Science.gov

Sample records for doubled unit-cell volumes

  1. Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...

  2. Double transmission peaks electromagnetically induced transparency induced by simultaneously exciting the electric and magnetic resonance in one unit cell

    NASA Astrophysics Data System (ADS)

    Liu, Si-Yuan; Zheng, Bu-Sheng; Li, Hai-Ming; Liu, Xiao-Chun; Liu, Shao-Bin

    2015-08-01

    In this paper, we investigate a metamaterial formed by a planar array of a metallic L-shaped structure and a cut wire (CW), which behaves as an analogue of the electromagnetically induced transparency (EIT). The double transmission peaks are formed by the destructive interference of two bright-modes and a quasi-dark mode. The two bright-modes are respectively excited by the L-shaped structure and CW. The unit structure itself performs a quasi-dark mode. The group refractive indexes are over 20 in the first transmission peak, and 117 in the second transmission peak, thus offering potential applications in slow light devices. Finally, all the above characteristics are achieved in just one simple unit cell. Project supported by the Chinese Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123218110017), the National Natural Science Foundation of China (Grant Nos. 61307052 and 61471368), the Foundation of Aeronautical Science, China (Grant No. 20121852030), and the Fundamental Research Funds for the Central Universities (Grant No. kfjj20150407).

  3. Thermodynamics of Condensed Phases: Formula Unit Volume, "V[subscript m]", and the Determination of the Number of Formula Units, "Z", in a Crystallographic Unit Cell

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2011-01-01

    Formula unit (or molecular) volume, "V[subscript m]", is related to many thermodynamic and physical properties of materials, so that knowledge of "V[subscript m]" is useful in prediction of such properties for known and even hypothetical materials. The symbol "Z" represents the number of formula units in a crystallographic unit cell; "Z" thus…

  4. Concomitant charge-density-wave and unit-cell-doubling structural transitions in Dy5Ir4Si10

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Chen, C. H.; Tseng, C. M.; Lue, C. S.; Kuo, Y. K.; Yang, H. D.; Chu, M.-W.

    2014-05-01

    The tetragonal rare-earth transition-metal silicide system with three-dimensional crystallographic structure R5T4Si10, where R is Dy, Ho, Er, Tm, and Lu, and T=Ir and Rh, has been shown to exhibit fascinating charge-density-wave (CDW) phase transitions, a phenomenon largely found in otherwise low-dimensional systems. In this study, we report the investigations of CDW in Dy5Ir4Si10 at different temperatures using transmission electron microscopy techniques including electron diffraction and dark-field imaging. Incommensurate superlattice spots along the c axis were observed in the electron-diffraction patterns when the sample was cooled below the CDW transition temperature at ˜208 K. CDW becomes commensurate with further cooling and configurations of CDW dislocations convincingly show that the CDW phase transition is accompanied by a concomitant cell-doubling crystallographic structural phase transition. Intriguingly, the cell-doubling transition is featured by a broken inversion symmetry along the c axis and a disparity in the CDW-modulation vectors with opposite signs, which gives rise to two sets of CDW domains with reversed contrasts. The profound physics underlining this notable domain-contrast behavior is discussed.

  5. Coupled volume/double slope subjective listening test

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Stuecker, Rebecca

    2003-10-01

    Can experienced listeners of music discern a double-sloped decay from a Sabine decay? Do they prefer the double slope? Concert hall designers use coupled-volumes and their signature double-slope sound decay in an effort to reconcile the inversely related qualities of reverberance and clarity. A simulated space, based on an actual built coupled-volume hall, was conceived in the room acoustics software CATT-Acoustic. Variations in the aperture sizes that sonically expose the main hall to the coupled volume generated both classic Sabine decays and double-sloped decays. The impulse responses generated were convolved with the same anechoic musical recording, grouped in pairs, and played for an opportunity-sample of 21 volunteers from the Architectural Acoustics section of the 145th meeting of the Acoustical Society of America in Nashville. Participants listened to the 11 recorded pairs over headphones and were asked to determine (1) if the two recordings sounded different, (2) which recording was more likely to have a double slope or had a more dramatic double slope, and (3) which of the two recordings they prefer.

  6. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

    PubMed Central

    Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme

    2015-01-01

    Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149

  7. Effect of pressure and composition on lattice parameters and unit-cell volume of (Fe,Mg)SiO[subscript 3] post-perovskite

    SciTech Connect

    Zhang, Li; Meng, Yue; Mao, Wendy L.

    2012-03-15

    We obtained unit-cell volumes (V) for (Fe{sub 0.2}Mg{sub 0.8})SiO{sub 3} and (Fe{sub 0.4}Mg{sub 0.6})SiO{sub 3} post-perovskite (PPv) over a pressure (P) range of 80-145 GPa by in-situ X-ray diffraction (XRD) measurements in laser-heated diamond anvil cells (DACs). Our study suggests that the PPv structure is highly resistant to back transformation to Pv and (Fe{sub 0.4}Mg{sub 0.6})SiO{sub 3} PPv was preserved down to 80 GPa upon laser heating during decompression before transforming to pure perovskite (Pv). The bulk modulus (K{sub 0}) of PPv was determined to be 215(1) and 198(1) GPa for (Fe{sub 0.2}Mg{sub 0.8})SiO{sub 3} and (Fe{sub 0.4}Mg{sub 0.6})SiO{sub 3} PPv respectively, with a fixed K'{sub 0} = 4. The substitution of Fe for Mg in PPv results in the largest expansion along the b-axis among all three axes and the expansion of the b-axis is nearly independent of pressure whereas the expansion along the a and c directions slightly decreases with increasing pressure. Combining our results with previous studies on (Fe{sub x},Mg{sub 1-x})SiO{sub 3} PPv (x = 0, 0.09, 0.1) shows that the bulk modulus of PPv decreases with increasing Fe content over a composition range x = 0 to 0.4, varying from 231 GPa for x = 0 to 198 GPa for x = 0.4 with zero pressure volumes scaled to composition, V{sub 0} ({angstrom}{sup 3}) = 162.2 + 19.5x and fixed K'{sub 0} = 4.0. The increase of Fe content in PPv from x = 0 to 0.4 results in a 6.3% increase in density and a 5.3% decrease in bulk sound velocity at 130 GPa.

  8. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  9. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  10. Microstructure Analysis and Multi-Unit Cell Model of Three Dimensionally Four-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Qian, Xiaomei

    2015-02-01

    In this paper, a new multi-unit cell model of three dimensionally braided composites is presented on the basis of the microstructure analysis of 3D braided preforms produced by four-step 1 × 1 method. According to a new unit cell partition scheme, the multi-unit cell model possesses five kinds of unit cells, namely interior, exterior surface, interior surface, exterior corner and interior corner unit cells. Each type of the representative volume cell has unique microstructure and volume fraction in braided composites. On the basis of these five unit cell models, the structural geometry parameters of the preforms are analyzed and the relationship between the structural parameters and the braiding parameters in different regions are derived in detail, such as the braiding angles, fiber volume fraction, yarn packing factor, braiding pitch and so on. Finally, by using the multi-unit cell model, the main structural parameters of braided composites specimens are calculated to validate the effectiveness of the model. The results are in good agreement with the available experimental data. In addition, the effect of braiding angle on the squeezing condition of braiding yarn is analyzed. The variations of the volume proportion of five unit cells to the whole specimen with rows and columns are discussed, respectively. The presented multi-unit cell model can be adopted to design 3D braided composites and predict their mechanical properties.

  11. A risk management approach to double-shell tank waste volume versus storage capacity

    SciTech Connect

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  12. Development of large volume double ring penning plasma discharge source for efficient light emissions

    SciTech Connect

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-15

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

  13. Diagnostic double-guarded low-volume uterine lavage in mares.

    PubMed

    Christoffersen, M; Brandis, L; Samuelsson, J; Bojesen, A M; Troedsson, M H T; Petersen, M R

    2015-01-15

    Endometritis constitutes a major problem in the management of broodmares; hence, diagnostic tests with a high sensitivity and specificity are highly appreciated. The aim of this study was to compare the results from endometrial, cytologic, and bacteriologic examinations obtained by a newly developed, double-guarded, flushing technique versus standard diagnostic tests, the double-guarded swab and biopsy. The described double-guarded flush technique requires the use of a disposable uterine flushing tube, a sanitary sleeve, a sterile steel speculum, and a 250 mL fluid bag. Endometrial biopsies, swabs, and low-volume lavage samples were obtained from 34 research mares at six different time points in four estrous cycles and were evaluated cytologically and bacteriologically. Endometrial biopsies from the first cycle (n = 34) were examined for the presence of polymorphonuclear neutrophils (PMNs) in the stratum compactum and stratum spongiosum and used as a gold standard for calculation of diagnostic sensitivity and specificity. In all samples, Escherichia coli was most frequently isolated (lavage, 30%; swab, 21%; and biopsy, 12%) followed by β-hemolytic streptococci (lavage, 11%; swab, 8%; and biopsy, 7%). Positive cytology was less likely to occur when E coli was isolated from the diagnostic tests compared with the growth of β-hemolytic streptococci. Isolation of pathogens from uterine samples was highly associated with the presence of PMNs in the stratum compactum and straum spongiosum on histology. Using the presence of PMNs in the tissue specimens as the gold standard for diagnosing endometritis, the sensitivity of low-volume lavage culture was 0.75 and the specificity was 0.72. In conclusion, the double-guarded, low-volume, lavage technique was a rapid and accurate method for diagnosing mares with endometritis, and the risk of false-positive samples is considered to be minimal compared with other flushing techniques described. PMID:25442392

  14. Design and Construction of a Versatile Dual Volume Heteronuclear Double Resonance Microcoil NMR Probe

    PubMed Central

    Kc, Ravi; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2009-01-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally-etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H–2D (upper coil) and 1H–13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8 to 1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed. PMID:19138541

  15. Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach

    SciTech Connect

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-05-29

    In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.

  16. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: A density functional approach

    PubMed Central

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-01-01

    In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that

  17. Comparative Orbital Volumes between a Single Incisional Approach and a Double Incisional Approach in Patients with Combined Blowout Fracture

    PubMed Central

    Park, Sang Wook; Seo, Bommie F.; Rhie, Jong Won; Ahn, Sang Tae; Oh, Deuk Young

    2015-01-01

    Purpose. Blowout fracture characterized by concurrent floor and medial wall fractures is a rare entity. We compared surgical outcomes between a single approach and a double approach in patients with orbital fracture by measuring the postoperative orbital volume. Methods. We confirmed that 21 (8.5%) of a total of 246 patients with orbital fractures had fractures of the medial wall and floor through a retrospective chart review. Of these, 10 patients underwent the single approach and the remaining 11 patients had the double approach. We performed a statistical analysis of changes between the preoperative and postoperative orbital volumes at a 6-month follow-up. Results. Compared with the contralateral, nonaffected side, the orbital volume was 115.3 (±6.09)% preoperatively and 106.5 (±6.15)% postoperatively in the single approach group and 118.2 (±11.16)% preoperatively and 108.6 (±13.96)% postoperatively in the double approach. These results indicated that there was a significant difference between the preoperative and postoperative orbital volumes in each group (P < 0.05). However there was no significant difference between the single approach and the double approach (P > 0.05). Conclusions. Our results showed that there were no significant differences in surgical outcomes between the two modalities. The treatment modality may be selected based on the surgeons' preference, as well as the fracture type. PMID:25961049

  18. Volume moiré tomography based on double cross gratings for real three-dimensional flow field diagnosis.

    PubMed

    Sun, Nan; Song, Yang; Wang, Jia; Li, Zhen-Hua; He, An-Zhi

    2012-12-01

    Since the advantages of noncontact, strong antidisturbing capability and wide measurement range, moiré tomography has been considered a powerful diagnostic tool for flow fields. In this paper, the volume computerized tomography is introduced to obtain the real three-dimensional reconstruction based on moiré deflectometry. In order to realize volume moiré tomography (VMT), double cross gratings are applied in the moiré deflected system to gain the shearing phase distribution of the moiré deflected projection in two mutually perpendicular directions simultaneously. Thus, the scalar diffraction theory is used for analyzing the imaging process of VMT based on double cross gratings to achieve the explicit form of shearing phase. Finally, the real temperature distribution of a propane flame is reconstructed, which can confirm the VMT method. PMID:23207377

  19. Lagrange-type modeling of continuous dielectric permittivity variation in double-higher-order volume integral equation method

    NASA Astrophysics Data System (ADS)

    Chobanyan, E.; Ilić, M. M.; Notaroš, B. M.

    2015-05-01

    A novel double-higher-order entire-domain volume integral equation (VIE) technique for efficient analysis of electromagnetic structures with continuously inhomogeneous dielectric materials is presented. The technique takes advantage of large curved hexahedral discretization elements—enabled by double-higher-order modeling (higher-order modeling of both the geometry and the current)—in applications involving highly inhomogeneous dielectric bodies. Lagrange-type modeling of an arbitrary continuous variation of the equivalent complex permittivity of the dielectric throughout each VIE geometrical element is implemented, in place of piecewise homogeneous approximate models of the inhomogeneous structures. The technique combines the features of the previous double-higher-order piecewise homogeneous VIE method and continuously inhomogeneous finite element method (FEM). This appears to be the first implementation and demonstration of a VIE method with double-higher-order discretization elements and conformal modeling of inhomogeneous dielectric materials embedded within elements that are also higher (arbitrary) order (with arbitrary material-representation orders within each curved and large VIE element). The new technique is validated and evaluated by comparisons with a continuously inhomogeneous double-higher-order FEM technique, a piecewise homogeneous version of the double-higher-order VIE technique, and a commercial piecewise homogeneous FEM code. The examples include two real-world applications involving continuously inhomogeneous permittivity profiles: scattering from an egg-shaped melting hailstone and near-field analysis of a Luneburg lens, illuminated by a corrugated horn antenna. The results show that the new technique is more efficient and ensures considerable reductions in the number of unknowns and computational time when compared to the three alternative approaches.

  20. Development of a gas-fueled, double-sided griddle. Volume 1. Final report, August 1987-August 1994

    SciTech Connect

    George, P.E.

    1995-01-06

    Development of a gas-fired, double-sided griddle (GFDSG) for high volume cooking in fast food restaurants and institutional kitchens is described. The griddle contacts and cooks both sides of the food simultaneously without crushing, has a large batch capacity, uniform temperature over the cooking surfaces, great thermal efficiency, and is simple to operate and clean. The technical challenge of efficient transfer of heat from a gas flame to the upper (downward facing) cooking surfaces was solved through the use of an intermediate heat transfer fluid (mineral oil) which is pumped from a fluid heater in the base of the griddle to all cooking surfaces.

  1. Results from a double Vlasov model for negative ion extraction from volume sources

    SciTech Connect

    Olsen, D.K.; Raridon, R.J.; Whealton, J.H.

    1998-07-01

    A new negative ion source-extraction model has been formulated and implemented which explicitly considers the motion of positive ions and the volume generation of negative ions. It is found that: (1) for high-beam currents, the beam current is limited by a transverse space-charge limit, not an emission limit; (2) there is a saddle point with a concomitant potential barrier preventing most volume produced negative ions from being extracted (the combination of 1 and 2 indicates that in some interesting cases there is the opportunity to increase extraction currents above values presently observed); (3) introduction of cesium may cause an actual increase in the transverse space-charge limit by accumulation of positive ions of cesium in the presheath.

  2. Experimental Evidence of a Double Layer in a Large Volume Helicon Reactor

    SciTech Connect

    Sutherland, O.; Charles, C.; Boswell, R.W.; Plihon, N.

    2005-11-11

    The self-consistently generated current-free electric double layer (DL) is shown to scale up with the source tube diameter and appears not to be affected by rf driving frequency and changes in reactor geometry. This Letter presents the first simultaneous measurements of local plasma potential and beam energy as a function of axial position. The DL is shown to be no more than 5 mm thick (20 D lengths) and positioned just downstream of the maximum in the magnetic field gradient. Furthermore, its position relative to the magnetic field is observed to be invariant as the magnetic field is translated axially. Measurements of the potential drop across the DL are presented for pressures down to 0.09 mTorr and the DL strength ({phi}{sub DL}/T{sub e}) is determined to be between 5 and 7.

  3. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  4. Systematic two-dimensional cascade tests. Volume 3: Slotted double circular-arc hydrofoils

    NASA Technical Reports Server (NTRS)

    Columbo, R. M.; Murrin, T. A.

    1972-01-01

    Performance parameters are presented for cascades of slotted double circular-arc hydrofoils tested over a range of systematically introduced variables in a rectilinear cascade tunnel which uses water as the test medium. Cascade configurations included various combinations of an inlet flow angle of 50, 60 and 70 deg; a cascade solidity of 0.75, 1.00 and 1.50; a hydrofoil camber angle of 20, 30, 40 and 45 deg; and angles of incidence between positive and negative stall. The slot was positioned at the 45 percent chord station and the slot exit width was 0.047-in. Tests were also performed with the slot positioned at the 35 percent chord station and with slot widths of 0.63 and 0.094-in. These data were correlated to indicate the effects of slot location and slot width on minimum loss incidence and deviation angles. In addition, a comparison is presented of the performance parameters for cascades of slotted and unslotted hydrofoils.

  5. In situ rheology and gas volume in Hanford double-shell waste tanks

    SciTech Connect

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the `hazard signature` of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior.

  6. Intra-cavity frequency-doubled Yb:KYW laser using periodically poled Rb-doped KTP with a volume Bragg grating input coupler

    NASA Astrophysics Data System (ADS)

    Seger, Kai; Meiser, Niels; Tjörnhammar, Staffan; Zukauskas, Andrius; Canalias, Carlota; Pasiskevicius, Valdas; Laurell, Fredrik

    2014-05-01

    An Yb:KYW laser intra-cavity frequency doubled to the green at 514.7 nm using a periodically poled Rb:KTP crystal with an output power exceeding 1 W is presented. Spectral narrowing and locking at the fundamental wavelength has been achieved by using a volume Bragg grating as the input coupler.

  7. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy.

    PubMed

    Avdievich, N I; Hetherington, H P

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  8. Towards 3D mapping of BO₆ octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    SciTech Connect

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; Qiao, Liang; Moon, Eun Ju; Ovchinnikov, Oleg S.; May, Steven J.; Biegalski, Michael D.; Borisevich, Albina Y.

    2015-07-15

    The rich functionalities in the ABO₃ perovskite oxides originate at least partly from the ability of the corner-connected BO₆ octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO₆ rotation patterns in complex oxides ABO₃ with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO₃ heterointerfaces taken in specific orientations. The rotating phase of BO₆ octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO₃/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.

  9. Towards 3D mapping of BO₆ octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    DOE PAGESBeta

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; Qiao, Liang; Moon, Eun Ju; Ovchinnikov, Oleg S.; May, Steven J.; Biegalski, Michael D.; Borisevich, Albina Y.

    2015-07-15

    The rich functionalities in the ABO₃ perovskite oxides originate at least partly from the ability of the corner-connected BO₆ octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO₆ rotation patterns in complex oxides ABO₃ with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO₃ heterointerfacesmore » taken in specific orientations. The rotating phase of BO₆ octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO₃/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.« less

  10. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2014-10-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  11. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    SciTech Connect

    Atanasov, Atanas Todorov

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.

  12. Learning about the Unit Cell and Crystal Lattice with Computerized Simulations and Games: A Pilot Study

    ERIC Educational Resources Information Center

    Luealamai, Sutha; Panijpan, Bhinyo

    2012-01-01

    The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…

  13. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte.

    PubMed

    Kim, Daehee; An, Junyeong; Kim, Bongkyu; Jang, Jae Kyung; Kim, Byung Hong; Chang, In Seop

    2012-06-01

    To scale-up microbial fuel cells (MFCs), installing multiple unit cells in a common reactor has been proposed; however, there has been a serious potential drop when connecting unit cells in series. To determine the source of the loss, a basic stack-MFC (BS-MFC) has been devised, and the results show that the phenomenon is due to ions on the anode electrode traveling through the electrolyte to be reduced at the cathode connected in series. As calculated by means of the percentage potential drop, the degree of potential drop decreased with an increase in the unit-cell distance. When the distance was increased from 1 to 8 cm, the percentage potential drop in BS-MFC1 decreased from 46.76 ± 0.90 to 45.08 ± 0.70 % and in BS-MFC2 from 46.41 ± 0.95 to 43.82 ± 2.23 %. As the p-value of the t-test was lower than 0.05, the difference was considered significant; however, if the unit cells are installed far enough from each other to avoid the potential drop phenomenon, the system will be less dense, consequently reducing the ratio of electrode area per volume of anode compartment and decreasing the power density of the system. Finally, this study suggests design criteria for scaling-up MFC systems: Multiple-electrode-installed MFCs are modularized, and the unit cells are connected in series across the module (connecting each unit cell does not share the anolyte). PMID:22570262

  14. Phasing coherently illuminated nanocrystals bounded by partial unit cells

    PubMed Central

    Kirian, Richard A.; Bean, Richard J.; Beyerlein, Kenneth R.; Yefanov, Oleksandr M.; White, Thomas A.; Barty, Anton; Chapman, Henry N.

    2014-01-01

    With the use of highly coherent femtosecond X-ray pulses from a free-electron laser, it is possible to record protein nanocrystal diffraction patterns with far more information than is present in conventional crystallographic diffraction data. It has been suggested that diffraction phases may be retrieved from such data via iterative algorithms, without the use of a priori information and without restrictions on resolution. Here, we investigate the extension of this approach to nanocrystals with edge terminations that produce partial unit cells, and hence cannot be described by a common repeating unit cell. In this situation, the phase problem described in previous work must be reformulated. We demonstrate an approximate solution to this phase problem for crystals with random edge terminations. PMID:24914158

  15. Fabrication and characteristics of unit cell for SOFC

    SciTech Connect

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  16. Unit cell simulation for cylinders on a triangular pitch

    SciTech Connect

    O'Dell, R.D.; Schlesser, J.A.

    1991-01-01

    In this paper we analyze the use of these equivalent unit cells for two problem-types of interest: a infinite lattice of small-diameter fuel pins and an infinite array of large shipping containers. Both void and water are considered as interstitial materials between the cylindrical units. The fuel pins modeled are uranium nitride pins clad with tantalum and niobium with a diameter of 1.1 cm. The pins are infinitely long. The shipping container model is a 55 gallon drum with 13 cm thick insulation between the drum and the inner steel container. The fissile loading is a 6.5 kg sphere of plutonium inside the dry inner container. Results of k{sub eff} are provided there is exact'' agreement (within statistics) among the models, thus confirming the neutronic equivalency of the three unit cell models when properly used. 2 refs., 2 tabs.

  17. Note: Double-beveled multilayer stagger-split die for a large volume high-pressure apparatus

    NASA Astrophysics Data System (ADS)

    Wang, Bolong; Li, Mingzhe; Yang, Yunfei; Liu, Zhiwei

    2015-08-01

    A high-pressure device with a large cavity was investigated using finite-element analysis. This device is called a double-beveled multilayer stagger-split die, and consists of two supported rings and a multilayer divided body assemblage. Each divided cylinder body has two bevels in the pressurized surface. We simulated the pressure capacity of this device according to different failure criteria. The results were compared with those of a multilayer stagger-split die and belt type die. The bearing capacity of the double-beveled multilayer stagger-split die was more than 7.3 GPa. A group of comparative experiments were conducted to validate the simulated results, and the experimental results show the actual pressure capacity was higher than the simulation.

  18. Modeling unit cell interactions for the microstructure of a heterogeneous explosive: detonation diffraction past an inert sphere

    SciTech Connect

    Bdzil, John B; Stewart, Donald S; Walter, John W; Aida, Toru

    2009-01-01

    We describe an approach being used to model multi-phase blast explosive, that is mostly condensed explosive by volume with inert embedded particles. The asymptotic theory of detonation shock dynamics is used to describe the detonation shock propagation in the explosive. The shock motion rule in the explosive requires that the shock move at a normal speed that depends on the shock curvature. The angle that the shock makes with the particle boundary is also prescribed. We describe theory that can be used to predict the behavior of a collection of such detonation shock/particle interactions in the larger aggregate. A typical unit cell problem of a detonation shock diffraction over a sphere is analyzed by analytical and numerical means and the properties of an ensemble of such unit cell problems is discussed with implications for the macroscopic limiting behavior of the heterogeneous explosive.

  19. Tear volume estimation using a modified Schirmer test: a randomized, multicenter, double-blind trial comparing 3% diquafosol ophthalmic solution and artificial tears in dry eye patients

    PubMed Central

    Miyake, Hideki; Kawano, Yuri; Tanaka, Hiroshi; Iwata, Akihiro; Imanaka, Takahiro; Nakamura, Masatsugu

    2016-01-01

    Purpose We aimed to evaluate the feasibility of using a modified Schirmer test to determine the increase in tear volume after administration of 3% diquafosol ophthalmic solution (diquafosol 3%) in dry eye patients. Patients and methods A randomized, multicenter, prospective, double-blind clinical study recruited 50 qualified subjects. They received diquafosol 3% in one eye and artificial tears in the other eye. The study protocol comprised a screening and treatment procedure completed within 1 day. The Schirmer test was performed on closed eyes three times a day. The primary efficacy end points were the second Schirmer test scores 10 minutes after the single dose. Secondary end points were the third Schirmer test scores 3 hours and 40 minutes after the single dose and the symptom scores prior to the second and third Schirmer tests. Results According to the Schirmer test, 10 minutes after administration, diquafosol 3% significantly increased tear volume compared to artificial tears. Diquafosol 3% and artificial tears both showed significant improvements in the symptom scores compared to baseline. However, there was no significant difference in the symptoms score between diquafosol 3% and artificial tears. Conclusion The modified Schirmer test can detect a minute change in tear volume in dry eye patients. These findings will be useful in the diagnosis of dry eye, assessment of treatment benefits in daily clinical practice, and the development of possible tear-secreting compounds for dry eye. PMID:27257372

  20. Effect of dexamethasone in low volume supraclavicular brachial plexus block: A double-blinded randomized clinical study

    PubMed Central

    Alarasan, Arun Kumar; Agrawal, Jitendre; Choudhary, Bhanu; Melhotra, Amrita; Uike, Satyendre; Mukherji, Arghya

    2016-01-01

    Background and Aims: With the use of ultrasound, a minimal effective volume of 20 ml has been described for supraclavicular brachial plexus block. However achieving a long duration of analgesia with this minimal volume remains a challenge. We aimed to determine the effect of dexamethasone on onset and duration of analgesia in low volume supraclavicular brachial plexus block. Material and Methods: Sixty patients were randomly divided into two groups of 30 each. Group C received saline (2 ml) + 20 ml of 0.5% bupivacaine and Group D received dexamethasone (8 mg) + 20 ml of 0.5% bupivacaine in supraclavicular brachial plexus block. Hemodynamic variables and visual analog scale (VAS) score were noted at regular intervals until 450 min. The onset and duration of sensory and motor block were measured. The incidence of “Halo” around brachial plexus was observed. Student's t-test and Chi-square test were used for statistical analysis. Results: The onset of sensory and motor block was significantly earlier in dexamethasone group (10.36 ± 1.99 and 12 ± 1.64) minutes compared to control group (12.9 ± 2.23 and 18.03 ± 2.41) minutes. The duration of sensory and motor block was significantly prolonged in dexamethasone group (366 ± 28.11 and 337.33 ± 28.75) minutes compared to control group (242.66 ± 26.38 and 213 ± 26.80) minutes. The VAS score was significantly lower in dexamethasone group after 210 min. “Halo” was present around the brachial plexus in all patients in both the groups. Conclusion: Dexamethasone addition significantly increases the duration of analgesia in patients receiving low volume supraclavicular brachial plexus block. No significant side-effects were seen in patients receiving dexamethasone as an adjunct. PMID:27275056

  1. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects

  2. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects

  3. Unit-cell determination from randomly oriented electron-diffraction patterns

    PubMed Central

    Jiang, Linhua; Georgieva, Dilyana; Zandbergen, Henny W.; Abrahams, Jan Pieter

    2009-01-01

    Unit-cell determination is the first step towards the structure solution of an unknown crystal form. Standard procedures for unit-cell determination cannot cope with data collections that consist of single diffraction patterns of multiple crystals, each with an unknown orientation. However, for beam-sensitive nanocrystals these are often the only data that can be obtained. An algorithm for unit-cell determination that uses randomly oriented electron-diffraction patterns with unknown angular relationships is presented here. The algorithm determined the unit cells of mineral, pharmaceutical and protein nanocrystals in orthorhombic high- and low-symmetry space groups, allowing (well oriented) patterns to be indexed. PMID:19564682

  4. Usefulness of double dose contrast-enhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors: a dose comparison study

    PubMed Central

    Subedi, Kalloo Sharma; Takahashi, Takeo; Yamano, Takafumi; Saitoh, Jun-ichi; Nishimura, Keiichiro; Suzuki, Yoshiyuki; Ohno, Tatsuya; Nakano, Takashi

    2013-01-01

    The purpose of this study was to compare the size and clearness of gross tumor volumes (GTVs) of metastatic brain tumors on T1-weighted magnetic resonance images between a single dose contrast administration protocol and a double dose contrast administration protocol to determine the optimum dose of contrast-enhancement for clear delineation of GTV in stereotactic radiotherapy (SRT). A total of 28 small metastatic brain tumors were evaluated in 13 patients by intra-individual comparison of GTV measurements using single dose and double dose contrast-enhanced thin-slice (1-mm) magnetic resonance imaging (MRI). All patients had confirmed histological types of primary tumors and had undergone hypo-fractionated SRT for metastatic brain tumors. The mean tumor diameter with single dose and double dose contrast-enhancement was 12.0 ± 1.1 mm and 13.2 ± 1.1 mm respectively (P < 0.001). The mean incremental ratio (MIR) obtained by comparing mean tumor diameters was 11.2 ± 0.02 %. The mean volume of GTV-1 (single dose contrast-enhancement) and GTV-2 (double dose contrast-enhancement) was 1.38 ± 0.41 ml and 1.59 ± 0.45 ml respectively (P < 0.01). The MIR by comparing mean tumor volumes was 32.3 ± 0.4 %. The MIR of GTV-1 with < 1ml volume and GTV-1 with > 1ml volume was 41.8 ± 0.05 % and 12.4 ± 0.03 % respectively (P < 0.001). We conclude that double dose contrast-enhanced thin-slice MRI is a more useful technique than single dose contrast-enhanced thin-slice MRI, especially for clear delineation of GTVs of small metastatic brain tumors in treatment planning of highly precise SRT. PMID:22843378

  5. Effect of Yttria Content on the Zirconia Unit Cell Parameters

    SciTech Connect

    Krogstad, Jessica A.; Lepple, Maren; Gao, Yan; Lipkin, Don M.; Levi, Carlos G.

    2012-02-06

    The relationship between yttria concentration and the unit cell parameters in partially and fully stabilized zirconia has been reassessed, motivated by the need to improve the accuracy of phase analysis upon decomposition of t{prime}-based thermal barrier coatings. Compositions ranging from 6 to 18 mol% YO{sub 1.5} were synthesized and examined by means of high-resolution X-ray diffraction. Lattice parameters were determined using the Rietveld refinement method, a whole-pattern fitting procedure. The revised empirical relationships fall within the range of those published previously. However, efforts to achieve superior homogeneity of the materials, as well as accuracy of the composition and lattice parameters, provide increased confidence in the reliability of these correlations for use in future studies. Additional insight into the potential sources for scatter previously reported for the transition region ({approx}12-14 mol% YO{sub 1.5}), where tetragonal and cubic phases have been observed to coexist, is also provided. Implications on the current understanding of stabilization mechanisms in zirconia are discussed.

  6. DNS of turbulent flow in a porous unit cell

    NASA Astrophysics Data System (ADS)

    Apte, Sourabh; Finn, Justin; Wood, Brian; Liburdy, James

    2012-11-01

    Turbulent flows through packed beds and porous media are encountered in a number of natural and engineered systems, however our general understanding of moderate and high Reynolds number flows is limited to mostly empirical and macroscale relationships. In this work the porescale flow physics, which are important to properties such as bulk mixing performance and permeability, are investigated using Direct Numeric Simulation of flow through a periodic face centered cubic (FCC) unit cell. This low porosity arrangement of spheres is characterized by rapid flow expansions and contractions, and thus features an early onset to turbulence [Hill & Koch, JFM 2002]. The simulations are performed using a fictitious domain approach [Apte et al., J. Comp. Physics 2009], which uses non-body conformal Cartesian grids, with resolution up to D / Δ = 250 (3543 cells total). Simulations are performed at three pore Reynolds numbers, Rep = 300 , 550 and 950, spanning a broad physical regime. The results are used to investigate the structure of turbulence in the Eulerian and Lagrangian frames, the distribution and budget of turbulent kinetic energy, and the characteristics of the energy spectrum in complex packed beds and porous media. Funding: NSF project #0933857, Inertial Effects in Flow Through Porous Media.

  7. Towards 3D Mapping of BO6 Octahedron Rotations at Perovskite Heterointerfaces, Unit Cell by Unit Cell.

    PubMed

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R; Qiao, Liang; Moon, Eun J; Ovchinnikov, Oleg; May, Steven J; Biegalski, Michael D; Borisevich, Albina Y

    2015-08-25

    The rich functionalities in the ABO3 perovskite oxides originate, at least in part, from the ability of the corner-connected BO6 octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which have significant impact on both fundamental aspects of materials behavior and possible applications, remains a major challenge at heterointerfaces. In this work, we have developed a unique method to investigate BO6 rotation patterns in complex oxides ABO3 with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in ABF-STEM images of the ABO3 heterointerfaces taken in specific orientations. The rotating phase of BO6 octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, quantitative measurements of all three rotation angles are now possible. Using this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO3/LSAT interface. We believe this method will significantly improve our knowledge of complex oxide heterointerfaces. PMID:26174591

  8. Unit cell geometry of multiaxial preforms for structural composites

    NASA Technical Reports Server (NTRS)

    Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia

    1993-01-01

    The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.

  9. Unit-cell dimensions of natural and synthetic scapolites

    USGS Publications Warehouse

    Eugster, H.P.; Prostka, H.J.; Appleman, D.E.

    1962-01-01

    In natural scapolites the cell dimension a shows a regular increase from marialite to meionite composition, while c remains constant. Both a and c of synthetic meionite are larger than the corresponding dimensions of synthetic marialite. The cell volume of both natural and synthetic scapolites is a nearly linear function of composition. Variations in cell dimensions of scapolites may be caused by differences in structural state similar to those in plagioclase feldspars.

  10. A Micromechanical Unit Cell Model of 2 × 2 Twill Woven Fabric Textile Composite for Multi Scale Analysis

    NASA Astrophysics Data System (ADS)

    Dixit, A.; Mali, H. S.; Misra, R. K.

    2014-04-01

    Woven fabric based composite materials are being considered for potential structural applications in automotive and aircraft industries due to their better out of plane strength, stiffness and toughness properties than ordinary composite laminates. This paper presents the micromechanical unit cell model of 2 × 2 twill woven fabric textile composite for the estimation of in-plane elastic properties. Modelling of unit cell and its analysis for this new model is developed by using open source coded tool TexGen and finite element software, ABAQUS® respectively. The predicted values are in good agreement with the experimental results reported in literature. To ascertain the effectiveness of the developed model parametric studies have also been conducted on the predicted elastic properties in order to investigate the effects of various geometric parameters such as yarn spacing, fabric thickness, yarn width and fibre volume fraction. The scope of altering weave pattern and yarn characteristics is facilitated in this developed model. Further this model can be implemented for the multi-scale micro/macro-mechanical analysis for the calculation of strength and stiffness of laminates structure made of 2 × 2 twill composite.

  11. A unit-cell model of textile composite beams for predicting stiffness properties

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.; Marrey, Ramesh V.

    1993-01-01

    Flexural stiffness properties of a textile composite beam are obtained from a finite-element model of the unit cell. Three linearly independent deformations, namely, pure extension, pure bending and pure shear, are applied to the unit cell. The top and bottom surfaces of the beam are assumed to be traction free. Periodic boundary conditions on the lateral boundaries of the unit cell are enforced by multi-point constraint elements. From the forces acting on the unit cell, the flexural stiffness coefficients of the composite beam are obtained. The difficulties in determining the transverse shear stiffness are discussed, and a modified approach is presented. The methods are first verified by applying them to isotropic and bimaterial beams for which the results are known, and then illustrated for a simple plain-weave textile composite.

  12. Full Reconstruction of a Crystal Unit Cell Structure during Coherent Femtosecond Motion

    SciTech Connect

    Johnson, S. L.; Vorobeva, E.; Beaud, P.; Ingold, G.; Milne, C. J.

    2009-11-13

    We present a complete characterization of the unit cell dynamics of a laser-excited tellurium crystal using femtosecond x-ray diffraction. The analysis offers a quantitative measure of the unit cell dynamics without making any assumptions on the symmetry of the excited-state motion. The results show a large-amplitude coherently excited A{sub 1} mode quantitatively consistent with the predictions of a density functional theory model.

  13. Approximating the stress field within the unit cell of a fabric reinforced composite using replacement elements

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1993-01-01

    This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.

  14. Ab-initio phasing using nanocrystal shape transforms with incomplete unit cells

    PubMed Central

    Liu, Haiguang; Zatsepin, Nadia A.; Spence, John C. H.

    2014-01-01

    X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the ‘diffract-before-destroy’ mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This shape-transform dividing-out scheme for solving the phase problem has been tested using simulated examples with cubic crystals. It provides a phasing method which does not require atomic resolution data, chemical modification to the sample, or modelling based on the protein databases. It is common to find multiple structural units (e.g. molecules, in symmetry-related positions) within a single unit cell, therefore incomplete unit cells (e.g. one additional molecule) can be observed at surface layers of crystals. In this work, the effects of such incomplete unit cells on the ‘dividing-out’ phasing algorithm are investigated using 2D crystals within the projection approximation. It is found that the incomplete unit cells do not hinder the recovery of the scattering pattern from a single unit cell (after dividing out the shape transforms from data merged from many nanocrystals of different sizes), assuming that certain unit-cell types are preferred. The results also suggest that the dynamic range of the data is a critical issue to be resolved in order to apply the shape transform method practically. PMID:25075316

  15. Unit cell structure of water-filled monoolein into inverted hexagonal (H(II)) mesophase modeled by molecular dynamics.

    PubMed

    Kolev, Vesselin L; Ivanova, Anela N; Madjarova, Galia K; Aserin, Abraham; Garti, Nissim

    2014-05-22

    The study investigates the unit cell structure of inverted hexagonal (H(II)) mesophase composed of monoolein (1-monoolein, GMO) and water using atomistic molecular dynamics methods without imposing any restraints on lipid and water molecules. Statistically meaningful and very contrast images of the radial mass density distribution, scrutinizing also the separate components water, monoolein, the polar headgroups of the lipids, the double bond, and the termini of the hydrocarbon chain (the tail), are obtained. The lipid/water interface structure is analyzed based on the obtained water density distribution, on the estimated number of hydrogen bonds per monoolein headgroup, and on the headgroup-water radial distribution functions. The headgroup mass density distribution demonstrates hexagonal shape of the monoolein/water interface that is well-defined at higher water/monoolein ratios. Water interacts with the headgroups by forming a three-layer diffusive mass density distribution, and each layer's shape is close to hexagonal, which is an indication of long-range structural interactions. It is found that the monoolein headgroups form a constant number of hydrogen bonds leaving an excessive amount of water molecules outside the first lipid coordination sphere. Furthermore, the quantity of water at the monoolein/water interface increases steadily upon extension of the unit cell, so the interface should have a very dynamic structure. Investigation of the hydrocarbon residues reveals high compression and well-expressed structuring of the tails. The tails form a very compressed and constrained structure of defined layers across the unit cell with properties corresponding to a more densely packed nonpolar liquid (oil). Due to the hexagonal shape the 2D packing frustration is constant and does not depend on the water content. All reported structural features are based on averaging of the atomic coordinates over the time-length of the simulation trajectories. That kind of

  16. Application of Three Unit-Cells Models on Mechanical Analysis of 3D Five-Directional and Full Five-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Xiwu; Chen, Kang

    2013-10-01

    As new lightweight textile material, 3D five directional and full five directional braided composites (5DBC and F5DBC) have tremendous potential applications in the aerospace industry. Before they are used in primary loading-bearing structures, a rational characterization of their mechanical properties is essential. In this paper, three types of unit-cell models corresponding to the interior, surface and corner regions of 5DBC and F5DBC are proposed. By introducing the reasonable boundary conditions, the effective stiffness properties of these two materials are predicted and compared by the three unit-cells models. The detailed mechanical response characteristic of the three unit-cell models is presented and analyzed in various loading cases. Numerical results show good agreement with experiment data, thus validates the proposed simulation method. Moreover, a parametric study is carried out for analyzing the effects of braiding angle and fiber volume fraction on the elastic properties of 5DBC and F5DBC. The obtained results can help designers to optimize the braided composite structures.

  17. Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene

    NASA Astrophysics Data System (ADS)

    Sabzyan, Hassan; Sadeghpour, Narges

    2016-04-01

    Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.

  18. ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell.

    PubMed

    Kowiel, Marcin; Jaskolski, Mariusz; Dauter, Zbigniew

    2014-12-01

    Despite the existence of numerous useful conventions in structural crystallography, for example for the choice of the asymmetric part of the unit cell or of reciprocal space, surprisingly no standards are in use for the placement of the molecular model in the unit cell, often leading to inconsistencies or confusion. A conceptual solution for this problem has been proposed for macromolecular crystal structures based on the idea of the anti-Cheshire unit cell. Here, a program and server (called ACHESYM; http://achesym.ibch.poznan.pl) are presented for the practical implementation of this concept. In addition, the first task of ACHESYM is to find an optimal (compact) macromolecular assembly if more than one polymer chain exists. ACHESYM processes PDB (atomic parameters and TLS matrices) and mmCIF (diffraction data) input files to produce a new coordinate set and to reindex the reflections and modify their phases, if necessary. PMID:25478846

  19. Acoustic gradient-index lens using orifice-type metamaterial unit cells

    NASA Astrophysics Data System (ADS)

    Park, Choon Mahn; Kim, Cho Hee; Park, Hee Tack; Lee, Sang Hun

    2016-03-01

    A gradient-index (GRIN) lens made of acoustic metamaterial is described that is assembled of unit cells with specific orifice characteristics. The GRIN distribution of the lens is established using different hole sizes for the unit cells. The intensity of the sound waves is demonstrated through simulations and confirmed by an experiment in a frequency band that satisfies the homogeneous medium constraints for the metamaterial. Experimental results from the focusing of sound waves of various frequencies agreed well with the expected values from the GRIN lens equation. This face-centered-orifice-cubic unit cell, which is nearly non-dispersive but asymmetric, appears to be a useful acoustic metamaterial for various acoustic devices operating with broadband frequencies.

  20. Commercial importance of a unit cell: nanolithographic patenting trends for microsystems, microfabrication, and nanotechnology

    NASA Astrophysics Data System (ADS)

    Eijkel, Kees; Hruby, Jill M.; Kubiak, Glenn D.; Scott, Marion W.; Brokaw, J.; Saile, Volker; Walsh, Steven T.; White, Craig; Walsh, Daniel

    2006-01-01

    Microsystems and nanosystems hold the promise of new and much more effective approaches to both commercial and national security applications. The patenting rate in nanotechnology is exploding, underscoring its commercial and scientific potential. Yet how much of this effort is focused on nanopatterning or a top-down approach to nanofabrication? Nanopatterning in semiconductor microfabrication has already furthered Moore's law, facilitating the transistor as that medium's unit cell. Yet the search for a unit cell for the other two small technical markets (microsystems and the more broadbased nanotechnology) has proven much more elusive. Do nanopatterning advances hold the key to these technology bases finally obtaining a unit cell? We explore the intellectual property base of nanopatterning and how it pertains to semiconductor microfabrication, microsystems, and nanotechnology.

  1. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    PubMed

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. PMID:24566381

  2. Comparative effects of propranolol and verapamil alone and in combination on left ventricular function and volumes in patients with chronic exertional angina: a double-blind, placebo-controlled, randomized, crossover study with radionuclide ventriculography

    SciTech Connect

    Johnston, D.L.; Gebhardt, V.A.; Donald, A.; Kostuk, W.J.

    1983-12-01

    With the use of equilibrium radionuclide ventriculography the effects on left ventricular (LV) function of 160 mg oral propranolol daily and 360 mg verapamil daily alone and in combination were compared in 18 patients with chronic exertional angina. A randomized, double-blind, placebo-controlled, crossover protocol was used. The reduction in exercise rate-pressure product induced by the combination (118 +/- 28 mm Hg/min) was significantly greater than that by propranolol (135 +/- 27 mm Hg/min) or verapamil alone (163 +/- 28 mm Hg/min). In patients at rest, neither single nor combined therapy altered global or regional left ventricular ejection fractions (EFs). Verapamil, but not propranolol, increased cardiac volumes of resting subjects; used in combination, no further increase in LV volume occurred. With placebo, exercise global EF did not decrease from the level at rest and therefore no drug effect could be demonstrated for this parameter of LV function. By an evaluation of normalized regional EF measurements the combination was shown to reduce exercise-induced hypokinesis (placebo 52 +/- 20%, combination 61 +/- 23%. No significant improvement was noted with propranolol or verapamil alone; only the combination prevented a significant increase in end-systolic and end-diastolic volumes during exercise. Thus, propranolol and verapamil, used alone in moderate doses, exert no beneficial effect on exercise LV function as measured by EF and volume changes, and resting function deteriorates slightly with verapamil.

  3. Prospective Randomized Double-Blind Pilot Study of Site-Specific Consensus Atlas Implementation for Rectal Cancer Target Volume Delineation in the Cooperative Group Setting

    SciTech Connect

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop C.; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G.N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille

    2011-02-01

    Purpose: Variations in target volume delineation represent a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the effect of a consensus guideline-based visual atlas on contouring the target volumes. Methods and Materials: A representative case was contoured (Scan 1) by 14 physician observers and a reference expert with and without target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy. The gross tumor volume (GTV), and two clinical target volumes (CTVA, including the internal iliac, presacral, and perirectal nodes, and CTVB, which included the external iliac nodes) were contoured. The observers were randomly assigned to receipt (Group A) or nonreceipt (Group B) of a consensus guideline and atlas for anorectal cancers and then instructed to recontour the same case/images (Scan 2). Observer variation was analyzed volumetrically using the conformation number (CN, where CN = 1 equals total agreement). Results: Of 14 evaluable contour sets (1 expert and 7 Group A and 6 Group B observers), greater agreement was found for the GTV (mean CN, 0.75) than for the CTVs (mean CN, 0.46-0.65). Atlas exposure for Group A led to significantly increased interobserver agreement for CTVA (mean initial CN, 0.68, after atlas use, 0.76; p = .03) and increased agreement with the expert reference (initial mean CN, 0.58; after atlas use, 0.69; p = .02). For the GTV and CTVB, neither the interobserver nor the expert agreement was altered after atlas exposure. Conclusion: Consensus guideline atlas implementation resulted in a detectable difference in interobserver agreement and a greater approximation of expert volumes for the CTVA but not for the GTV or CTVB in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal RT.

  4. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  5. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting

    PubMed Central

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H.

    2014-01-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection. PMID:25084331

  6. Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells

    NASA Astrophysics Data System (ADS)

    Gerhardts, Rolf R.

    2015-11-01

    Model calculations for commensurability oscillations of the low-field magnetoresistance of two-dimensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal structure, are compared with recent experiments. The relevant harmonics of the effective modulation potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on the nature of the modulation. While higher harmonics of an electrostatically generated surface modulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene resist on the surface before cooling down the sample.

  7. Wideband Scattering Diffusion by using Diffraction of Periodic Surfaces and Optimized Unit Cell Geometries

    PubMed Central

    Costa, Filippo; Monorchio, Agostino; Manara, Giuliano

    2016-01-01

    A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process. PMID:27181841

  8. Designing unit cell in three-dimensional periodic nanostructures using colloidal lithography.

    PubMed

    Min, Joong-Hee; Zhang, Xu A; Chang, Chih-Hao

    2016-01-25

    Colloidal phase-shift lithography, the illumination of a two-dimensional (2D) ordered array of self-assembled colloidal nanospheres, is an effective method for the fabrication of periodic three-dimensional (3D) nanostructures. In this work, we investigate the design and control of the unit-cell geometry by examining the relative ratio of the illumination wavelength and colloidal nanosphere diameter. Using analytical and finite-difference time-domain (FDTD) modeling, we examine the effect of the wavelength-diameter ratio on intensity pattern, lattice constants, and unit-cell geometry. These models were validated by experimental fabrication for various combination of wavelength and colloid diameter. The developed models and fabrication tools can facilitate the design and engineering of 3D periodic nanostructure for photonic crystals, volumetric electrodes, and porous materials. PMID:26832581

  9. Study on Unit Cell Models and the Effective Thermal Conductivities of Silica Aerogel.

    PubMed

    Liu, He; Li, Zeng-Yao; Zhao, Xin-Peng; Tao, Wen-Quan

    2015-04-01

    In this paper, two modified unit cell models, truncated octahedron and cubic array of intersecting square rods with 45-degree rotation, are developed in consideration of the tortuous path of heat conduction in solid skeleton of silica aerogel. The heat conduction is analyzed for each model and the expressions of effective thermal conductivity of the modified unit cell models are derived. Considering the random microstructure of silica aerogel, the probability model is presented. We also discuss the effect of the thermal conductivity of aerogel backbone. The effective thermal conductivities calculated by the proposed probability model are in good agreement with available experimental data when the density of the aerogel is 110 kg/m3. PMID:26353566

  10. Wideband Scattering Diffusion by using Diffraction of Periodic Surfaces and Optimized Unit Cell Geometries

    NASA Astrophysics Data System (ADS)

    Costa, Filippo; Monorchio, Agostino; Manara, Giuliano

    2016-05-01

    A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process.

  11. Phase coexistence calculations via a unit-cell Gibbs ensemble formalism for melts of reversibly bonded block copolymers

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Lynd, Nathaniel; Fredrickson, Glenn

    2013-03-01

    Melts of block copolymer blends can exhibit coexistence between compositionally and morphologically distinct phases. We derived a unit-cell approach for a field theoretic Gibbs ensemble formalism to rapidly map out such coexistence regions. We also developed a canonical ensemble model for the reversible reaction of supramolecular polymers and integrated it into the Gibbs ensemble scheme. This creates a faster method for generating phase diagrams in complex supramolecular systems than the usual grand canonical ensemble method and allows us to specify the system in experimentally accessible volume fractions rather than chemical potentials. The integrated approach is used to calculate phase diagrams for AB diblock copolymers reversibly reacting with B homopolymers to form a new diblocks we term ``ABB.'' For our case, we use a diblock that is sixty percent A monomer and a homopolymer that is the same length as the diblock. In the limits of infinite reaction favorability (large equilibrium constant), the system approaches cases of an ABB diblock-B homopolymer blend when the AB diblock is the limiting reactant and AB diblock-ABB diblock blend when the homopolymer is the limiting reactant. As reaction favorability is decreased, the phase boundaries shift towards higher homopolymer compositions so that sufficient reaction can take place to produce the ABB diblock that has a deciding role stabilizing the observed phases.

  12. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts.

    PubMed

    Liang, Liang; Cheng, Hao; Lei, Fengcai; Han, Jun; Gao, Shan; Wang, Chengming; Sun, Yongfu; Qamar, Shaista; Wei, Shiqiang; Xie, Yi

    2015-10-01

    The bottleneck in water electrolysis lies in the kinetically sluggish oxygen evolution reaction (OER). Herein, conceptually new metallic non-metal atomic layers are proposed to overcome this drawback. Metallic single-unit-cell CoSe2 sheets with an orthorhombic phase are synthesized by thermally exfoliating a lamellar CoSe2 -DETA hybrid. The metallic character of orthorhombic CoSe2 atomic layers, verified by DFT calculations and temperature-dependent resistivities, allows fast oxygen evolution kinetics with a lowered overpotential of 0.27 V. The single-unit-cell thickness means 66.7 % of the Co(2+) ions are exposed on the surface and serve as the catalytically active sites. The lowered Co(2+) coordination number down to 1.3 and 2.6, gives a lower Tafel slope of 64 mV dec(-1) and higher turnover frequency of 745 h(-1) . Thus, the single-unit-cell CoSe2 sheets have around 2 and 4.5 times higher catalytic activity compared with the lamellar CoSe2 -DETA hybrid and bulk CoSe2 . PMID:26235276

  13. Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size

    SciTech Connect

    Corma, A.; Martinez, A.; Martinez, C. )

    1994-03-01

    The alkylation reaction of isobutane with trans-2-butene has been carried out on a series of steam-dealuminated Y zeolites with unit cell sizes ranging from 2.450 to 2.426 nm. A fixed-bed reactor connected to an automatized multiloop sampling system allowed differential product analysis from very short (1 min or less) to longer times on stream. A maximum in the initial 2-butene conversion was found on samples with unit cell sizes between 2.435 and 2.450 nm. However, the TMP/DMH ratio, i.e., the alkylation-to-oligomerization ratio, continuously increased with zeolite unit cell size. The concentration of reactants in the pores, the strength distribution of Bronsted acid sites, and the extent of hydrogen transfer reactions, which in turn depend on the framework Si/Al ratio of a given zeolite, were seen to affect activity and product distribution of the catalysts. Finally, the influence of these factors on the aging characteristics of the samples was also discussed. 17 refs., 7 figs., 4 tabs.

  14. Wiener index on rows of unit cells of the face-centred cubic lattice.

    PubMed

    Mujahed, Hamzeh; Nagy, Benedek

    2016-03-01

    The Wiener index of a connected graph, known as the `sum of distances', is the first topological index used in chemistry to sum the distances between all unordered pairs of vertices of a graph. The Wiener index, sometimes called the Wiener number, is one of the indices associated with a molecular graph that correlates physical and chemical properties of the molecule, and has been studied for various kinds of graphs. In this paper, the graphs of lines of unit cells of the face-centred cubic lattice are investigated. This lattice is one of the simplest, the most symmetric and the most usual, cubic crystal lattices. Its graphs contain face centres of the unit cells and other vertices, called cube vertices. Closed formulae are obtained to calculate the sum of shortest distances between pairs of cube vertices, between cube vertices and face centres and between pairs of face centres. Based on these formulae, their sum, the Wiener index of a face-centred cubic lattice with unit cells connected in a row graph, is computed. PMID:26919376

  15. Probability of pipe failure in the reactor coolant loops of Combustion Engineering PWR Plants. Volume 3. Double-ended guillotine break indirectly induced by earthquakes

    SciTech Connect

    Ravindra, M.K.; Campbell, R.D.; Kennedy, R.P.; Banon, H.

    1985-01-01

    The requirements to design nuclear power plants for the effects of an instantaneous double-ended guillotine break (DEGB) of reactor coolant loop (RCL) piping have led to excessive design costs, interference of normal plant operation and maintenance, and unnecessary radiation exposure of plant maintenance personnel. This report describes an aspect of the NRC/Lawrence Livermore National Laboratory sponsored research program aimed at investigating whether the probability of DEGB in RCL Piping of nuclear power plants is acceptably small and the requirements to design for the DEGB effects (e.g., provision of pipe whip restraints) may be removed. This study estimated the probability of indirect DEGB in RCL piping as a consequence of seismic-induced structural failures within the containment of Combustion Engineering supplied pressurized water reactor nuclear power plants in the United States. The median probability of indirect DEGB was estimated to be in the range of 10/sup -6/ per year for older plants, and less than 10/sup -8/ per year for modern plants; using very conservative assumptions, the 90% subjective probability value (confidence) of P/sub DEGB/ was found to be less than 5 x 10/sup -5/ per year for older plants and less than 3 x 10/sup -7/ per year for modern plants.

  16. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  17. Double-helix stellarator

    SciTech Connect

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  18. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. PMID:26143351

  19. Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon

    2015-10-01

    We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.

  20. Unit cell modeling in support of interim performance assessment for low level tank waste disposal

    SciTech Connect

    Kline, N.W., Westinghouse Hanford

    1996-08-01

    A unit cell model is used to simulate the base analysis case and related sensitivity cases for the interim performance assessment of low level tank waste disposal. Simulation case results are summarized in terms of fractional contaminant release rates to the vadose zone and to the water table at the unconfined aquifer. Results suggest that the crushed glass water conditioning layer at the top of the facility and the chemical retardation pad at the bottom of the facility can be important components of the facility. Results also suggest that the release rates to the water table are dominated by the release rate from the waste form.

  1. The geometry of Niggli reduction: SAUC – search of alternative unit cells

    PubMed Central

    McGill, Keith J.; Asadi, Mojgan; Karakasheva, Maria T.; Andrews, Lawrence C.; Bernstein, Herbert J.

    2014-01-01

    A database of lattices using the G 6 representation of the Niggli-reduced cell as the search key provides a more robust and complete search than older techniques. Searching is implemented by finding the distance from the probe cell to other cells using a topological embedding of the Niggli reduction in G 6, so that all cells representing similar lattices will be found. The embedding provides the first fully linear measure of distances between unit cells. Comparison of results with those from older cell-based search algorithms suggests significant value in the new approach. PMID:24587790

  2. Crystallographic parameters and composition of unit cells of macrocyclic complexes of Zn and Co with polygalacturonic acid

    NASA Astrophysics Data System (ADS)

    Kaisheva, N. Sh.; Kaishev, A. Sh.

    2013-12-01

    Zinc and cobalt(II) pectinates are found to crystallize in hexagonal syngony. The parameters of unit cells of zinc ( a = 10.72 Å, c = 3.79 Å) and cobalt(II) ( a = 29.89 Å, c = 10.57 Å) pectinates are determined. The correctness of indexing is confirmed by the agreement between the experimental and calculated values of the crystallographic parameters, and by the number of formula units per unit cell.

  3. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when

  4. Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Meng, Yue; Mao, Ho-kwang

    2016-12-01

    Multigrain X-ray diffraction (XRD) can be used to accurately calculate the unit cell parameters of individual mineral phases in a mineral assemblage contained in a diamond anvil cell (DAC). Coexisting post-perovskite (ppv) and H-phase were synthesized at 119 GPa and 2500 K from (Mg0.85Fe0.15)SiO3 in a laser-heated DAC. The unit cell parameters of the ppv and coexisting H-phase were determined using multigrain XRD with a 5 μm spatial resolution, close to the size of the X-ray beam, to understand compositional variations across the center area (20-30 μm) in a laser-heated sample. The ppv phase was Fe-depleted and the unit cell volume of ppv decreased by only 0.16 % (corresponding to ~3 % variation of FeSiO3) from the heating center to 10 μm off the center, while the sample pressure remained at 119 GPa in a Ne quasi-hydrostatic environment. The unit cell volume of the H-phase decreased by 0.54 % (~10 % variation of FeSiO3 content) over the same 10 μm distance. Both phases were more Fe-enriched in the slightly hotter center. This observation suggests that thermal diffusion may not be the major driver for the compositional variations of ppv and H-phase in the center portion of a laser-heated sample. Instead, these variations could be caused by a temperature effect on the partitioning between the ppv and H-phase over the small gradient.

  5. High power efficiency distributed oscillator based on composite-right-/left-handed unit cells

    NASA Astrophysics Data System (ADS)

    Simion, Stefan; Bartolucci, Giancarlo

    2015-09-01

    A microwave oscillator topology based on CRLH (Composite Right-/Left-Handed) unit cells is analyzed theoretically and experimentally tested. The oscillator consists of a CRLH based distributed amplifier and a positive feedback realized by a simple transmission line. The oscillator has two output ports, where the power levels are practically the same. For this topology, we have found the oscillation condition and we demonstrate that each transistor gives the same contribution to the power delivered at the two output ports, in this way, the output power is maximized. The oscillator has been designed for a frequency of oscillation of 2.8 GHz and fabricated in hybrid technology, by using InGaAs HEMTs and microstrip lines. The measured powers at the two output ports are equal to 12.6 dBm and 10.4 dBm, the small difference between these values being given by the insertion loss of the gate line. The experimental frequency of oscillation is 2.77 GHz, with a difference of less than 1% in comparison with the expected value. Due to the frequency selectivity of the CRLH unit cells, numerical simulations predict low phase noise for this configuration of oscillator.

  6. Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level

    SciTech Connect

    Wang, Jinqi; Liu, Shuchang; Nahata, Ajay; Guruswamy, Sivaraman

    2013-11-25

    We demonstrate a technique for selectively erasing and refilling unit cells of terahertz (THz) metamaterials. The structures are formed by injecting eutectic gallium indium (EGaIn), a liquid metal at room temperature, into microchannels within a polydimethylsiloxane (PDMS) mold fabricated using conventional soft lithography techniques. The thin oxide layer that forms on the surface of EGaIn can be locally dissolved via exposure to hydrochloric acid (HCl) introduced at the surface of the gas permeable PDMS mold. In the absence of the oxide skin, the liquid metal retracts to a position where a stable new oxide layer can be formed, effectively erasing the liquid metal structure in the presence of HCl. After erasing selected structures, EGaIn can be re-injected into microchannels to yield the initial structure. In the case of small unit cells, we show that mechanical pressure can be used to effectively erase individual elements. We use THz time-domain spectroscopy to characterize the distinct transmission properties for each of these different structures.

  7. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces

    NASA Astrophysics Data System (ADS)

    Wong, Joseph P. S.; Selvanayagam, Michael; Eleftheriades, George V.

    2014-08-01

    The systematic design of unit cells for a Huygens metasurface, a particular class of metasurface, is presented here. The design of these unit cells uses transmission-line theory. This is validated through application to 1D refraction and Gaussian-to-Gaussian beam focusing. The 1D refraction is further validated experimentally. These applications demonstrate the practical utility of these Huygens metasurfaces. The Huygens metasurfaces presented here are printed on two bonded boards instead of many stacked, interspaced layers. This simplifies fabrication and enables the scaling down of the metasurfaces to shorter wavelengths. These two bonded boards implement a single, collocated layer of electric and magnetic dipoles. The electric and magnetic dipoles are synthesized using sub-wavelength arrays of printed elements. These printed elements can be manufactured using standard PCB fabrication techniques, and are capable of synthesizing the full range of impedances required. Furthermore, in contrast to frequency-selective surfaces (FSSs) and traditional transmitarrays, which are on the order of a wavelength thick, these designs are only λ/10 thick while incurring minimum reflections losses.

  8. Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors.

    PubMed

    Frandsen, Benjamin A; Bozin, Emil S; Hu, Hefei; Zhu, Yimei; Nozaki, Yasumasa; Kageyama, Hiroshi; Uemura, Yasutomo J; Yin, Wei-Guo; Billinge, Simon J L

    2014-01-01

    Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity. PMID:25482113

  9. A gate array structure for the efficient project of digital circuits: The unit cell array

    NASA Astrophysics Data System (ADS)

    Geisler, Olaf

    In this study the principles for the development of a unit-cell-array-master, which shows all the advantages of gate-arrays, are presented. By taking the cabling influence on the chip surface into account, a stochastic model of cabling for sea-of-gates-structures is used, which allows establishment of the minimal dimensions of the master-components for the cabling. As regards the cell architecture, the gate isolation technique and smaller asymmetric p-n channel transistor pairs are employed. With logical structures such as Ram, Rom or PLA (programmed logic array), the Gt density increases. The analysis of gate-array cabling capacity shows that transistors with commercial gate-arrays are often of too great dimension. A greater transistor density and a lower dissipation without any performance decrease are possible by using smaller transistors and a parallel connection in circuit paths with higher cabling capacity. Apart from its initial high cost, unit cell array is interesting from an economical point of view.

  10. Structure Evolution of Propylene-1-Butylene Random Copolymer under Uniaxial Stretching: from Unit Cells to Lamellae

    NASA Astrophysics Data System (ADS)

    Mao, Yimin; Burger, Christian; Li, Xiaowei; Hsiao, Benjamin

    2011-03-01

    Crystallization changes of propylene-1-butylene (P-H) random copolymer with low butylene content (5.7 mol%) under uniaxial tensile deformation at high temperature (100& circ; C) was investigated using time-resolved wide- and small-angle X-ray scattering (WAXS/SAXS) techniques. Structure and preferred orientation at length scales of crystal unit cell and lamellae were investigated explicitly using 2D whole pattern analysis. γ -phase was found to be the dominant initial modification which was transformed into α -phase during stretching, forming more stable parallel packed polymer chains in the unit cell. 2D WAXS analysis enabled us to identify three orientation modes from different crystal forms, i.e., γ -phase with tilted cross- β configuration, α -phase with parallel chain packing and a-axis orientation of α -form crystals in daughter lamellae. 2D SAXS analysis based on stacking model enabled us to understand the development of the four-point pattern under deformation. We thank National Science Foundation for financial support and Derek W. Thurman and Andy H. Tsou from ExxonMobil company for providing copolymer samples.

  11. Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    PubMed

    Vercher, Ana; Giner, Eugenio; Arango, Camila; Tarancón, José E; Fuenmayor, F Javier

    2014-04-01

    Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations, and a new finite element model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement. PMID:23793930

  12. Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level

    NASA Astrophysics Data System (ADS)

    Wang, Jinqi; Liu, Shuchang; Guruswamy, Sivaraman; Nahata, Ajay

    2013-11-01

    We demonstrate a technique for selectively erasing and refilling unit cells of terahertz (THz) metamaterials. The structures are formed by injecting eutectic gallium indium (EGaIn), a liquid metal at room temperature, into microchannels within a polydimethylsiloxane (PDMS) mold fabricated using conventional soft lithography techniques. The thin oxide layer that forms on the surface of EGaIn can be locally dissolved via exposure to hydrochloric acid (HCl) introduced at the surface of the gas permeable PDMS mold. In the absence of the oxide skin, the liquid metal retracts to a position where a stable new oxide layer can be formed, effectively erasing the liquid metal structure in the presence of HCl. After erasing selected structures, EGaIn can be re-injected into microchannels to yield the initial structure. In the case of small unit cells, we show that mechanical pressure can be used to effectively erase individual elements. We use THz time-domain spectroscopy to characterize the distinct transmission properties for each of these different structures.

  13. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.

    PubMed

    Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-03-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials

  14. Stratum corneum lipid matrix: Location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase.

    PubMed

    Mojumdar, E H; Gooris, G S; Groen, D; Barlow, D J; Lawrence, M J; Demé, B; Bouwstra, J A

    2016-08-01

    The extracellular lipid matrix in the skin's outermost layer, the stratum corneum, is crucial for the skin barrier. The matrix is composed of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) and involves two lamellar phases: the short periodicity phase (SPP) and the long periodicity phase (LPP). To understand the skin barrier thoroughly, information about the molecular arrangement in the unit cell of these lamellar phases is paramount. Previously we examined the molecular arrangement in the unit cell of the SPP. Furthermore X-ray and neutron diffraction revealed a trilayer arrangement of lipids within the unit cell of the LPP [D. Groen et al., Biophysical Journal, 97, 2242-2249, 2009]. In the present study, we used neutron diffraction to obtain more details about the location of lipid (sub)classes in the unit cell of the LPP. The diffraction pattern revealed at least 8 diffraction orders of the LPP with a repeating unit of 129.6±0.5Å. To determine the location of lipid sub(classes) in the unit cell, samples were examined with either only protiated lipids or selectively deuterated lipids. The diffraction data obtained by means of D2O/H2O contrast variation together with a gradual replacement of one particular CER, the acyl CER, by its partly deuterated counterpart, were used to construct the scattering length density profiles. The acyl chain of the acyl CER subclass is located at a position of ~21.4±0.2Å from the unit cell centre of the LPP. The position and orientation of CHOL in the LPP unit cell were determined using tail and head-group deuterated forms of the sterol. CHOL is located with its head-group positioned ~26±0.2Å from the unit cell centre. This allows the formation of a hydrogen bond with the ester group of the acyl CER located in close proximity. Based on the positions of the deuterated moieties of the acyl CER, CHOL and the previously determined location of two other lipid subclasses [E.H. Mojumdar et al., Biophysical Journal

  15. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell

    NASA Astrophysics Data System (ADS)

    Yoo, Y. J.; Zheng, H. Y.; Kim, Y. J.; Rhee, J. Y.; Kang, J.-H.; Kim, K. W.; Cheong, H.; Kim, Y. H.; Lee, Y. P.

    2014-07-01

    Using a planar and flexible metamaterial (MM), we obtained the low-frequency perfect absorption even with very small unit-cell size in snake-shape structure. These shrunken, deep-sub-wavelength and thin MM absorbers were numerically and experimentally investigated by increasing the inductance. The periodicity/thickness (the figure of merit for perfect absorption) is achieved to be 10 and 2 for single-snake-bar and 5-snake-bar structures, respectively. The ratio between periodicity and resonance wavelength (in mm) is close to 1/12 and 1/30 at 2 GHz and 400 MHz, respectively. The absorbers are specially designed for absorption peaks around 2 GHz and 400 MHz, which can be used for depressing the electromagnetic noise from everyday electronic devices and mobile phones.

  16. Unit cell structure of crystal polytypes in InAs and InSb nanowires.

    PubMed

    Kriegner, Dominik; Panse, Christian; Mandl, Bernhard; Dick, Kimberly A; Keplinger, Mario; Persson, Johan M; Caroff, Philippe; Ercolani, Daniele; Sorba, Lucia; Bechstedt, Friedhelm; Stangl, Julian; Bauer, Günther

    2011-04-13

    The atomic distances in hexagonal polytypes of III-V compound semiconductors differ from the values expected from simply a change of the stacking sequence of (111) lattice planes. While these changes were difficult to quantify so far, we accurately determine the lattice parameters of zinc blende, wurtzite, and 4H polytypes for InAs and InSb nanowires, using X-ray diffraction and transmission electron microscopy. The results are compared to density functional theory calculations. Experiment and theory show that the occurrence of hexagonal bilayers tends to stretch the distances of atomic layers parallel to the c axis and to reduce the in-plane distances compared to those in zinc blende. The change of the lattice parameters scales linearly with the hexagonality of the polytype, defined as the fraction of bilayers with hexagonal character within one unit cell. PMID:21434674

  17. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell

    SciTech Connect

    Yoo, Y. J.; Zheng, H. Y.; Kim, Y. J.; Lee, Y. P.; Rhee, J. Y.; Kang, J.-H.; Kim, K. W.; Cheong, H.; Kim, Y. H.

    2014-07-28

    Using a planar and flexible metamaterial (MM), we obtained the low-frequency perfect absorption even with very small unit-cell size in snake-shape structure. These shrunken, deep-sub-wavelength and thin MM absorbers were numerically and experimentally investigated by increasing the inductance. The periodicity/thickness (the figure of merit for perfect absorption) is achieved to be 10 and 2 for single-snake-bar and 5-snake-bar structures, respectively. The ratio between periodicity and resonance wavelength (in mm) is close to 1/12 and 1/30 at 2 GHz and 400 MHz, respectively. The absorbers are specially designed for absorption peaks around 2 GHz and 400 MHz, which can be used for depressing the electromagnetic noise from everyday electronic devices and mobile phones.

  18. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  19. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  20. The local structure of skutterudites: A view from inside the unit cell

    NASA Astrophysics Data System (ADS)

    Bridges, Frank

    2016-02-01

    The skutterudites form a large class of compounds with many unusual properties, attributed in part to the novel crystal structure. The unit cell is cubic and is composed of eight sub-cubes formed by transition metal atoms. Six of the sub-cubes contain rings of atoms; the other two sub-cubes can be empty but are usually filled with rare earth or alkali earth atoms. These “filler” atoms can vibrate at low energies and hence are called “rattler” atoms. Here, the dynamics of various atom pairs are reviewed with a focus on the rattler atoms. Most of the work is based on extended X-ray absorption fine structure (EXAFS) studies but results obtained using other techniques, such as inelastic scattering experiments or atomic displacement parameters in diffraction, are also included. Although the main framework of the unit cell is often considered quite stiff, the stiffest springs in the system are only factors of 3-5 larger than the springs connecting the rattler to its neighbors. In addition, the environment about the atoms in the ring structures (e.g. Sb4 in CeFe4Sb12) has a low symmetry and our recent EXAFS experiments suggest that the rings can be considered to be quasi-rigid units, and treated as a large atom. The restoring forces on the rings are asymmetric, with large forces perpendicular to the ring and weak forces in the direction toward a rattler. This suggests that some low energy modes that have been observed in these systems may be a correlated motion of the rattler atoms and the rings. In addition, the unusual result that the second neighbor effective spring constants are stiffer than the nearest neighbor bonds has been observed for several oxy-skutterudites. A simple one-dimensional (1D) model, of a chain of rattlers and rings, weakly coupled to the rest of the lattice has been developed which can explain these unusual results. These calculations also indicate that the thermal conductivity might be further suppressed using a composite formed of several

  1. Double screening

    NASA Astrophysics Data System (ADS)

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-01

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  2. Preparation of patterned boron nanowire films with different widths of unit-cell and their field emission properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Xin; Liu, Fei; Shen, Cheng-Min; Li, Jun; Deng, Shao-Zhi; Xu, Ning-Sheng; Gao, Hong-Jun

    2016-08-01

    Large-area patterned films of boron nanowires (BNWs) are fabricated at various densities by chemical vapor deposition (CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell of Mo masks are 100 μm, 150 μm, and 200 μm, respectively. The distance between unit cells is 50 μm. The BNWs have an average diameter of about 20 nm and lengths of 10 μm–20 μm. High-resolution transmission electron microscopy analysis shows that each nanowire has a β-tetragonal structure with good crystallization. Field emission measurements of the BNW films show that their turn-on electric fields decrease with width of unit-cell increasing. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB933604), the National Natural Science Foundation of China (Grant No. 51572290), and the Fund from the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  3. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  4. Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2005-04-01

    Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.

  5. Unit cell finite element modelling for ultrasonic scattering from periodic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, W.; Skelton, E.; Lowe, M. J. S.; Craster, R.

    2013-01-01

    Ultrasound wave scattering from the rough surfaces of defects is an important consideration for the qualification of safety-critical inspections because some species of fabrication and service-induced defects are rough. Whereas the surfaces of flat defects only reflect specularly, an incident wave reflects over a range of angles when the surface is rough. This affects the inspection performance because the coefficient of the specular reflection is reduced, while the detection of reflections at other angles becomes possible. An infinite periodic surface is a simple form of rough surface, which has been well investigated since Rayleigh, and can be useful to provide general insight into the nature of the wave scattering. Furthermore, in the context of scattering from cracks, the study of an infinite surface enables examination of the reflections from the surface and behavior at the surface without the presence of the crack tip diffraction fields. In this paper, an infinite periodic surface is modelled by a unit cell FE model with cyclic symmetric boundary conditions, allowing the model to be small, and elastic wave scattering from the surface is simulated in the time domain. This cell model is demonstrated using the commercial FE package ABAQUS and examples of the scattered wave results are compared with large FE model results.

  6. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals

    SciTech Connect

    Grey, Ian E. . E-mail: ian.grey@csiro.au; Birch, William D.; Bougerol, Catherine

    2006-12-15

    Structural relations between secondary tungsten minerals with general composition A{sub x}[(W,Fe)(O,OH){sub 3}]{sub .y}H{sub 2}O are described. Phyllotungstite (A=predominantly Ca) is hexagonal, a=7.31(3)A, c=19.55(1)A, space group P6{sub 3}/mmc. Pittongite, a new secondary tungsten mineral from a wolframite deposit near Pittong in Victoria, southeastern Australia (A=predominantly Na) is hexagonal, a=7.286(1)A, c=50.49(1)A, space group P-6m2. The structures of both minerals can be described as unit-cell scale intergrowths of (111){sub py} pyrochlore slabs with pairs of hexagonal tungsten bronze (HTB) layers. In phyllotungstite, the (111){sub py} blocks have the same thickness, 6A, whereas pittongite contains pyrochlore blocks of two different thicknesses, 6 and 12A. The structures can alternatively be described in terms of chemical twinning of the pyrochlore structure on (111){sub py} oxygen planes. At the chemical twin planes, pairs of HTB layers are corner connected as in hexagonal WO{sub 3}.

  7. Ferroelectric modulation on resonant tunneling through perovskite double-barriers

    SciTech Connect

    Du, Ruifang; Qiu, Xiangbiao; Li, Aidong; Wu, Di

    2014-04-07

    The negative differential resistance (NDR) due to resonance tunneling is achieved at room temperature in perovskite double-barrier heterostructures composed of a 10 unit-cell-thick SrTiO{sub 3} quantum well sandwiched in two 10 unit-cell-thick LaAlO{sub 3} barriers. The NDR occurs at 1.2 V and does not change with voltage cycling. When the paraelectric SrTiO{sub 3} quantum well is replaced by a ferroelectric BaTiO{sub 3}, the onset of the NDR can be modulated by polarization switching in the ultrathin BaTiO{sub 3}. A polarization pointing to the collector lowers the NDR voltage but a polarization pointing to the emitter increases it. The shift of the NDR voltage is ascribed to reversal of the extra electric field in the quantum well due to the polarization switching.

  8. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO 2 Films

    DOE PAGESBeta

    Saraf, L. V.; Wang, C. M.; Engelhard, M. H.; Nachimuthu, P.

    2008-01-01

    Ulmore » trathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin ( ∼ 10–12 unit cells thick) epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM) and substrate roughness of ∼ 1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.« less

  9. Intra-unit-cell magnetic correlations near optimal doping in YBa2Cu3O6.85

    NASA Astrophysics Data System (ADS)

    Mangin-Thro, L.; Sidis, Y.; Wildes, A.; Bourges, P.

    2015-07-01

    The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting families. Here we present polarized neutron-scattering measurements of nearly optimally doped YBa2Cu3O6.85, carried out on two different spectrometers, that reveal several features. The intra-unit-cell order consists of finite-sized planar domains that are very weakly correlated along the c axis. At high temperature, only the out-of-plane magnetic components correlate, indicating a strong Ising anisotropy. An aditional in-plane response develops at low temperature, giving rise to an apparent tilt of the magnetic moment. The discovery of these two regimes puts stringent constraints, which are tightly bound to the pseudo-gap physics, on the intrinsic nature of intra-unit-cell order.

  10. Traveling waves in trimer granular lattice I: Bifurcation structure of traveling waves in the unit-cell model

    NASA Astrophysics Data System (ADS)

    Jayaprakash, K. R.; Shiffer, A.; Starosvetsky, Y.

    2016-09-01

    Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains.

  11. Intra-unit-cell magnetic correlations near optimal doping in YBa2Cu3O6.85

    PubMed Central

    Mangin-Thro, L.; Sidis, Y.; Wildes, A.; Bourges, P.

    2015-01-01

    The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting families. Here we present polarized neutron-scattering measurements of nearly optimally doped YBa2Cu3O6.85, carried out on two different spectrometers, that reveal several features. The intra-unit-cell order consists of finite-sized planar domains that are very weakly correlated along the c axis. At high temperature, only the out-of-plane magnetic components correlate, indicating a strong Ising anisotropy. An aditional in-plane response develops at low temperature, giving rise to an apparent tilt of the magnetic moment. The discovery of these two regimes puts stringent constraints, which are tightly bound to the pseudo-gap physics, on the intrinsic nature of intra-unit-cell order. PMID:26138869

  12. Crystal Structures of Endotaxic Phases in Europium Potassium Silicate Having a Pellyite Unit Cell

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Taroev, V. K.

    2010-11-15

    The structures of three phases of the synthesized europium potassium silicate were determined by X-ray diffraction. Two of these phases crystallize in a new structural type. The chemical formulas of the phases were determined. The orthorhombic unit-cell parameters of all three phases are equal: a = 14.852(1) A, b = 15.902(1) A, c = 7.243(1) A, sp. gr. P2{sub 1}2{sub 1}2 (phase I) and sp. gr. Pbam (phases II and III). The structures were solved by direct methods and refined from X-ray diffraction data collected from one crystal to R = 0.0271, 0.0479, and 0.0582 based on 4370, 3320, and 2498 reflections, respectively, with |F| > 3{sigma}(F). The crystal- chemical formulas of the phases (Z = 4) are K{sub 3}Eu{sub 3+}[Si{sub 6}O{sub 15}] . 2H{sub 2}O, K{sub 3}Eu{sup 3+}[Si{sub 6}O{sub 13}(OH){sub 4}] . 2H{sub 2}O, and K{sub 3}Eu{sup 3+}[Si{sub 4}O{sub 9.5}(OH)](OH){sub 2}. 5.5H{sub 2}O. The structure of phase I consists of silicon-oxygen sheets [Si{sub 6}O{sub 15}] analogous to those found in the isostructural compound K{sub 3}Nd[Si{sub 6}O{sub 15}] . 2H{sub 2}O. In the structures of phases II and III, the ribbons [Si{sub 6}O{sub 17}] and [Si{sub 8}O{sub 21}] run along the shortest c axis and are linked together by Eu{sup 3+} octahedra and trigonal prisms to form three-dimensional layered and framework structures containing K atoms between the sheets and in the channels. The fragments are also linked through hydrogen bonds with the participation of OH groups and water molecules.

  13. The frequency selectivity of double H-shaped metallic structures

    NASA Astrophysics Data System (ADS)

    Bu, Xiaoxia; Zhao, Guozhong

    2013-12-01

    This paper presents the design and numerical simulation of the double H-shaped metallic periodic structure based on finite difference time domain (FDTD) method in terahertz frequency range. The double H-shaped structure unit cell consists of two H structures overlapped in the same plane. Numerical simulation results show that the double H-shaped structure results in a distinct and strong transmission trap in 0.2~3.0THz range. The position and the full wave at half maximum (FWHM) of transmission trap are changed with different structure size. The surface current distribution of structure is numerical simulated, which clarifies the frequency selection mechanism of the transmission spectra.

  14. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  15. Double inflation

    SciTech Connect

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  16. Revealing the Empty-State Electronic Structure of Single-Unit-Cell FeSe/SrTiO3.

    PubMed

    Huang, Dennis; Song, Can-Li; Webb, Tatiana A; Fang, Shiang; Chang, Cui-Zu; Moodera, Jagadeesh S; Kaxiras, Efthimios; Hoffman, Jennifer E

    2015-07-01

    We use scanning tunneling spectroscopy to investigate the filled and empty electronic states of superconducting single-unit-cell FeSe deposited on SrTiO3(001). We map the momentum-space band structure by combining quasiparticle interference imaging with decay length spectroscopy. In addition to quantifying the filled-state bands, we discover a Γ-centered electron pocket 75 meV above the Fermi energy. Our density functional theory calculations show the orbital nature of empty states at Γ and explain how the Se height is a key tuning parameter of their energies, with broad implications for electronic properties. PMID:26182116

  17. Unit-cell thick BaTiO{sub 3} blocks octahedral tilt propagation across oxide heterointerface

    SciTech Connect

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2014-05-14

    We fabricated SrRuO{sub 3}/BaTiO{sub 3}/GdScO{sub 3} heterostructures in which the BaTiO{sub 3} layer is one unit cell thick by pulsed laser deposition and elucidated how the BaTiO{sub 3} layer influences structural and magneto-transport properties of the SrRuO{sub 3} layer through octahedral connections across the heterointerface. Our X-ray-diffraction-based structural characterizations show that while an epitaxial SrRuO{sub 3} layer grown directly on a GdScO{sub 3} substrate is in the monoclinic phase with RuO{sub 6} octahedral tilts, a one-unit-cell-thick BaTiO{sub 3} layer inserted between SrRuO{sub 3} and GdScO{sub 3} stabilizes the tetragonal SrRuO{sub 3} layer with largely reduced RuO{sub 6} tilts. Our high-angle annular dark-field and annular bright-field scanning transmission electron microscopy observations provide an atomic-level view of the octahedral connections across the heterostructure and reveal that the BaTiO{sub 3} layer only one unit cell thick is thick enough to stabilize the RuO{sub 6}-TiO{sub 6} octahedral connections with negligible in-plane oxygen atomic displacements. This results in no octahedral tilts propagating into the SrRuO{sub 3} layer and leads to the formation of a tetragonal SrRuO{sub 3} layer. The magneto-transport property characterizations also reveal a strong impact of the octahedral connections modified by the inserted BaTiO{sub 3} layer on the spin-orbit interaction of the SrRuO{sub 3} layer. The SrRuO{sub 3} layer on BaTiO{sub 3}/ GdScO{sub 3} has in-plane magnetic anisotropy. This is in contrast to the magnetic anisotropy of the monoclinic SrRuO{sub 3} films on the GdScO{sub 3} substrate, in which the easy axis is ∼45° to the film surface normal. Our results demonstrate that the one-unit-cell-thick layer of BaTiO{sub 3} can control and manipulate the interfacial octahedral connection closely linked to the structure-property relationship of heterostructures.

  18. Intra unit cell electronic structure of the d-symmetry form factor density wave in the underdoped cuprates - Part II

    NASA Astrophysics Data System (ADS)

    Edkins, Stephen; Fujita, Kazuhiro; Hamidian, Mohammad; Kim, Chung Koo; MacKenzie, Andrew; Eisaki, Hiroshi; Uchida, Shinichi; Lawler, Michael; Kim, Eun-Ah; Sachdev, Subir; Davis, Seamus

    2015-03-01

    A central issue of cuprate superconductivity research is to understand the nature of the unknown phase called the pseudogap and its relationship to the d-wave superconductivity. To approach this we use spectroscopic imaging STM to study the electronic structure of Bi2Sr2CaCu2O8+δ. Using our recently developed technique of sub-lattice phase-resolved electronic structure visualization within each CuO2 unit-cell, we discovered a d-symmetry form factor density wave within the cuprate pseudogap state. In this talk, part II, we report on the electronic structure of the density wave and its interplay with superconductivity.

  19. Assessment of crystal quality and unit cell orientation in epitaxial Cu₂ZnSnSe₄ layers using polarized Raman scattering.

    PubMed

    Krämmer, Christoph; Lang, Mario; Redinger, Alex; Sachs, Johannes; Gao, Chao; Kalt, Heinz; Siebentritt, Susanne; Hetterich, Michael

    2014-11-17

    We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu₂ZnSnSe₄ layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general. PMID:25402065

  20. Modeling of Unit-Cells With Z-Pins Using FLASH: Pre-Processing and Post Processing

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2005-01-01

    Although the toughening properties of stitches, z-pins and similar structures have been studied extensively, investigations on the effect of z-pins on the in-plane properties of laminates are limited. A brief summary on the effect of z-pins on the in-plane tensile and compressive properties of composite laminates is presented together with a concise introduction into the finite element code FLASH. The remainder of the report illustrates the modeling aspect of unit cells with z-pins in FLASH and focuses on input and output data as well as post-processing of results.

  1. Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6

    NASA Astrophysics Data System (ADS)

    Lan, Yaohai; Feng, Xiaomei; Zhang, Xin; Shen, Yifu; Wang, Ding

    2016-08-01

    A new series of double perovskite compounds Sr2 - δBixFeMoO6 have been synthesized by solid-state reaction. δ refers to the nominal doping content of Bi (δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5), while the Bi content obtained by the Rietveld refinement is x = 0, 0.01, 0.05, 0.08, 0.10 and 0.12. Their crystal structure and magnetic properties are investigated. Rietveld analysis of the room temperature XRD data shows all the samples crystallize in the cubic crystal structure with the space group Fm 3 ‾ m and have no phase transition. SEM images show that substituted samples present a denser microstructure and bigger grains than Sr2FeMoO6, which is caused by a liquid sintering process due to the effumability of Bi. The unit cell volume increases with augment of Bi3+ concentration despite the smaller ionic radius Bi3+ compared with the Sr2+, which is attributed to the electronic effect. The degree of Fe/Mo order (η) increases first and then decreases to almost disappearance with augment of Bi doping, which is the result of contribution from electronic effect. Calculated saturation magnetization Ms(3) according to our phase separation likeness model matches well with the experimental ones. The observed variations of magnetoresistance (MR) are consistent with the Fe/Mo order (η) due to the internal connection with anti-site defect (ASD).

  2. Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids

    PubMed Central

    Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; Grob, Patricia; Nogales, Eva; Geissler, Phillip L.; Niyogi, Krishna K.; Bustamante, Carlos

    2014-01-01

    Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets. PMID:25007326

  3. Spin-Glass Behavior in a Giant Unit Cell Compound Tb117Fe52Ge113.8(1)

    SciTech Connect

    Liu, Jing; Xie, Weiwei; Gschneidner, Karl A; Miller, Gordon J; Pecharsky, Vitalij K

    2014-10-15

    In this paper we demonstrate evidence of a cluster spin glass in Tb117Fe52Ge113.8(1) (a compound with a giant cubic unit cell) via ac and dc magnetic susceptibility, magnetization, magnetic relaxation and heat capacity measurements. The results clearly show that Tb117Fe52Ge113.8(1) undergoes a spin glass phase transition at the freezing temperature, ~38 K. The good fit of the frequency dependence of the freezing temperature to the critical slowing down model and Vogel-Fulcher law strongly suggest the formation of cluster glass in the Tb117Fe52Ge113.8(1) system. The heat capacity data exhibit no evidence for long-range magnetic order, and yield a large value of Sommerfeld coefficient. The spin glass behavior of Tb117Fe52Ge113.8(1) may be understood by assuming the presence of competing interactions among multiple non-equivalent Tb sites present in the highly complex unit cell.

  4. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  5. Origin of superstructures in (double) perovskite thin films

    SciTech Connect

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  6. Solid state phase transitions in linear transition metal polymers: Variations of the unit cell dimension in bisglyoximato nickel (II)

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1984-07-01

    The band structure of bisglyoximato nickel(II) has been studied as a function of the unit cell dimension ( c) in a staggered and an eclipsed chain conformation by means of crystal orbital (CO) calculations based on the tight-binding approximation. The crystal Hamiltonian is a semiempirical Hartree-Fock (HF) self-consistent field (SCF) operator developed in the framework of the INDO formalism. c has been modified in the interval between 3.0 and 4.2 Å, numbers that are typical for metallomacrocycles of the 3d series. The dispersion curves for metal 3d and ligand bands, the density of states distributions, charge reorganizations and the nature of intercell interactions are studied as a function of the separation between the bisglyoximato moieties. The width of the ligand bands is continuously reduced with increasing c values. This simple ε( k) pattern is not found for the “Ni 3d bands” of the low-dimensional material. The weak NiNi overlap in comparison to metal-ligand interactions of the intracell and intercell type leads to a complicated relation between the energetic width of the Ni 3d states and the unit cell dimension c. The character and the shape of the filled Ni 3d bands are analyzed in detail and are compared with the results of band structure calculations on one-dimensional materials with 5d centers (e.g. Krogmann's salt) that show broad dispersions for the metal bands. Physical phenomena in materials with injected (3d) holes, that must be expected as a result of the narrow metal bands, are shortly discussed. The interaction energies between atoms in neighbouring unit cells are decomposed into Coulomb, resonance and exchange contributions. The electrostatic potentials exceed the covalent resonance interactions as well as the exchange coupling. The interaction energy between the Ni centers is highly repulsive. General rules are formulated that give some insight into modification of the electronic structure of organometallic polymers in the 3d series as

  7. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  8. A double-double/double-single computation package

    SciTech Connect

    Bailey, David H.

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems) to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.

  9. A double-double/double-single computation package

    Energy Science and Technology Software Center (ESTSC)

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  10. One-step bulk synthesis of stable, near unit-cell sized oxide nanoparticles and nanoparticle blends using KO2.

    PubMed

    Sutto, Thomas E

    2014-05-01

    Presented here is a novel one-step synthesis of oxide or hydroxide nanoparticles using, for the first time, potassium superoxide (KO2). This work demonstrates that the reaction of KO2 with different salt solutions produces grams of stable, near unit-cell sized nanoparticles. This new synthetic technique is applied to representative elements from across the periodic table to rapidly produce nanometer sized oxides or hydroxides of Mg, Al, Y, Ti, Mn, Fe, Co, Ni, Cu, Zn, Sn, Tl, Pb, and Ce. This technique is also used to produce blends of nanoparticles, demonstrating the ability to prepare complex materials such as nanoparticulate blends of a lithium cathode material (LiCoO2), the multiferroic compound (BiMnO(3+δ)), and the superconducting YBa2Cu3O(7-γ). PMID:24724979

  11. Intra unit cell electronic structure of the d-symmetry form factor density wave in the underdoped cuprates - Part I

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhiro; Hamidian, Mohammad; Edkins, Stephen; Kim, Chung Koo; MacKenzie, Andy; Eisaki, Hiroshi; Uchida, Shin-Ichi; Lawler, Michael; Kim, Eun-Ah; Sachdev, Subir; Davis, J. C.

    2015-03-01

    A central issue of cuprate superconductivity research is to understand the nature of the unknown phase called the pseudogap and its relationship to the d-wave superconductivity. To approach this we use spectroscopic imaging STM to study the electronic structure of Bi2Sr2CaCu2O8+δ. Using our recently developed technique of sub-lattice phase-resolved electronic structure visualization within each CuO2 unit-cell, we discovered a d-symmetry form factor density wave within the cuprate pseudogap state. In this talk, part I, we demonstrate that d-symmetry is the predominant form factor in the density wave within pseudogap states and show how this situation evolves upon doping.

  12. Quantum-chemical calculations of bonding energy and the unit-cell parameters of crystalline magnesium difluoride

    SciTech Connect

    Iomin, L.M.; Buznik, V.M.

    1988-11-01

    Quantum-chemical calculations of the bonding energy of the crystal lattice, the unit-cell parameters, and the coordinates of the anions in crystalline magnesium difluoride have been performed in the framework of the Loewdin model. An expression for the energy of the three-particle interactions in rutile-like crystals has been obtained. The calculations were carried out in three successive approximations. A comparison with the experimental data shows that the best description of the interatomic interactions in rutile-like magnesium fluoride (in the framework of the Loewdin model) is achieved in an approximation which takes into account the non-Madelung interactions only in the first coordination sphere. Consideration of the short-range interactions with more distant ions worsens the agreement between theory and experiment.

  13. Ultrafast Dynamics Evidence of High Temperature Superconductivity in Single Unit Cell FeSe on SrTiO_{3}.

    PubMed

    Tian, Y C; Zhang, W H; Li, F S; Wu, Y L; Wu, Q; Sun, F; Zhou, G Y; Wang, Lili; Ma, Xucun; Xue, Qi-Kun; Zhao, Jimin

    2016-03-11

    We report the time-resolved excited state ultrafast dynamics of single unit cell (1 UC) thick FeSe films on SrTiO_{3} (STO), with FeTe capping layers. By measuring the photoexcited quasiparticles' density and lifetime, we unambiguously identify a superconducting (SC) phase transition, with a transition temperature T_{c} of 68 (-5/+2)  K and a SC gap of Δ(0)=20.2±1.5  meV. The obtained electron-phonon coupling strength λ is as large as 0.48, demonstrating the likely crucial role of electron-phonon coupling in the high temperature superconductivity of the 1 UC FeSe on STO systems. We further find a 0.05 THz coherent acoustic phonon branch in the capping layer, which provides an additional decay channel to the gluing bosons. PMID:27015504

  14. Ultrafast Dynamics Evidence of High Temperature Superconductivity in Single Unit Cell FeSe on SrTiO3

    NASA Astrophysics Data System (ADS)

    Tian, Y. C.; Zhang, W. H.; Li, F. S.; Wu, Y. L.; Wu, Q.; Sun, F.; Zhou, G. Y.; Wang, Lili; Ma, Xucun; Xue, Qi-Kun; Zhao, Jimin

    2016-03-01

    We report the time-resolved excited state ultrafast dynamics of single unit cell (1 UC) thick FeSe films on SrTiO3 (STO), with FeTe capping layers. By measuring the photoexcited quasiparticles' density and lifetime, we unambiguously identify a superconducting (SC) phase transition, with a transition temperature Tc of 68 (-5 /+2 ) K and a SC gap of Δ (0 )=20.2 ±1.5 meV . The obtained electron-phonon coupling strength λ is as large as 0.48, demonstrating the likely crucial role of electron-phonon coupling in the high temperature superconductivity of the 1 UC FeSe on STO systems. We further find a 0.05 THz coherent acoustic phonon branch in the capping layer, which provides an additional decay channel to the gluing bosons.

  15. The Cambridge Double Star Atlas

    NASA Astrophysics Data System (ADS)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  16. Double outlet right ventricle

    MedlinePlus

    ... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...

  17. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  18. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  19. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  20. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  1. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-12-18

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  2. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGESBeta

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  3. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  4. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization.

    PubMed

    Elking, Dennis M

    2016-08-15

    New equations for torque and atomic force are derived for use in flexible molecule force fields with atomic multipoles. The expressions are based on Cartesian tensors with arbitrary multipole rank. The standard method for rotating Cartesian tensor multipoles and calculating torque is to first represent the tensor with n indexes and 3(n) redundant components. In this work, new expressions for directly rotating the unique (n + 1)(n + 2)/2 Cartesian tensor multipole components Θpqr are given by introducing Cartesian tensor rotation matrix elements X(R). A polynomial expression and a recursion relation for X(R) are derived. For comparison, the analogous rotation matrix for spherical tensor multipoles are the Wigner functions D(R). The expressions for X(R) are used to derive simple equations for torque and atomic force. The torque and atomic force equations are applied to the geometry optimization of small molecule crystal unit cells. In addition, a discussion of computational efficiency as a function of increasing multipole rank is given for Cartesian tensors. © 2016 Wiley Periodicals, Inc. PMID:27349179

  5. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  6. Quantum volume

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.

    2015-08-01

    Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.

  7. [Veterinary double-monsters historically viewed].

    PubMed

    Baljet, B; Heijke, G C

    1997-01-01

    A large number of duplication monstrosities have been observed in cattle, sheep, pigs, horses, goats, cats and dogs, ever since the publication of the famous woodcut of a swine double monster by J. S. Brant in Basel in 1496, better known as the "wunderbare Sau von Landser im Elsass". Albrecht Dürer also made a woodcut of this double monster in front of the village Landser in 1496. A picture of a deer double monster was published in 1603 by Heinrich Ulrich in Germany. In the monograph De monstrorum causis, natura et differentiis ..., published by the Italian Fortunius Licetus in 1616 pictures of double monsters being half man half dog are found. These fantasy figures have been popular for a long time and were supposed to be really in existence. Apart from these fantasy figures many pictures are known from real veterinary double monsters. U. Aldrovandus described in 1642 in his Monstrorum historia, besides many fantasy figures, also real human and veterinary double monsters and he gave also good pictures of them. In the 19th century examples of veterinary duplication monstrosities were published by I. Geoffroy Saint-Hilaire (1832-37), E. F. Gurlt (1832), W. Vrolik (1840) and C. Taruffi (1881); they proposed also concepts concerning the etiology. In the second volume of his famous handbook of teratology (1907), E. Schwalbe described many veterinary double monsters and discussed the theories of the genesis of congenital malformations. Various theories concerning the genesis of double monsters have been given since Aristotle (384-322 B.C.). ... PMID:11625170

  8. Topological Quantum Double

    NASA Astrophysics Data System (ADS)

    Bonneau, Philippe

    Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un précédent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des différentes définitions, on adapte ici de la même manière la définition du double quantique. Ce double topologique est alors dualisable et reflexif (même pour des algèbres de dimension infinie). Dans un cas simple on montre, en considérant le double comme la "classe zéro" d'une théorie d'extensions, l'unicité de cette structure comme algèbre quasi-Hopf.

  9. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  10. Plans for Double Shell Experiments on NIF

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Daughton, W. S.; Gunderson, M. A.; Simakov, A. N.; Wilson, D. C.; Watt, R. G.; Kline, J. L.; Hayes, A. C.; Herrmann, H. W.; Boswell, M.; Danly, C. R.; Merrill, F. E.; Batha, S. H.; Amendt, P. A.; Milovich, J. L.; Robey, H. F.

    2015-11-01

    Double-shells are an alternative approach to achieving indirect drive ignition. These targets consist of a low-Z ablatively-driven outer shell that impacts a high-Z inner shell filled with DT fuel. In contrast to single-shell designs, double-shell targets burn the fuel via volume ignition, albeit with a lower gain. While double-shell capsules are complicated to fabricate, their design includes several beneficial metrics such as a low convergence pusher (C.R. < 10), low implosion speed (~ 250 km/s), a simple few-ns laser drive in a vacuum hohlraum, less sensitivity to hohlraum asymmetries, and low expected laser-plasma instabilities. We present preliminary double-shell capsule designs for NIF using a cryogenic gas DT fill which are optimized for yield and minimized for fall-line mix. Challenges will be discussed, as well as uncertainties and trade-offs in the physics issues compared to single-shells. A development path for double-shell experiments on NIF will be presented. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  11. Possible half-metallic antiferromagnetism in an iridium double-perovskite material

    NASA Astrophysics Data System (ADS)

    Ghimire, Madhav Prasad; Wu, Long-Hua; Hu, Xiao

    2016-04-01

    Using the first-principles density functional approach, we investigate a material Pr2MgIrO6 (PMIO) of double-perovskite structure synthesized recently. According to the calculations, PMIO is a magnetic Mott-Hubbard insulator with μtot≃6 μB per unit cell influenced by the cooperative effect of spin-orbit coupling (SOC) and Coulomb interactions of Ir-5 d and Pr-4 f electrons, as well as the crystal field. When Pr is replaced with Sr gradually, the system exhibits half-metallic (HM) states desirable for spintronics applications. In [Pr2-xSrxMgIrO6] 2, HM antiferromagnetism (HMAFM) with zero magnetic moment in the unit cell is obtained for x =1 , whereas for x =0.5 and 1.5 HM ferrimagnetism (HMFiM) is observed with μtot≃3 μB and μtot≃-3 μB per unit cell respectively. It is emphasized that the large exchange splitting between spin-up and spin-down bands at the Fermi level makes the half-metallicity possible even with strong SOC.

  12. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  13. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  14. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  15. Double aortic arch

    MedlinePlus

    ... double aortic arch may press on the windpipe (trachea) and esophagus, leading to trouble breathing and swallowing. ... to relieve pressure on the esophagus and windpipe (trachea). The surgeon ties off the smaller branch and ...

  16. FLES NEWS, Volume 5, 1991-1992.

    ERIC Educational Resources Information Center

    FLES NEWS, 1992

    1992-01-01

    Articles in the three Volume 5 issues of the National Network for Early Language Learning newsletter include: "Young Authors--A Double Success" (Carolyn Andrade); "Teacher Preparation for Elementary School Foreign Language Programs" (Carol Ann Pesola); "Strategies in a Small School Setting: The Filley FLES Program" (Zoe E. Louton, Robert E.…

  17. Conspicuous variation of the lattice unit cell in the pavonite homologous series and its relation with cation/anion occupational modulations

    SciTech Connect

    Perez-Mato, J.M.; Topa, Dan; Petříček, Václav; Madariaga, Gotzon

    2013-06-01

    Highlights: ► Strong non-uniform variation of unit cell parameters in the pavonite homologous series. ► Conspicuous unit cell variation due to an underlying sub-lattice with cation/anion occupation. ► A modulated model common to the whole series using the superspace formalism proposed. ► Model successfully applied to the {sup 7}P pavonite Ag{sub 3}(Bi,Pb){sub 7}S{sub 12}. ► The model can be applied in a predictive way to other members of the family. - Abstract: The pavonites is a homologous series of sulfosalts with galena-like modules of variable size. A survey of their unit cells reveals that they are severely constrained by the metrics of an underlying common average sublattice. The unit cell of any compound of the series accommodates with high precision an integer number of approximately equal subcells. This explains a peculiar non-uniform variation of the unit cell parameters within the series and evidences that the interface between the galena-like modules, despite having a very different topology, approximately maintains the subperiodicity of the modules, and must therefore be subject to strong steric restrictions. It also implies that cations and anions occupy the nodes of the observed common underlying average sublattice according to a striking alternate cation/anion occupational modulation. This is the starting point for a description of these materials as modulated structures, which can make a proficient use of the approximate atomic positional non-crystallographic correlations caused by their modular character. Under this approach only four parameters suffice to define a realistic approximate model of any member of the series. A full structural characterization of any of the compounds only requires the determination of additional small/smooth modulations. As an example, the case of the {sup 7}P pavonite Ag{sub 3}Bi{sub 6.2}Pb{sub 0.8}S{sub 12}, is analyzed.

  18. Direct Volume Rendering of Curvilinear Volumes

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Wilhelms, J.; Challinger, J.; Alper, N.; Ramamoorthy, S.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Direct volume rendering can visualize sampled 3D scalar data as a continuous medium, or extract features. However, it is generally slow. Furthermore, most algorithms for direct volume rendering have assumed rectilinear gridded data. This paper discusses methods for using direct volume rendering when the original volume is curvilinear, i.e. is divided into six-sided cells which are not necessarily equilateral hexahedra. One approach is to ray-cast such volumes directly. An alternative approach is to interpolate the sample volumes to a rectilinear grid, and use this regular volume for rendering. Advantages and disadvantages of the two approaches in terms of speed and image quality are explored.

  19. Dynamics of Double Stochastic Operators

    NASA Astrophysics Data System (ADS)

    Saburov, Mansoor

    2016-03-01

    A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.

  20. Double Emulsion Templated Celloidosomes

    NASA Astrophysics Data System (ADS)

    Arriaga, Laura R.; Marquez, Samantha M.; Kim, Shin-Hyun; Chang, Connie; Wilking, Jim; Monroy, Francisco; Marquez, Manuel; Weitz, David A.

    2012-02-01

    We present a novel approach for fabricating celloidosomes, which represent a hollow and spherical three-dimensional self-assembly of living cells encapsulating an aqueous core. Glass- capillary microfluidics is used to generate monodisperse water-in-oil-in-water double emulsion templates using lipids as stabilizers. Such templates allow for obtaining single but also double concentric celloidosomes. In addition, after a solvent removal step the double emulsion templates turn into monodisperse lipid vesicles, whose membrane spontaneously phase separates when choosing the adequate lipid composition, providing the adequate scaffold for fabricating Janus-celloidosomes. These structures may find applications in the development of bioreactors in which the synergistic effects of two different types of cells selectively adsorbed on one of the vesicle hemispheres may be exploited.

  1. Tracking The Double Eagle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Last summer a trio of aeronauts made aviation history. Ben Abruzzo, Maxie Anderson and Larry Newman, all of Albuquerque, New Mexico, piloted their balloon Double Eagle I1 from Presque Isle, Maine to Miserey, France, some 50 miles from Paris. They were the first to negotiate a successful Atlantic crossing in a freeflying balloon after a score of attempts over a span of more than a century. A year earlier, Abruzzo and Anderson had made an unsuccessful try in their predecessor balloon Double Eagle. On that occasion, a NASA-developed satellite beacon helped save their lives. Carried aboard the balloon, the simple, seven-pound beacon continuously transmitted signals to NASA's Nimbus-6 satellite. Nimbus relayed the signals to monitors at Goddard Space Flight Center, enabling Goddard to compute the balloon's position. Position reports were then telephoned regularly to Double Eagle's control center at Bedford, Massachusetts. This monitoring system proved invaluable when the balloon encountered trouble several days after liftoff.

  2. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1991-01-01

    A double face sealing device for mounting between two surfaces to provide an airtight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  3. Design friendly double patterning

    NASA Astrophysics Data System (ADS)

    Yesilada, Emek

    2012-03-01

    Double patterning using 193nm immersion has been adapted as the solution to enable 2x nm technology nodes until the arrival of EUV tools. As a result the past few years have seen a huge effort in creating double patterning friendly design flows. These flows have so far proposed a combination of decomposition rules at cell level and/or at placement level as well as sophisticated decomposition tools with varying density, design iteration and decomposition complexity penalties. What is more, designers have to familiarize themselves with double patterning challenges and decomposition tools. In this paper an alternative approach is presented that allows the development of dense standard cells with minimal impact on design flow due to double patterning. A real case study is done on 20nm node first metal layer where standard cells are designed without considering decomposition restrictions. The resulting layout is carefully studied in order to establish decomposition or color rules that can map the layout into two masks required for double patterning but without the need of complex coloring algorithms. Since the rules are derived from a decomposition unaware design they do not in return impose heavy restrictions on the design at the cell or placement level and show substantial density gains compared to previously proposed methods. Other key advantages are a simplified design flow without complex decomposition tools that can generate a faster time to market solution all at the same time keeping designers isolated from the challenges of the double patterning. The derived design rules highlight process development path required for design driven manufacturing.

  4. Double Bragg Interferometry.

    PubMed

    Ahlers, H; Müntinga, H; Wenzlawski, A; Krutzik, M; Tackmann, G; Abend, S; Gaaloul, N; Giese, E; Roura, A; Kuhl, R; Lämmerzahl, C; Peters, A; Windpassinger, P; Sengstock, K; Schleich, W P; Ertmer, W; Rasel, E M

    2016-04-29

    We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity. PMID:27176520

  5. Double Bragg Interferometry

    NASA Astrophysics Data System (ADS)

    Ahlers, H.; Müntinga, H.; Wenzlawski, A.; Krutzik, M.; Tackmann, G.; Abend, S.; Gaaloul, N.; Giese, E.; Roura, A.; Kuhl, R.; Lämmerzahl, C.; Peters, A.; Windpassinger, P.; Sengstock, K.; Schleich, W. P.; Ertmer, W.; Rasel, E. M.

    2016-04-01

    We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity.

  6. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  7. Electrical switching effect of a single-unit-cell CrO2 layer on rutile TiO2 surface

    NASA Astrophysics Data System (ADS)

    Li, Si-Da; Liu, Bang-Gui

    2014-03-01

    Rutile CrO2 is the most important half-metallic material with nearly 100% spin polarization at the Fermi level, and rutile TiO2 is a wide-gap semiconductor with many applications. Here, we show through first-principles investigation that a single-unit-cell CrO2 layer on rutile TiO2 (001) surface is ferromagnetic and semiconductive with a gap of 0.54 eV, and its electronic state transits abruptly to a typical metallic state when an electrical field is applied. Consequently, this makes an interesting electrical switching effect which may be useful in designing spintronic devices.

  8. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    SciTech Connect

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application.

  9. Double-Glazing Interferometry

    ERIC Educational Resources Information Center

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…

  10. Rosette (Double Blossom)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosette, or double blossom, is a serious disease of erect blackberries that is limited to the genus Rubus. Rosette may occur on trailing blackberries and dewberries, but rarely on red and black raspberries. In the United States, rosette occurs from New Jersey to Illinois and southwest to Texas and i...

  11. Double layers without current

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  12. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  13. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  14. Double Trouble (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2015-12-01

    (Abstract only) Variable stars with close companions can be difficult to accurately measure and characterize. The companions can create misidentifications, which in turn can affect the perceived magnitudes, amplitudes, periods, and colors of the variable stars. We will show examples of these Double Trouble stars and the impact their close companions have had on our understanding of some of these variable stars.

  15. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  16. Sun Packs Double Punch

    NASA Video Gallery

    On August 3, the sun packed a double punch, emitting a M6.0-class flare at 9:43 am EDT. This video is of the second, slightly stronger M9.3-class flare at 11:41 pm EDT. Both flares had significant ...

  17. Double-Entry Bookkeeping.

    ERIC Educational Resources Information Center

    Snyder, Herbert

    1999-01-01

    Explains the principles and mechanics of double-entry bookkeeping as a part of the accounting cycle to produce a functioning set of accounting records. Suggests that libraries need to have accurate and timely information about their spending to gain financial control and protect against fraud and abuse. (LRW)

  18. A matterless double slit

    NASA Astrophysics Data System (ADS)

    King, Ben; di Piazza, Antonino; Keitel, Christoph H.

    2010-02-01

    Double slits provide incoming particles with a choice. Those that survive passage through the slits have chosen from two possible paths, which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons, helium atoms, C60 fullerenes, Bose-Einstein condensates and biological molecules. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron-positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in vacuum, supporting elastic scattering between photons. Our double-slit scenario presents, on the one hand, a realizable method with which to observe photon-photon scattering and, on the other hand, demonstrates the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum structure.

  19. Double Marking Revisited

    ERIC Educational Resources Information Center

    Brooks, Val

    2004-01-01

    In 2002, the Qualifications and Curriculum Authority (QCA) published the report of an independent panel of experts into maintaining standards at Advanced Level (A-Level). One of its recommendations was for: limited experimental double marking of scripts in subjects such as English to determine whether the strategy would significantly reduce errors…

  20. [Double ricochet marks].

    PubMed

    Sellier, K

    1987-01-01

    When bullets are flying stably and ricochet on a surface, only one mark is produced. In contrast yawing bullets can produce a double mark if the angle of incidence is sufficiently small (less than or equal to 5 degrees). Distances up to 15 cm were seen between the two marks. PMID:3660953

  1. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  2. Design for Double Rainbow

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the…

  3. Tuning of the temperature window for unit-cell and pore-size enlargement in face-centered-cubic large-mesopore silicas templated by swollen block copolymer micelles.

    PubMed

    Li, Yingyu; Yi, Jinhui; Kruk, Michal

    2015-09-01

    The unit-cell size and pore diameter as functions of temperature are investigated in the syntheses of FDU-12 silicas with face-centered cubic structure templated by Pluronic (PEO-PPO-PEO) block copolymer micelles swollen by toluene. The temperature range in which the unit-cell size and pore size strongly increase as temperature decreases is correlated with the critical micelle temperature (CMT) of the surfactant. While Pluronic F127 affords a wide range of unit-cell parameters (28-51 nm) and pore diameters (16-32 nm), it renders moderately enlarged pore sizes at 25 °C. The use of Pluronic F108 with higher CMT affords FDU-12 with very large unit-cell size (∼49 nm) and large pore diameter (27 nm) at 23 °C. Large unit-cell size (40-41 nm) and pore size (22 nm) were obtained even at 25 °C. The application of Pluronics F87 and F88 with much smaller molecular weights and higher CMTs also allows one to synthesize FDU-12 with quite large unit-cell parameters and pore sizes at room temperature. The present work demonstrates that one can judiciously select Pluronic surfactants with appropriate CMT to shift the temperature range in which the pore diameter is readily tunable. PMID:26178137

  4. Quasistatic nonlinear characteristics of double-reed instruments.

    PubMed

    Almeida, André; Vergez, Christophe; Caussé, René

    2007-01-01

    This article proposes a characterization of the double reed in quasistatic regimes. The nonlinear relation between the pressure drop, deltap, in the double reed and the volume flow crossing it, q, is measured for slow variations of these variables. The volume flow is determined from the pressure drop in a diaphragm replacing the instrument's bore. Measurements are compared to other experimental results on reed instrument exciters and to physical models, revealing that clarinet, oboe, and bassoon quasistatic behavior relies on similar working principles. Differences in the experimental results are interpreted in terms of pressure recovery due to the conical diffuser role of the downstream part of double-reed mouthpieces (the staple). PMID:17297807

  5. The high sensitivity double beta spectrometer TGV

    NASA Astrophysics Data System (ADS)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  6. Double acting stirling engine phase control

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  7. Electrochemical Studies of Carbon Steel Corrosion in Hanford Double-Shell Tank Waste

    SciTech Connect

    Duncan, James B.; Windisch, Charles F.; Divine, James R.

    2007-03-11

    This paper reports on the electrochemical scans for the supernatant of Hanford double shell tank 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford double shell tank 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  8. Double Degrees: Double the Trouble or Twice the Return?

    ERIC Educational Resources Information Center

    Russell, A. Wendy; Dolnicar, Sara; Ayoub, Marina

    2008-01-01

    Double degrees (also called joint or combined degrees)--programs of study combining two bachelor degrees--are increasingly popular in Australian universities, particularly among women. A case study using qualitative and quantitative surveys of current and past double degree students is presented. The study indicates that double degrees benefit…

  9. Selective Laser Melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications.

    PubMed

    Mullen, Lewis; Stamp, Robin C; Brooks, Wesley K; Jones, Eric; Sutcliffe, Christopher J

    2009-05-01

    In this study, a novel porous titanium structure for the purpose of bone in-growth has been designed, manufactured and evaluated. The structure was produced by Selective Laser Melting (SLM); a rapid manufacturing process capable of producing highly intricate, functionally graded parts. The technique described utilizes an approach based on a defined regular unit cell to design and produce structures with a large range of both physical and mechanical properties. These properties can be tailored to suit specific requirements; in particular, functionally graded structures with bone in-growth surfaces exhibiting properties comparable to those of human bone have been manufactured. The structures were manufactured and characterized by unit cell size, strand diameter, porosity, and compression strength. They exhibited a porosity (10-95%) dependant compression strength (0.5-350 Mpa) comparable to the typical naturally occurring range. It is also demonstrated that optimized structures have been produced that possesses ideal qualities for bone in-growth applications and that these structures can be applied in the production of orthopedic devices. PMID:18837456

  10. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness

    NASA Astrophysics Data System (ADS)

    Wang, Di; Li, Jing-Ning; Zhou, Yu; Xu, Di-Hu; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-02-01

    We report on van der Waals epitaxy of single-crystalline α-MoO3 sheets with single-unit-cell thickness on the mica substrate. The crystalline lattice structure, growth habits, and Raman spectra of the grown α-MoO3 sheets are analyzed. The anisotropic growth of α-MoO3 sheets can be understood by period bond chains theory. Unlike monolayer MoS2 or graphene, Raman spectra of α-MoO3 do not possess frequency shift from bulk crystal to single-unit-cell layer. The relative intensities of two Raman modes (Ag) at 159 and 818 cm-1 are sensitive to the polarization of incident light. This scenario provides a quick approach to determine the lattice orientation of α-MoO3 crystals. Our studies indicate that van der Waals epitaxial growth is a simple and effective way to fabricate high-quality ultrathin α-MoO3 sheets for physical property investigations and potential applications.

  11. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  12. Measuring the Double Helix

    SciTech Connect

    Mathew-Fenn, R.S.; Das, R.; Harbury, P.A.B.

    2009-05-26

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  13. Double meningocele. Case report.

    PubMed

    Durmaz, R; Arslantaş, A; Ozön, Y H; Tel, E

    2000-01-01

    The coexistence of two distinct meningoceles of the spine is a very unusual event. We report a three-day-old boy with double meningoceles at the thoracic and lumbar levels. The connection between the stalk of the thoracic meningocele and the spinal cord, as seen on magnetic resonance imaging, showed a neurological involvement in this lesion. Our case is only the third without association of congenital anomalies or neurofibromatosis to be reported to date. PMID:11196754

  14. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    SciTech Connect

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; Raaij, Mark J. van

    2007-05-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals.

  15. The double massa intermedia

    PubMed Central

    Baydin, Serhat; Gungor, Abuzer; Baran, Oguz; Tanriover, Necmettin; Rhoton, Albert L.

    2016-01-01

    Background: To describe the rare finding of a double massa intermedia (MI). Typically, the MI (interthalamic adhesion) is a single bridge of gray matter connecting the medial surfaces of the thalami. Methods: Twelve formalin- and alcohol-fixed human third ventricles were examined from superior to inferior by fiber dissection technique under ×6 to ×40 magnifications and with the endoscope. Results: In all hemispheres, the anterior and posterior commissure were defined. The MI, which bridges the medial surfaces of the thalami, was defined in all hemispheres. In one hemisphere, there was a second bridge between the thalami, located posteroinferior to the common MI. Endoscopic view confirmed that there was a second MI in this specimen. The MI usually traverses the third ventricle posterior to the foramen of Monro and connects the paired thalami. The MI is an important landmark during endoscopic and microscopic surgeries of the third ventricle. Although a double MI is very rare, surgeons should be aware of the possibility in their surgical planning. Conclusion: The surgeon should be aware of the possibility of a double MI to avoid confusion during third ventricle surgery. PMID:27127695

  16. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1991-01-01

    A double face sealing device is disclosed for mounting between two surfaces to provide an air-tight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  17. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  18. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  19. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.

    PubMed

    Felfel, R M; Poocza, Leander; Gimeno-Fabra, Miquel; Milde, Tobias; Hildebrand, Gerhard; Ahmed, Ifty; Scotchford, Colin; Sottile, Virginie; Grant, David M; Liefeith, Klaus

    2016-02-01

    The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2  ×  4  ×  2 mm(3). Scaffolds made from poly(D,L-lactide-co-ɛ-caprolactone) copolymer with varying lactic acid (LA) and ɛ -caprolactone (CL) ratios (LC16:4, 18:2 and 9:1) were generated via ring-opening-polymerization and photoactivation. The reactivity was quantified using photo-DSC, yielding a double bond conversion ranging from 70% to 90%. The pore sizes for all LC scaffolds were see 300 μm and throat sizes varied from 152 to 177 μm. In vitro degradation was conducted at different temperatures; 37, 50 and 65 °C. Change in compressive properties immersed at 37 °C over time was also measured. Variations in thermal, degradation and mechanical properties of the LC scaffolds were related to the LA/CL ratio. Scaffold LC16:4 showed significantly lower glass transition temperature (T g) (4.8 °C) in comparison with the LC 18:2 and 9:1 (see 32 °C). Rates of mass loss for the LC16:4 scaffolds at all temperatures were significantly lower than that for LC18:2 and 9:1. The degradation activation energies for scaffold materials ranged from 82.7 to 94.9 kJ mol(-1). A prediction for degradation time was applied through a correlation between long-term degradation studies at 37 °C and short-term studies at elevated temperatures (50 and 65 °C) using the half-life of mass loss (Time (M1/2)) parameter. However, the initial compressive moduli for LC18:2 and 9:1 scaffolds were 7 to 14 times higher than LC16:4 (see 0.27) which was suggested to be due to its higher CL content (20%). All scaffolds showed a gradual loss in their compressive strength and modulus over time as a result of progressive mass loss over time. The manufacturing process utilized and the scaffolds produced have potential for use in tissue engineering and regenerative medicine

  20. Cost optimization in low volume VLSI circuits

    NASA Technical Reports Server (NTRS)

    Cook, K. B., Jr.; Kerns, D. V., Jr.

    1982-01-01

    The relationship of integrated circuit (IC) cost to electronic system cost is developed using models for integrated circuit cost which are based on design/fabrication approach. Emphasis is on understanding the relationship between cost and volume for custom circuits suitable for NASA applications. In this report, reliability is a major consideration in the models developed. Results are given for several typical IC designs using off the shelf, full custom, and semicustom IC's with single and double level metallization.

  1. Double pituitary adenomas.

    PubMed

    Iacovazzo, D; Bianchi, A; Lugli, F; Milardi, D; Giampietro, A; Lucci-Cordisco, E; Doglietto, F; Lauriola, L; De Marinis, L

    2013-04-01

    Double pituitary adenomas represent up to 2.6 % of pituitary adenomas in large surgical series and up to 3.3 % of patients with Cushing's disease have been found to have double or multiple pituitary adenomas. We report the case of a 60-year-old male patient whose medical history began in 2002 with erectile dysfunction; hyperprolactinemia was found and MRI showed a 6-mm area of delayed enhancement in the lateral portion of the right pituitary lobe. Treatment with cabergoline was started with normalization of prolactin levels; the following MRI, performed in 2005 and 2008, showed shrinkage of the pituitary lesion. In 2005, the patient began to manifest weight gain, hypertension, and facial plethora, but no further evaluations were done. In January 2010, the patient came to our attention and underwent multiple tests that suggested Cushing's disease. A new MRI was negative. Bilateral inferior petrosal sinus sampling showed significant pituitary-to-peripheral ratio and, in May 2010, the patient underwent exploratory pituitary surgery with evidence of a 1-2-mm white-coloured midline area compatible with pituitary adenoma that was surgically removed. Post-operatively, the patient's clinical conditions improved with onset of secondary hypoadrenalism. The histologic examination confirmed a pituitary adenoma (immunostaining was found to be positive for ACTH and negative for prolactin). We report the case of an ACTH-producing microadenoma metachronous to a prolactin secreting microadenoma although not confirmed histologically, shrunk by medical treatment. A review of data in the literature regarding double or multiple pituitary adenomas has also been done. PMID:23325364

  2. The Double Star mission

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Escoubet, C. P.; Pu, Z.; Laakso, H.; Shi, J. K.; Shen, C.; Hapgood, M.

    2005-11-01

    The Double Star Programme (DSP) was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC) in Beijing and the European Payload Operations Service (EPOS) at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC) and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  3. Estimating crustal heterogeneity from double-difference tomography

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.

    2006-01-01

    Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.

  4. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO_{2}(001).

    PubMed

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-08-01

    We report on the observation of high-temperature (T_{c}) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO_{2}(001) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-T_{c} superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxygen vacancies at the interface, we find their very limited effect on the superconductivity, which excludes interfacial oxygen vacancies as the primary source for charge transfer between the substrate and FeSe films. Our findings have placed severe constraints on any microscopic model for the high-T_{c} superconductivity in FeSe-related heterostructures. PMID:27541474

  5. Simultaneous microwave photonic and phononic band gaps in piezoelectric-piezomagnetic superlattices with three types of domains in a unit cell

    NASA Astrophysics Data System (ADS)

    Tang, Zheng-hua; Jiang, Zheng-Sheng; Chen, Tao; Lei, Da-Jun; Yan, Wen-Yan; Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min

    2016-04-01

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe2O4) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices.

  6. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure.

    PubMed

    Akama, Hiroyuki; Kanemaki, Misa; Tsukihara, Tomitake; Nakagawa, Atsushi; Nakae, Taiji

    2005-01-01

    Crystals of the drug-discharge outer membrane protein OprM (MW = 50.9 kDa) of the MexAB-OprM multidrug transporter of Pseudomonas aeruginosa have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants. The crystal belonged to space group R32, with unit-cell parameters a = b = 85.43, c = 1044.3 A. Diffraction data for OprM were obtained using the undulator synchrotron-radiation beamline at SPring-8 (BL44XU, Osaka University), which allowed an extra-long specimen-to-detector distance with a wide detector area. The crystal diffracted to 2.56 A resolution using 0.9 A X-rays from the synchrotron-radiation source. A heavy-atom derivative for isomorphous replacement phasing was obtained using iridium chloride. PMID:16508113

  7. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO2(001 )

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-08-01

    We report on the observation of high-temperature (Tc) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO2(001 ) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-Tc superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxygen vacancies at the interface, we find their very limited effect on the superconductivity, which excludes interfacial oxygen vacancies as the primary source for charge transfer between the substrate and FeSe films. Our findings have placed severe constraints on any microscopic model for the high-Tc superconductivity in FeSe-related heterostructures.

  8. Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO3(110)

    NASA Astrophysics Data System (ADS)

    Zhou, Guanyu; Zhang, Ding; Liu, Chong; Tang, Chenjia; Wang, Xiaoxiao; Li, Zheng; Song, Canli; Ji, Shuaihua; He, Ke; Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-05-01

    We report high temperature superconductivity in one unit-cell (1-UC) FeSe films grown on SrTiO3 (STO)(110) substrate by molecular beam epitaxy. By in-situ scanning tunneling microscopy measurement, we observe a superconducting gap as large as 17 meV on the 1-UC FeSe films. Transport measurements on 1-UC FeSe/STO(110) capped with FeTe layers reveal superconductivity with an onset transition temperature (TC) of 31.6 K and an upper critical magnetic field of 30.2 T. We also find that TC can be further increased by external electric field although the effect is weaker than that on STO(001) substrate.

  9. Is it Possible to have the Similar Unit Cell in Crystals of Different form from the same Macromolecule? (A Case Study of Ribosome Crystals)

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.

  10. The Double Chooz Experiment

    NASA Astrophysics Data System (ADS)

    Pfahler, Patrick; Double Chooz Collaboration

    2012-07-01

    Double Chooz is a reactor bar nue-disappearance experiment situated at the commercial nuclear power plant of Chooz in northern France. The experiment aims for the revelation of the last unknown mixing angle Θ13 as a part of the neutrino mixing matrix or the improvement of the upper limit for sin2(2Θ13), which is currently < 0.14 (90% CL). A newly developed gadolinium-loaded liquid scintillator as target allows the detection of electron-anti-neutrinos (bar nue) using the inverse beta decay and its distinct decay pattern (bar nue + p → e+ +n). Double Chooz uses two identical detectors at different distances in order to reduce systematic uncertainties. This will allow, after a data taking phase of 4 years, an improvement on sin2(2Θ13) down to < 0.03 (90% CL). The first (far) detector has successfully been installed and filled, and takes data since April of 2011. A preliminary analysis of first 120 days revealed about 4000 Neutrino-candidates and a stable detector-setup with low backgrounds. The commissioning of the second (near) detector is expected for the beginning of 2013 and will provide maximum sensitivity for the experiment.

  11. Volume thermal expansion along the jadeite-diopside join

    NASA Astrophysics Data System (ADS)

    Pandolfo, Francesco; Cámara, Fernando; Domeneghetti, M. Chiara; Alvaro, Matteo; Nestola, Fabrizio; Karato, Shun-Ichiro; Amulele, George

    2015-01-01

    An in situ single-crystal high-temperature X-ray diffraction study was performed on clinopyroxene crystals along the jadeite, (NaAlSi2O6 Jd)-diopside (CaMgSi2O6 Di) join. In particular, natural samples of jadeite, diopside, P2/ n omphacite and three C2/ c synthetic samples with intermediate composition (i.e., Jd80, Jd60, Jd40) were investigated. In order to determine the unit-cell volume thermal expansion coefficient ( α V), the unit-cell parameters for all these compositions have been measured up to c.a. 1,073 K. The evolution of the unit-cell volume thermal expansion coefficient ( α V) along the Jd-Di join at different temperatures has been calculated by using a modified version of the equation proposed by Holland and Powell (J Metamorph Geol 16(3):309-343, 1998). The equation obtained from the α V at room- T (i.e., α V303K,1bar) allows us to predict the room- T volume thermal expansion for Fe-free C2/ c clinopyroxenes with intermediate composition along the binary join Jd-Di. The observed α V value for P2/ n omphacite α V(303K,1bar) = 2.58(5) × 10-5 K-1 was compared with that recalculated for disordered C2/ c omphacite published by Pandolfo et al. (Phys Chem Miner 1-10, 2012) [ α V(303K,1bar) = 2.4(5) × 10-5 K-1]. Despite the large e.s.d.'s for the latter, the difference of both values at room- T is small, indicating that convergent ordering has practically no influence on the room- T thermal expansion. However, at high- T, the smaller thermal expansion coefficient for the C2/c sample with respect to the P2/n one with identical composition could provide further evidence for its reduced stability relative to the ordered one.

  12. Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM

    NASA Astrophysics Data System (ADS)

    Hamidian, M. H.; Firmo, I. A.; Fujita, K.; Mukhopadhyay, S.; Orenstein, J. W.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E.-A.; Davis, J. C.

    2012-05-01

    Direct visualization of electronic-structure symmetry within each crystalline unit cell is a new technique for complex electronic matter research (Lawler et al 2010 Nature 466 347-51, Schmidt et al 2011 New J. Phys. 13 065014, Fujita K et al 2012 J. Phys. Soc. Japan 81 011005). By studying the Bragg peaks in Fourier transforms of electronic structure images and particularly by resolving both the real and imaginary components of the Bragg amplitudes, distinct types of intra-unit-cell symmetry breaking can be studied. However, establishing the precise symmetry point of each unit cell in real space is crucial in defining the phase for such a Bragg-peak Fourier analysis. Exemplary of this challenge is the high-temperature superconductor Bi2Sr2CaCu2O8+δ for which the surface Bi atom locations are observable, while it is the invisible Cu atoms that define the relevant CuO2 unit-cell symmetry point. Here we demonstrate, by imaging with picometer precision the electronic impurity states at individual Zn atoms substituted at Cu sites, that the phase established using the Bi lattice produces a ˜2%(2π) error relative to the actual Cu lattice. Such a phase assignment error would not diminish reliability in the determination of intra-unit-cell rotational symmetry breaking at the CuO2 plane (Lawler et al 2010 Nature 466 347-51, Schmidt et al 2011 New J. Phys. 13 065014, Fujita K et al 2012 J. Phys. Soc. Japan 81 011005). Moreover, this type of impurity atom substitution at the relevant symmetry site can be of general utility in phase determination for the Bragg-peak Fourier analysis of intra-unit-cell symmetry.

  13. Double layers and electrostatic shocks

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.

    1981-01-01

    It is shown that it is useful to define double layers and shocks so that the ion phase spaces of double layers are the mirror image (about zero ion velocity) of the ion phase spaces for laminar electrostatic shocks. The distinguishing feature is the direction of the free ion velocity. It is also shown that double layers can exist without the presence of trapped ions. The Bohm condition for double layers, that the ion drift velocity on the high potential side must be greater than the ion sound velocity, is shown to be related to a requirement of a lower limit on the Mach number of laminar electrostatic shocks

  14. Colored Flag by Double Refraction.

    ERIC Educational Resources Information Center

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  15. Apple Valley Double Star Workshop

    NASA Astrophysics Data System (ADS)

    Brewer, Mark

    2015-05-01

    The High Desert Astronomical Society hosts an annual double star workshop, where participants measure the position angles and separations of double stars. Following the New Generation Science Standards (NGSS), adopted by the California State Board of Education, participants are assigned to teams where they learn the process of telescope set-up and operation, the gathering of data, and the reduction of the data. Team results are compared to the latest epoch listed in the Washington Double Star Catalog (WDS) and papers are written for publication in the Journal of Double Star Observations (JDSO). Each team presents a PowerPoint presentation to their peers about actual hands-on astronomical research.

  16. Multivariate volume rendering

    SciTech Connect

    Crawfis, R.A.

    1996-03-01

    This paper presents a new technique for representing multivalued data sets defined on an integer lattice. It extends the state-of-the-art in volume rendering to include nonhomogeneous volume representations. That is, volume rendering of materials with very fine detail (e.g. translucent granite) within a voxel. Multivariate volume rendering is achieved by introducing controlled amounts of noise within the volume representation. Varying the local amount of noise within the volume is used to represent a separate scalar variable. The technique can also be used in image synthesis to create more realistic clouds and fog.

  17. Cosmological moduli problem in large volume scenario and thermal inflation

    SciTech Connect

    Choi, Kiwoon; Park, Wan-Il; Shin, Chang Sub E-mail: wipark@kias.re.kr

    2013-03-01

    We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.

  18. Dual double field theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Hohm, Olaf; Penas, Victor A.; Riccioni, Fabio

    2016-06-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O( D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O( D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  19. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cremonesi, Oliviero

    2016-05-01

    After more than 3/4 of century from its proposal, Neutrinoless Double Beta Decay (NLDBD) is still missing observation and continues to represent the only practical method for investigating the Dirac/Majorana nature of neutrinos. In case neutrinos would be Majorana particles, NLDBD would provide unique informations on their properties (absolute mass scale and Majorana phases). Boosted by the discovery of neutrino oscillations, a number of experiments with improved sensitivity have been proposed in the past decade. Some of them have recently started operation and others are ready to start. They will push the experimental sensitivity on the decay halflife beyond 1026 year, starting to analyze the region of the inverted mass hierarchy. The status and perspectives of the ongoing experimental effort are reviewed. Uncertainties coming from the calculation othe decay nuclear matrix elements (NME) as well as the recently suggested possibility of a relevant quenching of the axial coupling constant are also discussed.

  20. Double layer secure sketch

    NASA Astrophysics Data System (ADS)

    Li, Cai

    2012-09-01

    Secure sketch has been applied successfully in a wide variety of applications like cryptography, biometric authentication systems and so on. All of these secure sketches have properties in common namely error-tolerance and small entropy loss. The former ensures an input set w' can unlock the system if w' is substantially overlapped with a template set w while the latter means it is hard for an adversary to get the information of w even with the knowledge of s, which is produced by w and stored in the system publicly. In their constructions, they all consider w as a set of atomic elements. However, in the real word, it is very likely the elements in the template set are sets as well. In this paper, we propose a double layer secure sketch to address this issue.

  1. Doubled Color Codes

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    Combining protection from noise and computational universality is one of the biggest challenges in the fault-tolerant quantum computing. Topological stabilizer codes such as the 2D surface code can tolerate a high level of noise but implementing logical gates, especially non-Clifford ones, requires a prohibitively large overhead due to the need of state distillation. In this talk I will describe a new family of 2D quantum error correcting codes that enable a transversal implementation of all logical gates required for the universal quantum computing. Transversal logical gates (TLG) are encoded operations that can be realized by applying some single-qubit rotation to each physical qubit. TLG are highly desirable since they introduce no overhead and do not spread errors. It has been known before that a quantum code can have only a finite number of TLGs which rules out computational universality. Our scheme circumvents this no-go result by combining TLGs of two different quantum codes using the gauge-fixing method pioneered by Paetznick and Reichardt. The first code, closely related to the 2D color code, enables a transversal implementation of all single-qubit Clifford gates such as the Hadamard gate and the π / 2 phase shift. The second code that we call a doubled color code provides a transversal T-gate, where T is the π / 4 phase shift. The Clifford+T gate set is known to be computationally universal. The two codes can be laid out on the honeycomb lattice with two qubits per site such that the code conversion requires parity measurements for six-qubit Pauli operators supported on faces of the lattice. I will also describe numerical simulations of logical Clifford+T circuits encoded by the distance-3 doubled color code. Based on a joint work with Andrew Cross.

  2. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  3. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  4. The double-mode Cepheids

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    1985-06-01

    Recent observational and theoretical results on double-mode Cepheids are reviewed. The likelihood that recently proposed candidate Cepheids are indeed Cepheids is evaluated. Periods, period ratios, and semi-amplitudes of the light and radial velocity variations of double-mode Cepheids are given. The physical and pulsational properties of double-mode Cepheids are discussed, reviewing evidence that these stars are Population I objects of high mass and that they all have the same mean effective temperature. The discovery of strong H-alpha emission occurring at seemingly random phases is addressed. Attempts to resolve the mass discrepancy problem of double-mode Cepheids, which results from observations showing that these Cepheids are indistinguishable from normal Cepheids of similar period, are reviewed along with attempts to find the cause of double-mode pulsation.

  5. Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments

    PubMed Central

    Kontenis, Lukas; Samim, Masood; Karunendiran, Abiramy; Krouglov, Serguei; Stewart, Bryan; Barzda, Virginijus

    2016-01-01

    The experimental implementation of double Stokes Mueller polarimetric microscopy is presented. This technique enables a model-independent and complete polarimetric characterization of second harmonic generating samples using 36 Stokes parameter measurements at different combinations of incoming and outgoing polarizations. The degree of second harmonic polarization and the molecular nonlinear susceptibility ratio are extracted for individual focal volumes of a fruit fly larva wall muscle. PMID:26977362

  6. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  7. Latest Double Chooz results

    NASA Astrophysics Data System (ADS)

    Lasserre, Thierry; Double Chooz Collaboration

    2016-05-01

    I report the latest results from the Double Chooz experiment on the θ13 neutrino mixing angle. Two detectors are located at distances of 400 m and 1050 m from the reactor cores of the Chooz nuclear power station (France) to measure the disappearance of electron antineutrinos. The far detector has been taking data since 2011, accumulating a live time of 467.90 days (66.5 GW-ton-year). In this article we focus on the latest measurement using neutrino-induced neutron capture on hydrogen. A new analysis improved the signal efficiency and reduced the backgrounds and systematic uncertainties, leading to sin2 2θ 13 = 0.095+0.039 -0.038. When combined with the Gadolinium-based analysis this leads to sin2 2θ13 = 0.088+0.33 -0.033. The distortion from the prediction above a visible energy of 4 MeV is confirmed. The near detector started data taking in 2014 and first results shall be reported in 2016.

  8. Supported double membranes

    PubMed Central

    Murray, David H.; Tamm, Lukas K.; Kiessling, Volker

    2009-01-01

    Planar model membranes, like supported lipid bilayers and surface-tethered vesicles, have been proven to be useful tools for the investigation of complex biological functions in a significantly less complex membrane environment. In this study, we introduce a supported double membrane system that should be useful for studies that target biological processes in the proximity of two lipid bilayers such as the periplasm of bacteria and mitochondria or the small cleft between pre-and postsynaptic neuronal membranes. Large unilamellar vesicles (LUV) were tethered to a preformed supported bilayer by a biotin-streptavidin tether. We show from single particle tracking (SPT) experiments that these vesicle are mobile above the plane of the supported membrane. At higher concentrations, the tethered vesicles fuse to form a second continuous bilayer on top of the supported bilayer. The distance between the two bilayers was determined by fluorescence interference contrast (FLIC) microscopy to be between 16 and 24 nm. The lateral diffusion of labeled lipids in the second bilayer was very similar to that in supported membranes. SPT experiments with reconstituted syntaxin-1A show that the mobility of transmembrane proteins was not improved when compared with solid supported membranes. PMID:19236921

  9. Double acting bit holder

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  10. Pion double charge exchange reactions leading to double pionic atoms

    SciTech Connect

    Nieves, J.; Oset, E.; Vincente-Vacas, M.J. ); Hirenzaki, S.; Toki, H. )

    1992-10-20

    In this paper, the authors study theoretically pion double charge exchange reactions leading to double pionic atoms. The reaction cross-sections with two pions in the deeper bound pionic orbits in [sup 208]Pb are calculated with realistic pionic atom wave functions and distortion effects. The cross-sections are found to be d[sup 2] [sigma]/dEd[Omega] [approx] 10[sup [minus] 3] [minus] 10[sup [minus] 4] [mu]b/srMeV, which are only a small fraction of the double charge exchange.

  11. Clinical value of tumor doubling estimations in multiple endocrine neoplasia type II.

    PubMed

    Jackson, C E; Talpos, G B; Block, M A; Norum, R A; Lloyd, R V; Tashjian, A H

    1984-12-01

    Experience with children with multiple endocrine neoplasia (MEN) type IIb has emphasized that medullary thyroid cancer (MTC) in MEN IIb is more aggressive than in MEN IIa. Earlier ages of onset and apparently more rapid growth of MTC in MEN IIb suggest that these tumors have earlier ages of conversion to malignant states and/or shorter doubling times. The age at which a hyperplastic C cell becomes a malignant cell and the true doubling time cannot be estimated presently. Maximum volume-doubling times of 35 and 75 days (21 to 26 doublings) were calculated from tumor size and age at operation in five patients with MEN IIb aged 2 to 5 years. Calculations in 20 patients with MEN IIa revealed maximum doubling times of 110 to 440 days, with ages ranging from 7 to 29 years and number of doubling ranging from 18 to 38. Positive provocative calcitonin tests in two adult patients with MEN IIa after 10 to 11 years of repeated negative tests suggest a minimum doubling time of 190 to 210 days. Such experience emphasizes that negative stimulated calcitonin tests less than 11 years after operation do not provide assurance of cures for MTC in MEN IIa although negative tests after more than 5 years for MEN IIb are encouraging. Calculations of volume doublings accounting for various-sized tumors are compatible with Knudson's two-mutational-event theory on the initiation of neoplasia. PMID:6150555

  12. Neutrinoless double beta decay search with SNO+

    NASA Astrophysics Data System (ADS)

    Lozza, V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.'s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  13. Statistical theory of the continuous double auction

    NASA Astrophysics Data System (ADS)

    Smith, Eric; Doyne Farmer, J.; Gillemot, László; Krishnamurthy, Supriya

    2003-12-01

    Most modern financial markets use a continuous double auction mechanism to store and match orders and facilitate trading. In this paper we develop a microscopic dynamical statistical model for the continuous double auction under the assumption of IID random order flow, and analyse it using simulation, dimensional analysis, and theoretical tools based on mean field approximations. The model makes testable predictions for basic properties of markets, such as price volatility, the depth of stored supply and demand versus price, the bid-ask spread, the price impact function, and the time and probability of filling orders. These predictions are based on properties of order flow and the limit order book, such as share volume of market and limit orders, cancellations, typical order size, and tick size. Because these quantities can all be measured directly there are no free parameters. We show that the order size, which can be cast as a non-dimensional granularity parameter, is in most cases a more significant determinant of market behaviour than tick size. We also provide an explanation for the observed highly concave nature of the price impact function. On a broader level, this work suggests how stochastic models based on zero intelligence agents may be useful to probe the structure of market institutions. Like the model of perfect rationality, a stochastic zero intelligence model can be used to make strong predictions based on a compact set of assumptions, even if these assumptions are not fully believable.

  14. Giant photovoltaic effects driven by residual polar field within unit-cell-scale LaAlO3 films on SrTiO3

    PubMed Central

    Liang, Haixing; Cheng, Long; Zhai, Xiaofang; Pan, Nan; Guo, Hongli; Zhao, Jin; Zhang, Hui; Li, Lin; Zhang, Xiaoqiang; Wang, Xiaoping; Zeng, Changgan; Zhang, Zhenyu; Hou, J. G.

    2013-01-01

    For polar/nonpolar heterostructures, Maxwell's theory dictates that the electric potential in the polar components will increase divergently with the film thickness. For LaAlO3/SrTiO3, a conceptually intriguing route, termed charge reconstruction, has been proposed to avert such “polar catastrophe”. The existence of a polar potential in LaAlO3 is a prerequisite for the validity of the charge reconstruction picture, yet to date, its direct measurement remains a major challenge. Here we establish unambiguously the existence of the residual polar potential in ultrathin LaAlO3 films on SrTiO3, using a novel photovoltaic device design as an effective probe. The measured lower bound of the residual polar potential is 1.0 V. Such a direct observation of the giant residual polar potential within the unit-cell-scale LaAlO3 films amounts to a definitive experimental evidence for the charge reconstruction picture, and also points to new technological significance of oxide heterostructures in photovoltaic and sensing devices with atomic-scale control. PMID:23756918

  15. P-H bonds in the surface unit cell of P-rich ordered InP(001) grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Letzig, T.; Schimper, H.-J.; Hannappel, T.; Willig, F.

    2005-01-01

    The Fourier transform infrared spectrum of the MOCVD-grown (metalorganic chemical vapor deposition) P-rich ordered InP(001) surface was measured in ultrahigh vacuum applying attenuated total reflection. The surface was measured without carrying out any post-transfer surface preparation. The low-energy electron defraction pattern showed the well-known (2×1) structure with streaks in the [-110] direction. After exposure to activated deuterium, the different infrared spectrum revealed a pronounced peak at 2308cm-1 , which was ascribed to P-H bonds. Polarization-dependent spectra showed the dipole moments of the P-H bonds oriented only in [001] and [-110] directions. A weak 0.8cm-1 splitting was measured between the symmetric and antisymmetric modes of two neighboring P-H bonds. These observations provide direct proof for two oriented P-H bonds as in the surface unit cell proposed by Hahn and Schmidt [Surf. Rev. Lett. 10, 163 (2003)]. Additional much smaller peaks with different polarization behavior varied greatly for different samples and were ascribed to defects or impurities.

  16. High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O(8+x) down to half-unit-cell thickness by protection with graphene.

    PubMed

    Jiang, Da; Hu, Tao; You, Lixing; Li, Qiao; Li, Ang; Wang, Haomin; Mu, Gang; Chen, Zhiying; Zhang, Haoran; Yu, Guanghui; Zhu, Jie; Sun, Qiujuan; Lin, Chengtian; Xiao, Hong; Xie, Xiaoming; Jiang, Mianheng

    2014-01-01

    High-Tc superconductors confined to two dimension exhibit novel physical phenomena, such as superconductor-insulator transition. In the Bi2Sr2CaCu2O(8+x) (Bi2212) model system, despite extensive studies, the intrinsic superconducting properties at the thinness limit have been difficult to determine. Here, we report a method to fabricate high quality single-crystal Bi2212 films down to half-unit-cell thickness in the form of graphene/Bi2212 van der Waals heterostructure, in which sharp superconducting transitions are observed. The heterostructure also exhibits a nonlinear current-voltage characteristic due to the Dirac nature of the graphene band structure. More interestingly, although the critical temperature remains essentially the same with reduced thickness of Bi2212, the slope of the normal state T-linear resistivity varies by a factor of 4-5, and the sheet resistance increases by three orders of magnitude, indicating a surprising decoupling of the normal state resistance and superconductivity. The developed technique is versatile, applicable to investigate other two-dimensional (2D) superconducting materials. PMID:25483591

  17. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2016-09-01

    Present work is devoted to the analytical investigation of the bifurcation structure of special class of nonstationary low-energy regimes emerging in the locally resonant unit-cell model. System under consideration comprises an outer mass with internal rotator and subject to the 2D, nonlinear local potential. These regimes are characterized by the slow, purely rotational motion of the rotator synchronized with the periodic energy beats between the axial and the lateral vibrations of the outer element. Thus the angular speed of the rotator and the beating frequency of the outer element satisfy the 1:2 resonance condition. In the present study these regimes are referred to as regimes of synchronous nonlinear beats (RSNB). Using the regular muti-scale analysis in the limit of low energy excitation we derive the slow-flow model. To showcase the evolution of RSNBs we used the special Poincaré map technique applied on the slow-flow model. Results of the Poincaré sections unveiled some interesting local bifurcations undergone by these regimes. Further analysis of the slow-flow model enabled us to describe the RSNBs analytically as well as exposed their entire bifurcation structure. The bifurcation analysis has shown the coexistence of several branches of RSNBs corresponding to the regimes of weak and strong, two-dimensional, recurrent energy channeling. We substantiate the results of the analytical study with numerical simulations of the full model and find them to be in the very good agreement.

  18. Description of a primitive valley scattering unit cell to understand anisotropic inter-valley scattering in AlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, S.; Grayson, M.

    2011-03-01

    Valley degenerate systems have an extra scattering channel not present in single valley systems, namely inter-valley scattering. To help classify anisotropic inter-valley scattering in degenerate multi-valley systems, such as AlAs quantum wells (QWs), we define a valley scattering primitive unit cell in momentum space which allows one to distinguish purely in-plane momentum scattering from scattering requiring an out-of-plane momentum component. The standard depiction of a 2D Brillouin zone of a quantum confined valley-degenerate system projects all valleys to a single plane and this depiction loses information about the momentum scattering component that was projected out. Because QW confinement potentials are inherently anisotropic, the disorder potential characteristic of quantum confinement can create anisotropic short-wavelength inter- valley scattering potentials favoring in-plane momentum scattering. We demonstrate that the valley scattering cell for AlAs QWs grown along various orientations is particularly useful in identifying relevant scattering vectors. Initial estimates will be shown of the role of strong electron-electron interactions in AlAs QWs on inter-valley scattering parameters such as inter-valley scattering time, probabilities and rates.

  19. Double Radio Sources: Two Approaches

    NASA Astrophysics Data System (ADS)

    Valtonen, M. J.; Heinämäki, P.

    2000-02-01

    The theory of double radio sources is considered from two different points of view: the so called unified models and the slingshot model. First, observations and theory are discussed in 11 areas: (1) the dependence or independence of small-scale and large-scale jets from each other; (2) stability and existence of large-scale jets; (3) radio hot spots inside the lobes of double radio sources; (4) the relation of double-lobed quasars to radio galaxies; (5) polarization and other asymmetries between the two lobes and correlations among them; (6) the speeds of advance of radio lobes; (7) giant radio sources; (8) one-sided double radio sources; (9) multiple-sided double radio sources; (10) the origin of the Fanaroff-Riley classes of radio morphology; and (11) the origin of distance asymmetries of the radio lobes. Then five steps in building up a double radio source theory are discussed: (1) theory of galaxy mergers; (2) theory of black hole mergers; (3) theory of black hole interactions and ejections; (4) theory of radio lobe formation and evolution; and (5) radio jet theory. Finally, recent X-ray observations by ROSAT are discussed from the point of view of double radio source theory.

  20. Spatial channels for communicating with waves between volumes.

    PubMed

    Miller, D A

    1998-11-01

    I show that there is an exact, complete method for finding the orthogonal spatial channels, or communications modes, between two arbitrary volumes, and the associated connection strengths, for the case of scalar waves. I also show that the sum of the squared connection strengths is given exactly by a simple volume integral. The method is illustrated by a calculation for a particular extreme pair of volumes, and the communications modes are interpreted physically as the modes of a double phase-conjugate resonator. PMID:18091870

  1. Hybrid surface-relief/volume one dimensional holographic gratings

    NASA Astrophysics Data System (ADS)

    Lucchetta, D. E.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R.

    2015-04-01

    Many one dimensional optically patterned photopolymers exist as surface relief or volume phase gratings. However, as far as we know, holographically recorded acrylate-based gratings in which both configurations are present are not described in literature. In this work we report a two steps fabrication process in which a large-area high-resolution hybrid volume/surface relief grating phase gratings is created in a thin film of multiacrylate material spinned on a proper designed substrate. Optical and morphological investigations, made on the optically patterned area, confirm the presence of a one dimensional double (surface relief and Bragg volume phase) periodic structure.

  2. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  3. Three step double layers in the laboratory

    NASA Astrophysics Data System (ADS)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  4. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  5. Impact of a remote pump head on neonatal priming volumes.

    PubMed

    Horisberger, J; Jegger, D; Boone, Y; Seigneul, I; Pierrel, N; Hurni, M; Corno, A F; von Segesser, L K

    1999-09-01

    Reduction of priming volumes of the cardiopulmonary bypass (CPB) circuit in neonatal cardiac surgery to decrease haemodilution and blood transfusion requirements can be achieved with the use of neonatal low prime oxygenators and smaller diameter tubing. We have further reduced our prime volume with the use of a custom-designed arm allowing for remote positioning of a double-headed roller pump. This arm enables the double pump to be placed alongside the main heart-lung machine close to the operating table, and to position the pump inlet and outlet tubing immediately at the reservoir outlet and oxygenator inlet, respectively, therefore reducing tubing lengths. Priming volumes of four cases using this configuration were compared to four cases using our standard neonatal bypass setup. Results showed a 29% decrease in priming volume and a 58% reduction in blood utilization during CPB. This reduction in priming volume is clinically significant as it lowers the ratio of priming volume to patient blood volume and reduces homologous blood requirements. PMID:10499651

  6. Species doubling and effective Lagrangians

    SciTech Connect

    Creutz, M.; Tytgat, M.

    1996-09-01

    Coupling gauge fields to the chiral currents from an effective Lagrangian for pseudoscalar mesons naturally gives rise to a species doubling phenomenon similar to that seen with fermionic fields in lattice gauge theory. 17 refs.

  7. A Double Pendulum "Art Machine"

    ERIC Educational Resources Information Center

    Romer, R. H.

    1970-01-01

    Describes a double pendulum apparatus and its mode of operation to produce a great variety of figures similar to Lissajous figures. The author suggests that several advanced physics topics can be studied with the aid of this instrument. Bibliography. (LC)

  8. Entanglement purification with double selection

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2009-10-15

    We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.

  9. Non-Double-Couple Earthquakes 2. Observations

    USGS Publications Warehouse

    Miller, A.D.; Foulger, G.R.; Julian, B.R.

    1998-01-01

    Most studies assume that earthquakes have double-couple (DC) source mechanisms, corresponding to shear motion on planar faults. However, many well-recorded earthquakes have radiation patterns that depart radically from this model, indicating fundamentally different source processes. Seismic waves excited by advective processes, such as landslides and volcanic eruptions, are consistent with net forces rather than DCs. Some volcanic earthquakes also have single-force mechanisms, probably because of advection of magmatic fluids. Other volcanic earthquakes have mechanisms close to compensated linear vector dipoles and may be caused by magmatic intrusions. Shallow earthquakes in volcanic or geothermal areas and mines often have mechanisms with isotropic components, indicating volume changes of either explosive or implosive polarity. Such mechanisms are consistent with failure involving both shear and tensile faulting, which may be facilitated by high-pressure, high-temperature fluids. In mines, tunnels are cavities that may close. Deep-focus earthquakes occur within zones of polymorphic phase transformations in the upper mantle at depths where stick-slip instability cannot occur. Their mechanisms tend to be deviatoric (volume conserving), but non-DC, and their source processes are poorly understood. Automatic global moment tensor services routinely report statistically significant non-DC components for large earthquakes, but detailed reexamination of individual events is required to confirm such results.

  10. Simulation of auroral double layers

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Joyce, G.

    1979-01-01

    Some basic properties of plasma double layers are deduced from a particle-in-cell computer simulation and related to parallel electric-field structures above the auroral regions. The simulation results on the processes leading to double-layer formation are examined, particularly in relation to the transient stage and double-layer structure and stability. It is concluded that: (1) a large potential difference applied to a finite-length plasma will be concentrated in a shocklike localized region instead of occurring over the entire length of the system; (2) the initial stage in double-layer formation is dominated by a large-potential pulse propagating in the direction of the induced electrostatic drift; (3) the entire potential is dropped over a specific scale length once the double layer has formed; and (4) this scale length is expected to be of the order of 1 km for a double layer above a discrete auroral arc with a potential of 10 kV and the electric-field vector parallel to the magnetic-field vector.

  11. Preparation of Pickering double emulsions using block copolymer worms.

    PubMed

    Thompson, Kate L; Mable, Charlotte J; Lane, Jacob A; Derry, Mathew J; Fielding, Lee A; Armes, Steven P

    2015-04-14

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)-poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  12. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  13. The double burden.

    PubMed

    Faurholt-Jepsen, Daniel

    2013-07-01

    parameters. The population was followed up during treatment (2 and 5 months) to assess treatment outcome as well as after one year to assess their survival status. Based on data from 1,250 tuberculosis patients and 350 neighbourhood controls, we found that 38 and 21%, respectively, had impaired glycaemia, and that the prevalence of diabetes was 17 and 9% among tuberculosis patients and controls, respectively. This difference in prevalence between patients and controls was equivalent to an adjusted odds ratio of more than four, indicating a strong association between tuberculosis and diabetes. Furthermore, we found that diabetes was associated with tuberculosis among both participants with or without HIV co-infection. Despite the strong association, diabetes had only moderate clinical implications when the tuberculosis patients initiated the tuberculosis treatment; the patients with diabetes co-morbidity had a minor elevation in the immune response and more frequently reported to have fever. Furthermore, diabetes did not seem to delay time to sputum conversion during treatment. Nevertheless, diabetes co-morbidity led to impaired treatment outcome with slower recovery of weight and haemoglobin and a more than four times higher mortality rate within the initial phase of tuberculosis treatment. In conclusion, in the African region, the double burden of tuberculosis and diabetes is becoming a major health problem. Although the tuberculosis incidence has stabilized during the last decade, the increasing incidence of diabetes will possibly interfere with tuberculosis control and may, consequently, make the tuberculosis incidence increase again. Future research strategies should focus on enhanced diagnostic tools to identify tuberculosis patients with diabetes co-morbidity, and on the role of disease-disease, drug-disease and drug-drug interactions between tuberculosis and diabetes diseases and treatments. PMID:23809978

  14. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  15. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  16. 32 CFR 199.8 - Double coverage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Double coverage. 199.8 Section 199.8 National... CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS) § 199.8 Double coverage. (a... insurance plans do not exceed the total charges. (b) Double coverage plan. A double coverage plan is one...

  17. 32 CFR 199.8 - Double coverage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Double coverage. 199.8 Section 199.8 National... CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS) § 199.8 Double coverage. (a... insurance plans do not exceed the total charges. (b) Double coverage plan. A double coverage plan is one...

  18. 32 CFR 199.8 - Double coverage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Double coverage. 199.8 Section 199.8 National... CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS) § 199.8 Double coverage. Link to an... charges. (b) Double coverage plan. A double coverage plan is one of the following: (1) Insurance plan....

  19. Anti-spacer double patterning

    NASA Astrophysics Data System (ADS)

    Hyatt, Michael; Huang, Karen; DeVilliers, Anton; Slezak, Mark; Liu, Zhi

    2014-03-01

    With extreme UV not ready for HVM for the 20nm and 14nm nodes, double patterning options that extend the use of 193nm immersion lithography beyond the optical resolution limits, such as LELE (Litho-Etch-Litho-Etch) and SADP (Self Aligned Double Patterning), are being used for critical layers for these nodes. LELE requires very stringent overlay capability of the optical exposure tool. The spacer scheme of SADP starts with a conformal film of material around the mandrels and etched along the mandrel sidewalls to form patterns with doubled frequency. SADP, while having the advantage of being a self-aligned process, adds a number of process steps and strict control of the mandrel profile is required. In this paper, we will demonstrate a novel technique - ASDP (Anti-Spacer Double Patterning), which uses only spin-on materials to achieve self-aligned double patterning. After initial resist patterning, an Anti-Spacer Generator (ASG) material is coated on the resist pattern to create the developable spacer region. Another layer of material is then coated and processed to generate the second pattern in between the first resist pattern. We were able to define 37.5nm half pitch pattern features using this technique as well as sub-resolution features for an asymmetric pattern. In this paper we will review the capability of the process in terms of CD control and LWR (line width roughness) and discuss the limitations of the process.

  20. New double soft emission theorems

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-09-01

    We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, nonlinear sigma model and Yang-Mills-Scalar. We use the recently found Cachazo-He-Yuan representation of these theories in order to give a simple proof of the leading order part of all these theorems.

  1. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  2. Double patterning compliant logic design

    NASA Astrophysics Data System (ADS)

    Ma, Yuangsheng; Sweis, Jason; Bencher, Chris; Deng, Yunfei; Dai, Huixiong; Yoshida, Hidekazu; Gisuthan, Bimal; Kye, Jongwook; Levinson, Harry J.

    2011-04-01

    Double patterning technology (DPT) is the only solution to enable the scaling for advanced technology nodes before EUV or any other advanced patterning techniques become available. In general, there are two major double patterning techniques: one is Litho-Etch-Litho-Etch (LELE), and the other is sidewall spacer technology, a Self-Aligned Double Patterning technique (SADP). While numerous papers have previously demonstrated these techniques on wafer process capabilities and processing costs, more study needs to be done in the context of standard cell design flow to enable their applications in mass production. In this paper, we will present the impact of DPT on logic designs, and give a thorough discussion on how to make DPT-compliant constructs, placement and routing using examples with Cadence's Encounter Digital Implementation System (EDI System).

  3. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  4. Unsteady flow volumes

    SciTech Connect

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  5. The Diffraction Pattern Calculator (DPC) toolkit: a user-friendly approach to unit-cell lattice parameter identification of two-dimensional grazing-incidence wide-angle X-ray scattering data

    PubMed Central

    Hailey, Anna K.; Hiszpanski, Anna M.; Smilgies, Detlef-M.; Loo, Yueh-Lin

    2014-01-01

    The DPC toolkit is a simple-to-use computational tool that helps users identify the unit-cell lattice parameters of a crystal structure that are consistent with a set of two-dimensional grazing-incidence wide-angle X-ray scattering data. The input data requirements are minimal and easy to assemble from data sets collected with any position-sensitive detector, and the user is required to make as few initial assumptions about the crystal structure as possible. By selecting manual or automatic modes of operation, the user can either visually match the positions of the experimental and calculated reflections by individually tuning the unit-cell parameters or have the program perform this process for them. Examples that demonstrate the utility of this program include determining the lattice parameters of a polymorph of a fluorinated contorted hexabenzocoronene in a blind test and refining the lattice parameters of the thin-film phase of 5,11-bis(triethylsilylethynyl)anthradithiophene with the unit-cell dimensions of its bulk crystal structure being the initial inputs. PMID:25484845

  6. Attosecond Double-Slit Experiment

    SciTech Connect

    Lindner, F.; Schaetzel, M.G.; Baltuska, A.; Goulielmakis, E.; Walther, H.; Krausz, F.; Milosevic, D.B.; Bauer, D.; Becker, W.; Paulus, G.G.

    2005-07-22

    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.

  7. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  8. Double-Chooz Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Palomares, Carmen; Double Chooz Collaboration

    2011-12-01

    The Double Chooz experiment will use the electron anti-neutrinos produced by the Chooz nuclear power station to search for a non-vanishing value of the θ13 neutrino mixing angle. Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from the neutrino source to reduce the systematic errors due to the uncertainties on the neutrino flux and to the detector acceptance. The far detector will be operative by the beginning of 2011. Installation of the near detector will occur in 2012.

  9. Double-station observations of meteors: efficiency and optimization

    NASA Astrophysics Data System (ADS)

    Kozak, Pavlo M.

    2015-08-01

    All information about kinematical parameters of a meteor in Earth's atmosphere, elements of its heliocentric orbit and connection of its light curve with height can be obtained from optical observations only if they are carrying out simultaneously from at least two points, i.e. double-station observations. Disposition of the observational points is closely connected with presence of special observational stations: it must be near 50-100 km for good precision of calculations. Main goal of double-station observations is the registration of maximal possible number of meteors. Efficiency of meteor registration, and accordingly number of meteors, in its turn, is conditioned by two values. First, these are parameters of lenses: focal distances which determine the sizes of view fields, and the lens apertures determining sensitivities of the observational systems. Second these are characteristics of the meteor itself: its magnitude and distance from it to an observational point, and its angular velocity. In the present work the efficiency of double-station meteor registration is investigated by means of calculation of the geometry of optical axes orientations which determine the common atmosphere volume, and selection of optical parameters of the observational systems. Increasing efficiency of double-station observations is actual at the moment because of creation of new professional and amateur networks for meteor video observations.

  10. Variable-Volume Container

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Nallette, T. A.; Sansevero, F.

    1989-01-01

    Container holds bed of beads securely while accommodating sizable changes in volume and allowing gases to flow through bed. Developed for air-purifying system in which carbon dioxide is removed by solid amine beads.

  11. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  12. Stereometric body volume measurement

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1975-01-01

    The following studies are reported: (1) effects of extended space flight on body form of Skylab astronauts using biostereometrics; (2) comparison of body volume determinations using hydrostatic weighing and biostereometrics; and (3) training of technicians in biostereometric principles and procedures.

  13. Free volume under shear.

    PubMed

    Maiti, Moumita; Vinutha, H A; Sastry, Srikanth; Heussinger, Claus

    2015-10-14

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems - particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior. PMID:26472384

  14. Geomagnetism. Volume I

    SciTech Connect

    Jacobs, J.A.

    1987-01-01

    The latest attempt to summarise the wealth of knowledge now available on geomagnetic phenomena has resulted in this multi-volume treatise, with contributions and reviews from many scientists. The first volume in the series contains a thorough review of all existing information on measuring the Earth's magnetic field, both on land and at sea, and includes a comparative analysis of the techniques available for this purpose.

  15. Direct volume editing.

    PubMed

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2008-01-01

    In this work we present basic methodology for interactive volume editing on GPUs, and we demonstrate the use of these methods to achieve a number of different effects. We present fast techniques to modify the appearance and structure of volumetric scalar fields given on Cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D spherical brushes for intuitive coloring of particular structures in such fields. This paint metaphor is extended to allow the user to change the data itself, and the use of this functionality for interactive structure isolation, hole filling, and artefact removal is demonstrated. Building on previous work in the field we introduce high-resolution selection volumes, which can be seen as a resolution-based focus+context metaphor. By utilizing such volumes we present a novel approach to interactive volume editing at sub-voxel accuracy. Finally, we introduce a fast technique to paste textures onto iso-surfaces in a 3D scalar field. Since the texture resolution is independent of the volume resolution, this technique allows structure-aligned textures containing appearance properties or textual information to be used for volume augmentation and annotation. PMID:18988988

  16. Biphoton double-slit experiment

    SciTech Connect

    Brida, G.; Cagliero, E.; Falzetta, G.; Genovese, M.; Gramegna, M.; Predazzi, E.

    2003-09-01

    In this paper we present a double-slit experiment where two indistinguishable photons produced by type-I parametric down-conversion are each sent to a well-defined slit. Data about the diffraction and interference patterns for coincidences are presented and discussed. An analysis of these data allows a test of standard quantum mechanics against the de Broglie-Bohm theory.

  17. A Double-Minded Fractal

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  18. The double well mass filter

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.; Rax, Jean-Marcel

    2014-02-15

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  19. Double heterojunction bipolar phototransistor model

    NASA Astrophysics Data System (ADS)

    Horak, Michal

    2003-07-01

    An analytical mathematical model of the double heterojunction NpN bipolar phototransistor with abrupt heterojunctions in three terminal configuration is presented. The thermionic-filed emission and diffusion of injected carriers is considered and the Ebers-Moll type relations for the collector and emitter current are obtained. Several steady state characteristics of the phototransistor structure are calculated (optical gain, quantum efficiency, responsivity).

  20. The double well mass filter

    DOE PAGESBeta

    Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.

    2014-02-03

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  1. TREATABILITY MANUAL. VOLUME V: SUMMARY

    EPA Science Inventory

    The Treatability Manual presents in five volumes an extensive survey of the effectiveness of various water pollution treatment processes when applied to particular industrial effluents. This volume summarizes volumes one through four and outlines their potential utility to Nation...

  2. Keepers of the double stars

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-03-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Early catalogues by the Herschels, Struves, and others began with their own discoveries. In 1906 court reporter and amateur astronomer Sherburne Wesley Burnham published a massive double star catalogue containing data from many observers on more than 13,000 systems. Lick Observatory astronomer Robert Grant Aitken produced a much larger catalogue in 1932 and coordinated with Robert Innes of Johannesburg, who catalogued the southern systems. Aitken maintained and expanded Burnham's records of observations on handwritten file cards, and eventually turned them over to the Lick Observatory, where astrometrist Hamilton Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and together they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford had the new 120-inch reflector, the world's second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the United States Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley, and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,200,000 measures of more than 125

  3. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-03-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  4. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    SciTech Connect

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  5. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable, and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam, and the beam plasma discharge is ignited.

  6. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam and the 'beam plasma discharge' is ignited.

  7. Double Photoionization into Double Core-Hole States in Xe

    SciTech Connect

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Eland, J. H. D.; Aoto, T.; Ito, K.

    2007-05-04

    Double photoionization (DPI) leading to double core-hole states of Xe{sup 2+} 4d{sup -2} has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe{sup 2+} 4d{sup -2} states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe{sup 2+} 4d{sup -2} at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d{sup -2} continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe{sup 2+} 4d{sup -2} components.

  8. Double photoionization into double core-hole states in Xe.

    PubMed

    Hikosaka, Y; Lablanquie, P; Penent, F; Kaneyasu, T; Shigemasa, E; Eland, J H D; Aoto, T; Ito, K

    2007-05-01

    Double photoionization (DPI) leading to double core-hole states of Xe2+ 4d(-2) has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe2+ 4d(-2) states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe2+ 4d(-2) at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d(-2) continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe2+ 4d(-2) components. PMID:17501570

  9. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part II: Trunk-Ground Double-Bounce Case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.

  10. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  11. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium. PMID

  12. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  13. Double layers and double wells in arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-06-01

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  14. JANNAF 36th Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 11, the second of three volumes is a compilation of 33 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24 Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include gun solid propellant ignition and combustion, Electrothermal Chemical (ETC) propulsion phenomena, liquid propellant gun combustion and barrel erosion, gas phase propellant combustion, kinetic and decomposition phenomena and liquid and hybrid propellant combustion behavior.

  15. Operational waste volume projection

    SciTech Connect

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995.

  16. Operational Waste Volume Projection

    SciTech Connect

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  17. Generation of colloidal granules and capsules from double emulsion drops

    NASA Astrophysics Data System (ADS)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  18. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? ...

  19. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  20. Bifurcation structure of successive torus doubling

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Tsubouchi, Takashi

    2006-01-01

    The authors discuss the “embryology” of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings.

  1. Volume MLS ray casting.

    PubMed

    Ledergerber, Christian; Guennebaud, Gaël; Meyer, Miriah; Bächer, Moritz; Pfister, Hanspeter

    2008-01-01

    The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering, providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data. PMID:18988986

  2. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    SciTech Connect

    Kumar Paul, Manash; Sharma, P. K.; Thakur, A.; Kulkarni, S. V.; Bora, D.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presence of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.

  3. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  4. Minimal Doubling and Point Splitting

    SciTech Connect

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  5. Double Lambda and Xi hypernuclei

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuma

    2014-09-01

    Nuclei with double strangeness (S = -2) provide the key information to understand Baryon-Baryon interaction under the SU(3)f symmetry. Therefore we have carried out the experiments at KEK for quarter a century. Recently, the interaction in S = -2 sector is noted to derive the information of the EOS of neutron star. The Lambda-Lambda interaction has been presented to be weak attractive by NAGARA event which showed the production and decay of 6He double-hypernucleus. The event also presented the lower mass limit of H dibaryon. In other five events, we obtained the knowledge about an excitation level of 10Be double-hypernucleus under the consistency with NAGARA event. Moreover, very recently, we have discovered a Xi-14N system which was deeply bound far from the atomic 3D level (0.17 MeV) for a captured Xi hyperon. Since a 8Li nucleus was associated with the decay of one of twin-hypernuclei, the event was uniquely identified as Xi- + 14N ==> 10BeL + 5HeL. The system was selected from 8 million pictures on the test running for development of ``Overall Scanning'' to be used in the coming experiment. This is the first evidence of Xi hypernucleus to be bound and it is impacting for the study of Xi-N interaction. At J-PARC facility, for the further study of hyperon-hyperon interaction, we plan to perform the E07 experiment at J-PARC. In the workshop, we will review the above knowledge obtained by the experiments at KEK-PS, and discuss developed technologies to detected 102 or more double-hypernuclei in the E07 experiment at J-PARC. Nuclei with double strangeness (S = -2) provide the key information to understand Baryon-Baryon interaction under the SU(3)f symmetry. Therefore we have carried out the experiments at KEK for quarter a century. Recently, the interaction in S = -2 sector is noted to derive the information of the EOS of neutron star. The Lambda-Lambda interaction has been presented to be weak attractive by NAGARA event which showed the production and decay of 6He

  6. Hierarchy in a double braneworld

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson

    2006-10-15

    We show that the hierarchy between the Planck and the weak scales can follow from the tendency of gravitons and fermions to localize at different edges of a thick double wall embedded in an AdS{sub 5} spacetime without reflection symmetry. This double wall is a stable BPS thick-wall solution with two subwalls located at its edges; fermions are coupled to the scalar field through Yukawa interactions, but the lack of reflection symmetry forces them to be localized in one of the subwalls. We show that the graviton zero-mode wave function is suppressed in the fermion edge by an exponential function of the distance between the subwalls, and that the massive modes decouple so that Newtonian gravity is recuperated.

  7. Assessing volume status.

    PubMed

    Scott, Michael C; Mallemat, Haney

    2014-11-01

    Shock is a physiologic state associated with high morbidity and mortality rates. The clinician has several tools available to evaluate volume status. Each modality has its benefits and limitations but, to date, no one test can indicate with 100% accuracy which patients will be truly volume responsive. Although the search for the Holy Grail of a perfect intravascular monitor continues, we must remember the importance of early, aggressive, and goal-directed interventions for patients in shock. Finally, there is no substitute for the most important intervention-the frequent presence of the physician at the patient's bedside. PMID:25441036

  8. Aperiodic Volume Optics

    NASA Astrophysics Data System (ADS)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  9. Double Chooz and recent results

    NASA Astrophysics Data System (ADS)

    Meregaglia, A.; Double Chooz Collaboration

    2016-07-01

    The reactor bar{{ν}}e^{} disappearance experiment Double Chooz, located in France near the power plant of Chooz, has as main goal the measurement of the θ_{{13}}^{} mixing angle. For the first time, in 2011, the experimental results gave an indication for a non-zero value of such an oscillation parameter. The mixing angle was successively measured using only the far detector finding the best fit value of sin2(2 θ_{{13}}^{}) = 0.090+0.033-0.029 . The near detector started data taking in December 2014 and it will allow to reduce the systematic errors so far dominated by the reactor flux uncertainty. In this paper a review of the experiment is presented focusing on the so-called Gadolinium-III results (DOUBLE CHOOZ COLLABORATION (ABE Y. et al.), JHEP, 10 (2014) 086; 02 (2015) 074). Furthermore additional physics measurements are presented such as the capability of Double Chooz to identify the ortho-positronium state on event by event basis.

  10. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  11. Revisiting double Dirac delta potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu

    2016-07-01

    We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.

  12. 46 CFR 171.105 - Double bottoms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Double bottoms. 171.105 Section 171.105 Shipping COAST... VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.105 Double bottoms. (a) This section... over 165 feet (50 meters) and under 200 feet (61 meters) in LBP must have a double bottom that...

  13. 7 CFR 3560.460 - Double damages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture... Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... United States entered under this section, the Attorney General may recover double the value of the...

  14. 7 CFR 3560.460 - Double damages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture... Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... United States entered under this section, the Attorney General may recover double the value of the...

  15. 7 CFR 3560.460 - Double damages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture... Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... United States entered under this section, the Attorney General may recover double the value of the...

  16. 46 CFR 171.105 - Double bottoms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Double bottoms. 171.105 Section 171.105 Shipping COAST... VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.105 Double bottoms. (a) This section... over 165 feet (50 meters) and under 200 feet (61 meters) in LBP must have a double bottom that...

  17. 46 CFR 171.105 - Double bottoms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Double bottoms. 171.105 Section 171.105 Shipping COAST... VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.105 Double bottoms. (a) This section... over 165 feet (50 meters) and under 200 feet (61 meters) in LBP must have a double bottom that...

  18. 46 CFR 171.105 - Double bottoms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Double bottoms. 171.105 Section 171.105 Shipping COAST... VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.105 Double bottoms. (a) This section... over 165 feet (50 meters) and under 200 feet (61 meters) in LBP must have a double bottom that...

  19. 46 CFR 171.105 - Double bottoms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Double bottoms. 171.105 Section 171.105 Shipping COAST... VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.105 Double bottoms. (a) This section... over 165 feet (50 meters) and under 200 feet (61 meters) in LBP must have a double bottom that...

  20. 7 CFR 3560.460 - Double damages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture... Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... United States entered under this section, the Attorney General may recover double the value of the...

  1. 7 CFR 3560.460 - Double damages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture... Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... United States entered under this section, the Attorney General may recover double the value of the...

  2. Structural Effects of Biodiesel on Soot Volume Fraction in a Laminar Co-Flow Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Weingarten, Jason

    An experimental study was performed to determine the structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame. These include the effects of the ester function group, the inclusion of a double bond, and its positional effect. The soot volume fraction and temperature profiles of a biodiesel surrogate, n-Decane, 1-Decene, and 5-Decene fuels were measured. Improvements were made to existing laser extinction and rapid thermocouple insertion apparatus and were used to measure soot volume fraction and temperature profiles respectively. Flow rates of each fuel were determined in order to keep the temperature effects on soot negligible. Using n-Decane as a baseline, the double bond increased soot production and was further increased with a more centrally located double bond. The ester function group containing oxygen decreased soot production. The order of most to least sooting fuels were as follows 5-Decene > 1-Decene > n-Decane > Biodiesel Surrogate.

  3. GREEK BASIC COURSE, VOLUME I.

    ERIC Educational Resources Information Center

    OBOLENSKY, SERGE; AND OTHERS

    THE GREEK LANGUAGE DESCRIBED IN VOLUME I OF THIS INTRODUCTORY COURSE FOR ADULTS IS THE "KATHOMILUMENI" VARIETY, THAT OF THE STANDARD SPEECH OF EDUCATED GREEKS. (VOLUME III OF THE COURSE INTRODUCES THE MORE FORMAL KATHAREVUSA VARIETY.) EACH VOLUME OF THE COURSE CONTAINS 25 UNITS PLUS FIVE REVIEW SECTIONS. A TYPICAL UNIT IN VOLUME I CONSISTS OF--(1)…

  4. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  5. Liter - Metric Volume.

    ERIC Educational Resources Information Center

    Sisk, Diane

    This autoinstructional program, developed as part of a general science course, is offered for students in the middle schools. Mathematics of fractions and decimals is considered to be prerequisite knowledge. The behavioral objectives are directed toward mastery of determining volumes of solid objects using the water displacement method as well as…

  6. Overview of the Volume

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Emslie, A. G.; Hudson, H. S.

    2011-01-01

    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23.

  7. Volume measuring system

    NASA Technical Reports Server (NTRS)

    Oele, J. S.

    1975-01-01

    Chamber is designed to be airtight; it includes face mask for person to breathe outside air so that he does not disturb chamber environment. Chamber includes piston to vary air volume inside. Also included are two microphone transducers which record pressure information inside chamber.

  8. Navajo Biographies. Volume I.

    ERIC Educational Resources Information Center

    Hoffman, Virginia

    The life stories of eight Navajo ("Dine", their term for themselves) leaders are presented in volume one of this collection of biographies. Interspersed with portraits, drawings, and maps, the narrative chronologically covers the time period from 1766 when the Navajos lived on land under the rule of Spain into the twentieth century and dealings…

  9. Strategic Plan. Volume 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this document is to present the strategic plan and associated organizational structure that the National Space Biomedical Research Institute (NSBRI) will utilize to achieve the defined mission and objectives provided by NASA. Much of the information regarding the background and establishment of the NSBRI by NASA has been provided in other documentation and will not be repeated in this Strategic Plan. This Strategic Plan is presented in two volumes. Volume I (this volume) begins with an Introduction (Section 2) that provides the Institute's NASA-defined mission and objectives, and the organizational structure adopted to implement these through three Strategic Programs: Countermeasure Research; Education, Training and Outreach; and Cooperative Research and Development. These programs are described in Sections 3 to 5. Each program is presented in a similar way, using four subsections: Goals and Objectives; Current Strategies; Gaps and Modifications; and Resource Requirements. Section 6 provides the administrative infrastructure and total budget required to implement the Strategic Programs and assures that they form a single cohesive plan. This plan will ensure continued success of the Institute for the next five years. Volume II of the Strategic Plan provides an in-depth analysis of the current and future strategic programs of the 12 current NSBRI teams, including their goals, objectives, mutual interactions and schedules.

  10. VOLUME AND SURFACE AREA.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE (1) MEASURING VOLUMES OF RECTANGULAR SOLIDS, RIGHT RECTANGULAR…

  11. Negotiating Salaries, Volume II.

    ERIC Educational Resources Information Center

    Educational Service Bureau, Inc., Washington, DC.

    This volume discusses specific strategy and tactics that can be employed in the effort to reach an agreement on salaries at the bargaining table. Although strategies and situations may vary from case to case, this report focuses on those principles and approaches that are essential to any good bargaining procedure. The discussion covers public vs.…

  12. Negotiating Salaries, Volume I.

    ERIC Educational Resources Information Center

    Educational Service Bureau, Inc., Washington, DC.

    This volume deals with concepts important to the effective negotiation of salaries in public schools. The discussion covers the compensation patterns in education, the goals and pressures affecting reacher negotiators, salaries in relation to other benefits and proposals, extra pay for extra duties and merit pay, and the stance of the negotiators…

  13. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  14. Booster double harmonic setup notes

    SciTech Connect

    Gardner, C. J.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  15. AGI doubles minority geoscience scholarships

    NASA Astrophysics Data System (ADS)

    The American Geological Institute, Alexandria, Va., has had a significant increase in funds available for minority geoscience scholarships for the 1990-1991 academic year. The number of scholarships awarded this year has more than doubled from a total of 36 in 1989-90 to 80 available for 1990-1991.The increase is due largely to a grant from the National Science Foundation. Total value of the awards, which will be given to undergraduate and graduate geoscience students, will be $221,000. For 1989--990 the total value was $36,750.

  16. Semiconductor double quantum dot micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

  17. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  18. Perceptual thresholds for realistic double-slope decay reverberation in large coupled spaces.

    PubMed

    Luizard, Paul; Katz, Brian F G; Guastavino, Catherine

    2015-01-01

    Reverberation highly influences sound perception in enclosed spaces. The reverberation time (RT) metric, used to quantify reverberation in single volumes, is inappropriate for coupled spaces characterized by non-exponential double-slope energy decays. Previous research on reverberation perception of double-slope decays has been predominantly based on varying basic impulse response characteristics such as decay times corresponding to reverberation times of individual volumes presented as independent variables. Alternatively, several studies have employed geometrical room acoustic software simulations to generate collections of responses while varying architectural parameters such as coupling area and room volumes. To avoid issues related to geometrical acoustics simulations, such as position dependence and limitations of some software to properly simulate coupled volume behavior, this study examines perception of the variability of reverberation typical of a physical coupled volume system. Employing an established statistical model, the control parameter of coupling area aperture which acoustically connects the volumes serves as the independent variable. Two listening tests were conducted to determine perceptual thresholds using an ABX discrimination task. The range of tested values corresponded to physically realizable variations. Just noticeable differences (JNDs) were derived with an average JND of ≈ 10% variation of the coupling aperture. No significant differences were found between different musical excerpts. PMID:25618040

  19. Iptakalim, an ATP-sensitive potassium channel opener, confers neuroprotection against cerebral ischemia/reperfusion injury in rats by protecting neurovascular unit cells

    PubMed Central

    Ran, Yu-hua; Wang, Hai

    2011-01-01

    Objective: To investigate the role of iptakalim, an ATP-sensitive potassium channel opener, in transient cerebral ischemia/reperfusion (I/R) injury and its involved mechanisms. Methods: Intraluminal occlusion of middle cerebral artery (MCAO) in a rat model was used to investigate the effect of iptakalim at different time points. Infarct volume was measured by staining with 2,3,5-triphenyltetrazolium chloride, and immunohistochemistry was used to evaluate the expressions of Bcl-2 and Bax. In vitro, neurovascular unit (NVU) cells, including rat primary cortical neurons, astrocytes, and cerebral microvascular endothelial cells, were cultured and underwent oxygen-glucose deprivation (OGD). The protective effect of iptakalim on NVU cells was investigated by cell viability and injury assessments, which were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and release of lactate dehydrogenase. Caspase-3, Bcl-2 and Bax mRNA expressions were evaluated by real-time polymerase chain reaction (PCR). Results: Administration of iptakalim 0 or 1 h after reperfusion significantly reduced infarct volumes, improved neurological scores, and attenuated brain edema after cerebral I/R injury. Iptakalim treatment (0 h after reperfusion) also reduced caspase-3 expression and increased the ratio of Bcl-2 to Bax by immunohistochemistry. Iptakalim inhibited OGD-induced cell death in cultured neurons and astrocytes, and lactate dehydrogenase release from cerebral microvascular endothelial cells. Iptakalim reduced mRNA expression of caspase-3 and increased the ratio of Bcl-2 to Bax in NVU cells. Conclusions: Iptakalim confers neuroprotection against cerebral I/R injury by protecting NVU cells via inhibiting of apoptosis. PMID:21960347

  20. Global bioconversions. Volume 2

    SciTech Connect

    Wise, D.L.

    1987-01-01

    These volumes present the most active bioconversion-based research and development projects worldwide, with an emphasis on the important practical aspects of this work. A major focus of the text is the bioconversion of organic residues to useful products, which also encompasses the field of anaerobic methane fermentation. Chapters from an international perspective are also included, which further address the global importance of bioconversion.

  1. Global bioconversions. Volume 4

    SciTech Connect

    Wise, D.L.

    1987-01-01

    These volumes present the most active bioconversion-based research and development projects worldwide, with an emphasis on the important practical aspects of this work. A major focus of the text is the bioconversion of organic residues to useful products, which also encompasses the field of anaerobic methane fermentation. Chapters from an international perspective are also included, which further address the global importance of bioconversion.

  2. Variable volume calibration apparatus

    SciTech Connect

    Hallman, R.L. Jr.

    1991-01-01

    An apparatus is provided for determining the volume of a closed chamber. The apparatus includes a body having a cylindrical cavity therein including a threaded rear portion and a closed front end, and a piston having a threaded portion which mates with threaded rear portion of the cavity and which reciprocates in the cavity. A gas-impermeable seal, which is carried by the piston in one embodiment, forms a closed chamber in the front end of the cavity. A linear-movement indicator, attached to the rear end of the piston, measures the reciprocating movement of the piston in the cavity, while a pressure sensing device, connected to the front end of the cavity, determines the pressure in the closed system. In use, a vessel, having a volume enclosing experimental materials, is also connected to the front end of the cavity, and pressure and piston movement measurements are made which enable calculation of a volume change in the vessels. The design and operation of this instrument are presented. 7 figs.

  3. Anisotropic Ambient Volume Shading.

    PubMed

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  4. Superconductivity in the surface of YBa 2Cu 3O 7-δ films. Role of the charge reservoir block on the occurence of the superconductivity in one-unit-cell thick YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Shimura, Ken-ichi; Daitoh, Yoshihiro; Yano, Yoshihiko; Terashima, Takahito; Bando, Yoshichika; Matsuda, Yuji; Komiyama, Susumu

    1994-07-01

    We have studied the superconductivity in the surface of c-axis oriented ultrathin films of YBa 2Cu 3O 7-δ (YBCO) using a heterostructure of cap oxide/one-unit-cell thick (1-UCT) YBCO/PrBa 2Cu 3O 7-δ buffer layer/SrTiO 3. Atomic force microscope images of the film have revealed multi-terraces with a height of a unit cell of YBCO, indicating two-dimensional nucleation and growth. From cross-sectional transmission electron microscope observation, it has been revealed that the terminating layer of the film is a CuO layer. Cap oxides of BaO and SrO with NaCl-type structure and BaTiO 3, SrTiO 3, CaTiO 3, PbTiO 3, and CdTiO 3 with perovskite-type structure have the ability to produce superconductivity in 1-UCT YBCO. These cap oxides contain an MO ‘rocksalt’-type layer which is needed to form an MO-CuO-BaO charge reservoir block. It is required for making the superconductivity in 1-UCT YBCO that the lattice mismatch between the cap oxide and YBCO is sufficiently small (⩽6%) and the valence of M is 2+.

  5. Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 - Zeolite Y, RM 8851 - Zeolite A and RM 8852 - Ammonium ZSM-5 Zeolite

    SciTech Connect

    Turner,S.; Sieber, J.; Vetter, T.; Zeisler, R.; Marlow, A.; Moreno-Ramirez, M.; Davis, M.; Kennedy, G.; Borghard, W.; et al

    2008-01-01

    Zeolites have important industrial applications including use as catalysts, molecular sieves and ion exchange materials. In this study, three zeolite materials have been characterized by the National Institute of Standards and Technology (NIST) as reference materials (RMs): zeolite Y (RM 8850), zeolite A (RM 8851) and ZSM-5 zeolite (RM 8852). They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), nuclear magnetic resonance (NMR), calorimetry, synchrotron X-ray diffraction, neutron diffraction, laser light extinction, laser light scattering, electric sensing zone, X-ray sedimentation, scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and optical microscopy. The chemical homogeneity of the materials has been characterized. Reference values are given for the major components (major elements, loss on ignition [LOI] and loss on fusion [LOF]), trace elements and Si/Al and Na/Al ratios. Information values are given for enthalpies of formation, unit cell parameters, particle size distributions, refractive indices and variation of mass with variation in relative humidity (RH). Comparisons are made to literature unit cell parameters. The RMs are expected to provide a basis for intercomparison studies of these zeolite materials.

  6. Research Summary No. 36-6, Volume II. Volume II

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The Research Summary is a bimonthly report of supporting research and development conducted at the Jet Propulsion Laboratory. This periodical is issued in three volumes. Volume I contains summaries of the work accomplished by the Space Sciences, Systems, Guidance and Control, and Telecommunications Divisions of the Laboratory. Volume II contains summaries of the work accomplished by the Physical Sciences, Engineering Mechanics, Engineering Facilities, and Propulsion Divisions. All work of a classified nature is contained in Volume Ill.

  7. Research Summary No. 36-5, Volume II. Volume II

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The Research Summary is a bimonthly report of supporting research and development conducted at the Jet Propulsion Laboratory. This periodical is issued in three volumes. Volume I contains summaries of the work accomplished by the Space Sciences, Systems, Guidance and Control, and Telecommunications Divisions of the Laboratory. Volume II contains summaries of the work accomplished by the Physical Sciences, Engineering Mechanics, Engineering Facilities, and Propulsion Divisions. All work of a classified nature is contained in Volume Ill.

  8. Pressure-volume-temperature paths in the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Duffy, Thomas S.

    2001-02-01

    The temperature, pressure, and stress conditions in the diamond anvil cell sample chamber before, during, and after laser heating are mapped by employing standard materials as in situ pressure markers. Unit cell volumes of Pt, MgO, and NaCl were monitored by synchrotron-based x-ray diffraction at temperatures between 300 and 2290 K and pressures ranging from 14 to 53 GPa. To aid in interpreting the resulting pressure-volume-temperature paths, we perform a series of model calculations of the high-temperature, high-pressure x-ray diffraction behavior of platinum subjected to a general stress state. Thermal pressure and thermal expansion effects within the laser-heated volume are observed but are not sufficient to fully explain the measured paths. Large apparent pressure changes can also result from relaxation of deviatoric stresses during heating and partial reintroduction of those stresses during quench. Deviatoric stresses, monitored from both diffraction peak widths and lattice parameter shifts as a function of (hkl), may significantly distort equation of state results if it is assumed that the sample is under hydrostatic pressure. Large-scale, nearly isothermal pressure relaxation events are observed at ˜2000 K. It is proposed that these arise from relaxation of heated components (pressure medium, gasket, cell itself) outside of the directly laser-heated volume.

  9. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.

  10. JANNAF 36th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 47 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24th Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Solid phase propellant combustion topics covered in this volume include cookoff phenomena in the pre- and post-ignition phases, solid rocket motor and gun propellant combustion, aluminized composite propellant combustion, combustion modeling and combustion instability and instability measurement techniques.

  11. Double Chooz Slow Monitoring System

    NASA Astrophysics Data System (ADS)

    Chang, Pi-Jung; Horton-Smith, Glenn; McKee, David; Shrestha, Deepak; Winslow, Lindley; Conrad, Janet

    2010-02-01

    The Double Chooz experiment aims to measure neutrino flux from two nearly identical detectors with an uncertainty less than 0.6%. The Double Chooz slow monitoring system records conditions of the experiment's environment which can impact the experiment's goals. The slow monitoring system includes temperatures and voltages in electronics, experimental hall environmental conditions, line voltages, liquid temperatures, PMT's magnetic field, radon concentrations, and photo-tube high voltages. This system scans all channels automatically, stores data in a common database, and warns of changes in the two detectors' physical environments. Most functions in this system can be accomplished by 1-Wire products from Dallas Semiconductor. We can use a single master for several functions' controls and operations and the power is derived from a signal bus. Every device has a unique unalterable ID. The sensors monitoring the liquid system, such as liquid thermal meters, are covered by epoxy in order to isolate in the liquid. Their radioactivity can be ignored and will not affect the uncertainty in the system. )

  12. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory. PMID:6544755

  13. Double-Front Detonation Waves

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  14. Double distributions and evolution equations

    SciTech Connect

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  15. Double-diffusive layer formation

    NASA Astrophysics Data System (ADS)

    Zaussinger, Florian; Kupka, Friedrich; Hücker, Sebastian; Egbers, Christoph

    2015-04-01

    Double-diffusive convection plays an important role in geo- and astrophysical applications. The special case, where a destabilising temperature gradient counteracts a stabilising solute gradient leads to layering phenomena under certain conditions. Convectively mixed layers sandwiched in diffusive interfaces form a so-called stack. Well-known double-diffusive systems are observed in rift lakes in Africa and even from the coffee drink Latte Macciatto. Stacks of layers are also predicted to occur inside massive stars and inside giant planets. Their dynamics depend on the thermal, the solute and the momentum diffusivities, as well on the ratio of the gradients of the opposing stratifications. Since the layering process cannot be derived from linear stability analysis, the full nonlinear set of equations has to be investigated. Numerical simulations have become feasible for this task, despite the physical processes operate on a vast range of length and time scales, which is challenging for numerical hydrodynamical modelling. The oceanographically relevant case of fresh and salty water is investigated here in further details. The heat and mass transfer is compared with theoretical results and experimental measurements. Additionally, the initial dynamic of layering, the transient behaviour of a stack and the long time evolution are presented using the example of Lake Kivu and the interior of a giant planet.

  16. Analysis of CNT additives in porous layered thin film lubrication with electric double layer

    NASA Astrophysics Data System (ADS)

    Rao, T. V. V. L. N.; Rani, A. M. A.; Sufian, S.; Mohamed, N. M.

    2015-07-01

    This paper presents an analysis of thin film lubrication of porous layered carbon nanotubes (CNTs) additive slider bearing with electric double layer. The CNTs additive lubricant flow in the thin fluid film and porous layers are governed by Stokes and Brinkman equations respectively, including electro-kinetic force. The apparent viscosity and nondimensional pressure expression are derived. The nondimensional load capacity increases under the influence of electro-viscosity, CNT additives volume fraction, permeability and thickness of porous layer. A CNTs additive lubricated porous thin film slider bearing with electric double layer provides higher load capacity.

  17. Non-double-couple earthquakes. 1. Theory

    USGS Publications Warehouse

    Julian, B.R.; Miller, A.D.; Foulger, G.R.

    1998-01-01

    Historically, most quantitative seismological analyses have been based on the assumption that earthquakes are caused by shear faulting, for which the equivalent force system in an isotropic medium is a pair of force couples with no net torque (a 'double couple,' or DC). Observations of increasing quality and coverage, however, now resolve departures from the DC model for many earthquakes and find some earthquakes, especially in volcanic and geothermal areas, that have strongly non-DC mechanisms. Understanding non-DC earthquakes is important both for studying the process of faulting in detail and for identifying nonshear-faulting processes that apparently occur in some earthquakes. This paper summarizes the theory of 'moment tensor' expansions of equivalent-force systems and analyzes many possible physical non-DC earthquake processes. Contrary to long-standing assumption, sources within the Earth can sometimes have net force and torque components, described by first-rank and asymmetric second-rank moment tensors, which must be included in analyses of landslides and some volcanic phenomena. Non-DC processes that lead to conventional (symmetric second-rank) moment tensors include geometrically complex shear faulting, tensile faulting, shear faulting in an anisotropic medium, shear faulting in a heterogeneous region (e.g., near an interface), and polymorphic phase transformations. Undoubtedly, many non-DC earthquake processes remain to be discovered. Progress will be facilitated by experimental studies that use wave amplitudes, amplitude ratios, and complete waveforms in addition to wave polarities and thus avoid arbitrary assumptions such as the absence of volume changes or the temporal similarity of different moment tensor components.

  18. Double compact objects. II. Cosmological merger rates

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2013-12-10

    The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the 'local' universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

  19. Environmental Report 1996, Volume 2

    SciTech Connect

    Harrach, R.J.

    1996-01-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1996, prepared for the US Department of Energy. Volume 2 supports Volume 1 summary data and is essentially a detailed data report that provides individual data points, where applicable. Volume 2 includes information on monitoring of air, air effluents, sewerable water, surface water, ground water, soil and sediment, vegetation and foodstuff, environmental radiation, and quality assurance.

  20. Double-Swivel Mechanism For Reliable Release

    NASA Technical Reports Server (NTRS)

    King, Guy L.; Schneider, William C.

    1990-01-01

    Double-swivel toggle mechanism releases large, heavy objects reliably. Double-swiveling action of mechanism ensures it clears restraining pins upon release. Pins retain toggle and its load. If pin fails to withdraw at designated time for releasing payload, toggle swivels about its upper ball, and ring swivels about lower ball so ring flange clears failed pin. Double-swivel action ensures disengagement even it two pins fail to withdraw.

  1. BULGARIAN, BASIC COURSE, VOLUME 1.

    ERIC Educational Resources Information Center

    HODGE, CARLETON T.; AND OTHERS

    A BASIC COURSE IN BULGARIAN HAS BEEN PREPARED IN TWO VOLUMES. THIS VOLUME, VOLUME 1, IS DIVIDED INTO THREE PARTS--BASIC SENTENCES, NOTES, AND DRILLS. AN ADDITIONAL PART INCLUDES READING PASSAGES. THE BASIC SENTENCES ARE NORMAL DIALOG MATERIAL, MEANT TO BE MEMORIZED. THE NOTES EXPLAIN THE GRAMMATICAL STRUCTURE OF THE LANGUAGE AND ARE DIVIDED INTO…

  2. Calculus Students' Understanding of Volume

    ERIC Educational Resources Information Center

    Dorko, Allison; Speer, Natasha M.

    2013-01-01

    Researchers have documented difficulties that elementary school students have in understanding volume. Despite its importance in higher mathematics, we know little about college students' understanding of volume. This study investigated calculus students' understanding of volume. Clinical interview transcripts and written responses to volume…

  3. REFLECTION AND REFRACTION, VOLUME 2.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  4. New volume and inverse volume operators for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; Ma, Yongge

    2016-08-01

    A new alternative volume operator is constructed for loop quantum gravity by using the so-called cotriad operators as building blocks. It is shown that the new volume operator shares the same qualitative properties with the standard volume operator. Moreover, a new alternative inverse volume operator is also constructed in the light of the construction of the alternative volume operator, which is possessed of the same qualitative properties as those of the alternative volume operator. The new inverse volume operator can be employed to construct the Hamiltonian operator of matter fields, which may lead to an anomaly-free on-shell quantum constraint algebra without any special restriction on the regularization procedure for gravity coupled to matter fields.

  5. [Improvement on the making process of double splints before orthognathic surgery of skeletal Class III].

    PubMed

    Shi, Han; Zhao, Ning; Chen, Yang-Xi

    2008-04-01

    The conventional methods on making double splints in presurgery of skeletal Class III were complicated. To find an easy method for the improvement of the production of splints and simplify the making process, 17 severe skeletal Class III patients accepted bimaxillary surgery after making double splints were used. According to visual treatment objective (VTO) forecasting on the lateral cephalometric radiograph of ending presurgical orthodontics and analyzing study models, the surgical methods were designed, the mobile osteotomy bone volume was estimated and the maxillary abnormity was classified. For the patients with right midline and without adjusting their occlusion plane, use the single model method (antedisplace maxillary model twice) or double models method (antedisplace maxillary model firstly, and then retrodisplace mandibular model) to make the double splints which guided the fixtion of bimaxillary surgery through their parallel models and simple articulators. The making process of the double splints was simplified and improved, and the postsurgery effects of all patients were satisfied. Therefore, for making the double splints of skeletal Class III bimaxillary surgery, utilizing the proper method on the basis of the specific abnormal conditions of patients can simplify the production process and get twice the result with half the effort. PMID:18605470

  6. Strong volume, stable prices

    SciTech Connect

    1993-11-01

    This article is the September-October 1993 market report, providing trading volume and prices in the Uranium market. Activity was brisk, with 15 deals concluded. Six were in the spot concentrates market, with four of the six deals involving U.S. utilities and approximately 1.8M pounds of U3O8 equivalent. There were five conversion deals announced, with four of the five deals involving U.S. utilities. Four deals were concluded in the enrichment market, and the deals involving U.S. utilities were approximately 327k SWUs. On the horizon, there are deals for approximately 4.1M SWU.

  7. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  8. Electroweak boson production in double parton scattering

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia

    2014-11-01

    We study the W+W- and Z0Z0 electroweak boson production in double parton scattering using QCD evolution equations for double parton distributions. In particular, we analyze the impact of splitting terms in the evolution equations on the double parton scattering cross sections. Unlike the standard terms, the splitting terms are not suppressed for large values of the relative momentum of two partons in the double parton scattering. Thus, they play an important role which we discuss in detail for the single splitting contribution to the cross sections under the study.

  9. Double Semions in Arbitrary Dimension

    NASA Astrophysics Data System (ADS)

    Freedman, Michael H.; Hastings, Matthew B.

    2016-03-01

    We present a generalization of the double semion topological quantum field theory to higher dimensions, as a theory of {d-1} dimensional surfaces in a d dimensional ambient space. We construct a local Hamiltonian that is a sum of commuting projectors and analyze the excitations and the ground state degeneracy. Defining a consistent set of local rules requires the sign structure of the ground state wavefunction to depend not just on the number of disconnected surfaces, but also upon their higher Betti numbers through the semicharacteristic. For odd d the theory is related to the toric code by a local unitary transformation, but for even d the dimension of the space of zero energy ground states is in general different from the toric code and for even {d > 2} it is also in general different from that of the twisted {Z_2} Dijkgraaf-Witten model.

  10. Predicting neutrinoless double beta decay

    SciTech Connect

    Hirsch, M.; Villanova del Moral, A.; Valle, J.W.F.

    2005-11-01

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A{sub 4} family symmetry model. We show that there is a lower bound for the {beta}{beta}{sub 0{nu}} amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter vertical bar m{sub ee} vertical bar {>=}0.17{radical}({delta}m{sub ATM}{sup 2}). This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on vertical bar m{sub ee} vertical bar is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, {beta}{beta}{sub 0{nu}} may be accessible to the next generation of high sensitivity experiments.

  11. Comparing double string theory actions

    NASA Astrophysics Data System (ADS)

    De Angelis, L.; Gionti S. J, G.; Marotta, R.; Pezzella, F.

    2014-04-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so "doubling" the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like "non-commuting" phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  12. Double Potoionization of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Vanroose, Wim

    2006-05-01

    We report a complete numerical solution of the Schr"odinger equation for the double photoionization of H2, a process where a single photon emits two electrons. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin. It confirms recent experimental results in experiments on oriented hydrogen molecules. These experiments observed that the ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as well as the orientation with respect to the polarization of the photon. We give an overview of the numerical methods we used to solve the exact Schrodinger equation for this problem. We also discuss the different molecular effect we observe in our calculations and compare with experimental observations

  13. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  14. Environmental report 1995. Volume 2

    SciTech Connect

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M.

    1996-09-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1995. This volume is intended to support summary data from Volume 1 and is essentially a detailed data report that provides additional data points, where applicable. Some summary data are also included in Volume 2, and more detailed accounts are given of sample collection and analytical methods. Volume 2 includes information in eight chapters on monitoring of air, air effluent, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation, as well as three chapters on ground water protection, compliance self-monitoring and quality assurance.

  15. Experimental study on double-pulse laser ablation of steel upon multiple parallel-polarized ultrashort-pulse irradiations

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Kraft, Sebastian; Hartwig, Lars; Loeschner, Udo

    2016-07-01

    In this paper, double-pulse laser processing is experimentally studied with the aim to explore the influence of ultrashort pulses with very short time intervals on ablation efficiency and quality. For this, sequences of 50 double pulses of varied energy and inter-pulse delay, as adjusted between 400 fs and 18 ns by splitting the laser beam into two optical paths of different length, were irradiated to technical-grade stainless steel. The depth and the volume of the craters produced were measured in order to evaluate the efficiency of the ablation process; the crater quality was analyzed by SEM micrographs. The results obtained were compared with craters produced with sequences of 50 single pulses and energies equal to the double pulse. It is demonstrated that double-pulse processing cannot exceed the ablation efficiency of single pulses of optimal fluence, but the ablation crater surface formed smoother if inter-pulse delay was in the range between 10 ns and 18 ns. In addition, the influence of pulse duration and energy distribution between the individual pulses of the double pulse on ablation was studied. For very short inter-pulse delay, no significant effect of energy variation within the double pulse on removal rate was found, indicating that the double pulse acts as a big single pulse of equal energy. Further, the higher removal efficiency was achieved when double-pulse processing using femtosecond pulses instead of picosecond pulses.

  16. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    SciTech Connect

    HARMSEN, R.W.

    1999-10-28

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

  17. Results of site validation experiments. Volume II. Supporting documents 5 through 14

    SciTech Connect

    Not Available

    1983-01-01

    Volume II contains the following supporting documents: Summary of Geologic Mapping of Underground Investigations; Logging of Vertical Coreholes - ''Double Box'' Area and Exploratory Drift; WIPP High Precision Gravity Survey; Basic Data Reports for Drillholes, Brine Content of Facility Internal Strata; Mineralogical Content of Facility Interval Strata; Location and Characterization of Interbedded Materials; Characterization of Aquifers at Shaft Locations; and Permeability of Facility Interval Strate.

  18. Double meanings will not save the principle of double effect.

    PubMed

    Douglas, Charles D; Kerridge, Ian H; Ankeny, Rachel A

    2014-06-01

    In an article somewhat ironically entitled "Disambiguating Clinical Intentions," Lynn Jansen promotes an idea that should be bewildering to anyone familiar with the literature on the intention/foresight distinction. According to Jansen, "intention" has two commonsense meanings, one of which is equivalent to "foresight." Consequently, questions about intention are "infected" with ambiguity-people cannot tell what they mean and do not know how to answer them. This hypothesis is unsupported by evidence, but Jansen states it as if it were accepted fact. In this reply, we make explicit the multiple misrepresentations she has employed to make her hypothesis seem plausible. We also point out the ways in which it defies common sense. In particular, Jansen applies her thesis only to recent empirical research on the intentions of doctors, totally ignoring the widespread confusion that her assertion would imply in everyday life, in law, and indeed in religious and philosophical writings concerning the intention/foresight distinction and the Principle of Double Effect. PMID:24737837

  19. Atherosclerosis, inflammation and lipoprotein glomerulopathy in kidneys of apoE-/-/LDL-/- double knockout mice

    PubMed Central

    2010-01-01

    Background The apoE-/-/LDL-/- double knockout mice are bearing considerable structural homology to human atherosclerosis. We hypothesized, that advanced lesion formation in the renal artery is associated with kidney alterations in these mice. Methods Kidneys from apoE-/-/LDL-/- double knockout mice at the age of 80 weeks (n = 6) and C57/BL control mice (n = 5) were infused with Microfil, harvested and scanned with micro-CT (12 μm cubic voxels) and Nano-CT (900 nm cubic voxels). We quantitated the total vascular volume using micro-CT. Number and cross-sectional area (μm2) of glomeruli were measured using histology. Results At the age of 80 weeks, the renal total vascular volume fraction decreased significantly (p < 0.001) compared to controls. Moreover, the renal artery showed advanced atherosclerotic lesions with adventitial Vasa vasorum neovascularization. Perivascular inflammation was present in kidneys of apoE-/-/LDL-/- double knockout mice, predominantly involved are plasma cells and leucocytes. Glomeruli cross-sectional area (9959 ± 1083 μm2) and number (24.8 ± 4.5) increased in apoE-/-/LDL-/- double knockout mice compared to controls (3533 ± 398 μm2; 17.6 ± 3, respectively), whereas 41% of the total number of glomeruli showed evidence for lipoprotein associated glomerulopathy (LPG). Moreover, immunohistochemistry demonstrated capillary aneurysms of the glomeruli filled with factor 8 containing emboli. Conclusion The reduced intra-renal total vascular volume is associated with systemic atherosclerosis and glomeruli alterations in the apoE-/-/LDL-/- double knockout mouse model. PMID:20727187

  20. Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition.

    PubMed

    Ma, Fengxian; Jiao, Yalong; Gao, Guoping; Gu, Yuantong; Bilic, Ante; Chen, Zhongfang; Du, Aijun

    2016-05-11

    Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [ Nature 2009 , 457 , 863 ]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs with the P6/mmm space group and six atoms in the unit cell and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac Fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 × 10(6) m/s, which is even higher than that of graphene (0.82 × 10(6) m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics. PMID:27050491

  1. A direct link between microstructure and acoustical macro-behavior of real double porosity foams.

    PubMed

    Chevillotte, Fabien; Perrot, Camille; Guillon, Emmanuel

    2013-12-01

    The acoustical macro-behavior of mineral open-cell foam samples is modeled from microstructure morphology using a three-dimensional idealized periodic unit-cell (3D-PUC). The 3D-PUC is based on a regular arrangement of spheres allowed to interpenetrate during the foaming process. Identification and sizing of the 3D-PUC is made from x-ray computed microtomography and manufacturing process information. In addition, the 3D-PUC used allows to account for two scales of porosity: The interconnected network of bubbles (meso-porosity) and the inter-crystalline porosity of a gypsum matrix (micro-porosity). Transport properties of the micro- and the meso-scales are calculated from first principles, and a hybrid micro-macro method is used to determine the frequency-dependent visco-thermal dissipation properties. Olny and Boutin found that the double porosity theory provides the visco-thermal coupling between the meso- and micro-scales [J. Acoust. Soc. Am. 114, 73-89 (2003)]. Finally, the results are successfully compared with experiments for two different mineral foam samples. The main originality of this work is to maintain a direct link between the microstructure morphology and the acoustical macro-behavior all along the multi-scale modeling process, without any adjusted parameter. PMID:25669280

  2. The COBRA Double Beta Decay Search Experiment

    NASA Astrophysics Data System (ADS)

    Stewart, D. Y.

    2006-11-01

    The COBRA experiment aims to use a large quantity of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. The current status of the experiment is discussed, and new limits on several double beta modes are presented. Future plans for a large scale experiment are also described.

  3. The COBRA double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Stewart, D. Y.; COBRA Collaboration

    2007-09-01

    The COBRA experiment aims to use a large quantity of Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors to search for neutrinoless double-beta decay (0 υββ). The current status of the experiment is discussed, and new limits on several double-beta modes are presented. Future plans for a large-scale experiment are also described.

  4. Photometry of Faint Wide Doubles in Hydra

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Thuemen, Chris; Gould, Ross

    2015-11-01

    Images of several double stars in Hydra published on the "Double Star Imaging Project" Yahoo Group page suggest magnitude issues compared with the corresponding WDS catalog data per end of 2014. Taking additional images with V and B filters enabled photometry for these pairs, suggesting significant corrections to the old data in WDS.

  5. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  6. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  7. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  8. Perspective: Double Jeopardy--Another Look.

    ERIC Educational Resources Information Center

    Bolduan, Linda M.; Dailey, Dianne K.

    1997-01-01

    Explores how a defendant can face a civil action and criminal prosecution for the same act without violating the principle of double jeopardy. For instance, burning down a house can engender criminal prosecution charges and a civil suit from the insurance company. Double jeopardy only applies to criminal actions. (MJP)

  9. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  10. The Doubling Moment: Resurrecting Edgar Allan Poe

    ERIC Educational Resources Information Center

    Minnick, J. Bradley; Mergil, Fernando

    2008-01-01

    This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…

  11. Double Eye Brow: A Rare Case Report

    PubMed Central

    Kar, Sudipta; Ghosh, Chiranjit; Bazmi, Badruddin Ahamed; Sarkar, Subrata

    2013-01-01

    Eye brows are essential for esthetic and functional purposes. Various kinds of eye brows are found in human species. Protective function is one of the important functions of eye brows. Double eye brow is a very rare condition found in human. This case report describes one of the rare cases of double eye brow. PMID:24574697

  12. Intrateam Communication and Performance in Doubles Tennis

    ERIC Educational Resources Information Center

    Lausic, Domagoj; Tennebaum, Gershon; Eccles, David; Jeong, Allan; Johnson, Tristan

    2009-01-01

    Verbal and nonverbal communication is a critical mediator of performance in team sports and yet there is little extant research in sports that involves direct measures of communication. Our study explored communication within NCAA Division I female tennis doubles teams. Video and audio recordings of players during doubles tennis matches captured…

  13. Speeded Recognition of Ungrammaticality: Double Violations.

    ERIC Educational Resources Information Center

    Moore, Timothy E.; Biederman, Irving

    1979-01-01

    The speed at which sentences with various kinds of violations could be rejected was studied. Compatible with the sequential model was the finding that noun-verb and adjective-noun double violations did not result in shorter reaction times than noun-verb single violations, although double violations were judged less acceptable. (Author/RD)

  14. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  15. The COBRA Double Beta Decay Search Experiment

    SciTech Connect

    Stewart, D. Y.

    2006-11-17

    The COBRA experiment aims to use a large quantity of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. The current status of the experiment is discussed, and new limits on several double beta modes are presented. Future plans for a large scale experiment are also described.

  16. Low-energy networks of the T-cage (H2O)(24) cluster and their use in constructing periodic unit cells of the structure I (sl) hydrate lattice

    SciTech Connect

    Yoo, Soohaeng; Kirov, Mikhail V.; Xantheas, Sotiris S.

    2009-06-10

    Hydrate networks are ‘host’ lattices for the storage of ‘guest’ natural gases. To enhance their physical stabilities near ambient conditions, the most stable clathrate hydrates should be identified. Here, we report the lowest energy networks of the tetrakaidecahedral cage (T-cage) (H2O)24 cluster, a constituent of the cubic unit cell of the structure I (sI) hydrate. A four-step screening method was employed to search for the lowest T-cage networks, which were eventually optimized at the MP2 level of theory. The obtained low-energy isomers can furthermore be used to obtain the low-energy hydrogen bonding networks of periodic structures of hydrates thus allowing for the realistic modeling of the accommodation of ‘guest’ molecules in clathrate hydrates. This work was supported by the US Department of Energy's Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  17. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  18. Waste volume reduction factors for potential 242-A evaporator feed

    SciTech Connect

    Sederburg, J.P.

    1995-05-04

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of {approximately}1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit.

  19. Roles of potassium ions, acetyl and L-glyceryl groups in native gellan double helix: an X-ray study.

    PubMed

    Chandrasekaran, R; Radha, A; Thailambal, V G

    1992-02-01

    Native gellan, the natural form of the polysaccharide excreted by the bacterium Pseudomonas elodea, has a tetrasaccharide repeating unit that contains L-glycerol and acetate ester groups, and forms only weak and elastic gels. Based on X-ray diffraction data from well oriented and polycrystalline fibers of its potassium salt, the crystal structure of native gellan, including ions and water, has been determined and refined to a final R-value of 0.17. The molecule forms of a half-staggered, parallel, double helix of pitch 5.68 nm which is stabilized by hydrogen bonds involving the hydroxymethyl groups in one chain and both carboxylate and glyceryl groups in other. Two molecules are packed in an antiparallel fashion in a trigonal unit cell of side a = 1.65 nm. Although the gross molecular morphology and packing arrangements are isomorphous with those observed in the crystal structure of potassium gellan, which is devoid of any substitutions, native gellan exhibits exceptional changes in its ion binding characteristics with respect to gellan. In particular, the L-glyceryl groups do not allow the gellan-like coordinated interactions of the ions and the carbohydrate groups, within and between double helices, which are necessary for strong gelation. These results at the molecular level explain, for the first time, the differences in the behavior of the polymer with and without substitutions. PMID:1591755

  20. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  1. Entropic Step Doubling on W(430).

    NASA Astrophysics Data System (ADS)

    Conrad, Edward H.; Dey, Srijata; West, James; Kiriukhin, Sergei

    1996-03-01

    We present high resolution low energy electron diffraction (LEED) results for the W(430) surface. Unlike every other system studied to date, single atomic height steps on this surface become energetically unfavorable at elevated temperatures. Above 940 K, a two phase mixture of single and double height steps forms. The transition to double height steps is predicted on the basis of a simple model provided that unconventional defect energetics are invoked. Specifically, double height steps cost more than twice as much energy as single height steps, while kinks on the double height steps cost less energy than kinks on single height steps. Recent theoretical calculations independently confirm this energetics hierarchy. (W. Xu, J.B. Adams and T.L. Einstein (to be published).) The existence of the doubling transition sheds new light on previous self diffusion coefficient measurements for other stepped tungsten surfaces. (Y.M. Gong and R. Gomer, J. Chem. Phys. 88), 1359 (1988); 88, 1370 (1988).

  2. Instability limits for spontaneous double layer formation

    SciTech Connect

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-11-15

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  3. Applicability of a double-undulator configuration

    NASA Astrophysics Data System (ADS)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chiu, Mau-Sen; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-02-01

    The applicability of the double-undulator concept for an electron storage ring of 3-GeV class is evaluated based on the parameters of Taiwan Photon Source. In the soft X-ray case, the fundamental harmonic is mainly used, the interference effect is preserved at some level, which means that the brilliance from a double-undulator is expected to be much greater than that of a single undulator. In the hard X-ray case, harmonics number greater than five are generally used, the interference effect cannot, however, be preserved, which means that a double undulator configuration can be assumed to comprise two independent and uncorrelated sources. The total coherent flux obtained from a double-undulator configuration is found to be much less than twice that of a single undulator. The double-undulator concept is hence inapplicable in the hard X-ray region from the viewpoint of high coherent flux performance.

  4. Reliability Estimation for Double Containment Piping

    SciTech Connect

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  5. Intercalation of Layered Silicates, Layered Double Hydroxides, and Lead Iodide: Synthesis, Characterization and Properties.

    NASA Astrophysics Data System (ADS)

    Mehrotra, Vivek

    Layered silicates, layered double hydroxides, and lead iodide are lamellar solids that can incorporate guest species into the galleries between their layers. Various intercalated forms of these layered materials have been synthesized and their properties studied. The dielectric behavior of pristine fluorohectorite, a typical layered silicate, and Zn-Al layered double hydroxide is explained by considering the structural ordering and mobility of the intercalated water molecules, as well as models invoking fractal time processes and fractal structure. Intercalative polymerization of aniline and pyrrole into fluorohectorite leads to a multilayered structure consisting of single polymer chains alternately stacked with the 9.6 A thick silicate layers. The polymer chains are confined to the quasi two-dimensional interlayer space between the rigid host layers. The hybrid films exhibit highly anisotropic properties. The optical, electrical and mechanical behavior is discussed in terms of the molecular confinement of the polymer chains. Ethylenediamine functionalized C _{60} clusters have also been intercalated into fluorohectorite via an ion-exchange procedure. Intercalation results in an improved thermal stability of the functionalized C_{60} clusters. Rutherford backscattering spectrometry has been used to elucidate the mechanism of intercalative ion exchange of silver in muscovite mica, a layered silicate with a layer charge density of 2e per unit cell. It is proposed that ion-exchange progresses by intercalating successive galleries through the edges of the mica layers. Guest-host interactions have been studied in the system aniline-PbI_2. The optical and structural effects of aniline intercalation in lead iodide thin films is discussed. Intercalation leads to a large shift in the optical band gap of PbI_2. The observed change in band gap is not only due to the increased separation between the PbI_2 layers but also because of an electrostatic interaction between the

  6. Prehospital tidal volume influences hospital tidal volume: A cohort study

    PubMed Central

    Stoltze, Andrew J.; Wong, Terrence S.; Harland, Karisa K.; Ahmed, Azeemuddin; Fuller, Brian M.; Mohr, Nicholas M.

    2015-01-01

    Purpose To describe current practice of ventilation in a modern air medical system, and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Materials and Methods Retrospective observational cohort study of intubated adult patients (n=235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes ≤ 8 mL/kg predicted body weight (PBW). Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Results Most patients (57%) were ventilated solely with bag-valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg PBW (SD 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (p < 0.001) and intensive care unit (p = 0.015). ARDS was not associated with pre-hospital tidal volume (p = 0.840). Conclusions Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation, but was not associated with ARDS. PMID:25813548

  7. Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing.

    PubMed

    Jang, Jihun; Chang, Jin Ho

    2016-01-01

    Beauty treatment for skin requires a high-intensity focused ultrasound (HIFU) transducer to generate coagulative necrosis in a small focal volume (e.g., 1 mm³) placed at a shallow depth (3-4.5 mm from the skin surface). For this, it is desirable to make the F-number as small as possible under the largest possible aperture in order to generate ultrasound energy high enough to induce tissue coagulation in such a small focal volume. However, satisfying both conditions at the same time is demanding. To meet the requirements, this paper, therefore, proposes a double-focusing technique, in which the aperture of an ultrasound transducer is spherically shaped for initial focusing and an acoustic lens is used to finally focus ultrasound on a target depth of treatment; it is possible to achieve the F-number of unity or less while keeping the aperture of a transducer as large as possible. In accordance with the proposed method, we designed and fabricated a 7-MHz double-focused ultrasound transducer. The experimental results demonstrated that the fabricated double-focused transducer had a focal length of 10.2 mm reduced from an initial focal length of 15.2 mm and, thus, the F-number changed from 1.52 to 1.02. Based on the results, we concluded that the proposed double-focusing method is suitable to decrease F-number while maintaining a large aperture size. PMID:27509500

  8. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGESBeta

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  9. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  10. Equation of state of bcc-Mo by static volume compression to 410 GPa

    SciTech Connect

    Akahama, Yuichi; Hirao, Naohisa; Ohishi, Yasuo; Singh, Anil K.

    2014-12-14

    Unit cell volumes of Mo and Pt have been measured simultaneously to ≈400 GPa by x-ray powder diffraction using a diamond anvil cell and synchrotron radiation source. The body-centered cubic (bcc) phase of Mo was found to be stable up to 410 GPa. The equation of state (EOS) of bcc-Mo was determined on the basis of Pt pressure scale. A fit of Vinet EOS to the volume compression data gave K{sub 0} = 262.3(4.6) GPa, K{sub 0}′ = 4.55(16) with one atmosphere atomic volume V{sub 0} = 31.155(24) A{sup 3}. The EOS was in good agreement with the previous ultrasonic data within pressure difference of 2.5%–3.3% in the multimegabar range, though the EOS of Mo proposed from a shock compression experiment gave lower pressure by 7.2%–11.3% than the present EOS. The agreement would suggest that the Pt pressure scale provides an accurate pressure value in an ultra-high pressure range.

  11. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

    PubMed Central

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. PMID:27433521

  12. Molecular crowding effects on stability of DNA double helix

    NASA Astrophysics Data System (ADS)

    Singh, Amar; Singh, Navin

    2016-05-01

    Cellular environmental conditions critically affect the structure and stability of double stranded DNA (dsDNA) molecule. It is known that 20-30% of the total volume of the cell is occupied by the molecular crowders. The presence of these crowders, reduces the free space available to the base pairs of a DNA molecule, hence the movement of base pair is restricted. Here, we study the thermal opening of dsDNA molecule using Peyrard Bishop Dauxois (PBD) model. The presence of crowders in the model, that mimic those found in the cell nucleus, is realized through the potential term. Using the equilibrium statistical calculations, we find melting profile and melting probabilities of the chain. The opening of DNA molecule in the presence of these crowders is shown through the density plots. This study reveals that the stability of dsDNA molecule is influenced by entropic as well as enthalpic effects and is more stable in the crowded environment.

  13. Double-disc gate valve

    DOEpatents

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  14. Directionality Effect in Double Conditionals.

    PubMed

    Espino, Orlando; Sánchez-Curbelo, Isana; Bolaños-Medina, Alicia

    2015-01-01

    Directionality effect in deductive reasoning is a very well-known phenomenon that shows that the percentage of forward or backward inferences that participants make depends on the conditional form used. A new extension of the semantic hypothesis (Oberauer & Wilhelm, 2000) is presented to explain the directionality effect in double conditionals with different directionality. This hypothesis claims that the directional effect depends on which term plays the role of relatum. It also makes several novel claims which have been confirmed in three experiments: Experiments 1 and 2 showed there were more forward than backward inferences when the end-term that played the role of relatum was in the first premise, experiment 1: t (45) = 2.73, p < .01, experiment 2: t (38) = 12.06, p < .05, but there were more backward than forward inferences when the end-term that played the role of relatum was in the second premise, experiment 1: t (45) = 2.84, p < .01, experiment 2: t (38) = 2.21, p < .04. Experiment 3 showed that there was no directional effect when both end-terms played the role of relatum, t (34) = 1.39, p = .17, or when both middle-terms (or neither of the end-terms) played the role of relatum, t (34) = .78, p = .44. These experiments confirmed the predictions of the new extension of the semantic hypothesis. PMID:26239471

  15. The double life of DNA

    PubMed Central

    McMurray, Cynthia T.; Vijg, Jan

    2015-01-01

    This issue of Current Opinions focuses on the dual role of DNA in life and death. In ancient Roman religion and myth, Janus is the god who looks both to the past and to the future. He guides the beginnings of life, its progression from one condition to another, and he foresees distant events. The analogy to DNA could not be stronger. Closely interacting with the environment, our basic genetics provides the origin of life, guides the quality of health with age, predicts disease, and ultimately foresees our end. A shared and deep interest in the origin of life has long prompted our desire to define aging, and, ultimately, to understand whether it can be reversed. In this special issue, the authors collectively review concepts of normative aging, DNA instability, DNA repair, the genetic contribution of age and diet to disease, and how the basic molecular transactions of DNA give it a double life that guides health and survival, as well as the transitions to death. PMID:25282314

  16. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  17. Doubling of world population unlikely.

    PubMed

    Lutz, W; Sanderson, W; Scherbov, S

    1997-06-19

    Most national and international agencies producing population projections avoid addressing explicitly the issue of uncertainty. Typically, they provide either a single projection or a set of low, medium and high variants, and only very rarely do they give these projections a probabilistic interpretation. Probabilistic population projections have been developed for specific industrialized countries, mostly the United States, and are based largely on time-series analysis. On a global level, time-series analysis is not applicable because there is a lack of appropriate data, and for conceptual reasons such as the structural discontinuity caused by the demographic transition. Here we report on a new probabilistic approach that makes use of expert opinion on trends in fertility, mortality and migration, and on the 90 per cent uncertainty range of those trends in different parts of the world. We have used simulation techniques to derive probability distributions of population sizes and age structures for 13 regions of the world up to the year 2100. Among other things, we find that there is a probability of two-thirds that the world's population will not double in the twenty-first century. PMID:9194559

  18. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  19. Double groups and projective representations

    NASA Astrophysics Data System (ADS)

    Altmann, S. L.; Herzig, P.

    Some problems are discussed in relation to the usual treatment of improper groups through their double groups, in particular the identification (rather than the mere isomorphism) of such groups as C3v and D3. The enhancement of SU(2) by the addition of the inversion is analysed for this purpose. This requires a careful discussion of the behaviour of spinors under inversion and two types of spinors are defined, Cartan and Pauli spinors, that behave differently with respect to inversion, although it is shown that this difference merely entails a choice of gauge in the language of projective representations. A distinction is proposed between the inversion operation and the parity operator: when the former is realized as a binary rotation in 4-space, the latter can be identified with its infinitesimal generator. The passage from SO(3) to O(3) (group of all proper and improper rotations) is studied and a hitherto unknown faithful projective representations of O(3) is given. It is shown how spinor representations can be constructed for improper point groups in either the Cartan or Pauli gauges. A choice of gauge is proposed to ensure agreement with current practice in angular momentum theory and with that in single point groups. As an example, Clebsch-Gordan coefficients are constructed for C3v.

  20. Volume Rendering of Heliospheric Data

    NASA Astrophysics Data System (ADS)

    Hick, P. P.; Jackson, B. V.; Bailey, M. J.; Buffington, A.

    2001-12-01

    We demonstrate some of the techniques we currently use for the visualization of heliospheric volume data. Our 3D volume data usually are derived from tomographic reconstructions of the solar wind density and velocity from remote sensing observations (e.g., Thomson scattering and interplanetary scintillation observations). We show examples of hardware-based volume rendering using the Volume Pro PCI board (from TeraRecon, Inc.). This board updates the display at a rate of up to 30 frames per second using a parallel projection algorithm, allowing the manipulation of volume data in real-time. In addition, the manipulation of 4D volume data (the 4th dimension usually representing time) enables the visualization in real-time of an evolving (time-dependent) data set. We also show examples of perspective projections using IDL. This work was supported through NASA grant NAG5-9423.

  1. Retained gas sampler interface volume

    SciTech Connect

    Cannon, N.S.

    1997-10-01

    The maximum Retained Gas Sampler (RGS) interface volume was determined; this volume can trap contamination gases during the sampling process. A new technique (helium backfill) for eliminating contamination gases from the RGS sampler interface volume is described, and verification testing reported. Also demonstrated was that RGS data obtained prior to the introduction of the new helium backfill technique can be compensated for air contamination using the measured oxygen concentration and normal air composition.

  2. Electromagnetic Theory 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Heaviside, Oliver

    2011-09-01

    Volume 1: Preface; 1. Introduction; 2. Outline of the electromagnetic connections; 3. The elements of vectorial algebra and analysis; 4. Theory of plane electromagnetic waves; Appendix. Volume 2: Preface; 5. Mathematics and the age of the earth; 6. Pure diffusion of electric displacement; 7. Electromagnetic waves and generalised differentiation; 8. Generalised differentiation and divergent series; Appendix. Volume 3: 9. Waves from moving sources; 10. Waves in the ether.

  3. Twisted mass finite volume effects

    SciTech Connect

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  4. The physics of volume rendering

    NASA Astrophysics Data System (ADS)

    Peters, Thomas

    2014-11-01

    Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.

  5. Heliophysics 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-11-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun

  6. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  7. 77 FR 6606 - DoubleLine Capital LP and DoubleLine Funds Trust; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... COMMISSION DoubleLine Capital LP and DoubleLine Funds Trust; Notice of Application February 2, 2012. AGENCY... relying on rule 12d1-2 under the Act to invest in certain financial instruments. APPLICANTS: DoubleLine Capital LP (``DoubleLine'') and DoubleLine Funds Trust (``Trust''). FILING DATE: The application was...

  8. The Ram's Horn, Volume Three, 1-4 (Double Issue), Summer-Spring 1982-1983.

    ERIC Educational Resources Information Center

    Ram's Horn, 1984

    1984-01-01

    The combined Summer 1982-Spring 1983 issue of this journal dedicated to the Rassias Language Method includes the following articles: "Languages, Learning, and Change" (Ronald C. Rosbottom); "Role-Playing: Perception and Analysis of Sex-Role Stereotypes in Literature" (Judith G. Miller); "Prose as Drama: The Use of Fairy Tales to Teach German"…

  9. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  10. Regulatory volume decrease in frog retinal pigment epithelium.

    PubMed

    Adorante, J S

    1995-01-01

    To measure changes in cell water during cell volume regulation, retinal pigment epithelial cells were loaded with tetramethylammonium (TMA). Regulatory volume decrease (RVD) in TMA-loaded retinal pigment epithelial (RPE) cells was measured using double-barreled K(+)-specific microelectrodes. Hyposmotic removal of 12.5 mM NaCl from the apical bath caused bullfrog RPE cells to rapidly swell by approximately 10% and to recover to control level within 10-15 min. Hyposmotic RVD was inhibited by 5 mM basal but not apical BaCl2. Raising K+ in the basal bath from 2 to 12 mM also inhibited RVD. Hyposmotic swelling was accompanied by an increase in the ratio of apical to basolateral membrane resistance (Ra/Rb). The swelling-induced increase in Ra/Rb was inhibited by 5 mM BaCl2. Together, the above findings suggest that hyposmotic swelling enhances basolateral K+ conductance such that K+ and presumably anion efflux mediate net solute and water loss during RVD. RPE cells can also regulate their volume when swollen in isosmotic Ringer solution under certain conditions. When urea or apical HCO3- was used to induce cell swelling, RPE cells underwent an RVD. In contrast, isosmotic elevation of apical K+ from 2 to 5 mM resulted in an increase in RPE cell volume with no subsequent RVD. Thus the method used to swell RPE cells is an important determinant of RVD. Because changes in RPE cell volume in vivo may alter the volume and composition of the extracellular (subretinal) space surrounding the photoreceptors, isosmotic volume regulation may play an important physiological role in maintaining the integrity and health of the neural retina under normal and pathophysiological conditions. PMID:7840164

  11. Healthy People 2010: Conference Edition, Volume I [and] Volume II.

    ERIC Educational Resources Information Center

    Department of Health and Human Services, Washington, DC.

    This document contains the two volumes of the Conference Edition of Healthy People 2010, a comprehensive, nationwide health promotion and disease prevention agenda. The first section of Volume I, "Healthy People 2010: Understanding and Improving Health," includes "Introduction,""Leading Health Indicators," and "Bibliography. The second section,…

  12. The Occupational Thesaurus: Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Teal, Everett A.

    Presented in two volumes, the job guide handbook can be used by high school and college counselors, students, recruiters for business and industry, and parents in determining areas of employment which are compatible with a student's or potential employee's interests, abilities, and preparation. Volume 1 lists job areas for students majoring in…

  13. Multilayer volume microwave filters

    NASA Astrophysics Data System (ADS)

    Gvozdev, V. I.; Smirnov, S. V.; Chernushenko, A. M.

    1985-09-01

    Multilayer volume microwave filters are particularly suitable for miniaturization of radioelectronic devices by way of circuit integration, the principal advantage over planar filters being the much higher Q-factor; Q sub 0 or = 10 to the 3rd power as compared with Q sub 0 or = 10 to the 2nd power. Their metal-dielectric structure forms an array of coupled half-wavelength resonators electrically symmetric with respect to the center layer, coupling being effected by a magnetic field normal to the plane of resonators. The structure consists of an asymmetric strip line with conductor at the input end, followed by a metal layer with cut out symmetric slot line, a dielectric layer, a symmetric strip line with conductor, a metal layer with cut out symmetric slot line, a dielectric layer, and an asymmetric strip line with conductor at the output end. The size of such a filter depends directly on the number of resonator stages and, without the case, is comparable with the size of conventional filters on symmetric strip lines only but is much smaller than that of conventional filters on asymmetric strip lines only.

  14. Cordoba Durchmusterung, volume 4

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 'Cordoba Durchmusterung' (CD) is a visual survey of southern stars in the declination zones -22 to -89 deg, carried out as an extension to the 'Bonner Durchmusterung' (BD) catalogs of Argelander and Schoenfeld. This volume covers the declination range -40 deg through -49 deg. The survey was performed using techniques similar to those used for the BD; i.e., the stars were cataloged by allowing the telescope to drift along the mean declination of each zone and recording the positions and magnitudes of stars crossing the transit line of the field. The goal of the survey was to obtain a position and estimated visual magnitude for every star down to 10.0 magnitude inclusive, but the faint limit was confirmed from comparisons with other catalogs, to be somewhat below 10. The positions are given to 0.1 s in right ascension and 0.1 min in declination for the equinox 1875. The positional uncertainties quoted in the original publications are plus or minus 0.42 sec and plus or minus 0.23 min for zones -22 deg to -32 deg. A list of all corrections made to the original data as a result of published corrigenda is presented. No other corrections or changes were incorporated into the original data, e.g., from more modern positions and magnitudes or comparison with the 'Cape Photographic Durchmusterung'.

  15. Cordoba Durchmusterung, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 'Cordoba Durchmusterung' (CD) is a visual survey of southern stars in the declination zones -22 to -89 deg, carried out as an extension to the 'Bonner Durchmusterung' (BD) catalogs of Argelander and Schoenfeld. This volume covers the declination range -22 deg through -30 deg. The survey was performed using techniques similar to those used for the BD; i.e., the stars were cataloged by allowing the telescope to drift along the mean declination of each zone and recording the positions and magnitudes of stars crossing the transit line of the field. The goal of the survey was to obtain a position and estimated visual magnitude for every star down to 10.0 magnitude inclusive, but the faint limit was confirmed from comparisons with other catalogs, to be somewhat below 10. The positions are given to 0.1 s in right ascension and 0.1 min in declination for the equinox 1875. The positional uncertainties quoted in the original publications are plus or minus 0.42 s and plus or minus 0.23 min for zones -22 deg to -32 deg. A list of all corrections made to the original data as a result of published corrigenda is presented. No other corrections or changes were incorporated into the original data, e.g., from more modern positions and magnitudes or comparison with the 'Cape Photographic Durchmusterung'.

  16. Lung Volume Reduction Surgery

    PubMed Central

    DeCamp, Malcolm M.; McKenna, Robert J.; Deschamps, Claude C.; Krasna, Mark J.

    2008-01-01

    The objective of lung volume reduction surgery (LVRS) is the safe, effective, and durable palliation of dyspnea in appropriately selected patients with moderate to severe emphysema. Appropriate patient selection and preoperative preparation are prerequisites for successful LVRS. An effective LVRS program requires participation by and communication between experts from pulmonary medicine, thoracic surgery, thoracic anesthesiology, critical care medicine, rehabilitation medicine, respiratory therapy, chest radiology, and nursing. The critical analysis of perioperative outcomes has influenced details of the conduct of the procedure and has established a bilateral, stapled approach as the standard of care for LVRS. The National Emphysema Treatment Trial (NETT) remains the world's largest multi-center, randomized trial comparing LVRS to maximal medical therapy. NETT purposely enrolled a broad spectrum of anatomic patterns of emphysema. This, along with the prospective, audited collection of extensive demographic, physiologic, radiographic, surgical and quality-of-life data, has positioned NETT as the most robust repository of evidence to guide the refinement of patient selection criteria for LVRS, to assist surgeons in providing optimal intraoperative and postoperative care, and to establish benchmarks for survival, complication rates, return to independent living, and durability of response. This article reviews the evolution of current LVRS practice with a particular emphasis on technical aspects of the operation, including the predictors and consequences of its most common complications. PMID:18453353

  17. Double-Disk Dark Matter

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-09-01

    Based on observational tests of large scale structure and constraints on halo structure, dark matter is generally taken to be cold and essentially collisionless. On the other hand, given the large number of particles and forces in the visible world, a more complex dark sector could be a reasonable or even likely possibility. This hypothesis leads to testable consequences, perhaps portending the discovery of a rich hidden world neighboring our own. We consider a scenario that readily satisfies current bounds that we call Partially Interacting Dark Matter (PIDM). This scenario contains self-interacting dark matter, but it is not the dominant component. Even if PIDM contains only a fraction of the net dark matter density, comparable to the baryonic fraction, the subdominant component’s interactions can lead to interesting and potentially observable consequences. Our primary focus will be the special case of Double-Disk Dark Matter (DDDM), in which self-interactions allow the dark matter to lose enough energy to lead to dynamics similar to those in the baryonic sector. We explore a simple model in which DDDM can cool efficiently and form a disk within galaxies, and we evaluate some of the possible observational signatures. The most prominent signal of such a scenario could be an enhanced indirect detection signature with a distinctive spatial distribution. Even though subdominant, the enhanced density at the center of the galaxy and possibly throughout the plane of the galaxy (depending on precise alignment) can lead to large boost factors, and could even explain a signature as large as the 130 GeV Fermi line. Such scenarios also predict additional dark radiation degrees of freedom that could soon be detectable and would influence the interpretation of future data, such as that from Planck and from the Gaia satellite. We consider this to be the first step toward exploring a rich array of new possibilities for dark matter dynamics.

  18. Space nuclear system volume accumulator development (SNAP program)

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the volume accumulator units to be employed in the NaK primary and secondary coolant loops of the 5-kwe reactor thermoelectric system are described. Three identical VAU's are required - two for the primary coolant loop, and one for the secondary coolant loop. The VAU's utilize nested-formed bellows as the flexing member, are hermetically sealed, provide double containment and utilize a combination of gas pressure force and bellows spring force to obtain the desired pressure regulation of the coolant loops. All parts of the VAU, except the NaK inlet tube, are to be fabricated from Inconel 718.

  19. VOFI - A library to initialize the volume fraction scalar field

    NASA Astrophysics Data System (ADS)

    Bnà, S.; Manservisi, S.; Scardovelli, R.; Yecko, P.; Zaleski, S.

    2016-03-01

    The VOFI library has been developed to accurately calculate the volume fraction field demarcated by implicitly-defined fluid interfaces in Cartesian grids with cubic cells. The method enlists a number of algorithms to compute the integration limits and the local height function, that is the integrand of a double Gauss-Legendre integration with a variable number of nodes. Tests in two and three dimensions are presented to demonstrate the accuracy of the method and are provided in the software distribution with C/C++ and FORTRAN interfaces.

  20. Single and double photoionization of Li2

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Li, Ye; Colgan, J.

    2015-01-01

    Time-dependent close-coupling methods are used to study the single and double photoionization of Li2. Formulations for both one-active and two-active electron methods make use of Hartree with local exchange potentials for the core electrons. Both the single and double photoionization cross sections for Li2 are found to be larger for linear polarization than for circular polarization, in sharp contrast to that found before for H2. In particular the double photoionization cross sections for Li2 are found to be approximately five times larger than for H2 and thus more easily observed by future experiments.

  1. Double Dens Invaginatus: Report of Three Cases

    PubMed Central

    Zengin, A. Zeynep; Sumer, A. Pinar; Celenk, Peruze

    2009-01-01

    Dens invaginatus results from an infolding of the outer surface of a tooth. The clinical importance of dens invaginatus results from the risk of pulpal disease. So, all clinicians should be aware of this anomaly. The presence of double dens invaginatus is extremely rare. This article presents three cases of double dens invaginatus in permanent maxillary lateral incisors, one with preventive restoration on its palatal surface. They were classified as double dens invaginatus because of two enamel lined invaginations presented in the crowns of these teeth. PMID:19262734

  2. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491

  3. Double-reed exhaust valve engine

    SciTech Connect

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  4. Earthquakes with non--double-couple mechanisms.

    PubMed

    Frohlich, C

    1994-05-01

    Seismological observations confirm that the pattern of seismic waves from some earthquakes cannot be produced by slip along a planar fault surface. More than one physical mechanism is required to explain the observed varieties of these non-double-couple earthquakes. The simplest explanation is that some earthquakes are complex, with stress released on two or more suitably oriented, nonparallel fault surfaces. However, some shallow earthquakes in volcanic and geothermal areas require other explanations. Current research focuses on whether fault complexity explains most observed non-double-couple earthquakes and to what extent ordinary earthquakes have non-double-couple components. PMID:17794721

  5. Double emulsions in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Pannacci, Nicolas; Lockhart, Thibaut; Willaime, Hervé; Tabeling, Patrick

    2007-11-01

    Double emulsions (emulsion of two liquids dispersed in a third liquid phase) are widely used in cosmetics, medicine or food industry. We are interested in producing very well controlled double emulsions in a microfluidic device and predicting the morphology (complete engulfing, non-engulfing or partial engulfing called ``janus'') from classical energetic considerations. We use a double flow focusing geometry with a 100 micrometers cross section for the PDMS microsystem. We compare theoretical and experimental morphologies flowing thirty triplets of immiscible fluids. We observe quite a good agreement and show that microfluidic technology may permit to get non standard objects.

  6. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy.

    PubMed

    Rogulski, K R; Zhang, K; Kolozsvary, A; Kim, J H; Freytag, S O

    1997-11-01

    The efficacy of HSV-1 thymidine kinase (TK) and Escherichia coli cytosine deaminase (CD) suicide gene therapies as cancer treatments are currently being examined in humans. We demonstrated previously that compared to single suicide gene therapy, greater levels of targeted cytotoxicity and radiosensitization can be achieved in vitro by genetically modifying tumor cells to express CD and HSV-1 TK concomitantly, as a fusion protein. In the present study, the efficacy of the combined double suicide gene therapy/radiotherapy approach was examined in vivo. Nude mice were injected either s.c. or i.m. with 9L gliosarcoma cells expressing an E. coli CD/HSV-1 TK fusion gene. Double suicide gene therapy using 5-fluorocytosine (500 mg/kg) and ganciclovir (30 mg/kg) proved to be markedly better at delaying tumor growth and achieving a tumor cure than single suicide gene therapy, which used 5-fluorocytosine or ganciclovir administered independently. Importantly, double suicide gene therapy was highly effective against large experimental tumors (>2 cm3), reducing tumor volume an average of 99% and producing a 40% tumor cure. Moreover, double suicide gene therapy profoundly potentiated the antitumor effects of radiation. The results indicate that double suicide gene therapy, particularly when coupled with radiotherapy, may represent a highly effective means of eradicating tumors. PMID:9815600

  7. Three step double layers in the laboratory. [plasma physics

    NASA Technical Reports Server (NTRS)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  8. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  9. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2010-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead -volume. As a result, a high -vacuum gas inlet was developed with low dead -volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  10. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2011-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead-volume. As a result, a high-vacuum gas inlet was developed with low dead-volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  11. Modern Written Arabic, Volume II.

    ERIC Educational Resources Information Center

    Naja, A. Nashat; Snow, James A.

    This second volume of Modern Written Arabic builds on the previous volume and is the second step designed to teach members of the Foreign Service to read the modern Arabic press. The student will gain recognitional mastery of an extensive set of vocabulary items and will be more intensively exposed to wider and more complex morphological and…

  12. Portuguese Programmatic Course. Volume 2.

    ERIC Educational Resources Information Center

    Ulsh, Jack Lee; And Others

    This volume, containing units 26-48, completes the Portuguese Programmatic Course. The odd-numbered units present the grammatical features not covered in Volume One in a programmed format. The even numbered units contain dialogs, substitution drills, practice with irregular verb forms, and exercises geared to vocabulary expansion. The…

  13. PDLE: Sustaining Professionalism. Volume 3

    ERIC Educational Resources Information Center

    Byrd, Patricia, Ed.; Nelson, Gayle, Ed.

    2003-01-01

    This third volume looks at ways that seasoned professionals continue to develop throughout their careers. The text includes descriptive accounts of professionals seeking to enhance their careers while remaining inspired to continue to develop professionally. This volume reveals how personal and professional lives are entwined. It proves that TESOL…

  14. Lao Basic Course, Volume 2.

    ERIC Educational Resources Information Center

    Yates, Warren G.; And Others

    This second volume on Lao is designed as the continuation of the introductory material presented in volume one. The objectives are to produce greater proficiency in the use of Lao and, at the same time, to provide a general introduction to Laotian culture. The course is divided into six modules concerning various aspects of culture: physical…

  15. Double Pomeron physics at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-07-01

    The author discusses central exclusive production, also known as Double Pomeron Exchange DIPE, from the ISR through the Tevatron to the LHC. There the author emphasizes the interest of exclusive Higgs and W{sup +}W{sup -}/ZZ production.

  16. Double field theory: a pedagogical review

    NASA Astrophysics Data System (ADS)

    Aldazabal, Gerardo; Marqués, Diego; Núñez, Carmen

    2013-08-01

    Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive symmetry of string theory, as a symmetry of a field theory defined on a double configuration space. The aim of this review is to provide a pedagogical presentation of DFT and its applications. We first introduce some basic ideas on T-duality and supergravity in order to proceed to the construction of generalized diffeomorphisms and an invariant action on the double space. Steps towards the construction of a geometry on the double space are discussed. We then address generalized Scherk-Schwarz compactifications of DFT and their connection to gauged supergravity and flux compactifications. We also discuss U-duality extensions and present a brief parcours on worldsheet approaches to DFT. Finally, we provide a summary of other developments and applications that are not discussed in detail in the review.

  17. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  18. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  19. Double logarithmic asymptotic behavior in quantum chromodynamics

    SciTech Connect

    Kirschner, R.

    1981-08-01

    The double logarithmic contributions to the quark-(anti)quark scattering and annihilation amplitudes are summed to all orders in quantum chromodynamics. The results are a generalization of the calculations of Gorshkov et al. in the case of quantum electrodynamics.

  20. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  1. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields. PMID:24921137

  2. Frequency Doubling Broadband Light in Multiple Crystals

    SciTech Connect

    ALFORD,WILLIAM J.; SMITH,ARLEE V.

    2000-07-26

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth.

  3. Over-under double-pass interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1977-01-01

    An over-under double pass interferometer in which the beamsplitter area and thickness can be reduced to conform only with optical flatness considerations was achieved by offsetting the optical center line of one cat's-eye retroreflector relative to the optical center line of the other in order that one split beam be folded into a plane distinct from the other folded split beam. The beamsplitter is made transparent in one area for a first folded beam to be passed to a mirror for doubling back and is made totally reflective in another area for the second folded beam to be reflected to a mirror for doubling back. The two beams thus doubled back are combined in the central, beamsplitting area of the beamsplitting and passed to a detector. This makes the beamsplitter insensitive to minimum thickness requirements and selection of material.

  4. Nonlinear dynamics of a double bilipid membrane.

    PubMed

    Sample, C; Golovin, A A

    2007-09-01

    The nonlinear dynamics of a biological double membrane that consists of two coupled lipid bilayers, typical of some intracellular organelles such as mitochondria or nuclei, is studied. A phenomenological free-energy functional is formulated in which the curvatures of the two parts of the double membrane and the distance between them are coupled to the lipid chemical composition. The derived nonlinear evolution equations for the double-membrane dynamics are studied analytically and numerically. A linear stability analysis is performed, and the domains of parameters are found in which the double membrane is stable. For the parameter values corresponding to an unstable membrane, numerical simulations are performed that reveal various types of complex dynamics, including the formation of stationary, spatially periodic patterns. PMID:17930289

  5. Rosalind Franklin and the Double Helix

    NASA Astrophysics Data System (ADS)

    Elkin, Lynne Osman

    2003-03-01

    Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix.

  6. Review of modern double beta decay experiments

    SciTech Connect

    Barabash, A. S.

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  7. Improved double beam, vacuum far infrared spectrophotometer.

    PubMed

    Iwahashi, I; Matsumoto, K; Matsudaira, S; Minami, S; Yoshinaga, H

    1969-03-01

    A double beam far ir spectrophotometer was improved in order to give more convenience and higher performance. The instrument is evacuable and the sample chamber alone can also be purged with dry air to remove water vapor. Three photometric systems, i.e., conventional double beam, double beam double chopping, and single beam systems can be selected for versatile measurements. The use of an efficient transmission filter system, not involving deliquescent crystals, results in many operational advantages. Accordingly, high resolution can be obtained through the entire spectral region from 400 cm(-1) to 30 cm(-1) Moreover, 30-min scan over the entire spectral region is achieved by completely automatic operation with a refined control system. PMID:20072263

  8. Nonlinear dynamics of a double bilipid membrane

    NASA Astrophysics Data System (ADS)

    Sample, C.; Golovin, A. A.

    2007-09-01

    The nonlinear dynamics of a biological double membrane that consists of two coupled lipid bilayers, typical of some intracellular organelles such as mitochondria or nuclei, is studied. A phenomenological free-energy functional is formulated in which the curvatures of the two parts of the double membrane and the distance between them are coupled to the lipid chemical composition. The derived nonlinear evolution equations for the double-membrane dynamics are studied analytically and numerically. A linear stability analysis is performed, and the domains of parameters are found in which the double membrane is stable. For the parameter values corresponding to an unstable membrane, numerical simulations are performed that reveal various types of complex dynamics, including the formation of stationary, spatially periodic patterns.

  9. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  10. Double shell tank waste analysis plan

    SciTech Connect

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  11. Concordance of Bing Doubles and Boundary Genus

    NASA Astrophysics Data System (ADS)

    Livingston, Charles; van Cott, Cornelia A.

    2011-11-01

    Cha and Kim proved that if a knot K is not algebraically slice, then no iterated Bing double of K is concordant to the unlink. We prove that if K has nontrivial signature $\\sigma$, then the n-iterated Bing double of K is not concordant to any boundary link with boundary surfaces of genus less than $2^{n-1}\\sigma$. The same result holds with $\\sigma$ replaced by $2\\tau$, twice the Ozsvath-Szabo knot concordance invariant.

  12. Searches for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Schwingenheuer, Bernhard

    2012-07-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136Xe. The sensitivities of the different proposals are reviewed.

  13. Decay properties of double heavy baryons

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-08-05

    We study the semileptonic decays of double heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.

  14. Improved double planar probe data analysis technique.

    PubMed

    Ghim Kim, Young-Chul; Hershkowitz, Noah

    2009-03-01

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data. PMID:19334917

  15. Mexican-American Child Bilingualism: Double Deficit?

    ERIC Educational Resources Information Center

    Dubois, Betty Lou; Fallis, Guadalupe Valdes

    This paper argues that Mexican-American bilinguals are in danger of becoming victims of a double-deficit theory, i.e., they are erroneously considered by some to be deficient in both their languages. An article by Joseph H. Matluck and Betty J. Mace that takes the double-deficit viewpoint is refuted as being damaging to Mexican-American children.…

  16. Conserved currents of double field theory

    NASA Astrophysics Data System (ADS)

    Blair, Chris D. A.

    2016-04-01

    We find the conserved current associated to invariance under generalised diffeomorphisms in double field theory. This can be used to define a generalised Komar integral. We comment on its applications to solutions, in particular to the fundamental string/pp-wave. We also discuss the current in the context of Scherk-Schwarz compactifications. We calculate the current for both the original double field theory action, corresponding to the NSNS sector alone, and for the RR sector.

  17. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J.; Smith, Arlee V.

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  18. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths.

    PubMed

    Miller, D A

    2000-04-10

    A rigorous method for finding the best-connected orthogonal communication channels, modes, or degrees of freedom for scalar waves between two volumes of arbitrary shape and position is derived explicitly without assuming planar surfaces or paraxial approximations. The communication channels are the solutions of two eigenvalue problems and are identical to the cavity modes of a double phase-conjugate resonator. A sum rule for the connection strengths is also derived, the sum being a simple volume integral. These results are used to analyze rectangular prism volumes, small volumes, thin volumes in different relative orientations, and arbitrary near-field volumes: all situations in which previous planar approaches have failed for one or more reasons. Previous planar results are reproduced explicitly, extending them to finite depth. Depth is shown not to increase the number of communications modes unless the volumes are close when compared with their depths. How to estimate the connection strengths in some cases without a full solution of the eigenvalue problem is discussed so that estimates of the number of usable communications modes can be made from the sum rule. In general, the approach gives a rigorous basis for handling problems related to volume sources and receivers. It may be especially applicable in near-field problems and in situations in which volume is an intrinsic part of the problem. PMID:18345068

  19. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2016-06-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  20. Volume estimation of multidensity nodules with thoracic computed tomography.

    PubMed

    Gavrielides, Marios A; Li, Qin; Zeng, Rongping; Myers, Kyle J; Sahiner, Berkman; Petrick, Nicholas

    2016-01-01

    This work focuses on volume estimation of "multidensity" lung nodules in a phantom computed tomography study. Eight objects were manufactured by enclosing spherical cores within larger spheres of double the diameter but with a different density. Different combinations of outer-shell/inner-core diameters and densities were created. The nodules were placed within an anthropomorphic phantom and scanned with various acquisition and reconstruction parameters. The volumes of the entire multidensity object as well as the inner core of the object were estimated using a model-based volume estimator. Results showed percent volume bias across all nodules and imaging protocols with slice thicknesses [Formula: see text] ranging from [Formula: see text] to 6.6% for the entire object (standard deviation ranged from 1.5% to 7.6%), and within [Formula: see text] to 5.7% for the inner-core measurement (standard deviation ranged from 2.0% to 17.7%). Overall, the estimation error was larger for the inner-core measurements, which was expected due to the smaller size of the core. Reconstructed slice thickness was found to substantially affect volumetric error for both tasks; exposure and reconstruction kernel were not. These findings provide information for understanding uncertainty in volumetry of nodules that include multiple densities such as ground glass opacities with a solid component. PMID:26844235

  1. Volume Segmentation and Ghost Particles

    NASA Astrophysics Data System (ADS)

    Ziskin, Isaac; Adrian, Ronald

    2011-11-01

    Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.

  2. Sonographic measurement of gallbladder volume.

    PubMed

    Dodds, W J; Groh, W J; Darweesh, R M; Lawson, T L; Kishk, S M; Kern, M K

    1985-11-01

    Sonographic images of the gallbladder enable satisfactory approximation of gallbladder volume using the sum-of-cylinders method. The sum-of-cylinder measurements, however, are moderately cumbersome and time consuming to perform. In this investigation, in vitro and in vivo testing was done to determine that a simple ellipsoid method applied to sonographic gallbladder images yields reasonable volume approximations that are comparable to the volumes calculated by the sum-of-cylinders method. Findings from a water-bath experiment showed that measurement of gallbladder volume by the ellipsoid method closely approximated the true volume with a mean difference of about 1.0 ml. The results of in vivo studies in five volunteers demonstrated that the gallbladder contracted substantially after a fatty meal and that volumes calculated by the ellipsoid and sum-of-cylinders methods were nearly identical. Thus, a simple ellipsoid method, requiring negligible time, may be used to approximate satisfactory gallbladder volume for clinical or investigative studies. PMID:3901703

  3. Recording of incoherent reflective volume Fourier holograms for optical correlators

    NASA Astrophysics Data System (ADS)

    Rodin, Vladislav G.; Starikov, Sergey N.

    2007-01-01

    The scheme of recording of reflective volume Fourier holograms in monochromatic light with partial spatial coherence is presented. The scheme contains posed on one optical axis an illuminated or self-luminous object, Fourier-objective, photosensitive medium and concave mirror. The light is proposed to be monochromatic with partial spatial coherence. The object is located in a front focal plane of the Fourier-objective. Photosensitive medium is placed in a back focal plane of the Fourier-objective, and the mirror is posed on a double focal length of the mirror from photosensitive medium. The light from input object is focused by the Fourier-objective in a volume of photosensitive medium, shaping a far field diffraction pattern of input object. This pattern is partial coherent analog of Fourier transform of input object. The light transmitted through the medium falls on the concave mirror and is reflected back, thus the mirror shapes the second copy of far field diffraction pattern of input object in the volume of photosensitive medium. Thus, these two light waves, propagating in the opposite directions, form the interference pattern in photosensitive medium, and a reflective volume Fourier hologram is recorded by monochromatic light with partial spatial coherence. The experiments on recording of these holograms and image reconstruction were realized. Patent by Russian Federation No2176099 on the device of recording of reflective volume holographic Fourier-filter in light with partial spatial coherence was taken out. Described reflective volume Fourier-holograms can be used in optical correlators as the spatial filters and spectral selectors at image recognition both in monochromatic and polychromatic light.

  4. FY 1996 solid waste integrated life-cycle forecast volume summary - Volume 1 and Volume 2

    SciTech Connect

    Valero, O.J.

    1996-02-22

    Solid waste forecast volumes to be generated or received ;at Westinghouse Hanford Company`s Solid Waste program over the life cycle of the site are described in this report. Previous forecast summary reports have covered only a 30-year period; however, the life-cycle approach was adopted for this FY 1996 report to ensure consistency with waste volumes reported in the 1996 Multi-Year Program Plans (MYPP). The volume data were collected on a life-cycle basis from onsite and offsite waste generators who currently ship or plan to ship solid waste to the Solid Waste program. The volumes described in detail are low-level mixed waste (LLMW) and transuranic/transuranic-mixed (TRU(M)) waste. The volumes reported in this document represent the external volume of the containers selected to ship the waste. Summary level information pertaining to low-level waste (LLW) is described in Appendix B. Hazardous waste volumes are also provided in Appendices E and F but are not described in detail since they will be managed by a commercial facility. Emphasis is placed on LLMW and TRU(M) waste because it will require processing and storage at Hanford Solid Waste`s Central Waste Complex (CORK) prior to final disposal. The LLW will generally be sent directly to disposal. The total baselines volume of LLMW and TRU(M) waste forecast to be received by the Solid Waste program (until 2070) is approximately 100,900 cubic meters. This total waste volume is composed of the following waste categories: 077,080 cubic meters of LLMW; 23,180 cubic meters of TRU(M); 640 cubic meters of greater-than-class III LLMW. This total is about 40% of the total volume reported last year (FY 1995).

  5. Mask data volume: explosion or damp squib?

    NASA Astrophysics Data System (ADS)

    Spence, Chris; Goad, Scott; Buck, Peter; Gladhill, Richard; Cinque, Russell

    2005-11-01

    Mask data file sizes are increasing as we move from technology generation to generation. The historical 30% linear shrink every 2-3 years that has been called Moore's Law, has driven a doubling of the transistor budget and hence feature count. The transition from steppers to step-and-scan tools has increased the area of the mask that needs to be patterned. At the 130nm node and below, Optical Proximity Correction (OPC) has become prevalent, and the edge fragmentation required to implement OPC leads to an increase in the number of polygons required to define the layout. Furthermore, Resolution Enhancement Techniques (RETs) such as Sub-Resolution Assist Features (SRAFs) or tri-tone Phase Shift Masks (PSM) require additional features to be defined on the mask which do not resolve on the wafer, further increasing masks volumes. In this paper we review historical data on mask file sizes for microprocessor designs. We consider the consequences of this increase in file size on Mask Data Prep (MDP) activities, both within the Integrated Device Manufacturer (IDM) and Mask Shop, namely: computer resources, storage and networks (for file transfer). The impact of larger file sizes on mask writing times is also reviewed. Finally we consider, based on the trends that have been observed over the last 5 technology nodes, what will be required to maintain reasonable MDP and mask manufacturing cycle times.

  6. Particles in small volume injections.

    PubMed

    Taylor, S A; Spence, J

    1983-12-01

    The level of particulate contamination in small volume injections has been examined using the light blockage (HIAC) and electrical sensing zone (Coulter counter) techniques, the HIAC system being found to be the more suitable. Particle counts on the same batch of injection showed a large and variable difference between the HIAC and the Coulter counter results, especially below 5 micron. None of the injections examined complied with the British Pharmacopoeia limits for particulates in large volume parenterals, suggesting the unsuitability of the limits for small volume parenterals. PMID:6141237

  7. Image space adaptive volume rendering

    NASA Astrophysics Data System (ADS)

    Corcoran, Andrew; Dingliana, John

    2012-01-01

    We present a technique for interactive direct volume rendering which provides adaptive sampling at a reduced memory requirement compared to traditional methods. Our technique exploits frame to frame coherence to quickly generate a two-dimensional importance map of the volume which guides sampling rate optimisation and allows us to provide interactive frame rates for user navigation and transfer function changes. In addition our ray casting shader detects any inconsistencies in our two-dimensional map and corrects them on the fly to ensure correct classification of important areas of the volume.

  8. Chen’s Double Eyelid Fold Ratio

    PubMed Central

    Chen, Chen-Chia; Tai, Hao-Chih

    2016-01-01

    Background: Double eyelidplasty can construct palpebral folds and enhance beauty perception for Asians with single eyelids. A new palpebral parameter for the quantitative interpretation of surgical outcomes is proposed on the basis of a photometric study of the altered proportions of Asian eyes after double eyelid operation. Methods: A total of 100 Asian adults with single upper eyelids who were satisfied with the enlarged eyes by operation were included in the study. A retrospective measurement of palpebral parameters in the frontal profile both preoperatively and 6 months postoperatively was performed. The proportions of various parameters in the eyebrow–eye aesthetic unit were calculated and analyzed. Results: Double eyelidplasty can augment the vertical dimension of palpebral fissure by 27.9% increase on average. The vertical ratio of palpebral fissure to the eyebrow–eye unit is augmented by 34.4% increase. The vertical ratio of the subunit below double eyelid fold peak to the unit is augmented by 82.6% increase. Conclusions: Double eyelidplasty can substantially enlarge the vertical dimensions of the eyes of Asians with single eyelids. The eyes are perceived to be larger because of the visually assimilated illusion of the superimposed eyelid fold and the relative proportions of the eyebrow–eye unit. The authors propose using a vertical ratio of the subunit below double eyelid fold peak in the eyebrow–eye unit to measure the visually perceived proportion of the eye in the unit. This ratio can be applied clinically for a quantitative evaluation of the surgical outcome after double eyelidplasty. PMID:27200243

  9. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin

    NASA Astrophysics Data System (ADS)

    Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain

    2016-04-01

    We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.

  10. Two-photon double ionization of H2 at 30 eV using exterior complex scaling

    SciTech Connect

    Horner, Daniel A; Morales, F; Martin, F; Rescigno, T N; Mccurdy, C W

    2009-01-01

    Calculations of fully differential cross sections for two-photon double ionization of the hydrogen molecule with photons of 30 eV are reported. The results have been obtained by using the method of exterior complex scaling, which allows one to construct essentially exact wave functions that describe the double continuum on a large, but finite, volume. The calculated cross sections are compared with those previously obtained by Colgan et al [1], and discrepancies are found for specific molecular orientations and electron ejection directions.

  11. 46 CFR 171.109 - Watertight floors in double bottoms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Watertight floors in double bottoms. 171.109 Section 171... Watertight floors in double bottoms. If a vessel is required to have a double bottom, a watertight transverse division must be located in the double bottom under each main transverse watertight bulkhead or as near...

  12. 46 CFR 171.109 - Watertight floors in double bottoms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Watertight floors in double bottoms. 171.109 Section 171... Watertight floors in double bottoms. If a vessel is required to have a double bottom, a watertight transverse division must be located in the double bottom under each main transverse watertight bulkhead or as near...

  13. 46 CFR 171.109 - Watertight floors in double bottoms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Watertight floors in double bottoms. 171.109 Section 171... Watertight floors in double bottoms. If a vessel is required to have a double bottom, a watertight transverse division must be located in the double bottom under each main transverse watertight bulkhead or as near...

  14. 46 CFR 171.109 - Watertight floors in double bottoms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Watertight floors in double bottoms. 171.109 Section 171... Watertight floors in double bottoms. If a vessel is required to have a double bottom, a watertight transverse division must be located in the double bottom under each main transverse watertight bulkhead or as near...

  15. 46 CFR 171.109 - Watertight floors in double bottoms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Watertight floors in double bottoms. 171.109 Section 171... Watertight floors in double bottoms. If a vessel is required to have a double bottom, a watertight transverse division must be located in the double bottom under each main transverse watertight bulkhead or as near...

  16. VOLUMNECT: measuring volumes with Kinect

    NASA Astrophysics Data System (ADS)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  17. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  18. The First SLR Double-Difference Baseline

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Haagmans, Roger; Floberghagen, Rune; Cacciapuoti, Luigi; Sierk, Bernd; Kirchner, Georg; Rodriguez, Jose; Wilkinson, Matthew; Sherwood, Rob; Appleby, Graham

    2013-04-01

    We introduce the SLR double-difference approach of space geodesy. With real and simulated SLR measurements it is shown how common SLR biases are removed by forming SLR double-differences, i.e. station range biases, common retro-reflector effects and orbit errors (GNSS) for baselines up to e.g. 5000 km. In this way we obtain SLR observables of utmost precision and accuracy. We show how remaining noise in the SLR measurements nicely averages out, leading to orbit-free and bias-free estimation of station coordinates, local ties between different space geodesy techniques and precise comparison of optical/microwave tropospheric effects. It shall be noted that SLR scale is preserved by double-differencing. When ETALON and LAGEOS satellites are observed by SLR, any orbit error propagates directly into estimated station coordinates. However, by forming differences between two satellites and two ground stations this orbit error can be eliminated. Both satellites need to be observed quasi-simultaneously in the same tracking sessions in order that station range bias and common retro-reflector effects are removed by differencing. When SLR measurements from GRZL and HERL SLR stations are taken to GLONASS and LAGEOS satellites and processed in double-difference mode, clear common orbit errors are visible in the SLR residuals from both stations. The same stands for small range biases that are visible between the consecutive observing sessions and are removed by forming SLR baselines. Longer SLR passes reveal other interesting systematic effects common to both stations at mm-level. An error in the order of 4-6 cm RMS was introduced to GNSS orbits, however the effect on station coordinates in negligible over such a short SLR baseline. We show how with just one-two SLR double-difference passes one can estimate station coordinates at mm-level. When in parallel, both GNSS satellites are observed with microwave measurements, one can estimate very accurate local ties by comparing (or

  19. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  20. Midface volumization with injectable fillers.

    PubMed

    Tan, Marietta; Kontis, Theda C

    2015-05-01

    The aging midface has long been overlooked in cosmetic surgery. Our understanding of facial aging in terms of 3 dimensions has placed increased importance on volume restoration. Although an "off-label" indication for most fillers in this facial region, volumization of the midface with injectable fillers is usually a safe and straightforward procedure technically. Injectors, nevertheless, need to have an excellent understanding of facial anatomy and the characteristics of the injected products should problems arise. PMID:25921573