussed.

  20. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  1. Magnetar activity mediated by plastic deformations of neutron star crust

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2015-02-01

    We advance a `solar flare' model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron magnetohydrodynamic flows, twists the external magnetic flux tubes, producing persistent emission, bursts, and flares. At the same time, the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain ɛt to values well below the critical strain ɛcrit of a brittle fracture, ɛt ˜ 10-2ɛcrit. Magnetar-like behaviour, occurring near the magnetic equator, takes place in all neutron stars, but to a different extent. The persistent luminosity is proportional to cubic power of the magnetic field (at a given age), and hence is hardly observable in most rotationally powered neutron stars. Giant flares can occur only if the magnetic field exceeds some threshold value, while smaller bursts and flares may take place in relatively small magnetic fields. Bursts and flares are magnetospheric reconnection events that launch Alfvén shocks which convert into high-frequency whistlers upon hitting the neutron star surface. The resulting whistler pulse induces a strain that increases with depth both due to the increasing electron density (and the resulting slowing of the waves), and due to the increasing coherence of a whistler pulse with depth. The whistler pulse is dissipated on a time-scale of approximately a day at shallow depths corresponding to ρ ˜ 1010 g cm-3; this energy is detected as enhanced post-flare surface emission.

  2. Constraints on perturbative f(R) gravity via neutron stars

    SciTech Connect

    Arapoğlu, Savaş; Ekşi, K. Yavuz; Deliduman, Cemsinan E-mail: cemsinan@msgsu.edu.tr

    2011-07-01

    We study the structure of neutron stars in perturbative f(R) gravity models with realistic equations of state. We obtain mass-radius relations in a gravity model of the form f(R) = R+αR{sup 2}. We find that deviations from the results of general relativity, comparable to the variations due to using different equations of state (EoS'), are induced for |α| ∼ 10{sup 9} cm{sup 2}. Some of the soft EoS' that are excluded within the framework of general relativity can be reconciled with the 2 solar mass neutron star recently observed for certain values of α within this range. For some of the EoS' we find that a new solution branch, which allows highly massive neutron stars, exists for values of α greater than a few 10{sup 9} cm{sup 2}. We find constraints on α for a variety of EoS' using the recent observational constraints on the mass-radius relation. These are all 5 orders of magnitude smaller than the recent constraint obtained via Gravity Probe B for this gravity model. The associated length scale √(alpha)approx 10{sup 5} cm is only an order of magnitude smaller than the typical radius of a neutron star, the probe used in this test. This implies that real deviations from general relativity can be even smaller.

  3. The Neutron star Interior Composition ExploreR

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Zaven; Gendreau, K.; NICER Team

    2012-01-01

    The Neutron star Interior Composition ExploreR (NICER) will be a NASA Explorer Mission of Opportunity, currently in a Phase A study, dedicated to the study of neutron stars, the only places in the Universe where all four fundamental forces of Nature are simultaneously important. Answering the long-standing astrophysics question "How big is a neutron star?," NICER will confront nuclear physics theory with unique observational constraints, exploring the exotic states of matter within neutron stars and revealing their interior and surface compositions through rotation-resolved X-ray spectroscopy. Absolute time-referenced data will allow NICER to probe the extreme physical environments of the most powerful cosmic particle accelerators known. Finally, NICER will definitively measure the stabilities of pulsars as clocks, with implications for gravitational-wave detection, a pulsar-based timescale, and autonomous spacecraft navigation. NICER will fly on the International Space Station while Fermi is in orbit and post-RXTE, enabling the discovery of new high-energy pulsars and providing continuity in X-ray timing astrophysics.

  4. Thermonuclear processes on accreting neutron stars - A systematic study

    NASA Technical Reports Server (NTRS)

    Ayasli, S.; Joss, P. C.

    1982-01-01

    A series of model calculations for the evolution of the surface layers of an accreting neutron star is carried out. The neutron star mass, radius, core temperature, and surface magnetic field strength are systematically varied, as are the accretion rate onto the neutron star surface and the metallicity of the accreting matter, in order to determine the effects of these parameters on the properties of thermonuclear flashes in the surface layers and the emitted X-ray bursts that result from such flashes. The core temperatures required for thermal equilibrium are found to be approximately a factor of 2 lower than estimated in earlier work. Owing to the effects of the gravitational redshift, the emitted X-ray bursts have lower peak luminosities and longer durations than those calculated in the Newtonian approximation. The entrainment of hydrogen into helium flashes can cause the flashes to exhibit a rather wide range of observable effects and can decrease by a factor of more than 2 the ratio of persistent accretion-driven luminosity to time-averaged burst luminosity emitted by the neutron star.

  5. Eccentric Mergers of Black Holes with Spinning Neutron Stars

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans

    2015-07-01

    We study dynamical capture binary black hole-neutron star (BH-NS) mergers focusing on the effects of the neutron star spin. These events may arise in dense stellar regions, such as globular clusters, where the majority of neutron stars are expected to be rapidly rotating. We initialize the BH-NS systems with positions and velocities corresponding to marginally unbound Newtonian orbits, and evolve them using general-relativistic hydrodynamical simulations. We find that even moderate spins can significantly increase the amount of mass in unbound material. In some of the more extreme cases, there can be up to a third of a solar mass in unbound matter. Similarly, large amounts of tidally stripped material can remain bound and eventually accrete onto the BH—as much as a tenth of a solar mass in some cases. These simulations demonstrate that it is important to treat neutron star spin in order to make reliable predictions of the gravitational wave and electromagnetic transient signals accompanying these sources.

  6. Antimagic covering on double star and related graphs

    NASA Astrophysics Data System (ADS)

    Roswitha, Mania; Kuntari, Sri; Suraningsih, Dwi; Martini, Titin Sri; Kusmayadi, Tri Atmojo

    2016-02-01

    A graph G(V, E) admits an (a, d)-H-antimagic covering if every edge in E(G) belongs to H' subgraph of G that is isomorphic to H and there exists a bijective function f : V (G) ∪ E(G) → 1, 2,…, |V (G)| + |E(G)| such that for all subgraphs H' isomorphic to H, the H'-weights, w(H') = ∑vɛV (H') f (v) + ∑eɛE(H') f(e) constitutes an arithmetic progression a, a + d,…, a + (t - 1)d, where a and d are some positive integers and t is the number of subgraphs isomorphic to H. If the label of vertices are {1, 2, …, |V (G)|}, then it is called super (a, d)-H-antimagic covering. In this paper we find super (a, d)-H-antimagic covering on double star graph Sn,n, union of star graph mSn and union of double star graph mSn,n.

  7. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C. H.

    1974-01-01

    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter.

  8. Concerning the Video Drift Method to Measure Double Stars

    NASA Astrophysics Data System (ADS)

    Nugent, Richard L.; Iverson, Ernest W.

    2015-05-01

    Classical methods to measure position angles and separations of double stars rely on just a few measurements either from visual observations or photographic means. Visual and photographic CCD observations are subject to errors from the following sources: misalignments from eyepiece/camera/barlow lens/micrometer/focal reducers, systematic errors from uncorrected optical distortions, aberrations from the telescope system, camera tilt, magnitude and color effects. Conventional video methods rely on calibration doubles and graphically calculating the east-west direction plus careful choice of select video frames stacked for measurement. Atmospheric motion is one of the larger sources of error in any exposure/measurement method which is on the order of 0.5-1.5. Ideally, if a data set from a short video can be used to derive position angle and separation, with each data set self-calibrating independent of any calibration doubles or star catalogues, this would provide measurements of high systematic accuracy. These aims are achieved by the video drift method first proposed by the authors in 2011. This self calibrating video method automatically analyzes 1,000's of measurements from a short video clip.

  9. Simulating binary neutron stars: Dynamics and gravitational waves

    SciTech Connect

    Anderson, Matthew; Lehner, Luis; Motl, Patrick M.; Palenzuela, Carlos; Tohline, Joel E.; Hirschmann, Eric W.; Neilsen, David; Liebling, Steven L.

    2008-01-15

    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first-order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the had computational infrastructure for distributed adaptive mesh refinement.

  10. Correlation energy of nuclear matter and neutron star masses

    SciTech Connect

    Trojan, Ernst; Vlasov, George V.

    2010-04-15

    We consider nuclear matter in the frames of the sigma model and find the role of correlation energy in the determination of the parameters of neutron stars. The response-function formalism is used for calculations within the Hartree-Fock approach and beyond. When electrons and muons are present in the neutron-rich matter, the maximal mass of the star is M{sub *}=1.64 (in the unit of the solar mass M{sub c}entre dot). The correlation energy becomes very important for the stars with M{sub *}approx0.7 divide 1.5M{sub c}entre dot and its effect is estimated as 0.3 divide 0.4M{sub c}entre dot extracted from the relevant values obtained in the frames of the Hartree-Fock approximation. On the whole, the nuclear equation of state is definitely 'softened'.

  11. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations. PMID:24116763

  12. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  13. Quark matter nucleation in neutron stars and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico; Vidaña, Isaac; Providência, Constança

    2016-03-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T=0 and hot β -stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 1053erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.

  14. QPO observations related to neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr

    We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  15. Neutron star equation of state and QPO observations

    NASA Astrophysics Data System (ADS)

    Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr

    2007-12-01

    Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  16. Thermal evolution of neutron stars with global and local neutrality

    NASA Astrophysics Data System (ADS)

    de Carvalho, S. M.; Negreiros, R.; Rueda, Jorge A.; Ruffini, Remo

    2014-11-01

    Globally neutral neutron stars, obtained from the solution of the called Einstein-Maxwell-Thomas-Fermi equations that account for all the fundamental interactions, have been recently introduced. These configurations have a more general character than the ones obtained with the traditional Tolman-Oppenheimer-Volkoff equations, which impose the condition of local charge neutrality. The resulting configurations have a less massive and thinner crust, leading to a new mass-radius relation. Signatures of this new structure of the neutron star on the thermal evolution might be a potential test for this theory. We compute the cooling curves by integrating numerically the energy balance and transport equations in general relativity, for globally neutral neutron stars with crusts of different masses and sizes, according to this theory for different core-crust transition interfaces. We compare and contrast our study with known results for local charge neutrality. We found a new behavior for the relaxation time, depending upon the density at the base of the crust, ?crust. In particular, we find that the traditional increase of the relaxation time with the crust thickness holds only for configurations whose density of the base of the crust is greater than ?5 1013 g cm -3. The reason for this is that neutron star crusts with very thin or absent inner crust have some neutrino emission processes blocked, which keeps the crust hotter for longer times. Therefore, accurate observations of the thermal relaxation phase of neutron stars might give crucial information on the core-crust transition which may aid us in probing the inner composition and structure of these objects.

  17. Gamma-ray bursts from fast, Galactic neutron stars

    SciTech Connect

    Colgate, S.A.; Leonard, P.J.T.

    1995-07-01

    What makes a Galacic model of gamma-ray bursts (GBs) feasible is the observation of a new population of objects, fast neutron stars, that are isotropic with respect to the Galaxy following a finite period, {approximately}30My, after their formation. Our Galactic model for the isotropic component of (GBs) is based upon these high-velocity neutron stars (NSs) that have accretion disks. The fast NSs are formed in tidally locked binaries, where tidal locking occurs due to the meridional circulation caused by the conservation of angular momentum of the tidal lobes. These same lobes perturb the subsequent collapse to a supernova and forming a slowly rotating NS. Following the collapse to a NS and explosion, subsequent accretion occurs on the rear side of the initially perturbed NS, resulting in a run-away acceleration of the neutron star by neutrino emission from the hot accreted matter. The recoil momentum of the relativistic neutrino emission from the localized, down flowing matter far exceeds the momentum drag of the accreted matter. The recoil of the NS may be oriented towards the companion, but misses because of the initial orbital motion. The near miss captures matter from the companion and forms a disk around the NS. Accretion onto the neutron star from this initially gaseous disk due to the ``alpha`` viscosity results initially in the soft gamma-ray repeater phase, {approximately}10{sup 4} yr. After the neutron star has moved {approximately}30 kpc from its birthplace, solid bodies form in the disk, and accrete to planetoid size bodies after {approximately}3 {times} 10{sup 7} years. Some of these planetoid bodies, with a mass of {approximately}10{sup 21to22} g, are perturbed into being captured by the magnetic field of the NS to create GBs. The high velocity and millions of years delay in forming planetoids, results in isotropy.

  18. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  19. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z?6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including O24+O24 and Ne28+Ne28. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear O24+O24 fusion and find that O24 should burn at densities near 1011 g/cm3. The energy released from this and similar reactions may be important for the temperature profile of the star.

  20. Neutron Stars Accreting Matter and A Wave Model

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    2000-04-01

    In 1990 I proposed that oscillating stars and planets radiate quantum like standing waves providing for the spacings of planets and satellites. Waves also provide stability for star systems and the universe (see Physics Essays 12(1): 3-10 for a wave equation and solutions). Radii of orbits are given by r=R(exp(kN)) where R is the radius of the star and N is the orbit integer. k is 0.625 for matter free regions apparently becoming less depending on the density of matter present. This equation or similar may provide an incredibly simple explanation of the most often observed QPO's of matter accreting neutron stars if one assumes that the highest amplitude, highest frequency QPO is due to the N=2 orbit. Since incredibly large gravitational fields are involved the equation may be different. In the usual model a second weaker observed lower frequency QPO is explained as the beat frequency of the star spin frequency with the large amplitude QPO. High density neutron stars likely provide particularly strong orbital forces constraining the accreting matter. See the Wagner web site.

  1. On the dynamical stability of planets in double stars

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, E.; Dvorak, R.; Funk, B.; Bois, E.; Freistetter, F.

    2003-10-01

    The importance of stability studies of planetary motion in binaries arises from the fact that double and multiple star systems are more numerous than single stars - at least in the solar neighborhood. Another impulse to carry out such dynamical studies was the discovery of planets in binaries, where we distinguish between two types of motion: P-type and S-type orbits. A dynamical stability study of two binary systems (? Cephei and Gliese 86) is shown in this investigation, where we examined the region between the two stars in order to find stable zones where other planets might exist. For the determination of the stable zones we used two chaos indicators (1. the Fast Lyapunow Indicator - FLI and 2. the Mean Exponential Growth factor of Nearby Orbits - MEGNO) and additionally straight-forward numerical computations by applying the Lie integration method. In the general stability study of S-type motion we show the results for a double star with mass-ratio 0.2 which can be applied to the binary ? Cephei. A study of this system shows that the eccentric orbits of the secondary and of the detected planet restrict the stable zone for a fictitious second planet to the region inside the discovered planet. In the semi-major axis, inclination (a,i)-plane we have found a characteristic "chaotic path" due to an increase of the stable zone when increasing the inclination and a remaining stable island around 1 AU. For the second system (Gliese 86) we varied (a) the eccentricity of the secondary, (b) the eccentricity of the detected planet, (c) the eccentricity of a fictitious second planet and (d) the inclination of the fictitious second planet, and show the size of its stable zone, which shrinks from about 6 AU (for ebinary = 0.2 and eplanet = 0) to about 1.5 AU (for ebinary = 0.7 and eplanet = 0.9).

  2. DSLR Double Star Astrometry Using an Alt-Az Telescope

    NASA Astrophysics Data System (ADS)

    Frey, Thomas; Haworth, David

    2014-07-01

    The goal of this project was to determine if the double star's angular separation and position angle measurements could be successfully measured with a motor driven, alt-azimuth Dobsonian-mounted Newtonian telescope (without a field rotator), and a digital single-lens reflex (DSLR) camera. Additionally, the project was constrained by using as much existing equipment as much as possible, including an Apple MacBook Pro laptop and a Canon T2i camera. This project was additionally challenging because the first author had no experience with astrophotography.

  3. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  4. Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    NASA Astrophysics Data System (ADS)

    Moskalik, P.; Smolec, R.; Kolenberg, K.; Molnár, L.; Kurtz, D. W.; Szabó, R.; Benkő, J. M.; Nemec, J. M.; Chadid, M.; Guggenberger, E.; Ngeow, C.-C.; Jeon, Y.-B.; Kopacki, G.; Kanbur, S. M.

    2015-03-01

    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5 yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20-45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612-0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is non-radial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 ˜ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at ˜1/2f2 and at ˜3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a time-scale of 10-200 d. The dominant radial mode also shows variations on the same time-scale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1 mmag, that must correspond to non-radial g-modes. Such modes never before have been observed in RR Lyrae variables.

  5. One-arm spiral instability in hypermassive neutron stars formed by dynamical-capture binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; East, William E.; Pretorius, Frans; Shapiro, Stuart L.

    2015-12-01

    Using general-relativistic hydrodynamical simulations, we show that merging binary neutron stars can form hypermassive neutrons stars that undergo the one-arm spiral instability. We study the particular case of a dynamical capture merger where the stars have a small spin, as may arise in globular clusters, and focus on an equal-mass scenario where the spins are aligned with the orbital angular momentum. We find that this instability develops when postmerger fluid vortices lead to the generation of a toroidal remnant—a configuration whose maximum density occurs in a ring around the center-of-mass—with high vorticity along its rotation axis. The instability quickly saturates on a time scale of ˜10 ms , with the m =1 azimuthal density multipole mode dominating over higher modes. The instability also leaves a characteristic imprint on the postmerger gravitational wave signal that could be detectable if the instability persists in long-lived remnants.

  6. Molecular Dynamics of Nuclear Pasta in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Briggs, Christian; da Silva Schneider, Andre

    2014-09-01

    During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces. Between the crust and core lies an interesting interface where matter is neither a single nucleus nor separate nuclei. It exists in a frustrated phase; competition between electromagnetic and strong nuclear forces causes exotic shapes to emerge, referred to as nuclear pasta. We use Molecular Dynamics (MD) to simulate nuclear pasta, with densities between nuclear saturation density and approximately one-tenth saturation density. Using MD particle trajectories, we compute the static structure factor S(q) and dynamical response function to describe both electron-pasta and neutrino-pasta scattering. We relate the structure and properties of nuclear pasta phases to features in S(q). Finally, one can integrate over S(q) to determine transport properties such as the electrical and thermal conductivity. This may help provide a better understanding of X-ray observations of neutron stars. During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces. Between the crust and core lies an interesting interface where matter is neither a single nucleus nor separate nuclei. It exists in a frustrated phase; competition between electromagnetic and strong nuclear forces causes exotic shapes to emerge, referred to as nuclear pasta. We use Molecular Dynamics (MD) to simulate nuclear pasta, with densities between nuclear saturation density and approximately one-tenth saturation density. Using MD particle trajectories, we compute the static structure factor S(q) and dynamical response function to describe both electron-pasta and neutrino-pasta scattering. We relate the structure and properties of nuclear pasta phases to features in S(q). Finally, one can integrate over S(q) to determine transport properties such as the electrical and thermal conductivity. This may help provide a better understanding of X-ray observations of neutron stars. This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  7. Supernova Explosions and the Birth of Neutron Stars

    SciTech Connect

    Janka, H.-Thomas; Marek, Andreas; Mueller, Bernhard; Scheck, Leonhard

    2008-02-27

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from {approx}8M{sub {center_dot}} to at least 15M{sub {center_dot}}, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects constitute another way to trigger explosions in connection with the collapse of sufficiently rapidly rotating stellar cores, perhaps linked to the birth of magnetars. The global explosion asymmetries seen in the recent simulations offer an explanation of even the highest measured kick velocities of young neutron stars.

  8. Improved universality in the neutron star three-hair relations

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Yagi, Kent; Yunes, Nicolás

    2015-07-01

    No-hair-like relations between the multipole moments of the exterior gravitational field of neutron stars have recently been found to be approximately independent of the star's internal structure. This approximate equation-of-state universality arises after one adimensionalizes the multipole moments appropriately, which then begs the question of whether there are better ways to adimensionalize the moments to obtain stronger universality. We here investigate this question in detail by considering slowly rotating neutron stars to quartic order in spin, an approximation that is valid for spin frequencies roughly below 500 Hz, both in the nonrelativistic limit and in full general relativity. We find that there exist normalizations that lead to stronger equation-of-state universality in the relations among the moment of inertia and the quadrupole, octopole and hexadecapole moments of neutron stars. We determine the optimal normalization that minimizes the equation-of-state dependence in these relations. The results found here may have applications in the modeling of x-ray pulses and atomic line profiles from millisecond pulsars with NICER and LOFT.

  9. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    SciTech Connect

    Cheng, Quan; Yu, Yun-Wei

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spin down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.

  10. On neutron star structure and the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1983-01-01

    The recently discovered millisecond pulsar (PSR1937-214) is observed to be rotating close to the limit of dynamical instability for a neutron star. Despite its extremely rapid rotation, measurements of the period derivative put a stringent upper limit on the energy loss from gravitational radiation, thus requiring that the quadrupole moment be quite small. The pulsar must also be rotating below the critical frequency at which its equilibrium configuration would become non-axisymmetric, since the lifetime of this configuration against decay by gravitational radiation is very short. This critical frequency, given by the theory of rotating ellipsoids, imposes a restriction on the rotation rate more severe than the break-up frequency and may be used to set a lower limit, rho 2 x 10 to the 14th power g/cu cm, on the density of the star. If the mass is 0.5 - 1.5 solar mass, several of the stiffer neutron star equations of state may be ruled out, and the radius should be less than 16 km. The condition for axisymmetry also imposes an upper limit on the rotation rate to which neutron stars may be spun up by accretion disks in binary systems, a model recently proposed for the evolution of the millisecond pulsar.

  11. INVESTIGATING SUPERCONDUCTIVITY IN NEUTRON STAR INTERIORS WITH GLITCH MODELS

    SciTech Connect

    Haskell, B.; Pizzochero, P. M.; Seveso, S.

    2013-02-20

    The high-density interior of a neutron star is expected to contain superconducting protons and superfluid neutrons. Theoretical estimates suggest that the protons will form a type II superconductor in which the stellar magnetic field is carried by flux tubes. The strong interaction between the flux tubes and the neutron rotational vortices could lead to strong ''pinning'', i.e., vortex motion could be impeded. This has important implications especially for pulsar glitch models as it would lead to a large part of the vorticity of the star being decoupled from the ''normal'' component to which the electromagnetic emission is locked. In this Letter, we explore the consequences of strong pinning in the core on the ''snowplow'' model for pulsar glitches, making use of realistic equations of state and relativistic background models for the neutron star. We find that, in general, a large fraction of the pinned vorticity in the core is not compatible with observations of giant glitches in the Vela pulsar. Thus, the conclusion is that either most of the core is in a type I superconducting state or the interaction between vortices and flux tubes is weaker than previously assumed.

  12. Discovery of a Neutron Star Oscillation Mode During a Superburst

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.; Mahmoodifar, Simin

    2014-08-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. Asteroseismology can provide a powerful probe of the interiors of stars. For example, helioseismology has provided unprecedented insights about the interior of the Sun, but comparable capabilities for neutron star seismology have not yet been achieved. Here we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636-536 during the February 22, 2001 thermonuclear superburst seen with NASA's Rossi X-ray Timing Explorer (RXTE) that is very likely a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid with an amplitude of 0.19 ± 0.04 %. The observed frequency is consistent with the expected inertial frame frequency of an m=2 rotationally-modified g-mode or perhaps an r-mode, where m is the mode's azimuthal wavenumber. Interestingly, this frequency is within 1.5 % of the candidate oscillation frequency recently identified in the accreting millisecond X-ray pulsar XTE J1751-305 assuming that the relevant mode has m=2, and the observed frequency is indeed the mode's inertial frame frequency. If this is correct, it is conceivable that the same oscillation mode is detected in both 4U 1636-536 and XTE J1751-305, but we observe the mode's inertial frame frequency in the former, and the co-rotating frame frequency in the latter. Our results provide further strong evidence that global oscillation modes can indeed produce observable modulations in the X-ray flux from neutron stars.

  13. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    NASA Astrophysics Data System (ADS)

    Bastrukov, S. I.; Yang, J.; Podgainy, D. V.; Weber, F.

    2003-04-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter.

  14. Magnetic properties of quantized vortices in neutron P32 superfluids in neutron stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Nitta, Muneto

    2016-03-01

    We discuss quantized vortices in neutron P32 superfluids, which are believed to realize in high density neutron matter such as neutron stars. By using the Ginzburg-Landau free energy for P32 superfluids, we determine the ground state in the absence and presence of the external magnetic field, and numerically construct P32 quantized vortices in the absence and presence of the external magnetic field along the vortex axis (poloidal) or angular direction (toroidal). We find in certain situations the spontaneous magnetization of the vortex core, whose typical magnitude is about 107 -8 G, but the net magnetic field in a neutron star is negligible because of the ratio of the vortex core size ˜10 fm and the intervortex distance ˜10-6m in a vortex lattice.

  15. Vacuum fluctuation inside a star and their consequences for neutron stars, a simple model

    NASA Astrophysics Data System (ADS)

    Caspar, G.; Rodríguez, I.; Hess, P. O.; Greiner, W.

    2016-04-01

    Applying semi-classical quantum mechanics, the vacuum fluctuations within a star are determined, assuming a constant mass density and applying a monopole approximation. It is found that the density for the vacuum fluctuations does not only depend linearly on the mass density, as assumed in a former publication, where neutron stars up to 6 solar masses were obtained. This is used to propose a simple model on the dependence of the dark energy to the mass density, as a function of the radial distance r. It is shown that stars with up to 200 solar masses can, in principle, be obtained. Though, we use a phenomenological model, it shows that in the presence of vacuum fluctuations stars with large masses can be stabilized and probably stars up to any mass can exist, which usually are identified as black holes.

  16. Buoyancy and g-modes in young superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Andersson, N.; Ho, W. C. G.

    2016-01-01

    We consider the local dynamics of a realistic neutron-star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron-star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support for g-modes at lower densities (where there are no muons) is entirely thermal. We confirm the recent suggestion that the g-modes in this region may be unstable, but our results indicate that this instability will be weak and would only be present for a brief period of the star's life. Our analysis accounts for the presence of thermal excitations encoded in entrainment between the entropy and the superfluid component. Finally, we discuss the complete spectrum, including the normal sound waves and, in superfluid regions, the second sound.

  17. Merger of a Neutron Star with a Newtonian Black Hole

    NASA Technical Reports Server (NTRS)

    Lee, William H.; Kluzniak, Wlodzimierz

    1995-01-01

    Newtonian smooth particle hydro simulations are presented of the merger of a 1.4 solar mass neutron star with a black hole of equal mass. The initial state of the system is modeled with a stiff polytrope orbiting a point mass. Dynamical instability sets in when the orbital separation is equal to about three stellar radii. The ensuing mass transfer occurs on the dynamical timescale. No accretion torus is formed. At the end of the computation a corona of large extent shrouds an apparently stable binary system of a 0.25 solar mass star orbiting a 2.3 solar mass black hole.

  18. Neutron-star formation in the carbon-detonation supernova.

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Buchler, J.-R.; Barkat, Z. K.

    1973-01-01

    Neutrino losses, such as those driven by the convective Urca process, may affect the evolution of stars in the mass range from 4 to 8 solar masses so as to lead to collapse of their degenerate carbon/oxygen cores. A corresponding hydrodynamic model is computed which leads to the formation of a 1.3 to 1.4 solar mass neutron star with the expulsion of a small fraction of the mass, about 0.l solar mass at about 20,000 km/sec into the overlying hydrogen envelope. This sets the stage for the Ostriker-Gunn mechanism in which Type II supernovae and pulsars are formed.

  19. Planetary motion in double stars: the influence of the secondary

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, Elke

    2005-02-01

    Among more than 120 discovered exo-planets, less than 20 were found in double star systems. Out of this sample we studied the planetary motion in those systems that can be regarded as close binaries, i.e. HD41004 AB, gamma Cephei and Gliese 86. In this study we concentrate on the first two systems, where the secondaries are M4 V dwarfs at about 20 AU from the host-star. A comparison of previous studies where the dynamical behavior was studied in the (semi-major axis, inclination) plane (see Dvorak et al. 2003a) for gamma Cephei and Pilat-Lohinger & Funk (2004) for HD41004 A) shows significant differences in the stability maps. Our numerical investigation examines the region between 0.5 and 1.2 AU, which is influenced mainly by mean motion resonances when the initial position of the detected planet a_{gp} < 1.5 AU. If we move the planet farther away from the host-star (to distances > 1.5 AU) we observe an arc-shaped chaotic structure in the dynamical map.

  20. Unified picture of the post-merger dynamics and gravitational wave emission in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, A.; Stergioulas, N.

    2015-06-01

    We introduce a classification scheme of the postmerger dynamics and gravitational wave emission in binary neutron star mergers, after identifying a new mechanism by which a secondary peak in the gravitational wave spectrum is produced. It is caused by a spiral deformation, the pattern of which rotates slower with respect to the double-core structure in the center of the remnant. This secondary peak is typically well separated in frequency from the secondary peak produced by a nonlinear interaction between a quadrupole and a quasiradial oscillation. The new mechanism allows for an explanation of low-frequency modulations seen in a number of physical characteristics of the remnant, such as the central lapse function, the maximum density and the separation between the two cores, but also in the gravitational wave amplitude. We find empirical relations for both types of secondary peaks between their gravitational wave frequency and the compactness of nonrotating individual neutron stars, that exist for fixed total binary masses. These findings are derived for equal-mass binaries without intrinsic neutron star spin analyzing hydrodynamical simulations without magnetic field effects. Our classification scheme may form the basis for the construction of detailed gravitational wave templates of the postmerger phase. We find that the quasiradial oscillation frequency of the remnant decreases with the total binary mass. For a given merger event, our classification scheme may allow one to determine the proximity of the measured total binary mass to the threshold mass for prompt black hole formation, which can, in turn, yield an estimate of the maximum neutron star mass.

  1. Hyperons in neutron stars and supernova cores

    NASA Astrophysics Data System (ADS)

    Oertel, Micaela; Gulminelli, Francesca; Providência, Constança; Raduta, Adriana R.

    2016-03-01

    The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities and temperatures, where potentially other components than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark matter, could be related to a very rich phase structure with a large density domain covered by phase coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where thermal effects cannot be neglected.

  2. Systematic parameter errors in inspiraling neutron star binaries.

    PubMed

    Favata, Marc

    2014-03-14

    The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (NS) spin, tidal deformation, or orbital eccentricity. All of these effects can yield systematic errors that exceed statistical errors for plausible parameter values. In particular, neglecting spin, eccentricity, or high-order PN terms causes a significant bias in the NS Love number. Tidal effects will not be measurable with PN inspiral waveforms if these systematic errors are not controlled. PMID:24679276

  3. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions. PMID:26371635

  4. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-08-01

    The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy. PMID:23971553

  5. On radial oscillations in viscous accretion discs surrounding neutron stars

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1992-01-01

    Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding neutron stars in X-ray binary systems have been investigated. Within the framework of the alpha-viscosity model a series of hydrodynamic calculations demonstrates that the oscillations are global for alpha of about 1. On the other hand, for alpha of 0.4 or less, the oscillations are local and confined to the disk boundaries. If viscous stresses acting in the radial direction are included, however, it is found that the disk can be stabilized. The application of such instabilities in accretion disks, without reference to the boundary layer region between the neutron star (or magnetosphere) and the inner edge of the disk, to the phenomenology of quasi-periodic oscillations is brought into question.

  6. General Relativistic Simulations of Magnetized Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno

    2011-04-01

    Binary neutron stars are among the most important sources of gravitational waves which are expected to be detected by the current or next generation of gravitational wave detectors, such as LIGO and Virgo, and they are also thought to be at the origin of very important astrophysical phenomena, such as short gamma-ray bursts. I will report on some recent results obtained using the fully general relativistic magnetohydrodynamic code Whisky in simulating equal-mass binary neutron star systems during the last phases of inspiral, merger and collapse to black hole surrounded by a torus. I will in particular describe how magnetic fields can affect the gravitational wave signal emitted by these sources and their possible role in powering short gamma-ray bursts.

  7. Long-term evolution of dim isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Ertan, Ü.; Çalışkan, Ş.; Benli, O.; Alpar, M. A.

    2014-10-01

    The X-ray dim isolated neutron stars (XDINs) have periods in the same range as the anomalous X-ray pulsars (AXPs) and the soft gamma-ray repeaters (SGRs). We apply the fallback disc model, which explains the period clustering and other properties of AXP/SGRs, to the six XDINs with measured periods and period derivatives. Present properties of XDINs are obtained in evolutionary scenarios with surface dipole magnetic fields B0 ˜ 1012 G. The XDINs have gone through an accretion epoch with rapid spin-down earlier, and have emerged in their current state, with the X-ray luminosity provided by neutron star cooling and no longer by accretion. Our results indicate that the known XDINs are not likely to be active radio pulsars, as the low B0, together with their long periods place these sources clearly below the `death valley'.

  8. On the capture of dark matter by neutron stars

    SciTech Connect

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub χ} ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub χ} ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ{sub χn} ∼ 10{sup −52} cm{sup 2} to σ{sub χn} ∼ 10{sup −57} cm{sup 2}, the dark matter self-interaction cross section limit is σ{sub χχ} ∼< 10{sup −33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  9. SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS

    SciTech Connect

    Tsang, David

    2013-11-10

    We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

  10. Tidal Love numbers of a slowly spinning neutron star

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Ferrari, Valeria

    2015-12-01

    By extending our recent framework to describe the tidal deformations of a spinning compact object, we compute for the first time the tidal Love numbers of a spinning neutron star to linear order in the angular momentum. The spin of the object introduces couplings between electric and magnetic distortions, and new classes of spin-induced ("rotational") tidal Love numbers emerge. We focus on stationary tidal fields, which induce axisymmetric perturbations. We present the perturbation equations for both electric-led and magnetic-led rotational Love numbers for generic multipoles and explicitly solve them for various tabulated equations of state and for a tidal field with an electric (even parity) and magnetic (odd parity) component with ℓ=2 , 3, 4. For a binary system close to the merger, various components of the tidal field become relevant. In this case we find that an octupolar magnetic tidal field can significantly modify the mass quadrupole moment of a neutron star. Preliminary estimates, assuming a spin parameter χ ≈0.05 , show modifications ≳10 % relative to the static case, at an orbital distance of five stellar radii. Furthermore, the rotational Love numbers as functions of the moment of inertia are much more sensitive to the equation of state than in the static case, where approximate universal relations at the percent level exist. For a neutron-star binary approaching the merger, we estimate that the approximate universality of the induced mass quadrupole moment deteriorates from 1% in the static case to roughly 6% when χ ≈0.05 . Our results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron-star binaries approaching the merger.

  11. Uncovering the Properties of Young Neutron Stars and Their Surroundings

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Slane, Patrick

    2005-01-01

    The subject grant provides funding through the NASA LTSA program. This five-year grant involves the study of young neutron stars, particularly those in supernova remnants. In the fifth year of this program, the following studies have been undertaken in support of this effort and are discussed in this report. 1) 3C 58; 2) Chandra Survey for Compact Objects in Supernova Remnants; 3) G327.1-1.1; 4) Infrared Emission from Pulsar Wind Nebulae; and Cas A.

  12. Mass transport in a neutron star magnetosphere

    NASA Technical Reports Server (NTRS)

    Spruit, H. C.; Taam, R. E.

    1990-01-01

    The interaction between a thin Keplerian accretion disk and a magnetosphere surrounding a central object is investigated within the framework of an analytical description for the magnetic field configuration. The commonly held assumption that all accreting plasma flows from the magnetospheric boundary to the stellar surface is shown to be overly restrictive. If the magnetospheric boundary is defined as the distance where the rotation starts deviating significantly from the Kepler rate, it is found that there is an extensive region inside this boundary where gas, nearly corotating with the star, drifts inward across the field by an interchange instability. The linear analysis of this instability is presented. It is also found that gas tied to field lines can be in equilibrium at positions off the midplane, and that gas can plausibly flow from the midplane to these positions, in certain circumstances. The observational consequences of such a picture are briefly discussed.

  13. The hydrodynamic origin of neutron star kicks

    NASA Astrophysics Data System (ADS)

    Nordhaus, J.; Brandt, T. D.; Burrows, A.; Almgren, A.

    2012-06-01

    We present results from a suite of axisymmetric, core-collapse supernova simulations in which hydrodynamic recoil from an asymmetric explosion produces large protoneutron star (PNS) velocities. We use the adaptive mesh refinement code CASTRO to self-consistently follow core collapse, the formation of the PNS and its subsequent acceleration. We obtain recoil velocities of up to 620 km s-1 at ˜1 s after bounce. These velocities are consistent with the observed distribution of pulsar kicks and with PNS velocities obtained in other theoretical calculations. Our PNSs are still accelerating at several hundred km s-1 at the end of our calculations, suggesting that even the highest velocity pulsars may be explained by hydrodynamic recoil in generic, core-collapse supernovae.

  14. Dragging of inertial frames inside the rotating neutron stars

    SciTech Connect

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades E-mail: kamakshya.modak@saha.ac.in

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  15. Thermonuclear reactions in cool accreting neutron stars and burst phenomena

    NASA Technical Reports Server (NTRS)

    Miyaji, S.; Nomoto, K.

    1985-01-01

    The ignition of accreting materials on neutron stars is explored using strongly coupled plasma analytical techniques. The calculations cover the ignition temperature and density at the bottom of the accreted envelope of a neutron star. Emphasis is placed on low-temperature ignitions which take place at high densities. The investigation is extended to the accretion of material from a white dwarf in the form of pure He, C + O, or O + Ne + Mg. It is shown that electrons are strongly degenerate in low-temperature flashes, where the ignition is more dependent on density than on temperature. Precursor flashes 0.4-0.7 the intensity of the main burst will appear before the main bursts. The intensity relationship indicates that the appropriate model for an X-ray burst from a neutron star accreting from a white dwarf is a He shell flash in the presence of a hydrogen-rich atmosphere. The flash will have a maximum energy of 2 x 10 to the 43 ergs and could last as long as 40,000 sec.

  16. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Zrake, Jonathan; MacFadyen, Andrew I.

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  17. The Oscillations and Stability of Differentially Rotating Neutron Stars

    NASA Technical Reports Server (NTRS)

    Watts, A.

    2004-01-01

    Studies of the oscillations and stability of neutron stars are motivated by the fact that vibrating neutron stars are a promising source of gravitational waves. One important factor is the influence of differential rotation, which is likely to arise in a neutron star at times, such as the immediate aftermath of the supernova, when we expect strong vibrations. I will discuss two phenomena unique to differentially rotating systems: dynamical shear instabilities, and the existence of a co-rotation band (a frequency band in which mode pattern speed matches the local angular velocity). Using a simple model, we have found dynamical shear instabilities that arise where modes cross into the co-rotation band, if the degree of differential rotation exceeds a certain threshold. We are currently investigating whether this mechanism operates in more realistic stellar models, and whether it is responsible for the dynamical instabilities occurring at low ratios of kinetic to potential energy that have been observed by several authors. I will present the latest results of these studies. Another topic of investigation is the nature of oscillations within the co-rotation band. The band gives rise to a continuous spectrum whose collective physical perturbation exhibits complicated temporal behaviour. I will also discuss the existence of modes within the continuous spectrum that appear physically indistinguishable from the discrete modes outside the band, despite the apparently singular nature of their eigenfunctions.

  18. FROM THE CURRENT LITERATURE: Neutron stars and equation of state of nuclear matter

    NASA Astrophysics Data System (ADS)

    Beskin, Vasilii S.

    1987-08-01

    Neutron stars are compact objects whose properties depend strongly on the equation of state of the highly compressed nuclear matter. Analysis of the emission from several extraterrestrial sources whose activity is linked with neutron stars made it possible to refine the characteristics of these stars. This refinement in turn made it possible to obtain additional information on the properties of nuclear matter.

  19. Can very compact and very massive neutron stars both exist?

    NASA Astrophysics Data System (ADS)

    Drago, Alessandro; Lavagno, Andrea; Pagliara, Giuseppe

    2014-02-01

    The existence of neutron stars with masses of ˜2M⊙ requires a stiff equation of state at high densities. On the other hand, the necessary appearance also at high densities of new degrees of freedom, such as hyperons and Δ resonances, can lead to a strong softening of the equation of state with resulting maximum masses of ˜1.5M⊙ and radii smaller than ˜10 km. Hints for the existence of compact stellar objects with very small radii have been found in recent statistical analyses of quiescent low-mass X-ray binaries in globular clusters. We propose an interpretation of these two apparently contradicting measurements, large masses and small radii, in terms of two separate families of compact stars: hadronic stars, whose equation of state is soft, can be very compact, while quark stars, whose equation of state is stiff, can be very massive. In this respect an early appearance of Δ resonances is crucial to guarantee the stability of the branch of hadronic stars. Our proposal could be tested by measurements of radii with an error of ˜1 km, which is within reach of the planned Large Observatory for X-ray Timing satellite, and it would be further strengthened by the discovery of compact stars heavier than ˜2M⊙.

  20. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  1. Symmetry energy from nuclear masses and neutron-star observations using generalised Skyrme functionals

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Fantina, A. F.; Pearson, J. M.; Goriely, S.

    2016-01-01

    We study the constraints imposed by nuclear mass measurements and neutron-star observations on the symmetry energy. For this purpose, we use a family of unified equations of state of neutron-star interiors, based on generalised Skyrme functionals that were fitted to essentially all the experimental nuclear mass data while ensuring a realistic neutron-matter equation of state.

  2. Levitating atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh

    2016-06-01

    We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a general relativity-consistent treatment of the photon flux and radiation tensor anisotropy. In this way, we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.

  3. Detecting neutrinos from black hole-neutron star mergers

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R.

    2009-12-15

    While it is well known that neutrinos are emitted from standard core collapse protoneutron star supernovae, less attention has been focused on neutrinos from accretion disks. These disks occur in some supernovae (i.e. collapsars) as well as in compact object mergers, and they emit neutrinos with similar properties to those from protoneutron star supernovae. These disks and their neutrinos play an important role in our understanding of gamma ray bursts as well as the nucleosynthesis they produce. We study a disk that forms in the merger of a black hole and a neutron star and examine the neutrino fluxes, luminosities and neutrino surfaces for the disk. We also estimate the number of events that would be registered in current and proposed supernova neutrino detectors if such an event were to occur in the Galaxy.

  4. Levitating atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh

    2016-03-01

    We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a GR-consistent treatment of the photon flux and radiation tensor anisotropy. In this way we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.

  5. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  6. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  7. A Christmas comet falling onto a neutron star

    NASA Astrophysics Data System (ADS)

    Campana, S.

    The Sun and the planets are the main, but not the only, bodies of the Solar System. There are thousands of asteroids and several tens of comets, many of which are still unknown. They are the remnants of the planetesimals that formed at the origin of our Solar System, and they are rocky objects of different dimensions and irregular shape. Sometimes these minor bodies fall onto the Sun or onto planets, like Jupiter. Less dramatic events occur when the infalling bodies do not directly impact onto the target but are tidally disrupted. The tidal disruption of solar mass stars around supermassive black holes has been extensively studied analytically and numerically. In these events the star, as it approaches the black hole, develops into an elongated banana-shaped structure, the most tightly bound debris being at the closer end to the compact object. After completing an (few) eccentric orbit(s), these bound debris fall onto the black hole, emitting energy. Orbital precession may lead to the crossing of the debris orbits producing an accretion disk. Observationally, these events will give rise to luminous events with different temporal decays in different energy bands. Tidal break-up events occur also in planetary systems around normal stars but these events are too faint to be detected. Things change when the star is a compact object. Indeed planets have been discovered around radio pulsars, making likely the existence also of orbiting minor bodies. The direct impact of minor bodies onto neutron stars has been studied in the past and it has been envisaged as a possible (local) explanation for Gamma-Ray Bursts (GRBs), producing short-duration (˜ seconds) events. To explain the peculiarities of GRB 101225A (Christmas burst) we propose that it resulted from the tidal disruption event of a minor body around a neutron star in our Galaxy.

  8. Extrasolar Planet in Double Star System Discovered from La Silla

    NASA Astrophysics Data System (ADS)

    1998-11-01

    Early Success With New Swiss Telescope During the past three years, about fifteen planetary companions have been discovered in orbits around dwarf stars. They have revealed to astrophysicists a broad diversity of planetary systems at other stars. Giant planets with masses ranging from half to several times the mass of Jupiter, the largest planet in our own solar system, have been detected with various telescopes. The orbital periods range from 3.1 to 1650 days; while some of the orbits are of circular shape, others are very elongated. The observed diversity naturally raises questions about how these exoplanets are formed. Now, following only a few months of observations, a Swiss team of astronomers [1], working with a new Swiss astronomical facility at the ESO La Silla Observatory mainly dedicated to the search for exoplanets, has made its first planetary detection. It is a massive planet moving in an almost circular orbit around a nearby star that is itself the primary component of a double star system. The Geneva southern extrasolar planet search programme ESO PR Photo 45a/98 ESO PR Photo 45a/98 [Preview - JPEG: 800 x 640 pix - 456k] [High-Res - JPEG: 3000 x 2400 pix - 2.7Mb] ESO PR Photo 45b/98 ESO PR Photo 45b/98 [Preview - JPEG: 800 x 953 pix - 296k] [High-Res - JPEG: 3000 x 3572 pix - 2.3Mb] PR Photo 45a/98 (left) is a view of the dome with the 1.2-m Swiss Leonard Euler Telescope at the ESO La Silla Observatory. The telescope itself is shown in Photo 45b/98 (right). In June 1998, the CORALIE echelle spectrograph was mounted at the 1.2-m Swiss telescope at La Silla and the commissioning phase was begun, during which the telescope and the spectrograph would be trimmed to perfection. This facility is specifically designed for high-precision radial-velocity measurements and it will mostly be used for an ambitious search for large extrasolar planets around stars in the southern celestial hemisphere. Over 1000 stars will be investigated. Such a vast observational programme is only feasible with a very accurate and efficient instrumental combination. The new Leonard Euler telescope with a 120-cm main mirror was built at the Geneva Observatory and named in honour of the famous Swiss mathematician (1707-1783). The CORALIE spectrograph was developed through a collaboration between this observatory and the Haute-Provence Observatory (OHP) in France. It is an improved version of the ELODIE spectrograph now in operation at OHP, and with which the first extrasolar planet was found around the star 51 Pegasi, three years ago. Compared to its predecessor, CORALIE has increased spectral resolution, as well as a more efficient light detector. It also has improved instrumental control that features complete on-line data reduction and analysis. CORALIE is so accurate that it can measure the motion of a star in the direction of line-of-sight (the "radial velocity") with a precision that is better than 7 m/sec or 25 km/hour, i.e. about the speed of a fast human runner. While still in the commissioning phase, very valuable scientific data have been gathered for the star known as Gliese 876 , the closest and lightest star with a planetary companion found so far. And just as the new facility has become fully operational, it has already yielded its first extrasolar planet discovery. Discovery of a heavy planet in orbit around "Gliese 86" Gliese 86 (also known as "HD 13445") is seen in the southern constellation Eridanus (The River). It is a bright, rather cool dwarf star, somewhat less massive than the Sun (about 0.79 solar mass). It is also intrinsically fainter than the Sun (about 0.4 solar luminosity). However, since it is quite nearby - about 35 light-years only - its apparent magnitude is comparatively bright and it is just at the limit of what can be seen with the unaided eye (m V = 6.12). Contrary to most stars with known planetary companions, Gliese 86 contains less metals than our Sun, by a factor of two. Since September 1998, the Swiss astronomers have obtained 29 high-precision radial-velocity measurements of Gliese 86 . A planet in orbit around a star will manifest its presence by pulling the star in different directions, thereby changing by rather small amounts its measured velocity. ESO PR Photo 45c/98 ESO PR Photo 45c/98 [Preview - JPEG: 800 x 887 pix - 260k] [High-Res - JPEG: 3000 x 3325 pix - 910k] PR Photo 45c/98 (left) shows the measurements (with error bars) of the radial velocity (V r vrs. orbital phase) of Gliese 86 with the new 1.2-m Swiss telescope and the CORALIE spectrograph at La Silla. They have been "phase-folded" with a period of 15.83 days and the diagramme thus represents one revolution of the planet around the star. The fully drawn line corresponds to the best orbital solution, obtained by least-square fitting a simple two-body model (star + planet) to the data. As can be seen, the agreement is near perfect and the dispersion of the measurements around this line is very small. The orbit of the new planet ( PR Photo 45c/98) has a period of 15.83 days. The total velocity variation is 740 m/sec, very easy to detect with CORALIE. The orbit is slightly non-circular and has a small, but significant eccentricity of 0.05. The dispersion of the radial-velocity values around the orbital solution is only 7 m/sec; this includes statistical errors, spectrograph systematic errors and intrinsic stellar variations. The inferred minimum mass for the planetary companion is 4.9 times the mass of planet Jupiter. The new planet is at a distance of only 0.11 AU (16.5 million km) from the star, i.e. just over one tenth of the Sun-Earth distance. The surface temperature on the planet is quite high, about 380 o C. It is the second closest exoplanetary system discovered to date. A planet around a double star From the long-term drift observed in the radial-velocity measurements during the past 15 years with another spectrograph at the La Silla Observatory, it is known that Gliese 86 is not a single star, but in fact a long-period "spectroscopic" binary system. The separation between the two stars is probably more than one hundred times larger than that between the planet and the star it revolves around. The observed characteristics of the new planet, e.g., its rather large mass and almost circular orbit, associated with this double-star nature, indicate that planetary systems may form in other ways than the standard agglomeration scheme. For instance, recent theoretical calculations by Alan Boss (Carnegie Institute of Washington, USA) suggest that multi-Jupiter-mass planets may be formed through dynamical instabilities in a protoplanetary disk that are induced by the gravitational action of a nearby stellar companion. One important result of this new, extensive survey carried out in the southern sky will be to provide potential targets for the VLTI (Very Large Telescope Interferometer), presently being built by ESO on Cerro Paranal. When it enters into operation some years from now, it will be able to provide exciting additional information about these planets and their nature. Note: [1] The team consists of Didier Queloz (also Jet Propulsion Laboratory, Pasadena, USA), Michel Mayor, Luc Weber, Dominique Naef, Stephane Udry, Nuno Santos, Andre Blecha and Michel Burnet (Geneva Observatory, Switzerland) and Bastien Confino (St. Luc Observatory, Switzerland). The members of team want to express their gratitude to all the technical staff of the Geneva Observatory, in particular Daniel Huguenin, Rene Dubosson, Giovanni Russiniello and Charles Maire for their great efforts, from the design to the final installation of the Swiss Leonard Euler telescope at La Silla. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  9. HERSCHEL AND SPITZER OBSERVATIONS OF SLOWLY ROTATING, NEARBY ISOLATED NEUTRON STARS

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 mu m) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ∼10% to ∼20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  10. Selenium double donors in neutron transmutation doped, isotopically controlled germaniun

    NASA Astrophysics Data System (ADS)

    Olsen, C. S.; Beeman, J. W.; Itoh, K. M.; Farmer, J.; Ozhogin, V. I.; Haller, E. E.

    1998-11-01

    Far infrared photoconductivity and absorption measurements were performed on isotopically controlled 76Ge samples that were neutron irradiated to produce 77Se through double beta decay. The spectra exhibit ground state to bound excited state transitions which place the first ionization level of Se at E c-0.2688 eV. Hall effect measurements on compensated Ge:Se single crystals yield the second ionization level in the lower half of the band gap at E v+0.17 eV. Our experiments offer the first unambiguous identification of the deep donor level formed by single Se atoms on Ge lattice sites and verify earlier findings.

  11. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-01

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star. PMID:19890325

  12. Bulk viscosity coefficients due to phonons in superfluid neutron stars

    SciTech Connect

    Manuel, Cristina; Tolos, Laura; Tarrús, Jaume E-mail: tarrus@ecm.ub.edu

    2013-07-01

    We calculate the three bulk viscosity coefficients as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state of the system. The solution of the dynamical evolution of the phonon number density allows us to calculate the bulk viscosity coefficients as function of the phonon collisional rate and the phonon dispersion law, which depends on the neutron pairing gap. Our method of computation is rather general, and could be used for different superfluid systems, provided they share the same underlying symmetries. We find that the behavior with temperature of the bulk viscosity coefficients is dominated by the contributions coming from the collinear regime of the 2↔3 phonon processes. For typical star radial pulsation frequencies of ω ∼ 10{sup 4}s{sup −1}, we obtain that the bulk viscosity coefficients at densities n∼>4n{sub 0} are within 10% from its static value for T∼<10{sup 9} K and for the case of strong neutron superfluidity in the core with a maximum value of the {sup 3}P{sub 2} gap above 1 MeV, while, otherwise, the static solution is not a valid approximation to the bulk viscosity coefficients. Compared to previous results from Urca and modified Urca reactions, we conclude that at T ∼ 10{sup 9}K phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars, except for n ∼ 2n{sub 0} when the opening of the Urca processes takes place.

  13. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  14. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  15. Distinguishing newly born strange stars from neutron stars with g-mode oscillations.

    PubMed

    Fu, Wei-Jie; Wei, Hai-Qing; Liu, Yu-Xin

    2008-10-31

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors. PMID:18999812

  16. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2014)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2015-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  17. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2011)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2011-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  18. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2013)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2013-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  19. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2010)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2009-10-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  20. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2010)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2010-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  1. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2012)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2012-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  2. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2014)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2014-11-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  3. VizieR Online Data Catalog: The Washington Visual Double Star Catalog (Mason+ 2001-2014)

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Wycoff, G. L.; Hartkopf, W. I.; Douglass, G. G.; Worley, C. E.

    2016-05-01

    The Washington Visual Double Star Catalog (WDS) is the successor to the Index Catalogue of Visual Double Stars, 1961.0 (IDS; Jeffers and van den Bos, Publ. Lick Obs. 21). Three earlier double star catalogs in XXth century, those by Burnham (BDS, 1906, "General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), Innes (SDS, 1927, "Southern Double Star Catalogue -19 to -90 degrees", Union Observatory, Johannesburg, South Africa), and Aitken (ADS, 1932 "New General Catalogue of Double Stars within 121 degrees of the North Pole", Carnegie Institution of Washington), each covered only a portion of the sky. Both the IDS and the WDS cover the entire sky, and the WDS is intended to contain all known visual double stars for which at least one differential measure has been published. The WDS is continually updated as published data become available. Prior to this, three major updates have been published (Worley and Douglass 1984, "Washington Visual Double Star Catalog, 1984.0", U.S. Naval Observatory, Washington; Worley and Douglass 1997A&AS..125..523W, Cat. I/237; Mason, Wycoff, Hartkopf, Douglass and Worley 2001AJ....122.3466M; and Mason et al. 2006.5). The Washington Double Star Catalog (WDS) has seen numerous changes since the last major release of the catalog. The application of many techniques and considerable industry over the past few years has yielded significant gains in both the number of systems and the number of measures. Is is maintained by the US Naval Observatory, and represents the world's principal database of astrometric double and multiple star information. The WDS contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of the systems. (3 data files).

  4. Studies of neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.

    Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust scattering halos (diffuse emission surrounding X-ray sources, resulting from photons scattering from dust grains) to geometrically determine the distance and the distribution of dust along the line of sight to X-ray sources. The distance is clearly important for inferring the absolute luminosities of systems from measured fluxes, and knowledge of the distribution of dust can further understanding of the interstellar medium.

  5. Neutron superfluidity and the structure of the neutron star inner crust

    SciTech Connect

    Baldo, M.; Saperstein, E. E. Tolokonnikov, S. V.

    2007-09-15

    A self-consistent quantum approach to describe the inner crust structure of neutron stars is developed within the Wigner-Seitz (WS) approximation, based on the generalized energy functional method involving explicitly neutron and proton pairing correlations. The energy functional is constructed by matching the realistic phenomenological nuclear functional by Fayans et al. for describing the pseudonucleus in the center of the WS cell with the one calculated microscopically for neutron matter within the Brueckner approach with the Argonne v{sub 18} force. The microscopic description of the neutron superfluidity is based on the BCS approach with the same v{sub 18} force. Many-body theory corrections to the BCS method (the correlation and self-energy ones) are included in the calculation scheme in an approximate way. A wide region of average densities was investigated corresponding to the Fermi momentum values k{sub F} = 0.6-1.2 fm{sup -1}.

  6. Neutron Reactions in Accreting Neutron Stars: A New Pathway to Efficient Crust Heating

    SciTech Connect

    Gupta, Sanjib S.; Kawano, Toshihiko; Moeller, Peter

    2008-12-05

    In our calculation of neutron star crust heating we include several key new model features. In earlier work electron capture (EC) only allowed neutron emission from the daughter ground state; here we calculate, in a deformed quasi-random-phase approximation (QRPA) model, EC decay rates to all states in the daughter that are allowed by Gamow-Teller selection rules and energetics. The subsequent branching ratios between the 1n,...,xn channels and the competing {gamma} decay are calculated in a Hauser-Feshbach model. In our multicomponent plasma model a single (EC, xn) reaction step can produce several neutron-deficient nuclei, each of which can further decay by (EC, xn). Hence, the neutron emission occurs more continuously with increasing depth as compared to that in a one-component plasma model.

  7. Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Mojica, Sindy; Zagermann, Marco

    2016-03-01

    We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, employing two equations of state for the nuclear matter. We analyze the dependence of the physical properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases this domain, leading to lower values for the maximum mass as well as to smaller central densities. The quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the moment of inertia found in general relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a small dilaton charge.

  8. EUV/soft x-ray spectra for low B neutron stars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.

    1995-01-01

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  9. EUV/soft x-ray spectra for low B neutron stars

    SciTech Connect

    Romani, R.W.; Rajagopal, M.; Rogers, F.J.; Iglesias, C.A.

    1995-05-23

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit ``thermal`` radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars` thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  10. Observational constraints on the masses of neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S. A.

    1976-01-01

    The present state of empirical knowledge about neutron-star masses is reviewed. It is shown how the mass function of a pulsar-containing binary system can be inferred from measurements of the pulsation period and the projected semimajor axis of the pulsar orbit plus independent information concerning the inclination of the orbital plane, the mass of the companion star, or both. Relevant observational properties, the type of information used to constrain the pulsar mass, and the range of allowable pulsar masses are summarized for the binary systems 3U 0900-40, Cen X-3, SMC X-1, Her X-1, and PSR 1913+16. It is found that as long as the general theory of relativity is correct, neutron-star masses should range from about 1.4 to 1.9 solar masses if the companion is a normal white dwarf or should be less than about 1.9 solar masses if the companion is some other object. It is concluded that these mass estimates are entirely consistent with the predictions of nuclear physics theory.

  11. Prediction of Black Hole and Neutron Star Mesolensing Events

    NASA Astrophysics Data System (ADS)

    Harding, Alex; Di Stefano, Rosanne; Urama, Johnson; Pham, Dang

    2016-01-01

    Black holes and neutron stars are ideal gravitational lenses because they have large masses and dim optical magnitudes. Lensing induced by nearby stellar objects, typically within a few kpc, is known as mesolensing. We report on our study of the spatial paths of more than 200 compact objects with measured proper motions. We predict their close approaches on the sky to background stars whose positions and magnitudes have been drawn from the Hubble Source Catalog, and from the 2MASS and USNO-A catalogs. By plotting the paths of the stellar remnants many years into the future we make predictions on when detectable events will occur. The observations provide a way of measuring the masses of the neutron star/black hole lenses. We also investigate possible future lensing events that would be caused if the compact object is orbited by dark companions, including exoplanets. Mesolensing events may be caused by exoplanets even if the compact object is unlikely to produce its own event. Constraints can be derived for planet masses and orbits both in cases with event detections and in cases in which no detection is achieved.

  12. Strangeness content of neutron stars with strong ?--hyperon repulsion

    NASA Astrophysics Data System (ADS)

    Razeira, M.; Mesquita, A.; Vasconcellos, C. A. Z.; Ruffini, R.; Rueda, J. A.; Gomes, R. O.

    2014-09-01

    A new constraint on the equation of state and composition of the matter on neutron stars has been provided by the measurement of the mass 2.01 0.04 M? for PSR J0348 +0432. In this contribution we investigate the role of many-body correlations in the maximum mass of neutron stars using the effective relativistic QHD-model with parameterized couplings. The complete expression of our QHD interaction Lagrangian exhausts the whole fundamental baryon octet (n, p, ?-, ?0, ?+, ?, ?-, ?0) and includes many-body forces simulated by nonlinear self-couplings and meson-meson interaction terms involving scalar-isoscalar (?, ?*), vector-isoscalar (?, ?), vector-isovector (?rrho), and scalar-isovector (?). We study the behavior of the asymmetry parameter, which describes the relative neutron excess in the system as well as the behavior of the strangeness asymmetry parameter, which specifies the strangeness content in the system and is strictly connected with the appearance of a particular hyperon species in the extreme case where the ?- experiences such a strong repulsion that it does not appear at all in nuclear matter.

  13. Double helix boron-10 powder thermal neutron detector

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  14. Gravitational wave asteroseismology with fast rotating neutron stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2011-03-15

    We investigate damping and growth times of the quadrupolar f mode for rapidly rotating stars and a variety of different polytropic equations of state in the Cowling approximation. This is the first study of the damping/growth time of these types of oscillations for fast-rotating neutron stars in a relativistic treatment where the spacetime degrees of freedom of the perturbations are neglected. We use these frequencies and damping/growth times to create robust empirical formulae which can be used for gravitational-wave asteroseismology. The estimation of the damping/growth time is based on the quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.

  15. Gamma-ray bursts from colliding neutron stars

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1992-01-01

    Three distance scales to gamma-ray bursters are discussed: about 300 pc, about 2 - 50 kpc, and about 1 Gpc, corresponding to the Galactic disk, Galactic halo, and extragalactic origin. No compelling evidence is found in favor of any of them. The BATSE experiment on GRO should determine the distance scale by determining the angular distribution of very weak bursts. The rate of collisions between the neutron stars is about 0.0001/yr in our Galaxy, and about 10 exp 5/yr within the Hubble distance. The collisions are the final phases of binary orbit decay driven by gravitational radiation, and may produce gamma-ray bursts detectable at extra-galactic distances. If strange stars exist then their collisions must release about 10 exp 49 erg in gamma-rays over about 10 seconds. Such events should be detectable out to about 1 Gpc with the current instruments.

  16. Realistic electrostatic potentials in a neutron star crust

    NASA Astrophysics Data System (ADS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-10-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner-Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas-Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential.

  17. Neutron star models in frames of f (R) gravity

    SciTech Connect

    Astashenok, Artyom V.

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  18. Binary-binary collisions involving main-sequence stars, white dwarfs and neutron stars in globular clusters

    SciTech Connect

    Leonard, P.J.T.; Davies, M.B.

    1993-12-31

    We consider collisions between dynamically-evolved primordial binaries consisting of main-sequence stars, white dwarfs and neutron stars in globular clusters. In our four-body binary-binary scattering experiments, we allow stars to ``stick`` if they pass close enough to each other, which leads to the formation of a wide variety of exotic objects. Most of these objects have binary companions. Also, relatively clean exchange interactions can produce binaries containing neutron stars that eventually receive material from their companions. Such systems will be observable as X-ray binaries.

  19. Relativistic outflow from two thermonuclear shell flashes on neutron stars

    NASA Astrophysics Data System (ADS)

    in't Zand, J. J. M.; Keek, L.; Cavecchi, Y.

    2014-08-01

    We study the exceptionally short (32-43 ms) precursors of two intermediate-duration thermonuclear X-ray bursts observed with the Rossi X-ray Timing Explorer from the neutron stars in 4U 0614+09 and 2S 0918-549. They exhibit photon fluxes that surpass those at the Eddington limit later in the burst by factors of 2.6 to 3.1. We are able to explain both the short duration and the super-Eddington flux by mildly relativistic outflow velocities of 0.1c to 0.3c subsequent to the thermonuclear shell flashes on the neutron stars. These are the highest velocities ever measured from any thermonuclear flash. The precursor rise times are also exceptionally short: about 1 ms. This is inconsistent with predictions for nuclear flames spreading laterally as deflagrations and suggests detonations instead. This is the first time that a detonation is suggested for such a shallow ignition column depth (yign ≈ 1010 g cm-2). The detonation would possibly require a faster nuclear reaction chain, such as bypassing the α-capture on 12C with the much faster 12C(p,γ)13N(α,p)16O process previously proposed. We confirm the possibility of a detonation, albeit only in the radial direction, through the simulation of the nuclear burning with a large nuclear network and at the appropriate ignition depth, although it remains to be seen whether the Zel'dovich criterion is met. A detonation would also provide the fast flame spreading over the surface of the neutron star to allow for the short rise times. This needs to be supported by future two-dimensional calculations of flame spreading at the relevant column depth. As an alternative to the detonation scenario, we speculate on the possibility that the whole neutron star surface burns almost instantly in the auto-ignition regime. This is motivated by the presence of 150 ms precursors with 30 ms rise times in some superexpansion bursts from 4U 1820-30 at low ignition column depths of ~108 g cm-2.

  20. Strong, Weak, Electromagnetic, and Gravitational Interactions in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Rueda, Jorge A.; Ruffini, Remo

    2015-01-01

    The traditional Tolman-Oppenheimer-Volkoff (TOV) equations of NSs assume local charge neutrality and electromagnetic structure is not accounted for. We show that such an assumption is inconsistent when all known interactions in NS equilibrium equations are present, including electromagnetism. We present the new Einstein-Maxwell-Thomas-Fermi (EMTF) set of equations, which must be solved under the constraint of global, but not local, charge neutrality. We discuss new gravito-electrodynamic effects and present their implications on the mass-radius relation and observational properties of neutron stars.

  1. Atmospheres of Quiescent Low-Mass Neutron Stars

    NASA Astrophysics Data System (ADS)

    Karpov, Platon; Medin, Zachary; Calder, Alan; Lattimer, James M.

    2016-01-01

    Observations of the neutron stars in quiescent low-mass X-ray binaries are important for determining their masses and radii which can lead to powerful constraints on the dense matter nuclear equation of state. The interpretation of these sources is complex and their spectra differ appreciably from blackbodies. Further progress hinges on reducing the uncertainties stemming from models of neutron star atmospheres. We present a suite of low-temperature neutron star atmospheres of different chemical compositions (pure H and He). Our models are constructed over a range of temperatures [log(T/1 K)=5.3, 5.6, 5.9, 6.2, 6.5] and surface gravities [log(g/1 cm/s2)=14.0, 14.2, 14.4, 14.6]. We generated model atmospheres using zcode - a radiation transfer code developed at Los Alamos National Laboratory. In order to facilitate analytic studies, we developed three-parameter fits to our models, and also compared them to diluted blackbodies in the energy range of 0.4-5 keV (CXO/MGE). From the latter, we extract color-correction factors (fc), which represent the shift of the spectra as compared to a blackbody with the same effective temperature. These diluted blackbodies are also useful for studies of photspheric expansion X-ray bursts. We provide a comparison of our models to previous calculations using the McGill Planar Hydrogen Atmosphere Code (McPHAC). These results enhance our ability to interpret thermal emission from neutron stars and to constrain the mass-radius relationship of these exotic objects.This research was supported in part by the U.S. Department of Energy under grant DE-FG02-87ER40317 and by resources at the Institute for Advanced Computational Science at Stony Brook University. This research was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396.

  2. Gamma-ray emission from young neutron stars

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

    1991-01-01

    The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

  3. Hypernuclei and the hyperon problem in neutron stars

    NASA Astrophysics Data System (ADS)

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-01

    The likely presence of Λ baryons in dense hadronic matter tends to soften the equation of state to an extent that the observed heaviest neutron stars are difficult to explain. We analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of Λ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on nonstrange dense matter, including its uncertainties, to conclude that the interaction between Λ 's and dense matter has to become repulsive at densities below three times the nuclear saturation density.

  4. Reactions on the surface and inside of neutron stars

    NASA Astrophysics Data System (ADS)

    Rehm, K. E.

    2016-02-01

    Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, highdensity environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments.

  5. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  6. Observations, Analysis, and Orbital Calculation of the Visual Double Star STTA 123 AB

    NASA Astrophysics Data System (ADS)

    Brashear, Nicholas; Camama, Angel; Drake, Miles; Smith, Miranda; Johnson, Jolyon; Arnold, Dave; Chamberlain, Rebecca

    2012-04-01

    As part of a research workshop at Pine Mountain Observatory, four students from Evergreen State College met with an instructor and an experienced double star observer to learn the methods used to measure double stars and to contribute observations to the Washington Double Star (WDS) Catalog. The students then observed and analyzed the visual double star STTA 123 AB with few past observations in the WDS Catalog to determine if it is optical or binary in nature. The separation of this double star was found to be 69.9" and its position angle to be 148.0°. Using the spectral types, stellar parallaxes, and proper motion vectors of these two stars, the students determined that this double star is likely physically bound by gravity in a binary system. Johnson calculated a preliminary circular orbit for the system using Newton's version of Kepler's third law. The masses of the two stars were estimated based on their spectral types (F0) to be 1.4 Msun. Their separation was estimated to be 316 AU based on their distance from Earth (about 216.5 light years) and their orbital period was estimated to be 3357 years. Arnold compared the observations made by the students to what would be predicted by the orbit calculation. A discrepancy of 14° was found in the position angle. The authors suggest that the orbit is both eccentric and inclined to our line of sight, making the observed position angle change less than predicted.

  7. CS 22964-161: A Double-Lined Carbon- and s-Process-Enhanced Metal-Poor Binary Star

    NASA Astrophysics Data System (ADS)

    Thompson, Ian B.; Ivans, Inese I.; Bisterzo, Sara; Sneden, Christopher; Gallino, Roberto; Vauclair, Sylvie; Burley, Gregory S.; Shectman, Stephen A.; Preston, George W.

    2008-04-01

    A detailed high-resolution spectroscopic analysis is presented for the carbon-rich low-metallicity Galactic halo object CS 22964-161. We have discovered that CS 22964-161 is a double-lined spectroscopic binary and have derived accurate orbital components for the system. From a model atmosphere analysis we show that both components are near the metal-poor main-sequence turnoff. Both stars are very enriched in carbon and in neutron-capture elements that can be created in the s-process, including lead. The primary star also possesses an abundance of lithium close to the value of the "Spite plateau." The simplest interpretation is that the binary members seen today were the recipients of these anomalous abundances from a third star that was losing mass as part of its AGB evolution. We compare the observed CS 22964-161 abundance set with nucleosynthesis predictions of AGB stars, discuss issues of envelope stability in the observed stars under mass transfer conditions, and consider the dynamical stability of the alleged original triple star. Finally, we consider the circumstances that permit survival of lithium, whatever its origin, in the spectrum of this extraordinary system. This paper includes data gathered with the 6.5 m Magellan and 2.5 m du Pont Telescopes located at Las Campanas Observatory, Chile.

  8. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and the energy of the particles enabling the reconstruction of the kinematics at the target. The focal plane energy calibration allowed for the study of 26 Mg levels from Ex = 7.69 - 12.06 MeV in the (alpha; alpha0) measurement and Ex = 7.36 - 11.32 MeV in the (6Li,d) measurement. Six levels (Ex = 10717 (9) keV , 10822 (10) keV, 10951 (21) keV, 11085 (8) keV, 11167 (8) keV and 11317 (18) keV) were observed above the alpha-threshold in the region of interest (10.61 - 11.32 MeV). The Ex = 10717 keV had a negligible contribution to the alpha-capture rates. The Ex = 10951, 11167 and 11317 keV exhibited pronounced alpha-cluster structure and hence, dominated the alpha-capture rates. The Ex = 11167 keV had the most appreciable impact on the (alpha; gamma ) rate increasing it by 2 orders of magnitude above Longland et al. [58] and Bisterzo et al. [8] rates and by a factor of 3 above NACRE [2] rate. Hence, the recommended 22Ne(alpha,n) + 22Ne(alpha; ) rates, from the present work, strongly favour the reduction of s-process over-abundances associated with massive stars as well as AGB stars of intermediate initial mass. Also, the uncertainty range corresponding to the present rates suggest the need for a more refined measurement of the associated resonance parameters.

  9. Reassessing The Fundamentals New Constraints on the Evolution, Ages and Masses of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kızıltan, Bülent

    2011-09-01

    The ages and masses of neutron stars (NSs) are two fundamental threads that make pulsars accessible to other sub-disciplines of astronomy and physics. A realistic and accurate determination of these two derived parameters play an important role in understanding of advanced stages of stellar evolution and the physics that govern relevant processes. Here I summarize new constraints on the ages and masses of NSs with an evolutionary perspective. I show that the observed P-Ṗ demographics is more diverse than what is theoretically predicted for the standard evolutionary channel. In particular, standard recycling followed by dipole spin-down fails to reproduce the population of millisecond pulsars with higher magnetic fields (B > 4 × 108 G) at rates deduced from observations. A proper inclusion of constraints arising from binary evolution and mass accretion offers a more realistic insight into the age distribution. By analytically implementing these constraints, I propose a ``modified'' spin-down age (τ~) for millisecond pulsars that gives estimates closer to the true age. Finally, I independently analyze the peak, skewness and cutoff values of the underlying mass distribution from a comprehensive list of radio pulsars for which secure mass measurements are available. The inferred mass distribution shows clear peaks at 1.35 Msolar and 1.50 Msolar for NSs in double neutron star (DNS) and neutron star-white dwarf (NS-WD) systems respectively. I find a mass cutoff at 2 Msolar for NSs with WD companions, which establishes a firm lower bound for the maximum mass of NSs.

  10. WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER?

    SciTech Connect

    Metzger, B. D.; Berger, E.

    2012-02-10

    The final inspiral of double neutron star and neutron-star-black-hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification of an electromagnetic counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), 'orphan' optical and radio afterglows, and day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ('kilonovae'). We assess the promise of each counterpart in terms of four 'Cardinal Virtues': detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of tens of square degrees, we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with neutron star mergers. However, for the more ambitious goal of localizing and obtaining redshifts for a large sample of GW events, kilonovae are instead preferred. Off-axis optical afterglows are detectable for at most tens of percent of events, while radio afterglows are promising only for energetic relativistic ejecta in a high-density medium. Our main recommendations are: (1) an all-sky gamma-ray satellite is essential for temporal coincidence detections, and for GW searches of gamma-ray-triggered events; (2) the Large Synoptic Survey Telescope should adopt a one-day cadence follow-up strategy, ideally with 0.5 hr per pointing to cover GW error regions; and (3) radio searches should focus on the relativistic case, which requires observations for a few months.

  11. Gravitational Waves from Fallback Accretion onto Neutron Stars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Thrane, Eric

    2012-12-01

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of ~700-2400 Hz for ~30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to ≈17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be ~1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  12. GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS

    SciTech Connect

    Piro, Anthony L.

    2012-12-10

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of {approx}700-2400 Hz for {approx}30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to Almost-Equal-To 17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be {approx}1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  13. The neutron star interior composition explorer (NICER): mission definition

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.

    2014-07-01

    Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.

  14. Asteroseismology of rapidly rotating neutron stars: An alternative approach

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Kokkotas, Kostas D.

    2015-12-01

    We examine gravitational wave asteroseismology relations for f -modes of rapidly rotating neutron stars. A different approach than previous studies is employed. First, the moment of inertia is used instead of the stellar radius and, second, the normalization of the oscillation frequencies and damping times is different. It is shown that in the nonrotating case this can lead to a much stronger equation of state independence, and our goal is to generalize the static relations to the rapidly rotating case and values of the spherical mode number l ≥2 . We employ realistic equations of state that cover a very large range of stiffness in order to better check the universality of the relations. We later explore the inverse problem; i.e., we obtain the neutron star parameters from the observed gravitational frequencies and damping times. It turns out that, with this new set of relations, we can solve the inverse problem with very good accuracy using three frequencies. This was not possible in the previous studies, where one also needed damping times. The asteroseismology relations are also quite accurate for the massive rapidly rotating models that are subject to secular instabilities.

  15. Unexpected Windy Weather Around a Highly Magnetized Neutron Star

    NASA Astrophysics Data System (ADS)

    Younes, George A.; Kouveliotou, Chryssa; Kargaltsev, Oleg; Gill, Ramandeep; Granot, Jonathan; Watts, Anna; Gelfand, Joseph; Baring, Matthew G.; Kust Harding, Alice; Pavlov, George G.; van der Horst, Alexander; Huppenkothen, Daniela; Gögüs, Ersin; Lin, Lin; Roberts, Oliver

    2016-04-01

    Magnetars and rotation-powered pulsars (RPPs) historically represented two distinct subclasses of neutron stars. Magnetars are slowly-rotating (~2-12 s), isolated neutron stars (NSs) with super-strong magnetic fields, B~10^13-10^15 G. RPPs, on the other hand, are rapidly-rotating (~0.01-0.3~s), isolated NSs with surface dipole magnetic field in the range ~10^11-10^13 G. Most pulsars possess a large rotational energy loss rate that powers a relativistic magnetized particle wind, often seen as a pulsar wind nebula (PWN; the Crab PWN being the most famous). There has not yet been convincing evidence for a wind nebula around magnetars, most likely due to their low rotational energy loss rate. Here, we report the study of new deep X-ray observations of the peculiar extended emission around the magnetar Swift J1834.9-0846. Our new results strongly support a wind nebula as the nature of the extended emission, thus, establishing Swift J1834.9-0846 as the first magnetar to possess a surrounding nebula. This implies that wind nebulae are no longer exclusive to RPPs and, along with recent discoveries in the field, further narrow the gaps between these two sub-populations of isolated NSs. The physical properties of this wind nebula, however, show peculiarities, especially its high radiative efficiency of about 10%, only shared with two other known very young RPPs, the Crab and its twin.

  16. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  17. Stellar neutron sources and s-Process in Massive Stars

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Berg, G. P. A.; Bin, L.; Couder, M.; Deboer, R.; Fang, X.; Fujita, H.; Fujita, Y.; Goerres, J.; Hatanaka, K.; Ito, T.; Kadoya, T.; Long, A.; Miki, K.; Patel, D.; Tamii, A.; Wiescher, M.; Yamamoto, T.; Yosoi, M.

    2014-09-01

    Potential stellar neutron sources for the s-process in massive stars are associated with α-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the buildup of the neutron sources 22Ne, and 26Mg during the helium-burning phase in stars. A critical influence on these reactions is expected to come from low-energy resonances at stellar energies between 300 keV and 1500 keV. It is possible that these resonances are suspected to correspond to pronounced cluster structures near the α-threshold. Direct measurements of capture reactions to study these cluster states are handicapped by the Coulomb barrier and limited detector resolutions. Hence, inelastic α-scattering on these nuclei has been used as an alternative tool to probe into the level structure. Also α-transfer technique has been used to extract α-strength information. In reference to this, the experiments performed using the Grand Raiden Spectrometer at RCNP, Osaka will be discussed and preliminary results will be presented.

  18. COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2011-04-01

    We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and argue that the retention of light elements in the liquid acts as a source of buoyancy that drives a slow but continual mixing of the ocean, enriching it substantially in light elements, and leading to a relatively uniform composition with depth. We first consider the timescales associated with different processes that can redistribute elements in the ocean, including convection, sedimentation, crystallization, and diffusion. We then calculate the steady-state structure of the ocean of a neutron star for an illustrative model in which the accreted hydrogen and helium burn to produce a mixture of O and Se. Even though the H/He burning produces only 2% oxygen by mass, the steady-state ocean has an oxygen abundance more than 10 times larger, almost 40% by mass. Furthermore, we show that the convective motions transport heat inward, with a flux of {approx}0.2 MeV nucleon{sup -1} for an O-Se ocean, heating the ocean and steepening the outward temperature gradient. The enrichment of light elements and heating of the ocean due to compositionally driven convection likely have important implications for carbon ignition models of superbursts.

  19. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  20. FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2013-07-10

    By performing fully general relativistic magnetohydrodynamic simulations of binary neutron star mergers, we investigate the possibility that the end result of the merger is a stable magnetar. In particular, we show that, for a binary composed of two equal-mass neutron stars (NSs) of gravitational mass M {approx} 1.2 M{sub Sun} and equation of state similar to Shen et al. at high densities, the merger product is a stable NS. Such NS is found to be differentially rotating and ultraspinning with spin parameter J/M{sup 2} {approx} 0.86, where J is its total angular momentum, and it is surrounded by a disk of Almost-Equal-To 0.1 M{sub Sun }. While in our global simulations the magnetic field is amplified by about two orders of magnitude, local simulations have shown that hydrodynamic instabilities and the onset of the magnetorotational instability could further increase the magnetic field strength up to magnetar levels. This leads to the interesting possibility that, for some NS mergers, a stable and magnetized NS surrounded by an accretion disk could be formed. We discuss the impact of these new results for the emission of electromagnetic counterparts of gravitational wave signals and for the central engine of short gamma-ray bursts.

  1. Atmospheres and Spectra of Strongly Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Ho, W. C. G.; Lai, D.

    2003-01-01

    We construct atmosphere models for strongly magnetized neutron stars with surface fields B ˜1012 -1015 G and effective temperatures Teff ˜106 - 107 K. The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free-free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron-ion plasma. We describe a modified (due to the two photon modes) Unsöld-Lucy temperature correction method to establish radiative equilibrium and the resulting temperature profile. We discuss the effect of vacuum polarization, which modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the MSW mechanism for neutrino oscillation. We discuss the subtleties in treating the vacuum polarization effects. We show that vacuum polarization produces a broad depression in the X-ray flux at high energies, which arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere, and the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line.

  2. Gravitational waves from color-magnetic "mountains" in neutron stars.

    PubMed

    Glampedakis, K; Jones, D I; Samuelsson, L

    2012-08-24

    Neutron stars may harbor the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color and flavor degrees of freedom. The stellar magnetic field threading the quark core becomes a color-magnetic admixture and, in the event that superconductivity is of type II, leads to the formation of color-magnetic vortices. In this Letter, we show that the volume-averaged color-magnetic vortex tension force should naturally lead to a significant degree of nonaxisymmetry in systems such as radio pulsars. We show that gravitational radiation from such color-magnetic "mountains" in young pulsars, such as the Crab and Vela, could be observable by the future Einstein Telescope, thus, becoming a probe of paired quark matter in neutron stars. The detectability threshold can be pushed up toward the sensitivity level of Advanced LIGO if we invoke an interior magnetic field about a factor ten stronger than the surface polar field. PMID:23002735

  3. Computing supernova collapse to neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Baumgarte, Thomas W.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1995-01-01

    We present a new numerical code for spherical hydrodynamics in general relativity. The code can handle gravitational collapse to a neutron star or to a black hole without the appearance of singularities. Moreover, the variables and equations in the code are very similar to those appearing in traditional Lagrangian supernova codes. Any such existing code can thus be easily adapted to treat collapse where the final fate is uncertain and may be either a neutron star or a black hole. The code is based on the formulation of Hernandez & Misner, in which retarded time is used as coordinate. This prevents the computational grid from penetrating inside any black hole that may form. We present the equations and a complete finite difference scheme for the adiabatic evolution of a fluid that obeys a gamma-law equation of state. We summarize the results of several testbed calculations performed to check our code. We also give the transformation of the analytic Oppenheimer-Snyder solution for homogeneous dust collapse to our coordinate system.

  4. The period distribution of old accreting isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. E.; Popov, S. B.; Khoperskov, A. V.

    2002-01-01

    In this paper we present calculations of the period distribution for old accreting isolated neutron stars (INSs). After a few billion years of evolution low velocity INSs come to the stage of accretion. At this stage the INS period evolution is governed by magnetic braking and the accreted angular momentum. Since the interstellar medium is turbulent the accreted momentum can either accelerate or decelerate the spin of an INS, therefore the evolution of the period has a chaotic character. Our calculations show that in the case of constant magnetic field accreting INSs have relatively long spin periods (some hours and more, depending on the spatial velocity of the INS, its magnetic field and the density of the surrounding medium). Such periods are much longer than the values measured by ROSAT for 3 radio-silent isolated neutron stars. Due to their long periods INSs should have high spin up/down rates, dot p, which should fluctuate on a time scale of ~ 1 yr.

  5. Supermagnetic Neutron Star Surprises Scientists, Forces Revision of Theories

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Astronomers using radio telescopes from around the world have discovered a spinning neutron star with a superpowerful magnetic field -- called a magnetar -- doing things no magnetar has been seen to do before. The strange behavior has forced them to scrap previous theories about radio pulsars and promises to give new insights on the physics behind these extreme objects. Magnetar Artist's Conception of Magnetar With Radio Beams ALL IMAGES AND ANIMATIONS CREDIT: Bill Saxton, NRAO/AUI/NSF Image and Animation Files Magnetar Graphic (above image, JPEG, 32K) Animation With Sound From GBT Detection of XTE J1810-197 (8.6M) Animation With Sound From GBT Detection of XTE J1810-197 (Full Size, 29M) The magnetar, approximately 10,000 light-years from Earth in the direction of the constellation Sagittarius, is emitting powerful, regularly-timed pulses of radio waves just like radio pulsars, which are neutron stars with far less intense magnetic fields. Usually, magnetars are visible only in X-rays and sometimes very weakly in optical and infrared light. "No one has ever found radio pulses coming from a magnetar before. We thought that magnetars didn't do this," said Fernando Camilo of Columbia University. "This object is going to teach us new things about magnetar physics that we would never have learned otherwise," Camilo added. Neutron stars are the remnants of massive stars that have exploded as supernovae. Containing more mass than the Sun, they are compressed to a diameter of only about 15 miles, making them as dense as atomic nuclei. Ordinary pulsars are neutron stars that emit "lighthouse beams" of radio waves along the poles of their magnetic fields. As the star spins, the beam of radio waves is flung around, and when it passes the direction of Earth, astronomers can detect it with radio telescopes. Scientists have found about 1700 pulsars since their first discovery in 1967. While pulsars have strong magnetic fields, about a dozen neutron stars have been dubbed magnetars because their magnetic fields are 100-1,000 times stronger than those of typical pulsars. It is the decay of those incredibly strong fields that powers their strange X-ray emission. "The magnetic field from a magnetar would make an aircraft carrier spin around and point north quicker than a compass needle moves on Earth," said David Helfand, of Columbia University. A magnetar's field is 1,000 trillion times stronger than Earth's, Helfand pointed out. The new object -- named XTE J1810-197 -- was first discovered by NASA's Rossi X-ray Timing Explorer when it emitted a strong burst of X-rays in 2003. While the X-rays were fading in 2004, Jules Halpern of Columbia University and collaborators identified the magnetar as a radio-wave emitter using the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico. Any radio emission is highly unusual for a magnetar. Because magnetars had not been seen to regularly emit radio waves, the scientists presumed that the radio emission was caused by a cloud of particles thrown off the neutron star at the time of its X-ray outburst, an idea they soon would realize was wrong. With knowledge that the magnetar emitted some form of radio waves, Camilo and his colleagues observed it with the Parkes radio telescope in Australia in March and immediately detected astonishingly strong radio pulsations every 5.5 seconds, corresponding to the previously-determined rotation rate of the neutron star. As they continued to observe XTE J1810-197, the scientists got more surprises. Whereas most pulsars become weaker at higher radio frequencies, XTE J1810-197 does not, remaining a strong emitter at frequencies up to 140 GHz, the highest frequency ever detected from a radio pulsar. In addition, unlike normal pulsars, the object's radio emission fluctuates in strength from day to day, and the shape of the pulsations changes as well. These variations likely indicate that the magnetic fields around the pulsar are changing as well. What's causing this behavior? At the moment, the scientists believe that the magnetar's intense magnetic field is twisting, causing changes in the locations where huge electric currents flow along the magnetic-field lines. These currents likely generate the radio pulsations. "To solve this mystery, we'll continue monitoring this crazy object with as many telescopes as we can get our hands on and as often as possible. Hopefully, seeing all these changes with time will give us a deeper understanding of what is really going on in this very extreme environment," said team member Scott Ransom of the National Radio Astronomy Observatory. Because they expect that XTE J1810-197 will fade at all wavelengths, including the radio, the scientists also have observed it with the NSF's Robert C. Byrd Green Bank Telescope and Very Long Baseline Array (VLBA), Parkes and the Australia Telescope Compact Array in Australia, the IRAM telescope in Spain, and the Nancay Observatory in France. John Reynolds and John Sakissian of Parkes Observatory, Neil Zimmerman of Columbia University and Juan Penalver and Aris Karastergiou of IRAM also are members of the research team. The scientists reported their initial findings in the August 24 issue of the scientific journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Neutrinos from SN 1987A and cooling of the nascent neutron star

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Loredo, Thomas J.; Melia, Fulvio

    1988-01-01

    The implications of the detection of neutrinos from SN 1987A for the cooling of the nascent neutron star are considered. The nu-bar(e) number N, the apparent temperature, the cooling time scale measured by the Kamioka and IMB detectors, and the inferred neutron star apparent radius and binding energy are all found to provide striking verification of current supernova theory.

  7. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  8. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  9. Progenitor neutron stars of the lightest and heaviest millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Bejger, M.; Haensel, P.; Zdunik, J. L.

    2016-02-01

    Context. The recent mass measurements of two binary millisecond pulsars, PSR J1614-2230 and PSR J0751+1807 with a mass M = 1.97 ± 0.04 M⊙ and M = 1.26 ± 0.14 M⊙, respectively, indicate a wide range of masses for such objects and possibly also a broad spectrum of masses of neutron stars born in core-collapse supernovae. Aims: Starting from the zero-age main sequence binary stage, we aim at inferring the birth masses of PSR J1614-2230 and PSR J0751+1807 by taking the differences in the evolutionary stages preceding their formation into account. Methods: Using simulations for the evolution of binary stars, we reconstruct the evolutionary tracks leading to the formation of PSR J1614-2230 and PSR J0751+1807. We analyse in detail the spin evolution due to the accretion of matter from a disk in the intermediate-mass/low-mass X-ray binary. We consider two equations of state of dense matter, one for purely nucleonic matter and the other one including a high-density softening due to the appearance of hyperons. Stationary and axisymmetric stellar configurations in general relativity are used, together with a recent magnetic torque model and observationally-motivated laws for the decay of magnetic field. Results: The estimated birth mass of the neutron stars PSR J0751+1807 and PSR J1614-2230 could be as low as 1.0 M⊙ and as high as 1.9 M⊙, respectively. These values depend weakly on the equation of state and the assumed model for the magnetic field and its accretion-induced decay. Conclusions: The masses of progenitor neutron stars of recycled pulsars span a broad interval from 1.0 M⊙ to 1.9 M⊙. Including the effect of a slow Roche-lobe detachment phase, which could be relevant for PSR J0751+1807, would make the lower mass limit even lower. A realistic theory for core-collapse supernovæ should account for this wide range of mass.

  10. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Dolinski, M J

    2008-09-24

    Neutrinoless double beta decay (0{nu}DBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0{nu}DBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0{nu}DBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0{nu}DBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0{nu}DBD of {sup 130}Te with a ton-scale array of unenriched TeO{sub 2} bolometers. By increasing mass and decreasing the background for 0{nu}DBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10{sup -6}. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0{nu}DBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by ({alpha},n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE data to set an upper limit for the production of a 2529 keV gamma-ray from the {sup 126}Te(n,n{prime}{gamma}) reaction. This gamma-ray is a potential source of interference for the 0{nu}DBD peak. Based on this measurement, the contribution of this line to the background is expected to be negligible.

  11. Probing Neutron Star Physics with Quasi-Periodic Oscillations in Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela

    2015-04-01

    Neutron stars, the remnants of massive stellar explosions, are prime candidates for studying dense matter physics in conditions not accessible in the laboratory. Among the zoo of neutron star phenomena, magnetars, neutron stars with an extremely high magnetic field, are of particular interest for their spectacular bursting behaviour in X-rays and gamma-rays. They show thousands of recurrent short, bright bursts as well as some of the brightest gamma-ray events, called giant flares, ever observed on earth. The detection of quasi-periodic oscillations (QPOs) in giant flares and, more recently, in small recurrent bursts, is generally interpreted as the observable signature of global oscillations of the neutron star following a star quake. This detection has opened up the potential of neutron star seismology: probing the physical conditions in the interior of the star via the information conveyed in star quakes. In this talk, I will give an overview of observational studies of these sources, focusing on recent detections of QPOs in smaller bursts as well as results from the giant flares. I will then tie these observational results to theoretical models of the star quakes that tie observations to the neutron star interior and crust, and I will finish with an outlook of the future of magnetar seismology. DH is supported by the Moore-Sloan Data Science Environment at NYU.

  12. The Breakin Strain of Neutron Star Crust and Continuous Gravitational Wave Radiation

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Kadau, K.; Hughto, J.; Berry, D. K.

    2009-05-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. We use large scale molecular dynamics simulations of Coulomb solids to determine the breaking strain. We find that the breaking strain of small single crystals is very large and that this strength is only modestly reduced by impurities, defects, and grain boundaries. Therefore, neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers.

  13. Initial data for binary neutron stars with adjustable eccentricity

    NASA Astrophysics Data System (ADS)

    Moldenhauer, Niclas; Markakis, Charalampos M.; Johnson-McDaniel, Nathan K.; Tichy, Wolfgang; Brügmann, Bernd

    2014-10-01

    Binary neutron stars in circular orbits can be modeled as helically symmetric, i.e., stationary in a rotating frame. This symmetry gives rise to a first integral of the Euler equation, often employed for constructing equilibrium solutions via iteration. For eccentric orbits, however, the lack of helical symmetry has prevented the use of this method, and the numerical relativity community has often resorted to constructing initial data by superimposing boosted spherical stars without solving the Euler equation. The spuriously excited neutron star oscillations seen in evolutions of such data arise because such configurations lack the appropriate tidal deformations and are stationary in a linearly comoving—rather than rotating—frame. We consider eccentric configurations at apoapsis that are instantaneously stationary in a rotating frame. We extend the notion of helical symmetry to eccentric orbits, by approximating the elliptical orbit of each companion as instantaneously circular, using the ellipse's inscribed circle. The two inscribed helical symmetry vectors give rise to approximate instantaneous first integrals of the Euler equation throughout each companion. We use these integrals as the basis of a self-consistent iteration of the Einstein constraints to construct conformal thin-sandwich initial data for eccentric binaries. We find that the spurious stellar oscillations are reduced by at least an order of magnitude, compared with those found in evolutions of superposed initial data. The tidally induced oscillations, however, are physical and qualitatively similar to earlier evolutions. Finally, we show how to incorporate radial velocity due to radiation reaction in our inscribed helical symmetry vectors, which would allow one to obtain truly noneccentric initial data when our eccentricity parameter e is set to zero.

  14. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  15. Prospects for neutron star equation of state constraints using "recycled" millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-02-01

    "Recycled" millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  16. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  17. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  18. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    NASA Astrophysics Data System (ADS)

    Bagchi, Manjari; Torres, Diego F.

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  19. Polarization of neutron star surface emission: a systematic analysis

    NASA Astrophysics Data System (ADS)

    Taverna, R.; Turolla, R.; Gonzalez Caniulef, D.; Zane, S.; Muleri, F.; Soffitta, P.

    2015-12-01

    New-generation X-ray polarimeters currently under development promise to open a new window in the study of high-energy astrophysical sources. Among them, neutron stars (NSs) appear particularly suited for polarization measurements. Radiation from the (cooling) surface of an NS is expected to exhibit a large intrinsic polarization degree due to the star strong magnetic field (≈1012-1015 G), which influences the plasma opacity in the outermost stellar layers. The polarization fraction and polarization angle as measured by an instrument, however, do not necessary coincide with the intrinsic ones derived from models of surface emission. This is due to the effects of quantum electrodynamics in the highly magnetized vacuum around the star (the vacuum polarization) coupled with the rotation of the Stokes parameters in the plane perpendicular to the line of sight induced by the non-uniform magnetic field. Here, we revisit the problem and present an efficient method for computing the observed polarization fraction and polarization angle in the case of radiation coming from the entire surface of an NS, accounting for both vacuum polarization and geometrical effects due to the extended emitting region. Our approach is fairly general and is illustrated in the case of blackbody emission from an NS with either a dipolar or a (globally) twisted magnetic field.

  20. Explosion of a rotating neutron star near the minimum mass

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Shapiro, Stuart L.; Teukolsky, Saul A.

    1991-03-01

    A Newtonian calculation is presented for the explosion of an unstable neutron star about the minimum mass, and the amount of neutrino, gravitational, and electromagnetic radiation emitted is estimated. The dynamical evolution of the star is followed by solving the Newtonian equations or motion for a homogeneous, uniformly rotating spheroid with internal pressure and gravity. At the outset, the oblate star is in hydrostatic equilibrium at the minimum mass along an equilibrium curve of fixed angular momentum. The explosion is almost instantaneous, with an intense burst of antineutrinos signaling the onset of abrupt acceleration. Antineutrino luminosities of 10 to the 50th to 10 to the 52nd ergs/s and bulk kinetic energies of order 10 to the 49th ergs are obtained. The results indicate that the gravitational radiation (GR) energy release from the explosion is rather small at E(GR)/M(B) less than 10 to the -14th with an amplitude at maximum acceleration of less than about 5 x 10 to the -23rd sine-squared Theta for a source at a distance of 10 kpc.