Science.gov

Sample records for double-stranded linear dna

  1. Recombination between linear double-stranded DNA substrates in vivo

    PubMed Central

    Narayanan, Kumaran; Sim, Edmund Ui-Hang; Ravin, Nikolai V.; Lee, Choon-Weng

    2009-01-01

    Recombineering technology in E. coli enables targeting of linear donor DNA to circular recipient DNA using short shared homology sequences. In this work, we demonstrate that recombineering is also able to support recombination between a pair of linear DNA substrates (linear/linear recombineering) in vivo in E. coli. Linear DNA up to 100 kb is accurately modified and remains intact without undergoing rearrangements after recombination. This system will be valuable for direct in vivo manipulation of large linear DNA including the N15 and PY54 prophages and linear animal viruses, and for assembly of linear constructs as artificial chromosome vectors. PMID:19454252

  2. Linear double-stranded DNA that mimics an infective tail of virus genome to enhance transfection.

    PubMed

    Anada, Takahisa; Karinaga, Ryouji; Koumoto, Kazuya; Mizu, Masami; Nagasaki, Takeshi; Kato, Yoshio; Taira, Kazunari; Shinkai, Seiji; Sakurai, Kazuo

    2005-11-28

    Our previous work showed that a natural beta-(1-->3)-d-glucan schizophyllan (SPG) can form a stable complex with single-stranded oligonucleotides (ssODNs). When protein transduction peptides were attached to SPG and this modified SPG was complexed with ssODNs, the resultant complex could induce cellular transfection of the bound ODNs, without producing serious cytotoxicity. However, no technique was available to transfect double-stranded DNAs (dsDNA) or plasmid DNA using SPG. This paper presents a new approach to transfect dsDNA, showing preparation and transfection efficiency for a minimal-size gene having a loop-shaped poly(dA)(80) on both ends. This poly(dA) loops of dsDNA can form a complex with SPG. An siRNA-coding dsDNA with the poly(dA) loop was complexed with Tat-attached SPG to silence luciferase expression. When LTR-Luc-HeLa cells that can express luciferase under the control of the LTR promoter were exposed to this complex, the expression of luciferase was suppressed (i.e., RNAi effect was enhanced). Cytotoxicity studies showed that the Tat-SPG complex induced much less cell death compared to polyethylenimine, indicating that the proposed method caused less harm than the conventional method. The Tat-SPG/poly(dA) looped dsDNA complex had a structure similar to the viral genome in that the dsDNA ends were able to induce transfection and protection. The present work identifies the SPG and poly(dA) looped minimum-sized gene combination as a candidate for a non-toxic gene delivery system. PMID:16219384

  3. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA.

    PubMed

    Solano-Collado, Virtu; Lurz, Rudi; Espinosa, Manuel; Bravo, Alicia

    2013-08-01

    The MgaSpn transcriptional regulator contributes to the virulence of Streptococcus pneumoniae. It is thought to be a member of the Mga/AtxA family of global regulators. MgaSpn was shown to activate in vivo the P1623B promoter, which is divergent from the promoter (Pmga) of its own gene. This activation required a 70-bp region (PB activation region) located between both promoters. In this work, we purified an untagged form of the MgaSpn protein, which formed dimers in solution. By gel retardation and footprinting assays, we analysed the binding of MgaSpn to linear double-stranded DNAs. MgaSpn interacted with the PB activation region when it was placed at internal position on the DNA. However, when it was positioned at one DNA end, MgaSpn recognized preferentially the Pmga promoter placed at internal position. In both cases, and on binding to the primary site, MgaSpn spread along the adjacent DNA regions generating multimeric protein-DNA complexes. When both MgaSpn-binding sites were located at internal positions on longer DNAs, electron microscopy experiments demonstrated that the PB activation region was the preferred target. DNA molecules totally or partially covered by MgaSpn were also visualized. Our results suggest that MgaSpn might recognize particular DNA conformations to achieve DNA-binding specificity. PMID:23723245

  4. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task.

    PubMed

    Moore, Shaun; Stanley, Fintan K T; Goodarzi, Aaron A

    2014-05-01

    High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors. PMID:24565812

  5. Repair of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  6. Diffusion and Segmental Dynamics of Double-Stranded DNA

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Ohrt, T.; Winkler, R. G.; Schwille, P.

    2006-12-01

    Diffusion and segmental dynamics of the double-stranded λ-phage DNA polymer are quantitatively studied over the transition range from stiff to semiflexible chains. Spectroscopy of fluorescence fluctuations of single-end fluorescently labeled monodisperse DNA fragments unambiguously shows that double-stranded DNA in the length range of 102 2×104 base pairs behaves as a semiflexible polymer with segmental dynamics controlled by hydrodynamic interactions.

  7. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation.

    PubMed

    Xie, Maohua; Park, Dongkyoo; You, Shuo; Li, Rui; Owonikoko, Taofeek K; Wang, Ya; Doetsch, Paul W; Deng, Xingming

    2015-01-01

    High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. (56)iron and (28)silicon) by inhibiting Mre11 complex activity. Exposure of cells to (56)iron or (28)silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development. PMID:25567982

  8. Molecular architecture of tailed double-stranded DNA phages

    PubMed Central

    Fokine, Andrei; Rossmann, Michael G

    2014-01-01

    The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions. PMID:24616838

  9. Production of Double-stranded DNA Ministrings

    PubMed Central

    Wong, Shirley; Lam, Peggy; Nafissi, Nafiseh; Denniss, Steven; Slavcev, Roderick

    2016-01-01

    We constructed linear covalently closed (LCC) DNA minivectors as a non-viral gene-delivery vector alternative produced via a simple platform in vivo. DNA ministrings possess a heightened safety profile and also efficiently deliver DNA cargo to targeted cells. Conventional DNA vectors carry undesirable prokaryotic sequences, including antibiotic resistance genes, CpG motifs, and bacterial origins of replication, which may lead to the stimulation of host immunological responses. The bioavailability of conventional DNA vectors is also compromised due to their larger molecular size. Their circular nature may also impart chromosomal integration, leading to insertional mutagenesis. Bacterial sequences are excised from DNA minivectors, leaving only the gene of interest (GOI) and necessary eukaryotic expression elements. Our LCC DNA minivectors, or DNA ministrings, are devoid of immunogenic bacterial sequences; therefore improving their bioavailability and GOI expression. In the event of vector integration into the chromosome, the LCC DNA ministring will lethally disrupt the host chromosome, thereby removing the potentially dangerous mutant from the proliferating cell population. Consequently, DNA ministrings offer the benefits of 'minicircle' DNA while eliminating the potential for undesirable vector integration events. In comparison to conventional plasmids and their isogenic circular covalently closed (CCC) counterparts, DNA ministrings demonstrate superior bioavailability, transfection efficiency, and cytoplasmic kinetics - they thus require lower amounts of cationic surfactants for effective transfection of target cells. We have constructed a one-step inducible in vivo system for the production of DNA ministrings in Escherichia coli that is simple to use, rapid, and scalable. PMID:26967586

  10. Production of Double-stranded DNA Ministrings.

    PubMed

    Wong, Shirley; Lam, Peggy; Nafissi, Nafiseh; Denniss, Steven; Slavcev, Roderick

    2016-01-01

    We constructed linear covalently closed (LCC) DNA minivectors as a non-viral gene-delivery vector alternative produced via a simple platform in vivo. DNA ministrings possess a heightened safety profile and also efficiently deliver DNA cargo to targeted cells. Conventional DNA vectors carry undesirable prokaryotic sequences, including antibiotic resistance genes, CpG motifs, and bacterial origins of replication, which may lead to the stimulation of host immunological responses. The bioavailability of conventional DNA vectors is also compromised due to their larger molecular size. Their circular nature may also impart chromosomal integration, leading to insertional mutagenesis. Bacterial sequences are excised from DNA minivectors, leaving only the gene of interest (GOI) and necessary eukaryotic expression elements. Our LCC DNA minivectors, or DNA ministrings, are devoid of immunogenic bacterial sequences; therefore improving their bioavailability and GOI expression. In the event of vector integration into the chromosome, the LCC DNA ministring will lethally disrupt the host chromosome, thereby removing the potentially dangerous mutant from the proliferating cell population. Consequently, DNA ministrings offer the benefits of 'minicircle' DNA while eliminating the potential for undesirable vector integration events. In comparison to conventional plasmids and their isogenic circular covalently closed (CCC) counterparts, DNA ministrings demonstrate superior bioavailability, transfection efficiency, and cytoplasmic kinetics - they thus require lower amounts of cationic surfactants for effective transfection of target cells. We have constructed a one-step inducible in vivo system for the production of DNA ministrings in Escherichia coli that is simple to use, rapid, and scalable. PMID:26967586

  11. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    PubMed

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week. PMID:27031497

  12. A novel real-time reverse transcription-polymerase chain reaction assay with partially double-stranded linear DNA probe for sensitive detection of hepatitis C viral RNA.

    PubMed

    Liu, Tianfu; Wan, Zhenzhou; Liu, Jia; Zhang, Lingyi; Zhou, Yanheng; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-10-01

    The detection and quantification of HCV RNA is very helpful for the management and treatment of HCV related diseases. Detection of low HCV viral load is a great challenge in HCV RNA detection. Here, we developed a novel real-time RT-PCR assay with partially double-stranded linear DNA probe which can detect all HCV genotypes and improve the detection performance. The novel assay has a wide linear dynamic range of HCV RNA quantification (1×10(2)-1×10(11)IU/ml) and a limit of detection of 78IU/ml. The assay exhibits an excellent reproducibility with 2.52% and 1.33% coefficients of variations, for inter- and intra-assays, respectively. To evaluate the viability of the assay, a comparison with a commercial HCV RNA detection kit was performed using 106 serum samples. The lineared correlation coefficient between the novel assay and the commercial HCV RNA detection kit was 0.940. Meanwhile, the deviation between the two methods was tolerable. Therefore, the novel real-time RT-PCR assay was applicable for laboratory diagnosis and monitoring of HCV infection. PMID:27451264

  13. Unwinding of double-stranded DNA helix by dehydration.

    PubMed Central

    Lee, C H; Mizusawa, H; Kakefuda, T

    1981-01-01

    Conformation changes of the double-stranded DNA helix in response to dehydration were investigated by monitoring, by agarose gel electrophoresis, the linking number of covalently closed circular DNA generated by ligation of linear DNA in the presence of different organic solvents or different temperatures. It was found that: (i) The DNA helix unwinds upon addition of certain organic solvents or elevation of temperature. (ii) The conformational change observed under the experimental conditions is a continuous process in response to the organic solvent concentration. (iii) The delta H of unwinding one linking of the DNA helix is constant at approximately 12.2 +/- 0.4 kcal/mol (1 kcal = 4.184 kJ); the corresponding delta S and d(delta S)/dn are 2nkR and 2kR, in which n is the relative equivalent linking number (referred to the state of delta S = 0 for unwinding) of the DNA, R is the gas constant, and k is equal to 1117/number of base pairs. The delta H, delta S, and d(delta S)/dn for unwinding i linkings are i X 12.2 kcal/mol, 2inkR, and 2ikR, respectively. (iv) d(delta S)/dn, like k, is inversely proportional to the number of base pairs in DNA. (v) Double-stranded DNAs of different chain lengths have average delta S = 35 cal/mol.K for unwinding one linking under the experimental conditions; this corresponds to 127 +/- 14 base pairs per "relative linking." Images PMID:7019913

  14. Moloney murine sarcoma virions synthesize full-genome-length double-stranded DNA in vitro.

    PubMed Central

    Benz, E W; Dina, D

    1979-01-01

    Moloney murine sarcoma virus (MSV) virions incubated under optimal conditions were shown to support extensive synthesis of double-stranded DNA. The major product, a 5950-base-pair (6-kilobase-pair DNA) double-stranded DNA, was characterized by cleavage with restriction endonucleases and shown to contain a 600-nucleotide-long direct repeat at both ends of the MSV genome. Linear DNA molecules made in vivo shortly after infection were compared to the linear double-stranded DNA synthesized in vitro. The restriction maps of both viral DNA products were indistinguishable. The 600-base-pair repeat results in a progeny DNA molecule that is longer than the parental MSV genomic RNA. The generation of this repeat must involve a mechanism that allows the viral reverse transcriptase (RNA-dependent DNA nucleotidyltransferase) to copy 5'- and 3'-terminal genomic (+) strand sequences twice. Images PMID:291003

  15. Euler buckling and nonlinear kinking of double-stranded DNA.

    PubMed

    Fields, Alexander P; Meyer, Elisabeth A; Cohen, Adam E

    2013-11-01

    The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called 'Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA. PMID:23956222

  16. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

    PubMed Central

    Christian, Michelle; Cermak, Tomas; Doyle, Erin L.; Schmidt, Clarice; Zhang, Feng; Hummel, Aaron; Bogdanove, Adam J.; Voytas, Daniel F.

    2010-01-01

    Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites. PMID:20660643

  17. [Superparamagnetic Cobalt Ferrite Nanoparticles "Blow up" Spatial Ordering of Double-stranded DNA Molecules].

    PubMed

    Yevdokimov, Yu M; Pershina, A G; Salyanov, V I; Magaeva, A A; Popenko, V I; Shtykova, E V; Dadinova, L A; Skuridin, S G

    2015-01-01

    The formation of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules, handled by positively charged superparamagnetic cobalt ferrite nanoparticles, as well as action of these nanoparticles on DNA dispersion, are considered. The binding of magnetic nanoparticles to the linear double-stranded DNA in solution of high ionic strength (0.3 M NaCl) and subsequent phase exclusion of these complexes from polyethylene glycol-containing solutions lead to their inability to form dispersions, whose particles do possess the spatially twisted arrangement of neighboring double-stranded DNA molecules. The action of magnetic nanoparticles on DNA dispersion (one magnetic nanoparticle per one double-stranded DNA molecule) results in such "perturbation" of DNA structure at sites of magnetic nanoparticles binding that the regular spatial structure of DNA dispersion particles "blows up"; this process is accompanied by disappearance of both abnormal optical activity and characteristic Bragg maximum on the small-angle X-ray scattering curve. Allowing with the fact that the physicochemical properties of the DNA liquid-crystalline dispersion particles reflect features of spatial organization of these molecules in chromosomes of primitive organisms, it is possible, that the found effect can have the relevant biological consequences. PMID:26349206

  18. Stretching and relaxation dynamics in double stranded DNA

    NASA Astrophysics Data System (ADS)

    Hennig, D.; Archilla, J. F. R.

    2004-01-01

    We study numerically the mechanical stability and elasticity properties of duplex DNA molecules within the frame of a network model incorporating microscopic degrees of freedom related with the arrangement of the base pairs. We pay special attention to the opening-closing dynamics of double-stranded DNA molecules which are forced into non-equilibrium conformations. Mechanical stress imposed at one terminal end of the DNA molecule brings it into a partially opened configuration. We examine the subsequent relaxation dynamics connected with energy exchange processes between the various degrees of freedom and structural rearrangements leading to complete recombination to the double-stranded conformation. The similarities and differences between the relaxation dynamics for a planar ladder-like DNA molecule and a twisted one are discussed in detail. In this way we show that the attainment of a quasi-equilibrium regime proceeds faster in the case of the twisted DNA form than for its thus less flexible ladder counterpart. Furthermore we find that the velocity of the complete recombination of the DNA molecule is lower than the velocity imposed by the forcing unit which is in compliance with the experimental observations for the opening-closing cycle of DNA molecules.

  19. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  20. Force-Driven Separation of Short Double-Stranded DNA

    PubMed Central

    Ho, Dominik; Zimmermann, Julia L.; Dehmelt, Florian A.; Steinbach, Uta; Erdmann, Matthias; Severin, Philip; Falter, Katja; Gaub, Hermann E.

    2009-01-01

    Abstract Short double-stranded DNA is used in a variety of nanotechnological applications, and for many of them, it is important to know for which forces and which force loading rates the DNA duplex remains stable. In this work, we develop a theoretical model that describes the force-dependent dissociation rate for DNA duplexes tens of basepairs long under tension along their axes (“shear geometry”). Explicitly, we set up a three-state equilibrium model and apply the canonical transition state theory to calculate the kinetic rates for strand unpairing and the rupture-force distribution as a function of the separation velocity of the end-to-end distance. Theory is in excellent agreement with actual single-molecule force spectroscopy results and even allows for the prediction of the rupture-force distribution for a given DNA duplex sequence and separation velocity. We further show that for describing double-stranded DNA separation kinetics, our model is a significant refinement of the conventionally used Bell-Evans model. PMID:20006953

  1. Nucleolar responses to DNA double-strand breaks.

    PubMed

    Larsen, Dorthe Helena; Stucki, Manuel

    2016-01-29

    Maintenance of cellular homeostasis is key to prevent transformation and disease. The cellular response to DNA double-strand breaks, primarily orchestrated by the ATM/ATR kinases is one of many mechanisms that serve to uphold genome stability and homeostasis. Upon detection of double-strand breaks (DSBs), several signaling cascades are activated to halt cell cycle progression and initiate repair. Furthermore, the DNA damage response (DDR) controls cellular processes such as transcription, splicing and metabolism. Recent studies have uncovered aspects of how the DDR operates within nucleoli. It appears that the DDR controls transcription in the nucleoli, not only when DNA breaks occur in the rDNA repeats, but also when a nuclear DDR is activated. In addition, we have gained first insights into how repair of DSBs is organized in the nucleolus. Collectively, these recent studies provide a more comprehensive picture of how the DDR regulates basic cellular functions to maintain cellular homeostasis. In this review we will summarize recent findings and discuss their implications for our understanding of how the DDR regulates transcription and repair in the nucleolus. PMID:26615196

  2. Nucleolar responses to DNA double-strand breaks

    PubMed Central

    Larsen, Dorthe Helena; Stucki, Manuel

    2016-01-01

    Maintenance of cellular homeostasis is key to prevent transformation and disease. The cellular response to DNA double-strand breaks, primarily orchestrated by the ATM/ATR kinases is one of many mechanisms that serve to uphold genome stability and homeostasis. Upon detection of double-strand breaks (DSBs), several signaling cascades are activated to halt cell cycle progression and initiate repair. Furthermore, the DNA damage response (DDR) controls cellular processes such as transcription, splicing and metabolism. Recent studies have uncovered aspects of how the DDR operates within nucleoli. It appears that the DDR controls transcription in the nucleoli, not only when DNA breaks occur in the rDNA repeats, but also when a nuclear DDR is activated. In addition, we have gained first insights into how repair of DSBs is organized in the nucleolus. Collectively, these recent studies provide a more comprehensive picture of how the DDR regulates basic cellular functions to maintain cellular homeostasis. In this review we will summarize recent findings and discuss their implications for our understanding of how the DDR regulates transcription and repair in the nucleolus. PMID:26615196

  3. Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Cooper, P. K.; Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    DNA double-strand breaks (DSBs) were measured within a 3.2-Mbp NotI fragment on chromosome 21 of cells of a normal human fibroblast cell line. Correct rejoining of DSBs was followed by measuring reconstitution of the original-size NotI fragment, and this was compared to total rejoining as measured by a conventional pulsed-field gel electrophoresis technique (FAR assay). After 80 Gy of particle irradiations with LETs in the range of 7-150 keV/microm, it was found that the repair kinetics was generally slower after irradiation with high-LET particles compared to X irradiation and that a larger proportion of the breaks remained unrepaired after 24 h. On the other hand, the misrejoining frequency as measured by the difference between correct and total rejoining after 24 h did not change with LET, but was approximately the same for all radiations at this dose, equal to 25-30% of the initial breaks. This result is discussed in relation to formation of chromosomal aberrations, deletion mutations and other biological end points.

  4. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    SciTech Connect

    Ruebe, Claudia E.; Kuehne, Martin; Fricke, Andreas

    2008-11-15

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive {gamma}H2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating {gamma}H2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that {gamma}H2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for {gamma}H2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis.

  5. RNA-directed repair of DNA double-strand breaks.

    PubMed

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. PMID:25960340

  6. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-01

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process. PMID:10573425

  7. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  8. Current-voltage characteristics of double-strand DNA sequences

    NASA Astrophysics Data System (ADS)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  9. Proposal of new modification technique for linear double-stranded DNAs using the polysaccharide schizopyllan.

    PubMed

    Anada, Takahisa; Matsunaga, Hideshi; Karinaga, Ryouji; Koumoto, Kazuya; Mizu, Masami; Nakano, Koji; Shinkai, Seiji; Sakurai, Kazuo

    2004-11-15

    A natural polysaccharide schizophyllan (SPG) has been known to form a stable complex with poly(dA). We attached a poly(dA)(80) tail to the both ends of a linear double-stranded DNA, which had been prepared from a plasmid DNA vector. The poly(dA) tailed DNA verified to form complex with SPG by gel electrophoresis and atomic force microscopy (AFM). AFM images indicated that the complexes exhibit a dumbbell-like architecture, that is, quite similar to that of adenovirus genome. The complex demonstrated excellent exonuclease resistance, probably because of the protection effect by SPG complexation. PMID:15482942

  10. Do DNA Double-Strand Breaks Drive Aging?

    PubMed

    White, Ryan R; Vijg, Jan

    2016-09-01

    DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death. PMID:27588601

  11. 75 FR 62820 - Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ...- Stranded DNA AGENCY: Department of Health and Human Services, Office of the Secretary. ACTION: Notice... provides a framework for screening synthetic double-stranded DNA (dsDNA). This document, the Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA (the Guidance), sets forth...

  12. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  13. Looping of anisotropic, short double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Harold; Le, Tung

    2013-03-01

    Bending of double-stranded DNA (dsDNA) is associated with fundamental biological processes such as genome packaging and gene regulation, and therefore studying sequence-dependent dsDNA bending is a key to understanding biological impact of DNA sequence beyond the genetic code. Average mechanical behavior of long dsDNA is well described by the wormlike chain model, but sequence-dependent anisotropic bendability and bendedness of dsDNA can in principle lead to abnormally high looping probability at short length scales. Here, we measured the looping probability density (J factor) and kinetics of dsDNA as a function of length and curvature using single-molecule FRET (Förster Resonance Energy Transfer). For theoretical comparison, we calculated the J-factor using a discrete dinucleotide chain model, and also simulated it by Monte Carlo methods. We provide evidences that even when the intrinsic shape of dsDNA is accounted for, the wormlike chain model fails to describe looping dynamics of dsDNA below 200-bp length scale. Georgia Tech FIRE program

  14. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure.

    PubMed

    Endo, Masayuki; Katsuda, Yousuke; Hidaka, Kumi; Sugiyama, Hiroshi

    2010-02-10

    A novel strategy for regulation of an enzymatic DNA modification reaction has been developed by employing a designed nanoscale DNA scaffold. DNA modification using enzymes often requires bending of specific DNA strands to facilitate the reaction. The DNA methylation enzyme EcoRI methyltransferase (M.EcoRI) bends double helix DNA by 55 degrees-59 degrees during the reaction with flipping out of the second adenine in the GAATTC sequence as the methyl transfer reaction proceeds. In this study, two different double helical tensions, tense and relaxed states of double helices, were created to control the methyl transfer reaction of M.EcoRI and examine the structural effect on the methylation. We designed and prepared a two-dimensional (2D) DNA scaffold named the "DNA frame" using the DNA origami method that accommodates two different lengths of the double-strand DNA fragments, a tense 64mer double strand and a relaxed 74mer double strand. Fast-scanning atomic force microscope (AFM) imaging revealed the different dynamic movement of the double-strand DNAs and complexes of M.EcoRI with 64mer and 74mer double-strand DNAs. After treatment of the double strands in the DNA frame with M.EcoRI and the subsequent digestion with restriction enzyme EcoRI (R.EcoRI), AFM analysis revealed that the 74mer double-strand DNA was not effectively cleaved compared with the 64mer double-strand DNA, indicating that the methylation preferentially occurred in the relaxed 74mer double-strand DNA compared with that in the tense 64mer double strand. Biochemical analysis of the methylation and specific digestion using a real-time PCR also supported the above results. These results indicate the importance of the structural flexibility for bending of the duplex DNA during the methyl transfer reaction with M.EcoRI. Therefore, the DNA methylation can be regulated using the structurally controlled double-strand DNAs constructed in the DNA frame nanostructure. PMID:20078043

  15. Detection of DNA double-strand breaks in boron neutron capture reaction.

    PubMed

    Okamoto, Emiko; Yamamoto, Tetsuya; Nakai, Kei; Fumiyo Yoshida; Matsumura, Akira

    2015-12-01

    We evaluated DNA double-strand breaks (DSBs) induced by boron neutron capture reaction (BNCR) using plasmid DNA, boron solution, and gel electrophoresis. The amount of the linear form of DNA produced by DSBs increased with the neutron-beam irradiation dose. The amount of the open-circular form of DNA produced by single-strand breaks (SSBs) increased with the neutron-beam irradiation dose and the (10)B concentration. The model facilitated quantification of BNCR-induced DSBs and SSBs, irrespective of the DNA repair mechanism. PMID:26302660

  16. DNA double-strand break repair inhibitors as cancer therapeutics.

    PubMed

    Srivastava, Mrinal; Raghavan, Sathees C

    2015-01-22

    Among DNA damages, double-strand breaks (DSBs) are one of the most harmful lesions to a cell. Failure in DSB repair could lead to genomic instability and cancer. Homologous recombination (HR) and nonhomologous end joining (NHEJ) are major DSB repair pathways in higher eukaryotes. It is known that expression of DSB repair genes is altered in various cancers. Activation of DSB repair genes is one of the reasons for chemo- and radioresistance. Therefore, targeting DSB repair is an attractive strategy to eliminate cancer. Besides, therapeutic agents introduce breaks in the genome as an intermediate. Therefore, blocking the residual repair using inhibitors can potentiate the efficacy of cancer treatment. In this review, we discuss the importance of targeting DSB repair pathways for the treatment of cancer. Recent advances in the development of DSB repair inhibitors and their clinical relevance are also addressed. PMID:25579208

  17. The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe.

    PubMed

    Shi, Chao; Shang, Fanjin; Pan, Mei; Liu, Sen; Ma, Cuiping

    2016-06-15

    Here we have developed a novel method of isothermal amplification detection of double-stranded DNA (dsDNA) based on double-stranded fluorescence probe (ds-probe). Target dsDNA repeatedly generated single-stranded DNA (ssDNA) with polymerase and nicking enzyme. The ds-probe as a primer hybridized with ssDNA and extended to its 5'-end. The displaced ssDNA served as a new detection target to initiate above-described reaction. Meanwhile, the extended ds-probe could dynamically dissociate from ssDNA and self-hybridize, converting into a turn-back structure to initiate another amplification reaction. In particular, the ds-probe played a key role in the entire experimental process, which not only was as a primer but also produced the fluorescent signal by an extension and displacement reaction. Our method could detect the pBluescript II KS(+) plasmid with a detection limit of 2.3 amol, and it was also verified to exhibit a high specificity, even one-base mismatch. Overall, it was a true isothermal dsDNA detection strategy with a strongly anti-jamming capacity and one-pot, only requiring one ds-probe, which greatly reduced the cost and the probability of contamination. With its advantages, the approach of dsDNA detection will offer a promising tool in the field of point-of-care testing (POCT). PMID:26803414

  18. DNA double strand break repair, aging and the chromatin connection.

    PubMed

    Gorbunova, Vera; Seluanov, Andrei

    2016-06-01

    Are DNA damage and mutations possible causes or consequences of aging? This question has been hotly debated by biogerontologists for decades. The importance of DNA damage as a possible driver of the aging process went from being widely recognized to then forgotten, and is now slowly making a comeback. DNA double strand breaks (DSBs) are particularly relevant to aging because of their toxicity, increased frequency with age and the association of defects in their repair with premature aging. Recent studies expand the potential impact of DNA damage and mutations on aging by linking DNA DSB repair and age-related chromatin changes. There is overwhelming evidence that increased DNA damage and mutations accelerate aging. However, an ultimate proof of causality would be to show that enhanced genome and epigenome stability delays aging. This is not an easy task, as improving such complex biological processes is infinitely more difficult than disabling it. We will discuss the possibility that animal models with enhanced DNA repair and epigenome maintenance will be generated in the near future. PMID:26923716

  19. Buried territories: heterochromatic response to DNA double-strand breaks.

    PubMed

    Feng, Yi-Li; Xiang, Ji-Feng; Kong, Na; Cai, Xiu-Jun; Xie, An-Yong

    2016-07-01

    Cellular response to DNA double-strand breaks (DSBs), the most deleterious type of DNA damage, is highly influenced by higher-order chromatin structure in eukaryotic cells. Compared with euchromatin, the compacted structure of heterochromatin not only protects heterochromatic DNA from damage, but also adds an extra layer of control over the response to DSBs occurring in heterochromatin. One key step in this response is the decondensation of heterochromatin structure. This decondensation process facilitates the DNA damage signaling and promotes proper heterochromatic DSB repair, thus helping to prevent instability of heterochromatic regions of genomes. This review will focus on the functions of the ataxia telangiectasia mutated (ATM) signaling cascade involving ATM, heterochromatin protein 1 (HP1), Krüppel-associated box (KRAB)-associated protein-1 (KAP-1), tat-interacting protein 60 (Tip60), and many other protein factors in DSB-induced decondensation of heterochromatin and subsequent repair of heterochromatic DSBs. As some subsets of DSBs may be repaired in heterochromatin independently of the ATM signaling, a possible repair model is also proposed for ATM-independent repair of these heterochromatic DSBs. PMID:27151295

  20. Fluid mechanics of DNA double-strand filter elution.

    PubMed Central

    Rudinger, George; Blazek, Ed Robert

    2002-01-01

    Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters. PMID:11751292

  1. How a short double-stranded DNA bends

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung

    2015-04-01

    A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.

  2. Chromatin modifications and DNA repair: beyond double-strand breaks

    PubMed Central

    House, Nealia C. M.; Koch, Melissa R.; Freudenreich, Catherine H.

    2014-01-01

    DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions. PMID:25250043

  3. Ku recruits XLF to DNA double-strand breaks.

    PubMed

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition. PMID:18064046

  4. DNA double-strand break repair: a relentless hunt uncovers new prey.

    PubMed

    Sekiguchi, JoAnn M; Ferguson, David O

    2006-01-27

    A major pathway for repair of DNA double-strand breaks is nonhomologous end-joining (NHEJ). In this issue of Cell, and report the discovery of a new NHEJ factor called Cernunnos-XLF. Both groups report that this protein is mutated in a rare inherited human syndrome characterized by severe immunodeficiency, developmental delay, and hypersensitivity to agents that cause DNA double-strand breaks. PMID:16439201

  5. Double-Strand Breaks from a Radical Commonly Produced by DNA-Damaging Agents

    PubMed Central

    2015-01-01

    Double-strand breaks are widely accepted to be the most toxic form of DNA damage. Molecules that produce double-strand breaks via a single chemical event are typically very cytotoxic and far less common than those that form single-strand breaks. It was recently reported that a commonly formed C4′-radical produces double-strand breaks under aerobic conditions. Experiments described herein indicate that a peroxyl radical initiates strand damage on the complementary strand via C4′-hydrogen atom abstraction. Inferential evidence suggests that a C3′-peroxyl radical induces complementary strand damage more efficiently than does a C4′-peroxyl radical. Complementary strand hydrogen atom abstraction by the peroxyl radical is efficiently quenched by thiols. This mechanism could contribute to the higher than expected yield of double-strand breaks produced by ionizing radiation. PMID:25749510

  6. Enveloped double-stranded DNA insect virus with novel structure and cytopathology

    PubMed Central

    Federici, Brian A.

    1983-01-01

    An unusual type of virus has been isolated from larvae of the cabbage looper, Trichoplusia ni (Lepidoptera; Noctuidae). The virus infects a variety of tissues, including fat body, epidermis, and tracheal matrix, causing a chronic, fatal disease. Viral replication begins in the nucleus and is accompanied by invagination of the nuclear envelope and extensive nuclear and cellular hypertrophy. The nuclear envelope eventually ruptures and fragments, after which viral-induced membranes are assembled along planes through the cell and around its periphery. Subsequently, these membranes coalesce, partitioning most of the cell, including viroplasms and virions in various stages of assembly, among a cluster of vesicles. The vesicles dissociate and are liberated into the hemolymph where they accumulate in large numbers (>108 vesicles per ml), causing the blood to become opaque white. The virus has been isolated from T. ni and transmitted per os and by injection to T. ni and several other species of the family Noctuidae. The virions produced by this virus are large (ca. 130 × 400 nm), enveloped, and allantoid in shape with complex symmetry and contain apparently linear, double-stranded DNA of Mr of ≈ 1.00 × 108. The envelope contains subunits arranged in a hexagonal pattern that impart a distinctive reticular appearance to virions in negatively stained preparations. The unique structural and developmental properties of this virus indicate that it is a member of a group of enveloped, double-stranded DNA viruses not observed previously. Images PMID:16593397

  7. Direct detection of synthetic and biologically generated double-stranded DNA by MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Little, Daniel P.; Jacob, Anette; Becker, Thomas; Braun, Andreas; Darnhofer-Demar, Brigitte; Jurinke, Christian; van den Boom, Dirk; Koster, Hubert

    1997-12-01

    A synthetic 50-mer DNA was mixed at room temperature with a non-complementary or a complementary 27-mer and analyzed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. The former resulted in negligible signals from a 27-/50- mer heterodimer, for the latter this was a dominant peak, consistent with maintaining Watson-Crick interactions in the gas phase. Double stranded DNA derived from an enzymatic digestion of a 252-base-pair polymerase chain reaction product when prepared at room temperature yielded very little specific double stranded DNA, but sample preparation at reduced temperature resulted in spectra dominated by the expected heterodimer signals with no random (i.e. non-Watson-Crick) dimers. As a DNA diagnostics genotyping application, apolipoprotein-E alleles were easily distinguished considering only the masses of their double stranded DNA digest fragments.

  8. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  9. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA.

    PubMed

    Patterson, Adriana; Caprio, Felice; Vallée-Bélisle, Alexis; Moscone, Danila; Plaxco, Kevin W; Palleschi, Giuseppe; Ricci, Francesco

    2010-11-01

    We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probe's redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence. PMID:20936782

  10. Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA

    PubMed Central

    Patterson, Adriana; Caprio, Felice; Vallée-Bélisle, Alexis; Moscone, Danila; Plaxco, Kevin W.; Palleschi, Giuseppe; Ricci, Francesco

    2011-01-01

    We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probe’s redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence. PMID:20936782

  11. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    SciTech Connect

    Bouffler, S.D.; Jha, B.; Johnson, R.T. )

    1990-09-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate.

  12. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA.

    PubMed

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela; Gamba, Cristina; Barnett, Ross; Samaniego, José Alfredo; Madrigal, Jazmín Ramos; Orlando, Ludovic; Gilbert, M Thomas P

    2015-12-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained <3% endogenous DNA, but this enrichment is less pronounced when dsDNA preparations successfully recover short endogenous DNA fragments (mean size < 70 bp). Our findings can help researchers determine when to utilize the time- and resource-intensive ssDNA library preparation method. PMID:26651516

  13. High-throughput detection of DNA double-strand breaks using image cytometry

    PubMed Central

    Fowler, Tyler L.; Bailey, Alison M.; Bednarz, Bryan P.; Kimple, Randall J.

    2015-01-01

    Assessment of γH2AX expression for studying DNA double-strand break formation is often performed by manual counting of foci using immunofluorescence microscopy, an approach that is laborious and subject to significant foci selection bias. Here we present a novel high-throughput method for detecting DNA double-strand breaks using automated image cytometry assessment of cell average γH2AX immunofluorescence. Our technique provides an expedient, high-throughput, objective, and cost-effective method for γH2AX analysis. PMID:25605579

  14. High-throughput detection of DNA double-strand breaks using image cytometry.

    PubMed

    Fowler, Tyler L; Bailey, Alison M; Bednarz, Bryan P; Kimple, Randall J

    2015-01-01

    Assessment of γH2AX expression for studying DNA double-strand break formation is often performed by manual counting of foci using immunofluorescence microscopy, an approach that is laborious and subject to significant foci selection bias. Here we present a novel high-throughput method for detecting DNA double-strand breaks using automated image cytometry assessment of cell average γH2AX immunofluorescence. Our technique provides an expedient, high-throughput, objective, and cost-effective method for γH2AX analysis. PMID:25605579

  15. Metallization of double-stranded DNA triggered by bound galactose-modified naphthalene diimide.

    PubMed

    Komizo, Kohei; Ikedo, Hideyuki; Sato, Shinobu; Takenaka, Shigeori

    2014-08-20

    Naphthalene diimide (NDI) derivatives bearing galactose moieties through different spacers, NDI-DS1 and NDI-DS2, were synthesized by the click reaction of the acetylene derivatives of NDI with galactose azide. They bound to double-stranded DNA with threading intercalation, as confirmed by the topoisomerase I assay and circular dichroism spectroscopy. The binding affinities of these ligands were on the order of 10(5) M(-1) with several-fold higher affinity for double-stranded DNA than for single-stranded DNA. The silver mirror reaction on the double-stranded DNA bound to these ligands afforded silver nanowires that were converted to gold nanowires. In the atomic force microscopy measurements, the increased height of DNA areas on a mica plate was observed in the case of double-stranded DNA after NDI-DS2 treatment and subsequently silver mirror reaction, whereas the increased height of DNA areas was not observed in the case of single-stranded DNA after the same treatment. PMID:25011665

  16. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy

    PubMed Central

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533

  17. Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair

    PubMed Central

    Mehta, Anuja; Haber, James E.

    2014-01-01

    DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination. PMID:25104768

  18. ADAR Proteins: Double-stranded RNA and Z-DNA Binding Domains

    PubMed Central

    Barraud, Pierre; Allain, Frédéric H.-T

    2012-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We are reviewing here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the double-stranded RNA and Z-DNA binding domains. PMID:21728134

  19. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution.

    PubMed Central

    Bradley, M O; Kohn, K W

    1979-01-01

    This work presents a neutral filter elution method for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay will detect the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increases with X-ray dose. Certain conditions for deproteinization, pH, and filter type are shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induce apparent DNA double strand breaks, although the ratios of double to single strand breaks vary from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters results in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA bands with a double stranded DNA marker in cesium chloride. This evidence suggests that the assay detects DNA double strand breaks. L1210 cells are shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes. PMID:92010

  20. Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans.

    PubMed

    Adachi, Motoyasu; Hirayama, Hiroshi; Shimizu, Rumi; Satoh, Katsuya; Narumi, Issay; Kuroki, Ryota

    2014-10-01

    Pleiotropic protein promoting DNA repair A (PprA) is a key protein that facilitates the extreme radioresistance of Deinococcus radiodurans. To clarify the role of PprA in the radioresistance mechanism, the interaction between recombinant PprA expressed in Escherichia coli with several double-stranded DNAs (i.e., super coiled, linear, or nicked circular dsDNA) was investigated. In a gel-shift assay, the band shift of supercoiled pUC19 DNA caused by the binding of PprA showed a bimodal distribution, which was promoted by the addition of 1 mM Mg, Ca, or Sr ions. The dissociation constant of the PprA-supercoiled pUC19 DNA complex, calculated from the relative portions of shifted bands, was 0.6 μM with Hill coefficient of 3.3 in the presence of 1 mM Mg acetate. This indicates that at least 281 PprA molecules are required to saturate a supercoiled pUC19 DNA, which is consistent with the number (280) of bound PprA molecules estimated by the UV absorption of the PprA-pUC19 complex purified by gel filtration. This saturation also suggests linear polymerization of PprA along the dsDNA. On the other hand, the bands of linear dsDNA and nicked circular dsDNA that eventually formed PprA complexes did not saturate, but created larger molecular complexes when the PprA concentration was >1.3 μM. This result implies that DNA-bound PprA aids association of the termini of damaged DNAs, which is regulated by the concentration of PprA. These findings are important for the understanding of the mechanism underlying effective DNA repair involving PprA. PMID:25044036

  1. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  2. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.

    PubMed

    Plosky, Brian S

    2016-05-19

    Targeting point mutations using CRISPR/Cas9 so far has required efficient homologous recombination (HR) and donor oligonucleotides. In a recent Nature paper, Komor and colleagues (2016) describe a way to make specific base changes that does not depend on HR or donor DNA and does not involve making double-strand breaks. PMID:27203175

  3. Branch Migration Prevents DNA Loss during Double-Strand Break Repair

    PubMed Central

    Mawer, Julia S. P.; Leach, David R. F.

    2014-01-01

    The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements. PMID:25102287

  4. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors.

    PubMed

    Weingeist, David M; Ge, Jing; Wood, David K; Mutamba, James T; Huang, Qiuying; Rowland, Elizabeth A; Yaffe, Michael B; Floyd, Scott; Engelward, Bevin P

    2013-03-15

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  5. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

    PubMed Central

    Weingeist, David M.; Ge, Jing; Wood, David K.; Mutamba, James T.; Huang, Qiuying; Rowland, Elizabeth A.; Yaffe, Michael B.; Floyd, Scott; Engelward, Bevin P.

    2013-01-01

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  6. Understanding the similarity in thermophoresis between single- and double-stranded DNA or RNA

    NASA Astrophysics Data System (ADS)

    Reichl, Maren; Herzog, Mario; Greiss, Ferdinand; Wolff, Manuel; Braun, Dieter

    2015-06-01

    Thermophoresis is the movement of molecules in a temperature gradient. For aqueous solutions its microscopic basis is debated. Understanding thermophoresis for this case is, however, important since it proved very useful to detect the binding affinity of biomolecules and since thermophoresis could have played an important role in early molecular evolution. Here we discuss why the thermophoresis of single- and double-stranded oligonucleotides - DNA and RNA - is surprisingly similar. This finding is understood by comparing the spherical capacitor model for single-stranded species with the case of a rod-shaped model for double-stranded oligonucleotides. The approach describes thermophoresis of DNA and RNA with fitted effective charges consistent with electrophoresis measurements and explains the similarity between single- and double-stranded species. We could not confirm the sign change for the thermophoresis of single- versus double-stranded DNA in crowded solutions containing polyethylene glycol [Y. T. Maeda, T. Tlusty, and A. Libchaber, Proc. Natl. Acad. Sci. USA 109, 17972 (2012), 10.1073/pnas.1215764109], but find a salt-independent offset while the Debye length dependence still satisfies the capacitor model. Overall, the analysis documents the continuous progress in the microscopic understanding of thermophoresis.

  7. Spin transport and spin polarization properties in double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2013-11-21

    We study the spin-dependent electron transport through a double-stranded DNA (dsDNA) using the Bogoliubov-de Gennes equations and non-equilibrium Green's function method. We calculate the spin-dependent electron conductance and spin-polarization for different lengths, helix angles, twist angles of dsDNA, the environment-induced dephasing factors, and hopping integral. It is shown that the conductance decreases by increasing the length and dephasing factor. Also, we show that the spin-polarization depends on the helical symmetry and the length of DNA. It is shown that the double-stranded DNA can act as a perfect spin filter. Finally, we show that the sign of spin polarization can be inverted from +1 (−1) to −1 (+1) for some values of hopping integral.

  8. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells

    SciTech Connect

    Xie Hong; Holmes, Amie L.; Young, Jamie L.; Qin Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce E-mail: John.Wise@usm.maine.edu

    2009-02-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or 'particulate' Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis.

  9. Hidden anti-double stranded DNA antibodies in autoimmune mice.

    PubMed Central

    Fish, F; Ziff, M

    1982-01-01

    When MRL/l mouse spleen cell culture supernatants were incubated with normal mouse spleen cells, a two-50-fold increase in anti-dsDNA activity was noted. A smaller increase in anti-ssDNA and no change in anti-TNP antibody activity were observed. This 'hidden' antibody in the MRL/l supernatants could not be revealed by DNAse digestion and could not be absorbed by a DNA cellulose column. Hidden antibody was removed from supernatants by sepharose-anti Ig. After DNAase digestion of the MRL/l supernatants, hidden anti-dsDNA could not be revealed by incubation with spleen cells. All the hidden activity was excluded by gel filtration on Sephacryl S-300 (mol. wt greater than 300,000) but was banded in the low density protein area of caesium chloride equilibrium density gradients. It was also noted that MRL/l mouse sera had hidden anti-dsDNA antibodies. Hidden antibodies were present in both the IgG and IgM classes. The revealed antibodies demonstrated impaired ability to bind Fc specific anti-Ig reagents suggesting that they were partially degraded during the incubation with mouse spleen cells. The hidden anti-dsDNA thus appears to represent a DNA-anti-dsDNA complex, perhaps of very high affinity. It may explain why anti-dsDNA but not anti-ssDNA antibodies are of pathological importance in SLE. PMID:6756722

  10. In vitro rejoining of double strand breaks in genomic DNA.

    PubMed

    Iliakis, George; Mladenov, Emil; Cheong, Nge

    2012-01-01

    Recent genetic and biochemical studies have provided important insights into the mechanism of nonhomologous end joining (NHEJ) pathways in higher eukaryotes, and have facilitated the functional characterization of several of its components including DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos, and Artemis. Nevertheless, there is evidence that as of yet uncharacterized repair factors may contribute to the efficiency of NHEJ, for example by modulating the activity of known factors. Also, the discovery of alternative pathways of NHEJ that function as backup to the classical DNA-PK-dependent pathway of NHEJ has added yet another dimension in the set of activities involved. The biochemical characterization of NHEJ in higher eukaryotes has benefited significantly from in vitro plasmid-based end joining assays. However, because of differences in the organization and sequence of genomic and plasmid DNA, and because multiple pathways of NHEJ are operational, it is possible that different factors are preferred for the rejoining of DSBs induced in plasmid versus genomic DNA organized in chromatin. Here, we describe an in vitro assay that allows the study of DSB rejoining in genomic DNA. The assay utilizes as a substrate DSBs induced by various means in genomic DNA prepared from agarose-embedded cells after appropriate lysis. Two extremes in terms of state of DNA organization are described: "naked" DNA and DNA organized in chromatin. We describe the protocols developed to carry out and analyze these in vitro reactions, including procedures for the preparation of cell extract and the preparation of the substrate DNA ("naked" DNA or nuclei). PMID:22941623

  11. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  12. Radiation induced DNA double strand breaks are rejoined by ligation and recombination processes.

    PubMed Central

    Weibezahn, K F; Coquerelle, T

    1981-01-01

    Using the method of filter elution of double stranded DNA under neutral conditions we have shown that most of gamma-ray induced double strand breaks (DSB) are rejoined in both mammalian and bacterial cells. Rejoining also occurs in the G1 phase in V79 Chinese hamster cells and under different growth conditions. Within 8 minutes at 37 C, half the breaks are rejoined. The rejoining in E. coli is equally fast and depends on the presence of DNA ligase. Some of the breaks in E. coli rejoin slowly, and these require rec+. The non-rejoined DSB are distributed over the DNA without any preference for the nucleosomal or the linker structure in the chromosome. Two kinds of DSB rejoining are discriminated, a fast process of DNA ligation and a slower process involving rec functions. PMID:7024911

  13. Double-strand DNA breaks recruit the centromeric histone CENP-A

    PubMed Central

    Zeitlin, Samantha G.; Baker, Norman M.; Chapados, Brian R.; Soutoglou, Evi; Wang, Jean Y. J.; Berns, Michael W.; Cleveland, Don W.

    2009-01-01

    The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair. PMID:19717431

  14. Hyperactivation of DNA-PK by Double-Strand Break Mimicking Molecules Disorganizes DNA Damage Response

    PubMed Central

    Quanz, Maria; Chassoux, Danielle; Berthault, Nathalie; Agrario, Céline; Sun, Jian-Sheng; Dutreix, Marie

    2009-01-01

    Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an “all-or-none” pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a “false” DNA damage signaling that disorganizes the DNA repair system. PMID:19621083

  15. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  16. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA.

    PubMed

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H Tomas; Calvert, Jacob; Song, Jun S; Myong, Sua

    2016-06-01

    G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  17. Quantitation of single- and double-strand DNA breaks in vitro and in vivo

    SciTech Connect

    Kohen, R.; Szyf, M.; Chevion, M.

    1986-05-01

    This communication describes a rapid and convenient procedure for quantitation of strand breaks in bacterial DNA, both in vitro and in vivo, using agarose gel electrophoresis. The electrophoretic determination of single strand breaks is carried out in alkaline medium, followed by renaturation of the gel and intercalation of the fluorescent dye, ethidium bromide. Double-strand breaks are determined by electrophoresis in neutral medium containing the dye. The distribution of DNA fragment sizes, the determination of the number-average molecular weight, the quantitation of the average number of DNA breaks per molecule, and the ratio between the single- and double-strand breaks are evaluated from microdensitometric scanning of the gels. The application of this analysis to damage caused by a combination of ascorbate and copper is demonstrated.

  18. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA.

    PubMed Central

    Shen, J C; Rideout, W M; Jones, P A

    1994-01-01

    The modified base, 5-methylcytosine, constitutes approximately 1% of human DNA, but sites containing 5-methylcytosine account for at least 30% of all germline and somatic point mutations. A genetic assay with a sensitivity of 1 in 10(7), based on reversion to neomycin resistance of a mutant pSV2-neo plasmid, was utilized to determine and compare the deamination rates of 5-methylcytosine and cytosine in double-stranded DNA for the first time. The rate constants for spontaneous hydrolytic deamination of 5-methylcytosine and cytosine in double-stranded DNA at 37 degrees C were 5.8 x 10(-13) s-1 and 2.6 x 10(-13) s-1, respectively. These rates are more than sufficient to explain the observed frequency of mutation at sites containing 5-methylcytosine and emphasize the importance of hydrolytic deamination as a major source of human mutations. PMID:8152929

  19. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  20. RecG Directs DNA Synthesis during Double-Strand Break Repair

    PubMed Central

    Azeroglu, Benura; Mawer, Julia S. P.; Cockram, Charlotte A.; White, Martin A.; Hasan, A. M. Mahedi; Filatenkova, Milana; Leach, David R. F.

    2016-01-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability. PMID:26872352

  1. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    PubMed

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb. PMID:27100743

  2. Single and double stranded DNA detection using locked nucleic acid (LNA) functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    McKenzie, Fiona; Stokes, Robert; Faulds, Karen; Graham, Duncan

    2008-08-01

    Gold and silver nanoparticles functionalized with oligonucleotides can be used for the detection of specific sequences of DNA. We show that gold nanoparticles modified with locked nucleic acid (LNA) form stronger duplexes with a single stranded DNA target and offer better discrimination against single base pair mismatches than analogous DNA probes. Our LNA nanoparticle probes have also been used to detect double stranded DNA through triplex formation, whilst still maintaining selectivity for only complementary targets. Nanoparticle conjugates embedded with suitable surface enhanced resonance Raman scattering (SERRS) labels have been synthesized enabling simultaneous detection and identification of multiple DNA targets.

  3. Modified capillary electrophoresis system for peptide, protein and double-stranded DNA analysis.

    PubMed

    Belenkii, B G; Kassalainen, G E; Nasledov, D G

    2000-05-26

    The results of high-performance capillary electrophoresis (HPCE) studies of peptide, protein and double-stranded DNA separations on a laboratory-made HPCE system are presented. Parameters of the HPCE system are given. The new method of capillary surface modification by grafting poly(glycidyl methacrylate) is described. The problems of HPCE biopolymer analysis connected with the sample-wall interactions are discussed. PMID:10893035

  4. Measurements of the hysteresis in unzipping and rezipping double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Hatch, K.; Danilowicz, C.; Coljee, V.; Prentiss, M.

    2007-05-01

    Complete unzipping and rezipping of λ -phage double-stranded DNA is achieved by applying a constant force. A strong hysteresis is observed at all tested time scales and temperatures. Hysteresis also occurs for partial unzipping, indicating stability for the partially open state over a force range of 2- 5pN . Results are compared to nearest-neighbor model simulations, and reasonable agreement is found.

  5. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    PubMed

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA. PMID:11539954

  6. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    SciTech Connect

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

  7. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGESBeta

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  8. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide. PMID:25503383

  9. Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gladchenko, G. O.; Karachevtsev, M. V.; Leontiev, V. S.; Valeev, V. A.; Glamazda, A. Yu.; Plokhotnichenko, A. M.; Stepanian, S. G.

    Aqueous suspensions of ultrasonically fragmented double-stranded (fds-) DNA and single-walled carbon nanotubes (SWNTs) have been investigated by UV- and IR-absorption, NIR-emission and Raman spectroscopy. According to gel-electrophoresis, the lengths of the polymer fragments were 100-500 base pairs. Analysis of IR and UV data indicates the presence of both double-stranded (ds) and single-stranded (ss)-regions in the fragments. SWNT complex with DNA was revealed by NIR-emission and Raman spectroscopy. It turned out that fds-DNA is less efficient in holding nanotubes in the aqueous solution than ss-DNA. From the UV-data, the character of the helix-coil transition is seen to be like that for fds-DNA off and on nanotube, however, DNA thermostability increased in this latter case. The effective charge density on the DNA sugar-phosphate backbone of the fds-DNA:SWNT hybrid was less than that of DNA alone. Spectroscopic data can be explained by a model in which the formation of hybrids starts due to the interaction between untwisted ss-regions of DNA and the nanotube: the strands wrap on the tube and thus create an 'anchor' for the whole polymer. The ds-part of the polymer is located close to the nanotube.

  10. Response of the electric conductivity of double-stranded DNA on moderate mechanical stretching stresses

    NASA Astrophysics Data System (ADS)

    Wolter, Mario; Woiczikowski, P. Benjamin; Elstner, Marcus; Kubař, Tomáš

    2012-02-01

    The response of charge transport in double-stranded DNA to mechanical pulling has been studied with a multiscale computational method using classical molecular dynamics simulation, approximative density-functional theory calculations and the Landauer-Büttiker theory. The effect depends on the exact nucleobase sequence notably, and this is explained in terms of structural changes of DNA upon stretching. The results of recent single-molecule experiments are interpreted on the basis of current results. Further, recommendations for the design of DNA sequences for nanoelectronic applications are formulated.

  11. FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress.

    PubMed

    Jeong, Yeon-Tae; Rossi, Mario; Cermak, Lukas; Saraf, Anita; Florens, Laurence; Washburn, Michael P; Sung, Patrick; Schildkraut, Carl L; Schildkraut, Carl; Pagano, Michele

    2013-01-21

    Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress. PMID:23319600

  12. The effect of a magnetic field on the spin-selective transport in double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-05-28

    Spin-polarization in double-stranded DNA is studied in the presence of a magnetic field applied along its helix axis using the non-equilibrium Green's function method. The spin-polarization could be tuned by changing the magnetic field. In some special cases, the double-stranded DNA behaved as a perfect spin-filter. Furthermore, the dependency of the spin-polarization on the spin-orbit strength and dephasing strength is studied.

  13. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    PubMed

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. PMID:26460502

  14. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair

    PubMed Central

    Gravells, Polly; Ahrabi, Sara; Vangala, Rajani K.; Tomita, Kazunori; Brash, James T.; Brustle, Lena A.; Chung, Christopher; Hong, Julia M.; Kaloudi, Aikaterini; Humphrey, Timothy C.; Porter, Andrew C.G.

    2015-01-01

    Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene. PMID:26423459

  15. Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes.

    PubMed

    Anderson, Brooke A; Hrdlicka, Patrick J

    2016-04-15

    The development of molecular strategies that enable recognition of specific double-stranded DNA (dsDNA) regions has been a longstanding goal as evidenced by the emergence of triplex-forming oligonucleotides, peptide nucleic acids (PNAs), minor groove binding polyamides, and-more recently-engineered proteins such as CRISPR/Cas9. Despite this progress, an unmet need remains for simple hybridization-based probes that recognize specific mixed-sequence dsDNA regions under physiological conditions. Herein, we introduce pseudocomplementary Invader probes as a step in this direction. These double-stranded probes are chimeras between pseudocomplementary DNA (pcDNA) and Invader probes, which are activated for mixed-sequence dsDNA-recognition through the introduction of pseudocomplementary base pairs comprised of 2-thiothymine and 2,6-diaminopurine, and +1 interstrand zipper arrangements of intercalator-functionalized nucleotides, respectively. We demonstrate that certain pseudocomplementary Invader probe designs result in very efficient and specific recognition of model dsDNA targets in buffers of high ionic strength. These chimeric probes, therefore, present themselves as a promising strategy for mixed-sequence recognition of dsDNA targets for applications in molecular biology and nucleic acid diagnostics. PMID:26998918

  16. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    PubMed Central

    Fernandez, Agustin F.; Rosales, Cecilia; Lopez-Nieva, Pilar; Graña, Osvaldo; Ballestar, Esteban; Ropero, Santiago; Espada, Jesus; Melo, Sonia A.; Lujambio, Amaia; Fraga, Mario F.; Pino, Irene; Javierre, Biola; Carmona, Francisco J.; Acquadro, Francesco; Steenbergen, Renske D.M.; Snijders, Peter J.F.; Meijer, Chris J.; Pineau, Pascal; Dejean, Anne; Lloveras, Belen; Capella, Gabriel; Quer, Josep; Buti, Maria; Esteban, Juan-Ignacio; Allende, Helena; Rodriguez-Frias, Francisco; Castellsague, Xavier; Minarovits, Janos; Ponce, Jordi; Capello, Daniela; Gaidano, Gianluca; Cigudosa, Juan Cruz; Gomez-Lopez, Gonzalo; Pisano, David G.; Valencia, Alfonso; Piris, Miguel Angel; Bosch, Francesc X.; Cahir-McFarland, Ellen; Kieff, Elliott; Esteller, Manel

    2009-01-01

    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses. PMID:19208682

  17. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    PubMed Central

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  18. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses.

    PubMed

    Rao, Venigalla B; Feiss, Michael

    2015-11-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  19. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA.

    PubMed

    Kretschy, Nicole; Sack, Matej; Somoza, Mark M

    2016-03-16

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5' end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5' end of fixed-sequence double-stranded DNA with a variable sequence 3' overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3'-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye. PMID:26895222

  20. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA

    PubMed Central

    2016-01-01

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5′ end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5′ end of fixed-sequence double-stranded DNA with a variable sequence 3′ overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3′-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye. PMID:26895222

  1. Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy.

    PubMed

    Ribeiro, W C; Gonçalves, L M; Liébana, S; Pividori, M I; Bueno, P R

    2016-04-21

    Conductance was measured in two different double stranded DNA (both with 20 bases), the more conducting poly(dG)-poly(dC) (ds-DNAc) and the less conducting poly(dA)-poly(dT) (ds-DNAi), by means of Electrochemical Capacitance Spectroscopy (ECS). The use of the ECS approach, exemplified herein with DNA nanowires, is equally a suitable and time-dependent advantageous alternative for conductance measurement of molecular systems, additionally allowing better understanding of the alignment existing between molecular scale conductance and electron transfer rate. PMID:27074378

  2. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers.

    PubMed

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-05-23

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability. PMID:27211488

  3. Translocation frequency of double-stranded DNA through a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Bell, Nicholas A. W.; Muthukumar, Murugappan; Keyser, Ulrich F.

    2016-02-01

    Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length-independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation, which includes the contribution of an entropic barrier for polymer entry.

  4. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  5. Local sequential minimization of double stranded B-DNA using Monte Carlo annealing.

    PubMed

    Sfyrakis, Konstantinos; Provata, Astero; Povey, David C; Howlin, Brendan J

    2004-06-01

    A software algorithm has been developed to investigate the folding process in B-DNA structures in vacuum under a simple and accurate force field. This algorithm models linear double stranded B-DNA sequences based on a local, sequential minimization procedure. The original B-DNA structures were modeled using initial nucleotide structures taken from the Brookhaven database. The models contain information at the atomic level allowing one to investigate as accurately as possible the structure and characteristics of the resulting DNA structures. A variety of DNA sequences and sizes were investigated containing coding and non-coding, random and real, homogeneous or heterogeneous sequences in the range of 2 to 40 base pairs. The force field contains terms such as angle bend, Lennard-Jones, electrostatic interactions and hydrogen bonding which are set up using the Dreiding II force field and defined to account for the helical parameters such as twist, tilt and rise. A close comparison was made between this local minimization algorithm and a global one (previously published) in order to find out advantages and disadvantages of the different methods. From the comparison, this algorithm gives better and faster results than the previous method, allowing one to minimize larger DNA segments. DNA segments with a length of 40 bases need approximately 4 h, while 2.5 weeks are needed with the previous method. After each minimization the angles between phosphate-oxygen-carbon A1, the oxygen-phosphate-oxygen A2 and the average helical twists were calculated. From the generated fragments it was found that the bond angles are A1=150 degrees +/-2 degrees and A2=130 degrees +/-10 degrees, while the helical twist is 36.6 degrees +/-2 degrees in the A strand and A1=150 degrees +/-6 degrees and A2=130+/-6 degrees with helical twist 39.6 degrees +/-2 degrees in the B strand for the DNA segment with the same sequence as the Dickerson dodecamer. PMID:15042433

  6. Processing of 3'-Phosphoglycolate-Terminated DNA Double-StrandBreaks by Artemis Nuclease

    SciTech Connect

    Povrik, Lawrence F.; Zhou, Tong; Zhou, Ruizhe; Cowan, Morton J.; Yannone, Steven M.

    2005-10-01

    The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double-strand breaks. To assess the possibility that Artemis functions on oxidatively modified double-strand break termini, its activity toward model DNA substrates, bearing either 3{prime}-hydroxyl or 3{prime}-phosphoglycolate moieties, was examined. A 3{prime}-phosphoglycolate had little effect on Artemis-mediated trimming of long 3{prime} overhangs (>9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3{prime}-phosphoglycolates on overhangs of 4-5 bases promoted selective Artemis-mediated trimming of a single 3{prime}-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3{prime} overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was dependent upon Ku, DNA-dependent protein kinase, and ATP. Together, these data suggest that Artemis-mediated cleavage of 3{prime} overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3{prime} to the cleavage site. Shorter 3{prime}-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis, but much less efficiently. Consistent with the in vitro substrate specificity of Artemis, human cells lacking Artemis exhibited hypersensitivity to X-rays, bleomycin and neocarzinostatin, which all induce 3{prime}-phosphoglycolate-terminated double-strand breaks. Collectively, these results suggest that 3{prime}-phosphoglycolate termini and/or specific classes of DNA ends that arise from such blocked termini are relevant Artemis substrates in vivo.

  7. Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model

    SciTech Connect

    Hud, N.V.

    1995-10-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent with all available data. Recently, the authors proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here the authors propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.

  8. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. PMID:26682627

  9. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    PubMed Central

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  10. Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form

    NASA Astrophysics Data System (ADS)

    Maaloum, M.; Beker, A.-F.; Muller, P.

    2011-03-01

    Almost two decades ago, measurements of force versus extension on isolated double-stranded DNA molecules revealed a force plateau. This unusual stretching phenomenon in DNA suggests that the long molecules may be extended from the usual B form into a new conformation. Different models have been proposed to describe the nature of DNA in its stretched form, S-DNA. Using atomic force microscopy combined with a molecular combing method, we identified the structure of λ-phage DNA for different stretching values. We provide strong evidence for the existence of a first-order transition between B form and S form. Beyond a certain extension of the natural length, DNA molecules adopt a new double-helix conformation characterized by a diameter of 1.2 nm and a helical pitch of 18 nm.

  11. Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form

    SciTech Connect

    Maaloum, M.; Muller, P.; Beker, A-F.

    2011-03-15

    Almost two decades ago, measurements of force versus extension on isolated double-stranded DNA molecules revealed a force plateau. This unusual stretching phenomenon in DNA suggests that the long molecules may be extended from the usual B form into a new conformation. Different models have been proposed to describe the nature of DNA in its stretched form, S-DNA. Using atomic force microscopy combined with a molecular combing method, we identified the structure of {lambda}-phage DNA for different stretching values. We provide strong evidence for the existence of a first-order transition between B form and S form. Beyond a certain extension of the natural length, DNA molecules adopt a new double-helix conformation characterized by a diameter of 1.2 nm and a helical pitch of18 nm.

  12. Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ribeiro, W. C.; Gonçalves, L. M.; Liébana, S.; Pividori, M. I.; Bueno, P. R.

    2016-04-01

    Conductance was measured in two different double stranded DNA (both with 20 bases), the more conducting poly(dG)-poly(dC) (ds-DNAc) and the less conducting poly(dA)-poly(dT) (ds-DNAi), by means of Electrochemical Capacitance Spectroscopy (ECS). The use of the ECS approach, exemplified herein with DNA nanowires, is equally a suitable and time-dependent advantageous alternative for conductance measurement of molecular systems, additionally allowing better understanding of the alignment existing between molecular scale conductance and electron transfer rate.Conductance was measured in two different double stranded DNA (both with 20 bases), the more conducting poly(dG)-poly(dC) (ds-DNAc) and the less conducting poly(dA)-poly(dT) (ds-DNAi), by means of Electrochemical Capacitance Spectroscopy (ECS). The use of the ECS approach, exemplified herein with DNA nanowires, is equally a suitable and time-dependent advantageous alternative for conductance measurement of molecular systems, additionally allowing better understanding of the alignment existing between molecular scale conductance and electron transfer rate. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01076h

  13. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed Central

    Livneh, Z; Elad, D; Sperling, J

    1979-01-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  14. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed

    Livneh, Z; Elad, D; Sperling, J

    1979-11-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  15. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    PubMed

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. PMID:23598277

  16. Coupling end resection with the checkpoint response at DNA double-strand breaks.

    PubMed

    Villa, Matteo; Cassani, Corinne; Gobbini, Elisa; Bonetti, Diego; Longhese, Maria Pia

    2016-10-01

    DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast. PMID:27141941

  17. Non-random distribution of DNA double-strand breaks induced by particle irradiation

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Cooper, P. K.; Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Induction of DNA double-strand breaks (dsbs) in mammalian cells is dependent on the spatial distribution of energy deposition from the ionizing radiation. For high LET particle radiations the primary ionization sites occur in a correlated manner along the track of the particles, while for X-rays these sites are much more randomly distributed throughout the volume of the cell. It can therefore be expected that the distribution of dsbs linearly along the DNA molecule also varies with the type of radiation and the ionization density. Using pulsed-field gel and conventional gel techniques, we measured the size distribution of DNA molecules from irradiated human fibroblasts in the total range of 0.1 kbp-10 Mbp for X-rays and high LET particles (N ions, 97 keV/microns and Fe ions, 150 keV/microns). On a mega base pair scale we applied conventional pulsed-field gel electrophoresis techniques such as measurement of the fraction of DNA released from the well (FAR) and measurement of breakage within a specific NotI restriction fragment (hybridization assay). The induction rate for widely spaced breaks was found to decrease with LET. However, when the entire distribution of radiation-induced fragments was analysed, we detected an excess of fragments with sizes below about 200 kbp for the particles compared with X-irradiation. X-rays are thus more effective than high LET radiations in producing large DNA fragments but less effective in the production of smaller fragments. We determined the total induction rate of dsbs for the three radiations based on a quantitative analysis of all the measured radiation-induced fragments and found that the high LET particles were more efficient than X-rays at inducing dsbs, indicating an increasing total efficiency with LET. Conventional assays that are based only on the measurement of large fragments are therefore misleading when determining total dsb induction rates of high LET particles. The possible biological significance of this non

  18. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    PubMed

    Komor, Alexis C; Kim, Yongjoo B; Packer, Michael S; Zuris, John A; Liu, David R

    2016-05-19

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  19. DNA double strand breaks in the acute phase after synchrotron pencilbeam irradiation

    NASA Astrophysics Data System (ADS)

    Fernandez-Palomo, C.; Bräuer-Krisch, E.; Trippel, M.; Schroll, C.; Requardt, H.; Bartzsch, S.; Nikkhah, G.; Schültke, E.

    2013-07-01

    Introduction. At the biomedical beamline of the European Synchrotron Radiation Facility (ESRF), we have established a method to study pencilbeam irradiation in-vivoin small animal models. The pencilbeam irradiation technique is based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. Using γH2AX as marker, we followed the development of DNA double strand breaks over 48 hrs after whole brain irradiation with the pencilbeam technique. Method. Almost square pencilbeams with an individual size of 51 × 50 μm were produced with an MSC collimator using a step and shoot approach, while the animals were moved vertically through the beam. The center-to-center distance (ctc) was 400 μm, with a peak-to-valley dose ratio (PVDR) of about 400. Five groups of healthy adult mice received peak irradiation doses of either 330 Gy or 2,460 Gy and valley doses of 0.82 Gy and 6.15 Gy, respectively. Animals were sacrificed at 2, 12 and 48 hrs after irradiation. Results. DNA double strand breaks are observed in the path of the pencilbeam. The size of the damaged volume undergoes changes within the first 48 hours after irradiation. Conclusions. The extent of DNA damage caused by pencilbeam irradiation, as assessed by H2AX antibody staining, is dose- dependent.

  20. Cleavage of supercoiled circular double-stranded DNA induced by a eukaryotic cambialistic superoxide dismutase from Cinnamomum camphora.

    PubMed

    Wang, Bao-Zhong; Wei, Xu-Bin; Liu, Wang-Yi

    2004-09-01

    A eukaryotic cambialistic superoxide dismutase (SOD) has been purified to homogeneity from mature seeds of the disease- and insect-resistant camphor tree (Cinnamomum camphora). Besides the known role of this SOD in protecting cells against oxidative stress, it can induce the cleavage of supercoiled double-stranded DNA into nicked and linear DNA. It can not cleave linear DNA or RNA, demonstrating there is no DNase or RNase in the purified cambialistic SOD. Furthermore, the SOD can linearize circular pGEM-4Z DNA that is relaxed by topoisomerase I. This result indicates that the DNA-cleaving activity requires substrates being topologically constrained. The supercoiled DNA-cleaving activity of the cambialistic SOD can be inhibited by either SOD inhibitor (azide) or catalase and hydroxyl radical scavengers (ethanol and mannitol). The chelator of iron, diethylenetriaminepentaacetic acid (DTPA), also inhibits the supercoiled DNA-cleaving activity. These results show that the dismutation activity is crucial for the supercoiled DNA cleavage. The modification of tryptophan residue of the cambialistic SOD with N-bromosuccinimide (NBS) shows that these two activities are structurally correlative. The reaction mechanism is proposed that the hydroxyl radical formed in a transition-metal-catalyzing Fenton-type reaction contributes to the DNA-cleaving activity. In addition, the cleavage sites in supercoiled pGEM-4Z DNA are random. PMID:15346198

  1. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length.

    PubMed

    Lorenzini, Antonello; Johnson, F Brad; Oliver, Anthony; Tresini, Maria; Smith, Jasmine S; Hdeib, Mona; Sell, Christian; Cristofalo, Vincent J; Stamato, Thomas D

    2009-01-01

    The identification of the cellular mechanisms responsible for the wide differences in species lifespan remains one of the major unsolved problems of the biology of aging. We measured the capacity of nuclear protein to recognize DNA double strand breaks (DSBs) and telomere length of skin fibroblasts derived from mammalian species that exhibit wide differences in longevity. Our results indicate DNA DSB recognition increases exponentially with longevity. Further, an analysis of the level of Ku80 protein in human, cow, and mouse suggests that Ku levels vary dramatically between species and these levels are strongly correlated with longevity. In contrast mean telomere length appears to decrease with increasing longevity of the species, although not significantly. These findings suggest that an enhanced ability to bind to DNA ends may be important for longevity. A number of possible roles for increased levels of Ku and DNA-PKcs are discussed. PMID:19896964

  2. APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion

    PubMed Central

    Nowarski, Roni; Kotler, Moshe

    2013-01-01

    High frequency of cytidine to thymidine conversions were identified in the genome of several types of cancer cells. In breast cancer cells these mutations are clustered in long DNA regions associated with ssDNA, double-strand DNA breaks (DSBs) and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs and clustered mutations. PMID:23598277

  3. RPA Antagonizes Microhomology-Mediated Repair of DNA Double-Strand Breaks

    PubMed Central

    Deng, Sarah K; Gibb, Bryan; de Almeida, Mariana Justino; Greene, Eric C; Symington, Lorraine S

    2014-01-01

    Microhomology-mediated end joining (MMEJ) is a Ku and Ligase IV independent mechanism for repair of DNA double-strand breaks, which contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the ssDNA overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity. PMID:24608368

  4. [p53 activation by PI-3K family kinases after DNA double-strand breaks].

    PubMed

    Pernin, D; Uhrhammer, N; Verrelle, P; Bignon, Y J; Bay, J O

    2000-09-01

    p53 plays a central role in the cellular response to DNA double-strand breaks (DSBs), and to DNA damage in general. The protein kinases ATM, ATR and DNA-PK detect DSBs and transmit this information to p53 by phosphorylation. This phosphorylation dissociates p53 from its negative regulator, mdm2. p53 then undergoes further modification and activates transcription of the genes responsible for cell cycle arrest. In certain circumstances, p53 also activates transcription of the genes responsible for apoptosis. The dysfunction of this cascade of events is oncogenic, with P53 itself being the most commonly mutated gene in malignant cells, although mutations in both the DNA damage sensors and cell cycle checkpoint and apoptosis effectors are frequent. A more complete understanding of p53 and the proteins it interacts with may allow the development of new cancer treatments. PMID:11038413

  5. Phosphorus-32, a Clinically Available Drug, Inhibits Cancer Growth by Inducing DNA Double-Strand Breakage

    PubMed Central

    Cheng, Yulan; Kiess, Ana P.; Herman, Joseph M.; Pomper, Martin G.; Meltzer, Stephen J.; Abraham, John M.

    2015-01-01

    Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been used for several decades to treat non-malignant human myeloproliferative diseases. 32P[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important 90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful isotope 90Y (P ≤ 0.001) and also caused substantially more double-stranded DNA breaks than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P significantly inhibited tumor growth in the syngeneic murine cancer model (P ≤ 0.001). This effect is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel anti-cancer drug. PMID:26030880

  6. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair

    PubMed Central

    Kato, Akihiro; Komatsu, Kenshi

    2015-01-01

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair. PMID:26184323

  7. Subdiffusion Supports Joining Of Correct Ends During Repair Of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Girst, S.; Hable, V.; Drexler, G. A.; Greubel, C.; Siebenwirth, C.; Haum, M.; Friedl, A. A.; Dollinger, G.

    2013-08-01

    The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.

  8. A Unified Sensor Architecture for Isothermal Detection of Double-Stranded DNA, Oligonucleotides, and Small Molecules

    PubMed Central

    Brown, Carl W.; Lakin, Matthew R.; Fabry-Wood, Aurora; Horwitz, Eli K.; Baker, Nicholas A.; Stefanovic, Darko; Graves, Steven W.

    2015-01-01

    Pathogen detection is an important problem in many areas of medicine and agriculture, which may involve genomic or transcriptomic signatures, or small molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids via a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ~15 pM for single-stranded targets and ~5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia). PMID:25663617

  9. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA

    NASA Astrophysics Data System (ADS)

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-06-01

    The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.

  10. Sequence rearrangement and duplication of double stranded fibronectin cDNA probably occurring during cDNA synthesis by AMV reverse transcriptase and Escherichia coli DNA polymerase I.

    PubMed Central

    Fagan, J B; Pastan, I; de Crombrugghe, B

    1980-01-01

    Two cloned cDNAs derived from the mRNA for cell fibronectin have been sequenced, providing evidence that transcription with AMV reverse transcriptase or Escherichia coli DNA polymerase I may not always result in double stranded cDNA that is exactly homologous with its mRNA template. Instead, the sequences of these cloned cDNAs are consistent with the duplication and rearrangement of sequences during synthesis of double stranded cDNA. PMID:6159581

  11. CONSTRUCTION OF INFECTIOUS CLONES FOR DOUBLE STRANDED DNA VIRUSES OF PLANTS USING CITRUS YELLOW MOSAIC CIRUS AS AN EXAMPLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Double-stranded DNA (dsDNA) viruses of plants are believed to be plant pararetroviruses. Their genome is replicated by reverse transcription of a larger than unit length terminally redundant RNA transcript of the viral genomic DNA using the virus-encoded replicase. In order to produce a cloned, infe...

  12. A quartz crystal microbalance study of polycation-supported single and double stranded DNA surfaces.

    PubMed

    Yang, Amanda Y; Rawle, Robert J; Selassie, Cynthia R D; Johal, Malkiat S

    2008-12-01

    A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to investigate the properties and formation of a genomic mammalian DNA surface on a polycationic poly(ethylenimine) (PEI) film. We show that both single- and double-stranded DNA films can be deposited on the PEI surface by modulating the DNA adsorption time. The two distinct DNA surfaces can be confirmed by their interactions with urea, a common DNA denaturant, and ethidium bromide, a common DNA intercalator, both of which lead to characteristic changes in the QCM-D frequency and dissipation. The hybridization process between surface-bound single-stranded DNA to complementary strands in solution can be resolved in real-time. Moreover, we have also investigated the effects of incorporating NaCl in the various PEI-DNA assemblies and have shown that higher ionic strengths lead to greater DNA adsorption to the PEI surface. An increase in the QCM-D resonant frequency and a decrease in dissipation occur when these assemblies are rinsed with salt-free water. We interpret these changes as a loss of counterions from the film and an increase in intrinsic ion-pair complexation, leading to a more rigid PEI-DNA assembly. Varying the salt content in the DNA film can be used to control the film thickness and morphology. PMID:19053292

  13. DNA double-strand break formation and repair in Tetrahymena meiosis.

    PubMed

    Loidl, Josef; Lorenz, Alexander

    2016-06-01

    The molecular details of meiotic recombination have been determined for a small number of model organisms. From these studies, a general picture has emerged that shows that most, if not all, recombination is initiated by a DNA double-strand break (DSB) that is repaired in a recombinogenic process using a homologous DNA strand as a template. However, the details of recombination vary between organisms, and it is unknown which variant is representative of evolutionarily primordial meiosis or most prevalent among eukaryotes. To answer these questions and to obtain a better understanding of the range of recombination processes among eukaryotes, it is important to study a variety of different organisms. Here, the ciliate Tetrahymena thermophila is introduced as a versatile meiotic model system, which has the additional bonus of having the largest phylogenetic distance to all of the eukaryotes studied to date. Studying this organism can contribute to our understanding of the conservation and diversification of meiotic recombination processes. PMID:26899715

  14. Visualization of DNA Double-Strand Break Repair at the Single-Molecule Level

    SciTech Connect

    Dynan, William S.; Li, Shuyi; Mernaugh, Raymond; Wragg, Stephanie; Takeda, Yoshihiko

    2003-03-27

    Exposure to low doses of ionizing radiation is universal. The signature injury from ionizing radiation exposure is induction of DNA double-strand breaks (DSBs). The first line of defense against DSBs is direct ligation of broken DNA ends via the nonhomologous end-joining pathway. Because even a relatively high environmental exposure induces only a few DSBs per cell, our current understanding of the response to this exposure is limited by the ability to measure DSB repair events reliably in situ at a single-molecule level. To address this need, we have taken advantage of biological amplification, measuring relocalization of proteins and detection of protein phosphorylation as a surrogate for detection of broken ends themselves. We describe the use of specific antibodies to investigate the kinetics and mechanism of repair of very small numbers of DSBs in human cells by the nonhomologous end-joining pathway.

  15. Ab initio bubble-driven denaturation of double-stranded DNA: Self-mechanical theory.

    PubMed

    Kuetche, Victor K

    2016-07-21

    Among the different theoretical models of the open-site-driven DNA-denaturation found in the literature, very few interests are actually paid to the fundamental unzipping process of the double-stranded DNA within the vicinity of its ground state condensate. In this paper, we address an alternative to better understand the process of denaturation of such a macromolecule by investigating the onset of its dynamics around its equilibrium state. We show that from the initiation of the transcription bubble by the promoter to the termination state, the open-states of the strands evolve dynamically while generating some localized waveguide channels with elastic scattering properties. We properly discuss the nonlinear dynamics of these structures within the viewpoint of the self-mechanical theory while inferring to the physical structure of the findings and their potential issues. PMID:27113786

  16. Effects of the environment on the electric conductivity of double-stranded DNA molecules.

    PubMed

    Malyshev, A V; Díaz, E; Domínguez-Adame, F; Malyshev, V A

    2009-08-19

    We present a theoretical analysis of the effects of the environment on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to static disorder and (ii) phonon-induced scattering of the carriers between the localized states, resulting in hopping conductivity. A nonlinear Pauli master equation for populations of localized states is used to describe the hopping transport and calculate the electric current as a function of the applied bias. We demonstrate that, although the electronic gap in the density of states shrinks as the disorder increases, the voltage gap in the I-V characteristics becomes wider. A simple physical explanation of this effect is provided. PMID:21828599

  17. Translocation frequency of double-stranded DNA through a solid-state nanopore

    PubMed Central

    Bell, Nicholas A. W.; Muthukumar, Murugappan; Keyser, Ulrich F.

    2016-01-01

    Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length-independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation, which includes the contribution of an entropic barrier for polymer entry. PMID:26986356

  18. Sequence-specific fluorescent labeling of double-stranded DNA observed at the single molecule level

    PubMed Central

    Géron-Landre, Bénédicte; Roulon, Thibaut; Desbiolles, Pierre; Escudé, Christophe

    2003-01-01

    Fluorescent labeling of a short sequence of double-stranded DNA (dsDNA) was achieved by ligating a labeled dsDNA fragment to a stem–loop triplex forming oligonucleotide (TFO). After the TFO has wound around the target sequence by ligand-induced triple helix formation, its extremities hybridize to each other, leaving a dangling single-stranded sequence, which is then ligated to a fluorescent dsDNA fragment using T4 DNA ligase. A non-repeated 15 bp sequence present on lambda DNA was labeled and visualized by fluorescence microscopy after DNA combing. The label was found to be attached at a specific position located at 4.2 ± 0.5 kb from one end of the molecule, in agreement with the location of the target sequence for triple helix formation (4.4 kb from one end). In addition, an alternative combing process was noticed in which a DNA molecule becomes attached to the combing slide from the label rather than from one of its ends. The method described herein provides a new tool for the detection of very short sequences of dsDNA and offers various perspectives in the micromanipulation of single DNA molecules. PMID:14530458

  19. Mixed-Sequence Recognition of Double-Stranded DNA Using Enzymatically Stable Phosphorothioate Invader Probes.

    PubMed

    Anderson, Brooke A; Karmakar, Saswata; Hrdlicka, Patrick J

    2015-01-01

    Development of probes that allow for sequence-unrestricted recognition of double-stranded DNA (dsDNA) continues to attract much attention due to the prospect for molecular tools that enable detection, regulation, and manipulation of genes. We have recently introduced so-called Invader probes as alternatives to more established approaches such as triplex-forming oligonucleotides, peptide nucleic acids and polyamides. These short DNA duplexes are activated for dsDNA recognition by installment of +1 interstrand zippers of intercalator-functionalized nucleotides such as 2'-N-(pyren-1-yl)methyl-2'-N-methyl-2'-aminouridine and 2'-O-(pyren-1-yl)methyluridine, which results in violation of the nearest neighbor exclusion principle and duplex destabilization. The individual probes strands have high affinity toward complementary DNA strands, which generates the driving force for recognition of mixed-sequence dsDNA regions. In the present article, we characterize Invader probes that are based on phosphorothioate backbones (PS-DNA Invaders). The change from the regular phosphodiester backbone furnishes Invader probes that are much more stable to nucleolytic degradation, while displaying acceptable dsDNA-recognition efficiency. PS-DNA Invader probes therefore present themselves as interesting probes for dsDNA-targeting applications in cellular environments and living organisms. PMID:26230684

  20. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.

    PubMed

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  1. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  2. Proximity-induced superconductivity effect in a double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-02-07

    We study the proximity-induced superconductivity effect in a double-stranded DNA by solving the Bogoliubov-de Gennes equations and taking into account the effect of thermal fluctuations of the twist angle between neighboring base pairs. We show that the electron conductance is spin-dependent and the conductance of spin up (down) increases (decreases) due to the spin-orbit coupling (SOC). It is found that, for T < 100 K, the band gap energy is temperature-independent and it decreases due to the SOC. In addition, by solving the Bogoliubov-de Gennes equations and local gap parameter equation self-consistently, we find the critical temperature at which transition to superconductivity can take place.

  3. Functional significance of the interaction with Ku in DNA double-strand break recognition of XLF.

    PubMed

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Lee, Kyung-Jong; Chen, David J

    2011-03-23

    Ku heterodimer is essential for the repair of DNA double-strand breaks (DSBs) by non-homologous end-joining (NHEJ). Ku recruits XLF, also known as Cernunnos, to DSBs. Here we report domain analyses of Ku-XLF interaction. The heterodimeric domain of Ku was found to be sufficient for the recruitment of XLF to DSBs and for the interaction of Ku with XLF. A small C-terminal deletion of XLF completely abolished recruitment of XLF to DSBs and Ku-XLF interaction. This deletion also led to marked reduction of XLF-XRCC4 interaction although the XRCC4-binding site on the XLF N-terminal domain remained intact. These results demonstrate the significance of Ku-XLF interaction in the molecular assembly of NHEJ factors. PMID:21349273

  4. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks

    PubMed Central

    Martin, N T; Nakamura, K; Paila, U; Woo, J; Brown, C; Wright, J A; Teraoka, S N; Haghayegh, S; McCurdy, D; Schneider, M; Hu, H; Quinlan, A R; Gatti, R A; Concannon, P

    2014-01-01

    The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis. PMID:24651433

  5. Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff

    PubMed Central

    Strumberg, Dirk; Pilon, André A.; Smith, Melanie; Hickey, Robert; Malkas, Linda; Pommier, Yves

    2000-01-01

    Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3′ DNA ends are extended by DNA polymerase in vivo closely to the 5′ ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5′ ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5′ kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA. PMID:10805740

  6. Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis

    PubMed Central

    Adachi, Sumiko; Minamisawa, Kazunori; Okushima, Yoko; Inagaki, Soichi; Yoshiyama, Kaoru; Kondou, Youichi; Kaminuma, Eli; Kawashima, Mika; Toyoda, Tetsuro; Matsui, Minami; Kurihara, Daisuke; Matsunaga, Sachihiro; Umeda, Masaaki

    2011-01-01

    Genome integrity is continuously threatened by external stresses and endogenous hazards such as DNA replication errors and reactive oxygen species. The DNA damage checkpoint in metazoans ensures genome integrity by delaying cell-cycle progression to repair damaged DNA or by inducing apoptosis. ATM and ATR (ataxia-telangiectasia-mutated and -Rad3-related) are sensor kinases that relay the damage signal to transducer kinases Chk1 and Chk2 and to downstream cell-cycle regulators. Plants also possess ATM and ATR orthologs but lack obvious counterparts of downstream regulators. Instead, the plant-specific transcription factor SOG1 (suppressor of gamma response 1) plays a central role in the transmission of signals from both ATM and ATR kinases. Here we show that in Arabidopsis, endoreduplication is induced by DNA double-strand breaks (DSBs), but not directly by DNA replication stress. When root or sepal cells, or undifferentiated suspension cells, were treated with DSB inducers, they displayed increased cell size and DNA ploidy. We found that the ATM–SOG1 and ATR–SOG1 pathways both transmit DSB-derived signals and that either one suffices for endocycle induction. These signaling pathways govern the expression of distinct sets of cell-cycle regulators, such as cyclin-dependent kinases and their suppressors. Our results demonstrate that Arabidopsis undergoes a programmed endoreduplicative response to DSBs, suggesting that plants have evolved a distinct strategy to sustain growth under genotoxic stress. PMID:21613568

  7. RNF4 is required for DNA double-strand break repair in vivo.

    PubMed

    Vyas, R; Kumar, R; Clermont, F; Helfricht, A; Kalev, P; Sotiropoulou, P; Hendriks, I A; Radaelli, E; Hochepied, T; Blanpain, C; Sablina, A; van Attikum, H; Olsen, J V; Jochemsen, A G; Vertegaal, A C O; Marine, J-C

    2013-03-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial roles in regulating the dynamic assembly of protein complexes at these sites. However, how SUMOylation influences protein ubiquitylation at DSBs is poorly understood. We show herein that Rnf4, an E3 ubiquitin ligase that targets SUMO-modified proteins, accumulates in DSB repair foci and is required for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling, and that Rnf4-deficient cells and mice exhibit increased sensitivity to genotoxic stress. Mechanistically, we show that Rnf4 targets SUMOylated MDC1 and SUMOylated BRCA1, and is required for the loading of Rad51, an enzyme required for HR repair, onto sites of DNA damage. Similarly to inactivating mutations in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation and ubiquitylation events. PMID:23197296

  8. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Whitaker, John W.

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  9. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens.

    PubMed

    Kamisugi, Yasuko; Whitaker, John W; Cuming, Andrew C

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  10. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication.

    PubMed

    Minakawa, Yusuke; Atsumi, Yuko; Shinohara, Akira; Murakami, Yasufumi; Yoshioka, Ken-Ichi

    2016-07-01

    H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double-strand breaks (DSBs) induced by γ-irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ-rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ-rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ-irradiation. PMID:27251002

  11. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

    PubMed

    Tsabar, Michael; Waterman, David P; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V; Memisoglu, Gonen; Haber, James E

    2016-05-15

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair. PMID:27222517

  12. DNA Double-Strand Break Repair at −15°C

    PubMed Central

    Dieser, Markus; Battista, John R.

    2013-01-01

    The survival of microorganisms in ancient glacial ice and permafrost has been ascribed to their ability to persist in a dormant, metabolically inert state. An alternative possibility, supported by experimental data, is that microorganisms in frozen matrices are able to sustain a level of metabolic function that is sufficient for cellular repair and maintenance. To examine this experimentally, frozen populations of Psychrobacter arcticus 273-4 were exposed to ionizing radiation (IR) to simulate the damage incurred from natural background IR sources in the permafrost environment from over ∼225 kiloyears (ky). High-molecular-weight DNA was fragmented by exposure to 450 Gy of IR, which introduced an average of 16 double-strand breaks (DSBs) per chromosome. During incubation at −15°C for 505 days, P. arcticus repaired DNA DSBs in the absence of net growth. Based on the time frame for the assembly of genomic fragments by P. arcticus, the rate of DNA DSB repair was estimated at 7 to 10 DSBs year−1 under the conditions tested. Our results provide direct evidence for the repair of DNA lesions, extending the range of complex biochemical reactions known to occur in bacteria at frozen temperatures. Provided that sufficient energy and nutrient sources are available, a functional DNA repair mechanism would allow cells to maintain genome integrity and augment microbial survival in icy terrestrial or extraterrestrial environments. PMID:24077718

  13. G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence.

    PubMed

    Kreig, Alex; Calvert, Jacob; Sanoica, Janet; Cullum, Emily; Tipanna, Ramreddy; Myong, Sua

    2015-09-18

    G-quadruplexes (GQs) are alternative DNA secondary structures that can form throughout the human genome and control the replication and transcription of important regulatory genes. Here, we established an ensemble fluorescence assay by employing two GQ-interacting compounds, N-methyl mesoporphyrin IX (NMM) and Crystal Violet (CV). This enables quantitative measurement of the GQ folding propensity and conformation specificity in both single strand (ss) and double strand (ds) DNA. Our GQ mapping indicates that the likelihood of GQ formation is substantially diminished in dsDNA, likely due to the competition from the Watson-Crick base pairing. Unlike GQ folding sequence in ssDNA which forms both parallel and antiparallel GQs, dsDNA displays only parallel folding. Additionally, we employed single molecule FRET to obtain a direct quantitation of stably formed-, weakly folded and unfolded GQ conformations. The findings of this study and the method developed here will enable identifying and classifying potential GQ-forming sequences in human genome. PMID:26202971

  14. Sp1 Facilitates DNA Double-Strand Break Repair through a Nontranscriptional Mechanism

    PubMed Central

    Beishline, Kate; Kelly, Crystal M.; Olofsson, Beatrix A.; Koduri, Sravanthi; Emrich, Jacqueline; Greenberg, Roger A.

    2012-01-01

    Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H2O2. Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant γH2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects. PMID:22826432

  15. G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence

    PubMed Central

    Kreig, Alex; Calvert, Jacob; Sanoica, Janet; Cullum, Emily; Tipanna, Ramreddy; Myong, Sua

    2015-01-01

    G-quadruplexes (GQs) are alternative DNA secondary structures that can form throughout the human genome and control the replication and transcription of important regulatory genes. Here, we established an ensemble fluorescence assay by employing two GQ-interacting compounds, N-methyl mesoporphyrin IX (NMM) and Crystal Violet (CV). This enables quantitative measurement of the GQ folding propensity and conformation specificity in both single strand (ss) and double strand (ds) DNA. Our GQ mapping indicates that the likelihood of GQ formation is substantially diminished in dsDNA, likely due to the competition from the Watson–Crick base pairing. Unlike GQ folding sequence in ssDNA which forms both parallel and antiparallel GQs, dsDNA displays only parallel folding. Additionally, we employed single molecule FRET to obtain a direct quantitation of stably formed-, weakly folded and unfolded GQ conformations. The findings of this study and the method developed here will enable identifying and classifying potential GQ-forming sequences in human genome. PMID:26202971

  16. Tying the loose ends together in DNA double strand break repair with 53BP1.

    PubMed

    Adams, Melissa M; Carpenter, Phillip B

    2006-01-01

    To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response. PMID:16945145

  17. Transitions of Double-Stranded DNA Between the A- and B-Forms.

    PubMed

    Waters, James T; Lu, Xiang-Jun; Galindo-Murillo, Rodrigo; Gumbart, James C; Kim, Harold D; Cheatham, Thomas E; Harvey, Stephen C

    2016-08-25

    The structure of double-stranded DNA (dsDNA) is sensitive to solvent conditions. In solution, B-DNA is the favored conformation under physiological conditions, while A-DNA is the form found under low water activity. The A-form is induced locally in some protein-DNA complexes, and repeated transitions between the B- and A-forms have been proposed to generate the forces used to drive dsDNA into viral capsids during genome packaging. Here, we report analyses on previous molecular dynamics (MD) simulations on B-DNA, along with new MD simulations on the transition from A-DNA to B-DNA in solution. We introduce the A-B Index (ABI), a new metric along the A-B continuum, to quantify our results. When A-DNA is placed in an equilibrated solution at physiological ionic strength, there is no energy barrier to the transition to the B-form, which begins within about 1 ns. The transition is essentially complete within 5 ns, although occasionally a stretch of a few base pairs will remain A-like for up to ∼10 ns. A comparison of four sequences with a range of predicted A-phobicities shows that more A-phobic sequences make the transition more rapidly than less A-phobic sequences. Simulations on dsDNA with a region of roughly one turn locked in the A-form allow us to characterize the A/B junction, which has an average bend angle of 20-30°. Fluctuations in this angle occur with characteristic times of about 10 ns. PMID:27135262

  18. Interactions of Ku70/80 with Double-Strand DNA: Energetic, Dynamics, and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2010-01-01

    Space radiation is a proficient inducer of DNA damage leading to mutation, aberrant cell signaling, and cancer formation. Ku is among the first responding proteins in nucleus to recognize and bind the DNA double strand breaks (DSBs) whenever they are introduced. Once loaded Ku works as a scaffold to recruit other repair factors of non-homologous end joining and facilitates the following repair processes. The crystallographic study of the Ku70/80 heterodimer indicate the core structure of this protein shows virtually no conformational change after binding with DNA. To investigate the dynamical features as well as the energetic characteristics of Ku-DNA binding, we conduct multi-nanosecond molecular dynamics simulations of a modeled Ku70/80 structure and several complexes with two 24-bp DNA duplexes. Free energy calculations show significant energy differences between the complexes with Ku bound at DSBs and those with Ku associated at an internal site of a chromosome. The results also reveal detailed interactions between different nucleotides and the amino acids along the DNA-binding cradle of Ku, indicating subtle binding preference of Ku at specific DNA sequences. The covariance matrix analyses along the trajectories demonstrate the protein is stimulated to undergo correlated motions of different domains once bound to DNA ends. Additionally, principle component analyses identify these low frequency collective motions suitable for binding with and translocation along duplex DNA. It is proposed that the modification of dynamical properties of Ku upon binding with DSBs may provide a signal for the further recruitment of other repair factors such as DNA-PKcs, XLF, and XRCC4.

  19. Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2.

    PubMed

    Liu, Dingjiang; Windsor, William T; Wyss, Daniel F

    2003-12-01

    The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function. PMID:14627736

  20. Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair

    PubMed Central

    Lin, Han; Ha, Kyungsoo; Lu, Guojun; Fang, Xiao; Cheng, Ranran; Zuo, Qiuhong

    2015-01-01

    Cdc14 is a phosphatase that controls mitotic exit and cytokinesis in budding yeast. In mammals, the two Cdc14 homologues, Cdc14A and Cdc14B, have been proposed to regulate DNA damage repair, whereas the mitotic exit and cytokinesis rely on another phosphatase, PP2A-B55α. It is unclear if the two Cdc14s work redundantly in DNA repair and which repair pathways they participate in. More importantly, their target(s) in DNA repair remains elusive. Here we report that Cdc14B knockout (Cdc14B−/−) mouse embryonic fibroblasts (MEFs) showed defects in repairing ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), which occurred only at late passages when Cdc14A levels were low. This repair defect could occur at early passages if Cdc14A levels were also compromised. These results indicate redundancy between Cdc14B and Cdc14A in DSB repair. Further, we found that Cdc14B deficiency impaired both homologous recombination (HR) and nonhomologous end joining (NHEJ), the two major DSB repair pathways. We also provide evidence that Cdh1 is a downstream target of Cdc14B in DSB repair. PMID:26283732

  1. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair.

    PubMed

    Gennery, A R

    2006-01-01

    Damaging DNA double-strand breaks (DNA-DSBs) following ionizing radiation (IR) exposure, potentially lead to cell death or carcinogenesis. Non-homologous end-joining (NHEJ) is the main repair pathway employed by vertebrate cells to repair such damage. Many repair pathway proteins have been identified. The creation of many diverse lymphocyte receptors to identify potential pathogens has evolved by breaking and randomly re-sorting the gene segments coding for antigen receptors. Subsequent DNA-DSB repair utilizes the NHEJ proteins. Individuals with defective repair pathways are increasingly recognized with radiosensitivity and immunodeficiency. Patients with defects in ataxia-telangiectasia mutated, nibrin, MRE11, Rad50, Artemis, DNA ligase IV and Cernunnos-XRCC4-like factor have been identified. Most exhibit immunodeficiency, with a spectrum of presentation and overlap between conditions. Conventional treatment with immunoglobulin replacement or haematopoietic stem cell transplantation (HSCT) can be effective. A greater understanding of the molecular defect will enable better, tailored therapies to improve survival. PMID:16971555

  2. Preferred interaction of D-peptidyl-anthraquinones with double-stranded B-DNA.

    PubMed

    Gatto, B; Zagotto, G; Sissi, C; Palumbo, M

    1997-12-01

    The quest for more specific drugs in antitumor chemotherapy led us to the design of anthraquinone-peptide conjugates capable of selective recognition of the nucleic acid. We present here the DNA binding characteristics, sequence specificity and geometry of interaction of a pair of enantiomers containing the lysine-glycine dipeptide in the side chains. The D enantiomer binds right handed double stranded DNA more efficiently than the L form under all conditions tested. The source of higher binding affinity is not electrostatic in nature and rests in the more favorable hydrophobic contacts of the D-lysyl side chains in the drug-DNA complex. Both derivatives exhibit preference for alternating GC base sequences and intercalate into DNA in a threading mode as suggested by chiroptical and theoretical studies. The D enantiomer, being a peptidyl derivative that contains a non-natural amino acid, has the considerable advantage of being less susceptible to enzymatic hydrolysis and could therefore represent a lead compound for further development. PMID:9493055

  3. Accumulation of Ku70 at DNA double-strand breaks in living epithelial cells

    SciTech Connect

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2011-10-15

    Ku70 and Ku80 play an essential role in the DNA double-strand break (DSB) repair pathway, i.e., nonhomologous DNA-end-joining (NHEJ). No accumulation mechanisms of Ku70 at DSBs have been clarified in detail, although the accumulation mechanism of Ku70 at DSBs plays key roles in regulating the NHEJ activity. Here, we show the essential domains for the accumulation and function of Ku70 at DSBs in living lung epithelial cells. Our results showed that EGFP-Ku70 accumulation at DSBs began immediately after irradiation. Our findings demonstrate that three domains of Ku70, i.e., the {alpha}/{beta}, DNA-binding, and Ku80-binding domains, but not the SAP domain, are necessary for the accumulation at or recognition of DSBs in the early stage after irradiation. Moreover, our findings demonstrate that the leucine at amino acid 385 of Ku70 in the Ku80-binding domain, but not the three target amino acids for acetylation in the DNA-binding domain, is involved in the localization and accumulation of Ku70 at DSBs. Furthermore, accumulations of XRCC4 and XLF, but not that of Artemis, at DSBs are dependent on the presence of Ku70. These findings suggest that Artemis can work in not only the Ku-dependent repair process, but also the Ku-independent process at DSBs in living epithelial cells.

  4. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-07-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as "biological track detectors" for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3N 4 window showed a homogenous Hsp70 expression pattern.

  5. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase

    PubMed Central

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R.; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J.; Chen, David J.

    2016-01-01

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells. PMID:26712563

  6. Different repair kinetics for short and long DNA double-strand gaps in Saccharomyces cervisiae.

    PubMed

    Glasunov, A V; Frankenberg-Schwager, M; Frankenberg, D

    1995-10-01

    The kinetics of recombinational repair of plasmid DNA double-strand breaks (dsb) and gaps (dsg) of different sizes and ends were studied. For this purpose we used the mutant rad54-3 of the yeast Saccharomyces cerevisiae, which is temperature dependent with respect to genetic recombination and rejoining of dsb/dsg, allowing us to stop these processes by shifting cells to the restrictive temperature. We found that the kinetics of repair of cohesive-ended dsb and small gaps (up to 400 bp) are similar and characterized by two phases separated by a plateau. In contrast, large gap (1.4 kbp) repair proceeds with different kinetics exhibiting only the second phase. We also investigated the repair kinetics of 400 bp gaps introduced into plasmid DNA with and without homology to chromosomal DNA allowing recombinational repair and non-recombinational repair (ligation), respectively. We found that gaps introduced in plasmid sequences homologous to chromosomal DNA are rapidly repaired by recombination. In contrast, recircularization of the gapped plasmid by ligation is as slow and inefficient as ligation of a cohesive-ended dsb. The kinetics of repair of gapped plasmids may be explained by assuming a constitutive level of enzymes responsible for the first phase of recombinational repair, while inducible enzymes, which become available at the end of the plateau, carry out the second phase of repair. PMID:7594968

  7. Assembly and function of DNA double-strand break repair foci in mammalian cells.

    PubMed

    Bekker-Jensen, Simon; Mailand, Niels

    2010-12-10

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures. PMID:21035408

  8. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    PubMed Central

    Yu, Zhenbao; Vogel, Gillian; Coulombe, Yan; Dubeau, Danielle; Spehalski, Elizabeth; Hébert, Josée; Ferguson, David O; Masson, Jean Yves; Richard, Stéphane

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling. PMID:21826105

  9. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus.

    PubMed

    Martínez, Isidoro; García-Carpizo, Verónica; Guijarro, Trinidad; García-Gomez, Ana; Navarro, Diego; Aranda, Ana; Zambrano, Alberto

    2016-05-18

    Human respiratory syncytial virus (HRSV) accounts for the majority of lower respiratory tract infections during infancy and childhood and is associated with significant morbidity and mortality. HRSV provokes a proliferation arrest and characteristic syncytia in cellular systems such as immortalized epithelial cells. We show here that HRSV induces the expression of DNA damage markers and proliferation arrest such as P-TP53, P-ATM, CDKN1A and γH2AFX in cultured cells secondary to the production of mitochondrial reactive oxygen species (ROS). The DNA damage foci contained γH2AFX and TP53BP1, indicative of double-strand breaks (DSBs) and could be reversed by antioxidant treatments such as N-Acetylcysteine (NAC) or reduced glutathione ethyl ester (GSHee). The damage observed is associated with the accumulation of senescent cells, displaying a canonical senescent phenotype in both mononuclear cells and syncytia. In addition, we show signs of DNA damage and aging such as γH2AFX and CDKN2A expression in the respiratory epithelia of infected mice long after viral clearance. Altogether, these results show that HRSV triggers a DNA damage-mediated cellular senescence program probably mediated by oxidative stress. The results also suggest that this program might contribute to the physiopathology of the infection, tissue remodeling and aging, and might be associated to long-term consequences of HRSV infections. PMID:26809688

  10. A label-free electrochemical aptasensor based on graphene oxide/double-stranded DNA nanocomposite.

    PubMed

    Li, Yu; Wang, Qi; Zhang, Yuting; Deng, Dongmei; He, Haibo; Luo, Liqiang; Wang, Zhenxin

    2016-09-01

    A novel label-free electrochemical impedance aptasensor based on a gold nanoparticles/double-stranded DNA-graphene (AuNPs/dsDNA-GO) nanocomposite modified glassy carbon electrode was presented for quantitative determination of thrombin. GO was covalently functionalized with dsDNA via a facile amidation process, and then AuNPs were electrodeposited onto the surface of dsDNA-GO. The morphology, conductivity and interaction of the as-prepared nanocomposites were characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), Raman and Fourier transform infrared spectroscopy. The thrombin-binding aptamer (TBA) was conjugated to AuNPs via gold-thiol chemistry to construct electrochemical aptasensing platform, and the specific recognition between TBA and thrombin was monitored by EIS. Under optimum conditions, thrombin could be quantified in a wide range of 0.1-100nM (R(2)=0.9960) with low detection limit of 0.06nM (S/N=3). PMID:27182650

  11. DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans.

    PubMed Central

    Kitayama, S; Asaka, S; Totsuka, K

    1983-01-01

    Mitomycin C-sensitive mutants of Deinococcus radiodurans were isolated which were either resistant to or only moderately sensitive to far UV (254 nm) or gamma rays. They were also sensitive to irradiation at 365 nm in the presence of 4,5',8-trimethylpsoralen. They were classified into seven complementary groups (mtcA through mtcG) by transformation experiments. Interstrand cross-links in the DNA duplex induced by mitomycin C were removed in the cells of two mutants (mtcD and mtcE) as in the wild type, whereas the other mutants were deficient in this repair. After a sublethal dosage of mitomycin C, single- and double-stranded cuts of cross-linked DNA were observed in the wild-type cells during postincubation. This removal of cross-links in DNA seems to be indispensable for the cells since their colony-forming ability was markedly reduced if they were postincubated under an inhibitory condition for repair of these lesions. PMID:6411683

  12. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    PubMed Central

    Citterio, Elisabetta

    2015-01-01

    Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer. PMID:26442100

  13. Renormalized Couplings and the Insulator and Metallic Behavior of Double-Stranded DNA

    NASA Astrophysics Data System (ADS)

    Yudiarsah, Efta; Ulloa, Sergio E.

    2007-03-01

    Electronic transport in double-stranded DNA is studied using a ladder model in a tight-binding Hamiltonian, withRealistic on- site energies [1] and hopping constants [2]. The effect of DNA molecules coupling to leads is studied on periodic poly (dG)-poly(dC) sequences with an embedded TGGGGT defect group. The differential conductance features diminish gradually and vanish at small coupling. The influence of counter-ions, local fields, and interaction with phonons can renormalize the hopping constants; we study the role of increasing intra-strand hopping on λ-phage DNA sequences. Increasing coupling results in the electronic transport of λ-sequences to change from insulator to metallic. Differential conductance dI/dV at low bias is vanishingly small for bare hopping constants found in the literature [2], and increases rapidly if they are enhanced by more than 5 times. Even at large uniform intra-chain coupling (1 eV), dI/dV drops drastically at low bias for sequences longer than 300 base pairs. Electron-phonon interactions are also considered. The diagonal (local) interaction results in polaronic effects while the non-diagonal terms yield phonon- assisted hopping. [1] S. Roche, Phys. Rev. Lett. 91, 108101 (2003). [2] A. A. Voityuk et al., J. Chem. Phys. 114, 5614 (2001).

  14. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells

    SciTech Connect

    Sekine-Suzuki, Emiko; Yu, Dong; Kubota, Nobuo; Okayasu, Ryuichi; Anzai, Kazunori

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may not be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.

  15. High LET - induced H2AX phosphorylation at sites of DNA double strand breaks

    NASA Astrophysics Data System (ADS)

    Desai, N.; Cucinotta, F.; Wu, H.

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  16. DNA Double-Strand Breaks and Telomeres Play Important Roles in Trypanosoma brucei Antigenic Variation

    PubMed Central

    2015-01-01

    Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review. PMID:25576484

  17. Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability.

    PubMed

    Kim, Jeongkyu; Sturgill, David; Tran, Andy D; Sinclair, David A; Oberdoerffer, Philipp

    2016-04-20

    DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytesin vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction. PMID:26687720

  18. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    PubMed Central

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness. PMID:27446204

  19. Radiation-induced DNA double-strand break rejoining in human tumour cells.

    PubMed Central

    Núñez, M. I.; Villalobos, M.; Olea, N.; Valenzuela, M. T.; Pedraza, V.; McMillan, T. J.; Ruiz de Almodóvar, J. M.

    1995-01-01

    Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 +/- 1.4 to 36.4 +/- 3.2 min (fast rejoining process) and from 1.5 +/- 0.2 to 5.1 +/- 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell. PMID:7841046

  20. Chromatin dynamics during repair of chromosomal DNA double-strand breaks

    PubMed Central

    Sinha, Manisha; Peterson, Craig L

    2010-01-01

    The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process. PMID:20495614

  1. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin.

    PubMed

    Cannan, Wendy J; Pederson, David S

    2016-01-01

    All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual's mutation burden and risk of cancer. This review describes radiological, chemical, and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis). PMID:26040249

  2. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner

    PubMed Central

    Kuo, Ching-Ying; Li, Xu; Stark, Jeremy M.; Shih, Hsiu-Ming; Ann, David K.

    2016-01-01

    Abstract Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner. PMID:26766492

  3. Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav

    2004-01-01

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  4. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner.

    PubMed

    Kuo, Ching-Ying; Li, Xu; Stark, Jeremy M; Shih, Hsiu-Ming; Ann, David K

    2016-03-18

    Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner. PMID:26766492

  5. Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability

    PubMed Central

    Kim, Jeongkyu; Sturgill, David; Tran, Andy D.; Sinclair, David A.; Oberdoerffer, Philipp

    2016-01-01

    DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo. Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction. PMID:26687720

  6. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    PubMed

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. PMID:27264557

  7. CGE-laser induced fluorescence of double-stranded DNA fragments using GelGreen dye.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Cifuentes, Alejandro

    2013-06-01

    Nowadays, new solutions focused on the replacement of reagents hazardous to human health are highly demanded in laboratories and Green Chemistry. In the present work, GelGreen, a new nonhazardous DNA staining reagent, has been assayed for the first time to analyze double-stranded DNA by CGE with LIF detection. The effect of GelGreen concentration on S/N ratio and migration time of a wide concentration range of standard DNA mixtures was evaluated. Under optimum GelGreen concentration in the sieving buffer efficient and sensitive separations of DNA fragments with sizes from 100-500 base pairs (bp) were obtained. A comparison in terms of resolution, time of analysis, LOD, LOQ, reproducibility, sizing performance, and cost of analysis was established between two optimized CGE-LIF protocols for DNA analysis, one based on the dye YOPRO-1 (typically used for CGE-LIF of DNA fragments) and another one using the new GelGreen. Analyses using YOPRO-1 were faster than those using GelGreen (ca. 31 min versus 34 min for the analysis of 100-500 bp DNA fragments). On the other side, sensitivity using GelGreen was twofold higher than that using YOPRO-1. The cost of analysis was significantly cheaper (ninefold) using GelGreen than with YOPRO-1. The resolution values and sizing performance were not significantly different between the two dyes (e.g. both dyes allowed the separation of fragments differing in only 2 bp in the 100-200 bp range). The usefulness of the separation method using GelGreen is demonstrated by the characterization of different amplicons obtained by PCR. PMID:23417332

  8. The radiomimetic enediyne C-1027 induces unusual DNA damage responses to double-strand breaks.

    PubMed

    Kennedy, Daniel R; Beerman, Terry A

    2006-03-21

    Cells lacking the protein kinase ataxia telangiectasia mutated (ATM) have defective responses to DNA double-strand breaks (DSBs), including an inability to activate damage response proteins such as p53. However, we previously showed that cells lacking ATM robustly activate p53 in response to DNA strand breaks induced by the radiomimetic enediyne C-1027. To gain insight into the nature of C-1027-induced ATM-independent damage responses to DNA DSBs, we further examined the molecular mechanisms underlying the cellular response to this unique radiomimetic agent. Like ionizing radiation (IR) and other radiomimetics, breaks induced by C-1027 efficiently activate ATM by phosphorylation at Ser1981, yet unlike other radiomimetics and IR, DNA breaks induced by C-1027 result in normal phosphorylation of p53 and the cell cycle checkpoint kinases (Chk1 and Chk2) in the absence of ATM. In the presence of ATM, but under ATM and Rad3-related kinase (ATR) deficient conditions, C-1027 treatment resulted in a decrease in the level of Chk1 phosphorylation but not in the level of p53 and Chk2 phosphorylation. Only when cells were deficient in both ATM and ATR was there a reduction in the level of phosphorylation of each of these DNA damage response proteins. This reduction was also accompanied by an increased level of cell death in comparison to that of wild-type cells or cells lacking either ATM or ATR. Our findings demonstrate a unique cellular response to C-1027-induced DNA DSBs in that DNA damage response proteins are unaffected by the absence of ATM, as long as ATR is present. PMID:16533058

  9. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR.

    PubMed

    Villalobos, Michael J; Betti, Christopher J; Vaughan, Andrew T M

    2005-01-01

    Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks introduced into any identifiable genomic location. PMID:15502230

  10. Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase

    PubMed Central

    Jeong, Yong-Joo; Rajagopal, Vaishnavi; Patel, Smita S.

    2013-01-01

    Phage T7 helicase unwinds double-stranded DNA (dsDNA) by encircling one strand while excluding the complementary strand from its central channel. When T7 helicase translocates on single-stranded DNA (ssDNA), it has kilobase processivity; yet, it is unable to processively unwind linear dsDNA, even 60 base-pairs long. Particularly, the GC-rich dsDNAs are unwound with lower amplitudes under single-turnover conditions. Here, we provide evidence that T7 helicase switches from ssDNA to dsDNA during DNA unwinding. The switching propensity is higher when dsDNA is GC-rich or when the 3′-overhang of forked DNA is <15 bases. Once helicase encircles dsDNA, it travels along dsDNA and dissociates from the end of linear DNA without strand separation, which explains the low unwinding amplitude of these substrates. Trapping the displaced strand with ssDNA binding protein or changing its composition to morpholino oligomer that does not interact with helicase increases the unwinding amplitude. We conclude that the displaced strand must be continuously excluded and kept away from the central channel for processive DNA unwinding. The finding that T7 helicase can switch from ssDNA to dsDNA binding mode during unwinding provides new insights into ways of limiting DNA unwinding and triggering fork regression when stalled forks need to be restarted. PMID:23446275

  11. DNA repair by thiols in air shows two radicals make a double-strand break

    SciTech Connect

    Milligan, J.R.; Ng J.Y.Y.; Wu, C.C.L.

    1995-09-01

    Using agarose gel electrophoresis, we have measured the yields of DNA single- and double-strand breaks (SSBs and DSBs) for plasmid DNA {gamma}-irradiated in aerobic aqueous solution. The presence during irradiation of either of the thiols cysteamine or N-(2-thioethyl)-1,3-diaminopropane (WR-1065) resulted in a concentration-dependent decrease in the yield of SSBs and a much greater decrease in the yield of DSBs. This large differential protective effect was not produced by thioethers or an alcohol of structural similarity to the two thiols, suggesting that repair of DSB radical precursors by thiols is more efficient than for SSB precursors. These observations suggest the existence of a diradical intermediate in the formation of DSBs. The results argue against a major contribution by a single radical mechanism involving interstrand radical transfer via hydrogen abstraction by a peroxyl intermediate, since the half-life of this radical transfer reaction appears to be significantly greater than the lifetime of the intermediate. 35 refs., 7 figs.

  12. REV7 counteracts DNA double-strand break resection and impacts PARP inhibition

    PubMed Central

    Xu, Guotai; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Summary Error-free repair of DNA double-strand breaks (DSB) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway1. In the absence of BRCA1-mediated HR, administration of PARP inhibitors induces synthetic lethality of tumor cells of patients with breast or ovarian cancers2,3. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration4. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases5. In particular, little is known about BRCA1-independent restoration of HR. Here, we show that loss of REV7 (also known as MAD2L2) re-establishes CtIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and appears to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance6. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining (NHEJ) during immunoglobulin class switch recombination. Our results reveal an unexpected critical function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells. PMID:25799992

  13. DNA double-strand breaks alter the spatial arrangement of homologous loci in plant cells

    PubMed Central

    Hirakawa, Takeshi; Katagiri, Yohei; Ando, Tadashi; Matsunaga, Sachihiro

    2015-01-01

    Chromatin dynamics and arrangement are involved in many biological processes in nuclei of eukaryotes including plants. Plants have to respond rapidly to various environmental stimuli to achieve growth and development because they cannot move. It is assumed that the alteration of chromatin dynamics and arrangement support the response to these stimuli; however, there is little information in plants. In this study, we investigated the chromatin dynamics and arrangement with DNA damage in Arabidopsis thaliana by live-cell imaging with the lacO/LacI-EGFP system and simulation analysis. It was revealed that homologous loci kept a constant distance in nuclei of A. thaliana roots in general growth. We also found that DNA double-strand breaks (DSBs) induce the approach of the homologous loci with γ-irradiation. Furthermore, AtRAD54, which performs an important role in the homologous recombination repair pathway, was involved in the pairing of homologous loci with γ-irradiation. These results suggest that homologous loci approach each other to repair DSBs, and AtRAD54 mediates these phenomena. PMID:26046331

  14. Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation

    PubMed Central

    Gomez-Godinez, Veronica; Wu, Tao; Sherman, Adria J.; Lee, Christopher S.; Liaw, Lih-Huei; Zhongsheng, You; Yokomori, Kyoko; Berns, Michael W.

    2010-01-01

    In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1–2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories. PMID:20923785

  15. Cernunnos/XLF: a new player in DNA double-strand break repair.

    PubMed

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Akiyama, Hidenori

    2009-06-01

    Non-homologous end-joining (NHEJ) is the predominant repair pathway for DNA double-strand breaks (DSBs) in vertebrates and also plays a crucial role in V(D)J recombination of immunoglobulin genes. Cernunnos/XLF is a newly identified core factor for NHEJ, and its defect causes a genetic disease characterized by neural disorders, immunodeficiency and increased radiosensitivity. Cernunnos/XLF has at least two distinct functions in NHEJ. Cernunnos/XLF interacts with and stimulates the XRCC4/DNA ligase IV complex, which acts at the final ligation step in NHEJ. In living cells, Cernunnos/XLF quickly responds to DSB induction and accumulates at damaged sites in a Ku-dependent but XRCC4-independent manner. These observations indicate that Cernunnos/XLF plays a unique role in bridging damage sensing and DSB rejoining steps of NHEJ. Recent crystallographic analyses of the homodimeric Cernunnos/XLF protein provide structural insights into the Cernunnos/XLF functions. These studies offer important clues toward understanding the molecular mechanism for NHEJ-defective diseases. PMID:18992362

  16. DNA double-strand breaks induced along the trajectory of particles

    NASA Astrophysics Data System (ADS)

    Cho, I. C.; Niu, H.; Chen, C. H.; Yu, Y. C.; Hsu, C. H.

    2011-12-01

    It is well-known that the DNA damage caused by charged particles considerably differs from damage due to electromagnetic radiation. In the case of irradiation by charged particles the DNA lesions are more complex and clustered. Such clustered damage is presumed difficult to be repaired, and is potentially lethal. In this study, we utilize a 90°-scattering system and related imaging techniques to investigate the accumulation of γ-H2AX along the trajectory of charged particles. By immunostaining the γ-H2AX protein, optical images of corresponding double strand breaks were observed using a high resolution confocal microscope. We demonstrate the difference in the accumulation of γ-H2AX from irradiation by 1 MeV protons and that of 150 keV X-rays. The acquired images were arranged and reconstructed into a 3D image using ImageJ software. We discovered that the γ-H2AX foci, following irradiation by protons, have a tendency to extend in the beam direction, while those from X-ray irradiation tend to be smaller and more randomly distributed. These results can be explained by the physical model of energy deposition.

  17. Identification of a pKa-regulating motif stabilizing imidazole-modified double-stranded DNA

    PubMed Central

    Buyst, Dieter; Gheerardijn, Vicky; Fehér, Krisztina; Van Gasse, Bjorn; Van Den Begin, Jos; Martins, José C.; Madder, Annemieke

    2015-01-01

    The predictable 3D structure of double-stranded DNA renders it ideally suited as a template for the bottom-up design of functionalized nucleic acid-based active sites. We here explore the use of a 14mer DNA duplex as a scaffold for the precise and predictable positioning of catalytic functionalities. Given the ubiquitous participation of the histidine-based imidazole group in protein recognition and catalysis events, single histidine-like modified duplexes were investigated. Tethering histamine to the C5 of the thymine base via an amide bond, allows the flexible positioning of the imidazole function in the major groove. The mutual interactions between the imidazole and the duplex and its influence on the imidazolium pKaH are investigated by placing a single modified thymine at four different positions in the center of the 14mer double helix. Using NMR and unrestrained molecular dynamics, a structural motif involving the formation of a hydrogen bond between the imidazole and the Hoogsteen side of the guanine bases of two neighboring GC base pairs is established. The motif contributes to a stabilization against thermal melting of 6°C and is key in modulating the pKaH of the imidazolium group. The general features, prerequisites and generic character of the new pKaH-regulating motif are described. PMID:25520197

  18. Molecular recombination and the repair of DNA double-strand breaks in CHO cells.

    PubMed Central

    Resnick, M A; Moore, P D

    1979-01-01

    Molecular recombination and the repair of DNA double-strand breaks (DSB) have been examined in the G-0 and S phase of the cell cycle using a temperature-sensitive CHO cell line to test i) if there are cell cycle restrictions on the repair of DSB's' ii) the extent to which molecular recombination can be induced between either sister chromatids or homologous chromosomes and iii) whether repair of DSB's involves recombination (3). Mitomycin C (1-2 micrograms/ml) or ionizing radiation (50 krad) followed by incubation resulted in molecular recombination (hybrid DNA) in S phase cells. Approximately 0.03 to 0.10% of the molecules (number average molecular weight: 5.6 x 10(6) Daltons after shearing) had hybrid regions for more than 75% of their length. However, no recombination was detected in G-0 cells. Since the repair of DSB was observed in both stages with more than 50% of the breaks repaired in 5 hours, it appears that DSB repair in G-0 cells does not involve recombination between homologous chromosomes. The possibility is not excluded that repair in G-0 cells involves only small regions (less than 4 x 10(6) Daltons). PMID:493136

  19. Radiation dose determines the method for quantification of DNA double strand breaks.

    PubMed

    Bulat, Tanja; Keta, Otilija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra; Todorović, Danijela

    2016-03-01

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. PMID:26959322

  20. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos

    SciTech Connect

    Yukawa, Masashi; Oda, Shoji; Mitani, Hiroshi; Nagata, Masao; Aoki, Fugaku . E-mail: aokif@k.u-tokyo.ac.jp

    2007-06-29

    DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by {gamma}-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX ({gamma}-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to {gamma}-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of {gamma}-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.

  1. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe.

    PubMed

    Xing, Xiao-Jing; Xiao, Wan-Lu; Liu, Xue-Guo; Zhou, Ying; Pang, Dai-Wen; Tang, Hong-Wu

    2016-04-15

    We developed a fluorescent aptasensor based on the making use of double-stranded DNA (dsDNA)/graphene oxide (GO) as the signal probe and the activities of exonuclease I (Exo I). This method takes advantage of the stronger affinity of the aptamer to its target rather than to its complementary sequence (competitor), and the different interaction intensity of dsDNA, mononucleotides with GO. Specifically, in the absence of target, the competitor hybridizes with the aptamer, preventing the digestion of the competitor by Exo I, and thus the formed dsDNA is adsorbed on GO surface, allowing fluorescence quenching. When the target is introduced, the aptamer preferentially binds with its target. Thereby, the corresponding nuclease reaction takes place, and slight fluorescence change is obtained after the introduction of GO due to the weak affinity of the generated mononucleotides to GO. Adenosine (AD) was chosen as a model system and tested in detail. Under the optimized conditions, smaller dissociation constant (Kd, 311.0 µM) and lower detection limit (LOD, 3.1 µM) were obtained in contrast with traditional dye-labeled aptamer/GO based platform (Kd=688.8 µM, LOD=21.2 µM). Satisfying results were still obtained in the evaluation of the specificity and the detection of AD in human serum, making it a promising tool for the diagnosis of AD-relevant diseases. Moreover, we demonstrated the effect of the competitor on the LOD, and the results reveal that the sensitivity could be enhanced by using the rational competitor. The present design not only constructs a label-free aptamer based platform but also extends the application of dsDNA/GO complex in biochemical and biomedical studies. PMID:26655184

  2. Accumulation of DNA Double-Strand Breaks in Normal Tissues After Fractionated Irradiation

    SciTech Connect

    Ruebe, Claudia E.

    2010-03-15

    Purpose: There is increasing evidence that genetic factors regulating the recognition and/or repair of DNA double-strand breaks (DSBs) are responsible for differences in radiosensitivity among patients. Genetically defined DSB repair capacities are supposed to determine patients' individual susceptibility to develop adverse normal tissue reactions after radiotherapy. In a preclinical murine model, we analyzed the impact of different DSB repair capacities on the cumulative DNA damage in normal tissues during the course of fractionated irradiation. Material and Methods: Different strains of mice with defined genetic backgrounds (SCID{sup -/-} homozygous, ATM{sup -/-} homozygous, ATM{sup +/-}heterozygous, and ATM{sup +/+}wild-type mice) were subjected to single (2 Gy) or fractionated irradiation (5 x 2 Gy). By enumerating gammaH2AX foci, the formation and rejoining of DSBs were analyzed in organs representative of both early-responding (small intestine) and late-responding tissues (lung, kidney, and heart). Results: In repair-deficient SCID{sup -/-} and ATM{sup -/-}homozygous mice, large proportions of radiation-induced DSBs remained unrepaired after each fraction, leading to the pronounced accumulation of residual DNA damage after fractionated irradiation, similarly visible in early- and late-responding tissues. The slight DSB repair impairment of ATM{sup +/-}heterozygous mice was not detectable after single-dose irradiation but resulted in a significant increase in unrepaired DSBs during the fractionated irradiation scheme. Conclusions: Radiation-induced DSBs accumulate similarly in acute- and late-responding tissues during fractionated irradiation, whereas the whole extent of residual DNA damage depends decisively on the underlying genetically defined DSB repair capacity. Moreover, our data indicate that even minor impairments in DSB repair lead to exceeding DNA damage accumulation during fractionated irradiation and thus may have a significant impact on normal

  3. Radiation-induced heat-labile sites that convert into DNA double-strand breaks

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.

  4. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

    PubMed Central

    Iranzo, Jaime

    2016-01-01

    ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193

  5. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    SciTech Connect

    Xapsos, M.A.; Pogozelski, W.K.

    1996-12-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as {gamma} rays, the importance of multiply damaged sites is shown to increase with the solution`s hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/{mu}m helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/{mu}m. 22 refs., 3 figs., 2 tabs.

  6. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual notI fragments by hybridization.

    PubMed

    Löbrich, M; Rydberg, B; Cooper, P K

    1994-08-01

    The initial yields of DNA double-strand breaks induced by energetic heavy ions (425 MeV/u neon and 250, 400 and 600 MeV/u iron) in comparison to X rays were measured in normal human diploid fibroblast cells within three small areas of the genome, defined by NotI fragments of 3.2, 2.0 and 1.2 Mbp. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated cells, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with probes recognizing single-copy sequences within the three NotI fragments. The gradual disappearance of the full-size NotI fragment with dose and the appearance of a smear of broken DNA molecules are quantified. Assuming Poisson statistics for the number of double-strand breaks induced per NotI fragment of known size, absolute yields of DNA double-strand breaks were calculated and determined to be linear with dose in all cases, with the neon ion (LET 32 keV/microns) producing 4.4 x 10(-3) breaks/Mbp/Gy and all three iron-ion beams (LETs from 190 to 350 keV/microns) producing 2.8 x 10(-3) breaks/Mbp/Gy, giving RBE values for production of double-strand breaks of 0.76 for neon and 0.48 for iron in comparison to our previously determined X-ray induction rate of 5.8 x 10(-3) breaks/Mbp/Gy. These RBE values are in good agreement with results of measurements over the whole genome as reported in the accompanying paper (B. Rydberg, M. Löbrich and P. Cooper, Radiat. Res. 139, 133-141, 1994). The distribution of broken DNA molecules was similar for the various radiations, supporting a random distribution of double-strand breaks induced by the heavy ions over Mbp distances; however, correlated breaks (clusters) over much smaller distances are not ruled out. Reconstitution of the 3.2 Mbp NotI fragment was studied during postirradiation incubation of the cells as a measure of rejoining of correct DNA ends. The proportion of breaks repaired decreased with increasing LET. PMID:8052689

  7. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways

    PubMed Central

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S.

    2013-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in E. coli and constitute the major pathway of error free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via nonhomologous end-joining (NHEJ) catalyzed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ, and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. PMID:21219454

  8. Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability.

    PubMed

    Herrero, Ana B; San Miguel, Jesús; Gutierrez, Norma C

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB) repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR)-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ), and Rad51, involved in homologous recombination (HR). Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ) were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited. PMID:25790254

  9. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise.

    PubMed

    Soleimani, Reza; Heytens, Elke; Darzynkiewicz, Zbigniew; Oktay, Kutluk

    2011-08-01

    The mechanism of chemotherapy-induced acceleration of ovarian aging is not fully understood. We used doxorubicin, a widely used cancer chemotherapeutic, in a variety of in vivo xenograft, and in vitro models to investigate the impact of chemotherapy-induced aging on the human ovary. Doxorubicin caused massive double-strand-DNA-breaks in primordial follicles, oocytes, and granulosa cells in a dose dependent fashion as revealed by accumulating γH2AX foci. This damage was associated with apoptotic oocyte death and resulted in the activation of ATM. It appeared that the repair response enabled a minor proportion of oocytes (34.7%) and granulosa cells (12.1%) to survive while the majority succumbed to apoptotic death. Paradoxically, inhibition of ATM by KU-55933 resulted in improved survival, probably via prevention of downstream activation of TAp63α. Furthermore, doxorubicin caused vascular and stromal damage in the human ovary, which might impair ovarian function both pre- and post-menopausally. Chemotherapy-induced premature ovarian aging appears to result from a complex process involving both the germ- and non-germ cell components of the ovary. These effects may have clinical implications in aging both for premenopausal and postmenopausal cancer survivors. PMID:21869459

  10. Reprint of "Functional overlaps between XLF and the ATM-dependent DNA double strand break response".

    PubMed

    Kumar, Vipul; Alt, Frederick W; Oksenych, Valentyn

    2014-05-01

    Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors. PMID:24767946

  11. Functional Overlaps Between XLF and The ATM-dependent DNA Double Strand Break Response

    PubMed Central

    Kumar, Vipul; Alt, Frederick W.; Oksenych, Valentyn

    2014-01-01

    Developing B and T lymphocytes generate programmed DNA Double Strand Breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the Immunoglobulin Heavy chain (IgH) Class Switch Recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via Classical Non-Homologous End-Joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors. PMID:24674624

  12. Functional overlaps between XLF and the ATM-dependent DNA double strand break response.

    PubMed

    Kumar, Vipul; Alt, Frederick W; Oksenych, Valentyn

    2014-04-01

    Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors. PMID:24674624

  13. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL

    PubMed Central

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  14. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells

    NASA Astrophysics Data System (ADS)

    Cveticanin, Jelena; Joksic, Gordana; Leskovac, Andreja; Petrovic, Sandra; Valenta Sobot, Ana; Neskovic, Olivera

    2010-01-01

    Carbon nanotubes are unique one-dimensional macromolecules with promising applications in biology and medicine. Since their toxicity is still under debate, here we present a study investigating the genotoxic properties of purified single wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), and amide functionalized purified SWCNTs on cultured human lymphocytes employing cytokinesis block micronucleus assay and enumeration of γH2AX foci as a measure of double strand breaks (DSBs) of the DNA in normal human fibroblasts. SWCNTs induce micronuclei (MN) formation in lymphocytes and decrease the proliferation potential (CBPI) of cells. In a fibroblast cell line the same dose of SWCNTs induces γH2AX foci 2.7-fold higher than in a control. Amide functionalized purified SWCNTs behave differently: they do not disturb the cell proliferation potential of harvested lymphocytes, but induce micronuclei to a higher extent than SWCNTs. When applied on fibroblasts, amide functionalized SWCNTs also induce γH2AX foci, 3.18-fold higher than the control. The cellular effects of MWCNTs display the broad spectrum of clastogenic properties seen as the highest incidence of induced lymphocyte micronuclei and anaphase bridges among nuclei in binucleated cells. Surprisingly, the incidence of induced γH2AX foci was not as high as was expected by the micronucleus test, which indicates that MWCNTs act as clastogen and aneugen agents simultaneously. Biological endpoints investigated in this study indicate a close relationship between the electrochemical properties of carbon nanotubes and observed genotoxicity.

  15. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL.

    PubMed

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  16. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells.

    PubMed

    Cveticanin, Jelena; Joksic, Gordana; Leskovac, Andreja; Petrovic, Sandra; Sobot, Ana Valenta; Neskovic, Olivera

    2010-01-01

    Carbon nanotubes are unique one-dimensional macromolecules with promising applications in biology and medicine. Since their toxicity is still under debate, here we present a study investigating the genotoxic properties of purified single wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), and amide functionalized purified SWCNTs on cultured human lymphocytes employing cytokinesis block micronucleus assay and enumeration of gamma H2AX foci as a measure of double strand breaks (DSBs) of the DNA in normal human fibroblasts. SWCNTs induce micronuclei (MN) formation in lymphocytes and decrease the proliferation potential (CBPI) of cells. In a fibroblast cell line the same dose of SWCNTs induces gamma H2AX foci 2.7-fold higher than in a control. Amide functionalized purified SWCNTs behave differently: they do not disturb the cell proliferation potential of harvested lymphocytes, but induce micronuclei to a higher extent than SWCNTs. When applied on fibroblasts, amide functionalized SWCNTs also induce gamma H2AX foci, 3.18-fold higher than the control. The cellular effects of MWCNTs display the broad spectrum of clastogenic properties seen as the highest incidence of induced lymphocyte micronuclei and anaphase bridges among nuclei in binucleated cells. Surprisingly, the incidence of induced gamma H2AX foci was not as high as was expected by the micronucleus test, which indicates that MWCNTs act as clastogen and aneugen agents simultaneously. Biological endpoints investigated in this study indicate a close relationship between the electrochemical properties of carbon nanotubes and observed genotoxicity. PMID:19946169

  17. Helicobacter pylori Infection Introduces DNA Double-Strand Breaks in Host Cells

    PubMed Central

    Hanada, Katsuhiro; Uchida, Tomohisa; Tsukamoto, Yoshiyuki; Watada, Masahide; Yamaguchi, Nahomi; Yamamoto, Kaoru; Shiota, Seiji; Moriyama, Masatsugu; Graham, David Y.

    2014-01-01

    Gastric cancer is an inflammation-related malignancy related to long-standing acute and chronic inflammation caused by infection with the human bacterial pathogen Helicobacter pylori. Inflammation can result in genomic instability. However, there are considerable data that H. pylori itself can also produce genomic instability both directly and through epigenetic pathways. Overall, the mechanisms of H. pylori-induced host genomic instabilities remain poorly understood. We used microarray screening of H. pylori-infected human gastric biopsy specimens to identify candidate genes involved in H. pylori-induced host genomic instabilities. We found upregulation of ATM expression in vivo in gastric mucosal cells infected with H. pylori. Using gastric cancer cell lines, we confirmed that the H. pylori-related activation of ATM was due to the accumulation of DNA double-strand breaks (DSBs). DSBs were observed following infection with both cag pathogenicity island (PAI)-positive and -negative strains, but the effect was more robust with cag PAI-positive strains. These results are consistent with the fact that infections with both cag PAI-positive and -negative strains are associated with gastric carcinogenesis, but the risk is higher in individuals infected with cag PAI-positive strains. PMID:25069978

  18. Quantification of 8-oxodGuo lesions in double-stranded DNA using a photoelectrochemical DNA sensor.

    PubMed

    Zhang, Bintian; Guo, Liang-Hong; Greenberg, Marc M

    2012-07-17

    Exposure of DNA to oxidative stress conditions results in the generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). 8-OxodGuo is genotoxic if left unrepaired. We quantified 8-oxodGuo lesions in double-stranded DNA films by using a photoelectrochemical DNA sensor in conjunction with a specific covalent labeling method. A lesion-containing DNA film was assembled on a SnO(2) nanoparticle modified indium tin oxide electrode through layer-by-layer electrostatic adsorption. The lesions were covalently labeled with a biotin conjugated spermine derivative, and ruthenium tris(bipyridine) labeled streptavidin was introduced as the signal reporter molecule. Photocurrent increased with the number of lesions in the strand and decreased as the film was diluted with intact DNA. Quantification of 8-oxodGuo was achieved with an estimated detection limit of ∼1 lesion in 650 bases or 1.6 fmol of 8-oxodGuo on the electrode. Incubation of the film with a DNA base excision repair enzyme, E. coli formamidopyrimidine-DNA glycosylase (Fpg), resulted in complete loss of the signal, indicating efficient excision of the isolated lesions in the nucleotide. Oxidatively generated DNA damage to a double-stranded calf thymus DNA film by the Fenton reaction was then assessed. One 8-oxodGuo lesion in 520 bases was detected in DNA exposed to 50 μM Fe(2+)/200 μM H(2)O(2). Treatment with Fpg reduced the photocurrent by 50%, indicating only partial excision of 8-oxodGuo. This suggests that tandem lesions, which are resistant to Fpg excision, are generated by the Fenton reaction. Unlike repair enzyme dependent methods, the sensor recognizes 8-oxodGuo in tandem lesions and can avoid underestimating DNA damage. PMID:22746252

  19. Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair.

    PubMed

    Goldstein, Michael; Derheimer, Frederick A; Tait-Mulder, Jacqueline; Kastan, Michael B

    2013-10-15

    Recruitment of DNA repair factors and modulation of chromatin structure at sites of DNA double-strand breaks (DSBs) is a complex and highly orchestrated process. We developed a system that can induce DSBs rapidly at defined endogenous sites in mammalian genomes and enables direct assessment of repair and monitoring of protein recruitment, egress, and modification at DSBs. The tight regulation of the system also permits assessments of relative kinetics and dependencies of events associated with cellular responses to DNA breakage. Distinct advantages of this system over focus formation/disappearance assays for assessing DSB repair are demonstrated. Using ChIP, we found that nucleosomes are partially disassembled around DSBs during nonhomologous end-joining repair in G1-arrested mammalian cells, characterized by a transient loss of the H2A/H2B histone dimer. Nucleolin, a protein with histone chaperone activity, interacts with RAD50 via its arginine-glycine rich domain and is recruited to DSBs rapidly in an MRE11-NBS1-RAD50 complex-dependent manner. Down-regulation of nucleolin abrogates the nucleosome disruption, the recruitment of repair factors, and the repair of the DSB, demonstrating the functional importance of nucleosome disruption in DSB repair and identifying a chromatin-remodeling protein required for the process. Interestingly, the nucleosome disruption that occurs during DSB repair in cycling cells differs in that both H2A/H2B and H3/H4 histone dimers are removed. This complete nucleosome disruption is also dependent on nucleolin and is required for recruitment of replication protein A to DSBs, a marker of DSB processing that is a requisite for homologous recombination repair. PMID:24082117

  20. LEF-1 recognition of platinated GG sequences within double-stranded DNA. Influence of flanking bases.

    PubMed

    Chválová, Katerina; Sari, Marie-Agnès; Bombard, Sophie; Kozelka, Jirí

    2008-02-01

    The lymphoid enhancer-binding factor 1 (LEF-1) recognizes a double-stranded 9 base-pairs (bp) long motif in DNA which is significantly bent upon binding. This bend is centered at two destacked adenines whose geometry closely resembles that of two adjacent guanines crosslinked by the antitumor drug cisplatin. It has been proposed that cisplatin-GG crosslinks could hijack high mobility group (HMG) box containing transcription factors such as LEF-1. In order to examine such a possibility, we used electrophoretic mobility shift assays to determine the affinity of the HMG box of LEF-1 for a series of 25 oligonucleotides containing a central GG sequence, free or site-specifically modified by cisplatin. The binding affinity of the GG-platinated oligonucleotides was 3-6-fold higher than that determined for the corresponding unplatinated oligonucleotides, however, the binding to all cisplatin-modified oligonucleotides was at least 1 order of magnitude weaker than that to the 25 bp oligonucleotide containing the recognition 9 bp motif. The binding affinity was dependent on the nature of bases flanking the cisplatin-crosslinked G(*)G(*) dinucleotide, the AG(*)G(*)T sequence displaying the strongest affinity and CG(*)G(*)T showing the strongest binding enhancement upon platination. In contrast, modification of the AGGT sequence with the third-generation platinum antitumor drug oxaliplatin did not enhance the affinity significantly. These results suggest that the cisplatin-caused bending of DNA does produce a target for LEF-1 binding, however, the cisplatinated DNA does not appear to be a strong competitor for the LEF-1 recognition sequence. PMID:17961652

  1. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4

    PubMed Central

    George, James W.; Stohr, Bradley A.; Tomso, Daniel J.; Kreuzer, Kenneth N.

    2001-01-01

    Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid. PMID:11459966

  2. Dynamics of a double-stranded DNA segment in a shear flow

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata; Barkema, Gerard T.; van Leeuwen, J. M. J.

    2016-04-01

    We study the dynamics of a double-stranded DNA (dsDNA) segment, as a semiflexible polymer, in a shear flow, the strength of which is customarily expressed in terms of the dimensionless Weissenberg number Wi. Polymer chains in shear flows are well known to undergo tumbling motion. When the chain lengths are much smaller than the persistence length, one expects a (semiflexible) chain to tumble as a rigid rod. At low Wi, a polymer segment shorter than the persistence length does indeed tumble as a rigid rod. However, for higher Wi the chain does not tumble as a rigid rod, even if the polymer segment is shorter than the persistence length. In particular, from time to time the polymer segment may assume a buckled form, a phenomenon commonly known as Euler buckling. Using a bead-spring Hamiltonian model for extensible dsDNA fragments, we first analyze Euler buckling in terms of the oriented deterministic state (ODS), which is obtained as the steady-state solution of the dynamical equations by turning off the stochastic (thermal) forces at a fixed orientation of the chain. The ODS exhibits symmetry breaking at a critical Weissenberg number Wic, analogous to a pitchfork bifurcation in dynamical systems. We then follow up the analysis with simulations and demonstrate symmetry breaking in computer experiments, characterized by a unimodal to bimodal transformation of the probability distribution of the second Rouse mode with increasing Wi. Our simulations reveal that shear can cause strong deformation for a chain that is shorter than its persistence length, similar to recent experimental observations.

  3. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    PubMed Central

    Ahmed, Emad A.; Scherthan, Harry; de Rooij, Dirk G.

    2015-01-01

    Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ) repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX) foci marking DNA double strand breaks (DSBs) in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko) mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP1) inhibitor (DPQ)-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids. PMID:26694360

  4. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation.

    PubMed

    Niimi, Atsuko; Yamauchi, Motohiro; Limsirichaikul, Siripan; Sekine, Ryota; Oike, Takahiro; Sato, Hiro; Suzuki, Keiji; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2016-08-01

    Chromosomal translocations arise from misrejoining of DNA double strand breaks (DSBs) between loci located on two chromosomes. One current model suggests that spatial proximity of potential chromosomal translocation partners influences translocation probability. Ionizing radiation (IR) is a potent inducer of translocations. Accumulating evidence demonstrates that particle irradiation more frequently causes translocations compared with X-ray irradiation. This observation has led to the hypothesis that the high frequency of translocations after particle irradiation may be due to the formation of DSBs at chromosome boundaries along the particle track, because such DSBs can be misrejoined between distinct chromosomes. In this study, we simultaneously visualized the site of IR-induced DSBs and chromosome position by combining Immunofluorescence and fluorescence in situ hybridization. Importantly, the frequency of γH2AX foci at the chromosome boundary of chromosome 1 after carbon-ion irradiation was >4-fold higher than that after X-ray irradiation. This observation is consistent with the idea that particle irradiation generates DSBs at the boundaries of two chromosomes along the track. Further, we showed that resolution of γH2AX foci at chromosome boundaries is prevented by inhibition of DNA-PKcs activity, indicating that the DSB repair is NHEJ-dependent. Finally, we found that γH2AX foci at chromosome boundaries after carbon-ion irradiation contain DSBs undergoing DNA-end resection, which promotes repair utilizing microhomology mediated end-joining during translocation. Taken together, our study suggests that the frequency of DSB formation at chromosome boundaries is associated with the incidence of chromosomal translocations, supporting the notion that the spatial proximity between breaks is an important factor in translocation formation. © 2016 Wiley Periodicals, Inc. PMID:27113385

  5. BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1

    PubMed Central

    Ge, Chunmin; Che, Lixiao; Ren, Jinyu; Pandita, Raj K.; Lu, Jing; Li, Kaiyi; Pandita, Tej K.; Du, Chunying

    2015-01-01

    The DNA damage response (DDR) is crucial for genomic integrity. BRIT1 (breast cancer susceptibility gene C terminus-repeat inhibitor of human telomerase repeat transcriptase expression), a tumor suppressor and early DDR factor, is recruited to DNA double-strand breaks (DSBs) by phosphorylated H2A histone family, member X (γ-H2AX), where it promotes chromatin relaxation by recruiting the switch/sucrose nonfermentable (SWI–SNF) chromatin remodeler to facilitate DDR. However, regulation of BRIT1 recruitment is not fully understood. The baculovirus IAP repeat (BIR)-containing ubiquitin-conjugating enzyme (BRUCE) is an inhibitor of apoptosis protein (IAP). Here, we report a non-IAP function of BRUCE in the regulation of the BRIT1–SWI–SNF DSB-response pathway and genomic stability. We demonstrate that BRIT1 is K63 ubiquitinated in unstimulated cells and that deubiquitination of BRIT1 is a prerequisite for its recruitment to DSB sites by γ-H2AX. We show mechanistically that BRUCE acts as a scaffold, bridging the ubiquitin-specific peptidase 8 (USP8) and BRIT1 in a complex to coordinate USP8-catalyzed deubiquitination of BRIT1. Loss of BRUCE or USP8 impairs BRIT1 deubiquitination, BRIT1 binding with γ-H2AX, the formation of BRIT1 DNA damage foci, and chromatin relaxation. Moreover, BRUCE-depleted cells display reduced homologous recombination repair, and BRUCE-mutant mice exhibit repair defects and genomic instability. These findings identify BRUCE and USP8 as two hitherto uncharacterized critical DDR regulators and uncover a deubiquitination regulation of BRIT1 assembly at damaged chromatin for efficient DDR and genomic stability. PMID:25733871

  6. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages.

    PubMed

    Andrews-Pfannkoch, Cynthia; Fadrosh, Douglas W; Thorpe, Joyce; Williamson, Shannon J

    2010-08-01

    Metagenomics can be used to determine the diversity of complex, often unculturable, viral communities with various nucleic acid compositions. Here, we report the use of hydroxyapatite chromatography to efficiently fractionate double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), dsRNA, and ssRNA genomes from known bacteriophages. Linker-amplified shotgun libraries were constructed to generate sequencing reads from each hydroxyapatite fraction. Greater than 90% of the reads displayed significant similarity to the expected genomes at the nucleotide level. These methods were applied to marine viruses collected from the Chesapeake Bay and the Dry Tortugas National Park. Isolated nucleic acids were fractionated using hydroxyapatite chromatography followed by linker-amplified shotgun library construction and sequencing. Taxonomic analysis demonstrated that the majority of environmental sequences, regardless of their source nucleic acid, were most similar to dsDNA viruses, reflecting the bias of viral metagenomic sequence databases. PMID:20543058

  7. ATM Alters the Otherwise Robust Chromatin Mobility at Sites of DNA Double-Strand Breaks (DSBs) in Human Cells

    PubMed Central

    Becker, Annabelle; Durante, Marco; Taucher-Scholz, Gisela; Jakob, Burkhard

    2014-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci) in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation. PMID:24651490

  8. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.

    PubMed Central

    Rong, Yikang S; Golic, Kent G

    2003-01-01

    In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisiae and mammalian cells. In contrast, by studying the repair of double-strand breaks generated by the I-SceI rare-cutting endonuclease, we find that the homologous chromosome is frequently used in Drosophila melanogaster, which we suggest is attributable to somatic pairing of homologous chromosomes in mitotic cells of Drosophila. We also find that Drosophila mitotic cells of the germ line, like yeast, employ the homologous recombinational repair pathway more often than imperfect nonhomologous end joining. PMID:14704169

  9. CHO cell repair of single-strand and double-strand DNA breaks induced by gamma- and alpha-radiations.

    PubMed

    Cole, A; Shonka, F; Corry, P; Cooper, W G

    1975-01-01

    Neutral and alkaline sucrose gradient sedimentation analysis was used to measure double- and single-strand breaks in the DNA of Chinese hamster ovary (CHO) cells exposed to either gamma- or alpha-radiation. After irradiation, cells were incubated for 15-180 min to test the ability of the cell to rejoin the DNA breaks. Essentially complete rejoining was observed for single-strand breaks induced by gamma- or alpha-doses below 20 krad and for double-strand breaks induced by gamma doses below 60 krad. Approximately 80% rejoining was observed for double-strand breaks induced by alpha doses below 40 krad. At higher doses, the repair system appeared to saturate in such a way that essentially no additional breaks were rejoined. PMID:1191188

  10. RAP1 stimulates single- to double-strand association of yeast telomeric DNA: implications for telomere-telomere interactions.

    PubMed Central

    Gilson, E; Müller, T; Sogo, J; Laroche, T; Gasser, S M

    1994-01-01

    Repressor Activator Protein 1 (RAP1) of Saccharomyces cerevisiae is an abundant nuclear protein implicated in telomere length maintenance, transactivation, and in the establishment of silent chromatin domains. The RAP1 binding site 5' of the yeast HIS4 gene is also a region of hyperrecombination in meiosis. We report here that as RAP1 binds its recognition consensus, it appears to untwist double-stranded DNA, which we detect as the introduction of a negative supercoil in circularization assays. Coincident with the RAP1-dependent untwisting, we observe stimulation of the association of a single-stranded yeast telomeric sequence with its homologous double-stranded sequence in a supercoiled plasmid. This unusual distortion of the DNA double helix by RAP1 may contribute to the RAP1-dependent enhancement of recombination rates and promote non-duplex strand interactions at telomeres. Images PMID:7816621

  11. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    PubMed Central

    Chaudhary, Pankaj; Marshall, Thomas I.; Currell, Frederick J.; Kacperek, Andrzej; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions. PMID:26452569

  12. The PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks

    PubMed Central

    Kakarougkas, Andreas; Downs, Jessica A; Jeggo, Penny A

    2015-01-01

    Transcription in the vicinity of DNA double-strand breaks (DSBs) is suppressed via a process involving ataxia telangiectasia mutated protein (ATM) and H2AK119 ubiquitylation.1 We discuss recent findings that components of the Polybromo and Brahma-related gene 1 (BRG1)-associated factor (PBAF) remodeling complex and the polycomb repressive complex (PRC1/2) are also required.2 Failure to activate transcriptional suppression impedes a rapid DSB repair process. PMID:27308404

  13. DNA double-strand break repair: a theoretical framework and its application

    PubMed Central

    Cornelissen, Bart; Vallis, Katherine A.; Chapman, S. Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting 111In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  14. Preferential Repair of DNA Double-strand Break at the Active Gene in Vivo*

    PubMed Central

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K.; Bhaumik, Sukesh R.

    2012-01-01

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3′ end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells. PMID:22910905

  15. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    PubMed Central

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  16. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    PubMed

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  17. Nanoconstructions based on double-stranded DNA molecules and their applications as optical biosensing units

    NASA Astrophysics Data System (ADS)

    Zakharov, M. A.; Kazankov, G. M.; Sergeeva, V. S.; Yevdokimov, Yu. M.

    2006-02-01

    We describe the formation and the properties of biosensing units based on the cholesteric liquid-crystalline dispersions of the double-stranded nucleic acid molecules. The resulting biosensing units are proved to be sensitive to the presence of some relevant chemical or biological compounds in a liquid to be analyzed.

  18. A kinetic model of single-strand annealing for the repair of DNA double-strand breaks.

    PubMed

    Taleei, Reza; Weinfeld, Michael; Nikjoo, Hooshang

    2011-02-01

    Ionising radiation induces different types of DNA damage, including single-strand breaks, double-strand breaks (DSB) and base damages. DSB are considered to be the most critical lesion to be repaired. The three main competitive pathways in the repair of DSB are non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand annealing (SSA). SSA is a non-conservative repair pathway requiring direct repeat sequences for the repair process. In this work, a biochemical kinetic model is presented to describe the SSA repair pathway. The model consists of a system of non-linear ordinary differential equations describing the steps in the repair pathway. The reaction rates were estimated by comparing the model results with the experimental data for chicken DT40 cells exposed to 20 Gy of X-rays. The model successfully predicts the repair of the DT40 cells with the reaction rates derived from the 20-Gy X-ray experiment. The experimental data and the kinetic model show fast and slow DSB repair components. The half time and fractions of the slow and the fast components of the repair were compared for the model and the experiments. Mathematical and computational modelling in biology has played an important role in predicting biological mechanisms and stimulating future experimentation. The present model of SSA adds to the modelling of NHEJ and HR to provide a more complete description of DSB repair pathways. PMID:21183536

  19. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

    PubMed Central

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-01-01

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  20. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    PubMed

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-01

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  1. Transient kinetics measured with force steps discriminate between double-stranded DNA elongation and melting and define the reaction energetics.

    PubMed

    Bongini, Lorenzo; Melli, Luca; Lombardi, Vincenzo; Bianco, Pasquale

    2014-03-01

    Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10-25°C). The shortening transient following a 20-35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2-35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition. PMID:24353317

  2. The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair

    PubMed Central

    Streva, Vincent A.; DeFreece, Cecily B.; Hedges, Dale J.; Deininger, Prescott L.

    2015-01-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both

  3. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA

    PubMed Central

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure. PMID:27214207

  4. Labeling DNA for Single-Molecule Experiments: Methods of Labeling Internal Specific Sequences on Double-Stranded DNA

    PubMed Central

    Zohar, Hagar; Muller, Susan J.

    2012-01-01

    This review is a practical guide for experimentalists interested in specifically labeling internal sequences on double-stranded (ds) DNA molecules for single-molecule experiments. We describe six labeling approaches demonstrated in a single-molecule context and discuss the merits and drawbacks of each approach with particular attention to the amount of specialized training and reagents required. By evaluating each approach according to criteria relevant to single-molecule experiments, including labeling yield and compatibility with cofactors such as Mg2+, we provide a simple reference for selecting a labeling method for given experimental constraints. Intended for non-specialists seeking accessible solutions to DNA labeling challenges, the approaches outlined emphasize simplicity, robustness, suitability for use by non-biologists, and utility in diverse single-molecule experiments. PMID:21734993

  5. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Zohar, Hagar; Muller, Susan J.

    2011-08-01

    This review is a practical guide for experimentalists interested in specifically labeling internal sequences on double-stranded (ds) DNA molecules for single-molecule experiments. We describe six labeling approaches demonstrated in a single-molecule context and discuss the merits and drawbacks of each approach with particular attention to the amount of specialized training and reagents required. By evaluating each approach according to criteria relevant to single-molecule experiments, including labeling yield and compatibility with cofactors such as Mg2+, we provide a simple reference for selecting a labeling method for given experimental constraints. Intended for non-specialists seeking accessible solutions to DNA labeling challenges, the approaches outlined emphasize simplicity, robustness, suitability for use by non-biologists, and utility in diverse single-molecule experiments.

  6. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    SciTech Connect

    Wang, Chen; Lees-Miller, Susan P.

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  7. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking

    PubMed Central

    Kondo, Takeshi; Kobayashi, Junya; Saitoh, Tatsuya; Maruyama, Kenta; Ishii, Ken J.; Barber, Glen N.; Komatsu, Kenshi; Akira, Shizuo; Kawai, Taro

    2013-01-01

    Double-stranded DNA (dsDNA) derived from pathogen- or host-damaged cells triggers innate immune responses when exposed to cytoplasm. However, the machinery underlying the primary recognition of intracellular dsDNA is obscure. Here we show that the DNA damage sensor, meiotic recombination 11 homolog A (MRE11), serves as a cytosolic sensor for dsDNA. Cells with a mutation of MRE11 gene derived from a patient with ataxia-telangiectasia–like disorder, and cells in which Mre11 was knocked down, had defects in dsDNA-induced type I IFN production. MRE11 physically interacted with dsDNA in the cytoplasm and was required for activation of stimulator of IFN genes (STING) and IRF3. RAD50, a binding protein to MRE11, was also required for dsDNA responses, whereas NBS1, another binding protein to MRE11, was dispensable. Collectively, our results suggest that the MRE11–RAD50 complex plays important roles in recognition of dsDNA and initiation of STING-dependent signaling, in addition to its role in DNA-damage responses. PMID:23388631

  8. Reduced contribution of thermally labile sugar lesions to DNA double strand break formation after exposure to heavy ions

    PubMed Central

    2013-01-01

    In cells exposed to low linear energy transfer (LET) ionizing-radiation (IR), double-strand-breaks (DSBs) form within clustered-damage-sites (CDSs) from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that all DSBs form promptly and are immediately detected by the cellular DNA-damage-response (DDR) apparatus. However, there is evidence that the pool of DSBs detected by physical methods, such as pulsed-field gel electrophoresis (PFGE), comprises not only promptly forming DSBs (prDSBs) but also DSBs developing during lysis at high temperatures from thermally-labile sugar-lesions (TLSLs). We recently demonstrated that conversion of TLSLs to DNA breaks and ultimately to DSBs also occurs in cells during the first hour of post-irradiation incubation at physiological temperatures. Thus, TLSL-dependent DSBs (tlDSBs) are not an avoidable technique-related artifact, but a reality the cell always faces. The biological consequences of tlDSBs and the dependence of their formation on LET require in-depth investigation. Heavy-ions (HI) are a promising high-LET radiation modality used in cancer treatment. HI are also encountered in space and generate serious radiation protection problems to prolonged space missions. Here, we study, therefore, the effect of HI on the yields of tlDSBs and prDSBs. We report a reduction in the yield of tlDBSs stronger than that earlier reported for neutrons, and with pronounced cell line dependence. We conclude that with increasing LET the complexity of CDSs increases resulting in a commensurate increase in the yield prDSBs and a decrease in tlDSBs. The consequences of these effects to the relative biological effectiveness are discussed. PMID:23547740

  9. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy

    PubMed Central

    Dungl, Daniela A.; Maginn, Elaina N.; Stronach, Euan A.

    2015-01-01

    Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumor cell defects in homologous recombination – a repair pathway activated in response to double-strand DNA breaks (DSB) – are most commonly associated with platinum-sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ), another DSB repair pathway. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signaling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease. PMID:26579492

  10. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.

    PubMed Central

    Sander, M; Hsieh, T S

    1985-01-01

    In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. Images PMID:2987816

  11. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes.

    PubMed

    Reddig, Annika; Fatahi, Mahsa; Friebe, Björn; Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  12. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  13. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  14. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection

    PubMed Central

    Chen, Xuefeng; Niu, Hengyao; Yu, Yang; Wang, Jingjing; Zhu, Shuangyi; Zhou, Jianjie; Papusha, Alma; Cui, Dandan; Pan, Xuewen; Kwon, Youngho; Sung, Patrick; Ira, Grzegorz

    2016-01-01

    DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins. PMID:26801641

  15. Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair.

    PubMed

    Charles, Catherine; Nachtergael, Amandine; Ouedraogo, Moustapha; Belayew, Alexandra; Duez, Pierre

    2014-07-01

    Double-strand breaks (DSBs) may result from endogenous (e.g., reactive oxygen species, variable (diversity) joining, meiotic exchanges, collapsed replication forks, nucleases) or exogenous (e.g., ionizing radiation, chemotherapeutic agents, radiomimetic compounds) events. DSBs disrupt the integrity of DNA and failed or improper DSBs repair may lead to genomic instability and, eventually, mutations, cancer, or cell death. Non-homologous end-joining (NHEJ) is the major pathway used by higher eukaryotic cells to repair these lesions. Given the complexity of NHEJ and the number of proteins and cofactors involved, secondary metabolites from medicinal or food plants might interfere with the process, activating or inhibiting repair. Twelve natural products, arbutin, curcumin, indole-3-carbinol, and nine flavonoids (apigenin, baicalein, chalcone, epicatechin, genistein, myricetin, naringenin, quercetin, sakuranetin) were chosen for their postulated roles in cancer chemoprevention and/or treatment. The effects of these compounds on NHEJ were investigated with an in vitro protocol based on plasmid substrates. Plasmids were linearized by a restriction enzyme, generating cohesive ends, or by a combination of enzymes, generating incompatible ends; plasmids were then incubated with a nuclear extract prepared from normal human small-intestinal cells (FHS 74 Int), either treated with these natural products or untreated (controls). The NHEJ repair complex from nuclear extracts ligates linearized plasmids, resulting in plasmid oligomers that can be separated and quantified by on-chip microelectrophoresis. Some compounds (chalcone, epicatechin, myricetin, sakuranetin and arbutin) clearly activated NHEJ, whereas others (apigenin, baicalein and curcumin) significantly reduced the repair rate of both types of plasmid substrates. Although this in vitro protocol is only partly representative of the in vivo situation, the natural products appear to interfere with NHEJ repair and warrant

  16. Simple Elastic Network Models for Exhaustive Analysis of Long Double-Stranded DNA Dynamics with Sequence Geometry Dependence

    PubMed Central

    Isami, Shuhei; Sakamoto, Naoaki; Nishimori, Hiraku; Awazu, Akinori

    2015-01-01

    Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences. PMID:26624614

  17. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo.

    PubMed

    Tchurikov, Nickolai A; Yudkin, Dmitry V; Gorbacheva, Maria A; Kulemzina, Anastasia I; Grischenko, Irina V; Fedoseeva, Daria M; Sosin, Dmitri V; Kravatsky, Yuri V; Kretova, Olga V

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics(1,2). There are nine hot spots of DSBs located in human rDNA units(3-6). Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  18. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo

    PubMed Central

    Tchurikov, Nickolai A.; Yudkin, Dmitry V.; Gorbacheva, Maria A.; Kulemzina, Anastasia I.; Grischenko, Irina V.; Fedoseeva, Daria M.; Sosin, Dmitri V.; Kravatsky, Yuri V.; Kretova, Olga V.

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics1,2. There are nine hot spots of DSBs located in human rDNA units3–6. Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  19. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks

    PubMed Central

    Rozacky, Jenna; Nemec, Antoni A.; Sweasy, Joann B.; Kidane, Dawit

    2015-01-01

    DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  20. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks.

    PubMed

    Rozacky, Jenna; Nemec, Antoni A; Sweasy, Joann B; Kidane, Dawit

    2015-09-15

    DNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate group (5'-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5'-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  1. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.

    PubMed

    Rahbani, Janane F; Hariri, Amani A; Cosa, Gonzalo; Sleiman, Hanadi F

    2015-12-22

    DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands. PMID:26556531

  2. Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks

    PubMed Central

    Caron, Pierre; Choudjaye, Jonathan; Clouaire, Thomas; Bugler, Béatrix; Daburon, Virginie; Aguirrebengoa, Marion; Mangeat, Thomas; Iacovoni, Jason S.; Álvarez-Quilón, Alejandro; Cortés-Ledesma, Felipe; Legube, Gaëlle

    2015-01-01

    Summary DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within “repair foci.” Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival. PMID:26586426

  3. Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motif required for repair of DNA double strand breaks.

    PubMed

    Wilson, S; Tavassoli, M; Watts, F Z

    1998-12-01

    The Schizosaccharomyces pombe Rad32 protein is required for repair of DNA double strand breaks, minichromosome stability and meiotic recombination. We show here that the Rad32 protein is phosphorylated in a cell cycle-dependent manner and during meiosis. The phosphorylation is not dependent on the checkpoint protein Rad3. Analysis of a partially purified protein preparation indicates that Rad32 is likely to act in a complex. Characterisation of the rad32-1 mutation and site-directed mutagenesis indicate that three aspartate residues in the conserved phosphoesterase motifs are important for both mitotic and meiotic functions, namely response to UV and ionising radiation and spore viability. PMID:9826747

  4. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  5. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  6. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks

    PubMed Central

    Dantuma, Nico P.; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  7. Single- and double-strand breaks induced in plasmid DNA irradiated by ultra-soft X-rays

    NASA Astrophysics Data System (ADS)

    Fayard, B.; Touati, A.; Sage, E.; Abel, F.; Champion, C.; Chetoui, A.

    1999-01-01

    In order to investigate the molecular consequences of a carbon K photo-ionization located on DNA, dry pBS plasmid samples were irradiated with ultra-soft X-rays at energies below and above the carbon K-threshold (E_K=278 eV). Single- and double-strand breaks (ssb and dsb) were quantified after resolution of the three plasmid forms (supercoiled, relaxed circular, linear) by gel electrophoresis. A factor of 1.2 was found between the doses required at 250 eV and 380 eV to induce the same number of dsb per plasmid. Dans le but d'étudier les conséquences à l'échelle moléculaire d'une photo- ionisation en couche K du carbone de l'ADN, des dépots de plasmides ont été irradiés à sec par des X ultra-mous d'énergies situées de part et d'autre du seuil d'ionisation en couche interne du carbone (E_K=278 eV). Les taux de cassures simple- et double-brin (ssb et dsb) ont été quantifiées après résolution des trois formes de plasmide (surenroulé, circulaire relaché, linéaire) par électrophorèse. Un facteur de 1.2 a été mesuré entre les doses nécessaires à 250 eV et 380 eV pour produire le même nombre de dsb par plasmide.

  8. Sensitive and direct electrochemical detection of double-stranded DNA utilizing alkaline phosphatase-labelled zinc finger proteins.

    PubMed

    Noh, Soodong; Ha, Dat Thinh; Yang, Haesik; Kim, Moon-Soo

    2015-06-21

    Direct detection of double-stranded DNA (dsDNA) using zinc finger proteins (ZFPs) is of great importance in biomedical applications such as identifying pathogens and circulating DNAs. However, its sensitivity is still not sufficiently high because limited signalling labels can be conjugated or fused. Herein, we report sensitive and direct detection of dsDNA using (i) alkaline phosphatase (ALP) as a fast catalytic label conjugated to ZFPs along with (ii) electrochemical measurement of an ALP product (l-ascorbic acid) at the indium-tin oxide electrode with a high signal-to-background ratio. ALP is simply conjugated to a ZFP through lysine residues in a ZFP purification tag, a maltose binding protein (MBP). Sandwich-type electrochemical detection of dsDNA allows a detection limit of ca. 100 fM without using DNA amplification. PMID:25969923

  9. Surface shapes and surrounding environment analysis of single- and double-stranded DNA-binding proteins in protein-DNA interface.

    PubMed

    Wang, Wei; Liu, Juan; Sun, Lin

    2016-07-01

    Protein-DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double-stranded DNA-binding proteins (DSBs) and single-stranded DNA-binding proteins (SSBs) in protein-DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA). Proteins 2016; 84:979-989. © 2016 Wiley Periodicals, Inc. PMID:27038080

  10. The DNA-Binding Domain of Yeast Rap1 Interacts with Double-Stranded DNA in Multiple Binding Modes

    PubMed Central

    2015-01-01

    Saccharomyces cerevisiae repressor-activator protein 1 (Rap1) is an essential protein involved in multiple steps of DNA regulation, as an activator in transcription, as a repressor at silencer elements, and as a major component of the shelterin-like complex at telomeres. All the known functions of Rap1 require the known high-affinity and specific interaction of the DNA-binding domain with its recognition sequences. In this work, we focus on the interaction of the DNA-binding domain of Rap1 (Rap1DBD) with double-stranded DNA substrates. Unexpectedly, we found that while Rap1DBD forms a high-affinity 1:1 complex with its DNA recognition site, it can also form lower-affinity complexes with higher stoichiometries on DNA. These lower-affinity interactions are independent of the presence of the recognition sequence, and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity binding mode, Rap1DBD likely binds in the conformation observed in the available crystal structures. In the other alternative lower-affinity binding mode, we propose that a single Myb-like domain of the Rap1DBD makes interactions with DNA, allowing for more than one protein molecule to bind to the DNA substrates. Our findings suggest that the Rap1DBD does not simply target the protein to its recognition sequence but rather it might be a possible point of regulation. PMID:25382181

  11. Single-strand breaks in double-stranded DNA irradiated in anoxic solution: Contribution of tert-butanol radicals

    SciTech Connect

    Udovicic, L.; Mark, F.; Bothe, E.

    1996-08-01

    Yields of single-strand breaks induced by {sup 60}Co {gamma} or pulse irradiation in double-stranded calf thymus DNA have been measured in N{sub 2}O-saturated aqueous solution as a function of the concentration of tert-butanol. The yields were found to be dependent on dose rate. The experimental data were analyzed using a theoretical model based on non-homogeneous scavenging kinetics. It is concluded from this analysis after {sup 60}Co {gamma} irradiation in the absence of oxygen, aside from breaks caused by hydroxyl radicals, additional breaks occur which are initiated by hydrogen atoms and secondary radicals of tert-butanol. The efficiency of hydrogen atoms in causing single-strand breaks in double-stranded calf thymus DNA was determined to be 2.3%, while the rate constant for the reaction of tert-butanol radicals with DNA and their efficiency in causing single-strand breaks was determined to be 4.1 x 10{sup 3} dm{sup 3} mol{sup -1} s{sup -1} and 2%, respectively. 37 refs., 2 figs., 2 tabs.

  12. Reversible and Irreversible Mechanical Damaging of Large Double-Stranded DNA upon Electrospraying.

    PubMed

    Shlyapnikov, Yuri M; Shlyapnikova, Elena A; Morozov, Victor N

    2016-07-19

    Electrohydrodynamic spraying (or electrospaying, ES) of DNA solutions is an attractive technique for applications in mass spectrometry, in microarray fabrication, and in generation of DNA nanoaerosols. Here we report how ES affects DNA structure and evaluate possible ways to reduce DNA damage upon ES. It is shown that under any ES conditions, linear λ-phage DNA is subjected to intensive rupture producing a mixture of fragments. In addition to such fragmentation, notable reversible changes in the DNA structure were revealed by a slight increase in DNA electrophoretic mobility. The degree of fragmentation was shown to decrease with decreased DNA length and with increased flow rate through the ES capillary. Fragments shorter than 5 kbp did not show any notable damage upon ES. Both experimental data and theoretical estimations of the forces acting on DNA during ES indicate that DNA is damaged by mechanical forces, and the damage takes place in the vicinity of the Taylor cone tip, presumably due to the high shear stress or/and viscous drag forces operating there. Condensation of λ-DNA with hexamminecobalt(III) ions completely protected it from any damage upon ES. PMID:27306261

  13. Production of single- and double-strand breaks in plasmid DNA by ozone

    SciTech Connect

    Hamelin, C.

    1985-02-01

    Agarose gel electrophoresis and electron microscopy were used to determine the type of lesions produced in DNA by ozone. This strong oxidizing agent was found to relax, linearize, then degrade native plasmid (pAT153) DNA molecules in solution. Ozone, like ionizing radiation, thus produced DNA breakage. To ascertain this point, wild-type and radiosensitive strains of Escherichia coli were transfected with control or ozonated plasmid DNA, and the host cells were selected for antibiotic resistance. A significant reduction in the transforming ability of pAT153 was observed following ozonation. Mutants deficient in the repair of DNA single-strand breaks yielded less ampicillin- or tetracycline-resistant clones than repair-proficient strains. In E. coli, the same gene products are probably involved in the repair of both radiation- and ozone-induced DNA breaks.

  14. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  15. Significant Correlation of Species Longevity with DNA Double Strand Break-Recognition but not with Telomere Length

    PubMed Central

    Lorenzini, Antonello; Johnson, F. Brad; Oliver, Anthony; Tresini, Maria; Smith, Jasmine S.; Hdeib, Mona; Sell, Christian; Cristofalo, Vincent J.; Stamato, Thomas D.

    2009-01-01

    Summary The identification of the cellular mechanisms responsible for the wide differences in species lifespan remains one of the major unsolved problems of the biology of aging. We measured the capacity of nuclear protein to recognize DNA double strand breaks (DSB) and telomere length of skin fibroblasts derived from mammalian species that exhibit wide differences in longevity. Our results indicate DNA DSB recognition increases exponentially with longevity. Further, an analysis of the level of Ku80 protein in human, cow, and mouse suggests that Ku levels vary dramatically between species and these levels are strongly correlated with longevity. In contrast mean telomere length appears to decrease with increasing longevity of the species, although not significantly. These findings suggest that an enhanced ability to bind to DNA-ends may be important for longevity. A number of possible roles for increased levels of Ku and DNA-PKcs are discussed. PMID:19896964

  16. Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing

    PubMed Central

    White, Ryan R.; Milholland, Brandon; de Bruin, Alain; Curran, Samuel; Laberge, Remi-Martin; van Steeg, Harry; Campisi, Judith; Maslov, Alexander Y.; Vijg, Jan

    2015-01-01

    DNA damage has been implicated in ageing, but direct evidence for a causal relationship is lacking, owing to the difficulty of inducing defined DNA lesions in cells and tissues without simultaneously damaging other biomolecules and cellular structures. Here we directly test whether highly toxic DNA double-strand breaks (DSBs) alone can drive an ageing phenotype using an adenovirus-based system based on tetracycline-controlled expression of the SacI restriction enzyme. We deliver the adenovirus to mice and compare molecular and cellular end points in the liver with normally aged animals. Treated, 3-month-old mice display many, but not all signs of normal liver ageing as early as 1 month after treatment, including ageing pathologies, markers of senescence, fused mitochondria and alterations in gene expression profiles. These results, showing that DSBs alone can cause distinct ageing phenotypes in mouse liver, provide new insights in the role of DNA damage as a driver of tissue ageing. PMID:25858675

  17. Probability of double-strand breaks in genome-sized DNA by {gamma}-ray decreases markedly as the DNA concentration increases

    SciTech Connect

    Shimobayashi, Shunsuke F.; Iwaki, Takafumi; Mori, Toshiaki; Yoshikawa, Kenichi

    2013-05-07

    By use of the single-molecule observation, we count the number of DNA double-strand breaks caused by {gamma}-ray irradiation with genome-sized DNA molecules (166 kbp). We find that P{sub 1}, the number of double-strand breaks (DSBs) per base pair per unit Gy, is nearly inversely proportional to the DNA concentration above a certain threshold DNA concentration. The inverse relationship implies that the total number of DSBs remains essentially constant. We give a theoretical interpretation of our experimental results in terms of attack of reactive species upon DNA molecules, indicating the significance of the characteristics of genome-sized giant DNA as semiflexible polymers for the efficiency of DSBs.

  18. Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA.

    PubMed

    Hari, Yoshiyuki; Ijitsu, Shin; Akabane-Nakata, Masaaki; Yoshida, Takuya; Obika, Satoshi

    2014-07-15

    Several triplex-forming oligonucleotides (TFOs) partially modified with 2'-O-(2-aminoethyl)- or 2'-O-(2-guanidinoethyl)-nucleotides were synthesized and their association rate constants (kon) with double-stranded DNA were estimated by UV spectrophotometry. Introduction of cationic modifications in the 5'-region of the TFOs significantly increased the kon values compared to that of natural TFO, while no enhancement in the rate of triplex DNA formation was observed when the modifications were in the middle and at the 3'-region. The kon value of a TFO with three adjacent cationic modifications at the 5'-region was found to be 3.4 times larger than that of a natural one. These results provide useful information for overcoming the inherent sluggishness of triplex DNA formation. PMID:24865415

  19. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair**

    PubMed Central

    Coates, Julia; Jhujh, Satpal; Mehmood, Shahid; Tamura, Naoka; Travers, Jon; Wu, Qian; Draviam, Viji M.; Robinson, Carol V.; Blundell, Tom L.; Jackson, Stephen P.

    2014-01-01

    XRCC4 and XLF are two structurally-related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF; also called C9orf142) as a new XRCC4-superfamily member, and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX−/− cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro, and assembly of core non-homologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery. PMID:25574025

  20. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation.

    PubMed

    Robert, T; Nore, A; Brun, C; Maffre, C; Crimi, B; Bourbon, H-M; de Massy, B

    2016-02-26

    Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL. PMID:26917764

  1. DNA double-strand break repair: a tale of pathway choices.

    PubMed

    Li, Jing; Xu, Xingzhi

    2016-07-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. DSB repair is critical for genome integrity, cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy. The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts. Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages, downstream effects, and distinct chromosomal histone marks. These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings. PMID:27217474

  2. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA

    PubMed Central

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  3. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA.

    PubMed

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  4. Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed

    PubMed Central

    Weeks, L D; Zentner, G E; Scacheri, P C; Gerson, S L

    2014-01-01

    Misincorporation of genomic uracil and formation of DNA double strand breaks (DSBs) are known consequences of exposure to TS inhibitors such as pemetrexed. Uracil DNA glycosylase (UNG) catalyzes the excision of uracil from DNA and initiates DNA base excision repair (BER). To better define the relationship between UNG activity and pemetrexed anticancer activity, we have investigated DNA damage, DSB formation, DSB repair capacity, and replication fork stability in UNG+/+ and UNG−/− cells. We report that despite identical growth rates and DSB repair capacities, UNG−/− cells accumulated significantly greater uracil and DSBs compared with UNG+/+ cells when exposed to pemetrexed. ChIP-seq analysis of γ-H2AX enrichment confirmed fewer DSBs in UNG+/+ cells. Furthermore, DSBs in UNG+/+ and UNG−/− cells occur at distinct genomic loci, supporting differential mechanisms of DSB formation in UNG-competent and UNG-deficient cells. UNG−/− cells also showed increased evidence of replication fork instability (PCNA dispersal) when exposed to pemetrexed. Thymidine co-treatment rescues S-phase arrest in both UNG+/+ and UNG−/− cells treated with IC50-level pemetrexed. However, following pemetrexed exposure, UNG−/− but not UNG+/+ cells are refractory to thymidine rescue, suggesting that deficient uracil excision rather than dTTP depletion is the barrier to cell cycle progression in UNG−/− cells. Based on these findings we propose that pemetrexed-induced uracil misincorporation is genotoxic, contributing to replication fork instability, DSB formation and ultimately cell death. PMID:24503537

  5. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation

    PubMed Central

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-01-01

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5′ → 3′ direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA. PMID:25775526

  6. Induction of single- and double-strand breaks in plasmid DNA by monoenergetic alpha-particles with energies below the Bragg-maximum.

    PubMed

    Scholz, V; Weidner, J; Köhnlein, W; Frekers, D; Wörtche, H J

    1997-01-01

    The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles. PMID:9232893

  7. Sae2 Function at DNA Double-Strand Breaks Is Bypassed by Dampening Tel1 or Rad53 Activity

    PubMed Central

    Gnugnoli, Marco; Menin, Luca; Clerici, Michela; Longhese, Maria Pia

    2015-01-01

    The MRX complex together with Sae2 initiates resection of DNA double-strand breaks (DSBs) to generate single-stranded DNA (ssDNA) that triggers homologous recombination. The absence of Sae2 not only impairs DSB resection, but also causes prolonged MRX binding at the DSBs that leads to persistent Tel1- and Rad53-dependent DNA damage checkpoint activation and cell cycle arrest. Whether this enhanced checkpoint signaling contributes to the DNA damage sensitivity and/or the resection defect of sae2Δ cells is not known. By performing a genetic screen, we identify rad53 and tel1 mutant alleles that suppress both the DNA damage hypersensitivity and the resection defect of sae2Δ cells through an Sgs1-Dna2-dependent mechanism. These suppression events do not involve escaping the checkpoint-mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function at DSBs by decreasing the amount of Rad9 bound at DSBs. As a consequence, reduced Rad9 association to DNA ends relieves inhibition of Sgs1-Dna2 activity, which can then compensate for the lack of Sae2 in DSB resection and DNA damage resistance. We propose that persistent Tel1 and Rad53 checkpoint signaling in cells lacking Sae2 increases the association of Rad9 at DSBs, which in turn inhibits DSB resection by limiting the activity of the Sgs1-Dna2 resection machinery. PMID:26584331

  8. DNA double-strand breaks induced in normal human cells during the repair of ultraviolet light damage.

    PubMed Central

    Bradley, M O; Taylor, V I

    1981-01-01

    DNA double-strand breaks (DSBs) are formed in normal human IMR-90 cells during repair incubation after 100 and 300 J.m-2 of ultraviolet light. By contrast, no DSBs are formed after exposure to ultraviolet light in human XPA cells (from a patient with xeroderma pigmentosum complementation group A), which are unable to excise pyrimidine dimers. The DSBs are not due to immediate cell death, because all the cells excluded trypan blue at the time of assay and because XPA cells, which are much more sensitive to ultraviolet light than are IMR-90 cells, did not form DSBs after exposure to ultraviolet light. The DSBs do not appear to be due to either DNA synthesis or cellular single-strand endonucleases. We suggest that repair-induced DSBs would be potent lesions that might lead to cytotoxicity, chromosome aberrations, deletion mutations, and perhaps cellular transformation. PMID:6267601

  9. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Oviedo, M Belén; Sánchez, Cristián G; Rubianes, María D; Rivas, Gustavo A

    2014-10-01

    We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) μA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation. PMID:24951898

  10. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

    PubMed Central

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders. PMID:26609070

  11. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.

    PubMed

    Kansara, Krupa; Patel, Pal; Shah, Darshini; Shukla, Ritesh K; Singh, Sanjay; Kumar, Ashutosh; Dhawan, Alok

    2015-03-01

    TiO2 nanoparticles (NPs) have the second highest global annual production (∼3000 tons) among the metal-containing NPs. These NPs are used as photocatalysts for bacterial disinfection, and in various other consumer products including sunscreen, food packaging, therapeutics, biosensors, surface cleaning agents, and others. Humans are exposed to these NPs during synthesis (laboratory), manufacture (industry), and use (consumer products, devices, medicines, etc.), as well as through environmental exposures (disposal). Hence, there is great concern regarding the health effects caused by exposure to NPs and, in particular, to TiO2 NPs. In the present study, the genotoxic potential of TiO2 NPs in A549 cells was examined, focusing on their potential to induce ROS, different types of DNA damage, and cell cycle arrest. We show that TiO2 NPs can induce DNA damage and a corresponding increase in micronucleus frequency, as evident from the comet and cytokinesis-block micronucleus assays. We demonstrate that DNA damage may be attributed to increased oxidative stress and ROS generation. Furthermore, genomic and proteomic analyses showed increased expression of ATM, P53, and CdC-2 and decreased expression of ATR, H2AX, and Cyclin B1 in A549 cells, suggesting induction of DNA double strand breaks. The occurrence of double strand breaks was correlated with cell cycle arrest in G2/M phase. Overall, the results indicate the potential for genotoxicity following exposure to these TiO2 NPs, suggesting that use should be carefully monitored. PMID:25524809

  12. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining.

    PubMed

    Mahaney, Brandi L; Meek, Katheryn; Lees-Miller, Susan P

    2009-02-01

    DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death. If misrepaired, DSBs may lead to chromosomal translocations and genomic instability. One of the major pathways for the repair of IR-induced DSBs in mammalian cells is NHEJ (non-homologous end-joining). The main proteins required for NHEJ in mammalian cells are the Ku heterodimer (Ku70/80 heterodimer), DNA-PKcs [the catalytic subunit of DNA-PK (DNA-dependent protein kinase)], Artemis, XRCC4 (X-ray-complementing Chinese hamster gene 4), DNA ligase IV and XLF (XRCC4-like factor; also called Cernunnos). Additional proteins, including DNA polymerases mu and lambda, PNK (polynucleotide kinase) and WRN (Werner's Syndrome helicase), may also play a role. In the present review, we will discuss our current understanding of the mechanism of NHEJ in mammalian cells and discuss the roles of DNA-PKcs and DNA-PK-mediated phosphorylation in NHEJ. PMID:19133841

  13. Yields of single-strand breaks in double-stranded calf thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers

    SciTech Connect

    Udovicic, Lj.; Mark, F.; Bothe, E.

    1994-11-01

    Yields of radiation-induced single-strand breaks in double-stranded calf thymus DNA have been measured as a function of OH scavenger concentration in N{sub 2}O/O{sub 2}-saturated aqueous solution. The experimental data are well represented by a theoretical model based on non-homogeneous reaction kinetics, without the need to adjust any parameter. The good agreement between experimental and theoretical data is taken as evidence that, in the presence of oxygen, the main effect of added scavengers with respect to the formation of single-strand breaks in double-stranded DNA is OH radical scavenging. 30 refs., 3 figs., 1 tab.

  14. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.

    PubMed

    Lopez Perez, Ramon; Best, Gerrit; Nicolay, Nils H; Greubel, Christoph; Rossberger, Sabrina; Reindl, Judith; Dollinger, Günther; Weber, Klaus-Josef; Cremer, Christoph; Huber, Peter E

    2016-08-01

    Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. PMID:27166088

  15. Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair.

    PubMed

    Limbo, Oliver; Moiani, Davide; Kertokalio, Aryandi; Wyman, Claire; Tainer, John A; Russell, Paul

    2012-12-01

    The Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pediatric cancer patients with enhanced ataxia telangiectasia-like disorder. Purified human Mre11-W243R retains nuclease and DNA binding activities in vitro. X-ray crystallography of Pyrococcus furiosus Mre11 indicates that an analogous mutation leaves the overall Mre11 three-dimensional structure and nuclease sites intact but disorders surface loops expected to regulate DNA and Rad50 interactions. The equivalent W248R allele in fission yeast allows Mre11 to form an MRN complex that efficiently binds double-strand breaks, activates Tel1/ATM and maintains telomeres; yet, it causes hypersensitivity to ionizing radiation and collapsed replication forks, increased Rad52 foci, defective Chk1 signaling and meiotic failure. W248R differs from other ataxia telangiectasia-like disorder analog alleles by the reduced stability of its interaction with Rad50 in cell lysates. Collective results suggest a separation-of-function mutation that disturbs interactions amongst the MRN subunits and Ctp1 required for DNA end processing in vivo but maintains interactions sufficient for Tel1/ATM checkpoint and telomere maintenance functions. PMID:23080121

  16. Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA.

    PubMed

    Chen, Piaopiao; Wu, Peng; Chen, Junbo; Yang, Peng; Zhang, Xinfeng; Zheng, Chengbin; Hou, Xiandeng

    2016-02-16

    Based on selective and sensitive determination of Hg(2+) released from mercury complex by cold vapor generation (CVG) atomic fluorescence spectrometry (AFS) using SnCl2 as a reductant, a novel label-free and separation-free strategy was proposed for DNA and protein bioassay. To construct the DNA bioassay platform, an Hg(2+)-mediated molecular beacon (hairpin) without labeling but possessing several thymine (T) bases at both ends was employed as the probe. It is well-known that Hg(2+) could trigger the formation of the hairpin structure through T-Hg(2+)-T connection. In the presence of a specific target, the hairpin structure could be broken and the captured Hg(2+) was released. Interestingly, it was found that SnCl2 could selectively reduce only free Hg(2+) to Hg(0) vapor in the presence of T-Hg(2+)-T complex, which could be separated from sample matrices for sensitive AFS detection. Three different types of analyte, namely, single-strand DNA (ssDNA), protein, and double-strand DNA (dsDNA), were investigated as the target analytes. Under the optimized conditions, this bioassay provided high sensitivity for ssDNA, protein, and dsDNA determination with the limits of detection as low as 0.2, 0.08, and 0.3 nM and the linear dynamic ranges of 10-150, 5-175, and 1-250 nM, respectively. The analytical performance for these analytes compares favorably with those by previously reported methods, demonstrating the potential usefulness and versatility of this new AFS-based bioassay. Moreover, the bioassay retains advantages of simplicity, cost-effectiveness, and sensitivity compared to most of the conventional methods. PMID:26781421

  17. Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising

    PubMed Central

    Jekimovs, Christian; Bolderson, Emma; Suraweera, Amila; Adams, Mark; O’Byrne, Kenneth J.; Richard, Derek J.

    2014-01-01

    The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process. PMID:24795863

  18. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms

    PubMed Central

    Kostyrko, Kaja; Mermod, Nicolas

    2016-01-01

    DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways. PMID:26657630

  19. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  20. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.; Bolton, P. R.; Daido, H.

    2009-05-01

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  1. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Bolton, P. R.

    2009-05-04

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of {gamma}-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  2. Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks

    PubMed Central

    Panday, Arvind; Xiao, LiJuan; Grove, Anne

    2015-01-01

    DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair. PMID:25979266

  3. Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing.

    PubMed

    Kont, Yasemin Saygideger; Dutta, Arijit; Mallisetty, Apurva; Mathew, Jeena; Minas, Tsion; Kraus, Christina; Dhopeshwarkar, Priyanka; Kallakury, Bhaskar; Mitra, Sankar; Üren, Aykut; Adhikari, Sanjay

    2016-07-01

    DNA topoisomerase 2 (Top2) poisons, including common anticancer drugs etoposide and doxorubicin kill cancer cells by stabilizing covalent Top2-tyrosyl-DNA 5'-phosphodiester adducts and DNA double-strand breaks (DSBs). Proteolytic degradation of the covalently attached Top2 leaves a 5'-tyrosylated blocked termini which is removed by tyrosyl DNA phosphodiesterase 2 (TDP2), prior to DSB repair through non-homologous end joining (NHEJ). Thus, TDP2 confers resistance of tumor cells to Top2-poisons by repairing such covalent DNA-protein adducts, and its pharmacological inhibition could enhance the efficacy of Top2-poisons. We discovered NSC111041, a selective inhibitor of TDP2, by optimizing a high throughput screening (HTS) assay for TDP2's 5'-tyrosyl phosphodiesterase activity and subsequent validation studies. We found that NSC111041 inhibits TDP2's binding to DNA without getting intercalated into DNA and enhanced etoposide's cytotoxicity synergistically in TDP2-expressing cells but not in TDP2 depleted cells. Furthermore, NSC111041 enhanced formation of etoposide-induced γ-H2AX foci presumably by affecting DSB repair. Immuno-histochemical analysis showed higher TDP2 expression in a sub-set of different type of tumor tissues. These findings underscore the feasibility of clinical use of suitable TDP2 inhibitors in adjuvant therapy with Top2-poisons for a sub-set of cancer patients with high TDP2 expression. PMID:27235629

  4. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair.

    PubMed

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-06-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs-c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142-XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  5. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  6. The scaffold protein WRAP53β orchestrates the ubiquitin response critical for DNA double-strand break repair

    PubMed Central

    Henriksson, Sofia; Rassoolzadeh, Hanif; Hedström, Elisabeth; Coucoravas, Christos; Julner, Alexander; Goldstein, Michael; Imreh, Gabriela; Zhivotovsky, Boris; Kastan, Michael B.; Helleday, Thomas

    2014-01-01

    The WD40 domain-containing protein WRAP53β (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53β as an essential regulator of DNA double-strand break (DSB) repair. WRAP53β rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53β targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53β facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53β controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53β impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53β as a novel regulator of DSB repair by providing a scaffold for DNA repair factors. PMID:25512560

  7. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  8. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks.

    PubMed

    Kruhlak, Michael J; Celeste, Arkady; Dellaire, Graham; Fernandez-Capetillo, Oscar; Müller, Waltraud G; McNally, James G; Bazett-Jones, David P; Nussenzweig, André

    2006-03-13

    The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion. The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated. However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair. PMID:16520385

  9. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    PubMed Central

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  10. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining.

    PubMed

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-02-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4(-/-) cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  11. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint

    PubMed Central

    Carvalho, Sílvia; Vítor, Alexandra C; Sridhara, Sreerama C; Martins, Filipa B; Raposo, Ana C; Desterro, Joana MP; Ferreira, João; de Almeida, Sérgio F

    2014-01-01

    Histone modifications establish the chromatin states that coordinate the DNA damage response. In this study, we show that SETD2, the enzyme that trimethylates histone H3 lysine 36 (H3K36me3), is required for ATM activation upon DNA double-strand breaks (DSBs). Moreover, we find that SETD2 is necessary for homologous recombination repair of DSBs by promoting the formation of RAD51 presynaptic filaments. In agreement, SETD2-mutant clear cell renal cell carcinoma (ccRCC) cells displayed impaired DNA damage signaling. However, despite the persistence of DNA lesions, SETD2-deficient cells failed to activate p53, a master guardian of the genome rarely mutated in ccRCC and showed decreased cell survival after DNA damage. We propose that this novel SETD2-dependent role provides a chromatin bookmarking instrument that facilitates signaling and repair of DSBs. In ccRCC, loss of SETD2 may afford an alternative mechanism for the inactivation of the p53-mediated checkpoint without the need for additional genetic mutations in TP53. DOI: http://dx.doi.org/10.7554/eLife.02482.001 PMID:24843002

  12. A single subexcitation-energy electron can induce a double-strand break in DNA modified by platinum chemotherapeutic drugs.

    PubMed

    Rezaee, Mohammad; Alizadeh, Elahe; Cloutier, Pierre; Hunting, Darel J; Sanche, Léon

    2014-06-01

    The sensitization of malignant cells to ionizing radiation is the clinical rationale for the use of platinum-drug-based concurrent chemoradiotherapy (CCRT) for cancer treatment; however, the specific mechanisms of radiosensitization and their respective contributions still remain unknown. Biological mechanisms such as inhibition of DNA repair may contribute to the efficacy of CCRT; nevertheless, there is a dearth of information on the possible contribution of nanoscopic mechanisms to the generation of lethal DNA lesions, such as double-strand breaks (DSB). The present study demonstrates that the abundant near zero-eV (0.5 eV) electrons, created by ionizing radiation during radiotherapy, induce DSB in supercoiled plasmid DNA modified by platinum-containing anticancer drugs (Pt drugs), but not in unmodified DNA. They do so more efficiently than other types of radiation, including soft X-rays and 10 eV electrons. The formation of DSB by 0.5 eV electrons is found to be a single-hit process. These findings reveal insights into the radiosensitization mechanism of Pt drugs that can have implications for the development of optimal clinical protocols for platinum-based CCRT and the deployment of in situ sources of subexcitation-energy electrons (e.g., Auger electron-emitting radionuclides) to efficiently enhance DSB formation in DNA modified by Pt drugs in malignant cells. PMID:24376113

  13. 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair

    PubMed Central

    Srinivas, Upadhyayula Sai; Dyczkowski, Jerzy; Beißbarth, Tim; Gaedcke, Jochen; Mansour, Wael Y.; Borgmann, Kerstin; Dobbelstein, Matthias

    2015-01-01

    Malignant tumors of the rectum are treated by neoadjuvant radiochemotherapy. This involves a combination of 5-fluorouracil (5-FU) and double stranded DNA-break (DSB)-inducing radiotherapy. Here we explored how 5-FU cooperates with DSB-induction to achieve sustainable DNA damage in colorectal cancer (CRC) cells. After DSB induction by neocarzinostatin, phosphorylated histone 2AX (γ-H2AX) rapidly accumulated but then largely vanished within a few hours. In contrast, when CRC cells were pre-treated with 5-FU, gammaH2AX remained for at least 24 hours. GFP-reporter assays revealed that 5-FU decreases the efficiency of homologous recombination (HR) repair. However, 5-FU did not prevent the initial steps of HR repair, such as the accumulation of RPA and Rad51 at nuclear foci. Thus, we propose that 5-FU interferes with the continuation of HR repair, e. g. the synthesis of new DNA strands. Two key mediators of HR, Rad51 and BRCA2, were found upregulated in CRC biopsies as compared to normal mucosa. Inhibition of HR by targeting Rad51 enhanced DNA damage upon DSB-inducing treatment, outlining an alternative way of enhancing therapeutic efficacy. Taken together, our results strongly suggest that interfering with HR represents a key mechanism to enhance the efficacy when treating CRC with DNA-damaging therapy. PMID:25909291

  14. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions

    PubMed Central

    Turinetto, Valentina; Giachino, Claudia

    2015-01-01

    In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types. PMID:25712102

  15. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  16. 53BP1, BRCA1, and the Choice between Recombination and End Joining at DNA Double-Strand Breaks

    PubMed Central

    Sung, Patrick

    2014-01-01

    When DNA double-strand breaks occur, the cell cycle stage has a major influence on the choice of the repair pathway employed. Specifically, nonhomologous end joining is the predominant mechanism used in the G1 phase of the cell cycle, while homologous recombination becomes fully activated in S phase. Studies over the past 2 decades have revealed that the aberrant joining of replication-associated breaks leads to catastrophic genome rearrangements, revealing an important role of DNA break repair pathway choice in the preservation of genome integrity. 53BP1, first identified as a DNA damage checkpoint protein, and BRCA1, a well-known breast cancer tumor suppressor, are at the center of this choice. Research on how these proteins function at the DNA break site has advanced rapidly in the recent past. Here, we review what is known regarding how the repair pathway choice is made, including the mechanisms that govern the recruitment of each critical factor, and how the cell transitions from end joining in G1 to homologous recombination in S/G2. PMID:24469398

  17. Crystal Structure of E. coli RecE Protein Reveals a Toroidal Tetramer for Processing Double-Stranded DNA Breaks

    SciTech Connect

    Zhang, Jinjin; Xing, Xu; Herr, Andrew B.; Bell, Charles E.

    2009-07-21

    Escherichia coli RecE protein is part of the classical RecET recombination system that has recently been used in powerful new methods for genetic engineering. RecE binds to free double-stranded DNA (dsDNA) ends and processively digests the 5{prime}-ended strand to form 5{prime}-mononucleotides and a 3{prime}-overhang that is a substrate for single strand annealing promoted by RecT. Here, we report the crystal structure of the C-terminal nuclease domain of RecE at 2.8 {angstrom} resolution. RecE forms a toroidal tetramer with a central tapered channel that is wide enough to bind dsDNA at one end, but is partially plugged at the other end by the C-terminal segment of the protein. Four narrow tunnels, one within each subunit of the tetramer, lead from the central channel to the four active sites, which lie about 15 {angstrom} from the channel. The structure, combined with mutational studies, suggests a mechanism in which dsDNA enters through the open end of the central channel, the 5{prime}-ended strand passes through a tunnel to access one of the four active sites, and the 3{prime}-ended strand passes through the plugged end of the channel at the back of the tetramer.

  18. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair

    PubMed Central

    Reid, Dylan A.; Keegan, Sarah; Leo-Macias, Alejandra; Watanabe, Go; Strande, Natasha T.; Chang, Howard H.; Oksuz, Betul Akgol; Fenyo, David; Lieber, Michael R.; Ramsden, Dale A.; Rothenberg, Eli

    2015-01-01

    Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation. PMID:25941401

  19. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  20. Mdt1 Facilitates Efficient Repair of Blocked DNA Double-Strand Breaks and Recombinational Maintenance of Telomeres▿

    PubMed Central

    Pike, Brietta L.; Heierhorst, Jörg

    2007-01-01

    DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3′-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Δ also hypersensitizes partially recombination-defective cells to camptothecin-induced 3′-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Δ cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair “clean” endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Δ leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Δ causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance. PMID:17636027

  1. RhoB Promotes γH2AX Dephosphorylation and DNA Double-Strand Break Repair

    PubMed Central

    Mamouni, Kenza; Cristini, Agnese; Guirouilh-Barbat, Josée; Monferran, Sylvie; Lemarié, Anthony; Faye, Jean-Charles; Lopez, Bernard S.

    2014-01-01

    Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progression. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin, an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA damage response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to dephosphorylate γH2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombination. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for γH2AX and other DNA damage and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated dephosphorylation of γH2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous γH2AX and chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression. PMID:24912678

  2. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination.

    PubMed

    Marin-Vicente, Consuelo; Domingo-Prim, Judit; Eberle, Andrea B; Visa, Neus

    2015-03-15

    The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs. PMID:25632158

  3. Rad54 oligomers translocate and cross-bridge double-stranded DNA to stimulate synapsis

    PubMed Central

    Bianco, Piero R.; Bradfield, Justin J.; Castanza, Lauren R.; Donnelly, Andrea N.

    2007-01-01

    Rad54 is a key component of the eukaryotic recombination machinery. Its presence in DNA strand exchange reactions in vitro results in a significant stimulation in the overall reaction rate. Using untagged Rad54, we show that this stimulation can be attributed to enhancement of the formation of a key reaction intermediate known as DNA networks. Using a novel, single DNA molecule, dual-optical tweezers approach we show how Rad54 stimulates DNA network formation. We discovered that Rad54 oligomers possess a unique ability to cross-bridge or bind dsDNA molecules positioned in close proximity. Further, Rad54 oligomers rapidly translocate dsDNA while simultaneously inducing topological loops in the DNA at the locus of the oligomer. The combination of the cross-bridging and dsDNA translocation activities of Rad54 stimulates the formation of DNA networks, leading to rapid and efficient DNA strand exchange by Rad51. PMID:17949748

  4. [About the Spatial Organization of Double-stranded DNA Molecules in the Cholesteric Liquid-crystalline Phase and Dispersion Particles of this Phase].

    PubMed

    Yevdokimov, Yu M; Skuridin, S G; Salyanov, V I; Volkov, V V; Dadinova, L A; Kompanets, O N; Kats, E I

    2015-01-01

    The answer to a question on the organization of molecules in a cholesteric phase is well enough proved in case of low molecular mass compounds. However, in case of double-stranded nucleic acids molecules the unequivocal answer to such question is a subject of discussions. In this work an attempt to generalize the well known literary data on the structure of the cholesteric phase formed by double-stranded DNA molecules was undertaken. Besides the experimental results of authors describing the packing of these molecules in the cholesteric liquid-crystalline dispersion particles are added to these data. Comparison of the results obtained offers the possibility to come out with an assumption of high probability of the existence of both the short-range positional and long-range orientational order in arrangement of double-stranded DNA molecules in a liquid-crystalline phase, and in the particles of dispersions of this phase generated under certain conditions. The occurrence of the orientational order, i.e. rotation of 'quasinematic' layers of double-stranded DNA molecules by a small angle, defines the formation of spatially twisted (cholesteric) structure with characteristic for it physical and chemical properties. PMID:26591596

  5. Coordinateendonucleolytic 5' and 3' trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase

    SciTech Connect

    Povirk, Lawrence; Yannone, Steven M.; Khan, Imran S.; Zhou, Rui-Zhe; Zhou, Tong; Valerie, Kristoffer; F., Lawrence

    2008-02-18

    Previous work showed that, in the presence of DNA-PK, Artemis slowly trims 3'-phosphoglycolate-terminated blunt ends. To examine the trimming reaction in more detail, long internally labeled DNA substrates were treated with Artemis. In the absence of DNA-PK, Artemis catalyzed extensive 5' {yields} 3' exonucleolytic resection of double-stranded DNA. This resection required a 5'-phosphate but did not require ATP, and was accompanied by endonucleolytic cleavage of the resulting 3' overhang. In the presence of DNA-PK, Artemis-mediated trimming was more limited, was ATP-dependent, and did not require a 5'-phosphate. For a blunt end with either a 3'-phosphoglycolate or 3'-hydroxyl terminus, endonucleolytic trimming of 2-4 nucleotides from the 3'-terminal strand was accompanied by trimming of 6 nucleotides from the 5'-terminal strand. The results suggest that autophosphorylated DNA-PK suppresses the exonuclease activity of Artemis toward blunt-ended DNA, and promotes slow and limited endonucleolytic trimming of the 5'-terminal strand, resulting in short 3' overhangs that are trimmed endonucleolytically. Thus, Artemis and DNA-PK can convert terminally blocked DNA ends of diverse geometry and chemical structure to a form suitable for polymerase mediated patching and ligation, with minimal loss of terminal sequence. Such processing could account for the very small deletions often found at DNA double-strand break repair sites.

  6. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks.

    PubMed

    Cheng, Qiao; Barboule, Nadia; Frit, Philippe; Gomez, Dennis; Bombarde, Oriane; Couderc, Bettina; Ren, Guo-Sheng; Salles, Bernard; Calsou, Patrick

    2011-12-01

    In mammalian cells, the main pathway for DNA double-strand breaks (DSBs) repair is classical non-homologous end joining (C-NHEJ). An alternative or back-up NHEJ (B-NHEJ) pathway has emerged which operates preferentially under C-NHEJ defective conditions. Although B-NHEJ appears particularly relevant to genomic instability associated with cancer, its components and regulation are still largely unknown. To get insights into this pathway, we have knocked-down Ku, the main contributor to C-NHEJ. Thus, models of human cell lines have been engineered in which the expression of Ku70/80 heterodimer can be significantly lowered by the conditional induction of a shRNA against Ku70. On Ku reduction in cells, resulting NHEJ competent protein extracts showed a shift from C- to B-NHEJ that could be reversed by addition of purified Ku protein. Using a cellular fractionation protocol after treatment with a strong DSBs inducer followed by western blotting or immunostaining, we established that, among C-NHEJ factors, Ku is the main counteracting factor against mobilization of PARP1 and the MRN complex to damaged chromatin. In addition, Ku limits PAR synthesis and single-stranded DNA production in response to DSBs. These data support the involvement of PARP1 and the MRN proteins in the B-NHEJ route for the repair of DNA DSBs. PMID:21880593

  7. Epigenetic Modifications and Accumulation of DNA Double-Strand Breaks in Oral Lichen Planus Lesions Presenting Poor Response to Therapy.

    PubMed

    Dillenburg, Caroline S; Martins, Marco A T; Almeida, Luciana O; Meurer, Luise; Squarize, Cristiane H; Martins, Manoela D; Castilho, Rogerio M

    2015-07-01

    Epigenetics refers to changes in cell characteristics that occur independently of modifications to the deoxyribonucleic acid (DNA) sequence. Alterations mediated by epigenetic mechanisms are important factors in cancer progression. Although an exciting prospect, the identification of early epigenetic markers associated with clinical outcome in premalignant and malignant disorders remains elusive. We examined alterations in chromatin acetylation in oral lichen planus (OLP) with distinct clinical behavior and compared the alterations to the levels of DNA double-strand breaks (DSBs). We analyzed 42 OLP patients, who had different responses to therapy, for acetyl-histone H3 at lys9 (H3K9ac), which is associated with enhanced transcription and nuclear decondensation, and the presence of DSBs, as determined by accumulation of phosphorylated γH2AX foci. Patients with high levels of H3K9ac acetylation failed to respond to therapy or experienced disease recurrence shortly after therapy. Similar to H3K9ac, patients who responded poorly to therapy had increased accumulation of DNA DSB, indicating genomic instability. These findings suggest that histone modifications occur in OLP, and H3K9ac and γH2AX histones may serve as epigenetic markers for OLP recurrence. PMID:26222871

  8. Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks

    PubMed Central

    Wang, Weibin; Niu, Hengyao; Clerici, Michela; Sung, Patrick; Longhese, Maria Pia

    2016-01-01

    The cellular response to DNA double-strand breaks (DSBs) is initiated by the MRX/MRN complex (Mre11-Rad50-Xrs2 in yeast; Mre11-Rad50-Nbs1 in mammals), which recruits the checkpoint kinase Tel1/ATM to DSBs. In Saccharomyces cerevisiae, the role of Tel1 at DSBs remains enigmatic, as tel1Δ cells do not show obvious hypersensitivity to DSB-inducing agents. By performing a synthetic phenotype screen, we isolated a rad50-V1269M allele that sensitizes tel1Δ cells to genotoxic agents. The MRV1269MX complex associates poorly to DNA ends, and its retention at DSBs is further reduced by the lack of Tel1. As a consequence, tel1Δ rad50-V1269M cells are severely defective both in keeping the DSB ends tethered to each other and in repairing a DSB by either homologous recombination (HR) or nonhomologous end joining (NHEJ). These data indicate that Tel1 promotes MRX retention to DSBs and this function is important to allow proper MRX-DNA binding that is needed for end-tethering and DSB repair. The role of Tel1 in promoting MRX accumulation to DSBs is counteracted by Rif2, which is recruited to DSBs. We also found that Rif2 enhances ATP hydrolysis by MRX and attenuates MRX function in end-tethering, suggesting that Rif2 can regulate MRX activity at DSBs by modulating ATP-dependent conformational changes of Rad50. PMID:26901759

  9. Epigenetic Modifications and Accumulation of DNA Double-Strand Breaks in Oral Lichen Planus Lesions Presenting Poor Response to Therapy

    PubMed Central

    Dillenburg, Caroline S.; Martins, Marco A.T.; Almeida, Luciana O.; Meurer, Luise; Squarize, Cristiane H.; Martins, Manoela D.; Castilho, Rogerio M.

    2015-01-01

    Abstract Epigenetics refers to changes in cell characteristics that occur independently of modifications to the deoxyribonucleic acid (DNA) sequence. Alterations mediated by epigenetic mechanisms are important factors in cancer progression. Although an exciting prospect, the identification of early epigenetic markers associated with clinical outcome in premalignant and malignant disorders remains elusive. We examined alterations in chromatin acetylation in oral lichen planus (OLP) with distinct clinical behavior and compared the alterations to the levels of DNA double-strand breaks (DSBs). We analyzed 42 OLP patients, who had different responses to therapy, for acetyl-histone H3 at lys9 (H3K9ac), which is associated with enhanced transcription and nuclear decondensation, and the presence of DSBs, as determined by accumulation of phosphorylated γH2AX foci. Patients with high levels of H3K9ac acetylation failed to respond to therapy or experienced disease recurrence shortly after therapy. Similar to H3K9ac, patients who responded poorly to therapy had increased accumulation of DNA DSB, indicating genomic instability. These findings suggest that histone modifications occur in OLP, and H3K9ac and γH2AX histones may serve as epigenetic markers for OLP recurrence. PMID:26222871

  10. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells

    PubMed Central

    XU, YE; XIE, QI; WU, SHAOHUA; YI, DAN; YU, YANG; LIU, SHIBING; LI, SONGYAN; LI, ZHIXIN

    2016-01-01

    The mechanisms underlying myricetin-induced cancer cell apoptosis remain to be elucidated. Certain previous studies have shown that myricetin induces apoptosis through the mitochondrial pathway. Apoptosis, however, can also be induced by other classical pathways, including endoplasmic reticulum (ER) stress and DNA double-strand breaks (DSBs). The aim of the present study was to assess whether these two apoptotic pathways are involved in myricetin-induced cell death in SKOV3 ovarian cancer cells. The results revealed that treatment with myricetin inhibited viability of SKOV3 cells in a dose-dependent manner. Myricetin induced nuclear chromatin condensation and fragmentation, and also upregulated the protein levels of active caspase 3 in a time-dependent manner. In addition, myricetin upregulated ER stress-associated proteins, glucose-regulated protein-78 and C/EBP homologous protein in SKOV3 cells. Phosphorylation of H2AX, a marker of DNA DSBs, was revealed to be upregulated in myricetin-treated cells. The data indicated that myricetin induces DNA DSBs and ER stress, which leads to apoptosis in SKOV3 cells. PMID:26782830

  11. Tuning G-quadruplex vs double-stranded DNA recognition in regioisomeric lysyl-peptidyl-anthraquinone conjugates.

    PubMed

    Zagotto, Giuseppe; Ricci, Antonio; Vasquez, Elena; Sandoli, Andrea; Benedetti, Silvia; Palumbo, Manlio; Sissi, Claudia

    2011-10-19

    Anthraquinone is a versatile scaffold to provide effective DNA binders. This planar system can be easily conjugated to protonable side chains: the nature of the lateral groups and their positions around the tricyclic moiety largely affect the DNA recognition process in terms of binding affinity and mode, as well as sequence and structure of the target nucleic acid. Starting from an anthracenedione system symmetrically functionalized with N-terminal lysyl residues, we incremented the length of side chains by introducing a Gly, Ala, or Phe spacer, characterized by different flexibility, lipophilicity, and bulkiness. Moreover, 2,6, 2,7, 1,8, and 1,5 regioisomers were examined to yield a small bis(lysyl-peptidyl) anthracenedione library. By merging spectroscopic, enzymatic, and cellular results, we showed that the proper combination of a basic aminoacid (Lys) with a more hydrophobic residue (Phe) can provide selective G-quadruplex recognition, in particular when side chains are located at positions 2,6 or 2,7. In fact, while these derivatives effectively bind G-quadruplex structures, they behave at the same time as rather poor double-stranded DNA intercalators. As a result, the Lys-Phe substituted anthraquinones are poorly cytotoxic but still able to promote a senescence mechanism in cancer cells. This combination of chemical and biological properties foresees potentially valuable applications in anticancer medicinal chemistry. PMID:21905741

  12. PicoNewton-Millisecond Force Steps Reveal the Transition Kinetics and Mechanism of the Double-Stranded DNA Elongation

    PubMed Central

    Bianco, Pasquale; Bongini, Lorenzo; Melli, Luca; Dolfi, Mario; Lombardi, Vincenzo

    2011-01-01

    We study the kinetics of the overstretching transition in λ-phage double-stranded (ds) DNA from the basic conformation (B state) to the 1.7-times longer and partially unwound conformation (S state), using the dual-laser optical tweezers under force-clamp conditions at 25°C. The unprecedented resolution of our piezo servo-system, which can impose millisecond force steps of 0.5–2 pN, reveals the exponential character of the elongation kinetics and allows us to test the two-state nature of the B-S transition mechanism. By analyzing the load-dependence of the rate constant of the elongation, we find that the elementary elongation step is 5.85 nm, indicating a cooperativity of ∼25 basepairs. This mechanism increases the free energy for the elementary reaction to ∼94 kBT, accounting for the stability of the basic conformation of DNA, and explains why ds-DNA can remain in equilibrium as it overstretches. PMID:21843477

  13. The cytotoxicity of (–)-lomaiviticin A arises from induction of double-strand breaks in DNA

    PubMed Central

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-01-01

    The metabolite (–)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar–picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (–)-lomaiviticin A nicks and cleaves plasmid DNA by an ROS- and iron-independent pathway and that the potent cytotoxicity of (–)-lomaiviticin A arises from induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3±0.6:1. Labeling studies suggest this cleavage occurs via a radical pathway. The structurally related isolates (–)-lomaiviticin C and (–)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (–)-lomaiviticin A compared to other members of this family. PMID:24848236

  14. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    PubMed Central

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  15. Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells.

    PubMed

    Noda, Asao; Hirai, Yuko; Hamasaki, Kanya; Mitani, Hiroshi; Nakamura, Nori; Kodama, Yoshiaki

    2012-11-15

    After an exposure to ionising radiation, cells can quickly repair damage to their genomes; however, a few unrepairable DNA double-strand breaks (DSBs) emerge in the nucleus in a prolonged culture and perpetuate as long as the culture continues. These DSBs may be retained forever in cells such as non-dividing ageing tissues, which are resistant to apoptosis. We show that such unrepairable DSBs, which had been advocated by the classical target theory as the 'radiation hit', could account for permanent growth arrest and premature senescence. The unrepairable DSBs build up with repeated irradiation, which accounts for an accumulated dose. Because these DSBs tend to be paired, we propose that the untethered and 'torn-off' molecular structures at the broken ends of the DNA result in an alteration of chromatin structure, which protects the ends of the DNA from genomic catastrophe. Such biochemical responses are important for cell survival but may cause gradual tissue malfunction, which could lead to the late effects of radiation exposure. Thus, understanding the biology of unrepairable damage will provide new insights into the long-term effects of radiation. PMID:22899723

  16. Mismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand breaks

    PubMed Central

    Zhao, Hui; Thienpont, Bernard; Yesilyurt, Betül Tuba; Moisse, Matthieu; Reumers, Joke; Coenegrachts, Lieve; Sagaert, Xavier; Schrauwen, Stefanie; Smeets, Dominiek; Matthijs, Gert; Aerts, Stein; Cools, Jan; Metcalf, Alex; Spurdle, Amanda; Amant, Frederic; Lambrechts, Diether

    2014-01-01

    DNA replication errors that persist as mismatch mutations make up the molecular fingerprint of mismatch repair (MMR)-deficient tumors and convey them with resistance to standard therapy. Using whole-genome and whole-exome sequencing, we here confirm an MMR-deficient mutation signature that is distinct from other tumor genomes, but surprisingly similar to germ-line DNA, indicating that a substantial fraction of human genetic variation arises through mutations escaping MMR. Moreover, we identify a large set of recurrent indels that may serve to detect microsatellite instability (MSI). Indeed, using endometrial tumors with immunohistochemically proven MMR deficiency, we optimize a novel marker set capable of detecting MSI and show it to have greater specificity and selectivity than standard MSI tests. Additionally, we show that recurrent indels are enriched for the ‘DNA double-strand break repair by homologous recombination’ pathway. Consequently, DSB repair is reduced in MMR-deficient tumors, triggering a dose-dependent sensitivity of MMR-deficient tumor cultures to DSB inducers. DOI: http://dx.doi.org/10.7554/eLife.02725.001 PMID:25085081

  17. Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses

    PubMed Central

    Song, Junqi; Bent, Andrew F.

    2014-01-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues. PMID:24699527

  18. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage.

    PubMed

    Fang, Xing; Ide, Naohiro; Higashi, Sho-Ichi; Kamei, Yasuhiro; Toyooka, Tatsushi; Ibuki, Yuko; Kawai, Kazuaki; Kasai, Hiroshi; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Negishi, Tomoe

    2014-09-01

    Evidence is accumulating indicating that UVA (320-400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m(-2)), levels of phosphorylated H2AvD (γ-H2AvD) increased significantly in the urate-null strain. Moreover, the level of γ-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of γ-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D

  19. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation

    NASA Astrophysics Data System (ADS)

    Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip

    2016-03-01

    Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.

  20. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation.

    PubMed

    Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip

    2016-01-01

    Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation. PMID:27001929

  1. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast

    SciTech Connect

    Game, J.C. ); Sitney, K.C.; Cook, V.E.; Mortimer, R.K. )

    1989-12-01

    The authors describe a system that uses pulsed-field gels for the physical detection of recombinant DNA molecules, double-strand DNA breaks (DSB) and sister-chromatid exchange in the yeast Saccharomyces cerevisiae. The system makes use of a circular variant of chromosome II (Chr. III). Meiotic recombination between this ring chromosome and a linear homolog produces new molecules of sizes distinguishable on gels from either parental molecule. They demonstrate that these recombinant molecules are not present either in strains with two linear Chr. III molecules or in rad50 mutants, which are defective in meiotic recombination. In conjunction with the molecular endpoints. They present data on the timing of commitment to meiotic recombination scored genetically. They have used x-rays to linearize circular Chr. III, both to develop a sensitive method for measuring frequency of DSB and as a means of detecting double-size circles originating in part from sister-chromatid exchange, which they find to be frequent during meiosis.

  2. Use of a Ring Chromosome and Pulsed-Field Gels to Study Interhomolog Recombination, Double-Strand DNA Breaks and Sister-Chromatid Exchange in Yeast

    PubMed Central

    Game, J. C.; Sitney, K. C.; Cook, V. E.; Mortimer, R. K.

    1989-01-01

    We describe a system that uses pulsed-field gels for the physical detection of recombinant DNA molecules, double-strand DNA breaks (DSB) and sister-chromatid exchange in the yeast Saccharomyces cerevisiae. The system makes use of a circular variant of chromosome III (Chr. III). Meiotic recombination between this ring chromosome and a linear homolog produces new molecules of sizes distinguishable on gels from either parental molecule. We demonstrate that these recombinant molecules are not present either in strains with two linear Chr. III molecules or in rad50 mutants, which are defective in meiotic recombination. In conjunction with the molecular endpoints, we present data on the timing of commitment to meiotic recombination scored genetically. We have used x-rays to linearize circular Chr. III, both to develop a sensitive method for measuring frequency of DSB and as a means of detecting double-sized circles originating in part from sister-chromatid exchange, which we find to be frequent during meiosis. PMID:2693206

  3. Hydroxymethyluracil modifications enhance the flexibility and hydrophilicity of double-stranded DNA

    PubMed Central

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Weigele, Peter R.; Wanunu, Meni

    2016-01-01

    Oxidation of a DNA thymine to 5-hydroxymethyluracil is one of several recently discovered epigenetic modifications. Here, we report the results of nanopore translocation experiments and molecular dynamics simulations that provide insight into the impact of this modification on the structure and dynamics of DNA. When transported through ultrathin solid-state nanopores, short DNA fragments containing thymine modifications were found to exhibit distinct, reproducible features in their transport characteristics that differentiate them from unmodified molecules. Molecular dynamics simulations suggest that 5-hydroxymethyluracil alters the flexibility and hydrophilicity of the DNA molecules, which may account for the differences observed in our nanopore translocation experiments. The altered physico-chemical properties of DNA produced by the thymine modifications may have implications for recognition and processing of such modifications by regulatory DNA-binding proteins. PMID:26578595

  4. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    SciTech Connect

    Ito, M.; Kobayashi, T.; Ito, Y.; Hayashida, T.; Nii, D.; Umemura, K.; Homma, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  5. The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair.

    PubMed

    Liao, Shuren; Tammaro, Margaret; Yan, Hong

    2016-07-01

    The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5' strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a major determinant and tested this hypothesis with model DNA substrates in Xenopus egg extracts. While ends with normal nucleotides are efficiently channeled to NHEJ, ends with damaged nucleotides or bulky adducts are channeled to resection. Resection is dependent on Mre11, but its nuclease activity is critical only for ends with 5' bulky adducts. CtIP is absolutely required for activating the nuclease-dependent mechanism of Mre11 but not the nuclease-independent mechanism. Together, these findings suggest that the structure of ends is a major determinant for the pathway choice of DSB repair and the Mre11 nuclease dependency of resection. PMID:27084932

  6. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents

    PubMed Central

    Ayel, Elodie; Escudé, Christophe

    2010-01-01

    A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine–oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand–DNA complexes. PMID:20007154

  7. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  8. The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair

    PubMed Central

    Liao, Shuren; Tammaro, Margaret; Yan, Hong

    2016-01-01

    The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5′ strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a major determinant and tested this hypothesis with model DNA substrates in Xenopus egg extracts. While ends with normal nucleotides are efficiently channeled to NHEJ, ends with damaged nucleotides or bulky adducts are channeled to resection. Resection is dependent on Mre11, but its nuclease activity is critical only for ends with 5′ bulky adducts. CtIP is absolutely required for activating the nuclease-dependent mechanism of Mre11 but not the nuclease-independent mechanism. Together, these findings suggest that the structure of ends is a major determinant for the pathway choice of DSB repair and the Mre11 nuclease dependency of resection. PMID:27084932

  9. Repair rates of DNA double-strand breaks under different doses of proton and γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Fu, Qibin; Quan, Yi; Wang, Weikang; Mei, Tao; Li, Jia; Yang, Gen; Ren, Xiaotang; Xue, Jianming; Wang, Yugang

    2012-04-01

    It is known that DNA double-strand breaks (DSBs), which can be induced by a variety of treatments including ionizing radiation (IR), can cause most deleterious consequences among all kinds of DNA lesions. However, it is still under debate about whether DSBs repair is equally efficient after low and high-LET radiation, especially the basic biological responses after exposure to high-LET particles. In present study, synchronous fibroblast normal Human lung fibroblast (NHLF) cells were irradiated with graded doses of proton and γ-ray. Then γ-H2AX foci assay was used to monitor DSBs induction and repair at 0.5, 1, 2, 4, and 18 h post irradiation. The results showed that the γ-ray irradiation could produce more γ-H2AX foci than proton irradiation at the same dose. However, compared to low LET radiation with γ-ray, the results also showed a much slower DSBs repair rate after high LET radiation with protons, suggesting that the cellular ability to eliminate DSBs after low and high-LET ionizing radiation is quite different.

  10. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Tian, Xi; Lara, Haydee; Wagner, Kyle T.; Saripalli, Srinivas; Hyder, Syed Nabeel; Foote, Michael; Sethi, Manish; Wang, Edina; Caster, Joseph M.; Zhang, Longzhen; Wang, Andrew Z.

    2015-11-01

    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment.

  11. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response.

    PubMed

    Thornton, Tina M; Delgado, Pilar; Chen, Liang; Salas, Beatriz; Krementsov, Dimitry; Fernandez, Miriam; Vernia, Santiago; Davis, Roger J; Heimann, Ruth; Teuscher, Cory; Krangel, Michael S; Ramiro, Almudena R; Rincón, Mercedes

    2016-01-01

    Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3β (GSK3β) is a constitutively active kinase known to promote cell death. Here we show that phosphorylation of GSK3β on Ser(389) by p38 MAPK (mitogen-activated protein kinase) is induced selectively by DSBs through ATM (ataxia telangiectasia mutated) as a unique mechanism to attenuate the activity of nuclear GSK3β and promote survival of cells undergoing DSBs. Inability to inactivate GSK3β through Ser(389) phosphorylation in Ser(389)Ala knockin mice causes a decrease in the fitness of cells undergoing V(D)J recombination and CSR. Preselection-Tcrβ repertoire is impaired and antigen-specific IgG antibody responses following immunization are blunted in Ser(389)GSK3β knockin mice. Thus, GSK3β emerges as an important modulator of the adaptive immune response. PMID:26822034

  12. Inactivation of nuclear GSK3β by Ser389 phosphorylation promotes lymphocyte fitness during DNA double-strand break response

    PubMed Central

    Thornton, Tina M.; Delgado, Pilar; Chen, Liang; Salas, Beatriz; Krementsov, Dimitry; Fernandez, Miriam; Vernia, Santiago; Davis, Roger J.; Heimann, Ruth; Teuscher, Cory; Krangel, Michael S.; Ramiro, Almudena R.; Rincón, Mercedes

    2016-01-01

    Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3β (GSK3β) is a constitutively active kinase known to promote cell death. Here we show that phosphorylation of GSK3β on Ser389 by p38 MAPK (mitogen-activated protein kinase) is induced selectively by DSBs through ATM (ataxia telangiectasia mutated) as a unique mechanism to attenuate the activity of nuclear GSK3β and promote survival of cells undergoing DSBs. Inability to inactivate GSK3β through Ser389 phosphorylation in Ser389Ala knockin mice causes a decrease in the fitness of cells undergoing V(D)J recombination and CSR. Preselection-Tcrβ repertoire is impaired and antigen-specific IgG antibody responses following immunization are blunted in Ser389GSK3β knockin mice. Thus, GSK3β emerges as an important modulator of the adaptive immune response. PMID:26822034

  13. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair

    PubMed Central

    Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma. PMID:26756218

  14. Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair

    PubMed Central

    Xu, Ye; Ayrapetov, Marina K.; Xu, Chang; Gursoy-Yuzugullu, Ozge; Hu, Yiduo; Price, Brendan D.

    2012-01-01

    Chromatin remodeling during DNA double-strand break (DSB) repair is required to facilitate access to and repair of DSBs. This remodeling requires increased acetylation of histones and a shift in nucleosome organization to create open, relaxed chromatin domains. However, the underlying mechanism driving changes in nucleosome structure at DSBs is poorly defined. Here, we demonstrate that histone H2A.Z is exchanged onto nucleosomes at DSBs by the p400 remodeling ATPase. H2A.Z exchange at DSBs shifts the chromatin to an open conformation, and is required for acetylation and ubiquitination of histones and for loading of the brca1 complex. H2A.Z exchange also restricts single-stranded DNA production by nucleases and is required for loading of the Ku70/80 DSB repair protein. H2A.Z exchange therefore promotes specific patterns of histone modification and reorganization of the chromatin architecture, leading to the assembly of a chromatin template which is an efficient substrate for the DSB repair machinery. PMID:23122415

  15. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation

    PubMed Central

    Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip

    2016-01-01

    Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA–DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA–DNA interactions that we report here may play a role in the chromosome organization and gene regulation. PMID:27001929

  16. Cyclic GMP-AMP Synthase is Activated by Double-stranded DNA-Induced Oligomerization

    PubMed Central

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T.; Shelton, Catherine L.; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B.; Li, Pingwei

    2013-01-01

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. PMID:24332030

  17. Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11.

    PubMed

    Murzik, Ulrike; Hemmerich, Peter; Weidtkamp-Peters, Stefanie; Ulbricht, Tobias; Bussen, Wendy; Hentschel, Julia; von Eggeling, Ferdinand; Melle, Christian

    2008-07-01

    S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21(WAF1/CIP1) was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle. PMID:18463164

  18. Rad54B Targeting to DNA Double-Strand Break Repair Sites Requires Complex Formation with S100A11

    PubMed Central

    Murzik, Ulrike; Hemmerich, Peter; Weidtkamp-Peters, Stefanie; Ulbricht, Tobias; Bussen, Wendy; Hentschel, Julia; von Eggeling, Ferdinand

    2008-01-01

    S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21WAF1/CIP1 was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle. PMID:18463164

  19. Emergence of attraction in simulations of coarse-grained double stranded DNA

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Shahzad; Rottler, Joerg

    2015-03-01

    DNA condensation induced by multivalent counterions is believed to play an important role in DNA bundling and packing into the cell nucleus. We present a coarse-grained, implicit solvent representation of rigid ds-DNA molecules in the presence of divalent counterions. In order to include solvation effects arising from the discrete nature of the water molecules, short-ranged corrections are added to the pairwise interaction potentials such that the structure of counterions is consistent with results from corresponding explicit solvent simulations. The effective force between two DNA strands generated by these potentials provides an excellent match to that observed in the explicit solvent model. Importantly, this interaction features multiple minima and reproduces the like-charge attraction effect between DNA molecules observed in full atomistic simulations at significantly reduced computational expense. This result proves that it is possible to capture complex multibody interactions between polyelectrolyte strands with two-body potentials.

  20. Rapid purification of double-stranded DNA by triple-helix-mediated affinity capture

    SciTech Connect

    Ji, H.; Smith, L.M. )

    1993-05-15

    A simple and rapid method for the preparation of highly pure plasmid DNA has been developed. The DNA is directly captured from bacterial cell lysates by formation of a triple-helical structure between the plasmid dsDNA and a 20-base biotinylated oligonucleotide attached to streptavidin-coated magnetic beads and then eluted from the beads in pH 9 buffer solution. No phenol extraction, ethanol precipitation, RNase digestion, or CsCl gradient centrifugation is required. A general purpose cloning vector, pHJ19, was constructed for this application from pUC19 DNA by insertion of a 40-base sequence suitable for triple-helix formation. The approach was also found suitable for the purification of [lambda] bacteriophage DNA. 32 refs., 6 figs., 1 tab.

  1. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  2. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  3. A Device for Performing Lateral Conductance Measurements on Individual Double-Stranded DNA Molecules

    PubMed Central

    Menard, Laurent D.; Mair, Chad E.; Woodson, Michael E.; Alarie, Jean Pierre; Ramsey, J. Michael

    2012-01-01

    A nanofluidic device is described that is capable of electrically monitoring the driven translocation of DNA molecules through a nanochannel. This is achieved by intersecting a long transport channel with a shorter orthogonal nanochannel. The ionic conductance of this transverse nanochannel is monitored while DNA is electrokinetically driven through the transport channel. When DNA passes the intersection, the transverse conductance is altered, resulting in a transient current response. In 1 M KCl solutions, this was found to be a current enhancement of 5–25%, relative to the baseline transverse ionic current. Two different device geometries were investigated. In one device, the DNA was detected after it was fully inserted into and translocating through the transport nanochannel. In the other device, the DNA was detected while it was in the process of entering the nanochannel. It was found that these two conditions are characterized by different transport dynamics. Simultaneous optical and electrical monitoring of DNA translocation confirmed that the transient events originated from DNA transport through the nanochannel intersection. PMID:22950784

  4. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair.

    PubMed

    Galanty, Yaron; Belotserkovskaya, Rimma; Coates, Julia; Jackson, Stephen P

    2012-06-01

    Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems. PMID:22661229

  5. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study.

    PubMed

    Hu, Shaowen; Pluth, Janice M; Cucinotta, Francis A

    2012-05-01

    The channel structure of the Ku protein elegantly reveals the mechanistic basis of sequence-independent DNA-end binding, which is essential to genome integrity after exposure to ionizing radiation or in V(D)J recombination. However, contradicting evidence indicates that this protein is also involved in the regulation of gene expression and in other regulatory processes with intact chromosomes. This computational study predicts that a putative DNA binding domain of this protein, the SAP domain, can form DNA-bound complexes with relatively high affinities (ΔG ≈ -20 kcal mol(-1)). The binding modes are searched by low frequency vibration modes driven by the fully flexible docking method while binding affinities are calculated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. We find this well defined 5 kDa domain with a helix-extended loop-helix structure is suitable to form favorable electrostatic and hydrophobic interactions with either the major groove or the minor groove of DNA. The calculation also reveals the sequence specified binding preference which may relate to the observed pause sites when Ku translocates along DNA and the perplex binding of Ku with circular DNA. PMID:21947447

  6. Reduced contribution of thermally-labile sugar lesions to DNA double-strand break formation after exposure to neutrons.

    PubMed

    Singh, Satyendra K; Wu, Wenqi; Stuschke, Martin; Bockisch, Andreas; Iliakis, George

    2012-12-01

    In cells exposed to ionizing radiation, double-strand breaks (DSBs) form within clustered damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that DSBs form promptly and are immediately detected and processed by the cellular DNA damage response apparatus. However, DSBs also form by delayed chemical conversion of thermally-labile sugar lesions (TLSL) to breaks. We recently reported that conversion of thermally-labile sugar lesions to breaks occurs in cells maintained at physiological temperatures. Here, we investigate the influence of radiation quality on the formation of thermally-labile sugar lesions dependent DSBs. We show that, although the yields of total DSBs are very similar after exposure to neutrons and X rays, the yields of thermally-labile sugar lesions dependent DSBs from neutrons are decreased in comparison to that from X rays. Thus, the yields of prompt DSBs for neutrons are greater than for X rays. Notably, after neutron irradiation the decreased yield of thermally-labile sugar lesion dependent DSBs is strongly cell line dependent, likely reflecting subtle differences in DNA organization. We propose that the higher ionization density of neutrons generates with higher probability prompt DSBs within ionization clusters and renders the ensuing chemical evolution of thermally-labile sugar lesions inconsequential to DNA integrity. Modification of thermally-labile sugar lesion evolution may define novel radiation protection strategies aiming at decreasing DSB formation by chemically preserving thermally-labile sugar lesions until other DSB contributing lesions within the clustered damage site are removed by non-DSB repair pathways. PMID:23088767

  7. Mouse HORMAD1 is a meiosis i checkpoint protein that modulates DNA double- strand break repair during female meiosis.

    PubMed

    Shin, Yong-Hyun; McGuire, Megan M; Rajkovic, Aleksandar

    2013-08-01

    Oocytes in embryonic ovaries enter meiosis I and arrest in the diplonema stage. Perturbations in meiosis I, such as abnormal double-strand break (DSB) formation and repair, adversely affect oocyte survival. We previously discovered that HORMAD1 is a critical component of the synaptonemal complex but not essential for oocyte survival. No significant differences were observed in the number of primordial, primary, secondary, and developing follicles between wild-type and Hormad1(−/−)newborn, 8-day, and 80-day ovaries. Meiosis I progression in Hormad1(−/−) embryonic ovaries was normal through the zygotene stage and in oocytes arrested in diplonema; however, we did not visualize oocytes with completely synapsed chromosomes. We investigated effects of HORMAD1 deficiency on the kinetics of DNA DSB formation and repair in the mouse ovary. We irradiated Embryonic Day 16.5 wild-type and Hormad1(−/−) ovaries and monitored DSB repair using gammaH2AX, RAD51, and DMC1 immunofluorescence. Our results showed a significant drop in unrepaired DSBs in the irradiated Hormad1(−/−) zygotene oocytes as compared to the wild-type oocytes. Moreover, Hormad1 deficiency rescued Dmc1(−/−) oocytes. These results indicate that Hormad1 deficiency promotes DMC1-independent DSB repairs, which in turn helps asynaptic Hormad1(−/−) oocytes resist perinatal loss. PMID:23759310

  8. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse

    PubMed Central

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-01-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation. PMID:25795304

  9. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  10. A Unique HMG-Box Domain of Mouse Maelstrom Binds Structured RNA but Not Double Stranded DNA

    PubMed Central

    Genzor, Pavol; Bortvin, Alex

    2015-01-01

    Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response. PMID:25807393

  11. Caffeine's antioxidant potency optically sensed with double-stranded DNA-encased single-walled carbon nanotubes.

    PubMed

    Zhao, Edward H; Ergul, Busra; Zhao, Wei

    2015-03-12

    There is great interest in developing a sensitive method being able to quantitatively measure and compare antioxidant potencies of samples of interest against multiple reactive oxygen species (ROS) whose imbalance could cause oxidative stress. Here, a sensitive nanoprobe, double-stranded DNA encased single-walled carbon nanotubes (SWNTs) has been developed to determine antioxidant potencies of selected samples (caffeine, regular coffee, and decaffeinated coffee) against ROS, hydrogen peroxide, and hydroxyl radicals. Antioxidant vitamin C and uric acid are used as standards. The method focuses on unique dual optical sensing capability of SWNTs, the rate of spectral suppression when exposed to ROS, and the magnitude of spectral recovery of the ROS-suppressed SWNTs when an antioxidant is added. It is found that the dual sensing capability of SWNTs is still sustained when reacting with the reactive hydroxyl radicals. The results show that caffeine's antioxidant potency is weak, about one millionth of those of vitamin C and uric acid. It is a better scavenger of hydrogen peroxide and a little less effective for hydroxyl radicals. In comparison, coffee, regardless of regular or decaffeinated, is a more efficient antioxidant than caffeine, having an antioxidant potency about ten thousand times stronger. This work provides a versatile detection method for evaluating the antioxidant potencies of samples of interest against various ROS for chemical, biological, and medical applications. PMID:25714428

  12. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice.

    PubMed

    He, Yi; Wang, Chong; Higgins, James D; Yu, Junping; Zong, Jie; Lu, Pingli; Zhang, Dabing; Liang, Wanqi

    2016-08-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  13. Cassava vein mosaic virus (CsVMV), type species for a new genus of plant double stranded DNA viruses?

    PubMed

    de Kochko, A; Verdaguer, B; Taylor, N; Carcamo, R; Beachy, R N; Fauquet, C

    1998-01-01

    The complete sequence of 8159 nucleotides of the double stranded DNA genome of cassava vein mosaic virus (CsVMV) was determined (# U59751) and revealed a significant difference in genome organization when compared with a previous report (# U20341). When transferred to cassava plants by microbombardment, the full length CsVMV clone was infectious, confirming the genome organization here described. Sequence comparisons between CsVMV and members of the genera Caulimovirus and Badnavirus revealed high homologies between consensus sequences of several proteins that are indispensable for virus replication, including a potential transactivator factor not reported previously. The presence of a sequence complementary to a plant Met tRNA confirms that CsVMV is a plant pararetrovirus and is most closely related to members of the genus Caulimovirus as previously assessed. However, differences in genome organization, number and size of the ORFs, in addition to sequence comparisons with other plant pararetroviruses, shows that either the genetic variability of caulimoviruses is much greater than previously thought, or that CsVMV is the unique representative of a new genus within the Caulimoviridae family. On the basis of this study, it is proposed to upgrade the floating genus Caulimovirus to the family level and to divide the Caulimoviridae family into at least three genera with CsVMV being the type member of a new genus. PMID:9645200

  14. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    SciTech Connect

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-11-07

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain.

  15. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

    PubMed

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-05-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation. PMID:25795304

  16. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1

    PubMed Central

    Barton, Olivia; Naumann, Steffen C.; Diemer-Biehs, Ronja; Künzel, Julia; Steinlage, Monika; Conrad, Sandro; Makharashvili, Nodar; Wang, Jiadong; Feng, Lin; Lopez, Bernard S.; Paull, Tanya T.; Chen, Junjie; Jeggo, Penny A.

    2014-01-01

    DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847. PMID:25267294

  17. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability.

    PubMed

    Roy, Sujit

    2014-01-01

    Plant cells are subject to high levels of DNA damage resulting from plant's obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury, and other air and soil pollutants including heavy metals and metabolic by-products from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction, and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance. PMID:25295048

  18. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  19. Twist-radial normal mode analysis in double-stranded DNA chains

    NASA Astrophysics Data System (ADS)

    Torrellas, Germán; Maciá, Enrique

    2012-10-01

    We study the normal modes of a duplex DNA chain at low temperatures. We consider the coupling between the hydrogen-bond radial oscillations and the twisting motion of each base pair within the Peyrard-Bishop-Dauxois model. The coupling is mediated by the stacking interaction between adjacent base pairs along the helix. We explicitly consider different mass values for different nucleotides, extending previous works. We disclose several resonance conditions of interest, determined by the fine-tuning of certain model parameters. The role of these dynamical effects on the DNA chain charge transport properties is discussed.

  20. The effect of 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation induced DNA double strand damage and repair in V79 cells.

    PubMed Central

    Sigdestad, C. P.; Treacy, S. H.; Knapp, L. A.; Grdina, D. J.

    1987-01-01

    Radiation induced DNA double strand breaks are believed to be important lesions involved in processes related to cell killing, induction of chromosome aberrations and carcinogenesis. This paper reports the effects of the radioprotector 2-[(aminopropyl)amino]ethanethiol (WR-1065) on radiation-induced DNA damage and repair in V79 cells using the neutral elution method performed at pH 7.2 or pH 9.6. WR-1065 (4 mM) was added to the culture medium either 30 minutes prior to and during irradiation with Cobalt-60 gamma rays (for dose response experiments) or during the repair times tested (for DNA rejoining experiments). The results indicate that WR-1065 is an effective protector against the formation of radiation-induced double-strand breaks in DNA as measured using a neutral elution technique at either pH. The protector reduced the strand scission factors by 1.44 and 1.77 in experiments run at pH 9.6 and pH 7.2, respectively. The kinetics of DNA double-strand rejoining were dependent upon the pH at which the neutral elution procedure was performed. Unlike the results obtained with alkaline elution, rejoining of DNA breaks was unaffected by the presence of WR-1065 at either pH. PMID:3606941

  1. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    SciTech Connect

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-03-27

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  2. Electronic excitation processes in single-strand and double-strand DNA: a computational approach.

    PubMed

    Plasser, Felix; Aquino, Adélia J A; Lischka, Hans; Nachtigallová, Dana

    2015-01-01

    Absorption of UV light by nucleic acids can lead to damaging photoreactions, which may ultimately lead to mutations of the genetic code. The complexity of the photodynamical behavior of nucleobases in the DNA double-helix provides a great challenge to both experimental and computational chemists studying these processes. Starting from the initially excited states, the main question regards the understanding of the subsequent relaxation processes, which can either utilize monomer-like deactivation pathways or lead to excitonic or charge transfer species with new relaxation dynamics. After a review of photophysical processes in single nucleobases we outline the theoretical background relevant for interacting chromophores and assess a large variety of computational approaches relevant for the understanding of the nature and dynamics of excited states of DNA. The discussion continues with the analysis of calculations on excitonic and charge transfer states followed by the presentation of the dynamics of excited-state processes in DNA. The review is concluded by topics on proton transfer in DNA and photochemical dimer formation of nucleobases. PMID:24549841

  3. A moonlighting metabolic protein influences repair at DNA double-stranded breaks

    PubMed Central

    Torres-Machorro, Ana Lilia; Aris, John P.; Pillus, Lorraine

    2015-01-01

    Catalytically active proteins with divergent dual functions are often described as ‘moonlighting’. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair. PMID:25628362

  4. ATM protein is indispensable to repair complex-type DNA double strand breaks induced by high LET heavy ion irradiation.

    NASA Astrophysics Data System (ADS)

    Sekine, Emiko; Yu, Dong; Fujimori, Akira; Anzai, Kazunori; Okayasu, Ryuichi

    ATM (ataxia telangiectasia-mutated) protein responsible for a rare genetic disease with hyperradiosensitivity, is the one of the earliest repair proteins sensing DNA double-strand breaks (DSB). ATM is known to phosphorylate DNA repair proteins such as MRN complex (Mre11, Rad50 and NBS1), 53BP1, Artemis, Brca1, gamma-H2AX, and MDC. We studied the interactions between ATM and DNA-PKcs, a crucial NHEJ repair protein, after cells exposure to high and low LET irradiation. Normal human (HFL III, MRC5VA) and AT homozygote (AT2KY, AT5BIVA, AT3BIVA) cells were irradiated with X-rays and high LET radiation (carbon ions: 290MeV/n initial energy at 70 keV/um, and iron ions: 500MeV/n initial energy at 200KeV/um), and several critical end points were examined. AT cells with high LET irradiation showed a significantly higher radiosensitivity when compared with normal cells. The behavior of DNA DSB repair was monitored by immuno-fluorescence techniques using DNA-PKcs (pThr2609, pSer2056) and ATM (pSer1981) antibodies. In normal cells, the phosphorylation of DNA-PKcs was clearly detected after high LET irradiation, though the peak of phosphorylation was delayed when compared to X-irradiation. In contrast, almost no DNA-PKcs phosphorylation foci were detected in AT cells irradiated with high LET radiation. A similar result was also observed in normal cells treated with 10 uM ATM kinase specific inhibitor (KU55933) one hour before irradiation. These data suggest that the phosphorylation of DNA-PKcs with low LET X-rays is mostly ATM-independent, and the phosphorylation of DNA-PKcs with high LET radiation seems to require ATM probably due to its complex nature of DSB induced. Our study indicates that high LET heavy ion irradiation which we can observe in the space environment would provide a useful tool to study the fundamental mechanism associated with DNA DSB repair.

  5. Protective effect of ascorbic acid against double-strand breaks in giant DNA: Marked differences among the damage induced by photo-irradiation, gamma-rays and ultrasound

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Ogawa, Naoki; Yoshikawa, Yuko; Mori, Toshiaki; Imanaka, Tadayuki; Watanabe, Yoshiaki; Yoshikawa, Kenichi

    2015-10-01

    The protective effect of ascorbic acid against double-strand breaks in DNA was evaluated by single-molecule observation of giant DNA (T4 DNA; 166 kbp) through fluorescence microscopy. Samples were exposed to three different forms of radiation: visible light, γ-ray and ultrasound. With regard to irradiation with visible light, 1 mM AA reduced the damage down to ca. 30%. Same concentration of AA decreased the damage done by γ-ray to ca. 70%. However, AA had almost no protective effect against the damage caused by ultrasound. This significant difference is discussed in relation to the physico-chemical mechanism of double-strand breaks depending on the radiation source.

  6. Dyes designed for high sensitivity detection of double-stranded DNA

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.

  7. Dyes designed for high sensitivity detection of double-stranded DNA

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1994-01-01

    Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a polycationic chain of at least two positive charges. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.

  8. Dyes designed for high sensitivity detection of double-stranded DNA

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1998-07-21

    Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye. 10 figs.

  9. Dyes designed for high sensitivity detection of double-stranded DNA

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    2000-01-01

    Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.

  10. MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

    PubMed Central

    Ferreira, Fabiana F.; Ammar, Dib; Bourckhardt, Gilian F.; Kobus-Bianchini, Karoline; Müller, Yara M. R.; Nazari, Evelise M.

    2015-01-01

    The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation. PMID:26793240

  11. Prevention of DNA Double-Strand Breaks Induced by Radioiodide-131I in FRTL-5 Thyroid Cells

    PubMed Central

    Okunyan, Armen; Rivina, Yelena; Cannon, Sophie; Hogen, Victor

    2011-01-01

    Radioiodine-131 released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause cancer. The aims of this study were to develop a method to show DNA DSBs induced by 131I in thyroid cells; to test monovalent anions that are transported by the sodium/iodide symporter to determine whether they prevent 131I-induced DSB; and to test other radioprotective agents for their effect on irradiated thyroid cells. Rat FRTL-5 thyroid cells were incubated with 131I. DSBs were measured by nuclear immunofluorescence using antibodies to p53-binding protein 1 or γH2AX. Incubation with 1–10 μCi 131I per milliliter for 90 min resulted in a dose-related increase of DSBs; the number of DSBs increased from a baseline of 4–15% before radiation to 65–90% after radiation. GH3 or CHO cells that do not transport iodide did not develop DSBs when incubated with 131I. Incubation with 20–100 μm iodide or thiocyanate markedly attenuated DSBs. Perchlorate was about 6 times more potent than iodide or thiocyanate. The effects of the anions were much greater when each was added 30–120 min before the 131I. Two natural organic compounds recently shown to provide radiation protection partially prevented DSBs caused by 131I and had an additive effect with perchlorate. In conclusion, we developed a thyroid cell model to quantify the mitogenic effect of 131I. 131I causes DNA DSBs in FRTL-5 cells and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSBs induced by 131I. PMID:21190956

  12. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells

    PubMed Central

    Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia

    2015-01-01

    Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment. PMID:26618143

  13. DNA Double-Strand Breaks Induced by Cavitational Mechanical Effects of Ultrasound in Cancer Cell Lines

    PubMed Central

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Campbell, Paul; Zhao, Qing-Li; Ogawa, Ryohei; Ali Hassan, Mariame; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Kondo, Takashi

    2012-01-01

    Ultrasonic technologies pervade the medical field: as a long established imaging modality in clinical diagnostics; and, with the emergence of targeted high intensity focused ultrasound, as a means of thermally ablating tumours. In parallel, the potential of [non-thermal] intermediate intensity ultrasound as a minimally invasive therapy is also being rigorously assessed. Here, induction of apoptosis in cancer cells has been observed, although definitive identification of the underlying mechanism has thus far remained elusive. A likely candidate process has been suggested to involve sonochemical activity, where reactive oxygen species (ROS) mediate the generation of DNA single-strand breaks. Here however, we provide compelling new evidence that strongly supports a purely mechanical mechanism. Moreover, by a combination of specific assays (neutral comet tail and staining for γH2AX foci formation) we demonstrate for the first time that US exposure at even moderate intensities exhibits genotoxic potential, through its facility to generate DNA damage across multiple cancer lines. Notably, colocalization assays highlight that ionizing radiation and ultrasound have distinctly different signatures to their respective γH2AX foci formation patterns, likely reflecting the different stress distributions that initiated damage formation. Furthermore, parallel immuno-blotting suggests that DNA-PKcs have a preferential role in the repair of ultrasound-induced damage. PMID:22235259

  14. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.

    PubMed

    Tsouroula, Katerina; Furst, Audrey; Rogier, Melanie; Heyer, Vincent; Maglott-Roth, Anne; Ferrand, Alexia; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2016-07-21

    Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position. PMID:27397684

  15. Double-strand break formation by the RAG complex at the bcl-2 major breakpoint region and at other non-B DNA structures in vitro.

    PubMed

    Raghavan, Sathees C; Swanson, Patrick C; Ma, Yunmei; Lieber, Michael R

    2005-07-01

    The most common chromosomal translocation in cancer, t(14;18) at the 150-bp bcl-2 major breakpoint region (Mbr), occurs in follicular lymphomas. The bcl-2 Mbr assumes a non-B DNA conformation, thus explaining its distinctive fragility. This non-B DNA structure is a target of the RAG complex in vivo, but not because of its primary sequence. Here we report that the RAG complex generates at least two independent nicks that lead to double-strand breaks in vitro, and this requires the non-B DNA structure at the bcl-2 Mbr. A 3-bp mutation is capable of abolishing the non-B structure formation and the double-strand breaks. The observations on the bcl-2 Mbr reflect more general properties of the RAG complex, which can bind and nick at duplex-single-strand transitions of other non-B DNA structures, resulting in double-strand breaks in vitro. Hence, the present study reveals novel insight into a third mechanism of action of RAGs on DNA, besides the standard heptamer/nonamer-mediated cleavage in V(D)J recombination and the in vitro transposase activity. PMID:15988007

  16. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double strand break repair

    PubMed Central

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P.C.

    2014-01-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. While ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the non-homologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in oxidative stress response and could be activated directly in vitro upon hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs deficient, but not Ligase 4 deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a non-canonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS build-up independently to its function in DSB repair. PMID:25224041

  17. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange.

    PubMed Central

    Rye, H S; Quesada, M A; Peck, K; Mathies, R A; Glazer, A N

    1991-01-01

    Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes. Images PMID:2014172

  18. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. PMID:27341700

  19. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields

    PubMed Central

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-01-01

    Abstract Purpose: Following in utero exposure to low dose radiation (10–200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods: 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results: Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions: We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage. PMID:25786477

  20. A Structural Model of the Genome Packaging Process in a Membrane-Containing Double Stranded DNA Virus

    PubMed Central

    Hong, Chuan; Oksanen, Hanna M.; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H.; Chiu, Wah

    2014-01-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion. PMID:25514469

  1. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  2. Protective effect of chitosan oligosaccharide lactate against DNA double-strand breaks induced by a model methacrylate dental adhesive

    PubMed Central

    Szczepanska, Joanna; Pawlowska, Elzbieta; Synowiec, Ewelina; Czarny, Piotr; Rekas, Marek; Blasiak, Janusz; Szaflik, Jacek Pawel

    2011-01-01

    Summary Background Monomers of methacrylates used in restorative dentistry have been recently reported to induce DNA double-strand breaks (DSBs) in human gingival fibroblasts (HGFs) in vitro. Because such monomers may penetrate the pulp and oral cavity due to the incompleteness of polymerization and polymer degradation, they may induce a similar effect in vivo. DSBs are the most serious type of DNA damage and if misrepaired or not repaired may lead to mutation, cancer transformation and cell death. Therefore, the protection against DSBs induced by methacrylate monomers released from dental restorations is imperative. Material/Methods We examined the protective action of chitosan oligosaccharide lactate (ChOL) against cytotoxic and genotoxic effects induced by monomers of the model adhesive consisting of 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) and 45% 2-hydroxyethyl methacrylate (HEMA). We evaluated the extent of DSBs by the neutral comet assay and the phosphorylation of the H2AX histone test. Results ChOL increased the viability of HGFs exposed to Bis-GMA/HEMA as assessed by flow cytometry. ChOL decreased the extent of DSBs induced by Bis-GMA/HEMA as evaluated by neutral comet assay and phosphorylation of the H2AX histone. ChOL did not change mechanical properties of the model adhesive, as checked by the shear bond test. Scanning electron microscopy revealed a better sealing of the dentinal microtubules in the presence of ChOL, which may protect pulp cells against the harmful action of the monomers. Conclusions ChOL can be considered as an additive to methacrylate-based dental materials to prevent DSBs induction, but further studies are needed on its formulation with the methacrylates. PMID:21804456

  3. Two separable functions of Ctp1 in the early steps of meiotic DNA double-strand break repair

    PubMed Central

    Ma, Lijuan; Milman, Neta; Nambiar, Mridula; Smith, Gerald R.

    2015-01-01

    Meiotic programmed DNA double-strand break (DSB) repair is essential for crossing-over and viable gamete formation and requires removal of Spo11-oligonucleotide complexes from 5′ ends (clipping) and their resection to generate invasive 3′-end single-stranded DNA (resection). Ctp1 (Com1, Sae2, CtIP homolog) acting with the Mre11-Rad50-Nbs1 (MRN) complex is required in both steps. We isolated multiple S. pombe ctp1 mutants deficient in clipping but proficient in resection during meiosis. Remarkably, all of the mutations clustered in or near the conserved CxxC or RHR motif in the C-terminal portion. The mutants tested, like ctp1Δ, were clipping-deficient by both genetic and physical assays­. But, unlike ctp1Δ, these mutants were recombination-proficient for Rec12 (Spo11 homolog)-independent break-repair and resection-proficient by physical assay. We conclude that the intracellular Ctp1 C-terminal portion is essential for clipping, while the N-terminal portion is sufficient for DSB end-resection. This conclusion agrees with purified human CtIP resection and endonuclease activities being independent. Our mutants provide intracellular evidence for separable functions of Ctp1. Some mutations truncate Ctp1 in the same region as one of the CtIP mutations linked to the Seckel and Jawad severe developmental syndromes, suggesting that these syndromes are caused by a lack of clipping at DSB ends that require repair. PMID:26130711

  4. Human RAD18 Interacts with Ubiquitylated Chromatin Components and Facilitates RAD9 Recruitment to DNA Double Strand Breaks

    PubMed Central

    Inagaki, Akiko; Sleddens-Linkels, Esther; van Cappellen, Wiggert A.; Hibbert, Richard G.; Sixma, Titia K.; Hoeijmakers, Jan H. J.; Grootegoed, J. Anton; Baarends, Willy M.

    2011-01-01

    RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB) repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY) and female (XX) cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2. PMID:21858012

  5. Coordinate 5′ and 3′ endonucleolytic trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase

    PubMed Central

    Yannone, Steven M.; Khan, Imran S.; Zhou, Rui-Zhe; Zhou, Tong; Valerie, Kristoffer; Povirk, Lawrence F.

    2008-01-01

    Previous work showed that, in the presence of DNA-dependent protein kinase (DNA-PK), Artemis slowly trims 3′-phosphoglycolate-terminated blunt ends. To examine the trimming reaction in more detail, long internally labeled DNA substrates were treated with Artemis. In the absence of DNA-PK, Artemis catalyzed extensive 5′→3′ exonucleolytic resection of double-stranded DNA. This resection required a 5′-phosphate, but did not require ATP, and was accompanied by endonucleolytic cleavage of the resulting 3′ overhang. In the presence of DNA-PK, Artemis-mediated trimming was more limited, was ATP-dependent and did not require a 5′-phosphate. For a blunt end with either a 3′-phosphoglycolate or 3′-hydroxyl terminus, endonucleolytic trimming of 2–4 nucleotides from the 3′-terminal strand was accompanied by trimming of 6 nt from the 5′-terminal strand. The results suggest that autophosphorylated DNA-PK suppresses the exonuclease activity of Artemis toward blunt-ended DNA, and promotes slow and limited endonucleolytic trimming of the 5′-terminal strand, resulting in short 3′ overhangs that are trimmed endonucleolytically. Thus, Artemis and DNA-PK can convert terminally blocked DNA ends of diverse geometry and chemical structure to a form suitable for polymerase-mediated patching and ligation, with minimal loss of terminal sequence. Such processing could account for the very small deletions often found at DNA double-strand break repair sites. PMID:18440975

  6. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  7. Synthesis of 5-[3-(2-aminopyrimidin-4-yl)aminopropyn-1-yl]uracil derivative that recognizes Ade-Thy base pairs in double-stranded DNA.

    PubMed

    Ito, Yu; Masaki, Yoshiaki; Kanamori, Takashi; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo

    2016-01-01

    5-[3-(2-Aminopyrimidin-4-yl)aminopropyn-1-yl]uracil (Ura(Pyr)) was designed as a new nucleobase to recognize Ade-Thy base pair in double-stranded DNA. We successfully synthesized the dexoynucleoside phosphoramidite having Ura(Pyr) and incorporated it into triplex forming oligonucleotides (TFOs). Melting temperature analysis revealed that introduction of Ura(Pyr) into TFOs could effectively stabilize their triplex structures without loss of base recognition capabilities. PMID:26602276

  8. Spatial distribution and yield of DNA double-strand breaks induced by 3-7 MeV helium ions in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, Bjorn; Heilbronn, Lawrence; Holley, William R.; Lobrich, Markus; Zeitlin, Cary; Chatterjee, Aloke; Cooper, Priscilla K.

    2002-01-01

    Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.

  9. Gamma irradiation induces DNA double-strand breaks in fibroblasts: a model study for the development of biodosimetry

    NASA Astrophysics Data System (ADS)

    Uttayarat, P.; Tangtong, T.; Sukapirom, K.; Boonsirichai, K.

    2015-05-01

    Double-strand breaks (DSBs) of DNAs induced by ionizing radiation can pose detrimental damages on organisms which include genetic instability and cell death. It is necessary to be able to assess health risks associated with irradiation from both accidental and therapeutic exposures in a timely manner for proper medical treatments. This present study showed the first attempt to develop a biodosimetric measure in Thailand based on the quantification of phosphorylated histone H2AX (γ-H2AX) formed at DSB sites with an aim to establish a dose response curve using a two-dimensional (2D) cell culture model. Human dermal fibroblasts were grown into monolayers before irradiated by gamma rays from a Co-60 source in a custom-made lead chamber at doses 0, 0.2, 1, 2 and 4 Gy and a dose rate of 0.21 Gy/min. After 30 min post exposure, γ-H2AX proteins were immunofluorescently labelled for evaluation by confocal microscopy and flow cytometry. The accumulation of phosphorylated γ-H2AX proteins at DSBs appeared as nuclear foci with the most prominent intensity at 4 Gy. Linear regression analysis of flow cytometric data showed a linear response (R2 = 0.9862) of foci intensity in proportion to irradiation dose. In addition, the fraction of cell viability was shown to decrease at higher doses. This technique can be further developed as a quick assessment tool to identify individuals subjected to accidental radiation in parallel to other established biodosimetric measures.

  10. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair

    PubMed Central

    McGovern, Stephen; Baconnais, Sonia; Roblin, Pierre; Nicolas, Pierre; Drevet, Pascal; Simonson, Héloïse; Piétrement, Olivier; Charbonnier, Jean-Baptiste; Le Cam, Eric; Noirot, Philippe; Lecointe, François

    2016-01-01

    Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region. PMID:26961308

  11. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    PubMed

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies. PMID:27243896

  12. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells

    PubMed Central

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N.; Kao, Jennifer; Du, Zhou; Meyers, Robin M.; Alt, Frederick W.

    2016-01-01

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)–deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types. PMID:26873106

  13. Double-strand DNA break repair with replication slippage on two strands: a novel mechanism of deletion formation.

    PubMed

    MacLean, Helen E; Favaloro, Jenny M; Warne, Garry L; Zajac, Jeffrey D

    2006-05-01

    We have characterized an unusual family with two different androgen receptor (AR) gene deletions, in which we propose a novel mechanism of deletion formation has occurred. Affected individuals have the X-linked disorder androgen insensitivity syndrome, and we previously showed that different family members have deletions of different exons of the AR gene. We have now fully sequenced the deletions from affected individuals, and confirmed the presence of different deletions in different affected family members. Most affected and heterozygote individuals have a 4,430-bp deletion of exon 5 that occurred between repeated GTGGCAT motifs in introns 4 and 5. One affected hemizygous individual has a 4,033-bp deletion of exons 6 and 7 that occurred between repeated CCTC motifs in introns 5 and 7. The intron 5 breakpoint junctions of the two deletions are only 11 bp apart. Surprisingly, the maternal grandmother of the original index case was found to be mosaic for both deletional events, as well as having the normal AR gene. Karyotyping ruled out 47,XXX trisomy, indicating triple mosaicism for the two different deleted AR alleles and a normal AR allele. This triple mosaicism must have occurred early in embryonic development, as both deletions were passed on to different children. Based on these findings, we propose a novel mechanism of deletion formation. We suggest that during AR gene replication, a double strand DNA break occurred in intron 5, and that a variant of replication slippage occurred on both newly synthesized strands between the repeat motifs of microhomology, leading to the formation of the two different AR gene deletions. PMID:16619235

  14. IKKβ regulates the repair of DNA double-strand breaks induced by ionizing radiation in MCF-7 breast cancer cells.

    PubMed

    Wu, Lixian; Shao, Lijian; An, Ningfei; Wang, Junru; Pazhanisamy, Senthil; Feng, Wei; Hauer-Jensen, Martin; Miyamoto, Shigeki; Zhou, Daohong

    2011-01-01

    Activation of the IKK-NFκB pathway increases the resistance of cancer cells to ionizing radiation (IR). This effect has been largely attributed to the induction of anti-apoptotic proteins by NFκB. Since efficient repair of DNA double strand breaks (DSBs) is required for the clonogenic survival of irradiated cells, we investigated if activation of the IKK-NFκB pathway also regulates DSB repair to promote cell survival after IR. We found that inhibition of the IKK-NFκB pathway with a specific IKKβ inhibitor significantly reduced the repair of IR-induced DSBs in MCF-7 cells. The repair of DSBs was also significantly inhibited by silencing IKKβ expression with IKKβ shRNA. However, down-regulation of IKKα expression with IKKα shRNA had no significant effect on the repair of IR-induced DSBs. Similar findings were also observed in IKKα and/or IKKβ knockout mouse embryonic fibroblasts (MEFs). More importantly, inhibition of IKKβ with an inhibitor or down-regulation of IKKβ with IKKβ shRNA sensitized MCF-7 cells to IR-induced clonogenic cell death. DSB repair function and resistance to IR were completely restored by IKKβ reconstitution in IKKβ-knockdown MCF-7 cells. These findings demonstrate that IKKβ can regulate the repair of DSBs, a previously undescribed and important IKKβ kinase function; and inhibition of DSB repair may contribute to cance cell radiosensitization induced by IKKβ inhibition. As such, specific inhibition of IKKβ may represents a more effective approach to sensitize cancer cells to radiotherapy. PMID:21490922

  15. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    PubMed

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  16. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks

    PubMed Central

    2011-01-01

    Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds. PMID:21261999

  17. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification

    PubMed Central

    Camacho, Cristel V.; Todorova, Pavlina K.; Gillam, Molly C.; Tomimatsu, Nozomi; del Alcazar, Carlos R Gil; Ilcheva, Mariya; Mukherjee, Bipasha; McEllin, Brian; Vemireddy, Vamsidhara; Hatanpaa, Kimmo; Story, Michael D.; Habib, Amyn A.; Murty, Vundavalli V.; Bachoo, Robert; Burma, Sandeep

    2014-01-01

    Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this study, we systematically examined the contribution of IR-induced DSBs to GBM development using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors frequently lost in GBM, namely Ink4a, Ink4b, Arf, and/or PTEN. Using low linear energy transfer (LET) X-rays to generate simple breaks or high LET Fe ions to generate complex breaks, we found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma development but additional loss of Ink4b significantly increased tumor incidence. We analyzed IR-induced tumors for copy number alterations (CNAs) to identify oncogenic changes that were generated and selected for as a consequence of stochastic DSB events. We found Met amplification to be the most significant oncogenic event in these radiation-induced gliomas. Importantly, Met activation resulted in expression of Sox2, a GBM cancer stem cell (CSC) marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade gliomas that are commonly driven by Met amplification and activation. PMID:24632607

  18. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein.

    PubMed

    Yoo, S; Dynan, W S

    1999-12-15

    Ku protein and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are essential components of the double-strand break repair machinery in higher eukaryotic cells. Ku protein binds to broken DNA ends and recruits DNA-PKcs to form an enzymatically active complex. To characterize the arrangement of proteins in this complex, we developed a set of photocross-linking probes, each with a single free end. We have previously used this approach to characterize the contacts in an initial Ku-DNA complex, and we have now applied the same technology to define the events that occur when Ku recruits DNA-PKcs. The new probes allow the binding of one molecule of Ku protein and one molecule of DNA-PKcs in a defined position and orientation. Photocross-linking reveals that DNA-PKcs makes direct contact with the DNA termini, occupying an approximately 10 bp region proximal to the free end. Characterization of the Ku protein cross-linking pattern in the presence and absence of DNA-PKcs suggests that Ku binds to form an initial complex at the DNA ends, and that recruitment of DNA-PKcs induces an inward translocation of this Ku molecule by about one helical turn. The presence of ATP had no effect on protein-DNA contacts, suggesting that neither DNA-PK-mediated phosphorylation nor a putative Ku helicase activity plays a role in modulating protein conformation under the conditions tested. PMID:10572166

  19. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage

    PubMed Central

    Ju, Xiaoming; Vetuschi, Antonella; Sferra, Roberta; Casimiro, Mathew C.; Pompili, Simona; Festuccia, Claudio; Colapietro, Alessandro; Gaudio, Eugenio; Di Cesare, Ernesto; Tombolini, Vincenzo; Pestell, Richard G.

    2016-01-01

    Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa. PMID:26689991

  20. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  1. The Scrunchworm Hypothesis: Transitions Between A-DNA and B-DNA Provide the Driving Force for Genome Packaging in Double-Stranded DNA Bacteriophages

    PubMed Central

    Harvey, Stephen C.

    2015-01-01

    Double-stranded DNA bacteriophages have motors that drive the genome into preformed capsids, using the energy releas ed by hydrolysis of ATP to overcome the forces opposing DNA packaging. Viral packaging motors are the strongest of all biological motors, but it is not known how they generate these forces. Several models for the process of mechanochemical force generation have been put forward, but there is no consensus on which, if any, of these is correct. All the existing models assume that protein-generated forces drive the DNA forward. The scrunchworm hypothesis proposes that the DNA molecule is the active force-generating core of the motor, not simply a substrate on which the motor operates. The protein components of the motor dehydrate a section of the DNA, converting it from the B form to the A form and shortening it by about 23%. The proteins then rehydrate the DNA, which converts back to the B form. Other regions of the motor grip and release the DNA to capture the shortening-lengthening motions of the B→A→B cycle (“scrunching”), so that DNA is pulled into the motor and pushed forward into the capsid. This DNA-centric mechanism provides a quantitative physical explanation for the magnitude of the forces generated by viral packaging motors. It also provides a simple explanation for the fact that each of the steps in the burst cycle advances the DNA by 2.5 base pairs. The scrunchworm hypothesis is consistent with a large body of published data, and it makes four experimentally testable predictions. PMID:25486612

  2. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression.

    PubMed

    Wang, Junhua; Pluth, Janice M; Cooper, Priscilla K; Cowan, Morton J; Chen, David J; Yannone, Steven M

    2005-05-01

    Mutations in the Artemis gene are causative in a subset of human severe combined immunodeficiencies (SCIDs) and Artemis-deficient cells exhibit radiation sensitivity and defective V(D)J recombination, implicating Artemis function in non-homologous end joining (NHEJ). Here we show that Artemis-deficient cells from Athabascan-speaking Native American SCID patients (SCIDA) display significantly elevated sensitivity to ionizing radiation (IR) but only a very subtle defect in DNA double-strand (DSB) break repair in contrast to the severe DSB repair defect of NHEJ-deficient cells. Primary human SCIDA fibroblasts accumulate and exhibit persistent arrest at both the G1/S and G2/M boundaries in response to IR, consistent with the presence of persistent DNA damage. Artemis protein is phosphorylated in a PI3-like kinase-dependent manner after either IR or a number of other DNA damaging treatments including etoposide, but SCIDA cells are not hypersensitive to treatment with etoposide. Inhibitor studies with various DNA damaging agents establish multiple phosphorylation states and suggest multiple kinases function in Artemis phosphorylation. We observe that Artemis phosphorylation occurs rapidly after irradiation like that of histone H2AX. However, unlike H2AX, Artemis de-phosphorylation is uncoupled from overall DNA repair and correlates instead with cell cycle progression to or through mitosis. Our results implicate a direct and non-redundant function of Artemis in the repair of a small subset of DNA double-strand breaks, possibly those with hairpin termini, which may account for the pronounced radiation sensitivity observed in Artemis-deficient cells. PMID:15811628

  3. Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks.

    PubMed

    Lee, Eun-Mi; Trinh, Tram Thi Bich; Shim, Hee Jin; Park, Suk-Young; Nguyen, Trang Thi Thu; Kim, Min-Joo; Song, Young-Han

    2012-09-01

    ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses. PMID:22796626

  4. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    SciTech Connect

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  5. Functional variant analyses (FVAs) predict pathogenicity in the BRCA1 DNA double-strand break repair pathway.

    PubMed

    Loke, Johnny; Pearlman, Alexander; Upadhyay, Kinnari; Tesfa, Lydia; Shao, Yongzhao; Ostrer, Harry

    2015-06-01

    Heritable mutations in the BRCA1 and BRCA2 and other genes in the DNA double-strand break (DSB) repair pathway disrupt binding of the encoded proteins, transport into the nucleus and initiation of homologous recombination, thereby increasing cancer risk [Scully, R., Chen, J., Plug, A., Xiao, Y., Weaver, D., Feunteun, J., Ashley, T. and Livingston, D.M. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell, 88, 265-275, Chen, J., Silver, D.P., Walpita, D., Cantor, S.B., Gazdar, A.F., Tomlinson, G., Couch, F.J., Weber, B.L., Ashley, T., Livingston, D.M. et al. (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell, 2, 317-328]. To meet the challenge of correct classification, flow cytometry-based functional variant analyses (FVAs) were developed to determine whether variants in DSB repair genes disrupted the binding of BRCA1 to BARD1, PALB2, BRCA2 and FANCD2, phosphorylation of p53 or BRCA1 nuclear localization in response to DNA damage caused by diepoxybutane, mitomycin C and bleomycin. Lymphoblastoid cells from individuals with BRCA1 pathogenic mutations, benign variants, and variants of uncertain significance or with known BRCA2, FANCC or NBN mutations were tested. Mutations in BRCA1 decreased nuclear localization of BRCA1 in response to individual or combination drug treatment. Mutations in BRCA1 reduced binding to co-factors, PALB2 and FANCD2 and decreased phosphorylation of p53. Mutations in BRCA2, FANCC and NBN decreased nuclear localization of BRCA1 in response to drug treatment, cofactors binding and p53 phosphorylation. Unsupervised cluster analysis of all and as few as two assays demonstrated two apparent clusters, high-risk BRCA1 mutations and phenocopies and low-risk, fully sequenced controls and variants of uncertain significance (VUS). Thus, two FVA assays distinguish BRCA1 mutations and phenocopies from benign variants and categorize most VUS as benign

  6. Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population.

    PubMed

    Jara, Lilian; Dubois, Karen; Gaete, Daniel; de Mayo, Tomas; Ratkevicius, Nikalai; Bravo, Teresa; Margarit, Sonia; Blanco, Rafael; Gómez, Fernando; Waugh, Enrique; Peralta, Octavio; Reyes, Jose M; Ibáñez, Gladys; González-Hormazábal, Patricio

    2010-08-01

    The double-strand break (DSB) DNA repair pathway has been implicated in breast cancer (BC). RAD51 and its paralogs XRCC3 and RAD51D play an important role in the repair of DSB through homologous recombination (HR). Some polymorphisms including XRCC3-Thr241Met, RAD51-135G>C, and RAD51D-E233G have been found to confer increased BC susceptibility. In order to detect novel mutations that may contribute to BC susceptibility, 150 patients belonging to 150 Chilean BRCA1/2-negative families were screened for mutations in XRCC3. No mutations were detected in the XRCC3 gene. In addition, using a case-control design we studied the XRCC3-Thr241Met, and RAD51D-E233G polymorphisms in 267 BC cases and 500 controls to evaluate their possible association with BC susceptibility. The XRCC3 Met/Met genotype was associated with an increased BC risk (P = 0.003, OR = 2.44 [95%CI 1.34-4.43]). We did not find an association between E233G polymorphism and BC risk. We also analyzed the effect of combined genotypes among RAD51-135G>C, Thr241Met, and E233G polymorphisms on BC risk. No interaction was observed between Thr241Met and 135G>C. The combined genotype Thr/Met-E/G was associated with an increased BC risk among women who (a) have a family history of BC, (b) are BRCA1/2-negative, and (c) were <50 years at onset (n = 195) (P = 0.037, OR = 10.5 [95%CI 1.16-94.5]). Our results suggested that the variability of the DNA HR repair genes XRCC3 and RAD51D may play a role in BC risk, but this role may be underlined by a mutual interaction between these genes. These findings should be confirmed in other populations. PMID:20054644

  7. Identification and characterization of 2nd generation Invader Locked Nucleic Acids (LNAs) for mixed-sequence recognition of double-stranded DNA

    PubMed Central

    Sau, Sujay P.; Madsen, Andreas S.; Podbevsek, Peter; Andersen, Nicolai K.; Kumar, T. Santhosh; Andersen, Sanne; Rathje, Rie L.; Anderson, Brooke A.; Guenther, Dale C.; Karmakar, Saswata; Kumar, Pawan; Plavec, Janez; Wengel, Jesper

    2013-01-01

    Development of synthetic agents that recognize double-stranded DNA (dsDNA) is a long-standing goal that is inspired by the promise for tools that detect, regulate and modify genes. Progress has been made with triplex-forming oligonucleotides, PNAs, and polyamides, but substantial efforts are currently devoted to the development of alternative strategies that overcome limitations observed with the classic approaches. In 2005, we introduced Invader Locked Nucleic Acids (LNAs), i.e., double-stranded probes that are activated for mixed-sequence recognition of dsDNA through modification with ‘+1 interstrand zippers’ of 2’-N-(pyren-1-yl)methyl-2’-amino-α-L-LNA monomers. Despite promising preliminary results, progress has been slow due to the synthetic complexity of the building blocks. Here, we describe a study that led to the identification of two simpler classes of Invader monomers. We compare thermal denaturation characteristics of double-stranded probes featuring different interstrand zippers of pyrene-functionalized monomers based on 2’-amino-α-L-LNA, 2’-N-methyl-2’-amino-DNA, and RNA scaffolds. Insights from fluorescence spectroscopy, molecular modeling and NMR spectroscopy are used to elucidate the structural factors that govern probe activation. We demonstrate that probes with +1 zippers of 2’-O-(pyren-1-yl)methyl-RNA or 2’-N-methyl-2’-N-(pyren-1-yl)methyl-2’-amino-DNA monomers recognize DNA hairpins with similar efficiency as original Invader LNAs. Access to synthetically simple monomers will accelerate the use of Invader-mediated dsDNA-recognition for applications in molecular biology and nucleic acid diagnostics. PMID:24032477

  8. The HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling

    PubMed Central

    Harami, Gábor M.; Nagy, Nikolett T.; Martina, Máté; Neuman, Keir C.; Kovács, Mihály

    2015-01-01

    DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom’s syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibility that it may affect the coupling between ATP hydrolysis, translocation along single-stranded (ss)DNA and/or unwinding of double-stranded (ds)DNA. Here, we determined how these activities are affected by the abolition of the ssDNA interaction of the HRDC domain or the deletion of the entire domain in E. coli RecQ helicase. Our data show that the HRDC domain suppresses the rate of DNA-activated ATPase activity in parallel with those of ssDNA translocation and dsDNA unwinding, regardless of the ssDNA binding capability of this domain. The HRDC domain does not affect either the processivity of ssDNA translocation or the tight coupling between the ATPase, translocation, and unwinding activities. Thus, the mechanochemical coupling of E. coli RecQ appears to be independent of HRDC-ssDNA and HRDC-RecA core interactions, which may play roles in more specialized functions of the enzyme. PMID:26067769

  9. Induction of DNA double-strand breaks by monochlorophenol isomers and ChKM in human gingival fibroblasts.

    PubMed

    Shehata, M; Durner, J; Thiessen, D; Shirin, M; Lottner, S; Van Landuyt, K; Furche, S; Hickel, R; Reichl, F X

    2012-09-01

    Phenol has been traditionally used in dental treatment as a sedative for the pulp or as disinfectant for carious cavity and root canal. However, phenol is regarded as a mutagenic and carcinogenic agent and its use in dental practice is now therefore restricted. Monochlorophenols are derivatives of phenol, which are still used clinically as root canal disinfectants, they are even more active antiseptics/disinfectants than phenol, and the so-called Walkhoff (ChKM) solution makes use of monochlorophenol for root canal disinfection. Ingredients in the ChKM solution are the monochlorophenol compound 4-chlorophenol (4-CP), camphor, and menthol. In literature, the use of the ChKM solution is controversial because of a possible DNA toxicity of the ingredient 4-CP. However, it is unknown whether ChKM can really induce DNA damage in human oral cells. In this study, the induction of DNA double-strand breaks (DSBs) by ChKM and monochlorophenol compounds (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; and 4-chlorophenol, 4-CP) was tested in human gingival fibroblasts (HGFs). DNA DSBs (foci) induced in HGFs unexposed and exposed to monochlorophenols or ChKM solution were investigated using the γ-H2AX DNA focus assay, which is a direct marker for DSBs. DSBs result in the ATM-dependent phosphorylation of the histone H2AX. When cells were exposed to medium or medium + DMSO (1 %) (negative controls), an average of 3 foci per cell were found. In positive control cells (H₂O₂ + medium, or H₂O₂ + medium + DMSO (1 %), an average of 35 foci each were found. About 20 DSB foci per cell were found, when HGFs were exposed to 2-CP (4 mM), 3-CP (2.3 mM), 4-CP (2.1 mM), or ChKM (corresponding to 1.5 mM 4-CP). Our results show increasing DNA toxicities in the order of 2-CP < 3-CP < 4-CP < ChKM solution. An additive DNA toxicity was found for 4-CP in combination with camphor in the ChKM solution, compared to the 4-CP alone. No significant differences regarding multi-foci cells (cells that

  10. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks.

    PubMed

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells. PMID:27310875

  11. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    PubMed

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-01

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer. PMID:26449929

  12. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions

    NASA Astrophysics Data System (ADS)

    Stewart, Robert D.; Streitmatter, Seth W.; Argento, David C.; Kirkby, Charles; Goorley, John T.; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A.

    2015-11-01

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, 137Cs γ-rays, neutrons and light ions relative to γ-rays from 60Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that 137Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from 60Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than 60Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as 60Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  13. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse

    SciTech Connect

    McKay, M.J.; Troelstra, C.; Kanaar, R.

    1996-09-01

    The rad21 gene of Schizosaccharomyces pombe is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of rad21 is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21{sup sp} (mouse homolog of Rad21, S. pombe) and hHR21{sup sp} (human homolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21{sup sp} mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment. hHR21{sup sp} mRNA was cell-cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21{sup sp} transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed that mHR21{sup sp} resided on chromosome 15D3, whereas hHR21{sup sp} localized to the syntenic 8q24 region. Elevated expression of mHR21{sup sp} in testis and thymus supports a possible role for the rad21 mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation of rad21, retained from S. pombe to human, is consistent with a conservation of function between S. pombe and human rad21 genes. 62 refs., 8 figs., 1 tab.

  14. Rapid isolation of both double-stranded RNA and PCR-suitable DNA from the obligate biotrophic phytopathogenic fungus Uncinula necator using a commercially available reagent.

    PubMed

    Délye, C; Corio-Costet, M F

    1998-10-01

    A method for rapid extraction of both double-stranded RNA (dsRNA) and DNA from an obligate biotrophic phytopathogenic fungus is described. Lyophilised fungal material is incubated in a commercial guanidium thiocyanate reagent. Proteins and cell debris are centrifuged by chloroform precipitation. After precipitation in isopropanol and washing in 75% ethanol, nucleic acids are resuspended in water (10 microl/mg fungal dry weight). DsRNA is directly visualised by agarose gel electrophoresis. DNA contained in 10-fold dilutions of the samples proved to be suitable for PCR-based experiments. PMID:9779614

  15. Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers.

    PubMed

    Britton, Sébastien; Froment, Carine; Frit, Philippe; Monsarrat, Bernard; Salles, Bernard; Calsou, Patrick

    2009-11-15

    Aiming to identify novel phosphorylation sites in response to DNA double-strand breaks (DSB) inducers, we have isolated a phosphorylation site on KU70. Unexpectedly, a rabbit antiserum raised against this site cross-reacted with a 120 kDa protein in cells treated by DNA DSB inducers. We identified this protein as SAF-A/hnRNP U, an abundant and essential nuclear protein containing regions binding DNA or RNA. The phosphorylation site was mapped at S59 position in a sequence context favoring a "S-hydrophobic" consensus model for DNA-PK phosphorylation site in vivo. This site was exclusively phosphorylated by DNA-PK in response to DNA DSB inducers. In addition, the extent and duration of this phosphorylation was in inverse correlation with the capacity of the cells to repair DSB by Nonhomologous End Joining. These results bring a new link between the hnRNP family and the DNA damage response. Addtionaly, the mapped phospho-site on SAF-A might serve as a potential bio-marker for DNA-PK activity in academic studies and clinical analyses of DNA-PK activators or inhibitors. PMID:19844162

  16. DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis.

    PubMed

    Kraxenberger, F; Weber, K J; Friedl, A A; Eckardt-Schupp, F; Flentje, M; Quicken, P; Kellerer, A M

    1998-07-01

    The spatial distribution of DNA double-strand breaks (DSB) was assessed after treatment of mammalian cells (V79) with densely ionizing radiation. Cells were exposed to beams of heavy charged particles (calcium ions: 6.9 MeV/u, 2.1.10(3) keV/microm; uranium ions: 9.0 MeV/u, 1.4.10(4) keV/microm) at the linear accelerator UNILAC of GSI, Darmstadt. DNA was isolated in agarose plugs and subjected to pulsed-field gel electrophoresis under conditions that separated DNA fragments of size 50 kbp to 5 Mbp. The measured fragment distributions were compared to those obtained after gamma-irradiation and were analyzed by means of a convolution and a deconvolution technique. In contrast to the finding for gamma-radiation, the distributions produced by heavy ions do not correspond to the random breakage model. Their marked overdispersion and the observed excess of short fragments reflect spatial clustering of DSB that extends over large regions of the DNA, up to several mega base pairs (Mbp). At fluences of 0.75 and 1.5/microm2, calcium ions produce nearly the same shape of fragment spectrum, merely with a difference in the amount of DNA entering the gel; this suggests that the DNA is fragmented by individual calcium ions. At a fluence of 0.8/microm2 uranium ions produce a profile that is shifted to smaller fragment sizes in comparison to the profile obtained at a fluence of 0.4/microm2; this suggests cumulative action of two separate ions in the formation of fragments. These observations are not consistent with the expectation that the uranium ions, with their much larger LET, should be more likely to produce single particle action than the calcium ions. However, a consideration of the greater lateral extension of the tracks of the faster uranium ions explains the observed differences; it suggests that the DNA is closely coiled so that even DNA locations several Mbp apart are usually not separated by less than 0. 1 or 0.2 microm. PMID:9728743

  17. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner

    PubMed Central

    Chen, Shuhua; Davies, Adelina A.; Sagan, Daniel; Ulrich, Helle D.

    2005-01-01

    Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that—by means of independent enzymatic activities inherent in its RING and ATPase domains—plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions. PMID:16224103

  18. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint

    PubMed Central

    Kühne, Christian; Tjörnhammar, Marie-Louise; Pongor, Sándor; Banks, Lawrence; Simoncsits, András

    2003-01-01

    Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function. PMID:14654698

  19. Assessment of DNA double-strand breaks induced by intravascular iodinated contrast media following in vitro irradiation and in vivo, during paediatric cardiac catheterization.

    PubMed

    Gould, Richard; McFadden, Sonyia L; Horn, Simon; Prise, Kevin M; Doyle, Philip; Hughes, Ciara M

    2016-01-01

    Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥ 17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. PMID:26549792

  20. Induction and Rejoining of DNA Double Strand Breaks Assessed by H2AX Phosphorylation in Melanoma Cells Irradiated with Proton and Lithium Beams

    SciTech Connect

    Ibanez, Irene L.; Bracalente, Candelaria; Molinari, Beatriz L.; Palmieri, Monica A.; Policastro, Lucia; Kreiner, Andres J.; Burlon, Alejandro A.; Valda, Alejandro; Navalesi, Daniela; Davidson, Jorge; Davidson, Miguel; Vazquez, Monica; Ozafran, Mabel; Duran, Hebe

    2009-07-15

    Purpose: The aim of this study was to evaluate the induction and rejoining of DNA double strand breaks (DSBs) in melanoma cells exposed to low and high linear energy transfer (LET) radiation. Methods and Materials: DSBs and survival were determined as a function of dose in melanoma cells (B16-F0) irradiated with monoenergetic proton and lithium beams and with a gamma source. Survival curves were obtained by clonogenic assay and fitted to the linear-quadratic model. DSBs were evaluated by the detection of phosphorylated histone H2AX ({gamma}H2AX) foci at 30 min and 6 h post-irradiation. Results: Survival curves showed the increasing effectiveness of radiation as a function of LET. {gamma}H2AX labeling showed an increase in the number of foci vs. dose for all the radiations evaluated. A decrease in the number of foci was found at 6 h post-irradiation for low LET radiation, revealing the repair capacity of DSBs. An increase in the size of {gamma}H2AX foci in cells irradiated with lithium beams was found, as compared with gamma and proton irradiations, which could be attributed to the clusters of DSBs induced by high LET radiation. Foci size increased at 6 h post-irradiation for lithium and proton irradiations in relation with persistent DSBs, showing a correlation with surviving fraction. Conclusions: Our results showed the response of B16-F0 cells to charged particle beams evaluated by the detection of {gamma}H2AX foci. We conclude that {gamma}H2AX foci size is an accurate parameter to correlate the rejoining of DSBs induced by different LET radiations and radiosensitivity.

  1. Arabidopsis thalianaMRE11 is essential for activation of cell cycle arrest, transcriptional regulation and DNA repair upon the induction of double-stranded DNA breaks.

    PubMed

    Šamanić, I; Cvitanić, R; Simunić, J; Puizina, J

    2016-07-01

    Given the fundamental role of MRE11 in many aspects of DNA metabolism and signalling in eukaryotes, we analysed the impact of several MRE11 mutations on DNA damage response (DDR) and DNA repair in Arabidopsis thaliana. Three different atmre11 and an atatm-2 mutant lines, together with the wild type (WT), were compared using a new Arabidopsis genotoxic assay for in situ evaluation of genome integrity and DNA damage repair efficiency after double strand break (DSB) induction. The results showed that, despite the phenotypic differences and different lengths of the putative truncated AtMRE11 proteins, all three atmre11 and the atatm-2 mutant lines exhibited common hypersensitivity to bleomycin treatment, where they only slightly reduced mitotic activity, indicating a G2/M checkpoint abrogation. In contrast to the WT, which reduced the frequency of chromosomal aberrations throughout the recovery period after treatment, none of the three atmre11 and atatm-2 mutants recovered. Moreover, atmre11-3 mutants, similarly to atatm-2 mutants, failed to transcriptionally induce several DDR genes and had altered expression of the CYCB1;1::GUS protein. Nevertheless, numerous chromosomal fusions in the atmre11 mutants, observed after DNA damage induction, suggest intensive DNA repair activity. These results indicate that functional and full-length AtMRE11 is essential for activation of the cell cycle arrest, transcriptional regulation and DNA repair upon induction of DSB. PMID:27007017

  2. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips.

    SciTech Connect

    Krylov, A. S.; Zasedateleva, O. A.; Prokopenko, D. V.; Rouviere-Yaniv, J.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Inst. de Biologie Physico-Chimique

    2001-06-15

    A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3'- and 5'-ends were immobilized within the 100 x 100 x 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (T{sub m}) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower T{sub m}. The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins.

  3. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance

    PubMed Central

    Ribas-Maynou, J.; Gawecka, J.E.; Benet, J.; Ward, W.S.

    2014-01-01

    We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks. PMID:24282283

  4. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance.

    PubMed

    Ribas-Maynou, J; Gawecka, J E; Benet, J; Ward, W S

    2014-04-01

    We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks. PMID:24282283

  5. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells. PMID:26431054

  6. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA.

    PubMed

    Kumari, Rupa; Raghavan, Sathees C

    2015-01-01

    RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs. PMID:25327637

  7. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein

    PubMed Central

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P.; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-01-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3′ single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  8. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein.

    PubMed

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-12-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3' single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  9. Xenopus Cds1 Is Regulated by DNA-Dependent Protein Kinase and ATR during the Cell Cycle Checkpoint Response to Double-Stranded DNA Ends

    PubMed Central

    McSherry, Troy D.; Mueller, Paul R.

    2004-01-01

    The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation. PMID:15509799

  10. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair.

    PubMed

    Mahaney, Brandi L; Hammel, Michal; Meek, Katheryn; Tainer, John A; Lees-Miller, Susan P

    2013-02-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  11. G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status.

    PubMed

    Agarwal, Pallavi; Jackson, Stephen P

    2016-10-01

    Cancer cells often exhibit altered epigenetic signatures that can misregulate genes involved in processes such as transcription, proliferation, apoptosis and DNA repair. As regulation of chromatin structure is crucial for DNA repair processes, and both DNA repair and epigenetic controls are deregulated in many cancers, we speculated that simultaneously targeting both might provide new opportunities for cancer therapy. Here, we describe a focused screen that profiled small-molecule inhibitors targeting epigenetic regulators in combination with DNA double-strand break (DSB) inducing agents. We identify UNC0638, a catalytic inhibitor of histone lysine N-methyl-transferase G9a, as hypersensitising tumour cells to low doses of DSB-inducing agents without affecting the growth of the non-tumorigenic cells tested. Similar effects are also observed with another, structurally distinct, G9a inhibitor A-366. We also show that small-molecule inhibition of G9a or siRNA-mediated G9a depletion induces tumour cell death under low DNA damage conditions by impairing DSB repair in a p53 independent manner. Furthermore, we establish that G9a promotes DNA non-homologous end-joining in response to DSB-inducing genotoxic stress. This study thus highlights the potential for using G9a inhibitors as anti-cancer therapeutic agents in combination with DSB-inducing chemotherapeutic drugs such as etoposide. PMID:27431310

  12. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    PubMed Central

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR. PMID:23967291

  13. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair

    PubMed Central

    Mahaney, Brandi L.; Hammel, Michal; Meek, Katheryn; Tainer, John A.; Lees-Miller, Susan P.

    2013-01-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the non-homologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long complementary DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  14. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks.

    PubMed

    Yu, Yaping; Mahaney, Brandi L; Yano, Ken-Ichi; Ye, Ruiqiong; Fang, Shujuan; Douglas, Pauline; Chen, David J; Lees-Miller, Susan P

    2008-10-01

    Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo. PMID:18644470

  15. Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers.

    PubMed

    Reynolds, Mindy F; Peterson-Roth, Elizabeth C; Bespalov, Ivan A; Johnston, Tatiana; Gurel, Volkan M; Menard, Haley L; Zhitkovich, Anatoly

    2009-02-01

    Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses. PMID:19141647

  16. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination.

    PubMed

    Rush, James S; Fugmann, Sebastian D; Schatz, David G

    2004-04-01

    Class switch recombination (CSR) is the process whereby B cells alter the effector properties of their Ig molecules. Whilst much is known about the cellular regulation of this process, many of the molecular details remain elusive. Recent evidence suggests that CSR involves blunt DNA double strand breaks (dsbs), and that formation of these dsbs requires the function of the activation-induced cytidine deaminase (AID). We sought to characterize the structural properties and kinetics of induction of the DNA lesions associated with CSR. Using ligation-mediated PCR, we found that AID-dependent DNA dsbs were specifically induced in the S mu region of murine B cells stimulated to undergo CSR. While blunt dsbs were detected, they were only a minor species, with staggered breaks being more than an order of magnitude more abundant. In addition, these breaks could be detected at equal frequency at upstream and downstream portions of S mu, and were induced prior to expression of newly switched isotypes. Collectively, these results provide direct evidence that staggered, S mu-targeted AID-dependent dsbs are the predominant DNA lesion associated with CSR, with important implications for the mechanisms by which CSR DNA lesions are made and processed. PMID:15039385

  17. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-01

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance. PMID:27568560

  18. Zygotic Expression of the Double-Stranded RNA Binding Motif Protein Drb2p Is Required for DNA Elimination in the Ciliate Tetrahymena thermophila ▿

    PubMed Central

    Motl, Jason A.; Chalker, Douglas L.

    2011-01-01

    Double-stranded RNA binding motif (DSRM)-containing proteins play many roles in the regulation of gene transcription and translation, including some with tandem DSRMs that act in small RNA biogenesis. We report the characterization of the genes for double-stranded RNA binding proteins 1 and 2 (DRB1 and DRB2), two genes encoding nuclear proteins with tandem DSRMs in the ciliate Tetrahymena thermophila. Both proteins are expressed throughout growth and development but exhibit distinct peaks of expression, suggesting different biological roles. In support of this, we show that expression of DRB2 is essential for vegetative growth while DRB1 expression is not. During conjugation, Drb1p and Drb2p localize to distinct nuclear foci. Cells lacking all DRB1 copies are able to produce viable progeny, although at a reduced rate relative to wild-type cells. In contrast, cells lacking germ line DRB2 copies, which thus cannot express Drb2p zygotically, fail to produce progeny, arresting late into conjugation. This arrest phenotype is accompanied by a failure to organize the essential DNA rearrangement protein Pdd1p into DNA elimination bodies and execute DNA elimination and chromosome breakage. These results implicate zygotically expressed Drb2p in the maturation of these nuclear structures, which are necessary for reorganization of the somatic genome. PMID:22021239

  19. TNKS1BP1 functions in DNA double-strand break repair though facilitating DNA-PKcs autophosphorylation dependent on PARP-1

    PubMed Central

    Zou, Lian-Hong; Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Xu, Qin-Zhi; Song, Man; Wang, Yu; Guan, Hua; Zhang, Shi-Meng; Yu, Lan; Zhong, Cai-Gao; Zhou, Ping-Kun

    2015-01-01

    TNKS1BP1 was originally identified as an interaction protein of tankyrase 1, which belongs to the poly(ADP-ribose) polymerase (PARP) superfamily. PARP members play important roles for example in DNA repair, telomere stability and mitosis regulation. Although the TNKS1BP1 protein was considered to be a poly(ADP-ribosyl)ation acceptor of tankyrase 1, its function is still unknown. Here we firstly identified that TNKS1BP1 was up-regulated by ionizing radiation (IR) and the depletion of TNKS1BP1 significantly sensitized cancer cells to IR. Neutral comet assay, pulsed-field gel electrophoresis, and γH2AX foci analysis indicated that TNKS1BP1 is required for the efficient repair of DNA double-strand breaks (DSB). The TNKS1BP1 protein was demonstrated to interact with DNA-dependent protein kinase (DNA-PKcs) and poly(ADP-ribose) polymerase 1 (PARP-1), by co-immunoprecipitation analysis. Moreover, TNKS1BP1 was shown to promote the association of PARP-1 and DNA-PKcs. Overexpression of TNKS1BP1 induced the autophosphorylation of DNA-PKcs/Ser2056 in a PARP-1 dependent manner, which contributed to an increased capability of DNA DSB repair. Inhibition of PARP-1 blocked the TNKS1BP1-mediated DNA-PKcs autophosphorylation and attenuated the PARylation of DNA-PKcs. TNKS1BP1 is a newly described component of the DNA DSB repair machinery, which provides much more mechanistic evidence for the rationale of developing effective anticancer measures by targeting PARP-1 and DNA-PKcs. PMID:25749521

  20. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans.

    PubMed

    Bentchikou, Esma; Servant, Pascale; Coste, Geneviève; Sommer, Suzanne

    2010-01-01

    In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA. PMID:20090937

  1. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: Experimental and theoretical study for high and low LET radiation

    SciTech Connect

    Rydberg, Bjorn; Cooper, Brian; Cooper, Priscilla K.; Holley, William; Chatterjee, Aloke

    2004-11-18

    Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X-rays and high LET particles (He, N and Fe) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2 Mbp restriction fragment was analyzed directly after exposure and after 16 hr of repair incubation. It was found that the misrejoining frequency for X-rays was non-linearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X-rays particularly at the lower doses. These experimental results were simulated with a Monte-Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that both the low and high LET data could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 {micro}m. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al. Radiat. Res . 158, 568-580 (2002)). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also partly be due to differences between fibroblasts and lymphocytes. Although the experimental data was obtained at high doses, the Monte Carlo calculations could be extended to lower doses. It was found that a linear component of misrejoining versus dose dominated for doses below 1 Gy for all radiations, including X-rays. The calculated relative biological efficiency (RBE) for misrejoining at this low dose

  2. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily.

    PubMed

    Hopfner, K P; Karcher, A; Shin, D S; Craig, L; Arthur, L M; Carney, J P; Tainer, J A

    2000-06-23

    To clarify the key role of Rad50 in DNA double-strand break repair (DSBR), we biochemically and structurally characterized ATP-bound and ATP-free Rad50 catalytic domain (Rad50cd) from Pyrococcus furiosus. Rad50cd displays ATPase activity plus ATP-controlled dimerization and DNA binding activities. Rad50cd crystal structures identify probable protein and DNA interfaces and reveal an ABC-ATPase fold, linking Rad50 molecular mechanisms to ABC transporters, including P glycoprotein and cystic fibrosis transmembrane conductance regulator. Binding of ATP gamma-phosphates to conserved signature motifs in two opposing Rad50cd molecules promotes dimerization that likely couples ATP hydrolysis to dimer dissociation and DNA release. These results, validated by mutations, suggest unified molecular mechanisms for ATP-driven cooperativity and allosteric control of ABC-ATPases in DSBR, membrane transport, and chromosome condensation by SMC proteins. PMID:10892749

  3. Modification of radiation-induced strand breaks by glutathione: Comparison of single- and double-strand breaks in SV40 DNA

    SciTech Connect

    Ayene, I.S.; Koch, C.J.; Krisch, R.E.

    1995-10-01

    A number of investigations have suggested that the widely observed oxygen enhancement of radiation-induced cell killing or intracellular DNA damage requires the presence of glutathione (GSH) or other thiols. We have adapted an in vitro model system to investigate the effects of GSH on radiation-induced DNA double-strand breaks (DSBs), lesions felt to be critical to cell death. Superhelical SV40 DNA, 25 {mu}g/ml, was irradiated in air or nitrogen in the presence of 0-20 mM GSH and single-strand breaks (SSBs) and DSBs were measured using neutral gel electrophoresis/ethidium bromide fluorescence. Control experiments demonstrated that a substantial concentration of free SH was still present after irradiation. Dose-response curves for SSBs and DSBs in air or nitrogen were predominantly linear at all GSH concentrations tested from 0-20 mM, except for 20 mM GSH in nitrogen, indicating that both SSBs and DSBs in nitrogen at 20 mM GSH, suggesting additional damage, rather than the expected additional protection. The possible mechanism for a damaging effect from GSH is discussed. Oxygen enhancement ratios (OERs) were calculated from the slopes of dose-response curves. The OERs for SSBs did not differ substantially from those for DSBs at the same [GSH], contrary to the observations of Prise. The OERs for SSBs and DSBs peaked at 6.5 and 8, respectively, at 5 mM GSH. These similarities suggest that the much lower OERs (2.5-3.0) generally reported for radiation killing of cells, which also typically contain about 5 mM GSH, cannot be accounted for by differences in OER between lethal lesions, represented by DSBs, and nonlethal lesions, represented by SSBs. In view of the present results, another possible explanation, that intracellular compounds other than reduced thiols are important in the chemical modification of the response of DNA to radiation, seems to be much more likely. 41 refs., 5 figs.

  4. H2AX phosphorylation in response to DNA double-strand break formation during bystander signalling: effect of microRNA knockdown

    PubMed Central

    Dickey, Jennifer S.; Zemp, Franz J.; Altamirano, Alvin; Sedelnikova, Olga A.; Bonner, William M.; Kovalchuk, Olga

    2011-01-01

    Upon DNA double-strand break (DSB) formation, hundreds of H2AX molecules in the chromatin flanking the break site are phosphorylated on serine residue 139, termed gamma-H2AX, so that virtually every DSB site in a nucleus can be visualised within 10 min of its formation using an antibody to gamma-H2AX. One application of this sensitive assay is to examine the induction of DNA double-strand damage in subtle non-targeted cellular effects such as the bystander effect. Here whether microRNA (miRNA) serve as a primary signalling mechanism for bystander effect propagation by comparing matched human colon carcinoma cell lines with wild-type or depleted levels of mature miRNAs was investigated. No major differences were found in the levels of induced gamma-H2AX foci in the tested cell lines, indicating that though miRNAs play a role in bystander effect manifestation, they appear not to be the primary bystander signalling molecules in the formation of bystander effect-induced DSBs. PMID:21183548

  5. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    PubMed Central

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A.; Howell, David; Gibson, Laura F.

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation. PMID:26880992

  6. Effect of double-stranded DNA on electrical double layer structure at oxide/electrolyte interface in classical molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Shibuta, Yasushi; Sakata, Toshiya

    2015-01-01

    The elucidation of the electrical double layer (EDL) structure including biomolecules is helpful in controlling biointerfacial functions in biosensing devices. In this study, the effect of double-stranded DNA (ds-DNA) on the EDL structure at the SiO2/NaClaq interface in a concentrated solution was investigated by classical molecular dynamics (MD) simulation. In 1.0 M NaClaq, negatively charged ds-DNA shielded electrically by cations did not affect the potential profile of the EDL structure. This finding indicates that the simulated bio-interfacial structure allows the detection of ionic charges adsorbed directly onto substrates in a concentrated solution regardless of the presence of shielded biomolecular charges.

  7. Use of double-stranded DNA mini-circles to characterize the covalent topoisomerase-DNA complex

    PubMed Central

    Millet, Armêl; Strauss, François; Delagoutte, Emmanuelle

    2015-01-01

    The enzymatic DNA relaxation requires the DNA to be transiently nicked and rejoined, the covalent topoisomerase-DNA complex being a key intermediate of the nicking-joining reaction. Practically, this reaction is most often characterized by oligonucleotides. However, the incision-religation of an oligonucleotide does not fully recapitulate the incision-religation occuring during relaxation and the preferred substrate for such reaction characterization is supercoiled DNA. We therefore developed a method that used radiolabeled supercoiled DNA mini-circles to characterize the covalent enzyme-DNA complex formed during a relaxation reaction. Resolution of the relaxation products under different conditions permitted to quantify the proportion of covalent complex formed during the relaxation catalyzed by two topoisomerase models, the Escherichia coli topoisomerase I and the calf thymus topoisomerase I. As expected, the covalent complex formed with the calf thymus topoisomerase I was significantly enriched by camptothecin, a widely-used inhibitor of this topoisomerase, and a salt jump permitted the multiple topoisomerases trapped per mini-circle to complete the reaction cycle. The identified positions of the camptothecin-induced incision sites were shown to be independent of the linking number and the substrate circular nature Overall, our results demonstrate that supercoiled mini-circles constitute a powerful and polyvalent substrate to characterize the mechanism of action of novel topoisomerases and inhibitors, including the incision-religation reaction. PMID:26300432

  8. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses

    PubMed Central

    Son, Kyung-No; Liang, Zhiguo

    2015-01-01

    ABSTRACT Early biochemical studies of viral replication suggested that most viruses produce double-stranded RNA (dsRNA), which is essential for the induction of the host immune response. However, it was reported in 2006 that dsRNA could be detected by immunofluorescence antibody staining in double-stranded DNA and positive-strand RNA virus infections but not in negative-strand RNA virus infections. Other reports in the literature seemed to support these observations. This suggested that negative-strand RNA viruses produce little, if any, dsRNA or that more efficient viral countermeasures to mask dsRNA are mounted. Because of our interest in the use of dsRNA antibodies for virus discovery, particularly in pathological specimens, we wanted to determine how universal immunostaining for dsRNA might be in animal virus infections. We have detected the in situ formation of dsRNA in cells infected with vesicular stomatitis virus, measles virus, influenza A virus, and Nyamanini virus, which represent viruses from different negative-strand RNA virus families. dsRNA was also detected in cells infected with lymphocytic choriomeningitis virus, an ambisense RNA virus, and minute virus of mice (MVM), a single-stranded DNA (ssDNA) parvovirus, but not hepatitis B virus. Although dsRNA staining was primarily observed in the cytoplasm, it was also seen in the nucleus of cells infected with influenza A virus, Nyamanini virus, and MVM. Thus, it is likely that most animal virus infections produce dsRNA species that can be detected by immunofluorescence staining. The apoptosis induced in several uninfected cell lines failed to upregulate dsRNA formation. IMPORTANCE An effective antiviral host immune response depends on recognition of viral invasion and an intact innate immune system as a first line of defense. Double-stranded RNA (dsRNA) is a viral product essential for the induction of innate immunity, leading to the production of type I interferons (IFNs) and the activation of hundreds

  9. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions

    PubMed Central

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-01-01

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl–DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively. PMID:26578593

  10. Melting of persistent double-stranded polymers

    NASA Astrophysics Data System (ADS)

    Rahi, Sahand Jamal; Hertzberg, Mark Peter; Kardar, Mehran

    2008-11-01

    Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-stranded polymer. We include distinct bending rigidities for both the double-stranded segments and the single-stranded segments forming a bubble. There is also bending stiffness at the branch points between the two segment types. The transfer matrix technique for single persistent chains is generalized to describe the branching bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves (isotherms). While the main focus is on exposition of the transfer matrix technique, we provide general arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be extended to study polymers with bubbles of any number of strands, with potential applications to molecules such as collagen.

  11. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation.

    PubMed

    Averbeck, Nicole B; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed. PMID:26904506

  12. sup 60 Co. gamma. -rays induce predominantly C/G to G/C transversions in double-stranded M13 DNA

    SciTech Connect

    Hoebee, B.; Loman, H. ); Brouwer, J.; van de Putte, P. ); Retel, J. Free University Hospital, Amsterdam )

    1988-08-25

    Upon irradiation with gamma rays of an oxygenated aqueous solution of double-stranded M13 DNA, a very specific mutation spectrum was found with respect to both the type and the positions in the DNA sequence. Of the 23 mutations, which were sequenced, 16 represent a C/G to G/C transversion. A C/G to T/A transition was found once and a G/C to T/A transversion twice. The remaining 4 mutations are frameshifts, 2 are identical and formed by the insertion of a G/C basepair; the other 2 mutations are due to a duplication of 10 basepairs situated at different positions but with a remarkable homology in base sequence. Fourteen mutations, including the 2 duplications are found in the neighborhood of a TGCT/ACGA sequence.

  13. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA.

    PubMed

    Nozeret, Karine; Bonan, Marc; Yarmoluk, Serguiy M; Novopashina, Darya S; Boutorine, Alexandre S

    2015-09-01

    Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications. PMID:26190459

  14. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  15. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis.

    PubMed

    McCaffrey, Jennifer; Sibert, Justin; Zhang, Bin; Zhang, Yonggang; Hu, Wenhui; Riethman, Harold; Xiao, Ming

    2016-01-29

    We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA. PMID:26481349

  16. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair

    PubMed Central

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K.; Price, Brendan D.

    2015-01-01

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4–Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair. PMID:26034280

  17. Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair

    PubMed Central

    2004-01-01

    The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA. PMID:14737196

  18. Insight into DNA and Protein Transport in Double-stranded DNA Viruses: The Structure of Bacteriophage N4

    PubMed Central

    Choi, Kyung H.; McPar