Sample records for doublets revealedby cryo-electron

  1. Cryo-electron microscopy and cryo-electron tomography of nanoparticles.

    PubMed

    Stewart, Phoebe L

    2017-03-01

    Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  2. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  3. Structural insights into microtubule doublet interactions inaxonemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into itsmore » potential role in the mechanism of dynein activity regulation.« less

  4. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cryo-electron tomography of bacterial viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R., E-mail: erwrigh@emory.edu

    2013-01-05

    Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.

  6. ATOMIC RESOLUTION CRYO ELECTRON MICROSCOPY OF MACROMOLECULAR COMPLEXES

    PubMed Central

    ZHOU, Z. HONG

    2013-01-01

    Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their “native,” noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines. PMID:21501817

  7. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins

    PubMed Central

    Ichikawa, Muneyoshi; Liu, Dinan; Kastritis, Panagiotis L.; Basu, Kaustuv; Hsu, Tzu Chin; Yang, Shunkai; Bui, Khanh Huy

    2017-01-01

    Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule. PMID:28462916

  8. Cryo-scanning transmission electron tomography of vitrified cells.

    PubMed

    Wolf, Sharon Grayer; Houben, Lothar; Elbaum, Michael

    2014-04-01

    Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.

  9. Cryo-electron microscopy of membrane proteins.

    PubMed

    Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning

    2014-01-01

    Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

  10. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  11. Electron cryo-tomography captures macromolecular complexes in native environments.

    PubMed

    Baker, Lindsay A; Grange, Michael; Grünewald, Kay

    2017-10-01

    Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work. Copyright © 2017. Published by Elsevier Ltd.

  12. 3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography

    PubMed Central

    Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun

    2012-01-01

    Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867

  13. Limiting factors in atomic resolution cryo electron microscopy: No simple tricks

    PubMed Central

    Zhang, Xing; Zhou, Z. Hong

    2013-01-01

    To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992

  14. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    PubMed Central

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  15. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. An Open-Source Storage Solution for Cryo-Electron Microscopy Samples.

    PubMed

    Ultee, Eveline; Schenkel, Fred; Yang, Wen; Brenzinger, Susanne; Depelteau, Jamie S; Briegel, Ariane

    2018-02-01

    Cryo-electron microscopy (cryo-EM) enables the study of biological structures in situ in great detail and to solve protein structures at Ångstrom level resolution. Due to recent advances in instrumentation and data processing, the field of cryo-EM is a rapidly growing. Access to facilities and national centers that house the state-of-the-art microscopes is limited due to the ever-rising demand, resulting in long wait times between sample preparation and data acquisition. To improve sample storage, we have developed a cryo-storage system with an efficient, high storage capacity that enables sample storage in a highly organized manner. This system is simple to use, cost-effective and easily adaptable for any type of grid storage box and dewar and any size cryo-EM laboratory.

  17. Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM

    PubMed Central

    Kishchenko, Gregory P.; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin

    2015-01-01

    Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging. PMID:26210582

  18. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  19. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

    PubMed Central

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-01-01

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969

  20. Zernike phase contrast cryo-electron tomography of whole bacterial cells.

    PubMed

    Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R

    2014-01-01

    Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Zernike phase contrast cryo-electron tomography of whole bacterial cells

    PubMed Central

    Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.

    2014-01-01

    Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950

  2. Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.

    PubMed

    He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin

    2017-08-01

    Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.

  3. Cryo-Electron Microscopy of Viruses Infecting Bacterium

    NASA Astrophysics Data System (ADS)

    Chiu, Wah

    2010-03-01

    Single particle cryo-EM can yield structures of infectious bacterial viruses with and without imposed icosahedral symmetry at subnanometer resolution. Reconstructions of infectious and empty phage particles show substantial differences in the portal vertex protein complex at one of the 12 pentameric vertices in the icosahedral virus particle through which the viral genomes are packaged or released. In addition, electron cryo-tomography of viruses during infecting its bacterial host cell displayed multiple conformations of the tail fiber of the virus. Our structural observations by single particle and tomographic reconstructions suggest a mechanism whereby the viral tail fibers, upon binding to the host cell, induce a cascade of structural alterations of the portal vertex protein complex that triggers DNA release.

  4. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors

    PubMed Central

    Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.

    2012-01-01

    The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089

  5. A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Razmus, Dennis; Yazuka, Shintaro; Koht, Craig; Hilser, Vincent J.; Lemon, Stanley M.; Brocard, Anne-Sophie; Zimmerman, Dee; Chiu, Wah; Watowich, Stanley J.; Weaver, Scott C.

    2010-01-01

    This article describes a unique cryo-electron microscopy (CryoEM) facility to study the three-dimensional organization of viruses at biological safety level 3 (BSL-3). This facility, the W. M. Keck Center for Virus Imaging, has successfully operated for more than a year without incident and was cleared for select agent studies by the Centers for Disease Control and Prevention (CDC). Standard operating procedures for the laboratory were developed and implemented to ensure its safe and efficient operation. This facility at the University of Texas Medical Branch (Galveston, TX) is the only such BSL-3 CryoEM facility approved for select agent research. PMID:21852942

  6. Alignment Algorithms and Per-Particle CTF Correction for Single Particle Cryo-Electron Tomography

    PubMed Central

    Galaz-Montoya, Jesús G.; Hecksel, Corey W.; Baldwin, Philip R.; Wang, Eryu; Weaver, Scott C.; Schmid, Michael F.; Ludtke, Steven J.; Chiu, Wah

    2016-01-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen grid and carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. PMID:27016284

  7. Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.

    PubMed

    Carlson, David B; Evans, James E

    2011-06-05

    The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.

  8. Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box.

    PubMed

    Pierson, Jason; Fernández, José Jesús; Bos, Erik; Amini, Shoaib; Gnaegi, Helmut; Vos, Matthijn; Bel, Bennie; Adolfsen, Freek; Carrascosa, José L; Peters, Peter J

    2010-02-01

    Cryo-electron tomography of vitreous cryo-sections is the most suitable method for exploring the 3D organization of biological samples that are too large to be imaged in an intact state. Producing good quality vitreous cryo-sections, however, is challenging. Here, we focused on the major obstacles to success: contamination in and around the microtome, and attachment of the ribbon of sections to an electron microscopic grid support film. The conventional method for attaching sections to the grid has involved mechanical force generated by a crude stamping or pressing device, but this disrupts the integrity of vitreous cryo-sections. Furthermore, attachment is poor, and parts of the ribbon of sections are often far from the support film. This results in specimen instability during image acquisition and subsequent difficulty with aligning projection images. Here, we have implemented a protective glove box surrounding the cryo-ultramicrotome that reduces the humidity around and within the microtome during sectioning. We also introduce a novel way to attach vitreous cryo-sections to an EM grid support film using electrostatic charging. The ribbon of vitreous cryo-sections remains in place during transfer and storage and is devoid of stamping related artefacts. We illustrate these improvements by exploring the structure of putative cellular 80S ribosomes within 50nm, vitreous cryo-sections of Saccharomyces cerevisiae.

  9. National Cryo-Electron Microscopy Facility

    Cancer.gov

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  10. Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography.

    PubMed

    Turoňová, Beata; Marsalek, Lukas; Davidovič, Tomáš; Slusallek, Philipp

    2015-03-01

    Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A simple cryo-holder facilitates specimen observation under a conventional scanning electron microscope.

    PubMed

    Tang, Chih-Yuan; Huang, Rong-Nan; Kuo-Huang, Ling-Long; Kuo, Tai-Chih; Yang, Ya-Yun; Lin, Ching-Yeh; Jane, Wann-Neng; Chen, Shiang-Jiuun

    2012-02-01

    A pre-cryogenic holder (cryo-holder) facilitating cryo-specimen observation under a conventional scanning electron microscope (SEM) is described. This cryo-holder includes a specimen-holding unit (the stub) and a cryogenic energy-storing unit (a composite of three cylinders assembled with a screw). After cooling, the cryo-holder can continue supplying cryogenic energy to extend the observation time for the specimen in a conventional SEM. Moreover, the cryogenic energy-storing unit could retain appropriate liquid nitrogen that can evaporate to prevent frost deposition on the surface of the specimen. This device is proved feasible for various tissues and cells, and can be applied to the fields of both biology and material science. We have employed this novel cryo-holder for observation of yeast cells, trichome, and epidermal cells in the leaf of Arabidopsis thaliana, compound eyes of insects, red blood cells, filiform papillae on the surface of rat tongue, agar medium, water molecules, penicillium, etc. All results suggested that the newly designed cryo-holder is applicable for cryo-specimen observation under a conventional SEM without cooling system. Most importantly, the design of this cryo-holder is simple and easy to operate and could adapt a conventional SEM to a plain type cryo-SEM affordable for most laboratories. Copyright © 2011 Wiley Periodicals, Inc.

  12. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE

    PubMed Central

    Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos

    2017-01-01

    SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515

  13. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope.

    PubMed

    de Winter, D A Matthijs; Mesman, Rob J; Hayles, Michael F; Schneijdenberg, Chris T W M; Mathisen, Cliff; Post, Jan A

    2013-07-01

    Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly

    PubMed Central

    Razi, Aida; Britton, Robert A.

    2017-01-01

    Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306

  15. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  16. Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps.

    PubMed

    DiMaio, F; Chiu, W

    2016-01-01

    Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data. © 2016 Elsevier Inc. All rights reserved.

  17. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  18. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGES

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; ...

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  19. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆

    PubMed Central

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. PMID:24238600

  20. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  2. Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles.

    PubMed

    Gulati, Neetu M; Pitek, Andrzej S; Steinmetz, Nicole F; Stewart, Phoebe L

    2017-03-09

    Nanoparticles offer great potential in drug delivery and imaging, but shielding strategies are necessary to increase circulation time and performance. Structure-function studies are required to define the design rules to achieve effective shielding. With several formulations reaching clinical testing and approval, the ability to assess and detail nanoparticle formulations at the single particle level is becoming increasingly important. To address this need, we use cryo-electron tomography (cryo-ET) to investigate stealth-coated nanoparticles. As a model system, we studied the soft matter nanotubes formed by tobacco mosaic virus (TMV) coated with human serum albumin (SA) stealth proteins. Cryo-ET and subtomogram averaging allow for visualization of individual SA molecules and determination of their orientations relative to the TMV surface, and also for measurement of the surface coverage provided by added stealth proteins. This information fills a critical gap in the understanding of the structural morphology of stealth-coated nanoparticles, and therefore cryo-ET may play an important role in guiding the development of future nanoparticle-based therapeutics.

  3. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    PubMed

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  4. Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.

    PubMed

    Bulut, Niyazi; Lique, François; Roncero, Octavio

    2015-12-17

    The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.

  5. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.

    PubMed

    Norlén, Lars; Masich, Sergej; Goldie, Kenneth N; Hoenger, Andreas

    2007-06-10

    Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.

  6. Construction and Organization of a BSL-3 Cryo-Electron Microscopy Laboratory at UTMB

    PubMed Central

    Sherman, Michael B.; Trujillo, Juan; Leahy, Ian; Razmus, Dennis; DeHate, Robert; Lorcheim, Paul; Czarneski, Mark A.; Zimmerman, Domenica; Newton, Je T’Aime M.; Haddow, Andrew D.; Weaver, Scott C.

    2013-01-01

    A unique cryo-electron microscopy facility has been designed and constructed at the University of Texas Medical Branch (UTMB) to study the three-dimensional organization of viruses and bacteria classified as select agents at biological safety level (BSL)-3, and their interactions with host cells. A 200 keV high-end cryo-electron microscope was installed inside a BSL-3 containment laboratory and standard operating procedures were developed and implemented to ensure its safe and efficient operation. We also developed a new microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system, which allowed us to expand the facility capabilities to study bacterial agents including spore-forming species. The new unified protocol does not require agent-specific treatment in contrast to the previously used heat decontamination. To optimize the use of the cryo-electron microscope and to improve safety conditions, it can be remotely controlled from a room outside of containment, or through a computer network world-wide. Automated data collection is provided by using JADAS (single particle imaging) and SerialEM (tomography). The facility has successfully operated for more than a year without an incident and was certified as a select agent facility by the Centers for Disease Control. PMID:23274136

  7. Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB.

    PubMed

    Sherman, Michael B; Trujillo, Juan; Leahy, Ian; Razmus, Dennis; Dehate, Robert; Lorcheim, Paul; Czarneski, Mark A; Zimmerman, Domenica; Newton, Je T'aime M; Haddow, Andrew D; Weaver, Scott C

    2013-03-01

    A unique cryo-electron microscopy facility has been designed and constructed at the University of Texas Medical Branch (UTMB) to study the three-dimensional organization of viruses and bacteria classified as select agents at biological safety level (BSL)-3, and their interactions with host cells. A 200keV high-end cryo-electron microscope was installed inside a BSL-3 containment laboratory and standard operating procedures were developed and implemented to ensure its safe and efficient operation. We also developed a new microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system, which allowed us to expand the facility capabilities to study bacterial agents including spore-forming species. The new unified protocol does not require agent-specific treatment in contrast to the previously used heat decontamination. To optimize the use of the cryo-electron microscope and to improve safety conditions, it can be remotely controlled from a room outside of containment, or through a computer network world-wide. Automated data collection is provided by using JADAS (single particle imaging) and SerialEM (tomography). The facility has successfully operated for more than a year without an incident and was certified as a select agent facility by the Centers for Disease Control. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  9. Cryo-transmission electron tomography of native casein micelles from bovine milk

    PubMed Central

    Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.

    2013-01-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067

  10. Single-particle cryo-electron microscopy of Rift Valley fever virus

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit-vaccines. PMID:19304307

  11. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  12. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  13. Cryo-transmission electron tomography of native casein micelles from bovine milk.

    PubMed

    Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F

    2011-12-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  15. How good can cryo-EM become?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, Robert M.

    The suddenness with which single-particle cryo-electron microscopy (cryo-EM) has emerged as a method for determining high-resolution structures of biological macromolecules invites the questions, how much better can this technology get, and how fast is that likely to happen? While we can rightly celebrate the maturation of cryo-EM as a high-resolution structure-determination tool, I believe there still are many developments to look forward to.

  16. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    NASA Astrophysics Data System (ADS)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  17. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    PubMed Central

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-01-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 ± 14), ~3.2 nm (Au923 ± 22), and ~4.3 nm (Au2057 ± 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2–5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy. PMID:25783049

  18. An improved cryo-FIB method for fabrication of frozen hydrated lamella.

    PubMed

    Zhang, Jianguo; Ji, Gang; Huang, Xiaojun; Xu, Wei; Sun, Fei

    2016-05-01

    Cryo-electron tomography (cryo-ET) provides great insights into the ultrastructure of cells and tissues in their native state and provides a promising way to study the in situ 3D structures of macromolecular complexes. However, this technique has been limited on the very thin specimen, which is not applicable for most cells and tissues. Besides cryo-sectioning approach, cryo focused ion beam (cryo-FIB) appeared recently to achieve 'artifact-free' thin frozen hydrated lamella via fabrication. Considering that the current cryo-FIB methods need modified holders or cartridges, here, with a "D-shaped" molybdenum grid and a specific shutter system, we developed a simple cryo-FIB approach for thin frozen hydrated lamella fabrication, which fits both standard transmission cryo-electron microscopes with side-entry cryo-holders and state-of-the-art ones with AutoGrids. Our approach will expand the usage of cryo-FIB approach in many labs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Thinning of Large Biological Cells for Cryo-TEM Characterization by Cryo-FIB Milling

    PubMed Central

    Strunk, Korrinn M.; Ke, Danxia; Gray, Jennifer L.; Zhang, Peijun

    2013-01-01

    SUMMARY Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis in a cryo-transmission electron microscope (cryo-TEM) in their frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artifacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. In order to address these problems, we have designed a new sample cryo-shuttle that specifically accepts Polara TEM cartridges directly in order to simplify the transfer process between the FIB and TEM. We used the quality of the ice in the sample as an indicator to test various parameters used the process, and demonstrated with successful milling of large mammalian cells. By comparing the results from larger HeLa cells to those from E. coli cells, we discuss some of the artifacts and challenges we have encountered using this technique. PMID:22906009

  20. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy.

    PubMed

    Lau, Carus; Hunter, Mark J; Stewart, Alastair; Perozo, Eduardo; Vandenberg, Jamie I

    2018-04-01

    The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  1. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  2. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.

    PubMed

    Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-06-01

    In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  4. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.

    2007-10-25

    The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less

  5. A User-Friendly DNA Modeling Software for the Interpretation of Cryo-Electron Microscopy Data.

    PubMed

    Larivière, Damien; Galindo-Murillo, Rodrigo; Fourmentin, Eric; Hornus, Samuel; Lévy, Bruno; Papillon, Julie; Ménétret, Jean-François; Lamour, Valérie

    2017-01-01

    The structural modeling of a macromolecular machine is like a "Lego" approach that is challenged when blocks, like proteins imported from the Protein Data Bank, are to be assembled with an element adopting a serpentine shape, such as DNA templates. DNA must then be built ex nihilo, but modeling approaches are either not user-friendly or very long and fastidious. In this method chapter we show how to use GraphiteLifeExplorer, a software with a simple graphical user interface that enables the sketching of free forms of DNA, of any length, at the atomic scale, as fast as drawing a line on a sheet of paper. We took as an example the nucleoprotein complex of DNA gyrase, a bacterial topoisomerase whose structure has been determined using cryo-electron microscopy (Cryo-EM). Using GraphiteLifeExplorer, we could model in one go a 155 bp long and twisted DNA duplex that wraps around DNA gyrase in the cryo-EM map, improving the quality and interpretation of the final model compared to the initially published data.

  6. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  7. Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.

    PubMed

    Elbaum, Michael

    2018-05-11

    Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  9. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  10. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.

    PubMed

    Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R

    2010-11-24

    RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.

  11. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging.

    PubMed

    Hagen, Wim J H; Wan, William; Briggs, John A G

    2017-02-01

    Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction.

    PubMed

    Cabra, Vanessa; Samsó, Montserrat

    2015-01-09

    Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.

  13. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    PubMed Central

    Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

    2011-01-01

    Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed. PMID:21169680

  14. Cryo-EM in drug discovery: achievements, limitations and prospects.

    PubMed

    Renaud, Jean-Paul; Chari, Ashwin; Ciferri, Claudio; Liu, Wen-Ti; Rémigy, Hervé-William; Stark, Holger; Wiesmann, Christian

    2018-06-08

    Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances - including the development of direct electron detectors and more effective computational image analysis techniques - are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

  15. Cryo-planing of frozen-hydrated samples using cryo triple ion gun milling (CryoTIGM™).

    PubMed

    Chang, Irene Y T; Joester, Derk

    2015-12-01

    Cryo-SEM is a high throughput technique for imaging biological ultrastructure in its most pristine state, i.e. without chemical fixation, embedding, or drying. Freeze fracture is routinely used to prepare internal surfaces for cryo-SEM imaging. However, the propagation of the fracture plane is highly dependent on sample properties, and the resulting surface frequently shows substantial topography, which can complicate image analysis and interpretation. We have developed a broad ion beam milling technique, called cryogenic triple ion gun milling (CryoTIGM™ ['krī-ə-,tīm]), for cryo-planing frozen-hydrated biological specimens. Comparing sample preparation by CryoTIGM™ and freeze fracture in three model systems, Baker's yeast, mouse liver tissue, and whole sea urchin embryos, we find that CryoTIGM™ yields very large (∼700,000 μm(2)) and smooth sections that present ultrastructural details at similar or better quality than freeze-fractured samples. A particular strength of CryoTIGM™ is the ability to section samples with hard-soft contrast such as brittle calcite (CaCO3) spicules in the sea urchin embryo. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Doublet Crater

    NASA Image and Video Library

    2010-12-22

    This image from NASA Mars Odyssey is of a doublet crater located in Utopia Planitia, near the Elysium Volcanic region. Doublet craters are formed by simultaneous impact of a meteor that broke into two pieces prior to hitting the surface.

  17. Cryo-EM reconstruction of AlfA from Bacillus subtilis reveals the structure of a simplified actin-like filament at 3.4-Å resolution.

    PubMed

    Szewczak-Harris, Andrzej; Löwe, Jan

    2018-03-27

    Low copy-number plasmid pLS32 of Bacillus subtilis subsp. natto contains a partitioning system that ensures segregation of plasmid copies during cell division. The partitioning locus comprises actin-like protein AlfA, adaptor protein AlfB, and the centromeric sequence parN Similar to the ParMRC partitioning system from Escherichia coli plasmid R1, AlfA filaments form actin-like double helical filaments that arrange into an antiparallel bipolar spindle, which attaches its growing ends to sister plasmids through interactions with AlfB and parN Because, compared with ParM and other actin-like proteins, AlfA is highly diverged in sequence, we determined the atomic structure of nonbundling AlfA filaments to 3.4-Å resolution by cryo-EM. The structure reveals how the deletion of subdomain IIB of the canonical actin fold has been accommodated by unique longitudinal and lateral contacts, while still enabling formation of left-handed, double helical, polar and staggered filaments that are architecturally similar to ParM. Through cryo-EM reconstruction of bundling AlfA filaments, we obtained a pseudoatomic model of AlfA doublets: the assembly of two filaments. The filaments are antiparallel, as required by the segregation mechanism, and exactly antiphasic with near eightfold helical symmetry, to enable efficient doublet formation. The structure of AlfA filaments and doublets shows, in atomic detail, how deletion of an entire domain of the actin fold is compensated by changes to all interfaces so that the required properties of polymerization, nucleotide hydrolysis, and antiparallel doublet formation are retained to fulfill the system's biological raison d'être.

  18. Cryo-EM visualization of the protein machine that replicates the chromosome

    NASA Astrophysics Data System (ADS)

    Li, Huilin

    Structural knowledge is key to understanding biological functions. Cryo-EM is a physical method that uses transmission electron microscopy to visualize biological molecules that are frozen in vitreous ice. Due to recent advances in direct electron detector and image processing algorithm, cryo-EM has become a high-resolution technique. Cryo-EM field is undergoing a rapid expansion and vast majority research institutions and research universities around the world are setting up cryo-EM research. Indeed, the method is revolutionizing structural and molecular biology. We have been using cryo-EM to study the structure and mechanism of eukaryotic chromosome replication. Despite an abundance of cartoon drawings found in review articles and biology textbooks, the structure of the eukaryotic helicase that unwinds the double stranded DNA has been unknown. It has also been unknown how the helicase works with DNA polymerases to accomplish the feat of duplicating the genome. In my presentation, I will show how we have used cryo-EM to derive at structures of the eukaryotic chromosome replication machinery and describe mechanistic insights we have gleaned from the structures.

  19. Comparing an Atomic Model or Structure to a Corresponding Cryo-electron Microscopy Image at the Central Axis of a Helix.

    PubMed

    Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy; He, Jing

    2017-01-01

    Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4-7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map-model pairs.

  20. Comparing an Atomic Model or Structure to a Corresponding Cryo-electron Microscopy Image at the Central Axis of a Helix

    PubMed Central

    Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy

    2017-01-01

    Abstract Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4–7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map–model pairs. PMID:27936925

  1. ScipionCloud: An integrative and interactive gateway for large scale cryo electron microscopy image processing on commercial and academic clouds.

    PubMed

    Cuenca-Alba, Jesús; Del Cano, Laura; Gómez Blanco, Josué; de la Rosa Trevín, José Miguel; Conesa Mingo, Pablo; Marabini, Roberto; S Sorzano, Carlos Oscar; Carazo, Jose María

    2017-10-01

    New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments. In this way, cloud is a new form of accessing computing and storage resources on demand. Here, we evaluate on how this new computational paradigm can be effectively used by extending our current integrative framework for image processing, creating ScipionCloud. This new development has resulted in a full installation of Scipion both in public and private clouds, accessible as public "images", with all the required preinstalled cryoEM software, just requiring a Web browser to access all Graphical User Interfaces. We have profiled the performance of different configurations on Amazon Web Services and the European Federated Cloud, always on architectures incorporating GPU's, and compared them with a local facility. We have also analyzed the economical convenience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited for their needs and budgets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. IPET and FETR: Experimental Approach for Studying Molecular Structure Dynamics by Cryo-Electron Tomography of a Single-Molecule Structure

    PubMed Central

    Zhang, Lei; Ren, Gang

    2012-01-01

    The dynamic personalities and structural heterogeneity of proteins are essential for proper functioning. Structural determination of dynamic/heterogeneous proteins is limited by conventional approaches of X-ray and electron microscopy (EM) of single-particle reconstruction that require an average from thousands to millions different molecules. Cryo-electron tomography (cryoET) is an approach to determine three-dimensional (3D) reconstruction of a single and unique biological object such as bacteria and cells, by imaging the object from a series of tilting angles. However, cconventional reconstruction methods use large-size whole-micrographs that are limited by reconstruction resolution (lower than 20 Å), especially for small and low-symmetric molecule (<400 kDa). In this study, we demonstrated the adverse effects from image distortion and the measuring tilt-errors (including tilt-axis and tilt-angle errors) both play a major role in limiting the reconstruction resolution. Therefore, we developed a “focused electron tomography reconstruction” (FETR) algorithm to improve the resolution by decreasing the reconstructing image size so that it contains only a single-instance protein. FETR can tolerate certain levels of image-distortion and measuring tilt-errors, and can also precisely determine the translational parameters via an iterative refinement process that contains a series of automatically generated dynamic filters and masks. To describe this method, a set of simulated cryoET images was employed; to validate this approach, the real experimental images from negative-staining and cryoET were used. Since this approach can obtain the structure of a single-instance molecule/particle, we named it individual-particle electron tomography (IPET) as a new robust strategy/approach that does not require a pre-given initial model, class averaging of multiple molecules or an extended ordered lattice, but can tolerate small tilt-errors for high-resolution single

  3. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography

    PubMed Central

    Engel, Benjamin D; Schaffer, Miroslava; Kuhn Cuellar, Luis; Villa, Elizabeth; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-01-01

    Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix. DOI: http://dx.doi.org/10.7554/eLife.04889.001 PMID:25584625

  4. The 2017 Nobel Prize in Chemistry: cryo-EM comes of age.

    PubMed

    Shen, Peter S

    2018-03-01

    The 2017 Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryo-electron microscopy (cryo-EM) for the high-resolution structure determination of biomolecules in solution." This feature article summarizes some of the major achievements leading to the development of cryo-EM and recent technological breakthroughs that have transformed the method into a mainstream tool for structure determination.

  5. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy

    PubMed Central

    Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming

    2018-01-01

    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  6. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy.

    PubMed

    Tao, Chang-Lu; Liu, Yun-Tao; Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Zhang, Peijun; Lau, Pak-Ming; Zhou, Z Hong; Bi, Guo-Qiang

    2018-02-07

    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABA A receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  7. Zernike Phase Contrast Electron Cryo-Tomography Applied to Marine Cyanobacteria Infected with Cyanophages

    PubMed Central

    Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408

  8. Cryo-Electron Tomography of Rubella Virus

    PubMed Central

    Battisti, Anthony J.; Yoder, Joshua D.; Plevka, Pavel; Winkler, Dennis C.; Mangala Prasad, Vidya; Kuhn, Richard J.; Frey, Teryl K.; Steven, Alasdair C.

    2012-01-01

    Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses. PMID:22855483

  9. Cryo-electron tomography of rubella virus.

    PubMed

    Battisti, Anthony J; Yoder, Joshua D; Plevka, Pavel; Winkler, Dennis C; Prasad, Vidya Mangala; Kuhn, Richard J; Frey, Teryl K; Steven, Alasdair C; Rossmann, Michael G

    2012-10-01

    Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.

  10. Cryo-Scanning Electron Microscopy of Captured Cirrus Ice Particles

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.

    2016-12-01

    We present the latest collection of high-resolution cryo-scanning electron microscopy images and microanalysis of cirrus ice particles captured by high-altitude balloon (ICE-Ball, see abstracts by K. Boaggio and M. Bandamede). Ice particle images and sublimation-residues are derived from particles captured during approximately 15 balloon flights conducted in Pennsylvania and New Jersey over the past 12 months. Measurements include 3D digital elevation model reconstructions of ice particles, and associated statistical analyses of entire particles and particle sub-facets and surfaces. This 3D analysis reveals that morphologies of most ice particles captured deviate significantly from ideal habits, and display geometric complexity and surface roughness at multiple measureable scales, ranging from 100's nanometers to 100's of microns. The presentation suggests potential a path forward for representing scattering from a realistically complex array of ice particle shapes and surfaces.

  11. Visualization of the herpes simplex virus portal in situ by cryo-electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardone, Giovanni; Winkler, Dennis C.; Trus, Benes L.

    2007-05-10

    Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the 12 vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context ofmore » the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer - both are cylinders of {approx} 800 kDa - combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of divergence at the level of portal-related functions other than its role as a DNA channel.« less

  12. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  13. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-08

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors.

  14. Processing of Cryo-EM Movie Data.

    PubMed

    Ripstein, Z A; Rubinstein, J L

    2016-01-01

    Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.

  15. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    PubMed

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  16. Beam-induced motion correction for sub-megadalton cryo-EM particles.

    PubMed

    Scheres, Sjors Hw

    2014-08-13

    In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.

  17. Routine single particle CryoEM sample and grid characterization by tomography

    PubMed Central

    Noble, Alex J; Brasch, Julia; Chase, Jillian; Acharya, Priyamvada; Tan, Yong Zi; Zhang, Zhening; Kim, Laura Y; Scapin, Giovanna; Rapp, Micah; Eng, Edward T; Rice, William J; Cheng, Anchi; Negro, Carl J; Shapiro, Lawrence; Kwong, Peter D; Jeruzalmi, David; des Georges, Amedee; Potter, Clinton S

    2018-01-01

    Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment. PMID:29809143

  18. Single-particle cryo-electron microscopy of Rift Valley fever virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Michael B.; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555; Freiberg, Alexander N.

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure providesmore » a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.« less

  19. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  20. 2dx_automator: implementation of a semiautomatic high-throughput high-resolution cryo-electron crystallography pipeline.

    PubMed

    Scherer, Sebastian; Kowal, Julia; Chami, Mohamed; Dandey, Venkata; Arheit, Marcel; Ringler, Philippe; Stahlberg, Henning

    2014-05-01

    The introduction of direct electron detectors (DED) to cryo-electron microscopy has tremendously increased the signal-to-noise ratio (SNR) and quality of the recorded images. We discuss the optimal use of DEDs for cryo-electron crystallography, introduce a new automatic image processing pipeline, and demonstrate the vast improvement in the resolution achieved by the use of both together, especially for highly tilted samples. The new processing pipeline (now included in the software package 2dx) exploits the high SNR and frame readout frequency of DEDs to automatically correct for beam-induced sample movement, and reliably processes individual crystal images without human interaction as data are being acquired. A new graphical user interface (GUI) condenses all information required for quality assessment in one window, allowing the imaging conditions to be verified and adjusted during the data collection session. With this new pipeline an automatically generated unit cell projection map of each recorded 2D crystal is available less than 5 min after the image was recorded. The entire processing procedure yielded a three-dimensional reconstruction of the 2D-crystallized ion-channel membrane protein MloK1 with a much-improved resolution of 5Å in-plane and 7Å in the z-direction, within 2 days of data acquisition and simultaneous processing. The results obtained are superior to those delivered by conventional photographic film-based methodology of the same sample, and demonstrate the importance of drift-correction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Berruto, G.; Madan, I.; Murooka, Y.; Vanacore, G. M.; Pomarico, E.; Rajeswari, J.; Lamb, R.; Huang, P.; Kruchkov, A. J.; Togawa, Y.; LaGrange, T.; McGrouther, D.; Rønnow, H. M.; Carbone, F.

    2018-03-01

    We demonstrate that light-induced heat pulses of different duration and energy can write Skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz transmission electron microscopy, we directly resolve the spatiotemporal evolution of the magnetization ensuing optical excitation. The Skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-μ s to μ s range, depending on the cooling rate of the system.

  2. A cylindrical specimen holder for electron cryo-tomography

    PubMed Central

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. PMID:24275523

  3. A cylindrical specimen holder for electron cryo-tomography.

    PubMed

    Palmer, Colin M; Löwe, Jan

    2014-02-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the "missing wedge" problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules

    PubMed Central

    Linck, Richard; Fu, Xiaofeng; Lin, Jianfeng; Ouch, Christna; Schefter, Alexandra; Steffen, Walter; Warren, Peter; Nicastro, Daniela

    2014-01-01

    Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems. PMID:24794867

  5. Cryo-Electron Tomography of Marburg Virus Particles and Their Morphogenesis within Infected Cells

    PubMed Central

    Kolesnikova, Larissa; Welsch, Sonja; Krähling, Verena; Davey, Norman; Parsy, Marie-Laure; Becker, Stephan; Briggs, John A. G.

    2011-01-01

    Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible “Velcro-like” manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps. PMID:22110401

  6. Reversible Cryopreservation of Living Cells Using an Electron Microscopy Cryo-Fixation Method.

    PubMed

    Huebinger, Jan; Han, Hong-Mei; Grabenbauer, Markus

    2016-01-01

    Rapid cooling of aqueous solutions is a useful approach for two important biological applications: (I) cryopreservation of cells and tissues for long-term storage, and (II) cryofixation for ultrastructural investigations by electron and cryo-electron microscopy. Usually, both approaches are very different in methodology. Here we show that a novel, fast and easy to use cryofixation technique called self-pressurized rapid freezing (SPRF) is-after some adaptations-also a useful and versatile technique for cryopreservation. Sealed metal tubes with high thermal diffusivity containing the samples are plunged into liquid cryogen. Internal pressure builds up reducing ice crystal formation and therefore supporting reversible cryopreservation through vitrification of cells. After rapid rewarming of pressurized samples, viability rates of > 90% can be reached, comparable to best-performing of the established rapid cooling devices tested. In addition, the small SPRF tubes allow for space-saving sample storage and the sealed containers prevent contamination from or into the cryogen during freezing, storage, or thawing.

  7. Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study.

    PubMed

    Vancová, Marie; Rudenko, Nataliia; Vaněček, Jiří; Golovchenko, Maryna; Strnad, Martin; Rego, Ryan O M; Tichá, Lucie; Grubhoffer, Libor; Nebesářová, Jana

    2017-01-01

    To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.

  8. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  9. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  10. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    PubMed

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    DOE PAGES

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; ...

    2015-09-17

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less

  12. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less

  13. Atomic Resolution Cryo-EM Structure of β-Galactosidase.

    PubMed

    Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram

    2018-05-10

    The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.

  14. Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2014-01-01

    Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.

  15. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  16. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xuekui; Qiao Ming; Atanasov, Ivo

    2007-10-10

    The structural details of hepatitis C virus (HCV) have been elusive because of the lack of a robust tissue culture system for producing an adequate amount of virions from infectious sources for in-depth three-dimensional (3D) structural analysis. Using both negative-stain and cryo-electron microscopy (cryoEM), we show that HCV virions isolated from cell culture have a rather uniform size of 500 A in diameter and that recombinantly expressed HCV-like particles (HCV-LPs) have similar morphologic, biophysical and antigenic features in spite of the varying sizes of the particles. 3D reconstructions were obtained from HCV-LPs with the same size as the HCV virionsmore » in the presence and absence of monoclonal antibodies bound to the E1 glycoprotein. The 3D reconstruction of HCV-LP reveals a multilayered architecture, with smooth outer-layer densities arranged in a 'fishbone' configuration. Reconstruction of the particles in complex with anti-E1 antibodies shows that sites of the E1 epitope are exposed and surround the 5-, 3- and 2-fold axes. The binding pattern of the anti-E1 antibody and the fitting of the structure of the dengue virus E glycoprotein into our 3D reconstructions further suggest that the HCV-LP E1 and E2 proteins form a tetramer (or dimer of heterodimers) that corresponds morphologically and functionally to the flavivirus E homodimer. This first 3D structural analysis of HCV particles offers important insights into the elusive mechanisms of HCV assembly and maturation.« less

  17. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  18. Label-free visualization of ultrastructural features of artificial synapses via cryo-EM.

    PubMed

    Gopalakrishnan, Gopakumar; Yam, Patricia T; Madwar, Carolin; Bostina, Mihnea; Rouiller, Isabelle; Colman, David R; Lennox, R Bruce

    2011-12-21

    The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.

  19. Characteristics and significance of doublets on needle EMG.

    PubMed

    Lamb, Christopher J; Rubin, Devon I

    2017-04-01

    Voluntary doublets are electrophysiological phenomena thought to be associated with metabolic derangements or neuromuscular conditions. We prospectively studied 232 consecutive patients examined by a single examiner during routine electromyography (EMG) to determine the frequency of doublets in individual patients, specific muscles, neuromuscular conditions, electrolyte levels, and doublet characteristics. Of 232 patients, 25 (10.7%) exhibited doublets. The mean age was 59 (52% men). Only 32 of 1,303 (2.5%) muscles exhibited doublets. Lower extremity and paraspinal groups represented 91% of muscles with doublets. Doublet frequency grouped by EMG diagnoses was: ALS (3 of 11; 27.1%), myopathy (3 of 10; 30.0%), axonal polyneuropathy (7 of 29; 24.1%), and no disease (7 of 109; 6.4%). There were no differences in serum electrolytes between doublet and matched subjects. Doublets occur in approximately 10% of patients, more commonly in lower extremity and paraspinal muscles, and are not correlated with a specific metabolic abnormality or neuromuscular condition. Muscle Nerve 55: 598-600, 2017. © 2016 Wiley Periodicals, Inc.

  20. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    PubMed

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  1. Detection of isolated protein-bound metal ions by single-particle cryo-STEM

    PubMed Central

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-01-01

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography. PMID:28973937

  2. Robust w-Estimators for Cryo-EM Class Means.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2016-02-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the class mean, improves the signal-to-noise ratio in single-particle reconstruction. The averaging step is often compromised because of the outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods are done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a w-estimator of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers.

  3. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.

    PubMed

    Miot, J; Maclellan, K; Benzerara, K; Boisset, N

    2011-11-01

    Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies. © 2011 Blackwell Publishing Ltd.

  4. Origins of inert Higgs doublets

    DOE PAGES

    Kephart, Thomas W.; Yuan, Tzu -Chiang

    2016-03-24

    Here, we consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z 2 symmetry can occur automatically. Several examples are discussed.

  5. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  6. The cryo-electron microscopy structure of huntingtin

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Bin Huang; Cheng, Jingdong; Seefelder, Manuel; Engler, Tatjana; Pfeifer, Günter; Oeckl, Patrick; Otto, Markus; Moser, Franziska; Maurer, Melanie; Pautsch, Alexander; Baumeister, Wolfgang; Fernández-Busnadiego, Rubén; Kochanek, Stefan

    2018-03-01

    Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington’s disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT. However, only limited structural information regarding HTT is currently available. Here we use cryo-electron microscopy to determine the structure of full-length human HTT in a complex with HTT-associated protein 40 (HAP40; encoded by three F8A genes in humans) to an overall resolution of 4 Å. HTT is largely α-helical and consists of three major domains. The amino- and carboxy-terminal domains contain multiple HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats arranged in a solenoid fashion. These domains are connected by a smaller bridge domain containing different types of tandem repeats. HAP40 is also largely α-helical and has a tetratricopeptide repeat-like organization. HAP40 binds in a cleft and contacts the three HTT domains by hydrophobic and electrostatic interactions, thereby stabilizing the conformation of HTT. These data rationalize previous biochemical results and pave the way for improved understanding of the diverse cellular functions of HTT.

  7. Retrofit implementation of Zernike phase plate imaging for cryo-TEM

    PubMed Central

    Marko, Michael; Leith, ArDean; Hsieh, Chyongere; Danev, Radostin

    2011-01-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. PMID:21272647

  8. High-resolution cryo-EM proteasome structures in drug development

    PubMed Central

    da Fonseca, Paula C. A.

    2017-01-01

    With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein–ligand inter­actions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein–ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction. PMID:28580914

  9. Structure of a CLC chloride ion channel by cryo-electron microscopy

    PubMed Central

    Park, Eunyong; Campbell, Ernest B.; MacKinnon, Roderick

    2017-01-01

    CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture based on sequence homology. To solve this puzzle we determined the structure of a mammalian CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient. PMID:28002411

  10. Electron cryo-microscopy structure of the canonical TRPC4 ion channel

    PubMed Central

    Vinayagam, Deivanayagabarathy; Mager, Thomas; Apelbaum, Amir; Bothe, Arne; Merino, Felipe; Hofnagel, Oliver; Gatsogiannis, Christos

    2018-01-01

    Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology. PMID:29717981

  11. Cryo-tomography Tilt-series Alignment with Consideration of the Beam-induced Sample Motion

    PubMed Central

    Fernandez, Jose-Jesus; Li, Sam; Bharat, Tanmay A. M.; Agard, David A.

    2018-01-01

    Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET. PMID:29410148

  12. How cryo-electron microscopy and X-ray crystallography complement each other.

    PubMed

    Wang, Hong-Wei; Wang, Jia-Wei

    2017-01-01

    With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. © 2016 The Protein Society.

  13. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    PubMed

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. X-rays in the Cryo-EM Era: Structural Biology’s Dynamic Future

    PubMed Central

    Shoemaker, Susannah C.; Ando, Nozomi

    2018-01-01

    Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa), while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kDa in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions on the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology. PMID:29227642

  15. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy

    PubMed Central

    Liao, Hstau Y.; Hashem, Yaser; Frank, Joachim

    2015-01-01

    Summary Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. PMID:25982529

  16. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy.

    PubMed

    Liao, Hstau Y; Hashem, Yaser; Frank, Joachim

    2015-06-02

    Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Robust w-Estimators for Cryo-EM Class Means

    PubMed Central

    Huang, Chenxi; Tagare, Hemant D.

    2016-01-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the “class mean”, improves the signal-to-noise ratio in single particle reconstruction (SPR). The averaging step is often compromised because of outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods is done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a “w-estimator” of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions (CTFs) is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers. PMID:26841397

  18. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  19. Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage

    PubMed Central

    Li, Xueming; Zheng, Shawn; Agard, David A.; Cheng, Yifan

    2015-01-01

    Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20 ~ 60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ~60 seconds/exposure. Here we report the technical details and configuration of this system. PMID:26370395

  20. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, G; Benard, P; Klebanoff, L E

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifyingmore » the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.« less

  1. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  2. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  3. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography

    PubMed Central

    Li, Sam; Fernandez, Jose-Jesus; Marshall, Wallace F; Agard, David A

    2012-01-01

    Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body. PMID:22157822

  4. Comparison of an Atomic Model and Its Cryo-EM Image at the Central Axis of a Helix

    PubMed Central

    He, Jing; Zeil, Stephanie; Hallak, Hussam; McKaig, Kele; Kovacs, Julio; Wriggers, Willy

    2016-01-01

    Cryo-electron microscopy (cryo-EM) is an important biophysical technique that produces three-dimensional (3D) density maps at different resolutions. Because more and more models are being produced from cryo-EM density maps, validation of the models is becoming important. We propose a method for measuring local agreement between a model and the density map using the central axis of the helix. This method was tested using 19 helices from cryo-EM density maps between 5.5 Å and 7.2 Å resolution and 94 helices from simulated density maps. This method distinguished most of the well-fitting helices, although challenges exist for shorter helices. PMID:27280059

  5. A portable cryo-plunger for on-site intact cryogenic microscopy sample preparation in natural environments.

    PubMed

    Comolli, Luis R; Duarte, Robert; Baum, Dennis; Luef, Birgit; Downing, Kenneth H; Larson, David M; Csencsits, Roseann; Banfield, Jillian F

    2012-06-01

    We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology. Copyright © 2011 Wiley Periodicals, Inc.

  6. Strong Electron Correlation in Photoionization of Spin-Orbit Doublets

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.

    2002-05-01

    A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.

  7. Semialigned two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-02-01

    In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.

  8. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy

    PubMed Central

    Mills, Deryck J; Vitt, Stella; Strauss, Mike; Shima, Seigo; Vonck, Janet

    2013-01-01

    Methanogenic archaea use a [NiFe]-hydrogenase, Frh, for oxidation/reduction of F420, an important hydride carrier in the methanogenesis pathway from H2 and CO2. Frh accounts for about 1% of the cytoplasmic protein and forms a huge complex consisting of FrhABG heterotrimers with each a [NiFe] center, four Fe-S clusters and an FAD. Here, we report the structure determined by near-atomic resolution cryo-EM of Frh with and without bound substrate F420. The polypeptide chains of FrhB, for which there was no homolog, was traced de novo from the EM map. The 1.2-MDa complex contains 12 copies of the heterotrimer, which unexpectedly form a spherical protein shell with a hollow core. The cryo-EM map reveals strong electron density of the chains of metal clusters running parallel to the protein shell, and the F420-binding site is located at the end of the chain near the outside of the spherical structure. DOI: http://dx.doi.org/10.7554/eLife.00218.001 PMID:23483797

  9. Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy

    PubMed Central

    Parent, Kristin N.; Schrad, Jason R.; Cingolani, Gino

    2018-01-01

    The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding. PMID:29414851

  10. FragFit: a web-application for interactive modeling of protein segments into cryo-EM density maps.

    PubMed

    Tiemann, Johanna K S; Rose, Alexander S; Ismer, Jochen; Darvish, Mitra D; Hilal, Tarek; Spahn, Christian M T; Hildebrand, Peter W

    2018-05-21

    Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cryo-EM density maps. The fragments are provided by a regularly updated database containing at the moment about 1 billion entries extracted from PDB structures and can be readily integrated into a protein structure. Fragments are selected based on geometric criteria, sequence similarity and fit into a given cryo-EM density map. Web-based molecular visualization with the NGL Viewer allows interactive selection of fragments. The FragFit web-application, accessible at http://proteinformatics.de/FragFit, is free and open to all users, without any login requirements.

  11. Cryo-Vacuum Testing of the JWST Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie M.; Birkmann, Stephen M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.

  12. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. Oxaliplatin-Based Doublets Versus Cisplatin or Carboplatin-Based Doublets in the First-Line Treatment of Advanced Nonsmall Cell Lung Cancer.

    PubMed

    Yu, Jing; Xiao, Jing; Yang, Yifan; Cao, Bangwei

    2015-07-01

    The efficacy and toxicity of oxaliplatin-based versus carboplatin/cisplatin-based doublets in patients with previously untreated nonsmall cell lung cancer (NSCLC) have been compared.We searched published randomized controlled trials of oxaliplatin-based or carboplatin/cisplatin-based medications for NSCLC. A fixed effect model was used to analyze outcomes which were expressed as the hazard ratio for overall survival (OS) and time-to-progression (TTP), relative risk, overall response rate (ORR), disease control rate (DCR), 1-year survival, and the odds ratios for toxicity were pooled.Eight studies involving 1047 patients were included. ORR tended to favor carboplatin/cisplatin but the effect was not significantly different compared with oxaliplatin doublets (P = 0.05). The effects of OS, TTP, DCR, and 1-year survival between the 2 regimens were comparable. Oxaliplatin doublets caused less grade 3/4 leukocytopenia and neutropenia. Grades 3 to 4 nonhematological toxicities and grades 3 to 4 hematological toxicities showed little difference between oxaliplatin doublets and carboplatin/cisplatin doublets.Meta-analysis shows that the efficacy of oxaliplatin doublets is similar to that of other currently used platinum doublets. The lack of significant differences in the statistic analysis does not preclude genuine differences in clinical efficacy, because higher diversities between the studies covered differences between the 2 groups in each study. Oxaliplatin combined with a third-generation agent should be considered for use as alternative chemotherapy in patients who cannot tolerate conventional platinum-based regimens because the toxicity profile is much more favorable.

  14. The cryo-electron microscopy structure of human transcription factor IIH

    DOE PAGES

    Greber, Basil J.; Nguyen, Thi Hoang Duong; Fang, Jie; ...

    2017-09-13

    We report human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIHmore » subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Also, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.« less

  15. The cryo-electron microscopy structure of human transcription factor IIH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greber, Basil J.; Nguyen, Thi Hoang Duong; Fang, Jie

    We report human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIHmore » subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Also, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.« less

  16. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin

    2017-06-01

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.

  17. Analysis of grating doublets for achromatic beam-splitting

    PubMed Central

    Pacheco, Shaun; Milster, Tom; Liang, Rongguang

    2015-01-01

    Achromatic beam-splitting grating doublets are designed for both continuous phase and binary phase gratings. By analyzing the sensitivity to lateral shifts between the two grating layers, it is shown that continuous-profile grating doublets are extremely difficult to fabricate. Achromatic grating doublets that have profiles with a constant first spatial derivative are significantly more resistant to lateral shifts between grating layers, where one design case showed a 17 times improvement in performance. Therefore, binary phase, multi-level phase, and blazed grating doublets perform significantly better than continuous phase grating doublets in the presence of a lateral shift between two grating layers. By studying the sensitivity to fabrication errors in the height of both grating layers, one grating layer height can be adjusted to maintain excellent performance over a large wavelength range if the other grating layer is fabricated incorrectly. It is shown in one design case that the performance of an achromatic Dammann grating doublet can be improved by a factor of 215 if the heights of the grating layers are chosen to minimize the performance change in the presence of fabrication errors. PMID:26368261

  18. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.

    PubMed

    Cianfrocco, Michael A; Lahiri, Indrajit; DiMaio, Frank; Leschziner, Andres E

    2018-06-01

    Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-galactosidase in ∼55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. Copyright © 2018. Published by Elsevier Inc.

  19. Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachman, Michael J.; Asenath-Smith, Emily; Estroff, Lara A.

    Abstract Scanning transmission electron microscopy (STEM) allows atomic scale characterization of solid–solid interfaces, but has seen limited applications to solid–liquid interfaces due to the volatility of liquids in the microscope vacuum. Although cryo-electron microscopy is routinely used to characterize hydrated samples stabilized by rapid freezing, sample thinning is required to access the internal interfaces of thicker specimens. Here, we adapt cryo-focused ion beam (FIB) “lift-out,” a technique recently developed for biological specimens, to prepare intact internal solid–liquid interfaces for high-resolution structural and chemical analysis by cryo-STEM. To guide the milling process we introduce a label-freein situmethod of localizing subsurface structuresmore » in suitable materials by energy dispersive X-ray spectroscopy (EDX). Monte Carlo simulations are performed to evaluate the depth-probing capability of the technique, and show good qualitative agreement with experiment. We also detail procedures to produce homogeneously thin lamellae, which enable nanoscale structural, elemental, and chemical analysis of intact solid–liquid interfaces by analytical cryo-STEM. This work demonstrates the potential of cryo-FIB lift-out and cryo-STEM for understanding physical and chemical processes at solid–liquid interfaces.« less

  20. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.

    PubMed

    Hirschi, Marscha; Herzik, Mark A; Wie, Jinhong; Suo, Yang; Borschel, William F; Ren, Dejian; Lander, Gabriel C; Lee, Seok-Yong

    2017-10-19

    The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca 2+ -permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca 2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P 2 ), whereas other phosphoinositides such as PtdIns(4,5)P 2 , which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P 2 and inhibition by PtdIns(4,5)P 2 . However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P 2 and increase their Ca 2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P 2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.

  1. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    PubMed

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  2. Structure of the TRPV1 ion channel determined by electron cryo-microscopy

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function. PMID:24305160

  3. DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM.

    PubMed

    Wang, Feng; Gong, Huichao; Liu, Gaochao; Li, Meijing; Yan, Chuangye; Xia, Tian; Li, Xueming; Zeng, Jianyang

    2016-09-01

    Particle picking is a time-consuming step in single-particle analysis and often requires significant interventions from users, which has become a bottleneck for future automated electron cryo-microscopy (cryo-EM). Here we report a deep learning framework, called DeepPicker, to address this problem and fill the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule training strategy to capture common features of particles from previously-analyzed micrographs, and thus does not require any human intervention during particle picking. Tests on the recently-published cryo-EM data of three complexes have demonstrated that our deep learning based scheme can successfully accomplish the human-level particle picking process and identify a sufficient number of particles that are comparable to those picked manually by human experts. These results indicate that DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination. DeepPicker is released as an open-source program, which can be downloaded from https://github.com/nejyeah/DeepPicker-python. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. New National Cryo-EM Facility Provides Access to Cutting-Edge Technology for Cancer Research Community | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Cancer researchers nationwide now have access to the latest technology in the field of cryo-electron microscopy (cryo-EM)—the study of protein structures at atomic resolution—at the Frederick National Lab for Cancer Research. The emerging technol

  5. Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners.

    PubMed

    Nogales, Eva; Kellogg, Elizabeth H

    2017-10-01

    As non-crystallizable polymers, microtubules have been the target of cryo-electron microscopy (cryo-EM) studies since the technique was first established. Over the years, image processing strategies have been developed that take care of the unique, pseudo-helical symmetry of the microtubule. With recent progress in data quality and data processing, cryo-EM reconstructions are now reaching resolutions that allow the generation of atomic models of microtubules and the factors that bind them. These include cellular partners that contribute to microtubule cellular functions, or small ligands that interfere with those functions in the treatment of cancer. The stage is set to generate a family portrait for all identified microtubule interacting proteins and to use cryo-EM as a drug development tool in the targeting of tubulin. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Electron cryo-tomographic structure of cystovirus phi 12.

    PubMed

    Hu, Guo-Bin; Wei, Hui; Rice, William J; Stokes, David L; Gottlieb, Paul

    2008-03-01

    Bacteriophage phi 12 is a member of the Cystoviridae virus family and contains a genome consisting of three segments of double-stranded RNA (dsRNA). This virus family contains eight identified members, of which four have been classified in regard to their complete genomic sequence and encoded viral proteins. A phospholipid envelope that contains the integral proteins P6, P9, P10, and P13 surrounds the viral particles. In species phi 6, host infection requires binding of a multimeric P3 complex to type IV pili. In species varphi8, phi 12, and phi 13, the attachment apparatus is a heteromeric protein assembly that utilizes the rough lipopolysaccharide (rlps) as a receptor. In phi 8 the protein components are designated P3a and P3b while in species phi 12 proteins P3a and P3c have been identified in the complex. The phospholipid envelope of the cystoviruses surrounds a nucleocapsid (NC) composed of two shells. The outer shell is composed of protein P8 with a T=13 icosahedral lattice while the primary component of the inner shell is a dodecahedral frame composed of dimeric protein P1. For the current study, the 3D architecture of the intact phi 12 virus was obtained by electron cryo-tomography. The nucleocapsid appears to be centered within the membrane envelope and possibly attached to it by bridging structures. Two types of densities were observed protruding from the membrane envelope. The densities of the first type were elongated, running parallel, and closely associated to the envelope outer surface. In contrast, the second density was positioned about 12 nm above the envelope connected to it by a flexible low-density stem. This second structure formed a torroidal structure termed "the donut" and appears to inhibit BHT-induced viral envelope fusion.

  7. Volta phase plate data collection facilitates image processing and cryo-EM structure determination.

    PubMed

    von Loeffelholz, Ottilie; Papai, Gabor; Danev, Radostin; Myasnikov, Alexander G; Natchiar, S Kundhavai; Hazemann, Isabelle; Ménétret, Jean-François; Klaholz, Bruno P

    2018-06-01

    A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction

    PubMed Central

    Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.

    2015-01-01

    Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831

  9. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy

    PubMed Central

    Vonck, Janet; Parcej, David N.; Mills, Deryck J.

    2016-01-01

    The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes. PMID:27458710

  10. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    PubMed

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Introduction to electron crystallography.

    PubMed

    Kühlbrandt, Werner

    2013-01-01

    From the earliest work on regular arrays in negative stain, electron crystallography has contributed greatly to our understanding of the structure and function of biological macromolecules. The development of electron cryo-microscopy (cryo-EM) then lead to the first groundbreaking atomic models of the membrane proteins bacteriorhodopsin and light harvesting complex II within lipid bilayers. Key contributions towards cryo-EM and electron crystallography methods included specimen preparation and vitrification, liquid-helium cooling, data collection, and image processing. These methods are now applied almost routinely to both membrane and soluble proteins. Here we outline the advances and the breakthroughs that paved the way towards high-resolution structures by electron crystallography, both in terms of methods development and biological milestones.

  12. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

    PubMed

    Bartesaghi, Alberto; Merk, Alan; Banerjee, Soojay; Matthies, Doreen; Wu, Xiongwu; Milne, Jacqueline L S; Subramaniam, Sriram

    2015-06-05

    Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM. Copyright © 2015, American Association for the Advancement of Science.

  13. Compressing the Inert Doublet Model

    DOE PAGES

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; ...

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  14. Accurate model annotation of a near-atomic resolution cryo-EM map.

    PubMed

    Hryc, Corey F; Chen, Dong-Hua; Afonine, Pavel V; Jakana, Joanita; Wang, Zhao; Haase-Pettingell, Cameron; Jiang, Wen; Adams, Paul D; King, Jonathan A; Schmid, Michael F; Chiu, Wah

    2017-03-21

    Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.

  15. Accurate model annotation of a near-atomic resolution cryo-EM map

    PubMed Central

    Hryc, Corey F.; Chen, Dong-Hua; Afonine, Pavel V.; Jakana, Joanita; Wang, Zhao; Haase-Pettingell, Cameron; Jiang, Wen; Adams, Paul D.; King, Jonathan A.; Schmid, Michael F.; Chiu, Wah

    2017-01-01

    Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages. PMID:28270620

  16. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    PubMed

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-03-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.

  17. Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus.

    PubMed

    Mullapudi, Edukondalu; Füzik, Tibor; Přidal, Antonín; Plevka, Pavel

    2017-02-15

    Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release. Honeybee populations in Europe and North America are declining due to pressure from pathogens, including viruses. Israeli acute bee paralysis virus (IAPV), a member of the family Dicistroviridae, causes honeybee colony collapse disorder in the United States. The delivery of virus genomes into host cells is necessary for the initiation of infection. Here we present a structural cryo-electron microscopy analysis of IAPV particles induced to release their genomes. We show that genome release is not preceded by an expansion of IAPV virions as in the case of related picornaviruses that infect vertebrates. Furthermore, minor capsid proteins detach from the capsid upon genome release. The genome leaves behind empty

  18. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jun, E-mail: Jun.Liu.1@uth.tmc.edu; Chen Chengyen; Shiomi, Daisuke

    2011-09-01

    Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phagemore » head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.« less

  19. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps.

    PubMed

    Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus

    2016-07-07

    Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.

  20. Electron cryo-microscopy structure of Ebola nucleoprotein reveals a mechanism for nucleocapsid-like assembly

    PubMed Central

    Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.

    2018-01-01

    Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922

  1. Accurate modelling of single-particle cryo-EM images quantifies the benefits expected from using Zernike phase contrast

    PubMed Central

    Hall, R. J.; Nogales, E.; Glaeser, R. M.

    2011-01-01

    The use of a Zernike-type phase plate in biological cryo-electron microscopy allows the imaging, without using defocus, of what are predominantly phase objects. It is thought that such phase-plate implementations might result in higher quality images, free from the problems of CTF correction that occur when images must be recorded at extremely high values of defocus. In single-particle cryo-electron microscopy it is hoped that these improvements in image quality will facilitate work on structures that have proved difficult to study, either because of their relatively small size or because the structures are not completely homogeneous. There is still a need, however, to quantify how much improvement can be gained by using a phase plate for single-particle cryo-electron microscopy. We present a method for quantitatively modelling the images recorded with 200 keV electrons, for single particles embedded in vitreous ice. We then investigate what difference the use of a phase-plate device could have on the processing of single-particle data. We confirm that using a phase plate results in single-particle datasets in which smaller molecules can be detected, particles can be more accurately aligned and problems of heterogeneity can be more easily addressed. PMID:21463690

  2. CryoSat Plus For Oceans: an ESA Project for CryoSat-2 Data Exploitation Over Ocean

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Cotton, D.; Clarizia, M.; Roca, M.; Gommenginger, C. P.; Naeije, M. C.; Labroue, S.; Picot, N.; Fernandes, J.; Andersen, O. B.; Cancet, M.; Dinardo, S.; Lucas, B. M.

    2012-12-01

    The ESA CryoSat-2 mission is the first space mission to carry a space-borne radar altimeter that is able to operate in the conventional pulsewidth-limited (LRM) mode and in the novel Synthetic Aperture Radar (SAR) mode. Although the prime objective of the Cryosat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the Cryosat-2 SIRAL altimeter also presents the possibility of demonstrating significant potential benefits of SAR altimetry for ocean applications, based on expected performance enhancements which include improved range precision and finer along track spatial resolution. With this scope in mind, the "CryoSat Plus for Oceans" (CP4O) Project, dedicated to the exploitation of CryoSat-2 Data over ocean, supported by the ESA STSE (Support To Science Element) programme, brings together an expert European consortium comprising: DTU Space, isardSAT, National Oceanography Centre , Noveltis, SatOC, Starlab, TU Delft, the University of Porto and CLS (supported by CNES),. The objectives of CP4O are: - to build a sound scientific basis for new scientific and operational applications of Cryosat-2 data over the open ocean, polar ocean, coastal seas and for sea-floor mapping. - to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter , and extend their application beyond the initial mission objectives. - to ensure that the scientific return of the Cryosat-2 mission is maximised. In particular four themes will be addressed: -Open Ocean Altimetry: Combining GOCE Geoid Model with CryoSat Oceanographic LRM Products for the retrieval of CryoSat MSS/MDT model over open ocean surfaces and for analysis of mesoscale and large scale prominent open ocean features. Under this priority the project will also foster the exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to detect short spatial scale open ocean features. -High Resolution Polar

  3. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling.

    PubMed

    de Vries, Sjoerd J; Chauvot de Beauchêne, Isaure; Schindler, Christina E M; Zacharias, Martin

    2016-02-23

    Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling

    PubMed Central

    de Vries, Sjoerd J.; Chauvot de Beauchêne, Isaure; Schindler, Christina E.M.; Zacharias, Martin

    2016-01-01

    Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling. PMID:26846888

  5. Operational CryoSat Product Quality Assessment

    NASA Astrophysics Data System (ADS)

    Mannan, Rubinder; Webb, Erica; Hall, Amanda; Bouzinac, Catherine

    2013-12-01

    The performance and quality of the CryoSat data products are routinely assessed by the Instrument Data quality Evaluation and Analysis Service (IDEAS). This information is then conveyed to the scientific and user community in order to allow them to utilise CryoSat data with confidence. This paper presents details of the Quality Control (QC) activities performed for CryoSat products under the IDEAS contract. Details of the different QC procedures and tools deployed by IDEAS to assess the quality of operational data are presented. The latest updates to the Instrument Processing Facility (IPF) for the Fast Delivery Marine (FDM) products and the future update to Baseline-C are discussed.

  6. Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models

    NASA Astrophysics Data System (ADS)

    Ferreira, P. M.; Lavoura, L.; Silva, João P.

    2010-05-01

    We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.

  7. Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation.

    PubMed

    Ashtiani, Dariush; Venugopal, Hari; Belousoff, Matthew; Spicer, Bradley; Mak, Johnson; Neild, Adrian; de Marco, Alex

    2018-04-06

    Cryo-Electron Microscopy (cryo-EM) has become an invaluable tool for structural biology. Over the past decade, the advent of direct electron detectors and automated data acquisition has established cryo-EM as a central method in structural biology. However, challenges remain in the reliable and efficient preparation of samples in a manner which is compatible with high time resolution. The delivery of sample onto the grid is recognized as a critical step in the workflow as it is a source of variability and loss of material due to the blotting which is usually required. Here, we present a method for sample delivery and plunge freezing based on the use of Surface Acoustic Waves to deploy 6-8 µm droplets to the EM grid. This method minimises the sample dead volume and ensures vitrification within 52.6 ms from the moment the sample leaves the microfluidics chip. We demonstrate a working protocol to minimize the atomised volume and apply it to plunge freeze three different samples and provide proof that no damage occurs due to the interaction between the sample and the acoustic waves. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cryo-balloon catheter localization in fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  10. Accurate model annotation of a near-atomic resolution cryo-EM map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hryc, Corey F.; Chen, Dong-Hua; Afonine, Pavel V.

    Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo- EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structuralmore » features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.« less

  11. Accurate model annotation of a near-atomic resolution cryo-EM map

    DOE PAGES

    Hryc, Corey F.; Chen, Dong-Hua; Afonine, Pavel V.; ...

    2017-03-07

    Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo- EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structuralmore » features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.« less

  12. Cryo-scanning electron microscopy discloses differences in dehydration of frozen boar semen stored in large containers.

    PubMed

    Ekwall, H

    2009-02-01

    In general, freezing in flat plastic polyethylene terephthalate (PET) bags (FlatPacks) at 50 degrees C/min gives better post-thaw viability, in terms of sperm motility and membrane integrity, than does freezing in plastic maxi-straws, probably owing to differences in cryobiology. To test the hypothesis that this better survival post-thaw relates to the degree of sperm dehydration during freezing, the present study investigated the structure of boar semen in a frozen state using cryo-scanning electron microscopy (cryo-SEM) to compare two different packages (FlatPacks and maxi-straws) for single artificial insemination (AI) doses, and three different freezing rates. The semen was split-sample frozen in maxi-straws or FlatPacks (both holding 5 ml) using 3% glycerol as cryoprotectant. Three freezing rates were applied from -5 degrees C to -100 degrees C, namely 2 degrees C/min, 50 degrees C/min and 1200 degrees C/min, the lattermost by plunging the samples into liquid nitrogen (LN(2)). The samples were thereafter fractured into LN(2) and larger areas of extra-cellular, unbound frozen water ('ice lakes') were measured to determine the degree of dehydration of the spermatozoa. These areas decreased in size with an increase in cooling rate, the differences in size being more dramatic for maxi-straws than for FlatPacks. Size of ice lakes was also influenced by location within package in relation to cooling rate, the central values being always smaller in maxi-straws than in Flatpacks (p < 0.05 at 2 degrees C/min and 50 degrees C/min) but not at 1200 degrees C/min, which suggested the FlatPack allows for more homogenous freezing of boar semen.

  13. Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*

    PubMed Central

    Katsevich, E.; Katsevich, A.; Singer, A.

    2015-01-01

    In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132

  14. First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.

    2014-01-01

    The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests

  15. Simple model for lambda-doublet propensities in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zare, Richard N.

    1990-01-01

    A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.

  16. Inflation and dark matter in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Kumar, Abhass

    2017-11-01

    We discuss inflation and dark matter in the inert doublet model coupled non-minimally to gravity where the inert doublet is the inflaton and the neutral scalar part of the doublet is the dark matter candidate. We calculate the various inflationary parameters like n s , r and P s and then proceed to the reheating phase where the inflaton decays into the Higgs and other gauge bosons which are non-relativistic owing to high effective masses. These bosons further decay or annihilate to give relativistic fermions which are finally responsible for reheating the universe. At the end of the reheating phase, the inert doublet which was the inflaton enters into thermal equilibrium with the rest of the plasma and its neutral component later freezes out as cold dark matter with a mass of about 2 TeV.

  17. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm.

    PubMed

    Hrubanova, Kamila; Nebesarova, Jana; Ruzicka, Filip; Krzyzanek, Vladislav

    2018-07-01

    In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site.

    PubMed

    Godsave, Susan F; Wille, Holger; Kujala, Pekka; Latawiec, Diane; DeArmond, Stephen J; Serban, Ana; Prusiner, Stanley B; Peters, Peter J

    2008-11-19

    Prion diseases are caused by accumulation of an abnormally folded isoform (PrP(Sc)) of the cellular prion protein (PrP(C)). The subcellular distribution of PrP(Sc) and the site of its formation in brain are still unclear. We performed quantitative cryo-immunogold electron microscopy on hippocampal sections from mice infected with the Rocky Mountain Laboratory strain of prions. Two antibodies were used: R2, which recognizes both PrP(C) and PrP(Sc); and F4-31, which only detects PrP(C) in undenatured sections. At a late subclinical stage of prion infection, both PrP(C) and PrP(Sc) were detected principally on neuronal plasma membranes and on vesicles resembling early endocytic or recycling vesicles in the neuropil. The R2 labeling was approximately six times higher in the infected than the uninfected hippocampus and gold clusters were only evident in infected tissue. The biggest increase in labeling density (24-fold) was found on the early/recycling endosome-like vesicles of small-diameter neurites, suggesting these as possible sites of conversion. Trypsin digestion of infected hippocampal sections resulted in a reduction in R2 labeling of >85%, which suggests that a high proportion of PrP(Sc) may be oligomeric, protease-sensitive PrP(Sc).

  19. Doublet craters and the tidal disruption of binary asteroids

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Stansberry, J. A.

    1991-01-01

    An evaluation is conducted of the possibility that the tidal disruption of a population of contact binary asteroids can account for terrestrial-impact 'doublet' craters. Detailed orbital integrations indicate that while such asteroids are often disrupted by tidal forces outside the Roche limit, the magnitude of the resulting separations is too small to account for the observed doublet craters. It is hypothesized that an initial population of km-scale earth-crossing objects encompassing 10-20 percent binaries must be responsible for doublet impacts, as may be verified by future observations of earth-approaching asteroids.

  20. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  1. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps

    PubMed Central

    Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus

    2016-01-01

    Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI: http://dx.doi.org/10.7554/eLife.16105.001 PMID:27383269

  2. A Dose-Rate Effect in Single-Particle Electron Microscopy

    PubMed Central

    Chen, James Z.; Sachse, Carsten; Xu, Chen; Mielke, Thorsten; Spahn, Christian M. T.; Grigorieff, Nikolaus

    2008-01-01

    A low beam-intensity, low electron-dose imaging method has been developed for single-particle electron cryo-microscopy (cryo-EM). Experiments indicate that the new technique can reduce beam-induced specimen movement and secondary radiolytic effects, such as “bubbling”. The improvement in image quality, especially for multiple-exposure data collection, will help single-particle cryo-EM to reach higher resolution. PMID:17977018

  3. Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.

    PubMed

    Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi

    2016-05-01

    MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.

  4. Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colasanti, L.; Macculi, C.; Piro, L.

    2009-12-16

    The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA), requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%). A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. Wemore » present the results of estimations, simulations and preliminary measurement.« less

  5. Big data in cryoEM: automated collection, processing and accessibility of EM data.

    PubMed

    Baldwin, Philip R; Tan, Yong Zi; Eng, Edward T; Rice, William J; Noble, Alex J; Negro, Carl J; Cianfrocco, Michael A; Potter, Clinton S; Carragher, Bridget

    2018-06-01

    The scope and complexity of cryogenic electron microscopy (cryoEM) data has greatly increased, and will continue to do so, due to recent and ongoing technical breakthroughs that have led to much improved resolutions for macromolecular structures solved using this method. This big data explosion includes single particle data as well as tomographic tilt series, both generally acquired as direct detector movies of ∼10-100 frames per image or per tilt-series. We provide a brief survey of the developments leading to the current status, and describe existing cryoEM pipelines, with an emphasis on the scope of data acquisition, methods for automation, and use of cloud storage and computing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. MOEMS deformable mirror testing in cryo for future optical instrumentation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Lanzoni, Patrick; Barette, Rudy; Grassi, Emmanuel; Vors, Patrick; Helmbrecht, Michael; Marchis, Franck; Teichman, Alex

    2017-02-01

    MOEMS Deformable Mirrors (DM) are key components for next generation optical instruments implementing innovative adaptive optics systems, in existing telescopes as well as in the future ELTs. Due to the wide variety of applications, these DMs must perform at room temperature as well as in cryogenic and vacuum environment. Ideally, the MOEMS-DMs must be designed to operate in such environment. This is unfortunately usually not the case. We will present some major rules for designing / operating DMs in cryo and vacuum. Next step is to characterize with high accuracy the different DM candidates. We chose to use interferometry for the full characterization of these devices, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo. Thanks to our previous set-up developments, we are placing a compact cryo-vacuum chamber designed for reaching 10-6 mbar and 160K, in front of our custom Michelson interferometer, able to measure performances of the DM at actuator/segment level as well as whole mirror level, with a lateral resolution of 2μm and a sub-nanometric zresolution. Using this interferometric bench, we tested the PTT 111 DM from Iris AO: this unique and robust design uses an array of single crystalline silicon hexagonal mirrors with a pitch of 606μm, able to move in tip, tilt and piston with strokes from 5 to 7μm, and tilt angle in the range of +/- 5mrad. They exhibit typically an open-loop flat surface figure as good as < 20nm rms. A specific mount including electronic and opto-mechanical interfaces has been designed for fitting in the test chamber. Segment deformation, mirror shaping, open-loop operation are tested at room and cryo temperature and results are compared. The device could be operated successfully at 160K. An additional, mainly focus-like, 500 nm deformation is measured at 160K; we were able to recover the best flat in cryo by correcting the focus and local tip-tilts on some segments. Tests on DM with

  7. Building the atomic model of a boreal lake virus of unknown fold in a 3.9 Å cryo-EM map.

    PubMed

    De Colibus, Luigi; Stuart, David I

    2018-04-01

    We report here the protocol adopted to build the atomic model of the newly discovered virus FLiP (Flavobacterium infecting, lipid-containing phage) into 3.9 Å cryo-electron microscopy (cryo-EM) maps. In particular, this report discusses the combination of density modification procedures, automatic model building and bioinformatics tools applied to guide the tracing of the major capsid protein (MCP) of this virus. The protocol outlined here may serve as a reference for future structural determination by cryo-EM of viruses lacking detectable structural homologues. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.

  9. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  10. Experimental cryo-irrigation of the knee joint.

    PubMed

    Chen, S C; Helal, B; Revell, P A; Brocklehurst, R; Currey, H L

    1986-10-01

    Experiments have been carried out to test the feasibility of using cryo-irrigation as a means of ablating the synovium in the rheumatoid knee joint. Cryo-irrigation was performed by a cooling machine and pump, which circulated cold 200/10 centistoke (cSt) silicone through the knee joint of rabbits anaesthetised with intravenous (IV) 'Saffan'. Fluid left the joint at -5 to -10 degrees C. Sixteen normal New Zealand rabbits received cryo-irrigation of one knee joint for 10-20 minutes and were killed at one day, and one, two, and 12 weeks thereafter. Judged by radioactive sulphate incorporation there was no impairment of chondrocyte function in the articular cartilage of irrigated joints. Histological examination showed mild synovitis and some loss of staining of superficial cartilage in 6/16 irrigated joints (v 1/16 control joints). Similar treatment of rabbit joints in which the Glynn model of synovitis had been induced showed marked reduction of synovitis 14-45 days after silicone treatment. Nine of 26 animals in which synovitis was induced in both knees and cryo-irrigation performed in one knee died either immediately postoperatively or during the next week. These deaths remain unexplained. A single dog received cryo-irrigation of one knee (-6 to -9 degrees C for 22 min) and remained perfectly well up to sacrifice at six months, when the joint appeared histologically completely normal.

  11. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    DTIC Science & Technology

    2014-09-01

    based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  12. The C IV doublet ratio intensity effect in symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Fahey, M.; Kafatos, M.; Viotti, R.; Cassatella, A.

    1988-01-01

    High-resolution UV spectra in the 1200-2000 wavelength range of the symbiotic variable R Aqr and its nebular jet were obtained in July 1987 with the IUE. The line profile structure of the C IV 1548, 1550 doublet in the jet indicates multicomponent velocity structure from an optically thin emitting gas. The C IV doublet profiles in the compact H II region engulfing the Mira and hot companion binary also suggest multicomponent structure with radial velocities up to about -100 km/s. The value of the doublet intensity ratio in the R Aqr H II region has been observed in other similar symbiotic stars, such as RX Pup. It is suggested that the anomalous behavior of the C IV doublet intensities may be useful for studying the spatial structure and temporal nature of winds in symbiotic stars.

  13. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less

  14. Validation of cryo-EM structure of IP₃R1 channel.

    PubMed

    Murray, Stephen C; Flanagan, John; Popova, Olga B; Chiu, Wah; Ludtke, Steven J; Serysheva, Irina I

    2013-06-04

    About a decade ago, three electron cryomicroscopy (cryo-EM) single-particle reconstructions of IP3R1 were reported at low resolution. It was disturbing that these structures bore little similarity to one another, even at the level of quaternary structure. Recently, we published an improved structure of IP3R1 at ∼1 nm resolution. However, this structure did not bear any resemblance to any of the three previously published structures, leading to the question of why the structure should be considered more reliable than the original three. Here, we apply several methods, including class-average/map comparisons, tilt-pair validation, and use of multiple refinement software packages, to give strong evidence for the reliability of our recent structure. The map resolution and feature resolvability are assessed with the gold standard criterion. This approach is generally applicable to assessing the validity of cryo-EM maps of other molecular machines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Insights into intermediate phases of human intestinal fluids visualized by atomic force microscopy and cryo-transmission electron microscopy ex vivo.

    PubMed

    Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos

    2012-02-06

    The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural

  16. Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase

    PubMed Central

    Borgnia, Mario J.; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A.; Falconieri, Veronica

    2016-01-01

    Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an “open” or “closed” state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132

  17. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy

    PubMed Central

    Walls, Alexandra C.; Tortorici, M. Alejandra; Frenz, Brandon; Snijder, Joost; Li, Wentao; Rey, Félix A.; DiMaio, Frank; Bosch, Berend-Jan; Veesler, David

    2017-01-01

    The threat of a major coronavirus pandemic urges the development of suitable strategies to combat these pathogens. HCoV-NL63 is an α-coronavirus that can cause severe lower respiratory tract infections requiring hospitalization. We report here the 3.4 Å resolution cryo-electron microscopy reconstruction of the HCoV-NL63 coronavirus spike glycoprotein trimer, which is the conformational machine responsible for entry into host cells and the sole target of neutralizing antibodies during infection. The map resolves the extensive glycan shield obstructing the protein surface and, in combination with mass-spectrometry, provides a structural framework to understand accessibility to antibodies. The structure also reveals a remarkable modular architecture of the receptor-binding subunit and the complete architecture of the fusion machinery including the triggering loop and the C-terminal domains, which contribute to anchoring the trimer to the viral membrane. Our data further suggest that HCoV-NL63 and other coronaviruses use molecular trickery, based on masking of epitopes with glycans and activating conformational changes, to evade the immune system of infected hosts. PMID:27617430

  18. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin

    PubMed Central

    van Pee, Katharina; Neuhaus, Alexander; D'Imprima, Edoardo; Mills, Deryck J; Kühlbrandt, Werner; Yildiz, Özkan

    2017-01-01

    Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å β-hairpins that traverse the lipid bilayer and assemble into a 168-strand β-barrel. The pore complex is stabilized by salt bridges between β-hairpins of adjacent subunits and an internal α-barrel. The apolar outer barrel surface with large sidechains is immersed in the lipid bilayer, while the inner barrel surface is highly charged. Comparison of the cryoEM pore complex to the prepore structure obtained by electron cryo-tomography and the x-ray structure of the soluble form reveals the detailed mechanisms by which the toxin monomers insert into the lipid bilayer to perforate the target membrane. DOI: http://dx.doi.org/10.7554/eLife.23644.001 PMID:28323617

  19. Model-based local density sharpening of cryo-EM maps

    PubMed Central

    Jakobi, Arjen J; Wilmanns, Matthias

    2017-01-01

    Atomic models based on high-resolution density maps are the ultimate result of the cryo-EM structure determination process. Here, we introduce a general procedure for local sharpening of cryo-EM density maps based on prior knowledge of an atomic reference structure. The procedure optimizes contrast of cryo-EM densities by amplitude scaling against the radially averaged local falloff estimated from a windowed reference model. By testing the procedure using six cryo-EM structures of TRPV1, β-galactosidase, γ-secretase, ribosome-EF-Tu complex, 20S proteasome and RNA polymerase III, we illustrate how local sharpening can increase interpretability of density maps in particular in cases of resolution variation and facilitates model building and atomic model refinement. PMID:29058676

  20. Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2014-01-01

    Despite its many favorable properties as a sample support for biological electron microscopy, graphene is not widely used because its hydrophobicity precludes reliable protein deposition. We describe a method to modify graphene using a low-energy hydrogen plasma, which reduces hydrophobicity without degrading the graphene lattice. We show that the use of plasma-treated graphene enables better control of protein distribution in ice for electron cryo-microscopy and improved image quality by reducing radiation-induced sample motion. PMID:24747813

  1. CryoTran user's manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Cowgill, Glenn R.; Chato, David J.; Saad, Ehab

    1989-01-01

    The development of cryogenic fluid management systems for space operation is a major portion of the efforts of the Cryogenic Fluids Technology Office (CFTO) at the NASA Lewis Research Center. Analytical models are a necessary part of experimental programs which are used to verify the results of experiments and are also used as a predictor for parametric studies. The CryoTran computer program is a bridge to obtain analytical results. The object of CryoTran is to coordinate these separate analyses into an integrated framework with a user-friendly interface and a common cryogenic property database. CryoTran is an integrated software system designed to help solve a diverse set of problems involving cryogenic fluid storage and transfer in both ground and low-g environments.

  2. Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin.

    PubMed

    Afanasyev, Pavel; Seer-Linnemayr, Charlotte; Ravelli, Raimond B G; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V; Pannu, Navraj S; Schatz, Michael; van Heel, Marin

    2017-09-01

    Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.

  3. Yeast Inner-Subunit PA-NZ-1 Labeling Strategy for Accurate Subunit Identification in a Macromolecular Complex through Cryo-EM Analysis.

    PubMed

    Wang, Huping; Han, Wenyu; Takagi, Junichi; Cong, Yao

    2018-05-11

    Cryo-electron microscopy (cryo-EM) has been established as one of the central tools in the structural study of macromolecular complexes. Although intermediate- or low-resolution structural information through negative staining or cryo-EM analysis remains highly valuable, we lack general and efficient ways to achieve unambiguous subunit identification in these applications. Here, we took advantage of the extremely high affinity between a dodecapeptide "PA" tag and the NZ-1 antibody Fab fragment to develop an efficient "yeast inner-subunit PA-NZ-1 labeling" strategy that when combined with cryo-EM could precisely identify subunits in macromolecular complexes. Using this strategy combined with cryo-EM 3D reconstruction, we were able to visualize the characteristic NZ-1 Fab density attached to the PA tag inserted into a surface-exposed loop in the middle of the sequence of CCT6 subunit present in the Saccharomyces cerevisiae group II chaperonin TRiC/CCT. This procedure facilitated the unambiguous localization of CCT6 in the TRiC complex. The PA tag was designed to contain only 12 amino acids and a tight turn configuration; when inserted into a loop, it usually has a high chance of maintaining the epitope structure and low likelihood of perturbing the native structure and function of the target protein compared to other tagging systems. We also found that the association between PA and NZ-1 can sustain the cryo freezing conditions, resulting in very high occupancy of the Fab in the final cryo-EM images. Our study demonstrated the robustness of this strategy combined with cryo-EM in efficient and accurate subunit identification in challenging multi-component complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Separation of the 1+ /1- parity doublet in 20Ne

    NASA Astrophysics Data System (ADS)

    Beller, J.; Stumpf, C.; Scheck, M.; Pietralla, N.; Deleanu, D.; Filipescu, D. M.; Glodariu, T.; Haxton, W.; Idini, A.; Kelley, J. H.; Kwan, E.; Martinez-Pinedo, G.; Raut, R.; Romig, C.; Roth, R.; Rusev, G.; Savran, D.; Tonchev, A. P.; Tornow, W.; Wagner, J.; Weller, H. R.; Zamfir, N.-V.; Zweidinger, M.

    2015-02-01

    The (J , T) = (1 , 1) parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE = E (1-) - E (1+) = - 3.2(± 0.7) stat(-1.2+0.6)sys keV and the ratio of their integrated cross sections Is,0(+) /Is,0(-) = 29(± 3) stat(-7+14)sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46-0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.

  5. Fingerprint-Based Structure Retrieval Using Electron Density

    PubMed Central

    Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628

  6. Transmission electron microscopy of amyloid fibrils.

    PubMed

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  7. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Son; CSIRO Australian Animal Health Laboratory, Victoria 3220; Tabarin, Thibault

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstratemore » that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.« less

  8. Estimating loop length from CryoEM images at medium resolutions.

    PubMed

    McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing

    2013-01-01

    De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.

  9. From CryoSat-2 to Sentinel-3 and Beyond

    NASA Astrophysics Data System (ADS)

    Francis, R.

    2011-12-01

    CryoSat-2 carried into Earth orbit the first altimeter using SAR principles, although similar techniques had been used on earlier Venusian missions. Furthermore, it carries a second antenna and receive chain, and has been very carefully calibrated, allowing interferometry between these antennas. The results of the SAR mode and of the interferometer have met all expectations, with handsome margins. Even before the launch of CryoSat-2 the further development of this concept was underway with the radar for the oceanography mission Sentinel-3. While this radar, named SRAL (SAR Radar Altimeter) does not have the interferometer capability of CryoSat-2's SIRAL (SAR Interferometric Radar Altimeter), it does have a second frequency, to enable direct measurement of the delay induced by the ionospheric electron content. Sentinel-3 will have a sun-synchronous orbit, like ERS and EnviSat, and will have a similar latitudinal range: about 82° north and south, compared to CryoSat's 88°. Sentinel-3 will operate its radar altimeter in the high-resolution SAR mode over coastal oceans and inland water, and will revert to the more classical pulse-width limited mode over the open oceans. The SAR mode generates data at a high rate, so the major limiting factor is the amount of on-board storage. The power consumption is also higher, imposing less critical constraints. For sizing purposes the coastal oceans are defined as waters within 300 km of the continental shorelines. Sentinel-3 is expected to be launched in 2013 and be followed 18 months later by a second satellite of the same design. The next step in the development of this family of radar altimeters is Jason-CS, which will provide Continuity of Service to the existing Jason series of operational oceanography missions. Jason-CS has a very strong heritage from CryoSat but will fly the traditional Jason orbit, which covers latitudes up to 66° from a high altitude of 1330 km. The new radar is called Poseidon-4, to emphasise the

  10. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection.

    PubMed

    Wilkat, M; Herdoiza, E; Forsbach-Birk, V; Walther, P; Essig, A

    2014-08-01

    Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.

  11. Measuring Thermal Conductivity and Moisture Absorption of Cryo-Insulation Materials

    NASA Technical Reports Server (NTRS)

    Lambert, Michael A.

    1998-01-01

    NASA is seeking to develop thermal insulation material systems suitable for withstanding both extremely high temperatures encountered during atmospheric re-entry heating and aero- braking maneuvers, as well as extremely low temperatures existing in liquid fuel storage tanks. Currently, materials used for the high temperature insulation or Thermal Protection System (TPS) are different from the low temperature, or cryogenic insulation. Dual purpose materials are necessary to the development of reusable launch vehicles (RLV). The present Space Shuttle (or Space Transportation System, STS) employs TPS materials on the orbiter and cryo-insulation materials on the large fuel tank slung under the orbiter. The expensive fuel tank is jettisoned just before orbit is achieved and it burns up while re-entering over the Indian Ocean. A truly completely reusable launch vehicle must store aR cryogenic fuel internally. The fuel tanks will be located close to the outer surface. In fact the outer skin of the craft will probably also serve as the fuel tank enclosure, as in jet airliners. During a normal launch the combined TPS/cryo-insulation system will serve only as a low temperature insulator, since aerodynamic heating is relatively minimal during ascent to orbit. During re-entry, the combined TPS/cryo-insulation system will serve only as a high temperature insulator, since all the cryogenic fuel will have been expended in orbit. However, in the event of an.aborted launch or a forced/emergency early re-entry, the tanks will still contain fuel, and the TPS/cryo-insulation will have to serve as both low and high temperature insulation. Also, on long duration missions, such as to Mars, very effective cryo-insulation materials are needed to reduce bod off of liquid propellants, thereby reducing necessary tankage volume, weight, and cost. The conventional approach to obtaining both low and high temperature insulation, such as is employed for the X-33 and X-34 spacecraft, is to use

  12. Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin

    PubMed Central

    Seer-Linnemayr, Charlotte; Ravelli, Raimond B. G.; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V.; Pannu, Navraj S.; Schatz, Michael; van Heel, Marin

    2017-01-01

    Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the ‘Einstein from random noise’ problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous (‘four-dimensional’) cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, ‘random-startup’ three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external ‘starting models’. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive ‘ABC-4D’ pipeline is based on the two-dimensional reference-free ‘alignment by classification’ (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure. PMID:28989723

  13. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also

  14. A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment

    PubMed Central

    Lee, Hyunwook; Brendle, Sarah A.; Bywaters, Stephanie M.; Guan, Jian; Ashley, Robert E.; Yoder, Joshua D.; Makhov, Alexander M.; Conway, James F.; Christensen, Neil D.

    2014-01-01

    ABSTRACT Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid–Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called “invading-arm” structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and “invading-arm” structures. This study advances the understanding of the neutralization mechanism used

  15. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography

    DOE PAGES

    Yu, Yadong; Kuang, Yu-Lin; Lei, Dongsheng; ...

    2016-08-18

    Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed anmore » unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis.« less

  16. Temporal changes of the inner core from waveform doublets

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  17. Active CryoCubeSat

    NASA Technical Reports Server (NTRS)

    Swenson, Charles

    2016-01-01

    The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.

  18. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  19. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.

    PubMed

    Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki

    2011-01-01

    Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  1. Fingerprint-based structure retrieval using electron density.

    PubMed

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  2. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    PubMed Central

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  3. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    PubMed

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  4. A second Higgs doublet in the early universe: baryogenesis and gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsch, G.C.; Konstandin, T.; Huber, S.J.

    We show that simple Two Higgs Doublet models might still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis may be possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.

  5. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome

    PubMed Central

    Ahmed, Tofayel; Yin, Zhan; Bhushan, Shashi

    2016-01-01

    Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features. PMID:27762343

  6. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.

    PubMed

    Huang, Rui; Ripstein, Zev A; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E; Rubinstein, John L

    2016-07-19

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.

  7. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  8. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  9. Cryo-imaging in a toxicological study on mouse fetuses

    NASA Astrophysics Data System (ADS)

    Roy, Debashish; Gargesha, Madhusudhana; Sloter, Eddie; Watanabe, Michiko; Wilson, David

    2010-03-01

    We applied the Case cryo-imaging system to detect signals of developmental toxicity in transgenic mouse fetuses resulting from maternal exposure to a developmental environmental toxicant (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We utilized a fluorescent transgenic mouse model that expresses Green Fluorescent Protein (GFP) exclusively in smooth muscles under the control of the smooth muscle gamma actin (SMGA) promoter (SMGA/EGFP mice kindly provided by J. Lessard, U. Cincinnati). Analysis of cryo-image data volumes, comprising of very high-resolution anatomical brightfield and molecular fluorescence block face images, revealed qualitative and quantitative morphological differences in control versus exposed fetuses. Fetuses randomly chosen from pregnant females euthanized on gestation day (GD) 18 were either manually examined or cryo-imaged. For cryo-imaging, fetuses were embedded, frozen and cryo-sectioned at 20 μm thickness and brightfield color and fluorescent block-face images were acquired with an in-plane resolution of ~15 μm. Automated 3D volume visualization schemes segmented out the black embedding medium and blended fluorescence and brightfield data to produce 3D reconstructions of all fetuses. Comparison of Treatment groups TCDD GD13, TCDD GD14 and control through automated analysis tools highlighted differences not observable by prosectors performing traditional fresh dissection. For example, severe hydronephrosis, suggestive of irreversible kidney damage, was detected by cryoimaging in fetuses exposed to TCDD. Automated quantification of total fluorescence in smooth muscles revealed suppressed fluorescence in TCDD-exposed fetuses. This application demonstrated that cryo-imaging can be utilized as a routine high-throughput screening tool to assess the effects of potential toxins on the developmental biology of small animals.

  10. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    PubMed

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Development of external cooling cryo-resistive cable systems. Part 2: Insulation characteristics on 66 kV rated cryo-resistive testing cable

    NASA Astrophysics Data System (ADS)

    Ishihara, Kaoru; Akita, Shige; Suzuki, Hiroshi; Ogata, Junichi; Nemoto, Minoru

    1987-08-01

    Cryo-resistive cable system was tested to demonstrate dielectric characteristics. Dielectric characteristics of 66kV cryo-resistive cable at the start of immersion cooling in the liquid nitrogen were 2.25 specific dielectric constant and 0.18 percent dielectric loss which was less than 0.4 percent , the aimed value. Electrostatic capacity and dielectric loss tangent of dielectric characteristics under the applied voltage did not depend on the voltage and the dielectric loss was less than 0.4 percent through the temperature range from -170 to -190C. These values fulfilled the specifications on 275kV class cryo-resistive cable design. The tested cable passed the cable test on 66kV oil-filled cable (ac 90kV, 10 min), but broken down at ac 110kV on the way to endurance testing voltage 130kV. The breakdown occurred due to the mechanical damage of cable insulator by bending and thermal contraction of the cable. It is necessary from these facts to develop flexible cable terminal and joint which can absorb the contraction to realize 275kV cryo-resistive cable. (19 figs, 7 tabs, 15 refs).

  12. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  13. Cryo-electron microscopy structure of the TRPV2 ion channel.

    PubMed

    Zubcevic, Lejla; Herzik, Mark A; Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong

    2016-02-01

    Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ∼4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6.

  14. Cryo-electron microscopy structure of the TRPV2 ion channel

    PubMed Central

    Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong

    2016-01-01

    Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ~4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6. PMID:26779611

  15. Cryo-EM structure of a herpesvirus capsid at 3.1 Å.

    PubMed

    Yuan, Shuai; Wang, Jialing; Zhu, Dongjie; Wang, Nan; Gao, Qiang; Chen, Wenyuan; Tang, Hao; Wang, Junzhi; Zhang, Xinzheng; Liu, Hongrong; Rao, Zihe; Wang, Xiangxi

    2018-04-06

    Structurally and genetically, human herpesviruses are among the largest and most complex of viruses. Using cryo-electron microscopy (cryo-EM) with an optimized image reconstruction strategy, we report the herpes simplex virus type 2 (HSV-2) capsid structure at 3.1 angstroms, which is built up of about 3000 proteins organized into three types of hexons (central, peripentonal, and edge), pentons, and triplexes. Both hexons and pentons contain the major capsid protein, VP5; hexons also contain a small capsid protein, VP26; and triplexes comprise VP23 and VP19C. Acting as core organizers, VP5 proteins form extensive intermolecular networks, involving multiple disulfide bonds (about 1500 in total) and noncovalent interactions, with VP26 proteins and triplexes that underpin capsid stability and assembly. Conformational adaptations of these proteins induced by their microenvironments lead to 46 different conformers that assemble into a massive quasisymmetric shell, exemplifying the structural and functional complexity of HSV. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography.

    PubMed

    Bharat, Tanmay A M; Noda, Takeshi; Riches, James D; Kraehling, Verena; Kolesnikova, Larissa; Becker, Stephan; Kawaoka, Yoshihiro; Briggs, John A G

    2012-03-13

    Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly.

  17. Conical Fourier shell correlation applied to electron tomograms.

    PubMed

    Diebolder, C A; Faas, F G A; Koster, A J; Koning, R I

    2015-05-01

    The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Product lambda-doublet ratios as an imprint of chemical reaction mechanism

    PubMed Central

    Jambrina, P. G.; Zanchet, A.; Aldegunde, J.; Brouard, M.; Aoiz, F. J.

    2016-01-01

    In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A′) Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A′′ potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A′) state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces PMID:27834381

  19. States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM.

    PubMed

    Serwer, Philip; Wright, Elena T; Demeler, Borries; Jiang, Wen

    2018-04-01

    Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.

  20. Continuous Changes in Structure Mapped by Manifold Embedding of Single-Particle Data in Cryo-EM

    PubMed Central

    Fran, Joachim; Ourmazd, Abbas

    2016-01-01

    Cryo-electron microscopy, when combined with single-particle reconstruction, is a powerful method for studying macromolecular structure. Recent developments in detector technology have pushed the resolution into a range comparable to that of X-ray crystallography. However, cryo-EM is able to separate and thus recover the structure of each of several discrete structures present in the sample. For the more general case involving continuous structural changes, a novel technique employing manifold embedding has been recently demonstrated. Potentially, the entire work-cycle of a molecular machine may be observed as it passes through a continuum of states, and its free-energy landscape may be mapped out. This technique will be outlined and discussed in the context of its application to a large single-particle dataset of yeast ribosomes. PMID:26884261

  1. CryoScout: A Descent Through the Mars Polar Cap

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Saunders, R. S.

    2003-01-01

    CryoScout was proposed as a subsurface investigation of the stratigraphic climate record embedded in Mars North Polar cap. After landing on a gentle landscape in the midst of the mild summer season, CryoScout was to use the continuous polar sunlight to power the descent of a cryobot, a thermal probe, into the ice at a rate of about 1 m per day. CryoScout would probe deep enough into this time capsule to see the effects of planetary obliquity variations and discrete events such as dust storms or volcanic eruptions. By penetrating tens of meters of ice, the mission would explore at least one of the dominant "MOC layers" observed in exposed layered terrain.

  2. Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy

    PubMed Central

    Zhao, Haiyan; Li, Kunpeng; Lynn, Anna Y.; Aron, Keith E.; Yu, Guimei; Jiang, Wen; Tang, Liang

    2017-01-01

    The enormous prevalence of tailed DNA bacteriophages on this planet is enabled by highly efficient self-assembly of hundreds of protein subunits into highly stable capsids. These capsids can stand with an internal pressure as high as ∼50 atmospheres as a result of the phage DNA-packaging process. Here we report the complete atomic model of the headful DNA-packaging bacteriophage Sf6 at 2.9 Å resolution determined by electron cryo-microscopy. The structure reveals the DNA-inflated, tensed state of a robust protein shell assembled via noncovalent interactions. Remarkable global conformational polymorphism of capsid proteins, a network formed by extended N arms, mortise-and-tenon–like intercapsomer joints, and abundant β-sheet–like mainchain:mainchain intermolecular interactions, confers significant strength yet also flexibility required for capsid assembly and DNA packaging. Differential formations of the hexon and penton are mediated by a drastic α–helix-to-β–strand structural transition. The assembly scheme revealed here may be common among tailed DNA phages and herpesviruses. PMID:28320961

  3. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    DOE PAGES

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; ...

    2016-11-28

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  4. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    PubMed

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  5. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  6. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM

    PubMed Central

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-01-01

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases. DOI: http://dx.doi.org/10.7554/eLife.10180.001 PMID:26439008

  7. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Magnetic Resonance (MR) Microscopy System using a Microfluidically Cryo-Cooled Planar Coil

    PubMed Central

    Koo, Chiwan; Godley, Richard F.; Park, Jaewon; McDougall, Mary P.; Wright, Steven M.; Han, Arum

    2011-01-01

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (−196°C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: 1) The small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. 2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0°C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system

  9. A novel storage system for cryoEM samples.

    PubMed

    Scapin, Giovanna; Prosise, Winifred W; Wismer, Michael K; Strickland, Corey

    2017-07-01

    We present here a new CryoEM grid boxes storage system designed to simplify sample labeling, tracking and retrieval. The system is based on the crystal pucks widely used by the X-ray crystallographic community for storage and shipping of crystals. This system is suitable for any cryoEM laboratory, but especially for large facilities that will need accurate tracking of large numbers of samples coming from different sources. Copyright © 2017. Published by Elsevier Inc.

  10. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study

    PubMed Central

    Huang, Rui; Ripstein, Zev A.; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E.; Rubinstein, John L.

    2016-01-01

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded. PMID:27402735

  11. Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data.

    PubMed

    Xu, Nan; Veesler, David; Doerschuk, Peter C; Johnson, John E

    2018-05-01

    The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Combining image processing and modeling to generate traces of beta-strands from cryo-EM density images of beta-barrels.

    PubMed

    Si, Dong; He, Jing

    2014-01-01

    Electron cryo-microscopy (Cryo-EM) technique produces 3-dimensional (3D) density images of proteins. When resolution of the images is not high enough to resolve the molecular details, it is challenging for image processing methods to enhance the molecular features. β-barrel is a particular structure feature that is formed by multiple β-strands in a barrel shape. There is no existing method to derive β-strands from the 3D image of a β-barrel at medium resolutions. We propose a new method, StrandRoller, to generate a small set of possible β-traces from the density images at medium resolutions of 5-10Å. StrandRoller has been tested using eleven β-barrel images simulated to 10Å resolution and one image isolated from the experimentally derived cryo-EM density image at 6.7Å resolution. StrandRoller was able to detect 81.84% of the β-strands with an overall 1.5Å 2-way distance between the detected and the observed β-traces, if the best of fifteen detections is considered. Our results suggest that it is possible to derive a small set of possible β-traces from the β-barrel cryo-EM image at medium resolutions even when no separation of the β-strands is visible in the images.

  13. Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds

    NASA Astrophysics Data System (ADS)

    Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.

    2017-11-01

    If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.

  14. Inert Higgs Doublet Dark Matter in Type-II Seesaw

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hung; Nomura, Takaaki

    2016-04-01

    Weakly interacting massive particle (WIMP) as a dark matter (DM) candidate is further inspired by recent AMS-02 data, which confirm the excess of positron fraction observed earlier by PAMELA and Fermi-LAT experiments. Additionally, the excess of positron+electron flux is still significant in the measurement of Fermi-LAT. For solving the problem of massive neutrinos and observed excess of cosmic-ray by DM annihilation, we study the model with an inert Higgs doublet (IHD) in the framework of type-II seesaw mechanism by imposing a Z2 symmetry on the IHD, where the lightest particle of IHD is the DM candidate while the neutrino masses origin from the Higgs triplet in type-II seesaw model. We calculate the cosmic-ray production in our model and find that if leptonic triplet decays are dominant, the observed excess of positron/electron flux could be explained well in normal ordered neutrino mass spectrum, when the constraints of DM relic density and comic-ray antiproton spectrum are taken into account.

  15. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM

    NASA Astrophysics Data System (ADS)

    Aoki, Dan; Hanaya, Yuto; Akita, Takuya; Matsushita, Yasuyuki; Yoshida, Masato; Kuroda, Katsushi; Yagami, Sachie; Takama, Ruka; Fukushima, Kazuhiko

    2016-08-01

    To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor.

  16. First operational experience with the HIE-Isolde helium cryogenic system including several RF cryo-modules

    NASA Astrophysics Data System (ADS)

    Guillotin, N.; Dupont, T.; Gayet, Ph; Pirotte, O.

    2017-12-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) upgrade project at CERN includes the deployment of new superconducting accelerating structures operated at 4.5 K (ultimately of six cryo-modules) installed in series, and the refurbishing of the helium cryo-plant previously used to cool the ALEPH magnet during the operation of the LEP accelerator from 1989 to 2000. The helium refrigerator is connected to a new cryogenic distribution line, supplying a 2000-liter storage dewar and six interconnecting valve boxes (i.e jumper boxes), one for each cryo-module. After a first operation period with one cryo-module during six months in 2015, a second cryo-module has been installed and operated during 2016. The operation of the cryo-plant with these two cryo-modules has required significant technical enhancements and tunings for the compressor station, the cold-box and the cryogenic distribution system in order to reach nominal and stable operational conditions. The present paper describes the commissioning results and the lessons learnt during the operation campaign of 2016 together with the preliminary experience acquired during the 2017 operation phase with a third cryo-module.

  17. The deep Peru 2015 doublet earthquakes

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Tavera, H.; Poli, P.; Herrera, C.; Flores, C.; Rivera, E.; Madariaga, R.

    2017-11-01

    On 24 November 2015 two events of magnitude Mw 7.5 and Mw 7.6 occurred at 600 km depth under the Peru-Brazil boundary. These two events were separated in time by 300 s. Deep event doublets occur often under South America. The characteristics that control these events and the dynamic interaction between them are an unresolved problem. We used teleseismic and regional data, situated above the doublet, to perform source inversion in order to characterize their ruptures. The overall resemblance between these two events suggests that they share similar rupture process. They are not identical but occur on the same fault surface dipping westward. Using a P-wave stripping and stretching method we determine rupture speed of 2.25 km/s. From regional body wave inversion we find that stress drop is similar for both events, they differ by a factor of two. The similarity in geometry, rupture velocity, stress drop and radiated energy, suggests that these two events looked like simple elliptical ruptures that propagated like classical sub-shear brittle cracks.

  18. A magnetic resonance (MR) microscopy system using a microfluidically cryo-cooled planar coil.

    PubMed

    Koo, Chiwan; Godley, Richard F; Park, Jaewon; McDougall, Mary P; Wright, Steven M; Han, Arum

    2011-07-07

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system

  19. A search for close-mass lepton doublet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riles, J.K.

    1989-04-01

    Described is a search for a heavy charged lepton with an associated neutrino of nearly the same mass, together known as a close-mass lepton doublet. The search is conducted in e/sup +/e/sup/minus// annihilation data taken with the Mark II detector at a center-of-mass energy of 29 GeV. In order to suppress contamination from conventional two-photon reactions, the search applies a novel, radiative-tagging technique. Requiring the presence of an isolated, energetic photon allows exploration for lepton doublets with a mass splitting smaller than that previously accessible to experiment. No evidence for such a new lepton has been found, enabling limits tomore » be placed on allowed mass combinations. Mass differences as low as 250-300 MeV are excluded for charged lepton masses up to 10 GeV. 78 refs., 64 figs., 8 tabs.« less

  20. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryo-EM

    PubMed Central

    Chen, Bo; Kaledhonkar, Sandip; Sun, Ming; Shen, Bingxin; Lu, Zonghuan; Barnard, David; Lu, Toh-Ming; Gonzalez, Ruben L.; Frank, Joachim

    2015-01-01

    Ribosomal subunit association is a key checkpoint in translation initiation, but its structural dynamics are poorly understood. Here, we used a recently developed mixing-spraying, time-resolved, cryogenic electron microscopy (cryo-EM) method to study ribosomal subunit association in the sub-second time range. We have improved this method and increased the cryo-EM data yield by tenfold. Pre-equilibrium states of the association reaction were captured by reacting the mixture of ribosomal subunits for 60 ms and 140 ms. We also identified three distinct ribosome conformations in the associated ribosomes. The observed proportions of these conformations are the same in these two time points, suggesting that ribosomes equilibrate among the three conformations within less than 60 ms upon formation. Our results demonstrate that the mixing-spraying method can capture multiple states of macromolecules during a sub-second reaction. Other fast processes, such as translation initiation, decoding and ribosome recycling, are amenable to study with this method. PMID:26004440

  1. JWST Pathfinder Telescope Risk Reduction Cryo Test Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Scorse, Thomas R.; Spina, John A.; Noel, Darin M.; Havey, Keith A., Jr.; Huguet, Jesse A.; Whitman, Tony L.; Wells, Conrad; Walker, Chanda B.; Lunt, Sharon; hide

    2015-01-01

    In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope.

  2. Cryo-Electron Microscopy Reconstruction Shows Poliovirus 135S Particles Poised for Membrane Interaction and RNA Release

    PubMed Central

    Butan, Carmen; Filman, David J.

    2014-01-01

    During infection, binding of mature poliovirus to cell surface receptors induces an irreversible expansion of the capsid, to form an infectious cell-entry intermediate particle that sediments at 135S. In these expanded virions, the major capsid proteins (VP1 to VP3) adopt an altered icosahedral arrangement to open holes in the capsid at 2-fold and quasi-3-fold axes, and internal polypeptides VP4 and the N terminus of VP1, which can bind membranes, become externalized. Cryo-electron microscopy images for 117,330 particles were collected using Leginon and reconstructed using FREALIGN. Improved rigid-body positioning of major capsid proteins established reliably which polypeptide segments become disordered or rearranged. The virus-to-135S transition includes expansion of 4%, rearrangements of the GH loops of VP3 and VP1, and disordering of C-terminal extensions of VP1 and VP2. The N terminus of VP1 rearranges to become externalized near its quasi-3-fold exit, binds to rearranged GH loops of VP3 and VP1, and attaches to the top surface of VP2. These details improve our understanding of subsequent stages of infection, including endocytosis and RNA transfer into the cytoplasm. PMID:24257617

  3. Safety of Cryo-Transbronchial Biopsy in Diffuse Lung Diseases: Analysis of Three Hundred Cases.

    PubMed

    Gershman, Evgeni; Fruchter, Oren; Benjamin, Fox; Nader, Abed Rahman; Rosengarten, Dror; Rusanov, Victoria; Fridel, Ludmila; Kramer, Mordechai R

    2015-01-01

    Transbronchial biopsy (TBB) which is performed with metal forceps (forceps TBB) has been accepted as a useful technique in establishing diagnoses of diffuse lung diseases (DLDs). The use of cryoprobes to obtain alveolar tissue (cryo-TBB) is a new method which is currently used by our institute as well as others with excellent results. To assess the safety of cryo-TBB compared with conventional forceps TBB. We performed a retrospective data evaluation of 300 consecutive patients who underwent cryo-TBB between January 2012 and April 2014 and compared them with historical cases treated with forceps TBB between 2010 and 2012. The results of both diagnostic modalities were compared based on pathological reports. The major complications (significant bleeding and pneumothorax) were compared, along with postprocedural hospitalization. Pneumothorax was observed in 15 cases (4.95%) treated with cryo-TBB versus 9 cases (3.15%) treated with forceps TBB, with no significant difference (p = 0.303). The insertion of a chest tube was necessary in 6 (2%) and 4 (1.3%) of the cases having undergone cryo-TBB or forceps TBB, respectively (p = 0.8). In the cryo-TBB group, bleeding was encountered in 16 cases (5.2%), and it occurred in 13 cases (4.5%) of the forceps TBB group, with no significant difference in rates (p = 0.706). Also, there was no significant difference in hospital admission rates between the groups [cryo-TBB: 10 (3.3%); forceps TBB: 4 (1.44%); p = 0.181]. The safety profile of cryo- and forceps TBB remained the same even when stratified according to indications for TBB, i.e. immunocompromised hosts, patients after lung transplantation and those with DLDs. In patients with DLDs, cryo-TBB is as safe as forceps TBB.

  4. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  5. Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy.

    PubMed

    Nannenga, Brent L; Iadanza, Matthew G; Vollmar, Breanna S; Gonen, Tamir

    2013-01-01

    Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.

  6. Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).

  7. Scalar dark matter in leptophilic two-Higgs-doublet model

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  8. Correlative Cryo-Tem Cryo-Stxm and Cryo-Shxm Investigation of Selenium Bioreduction in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Fakra, S.; Luef, B.; Tyliszczak, T.; Castelle, C. J.; Mullin, S. W.; Hug, L. A.; Williams, K. H.; Marcus, M.; Banfield, J. F.

    2015-12-01

    Accurate mapping of the composition and ultrastructure of minerals and cells is key to understanding biogeochemical process in contaminated environments. Here we developed two apparatus that allow correlation of cryogenic transmission electron microscopy (TEM), synchrotron hard X-ray microprobe (SHXM) and scanning transmission X-ray microscopy (STXM) datasets. These cryogenic methods enabled precise determination of the distribution, valence state and structure of selenium in intact biofilms sampled during a biostimulation experiment in a contaminated aquifer near Rifle, CO, USA. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family, and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms consists of ~25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. X-ray diffraction and Se K-edge extended X-ray absorption fine structure spectroscopy revealed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. STXM showed that these aggregates are strongly associated with a protein-rich biofilm matrix containing acidic polysaccharides. From Rifle groundwater, we isolated a strain that shares 98.9% 16S rRNA gene sequence identity with Dechloromonas aromatica RCB and grows anaerobically by oxidizing acetate and reducing selenate. We refer to this isolate as Dechloromonas selenatis strain RGW99. 3D cryo-electron tomography showed that Se0 particles do not form inside the cytoplasm but rather originate in the cell membrane. The end product of selenate reduction by D. selenatis is 240 ± 66 nm diameter red amorphous Se0 colloidal aggregates. This product was found to be stable for months. Overall

  9. Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction

    PubMed Central

    2016-01-01

    Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538

  10. Parity doublet structures in doubly-odd 216Fr

    NASA Astrophysics Data System (ADS)

    Pragati, Â.; Deo, A. Y.; Tandel, S. K.; Bhattacharjee, S. S.; Chakraborty, S.; Rai, S.; Wahid, S. G.; Kumar, S.; Muralithar, S.; Singh, R. P.; Bala, Indu; Garg, Ritika; Jain, A. K.

    2018-04-01

    Parity doublet structures are established in 216Fr, which lies at the lower boundary of enhanced octupole collectivity in the trans-lead region. The newly identified levels are established as the simplex partner of a previously reported band leading to parity doublets with small (˜55 keV) average energy splitting, a feature typical of nuclei with near-static octupole deformation. The observed levels do not follow a regular pattern of rotational bands, indicating low quadrupole collectivity. However, enhanced octupole correlations are evident from the small energy splitting and large B(E1)/B(E2) values. Staggering in E1 transition energies and B(E1)/B(E2) ratios is noted. The enhancement of octupole correlations in 216Fr is attributed to the availability of a neutron orbital with a K = 3/2 component.

  11. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.

    2011-04-22

    Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm)more » helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.« less

  12. Scalable UWB photonic generator based on the combination of doublet pulses.

    PubMed

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  13. Automatic Stem Cell Detection in Microscopic Whole Mouse Cryo-imaging

    PubMed Central

    Wuttisarnwattana, Patiwet; Gargesha, Madhusudhana; Hof, Wouter van’t; Cooke, Kenneth R.

    2016-01-01

    With its single cell sensitivity over volumes as large as or larger than a mouse, cryo-imaging enables imaging of stem cell biodistribution, homing, engraftment, and molecular mechanisms. We developed and evaluated a highly automated software tool to detect fluorescently labeled stem cells within very large (~200GB) cryo-imaging datasets. Cell detection steps are: preprocess, remove immaterial regions, spatially filter to create features, identify candidate pixels, classify pixels using bagging decision trees, segment cell patches, and perform 3D labeling. There are options for analysis and visualization. To train the classifier, we created synthetic images by placing realistic digital cell models onto cryo-images of control mice devoid of cells. Very good cell detection results were (precision=98.49%, recall=99.97%) for synthetic cryo-images, (precision=97.81%, recall=97.71%) for manually evaluated, actual cryo-images, and <1% false positives in control mice. An α-multiplier applied to features allows one to correct for experimental variations in cell brightness due to labeling. On dim cells (37% of standard brightness), with correction, we improved recall (49.26%→99.36%) without a significant drop in precision (99.99%→99.75%). With tail vein injection, multipotent adult progenitor cells in a graft-versus-host-disease model in the first days post injection were predominantly found in lung, liver, spleen, and bone marrow. Distribution was not simply related to blood flow. The lung contained clusters of cells while other tissues contained single cells. Our methods provided stem cell distribution anywhere in mouse with single cell sensitivity. Methods should provide a rational means of evaluating dosing, delivery methods, cell enhancements, and mechanisms for therapeutic cells. PMID:26552080

  14. Cryo-balloon catheter position planning using AFiT

    NASA Astrophysics Data System (ADS)

    Kleinoeder, Andreas; Brost, Alexander; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) is the most common heart arrhythmia. In certain situations, it can result in life-threatening complications such as stroke and heart failure. For paroxsysmal AFib, pulmonary vein isolation (PVI) by catheter ablation is the recommended choice of treatment if drug therapy fails. During minimally invasive procedures, electrically active tissue around the pulmonary veins is destroyed by either applying heat or cryothermal energy to the tissue. The procedure is usually performed in electrophysiology labs under fluoroscopic guidance. Besides radio-frequency catheter ablation devices, so-called single-shot devices, e.g., the cryothermal balloon catheters, are receiving more and more interest in the electrophysiology (EP) community. Single-shot devices may be advantageous for certain cases, since they can simplify the creation of contiguous (gapless) lesion sets around the pulmonary vein which is needed to achieve PVI. In many cases, a 3-D (CT, MRI, or C-arm CT) image of a patient's left atrium is available. This data can then be used for planning purposes and for supporting catheter navigation during the procedure. Cryo-thermal balloon catheters are commercially available in two different sizes. We propose the Atrial Fibrillation Planning Tool (AFiT), which visualizes the segmented left atrium as well as multiple cryo-balloon catheters within a virtual reality, to find out how well cryo-balloons fit to the anatomy of a patient's left atrium. First evaluations have shown that AFiT helps physicians in two ways. First, they can better assess whether cryoballoon ablation or RF ablation is the treatment of choice at all. Second, they can select the proper-size cryo-balloon catheter with more confidence.

  15. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.

    PubMed

    Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank

    2016-09-26

    Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.

  16. Cryopreservation on a cryo-plate of Arundina graminifolia protocorms, dehydrated with silica gel and drying beads.

    PubMed

    Cordova, L B; Thammasiri, K

    2016-01-01

    There are various methods for the cryopreservation of plant material, with each biological specimen potentially requiring protocol optimization to maximize success. The aim of this study is to compare droplet-vitrification, encapsulation-dehydration, and the cryo-plate method for cryopreservation of protocorms of the orchid Arundina graminifolia, using silica gel and drying beads as the desiccation materials. The cryo-plate method included preculture of protocorms, developed from seeds, placed on aluminium cryo-plates and embedded in alginate gel. Cryo-plates were surface dried using sterile filter paper, placed in Petri dishes containing 50 g silica gel or 30 g drying beads in a laminar air-flow cabinet. Specimens on cryo-plates were dehydrated to 25 % moisture content, placed into 2 mL cryotubes and plunged directly into liquid nitrogen for 1 d. For cryopreservation, the cryo-plate method, involving dehydration with 30 g drying beads gave the highest regrowth (77 %), followed by the encapsulation-dehydration method with 30 g drying beads (64 % regrowth) and the droplet-vitrification method, following exposure to PVS2 solution for 20 min (33 % regrowth). Regrowth of cryopreserved protocorms using the cryo-plate method was rapid with the highest survival and regrowth.

  17. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy

    PubMed Central

    Sborgi, Lorenzo; Ravotti, Francesco; Dandey, Venkata P.; Dick, Mathias S.; Mazur, Adam; Reckel, Sina; Chami, Mohamed; Scherer, Sebastian; Huber, Matthias; Böckmann, Anja; Egelman, Edward H.; Stahlberg, Henning; Broz, Petr; Meier, Beat H.; Hiller, Sebastian

    2015-01-01

    Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms. PMID:26464513

  18. Push or Pull? -- Cryo-Electron Microscopy of Microtubule's Dynamic Instability and Its Roles in the Kinetochore

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei

    2009-03-01

    Microtubule is a biopolymer made up of alpha-beta-tubulin heterodimers. The tubulin dimers assemble head-to-tail as protofilaments and about 13 protofilaments interact laterally to form a hollow cylindrical structure which is the microtubule. As the major cytoskeleton in all eukaryotic cells, microtubules have the intrinsic property to switch stochastically between growth and shrinkage phases, a phenomenon termed as their dynamic instability. Microtubule's dynamic instability is closely related to the types of nucleotide (GTP or GDP) that binds to the beta-tubulin. We have biochemically trapped two types of assembly states of tubulin with GTP or GDP bound representing the polymerizing and depolymerizing ends of microtubules respectively. Using cryo-electron microscopy, we have elucidated the structures of these intermediate assemblies, showing that tubulin protofilaments demonstrate various curvatures and form different types of lateral interactions depending on the nucleotide states of tubulin and the temperature. Our work indicates that during the microtubule's dynamic cycle, tubulin undergoes various assembly states. These states, different from the straight microtubule, lend the highly dynamic and complicated behavior of microtubules. Our study of microtubule's interaction with certain kinetochore complexes suggests that the intermediate assemblies are responsible for specific mechanical forces that are required during the mitosis or meiosis. Our discoveries strongly suggest that a microtubule is a molecular machine rather than a simple cellular scaffold.

  19. Transmission electron microscopy of polyhydroxybutyrate-co-valerate (PHBV)/nanocrystalline cellulose (NCC) bio-nanocomposite prepared using cryo-ultramicrotomy

    NASA Astrophysics Data System (ADS)

    Ismarul, N. I.; Engku, A. H. E. U.; Siti, N. K.; Tay, K. Y.

    2017-12-01

    Environmental issues on disposal and end-of-life for product made from synthetic petroleum-derived polymers have gained increasing attention from materials scientist to search for new materials with similar physical and mechanical properties but environmental friendly in a way that they are renewable and biodegradable as well. This work is to study the effect of nanocrystalline cellulose in improving the thermal stability of polyhydroxybutyrate-co-valerate biopolymer for high temperature processing of packaging material. 10 % w/w PHBV-NCC bio-nanocomposite feedstock pellet prepared using RONDOL minilab compounder was used as the sample for the preparation of Transmission Electron Microscopy (TEM) sample. RMC Cryo-Ultramicrotomy equipment was used to prepare the ultra-thin slice of the bio-nanocomposite pellet under liquid nitrogen at - 60 °C. Diamond knife was used to slice off about 80-100 nm ultra-thin bio-nanocomposite films and was transferred into the lacey carbon film coated grid using cooled sugar solution. A few drops of phosphotungstic acid was used as negative stain to improve the contrast during the TEM analysis. HITACHI TEM systems was used to obtain the TEM micrograph of PHBV-NCC bio-nanocomposite using 80kV accelerating voltage. A well dispersed NCC in PHBV matrix, ranging from 5 to 25 nm in width was observed.

  20. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.

    PubMed

    Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang

    2012-06-15

    We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

  1. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.

    PubMed

    Zhou, Xiaoyuan; Li, Minghui; Su, Deyuan; Jia, Qi; Li, Huan; Li, Xueming; Yang, Jian

    2017-12-01

    TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP 2 regulate TRPML3 by changing S1 and S2 conformations.

  2. Next-to-minimal two Higgs Doublet Model

    DOE PAGES

    Chen, Chien -Yi; Freid, Michael; Sher, Marc

    2014-04-07

    The simplest extension of the Two Higgs Doublet Model is the addition of a real scalar singlet, S. The effects of mixing between the singlet and the doublets can be manifested in two ways. It can modify the couplings of the 126 GeV Higgs boson, h, and it can lead to direct detection of the heavy Higgs at the LHC. In this paper, we show that in the type-I Model, for heavy Higgs masses in the 200-600 GeV range, the latter effect will be detected earlier than the former for most of parameter space. Should no such Higgs be discoveredmore » in this mass range, then the upper limit on the mixing will be sufficiently strong such that there will be no significant effects on the couplings of the h for most of parameter space. Thus, the reverse is true in the type-II model, the limits from measurements of the couplings of the h will dominate over the limits from non-observation of the heavy Higgs.« less

  3. CryoCart Restoration and Vacuum Pipe Construction

    NASA Technical Reports Server (NTRS)

    Chaidez, Mariana

    2016-01-01

    first completed at the component level. During this process, the igniter of the main engine and the RCS thrusters will be tested under a vacuum. To complete the testing of the components, the test setup first needed to be finalized. The CryoCart is being used to feed the propellants to the test article. The CryoCart is a movable test set-up that was developed in 2009 to provide a mobile platform for testing oxygen/methane systems with hot-fire capability up to 100 lbf. The CryoCart consists of three different systems: Oxygen, Methane, and liquid Nitrogen. The Oxygen and Methane systems are placed into two different carts while the liquid nitrogen system is mainly located in the methane cart. Over the years, the CryoCart has been utilized for different projects and has undergone deterioration. For this reason, a new phase has been developed to rebuild it to working conditions once again. During my internship, I was aiding in the construction and restoration of the CryoCart. In the initial stages of the process, I updated the fluid and electrical schematics for the oxygen, methane, and test article systems. The original CryoCart consisted of an electrical panel that utilized electromechanical relays and a terminal to drive the igniter power and signal, as well as the main fuel and oxygen valves. This electrical panel connected to the CryoCart through various wire harnesses that could be found exiting from the CryoCart. First, it was determined how these harnesses connected to the electromechanical relays so that they worked correctly. Once the electrical system was understood, an alternative for the electromechanical relays and the Molex connectors used throughout the system was sought since these components can often prove to be unreliable. Solid State relays and MIL connectors were purchased to serve as replacements. Upon arrival of the parts, crimping and wiring was completed to install the new solid state relays and MIL connectors. During the replacement of the relays

  4. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  5. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass

  6. Image Restoration in Cryo-electron Microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  7. Comparative study on histological structures of the vitelline membrane of hen and duck egg observed by cryo-scanning electron microscopy.

    PubMed

    Chung, Wen-Hsin; Lai, Kung-Ming; Hsu, Kuo-chiang

    2010-02-10

    The histological structures of the vitelline membranes (VM) of hen and duck eggs were observed by cryo-scanning electron microscopy (cryo-SEM), and the chemical characteristics were also compared. The outer layer surface (OLS) of duck egg VM showed networks constructed by fibrils and sheets (0.1-5.2 microm in width), and that of hen egg presented networks formed only by sheets (2-6 microm in width). Thicker fibrils (0.5-1.5 microm in width) with different arrangement were observed on the inner layer surface (ILS) of duck egg VM as compared to those (0.3-0.7 microm in width) of hen egg VM. Upon separation, the outer surface of the outer layer (OSOL) and the inner surface of the inner layer (ISIL) of hen and duck egg VMs were quite similar to fresh VM except that the OSOL of duck egg VM showed networks constructed only by sheets. Thin fibrils interlaced above a bumpy or flat structure were observed at the exposed surface of the outer layer (ESOL) of hen and duck egg VMs. The exposed surfaces of inner layers (ESIL) of hen and duck egg VMs showed similar structures of fibrils, which joined, branched, and ran in straight lines for long distances up to 30 microm; however, the widths of the fibrils shown in ESOL and ESIL of duck egg VM were 0.1 and 0.7-1.4 microm, respectively, and were greater than those (<0.1 and 0.5-0.8 microm) of hen egg VM. The continuous membranes of both hen and duck egg VMs were still attached to the outer layers when separated. The content of protein, the major component of VM, was higher in duck egg VM (88.6%) than in hen egg VM (81.6%). Four and six major SDS-soluble protein patterns with distinct localization were observed in hen and duck egg VMs, respectively. Overall, the different histological structures of hen and duck egg VMs were suggested to be majorly attributable to the diverse protein components.

  8. Improved Oceanographic Measurements with CryoSat SAR Altimetry: Applications to the Coastal Zone and Arctic

    NASA Astrophysics Data System (ADS)

    Cotton, D.; Garcia, P. N.; Cancet, M.; Andersen, O.; Stenseng, L.; Martin, F.; Cipollini, P.; Calafat, F. M.; Passaro, M.; Restano, M.; Ambrozio, A.; Benveniste, J.

    2016-08-01

    The ESA CryoSat-2 mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat-2 SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "CryoSat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of CryoSat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: to build a sound scientific basis for new oceanographic applications of CryoSat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and to ensure that the scientific return of the CryoSat-2 mission is maximised. Cotton et al, (2015) is the final report on this work.However, whilst the results from CP4O were highly promising and confirmed the potential of SAR altimetry to support new scientific and operational oceanographic applications, it was also apparent that further work was needed in some key areas to fully realise the original project objectives. Thus additional work in four areas has been supported by ESA under a Contract Change Notice:• Developments in SARin data processing for Coastal Altimetry (isardSAT).• Implementation of a Regional Tidal Atlas for the Arctic Ocean (Noveltis and DTU Space).• Improvements to the SAMOSA re-tracker: Implementation and Evaluation- Optimised Thermal Noise Estimation. (Starlab and SatOC).• Extended evaluation of CryoSat-2 SAR data for Coastal Applications (NOC).This work was managed by SatOC. The results of this work are summarized here. Detailed information regarding the CP4O project can be found at: http://www.satoc.eu/projects/CP4O/

  9. The Concept Of A Potential Operational CryoSat Follow-on Mission

    NASA Astrophysics Data System (ADS)

    Cullen, R.

    2016-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost continuity to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of improved modes of operation

  10. A Potential Operational CryoSat Follow-on Mission Concept and Design

    NASA Astrophysics Data System (ADS)

    Cullen, R.

    2015-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost follow-on to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of the instrument timing and

  11. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  12. Design of a dee vacuum vessel for Doublet III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, L.G.

    1983-04-01

    The Doublet III tokamak is to be modified wherein the original 'doublet' plasma containment vacuum vessel will be exchanged with one of a large dee-shaped cross section. The basic dimensions of the dee vessel will allow plasmas of 1.7-m major radius, 0.7-m minor radius, and a vertical elongation of 1.8. Installation of a large dee vessel in Doublet III is made possible by the demountable toroidal field coils and the large, low-ripple volume they include. Ripple at the plasma edge will be less than one percent. The plasma parameters affecting the design of the vessel will be reviewed including plasmamore » current, power, disruption time, allowable error field, impurity control techniques, pulse length, and limiter schemes. A driving requirement for the design of the vessel is to maximize the access to the plasma for auxiliary heating (both neutral beam injection and radio frequency heating), diagnostics, developmental component and material testing, and pumping. The dee vessel is structurally designed along the same lines as the present vessel: an Inconel 625, all-welded, continuous chamber in a corrugated sandwich construction. An overview of the vessel design and its solutions to the design criteria will be presented. An overview will also be presented of the entire modification project which includes replacement of some coils, and addition of support structure, limiters and vessel armor, and power system components.« less

  13. Physical and Structural Studies on the Cryo-cooling of Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Reflection profiles were analyzed from microgravity-(mg) and earth-grown insulin crystals to measure mosaicity (h) and to reveal mosaic domain structure and composition. The effects of cryocooling on single and multi-domain crystals were compared. The effects of cryocooling on insulin structure were also re-examined. Microgravity crystals were larger, more homogeneous, and more perfect than earth crystals. Several mg crystals contained primarily a single mosaic domain with havg of 0.005deg. The earth crystals varied in quality and all contained multiple domains with havg of 0.031deg. Cryocooling caused a 43-fold increase in h for mg crystals (havg=0.217deg) and an %fold increase for earth crystals (havg=0.246deg). These results indicate that very well-ordered crystals are not completely protected from the stresses associated with cryocooling, especially when structural perturbations occur. However, there were differences in the reflection profiles. For multi-mosaic domain crystals, each domain individually broadened and separated from the other domains upon cryo-cooling. Cryo-cooling did not cause an increase in the number of domains. A crystal composed of a single domain retained this domain structure and the reflection profiles simply broadened. Therefore, an improved signal-to-noise ratio for each reflection was measured from cryo-cooled single domain crystals relative to cryo-cooled multi-domain crystals. This improved signal, along with the increase in crystal size, facilitated the measurement of the weaker high- resolution reflections. The observed broadening of reflection profiles indicates increased variation in unit cell dimensions which may be linked to cryo-cooling-associated structural changes and disorder.

  14. Alignment of cryo-EM movies of individual particles by optimization of image translations.

    PubMed

    Rubinstein, John L; Brubaker, Marcus A

    2015-11-01

    Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual <1 MDa protein particle trajectories to be estimated, but requires rolling averages to be calculated from frames and fits linear trajectories for particles. Here we describe an algorithm that allows for individual <1 MDa particle images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Integrating two-photon microscopy and cryo-electron microscopy for studying the interaction of Cafeteria roenbergensis and CroV

    NASA Astrophysics Data System (ADS)

    Aghvami, Seyedmohammadali

    Cafeteria roenbergensis (Cro) is a marine zooplankton; its voracious appetite plays a significant role in regulating bacteria populations. The giant virus that lives within Cro, known as Cafeteria roenbergensis virus (CroV), has an important effect on the mortality of Cro populations. Although viral infections are extremely abundant in oceans, the complete procedure of the infection is still unknown. We study the infection process of Cro by CroV to find out whether the initial contact is through phagocytosis or CroV penetrating the host cell membrane directly. Cro is a moving at speed in the range of 10-100 um/s, therefore, there are many difficulties and challenges for traditional imaging techniques to study this viral-host interaction. We apply two-photon fluorescence microscopy to image this infection process. The image is taken at video rate (30 frame/s), which makes us able to catch the moment of interaction. We are able to image host and virus simultaneously where CroV is stained by SYBR gold dye and Cro is excited through NADH autofluorescence. For further structural biology study, we will obtain atomic level resolution information of infection. After catching the initial moment of infection, we will freeze the sample instantly and image it with cryo-electron microscope .

  16. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schmatz, Joyce; Klaver, Jop; Urai, Janos L.

    2017-04-01

    -filled micro-cracks are also present and they are interpreted to result from the releasing of in-situ stress after the core extraction. Moreover, the comparison of the clay micro-fabrics in the same preserved and dried sample suggests collapsing of the clay aggregates' pores in dried sample. These newest results are still preliminary and they need to be analysed in more details. However, if they are confirmed they may be important input to discuss about the validity of measurement of mechanical and transport properties done in laboratory. Desbois G., Urai J.L. and Kukla P.A. (2009). Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4 :15-22. Desbois G., J.L. Urai, F. Pérez-Willard, Z. Radi, S. van Offern, I. Burkart, P.A. Kukla, U. Wollenberg (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy, 249(3): 215-235. Desbois G., Urai J.L., Hemes S., Brassinnes S., De Craen M., Sillen X. (2014). Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Engineering Geology, 170:117-131.

  17. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  18. Comparing IceBridge and CryoSat-2 sea ice observations over the Arctic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.; Hofton, M. A.; Manizade, S.; Cornejo, H.

    2016-12-01

    From 2009 to 2015, CryoSat-2 and IceBridge had 34 coincident lines over sea ice, 23 over the Arctic (20 with ATM, 2 with LVIS, and 1 with both ATM and LVIS) and 11 over the Southern Ocean (9 with ATM and 2 with both ATM and LVIS). In this study, we will compare both surface elevation and sea ice freeboard from CryoSat-2, ATM, and LVIS. We will apply identical ellipsoid, geoid, tide models, and atmospheric corrections to CryoSat-2, ATM, and LVIS data. For CryoSat-2, we will use surface elevation and sea ice freeboard both in the standard CryoSat-2 data product and calculated through a waveform fitting method. For ATM and LVIS, we will use surface elevation and sea ice freeboard in the OIB data product and the elevation and sea ice freeboard calculated through Gaussian waveform fitting method. The results of this study are important for using ATM and LVIS to calibrate/validate CryoSat-2 results and bridging the data gap between ICESat and ICESat-2.

  19. Doublet Production in the Development of Medieval and Modern Spanish: New Approaches to Phonolexical Duplication

    ERIC Educational Resources Information Center

    Haney, Darren W.

    2011-01-01

    This dissertation offers new approaches to an old and well-known problem in the study of the development of Romance varieties: duplicate lexis or doublets. Traditional analyses of duplication are narrow in scope both in what qualifies as a doublet (the popular/learned opposition has dominated, to the exclusion of other pairs) and in channels of…

  20. The flavor-locked flavorful two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Altmannshofer, Wolfgang; Gori, Stefania; Robinson, Dean J.; Tuckler, Douglas

    2018-03-01

    We propose a new framework to generate the Standard Model (SM) quark flavor hierarchies in the context of two Higgs doublet models (2HDM). The `flavorful' 2HDM couples the SM-like Higgs doublet exclusively to the third quark generation, while the first two generations couple exclusively to an additional source of electroweak symmetry breaking, potentially generating striking collider signatures. We synthesize the flavorful 2HDM with the `flavor-locking' mechanism, that dynamically generates large quark mass hierarchies through a flavor-blind portal to distinct flavon and hierarchon sectors: dynamical alignment of the flavons allows a unique hierarchon to control the respective quark masses. We further develop the theoretical construction of this mechanism, and show that in the context of a flavorful 2HDM-type setup, it can automatically achieve realistic flavor structures: the CKM matrix is automatically hierarchical with | V cb | and | V ub | generically of the observed size. Exotic contributions to meson oscillation observables may also be generated, that may accommodate current data mildly better than the SM itself.

  1. Directly reconstructing principal components of heterogeneous particles from cryo-EM images.

    PubMed

    Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali

    2015-08-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images

    PubMed Central

    Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali

    2015-01-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077

  3. Two Higgs doublets with fourth-generation fermions: Models for TeV-scale compositeness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni A.; Bar-Shalom, S.; Nandi, S.

    2011-09-21

    We construct a class of two Higgs doublets models with a 4th sequential generation of fermions that may effectively accommodate the low-energy characteristics and phenomenology of a dynamical electroweak symmetry breaking scenario which is triggered by the condensates of the 4th family fermions. In particular, we single out the heavy quarks by coupling the heavier Higgs doublet ({Phi}{sub h}) which possesses a much larger VEV only to them while the lighter doublet ({Phi}{sub {ell}) couples only to the light fermions. We study the constraints on these models from precision electroweak data as well as from flavor data. We also discussmore » some distinct new features that have direct consequences on the production and decays of the 4th family quarks and leptons in high-energy colliders; in particular, the conventional search strategies for t{prime} and b{prime} may need to be significantly revised.« less

  4. Breakdown of doublet recirculation and direct line drives by far-field flow in reservoirs: implications for geothermal and hydrocarbon well placement

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2016-07-01

    An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.

  5. Fine Ice Sheet margins topography from swath processing of CryoSat SARIn mode data

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Escorihuela, M. J.; Shepherd, A.; Foresta, L.; Muir, A.; Briggs, K.; Hogg, A. E.; Roca, M.; Baker, S.; Drinkwater, M. R.

    2014-12-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice thickness, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level change. The lack of such sustained observations was identified in the Integrated Global Observing Strategy (IGOS) Cryosphere Theme Report as a major shortcoming. Conventional altimetry measurements over GISMs exist, but coverage has been sparse and characterized by coarse ground resolution. Additionally, and more importantly, they proved ineffective in the presence of steep slopes, a typical feature of GISM areas. Since the majority of Antarctic and Greenland ice sheet mass loss is estimated to lie within 100 km from the coast, but only about 10% is surveyed, there is the need for more robust and dense observations of GISMs, in both time and space. The ESA Altimetry mission CryoSat aims at gaining better insight into the evolution of the Cryosphere. CryoSat's revolutionary design features a Synthetic Interferometric Radar Altimeter (SIRAL), with two antennas for interferometry. The corresponding SAR Interferometer (SARIn) mode of operation increases spatial resolution while resolving the angular origin of off-nadir echoes occurring over sloping terrain. The SARIn mode is activated over GISMs and the elevation for the Point Of Closest Approach (POCA) is a standard product of the CryoSat mission. Here we present an approach for more comprehensively exploiting the SARIn mode of CryoSat and produce an ice elevation product with enhanced spatial resolution compared to standard CryoSat-2 height products. In this so called L2-swath processing approach, the full CryoSat waveform is exploited under specific conditions of signal and surface characteristics. We will present the rationale, validation exercises and preliminary results from the Eurpean Space Agency's STSE CryoTop study over selected test regions of the margins of the Greenland

  6. Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms.

    PubMed

    Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P

    2017-07-15

    Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Source code freely available at http://www.cs.cmu.edu/∼mxu1/software . mxu1@cs.cmu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms

    PubMed Central

    Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P.

    2017-01-01

    Abstract Motivation: Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. Results: To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Availability and Implementation: Source code freely available at http://www.cs.cmu.edu/∼mxu1/software. Contact: mxu1@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881965

  8. Databases and archiving for cryoEM

    PubMed Central

    Patwardhan, Ardan; Lawson, Catherine L.

    2017-01-01

    Cryo-EM in structural biology is currently served by three public archives – EMDB for 3DEM reconstructions, PDB for models built from 3DEM reconstructions and EMPIAR for the raw 2D image data used to obtain the 3DEM reconstructions. These archives play a vital role for both the structural community and the wider biological community in making the data accessible so that results may be reused, reassessed and integrated with other structural and bioinformatics resources. The important role of the archives is underpinned by the fact that many journals mandate the deposition of data to PDB and EMDB on publication. The field is currently undergoing transformative changes where on the one hand high-resolution structures are becoming a routine occurrence while on the other hand electron tomography is enabling the study of macromolecules in the cellular context. Concomitantly the archives are evolving to best serve their stakeholder communities. In this chapter we describe the current state of the archives, resources available for depositing, accessing, searching, visualising and validating data, on-going community-wide initiatives and opportunities and challenges for the future. PMID:27572735

  9. The performance of CryoSat-2 as an ocean altimeter

    NASA Astrophysics Data System (ADS)

    Scharroo, R.; Smith, W. H.; Leuliette, E. W.; Lillibridge, J. L.

    2012-12-01

    Two years after the launch of CryoSat-2, oceanographic uses of the CryoSat-2 data have well taken off, after several institutes, NOAA included, have spent a dedicated effort to upgrade the official CryoSat-2 data products to a level that is suitable for monitoring of mesoscale phenomena, as well as wind speed and wave height. But in the coastal areas, this is much less the case. This is mostly the result of the fact that CryoSat-2 is running in SAR or InSAR mode in many of the focus areas, like the Mediterranean Sea. We have shown, however, that the CryoSat data is intrinsically of high quality and for over a year now have been producing "IGDR" type data through FTP and through RADS. These steps include: ● Combine final (LRM) and fast-delivery (FDM) products and split the segmented files into pass files. ● Divide the 369-day repeat cycle into subcycles of 29 or 27 days. ● Retrack the conventional low-rate data to determine range, significant wave height, backscatter (and off-nadir angle). ● Add or replace the usual corrections for ionospheric and atmospheric delays, tides, dynamic atmospheric correction, sea state bias, mean sea surface. ● Update orbits and corrections whenever they become available. This way NOAA produces an "IGDR" product from the fast-delivery FDM and the CNES MOE orbit in about 2 days after real time, and a "GDR" product from the final LRM data and the CNES POE orbit with a delay of about 1 month. In order to extend the data products to the coastal regime, we have developed a process in which the SAR data are first combined to "Pseudo-LRM" or "reduced SAR" wave forms, that are similar to the conventional low-rate wave forms. After this the reduced SAR data are retracked and combined with the conventional data to form a harmonised product. Although this sounds relatively straightforward, many steps were needed to get this done: ● Combine the SAR wave forms to conventional wave forms, without loss of information. ● Reconstruct

  10. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  11. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    PubMed

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  12. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    PubMed

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. OMNY—A tOMography Nano crYo stage

    NASA Astrophysics Data System (ADS)

    Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Wepf, R.; Odstrcil, M.; Shaik, F. R.; Panneels, V.; Menzel, A.; Sarafimov, B.; Maag, S.; Wang, X.; Thominet, V.; Walther, H.; Lachat, T.; Vitins, M.; Bunk, O.

    2018-04-01

    For many scientific questions gaining three-dimensional insight into a specimen can provide valuable information. We here present an instrument called "tOMography Nano crYo (OMNY)," dedicated to high resolution 3D scanning x-ray microscopy at cryogenic conditions via hard X-ray ptychography. Ptychography is a lens-less imaging method requiring accurate sample positioning. In OMNY, this in achieved via dedicated laser interferometry and closed-loop position control reaching sub-10 nm positioning accuracy. Cryogenic sample conditions are maintained via conductive cooling. 90 K can be reached when using liquid nitrogen as coolant, and 10 K is possible with liquid helium. A cryogenic sample-change mechanism permits measurements of cryogenically fixed specimens. We compare images obtained with OMNY with older measurements performed using a nitrogen gas cryo-jet of stained, epoxy-embedded retina tissue and of frozen-hydrated Chlamydomonas cells.

  14. Cryo-STEM-EDX spectroscopy for the characterisation of nanoparticles in cell culture media

    NASA Astrophysics Data System (ADS)

    Ilett, M.; Bamiduro, F.; Matar, O.; Brown, A.; Brydson, R.; Hondow, N.

    2017-09-01

    We present a study of barium titanate nanoparticles dispersed in cell culture media. Scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy was undertaken on samples prepared using both conventional drop casting and also plunge freezing and examination under cryogenic conditions. This showed that drying artefacts occurred during conventional sample preparation, whereby some salt components of the cell culture media accumulated around the barium titanate nanoparticles; these were removed using the cryogenic route. Importantly, the formation of a calcium and phosphorus rich coating around the barium titanate nanoparticles was retained under cryo-conditions, highlighting that significant interactions do occur between nanomaterials and biological media.

  15. Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms.

    PubMed

    Castaño-Díez, Daniel; Kudryashev, Mikhail; Stahlberg, Henning

    2017-02-01

    Cryo electron tomography allows macromolecular complexes within vitrified, intact, thin cells or sections thereof to be visualized, and structural analysis to be performed in situ by averaging over multiple copies of the same molecules. Image processing for subtomogram averaging is specific and cumbersome, due to the large amount of data and its three dimensional nature and anisotropic resolution. Here, we streamline data processing for subtomogram averaging by introducing an archiving system, Dynamo Catalogue. This system manages tomographic data from multiple tomograms and allows visual feedback during all processing steps, including particle picking, extraction, alignment and classification. The file structure of a processing project file structure includes logfiles of performed operations, and can be backed up and shared between users. Command line commands, database queries and a set of GUIs give the user versatile control over the process. Here, we introduce a set of geometric tools that streamline particle picking from simple (filaments, spheres, tubes, vesicles) and complex geometries (arbitrary 2D surfaces, rare instances on proteins with geometric restrictions, and 2D and 3D crystals). Advanced functionality, such as manual alignment and subboxing, is useful when initial templates are generated for alignment and for project customization. Dynamo Catalogue is part of the open source package Dynamo and includes tools to ensure format compatibility with the subtomogram averaging functionalities of other packages, such as Jsubtomo, PyTom, PEET, EMAN2, XMIPP and Relion. Copyright © 2016. Published by Elsevier Inc.

  16. 3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse

    PubMed Central

    Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.

    2009-01-01

    We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166

  17. Imaging system for creating 3D block-face cryo-images of whole mice

    NASA Astrophysics Data System (ADS)

    Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David

    2006-03-01

    We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.

  18. CryoSat Ice Processor: High-Level Overview of Baseline-C Data and Quality-Control

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Since April 2015, the CryoSat ice products have been generated with the new Baseline-C Instrument Processing Facilities (IPFs). This represents a major upgrade to the CryoSat ice IPFs and is the baseline for the second CryoSat Reprocessing Campaign. Baseline- C introduces major evolutions with respect to Baseline- B, most notably the release of freeboard data within the L2 SAR products, following optimisation of the SAR retracker. Additional L2 improvements include a new Arctic Mean Sea Surface (MSS) in SAR; a new tuneable land ice retracker in LRM; and a new Digital Elevation Model (DEM) in SARIn. At L1B new attitude fields have been introduced and existing datation and range biases reduced. This paper provides a high level overview of the changes and evolutions implemented at Baseline-C in order to improve CryoSat L1B and L2 data characteristics and exploitation over polar regions. An overview of the main Quality Control (QC) activities performed on operational Baseline-C products is also presented.

  19. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  20. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    NASA Astrophysics Data System (ADS)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  1. Large Higgs-electron Yukawa coupling in 2HDM

    NASA Astrophysics Data System (ADS)

    Dery, Avital; Frugiuele, Claudia; Nir, Yosef

    2018-04-01

    The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of O(600) . We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z 2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than O(0.01/{κ}_e) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e + e - resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

  2. Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter

    2016-04-01

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of

  3. Carotene location in processed food samples measured by cryo In-SEM Raman.

    PubMed

    Lopez-Sanchez, Patricia; Schumm, Stephan; Pudney, Paul D A; Hazekamp, Johan

    2011-09-21

    Cryo In-SEM Raman has been used for the first time to localise carotene compounds in a food matrix. Raman spectra of lycopene and β-carotene have been obtained from sampling oil droplets and plant cell structures visualised with cryo-SEM in tomato and carrot based emulsions containing 5% oil. It was possible to identify the carotenoids in both the oil droplets and the cell walls. Furthermore our results gave some indication that the carotenoids were in the non-crystalline state. It has been suggested that a higher amount of carotenes solubilised into the oil phase of the food matrix would lead to a higher bioaccessibility, thus understanding the effect of processing conditions on micronutrients distribution in a food matrix might help the design of plant based food products with a better nutritional quality. This shows improved structural characterisation of the cryo-SEM with the molecular sensitivity of Raman spectroscopy as a promising approach for complex biological problems.

  4. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  5. Cryo-scatter measurements of beryllium

    NASA Astrophysics Data System (ADS)

    Lippey, Barret; Krone-Schmidt, Wilfried

    1991-12-01

    Bi-directional Reflection Distribution Function measurements were performed as a function of cryogenic temperature for various substrates. Substrates investigated include HIPed and sputtered beryllium produced from different powders and by various manufacturing and polishing processes. In some samples investigated, the BRDF at 10.6 microns increased by a factor of 2 to 5 during cooling from 300 to 30 Kelvin. On repeated temperature cycling the change in BRDF appeared to be totally elastic. The cryo-scatter effect does not occur for all types of beryllium.

  6. Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu

    Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulationsmore » and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.« less

  7. Fe II fluorescence and anomalous C IV doublet intensities in symbiotic novae

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Meier, S. R.

    1992-01-01

    The variation of absolute intensities of Bowen-excited Fe II emission in the symbiotic stars RR Tel, RX Pup, and AG Peg is examined. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values within the optically thin range. The intensity of individual Fe II Bowen-excited lines is correlated with the C IV 1548.2 A flux, suggesting the presence of a foreground Fe II region in which fluorescent-excited material responds to flux variations of C IV 1548.2 A. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV 1548.2 A line when the C IV doublet ratio is less than the optically thick limit of unity. The Fe II Bowen lines in RX Pup exhibit a velocity range from 0 to 80 km/s, where several strong Fe II emission lines correspond to deep absorption structure in the C IV 1548.2 A line profile. In AG Peg and C IV 1548.2 A flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme.

  8. Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl After Cryo-milling and Roasting in Nitrogen

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan

    1998-01-01

    In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.

  9. Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter

    2015-04-01

    Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in

  10. Monitoring the Stability of Perfluorocarbon Nanoemulsions by Cryo-TEM Image Analysis and Dynamic Light Scattering

    PubMed Central

    Grapentin, Christoph; Barnert, Sabine; Schubert, Rolf

    2015-01-01

    Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. PMID:26098661

  11. Cryo-EM Structure of the Mechanotransduction Channel NOMPC

    PubMed Central

    Jin, Peng; Bulkley, David; Guo, Yanmeng; Zhang, Wei; Guo, Zhenhao; Huynh, Walter; Wu, Shenping; Meltzer, Shan; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung; Cheng, Yifan

    2017-01-01

    Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells1. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the case of bacterial MscL channel and certain eukaryotic potassium channels2-5. The other is the tether model: force is transmitted via a tether to gate the channel. Recent study suggests that NOMPC, a mechanotransduction channel that mediates hearing and touch sensation in Drosophila, is gated by tethering of its ankyrin repeat (AR) domain to microtubules of the cytoskeleton6. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force induced gating, which could serve as a paradigm of the tether model. NOMPC, a Transient Receptor Potential (TRP) channel and the founding member of the TRPN sub-family7, fulfills all the criteria for a bona fide mechanotransduction channel1,8, and is important for a variety of mechanosensation-related behaviors such as locomotion, touch and sound sensation across different species including C. elegans9, Drosophila8,10-11 and zebrafish12. NOMPC has 29 ARs, the largest number among TRP channels. They are implicated as tether to convey force from cytoskeleton to the channel, thus to mediate mechanosensation6,13-15. A key question is how the long AR domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of NOMPC determined by single particle electron cryo-microscopy (cryo-EM), and discuss how its architecture could provide a means to convey mechanical force to generating an electrical signal within a cell. PMID:28658211

  12. Experimental comparative study of doublet and triplet impinging atomization of gelled fuel based on PIV

    NASA Astrophysics Data System (ADS)

    Yang, Jian-lu; Li, Ning; Weng, Chun-sheng

    2016-10-01

    Gelled propellant is promising for future aerospace application because of its combination of the advantages of solid propellants and liquid propellants. An effort was made to reveal the atomization properties of gelled fuel by particle image velocimetry (PIV) system. The gelled fuel which was formed by gasoline and Nano-silica was atomized using a like-doublet impingement injector and an axisymmetric like-triplet impingement injector. The orifice diameter and length of the nozzle used in this work were of 0.8mm, 4.8mm, respectively. In the impinging spray process, the impingement angles were set at 90° and 120°, and the injection pressures were of 0.50MPa and 1.00MPa. The distance from the exit of the orifice to the impingement point was fixed at 9.6mm. In this study, high-speed visualization and temporal resolution particle image velocimetry techniques were employed to investigate the impingement atomization characteristics. The experimental investigation demonstrated that a long narrow high speed droplets belt formed around the axis of symmetry in the like-doublet impinging atomization area. However, there was no obvious high-speed belt with impingement angle 2θ = 90° and two high-speed belts appeared with impingement angle 2θ = 120° in the like-doublet impingement spray field. The high droplet velocity zone of the like-doublet impingement atomization symmetrically distributed around the central axis, and that of the like-triplet impingement spray deflected to the left of the central axis - opposite of injector. Although the droplets velocity distribution was asymmetry of like-triplet impingement atomization, the injectors were arranged like axisymmetric conical shape, and the cross section of spray area was similar to a circle rather than a narrow rectangle like the like-doublet impingement atomization.

  13. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.

    PubMed

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L

    2016-04-01

    Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.

  14. CryoEM structure of yeast cytoplasmic exosome complex.

    PubMed

    Liu, Jun-Jie; Niu, Chu-Ya; Wu, Yao; Tan, Dan; Wang, Yang; Ye, Ming-Da; Liu, Yang; Zhao, Wenwei; Zhou, Ke; Liu, Quan-Sheng; Dai, Junbiao; Yang, Xuerui; Dong, Meng-Qiu; Huang, Niu; Wang, Hong-Wei

    2016-07-01

    The eukaryotic multi-subunit RNA exosome complex plays crucial roles in 3'-to-5' RNA processing and decay. Rrp6 and Ski7 are the major cofactors for the nuclear and cytoplasmic exosomes, respectively. In the cytoplasm, Ski7 helps the exosome to target mRNAs for degradation and turnover via a through-core pathway. However, the interaction between Ski7 and the exosome complex has remained unclear. The transaction of RNA substrates within the exosome is also elusive. In this work, we used single-particle cryo-electron microscopy to solve the structures of the Ski7-exosome complex in RNA-free and RNA-bound forms at resolutions of 4.2 Å and 5.8 Å, respectively. These structures reveal that the N-terminal domain of Ski7 adopts a structural arrangement and interacts with the exosome in a similar fashion to the C-terminal domain of nuclear Rrp6. Further structural analysis of exosomes with RNA substrates harboring 3' overhangs of different length suggests a switch mechanism of RNA-induced exosome activation in the through-core pathway of RNA processing.

  15. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®

    PubMed Central

    Golubeva, Yelena G.; Smith, Roberta M.; Sternberg, Lawrence R.

    2013-01-01

    Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated

  16. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification.

    PubMed

    El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-09-03

    Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  18. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.

    2010-08-01

    Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.

  19. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  20. A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging

    PubMed Central

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-01-01

    To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat's temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated. PMID:23637936

  1. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  2. CryoTEM as an Advanced Analytical Tool for Materials Chemists.

    PubMed

    Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner

    2017-07-18

    Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us

  3. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2 and in situ observations was found to be 0.38 meters. CryoSat-2 was also shown to be useful for channel roughness calibration in a hydrodynamic model of the Po River. The small across-track distance of CryoSat-2 means that observations are distributed almost continuously along the river. This allowed resolving channel roughness with higher spatial resolution than possible with in situ or virtual station altimetry data. Despite the Po River being extensively monitored, CryoSat-2 still provides added value thanks to its unique spatio-temporal sampling pattern.

  4. Single-protein detection in crowded molecular environments in cryo-EM images

    PubMed Central

    Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried

    2017-01-01

    We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302

  5. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  6. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  7. New controlled environment vitrification system for preparing wet samples for cryo-SEM.

    PubMed

    Ge, H; Suszynski, W J; Davis, H T; Scriven, L E

    2008-01-01

    A new controlled environment vitrification system (CEVS) has been designed and constructed to facilitate examination by cryogenic scanning electron microscopy (Cryo-SEM) of initial suspension state and of microstructure development in latex, latex-composite and other coatings while they still contain solvent. The new system has a main chamber with provisions for coating as well as drying, and for well-controlled plunging into cryogen. An added subsidiary chamber holds samples for drying or annealing over minutes to days before they are returned to the main chamber and plunged from it. In the main chamber, samples are blade-coated on 5 x 7 mm pieces of silicon wafer and held at selected temperature and humidity for successively longer times, either there or after transfer along a rail into the subsidiary chamber. They are then placed in the sample holder mounted on the plunge rod, so as to permit adjustment of the sample's attitude when it plunges, at controlled speed, into liquid ethane at its freezing point, to a chosen depth, in order to solidify the sample without significant shear or freezing artifacts. The entries of plunging samples and related sample holders into liquid ethane were recorded with a high-speed, high-resolution Photron digital camera. The data were interpreted with a new hypothesis about the width of the band of extremely rapid cooling by deeply subcooled nucleate boiling below the line of entry. Complementary cryo-SEM images revealed that the freezing rate and surface shearing of a sample need to be balanced by adjusting the plunging attitude.

  8. Calibration And Validation Of CryoSat-2 Low Resolution Mode Data

    NASA Astrophysics Data System (ADS)

    Naeije, M.; Schrama, E.; Scharroo, R.

    2011-02-01

    Running ahead of the continuously growing need for operational use of sea level products, TUDelft started off the Radar Altimeter Database System RADS many years ago. This system attends to a global international sea- level service. It supports, on one hand, science, like studies on ocean circulation, El Nio, sea level change, and ice topography, and on the other hand (offshore) operations, like delivery of ocean current information, wind and wave statistics, ice detection and ice classification. At present, the database is used by a large scientific community throughout the world, and is daily maintained and developed by Altimetrics LLC, TUDelft and NOAA. It contains all historic altimeter data, and now has to be up- dated with the data from ESAs ice mission CryoSat-2, which was launched successfully in April 2010. These new data are important to augment the data set and by that to improve the estimates of sea level change and its contributors. For this the data have to be validated and calibrated, necessary corrections added and improved (including modelling of corrections that are not directly available from the CryoSat-2 platform), and the orbit ac- curacy verified and if possible the orbits brushed up. Subsequently, value-added ocean and ice products need to be developed in synergy with all the other satellite altimeter data. During the commissioning phase we primarily looked at the sanity of the available level-1b and level-2 Low Resolution Mode (LRM) data. Here, for the 2011 CryoSat Validation Workshop, we present the results of our calibration and validation of LRM L2 data by internal comparison of CryoSat-2 and external comparison with other satellites. We have established a range bias of 3.77 (measurement range too long) and a timing bias of 8.2ms (measurement range too late).

  9. Standardized combined cryotherapy and compression using Cryo/Cuff after wrist arthroscopy.

    PubMed

    Meyer-Marcotty, M; Jungling, O; Vaske, B; Vogt, P M; Knobloch, Karsten

    2011-02-01

    cryotherapy and compression as integral part of the RICE regimen are thought to improve treatment outcome after sport injuries. Using standardized cryotherapy and compression perioperatively has been reported with conflicting clinical results. The impact of combined cryotherapy and compression is compared to standard care among patients undergoing wrist arthroscopy. fifty-six patients undergoing wrist arthroscopy were assessed, 54 patients were randomized to either Cryo/Cuff (3 × 10 min twice daily) or standard care over 3 weeks. Follow-up clinical visits were at postoperative days 1, 8, and 21. One patient in each group was lost during follow-up. Fifty-two patients were analyzed. Statistics were performed as Intention-to-treat analysis. Outcome parameters were pain, three-dimensional volume of the wrist, range of motion, and DASH score. the Cryo/Cuffgroup had a 49% reduction in pain level (VAS 3.5 ± 0.4 vs. VAS 1.8 ± 0.2 on the 21st postoperative day) when compared to a reduction of 41% in the control group (VAS 5.1 ± 0.6 preoperatively vs. VAS 3.0 ± 0.5 on the 21st postoperative day). Swelling and range of motion were not as significantly different between the two groups as were DASH scores (DASH-score Cryo/Cuff group preoperatively 37.3 ± 3.5 and postoperatively 36.9 ± 3.5; DASH-score control group preoperatively 42.8 ± 4.3 and postoperatively 41.9 ± 4.9). The CONSORT score reached 17 out of 22. there was no significant effect of additional home-based combined cryotherapy and compression using the Cryo/Cuff wrist bandage, following wrist arthroscopy regarding pain, swelling, range of motion, and subjective impairment assessed using the DASH score over 3 weeks in comparison with the control group.

  10. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors.more » To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.« less

  11. Sizable NSI from the SU(2) L scalar doublet-singlet mixing and the implications in DUNE

    DOE PAGES

    Forero, David V.; Huang, Wei -Chih

    2017-03-03

    Here, we propose a novel and simple mechanism where sizable effects of non-standard interactions (NSI) in neutrino propagation are induced from the mixing between an electrophilic second Higgs doublet and a charged singlet. The mixing arises from a dimensionful coupling of the scalar doublet and singlet to the standard model Higgs boson. In light of the small mass, the light mass eigenstate from the doublet-singlet mixing can generate much larger NSI than those induced by the heavy eigenstate. We show that a sizable NSI ε eτ (~0.3) can be attained without being excluded by a variety of experimental constraints. Furthermore,more » we demonstrate that NSI can mimic effects of the Dirac CP phase in the neutrino mixing matrix but they can potentially be disentangled by future long-baseline neutrino experiments, such as the Deep Underground Neutrino Experiment (DUNE).« less

  12. Sizable NSI from the SU(2) L scalar doublet-singlet mixing and the implications in DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forero, David V.; Huang, Wei -Chih

    Here, we propose a novel and simple mechanism where sizable effects of non-standard interactions (NSI) in neutrino propagation are induced from the mixing between an electrophilic second Higgs doublet and a charged singlet. The mixing arises from a dimensionful coupling of the scalar doublet and singlet to the standard model Higgs boson. In light of the small mass, the light mass eigenstate from the doublet-singlet mixing can generate much larger NSI than those induced by the heavy eigenstate. We show that a sizable NSI ε eτ (~0.3) can be attained without being excluded by a variety of experimental constraints. Furthermore,more » we demonstrate that NSI can mimic effects of the Dirac CP phase in the neutrino mixing matrix but they can potentially be disentangled by future long-baseline neutrino experiments, such as the Deep Underground Neutrino Experiment (DUNE).« less

  13. CryoSat-2: Post launch performance of SIRAL-2 and its calibration/validation

    NASA Astrophysics Data System (ADS)

    Cullen, Robert; Francis, Richard; Davidson, Malcolm; Wingham, Duncan

    2010-05-01

    1. INTRODUCTION The main payload of CryoSat-2 [1], SIRAL (Synthetic interferometric radar altimeter), is a Ku band pulse-width limited radar altimeter which transmits pulses at a high pulse repetition frequency thus making received echoes phase coherent and suitable for azimuth processing [2]. The azimuth processing in conjunction with correction for slant range improves along track resolution to about 250 meters which is a significant improvement over traditional pulse-width limited systems such as Envisat RA-2, [3]. CryoSat-2 will be launched on 25th February 2010 and this paper describes the pre and post launch measures of CryoSat/SIRAL performance and the status of mission validation planning. 2. SIRAL PERFORMANCE: INTERNAL AND EXTERNAL CALIBRATION Phase coherent pulse-width limited radar altimeters such as SIRAL-2 pose a new challenge when considering a strategy for calibration. Along with the need to generate the well understood corrections for transfer function amplitude with respect to frequency, gain and instrument path delay there is also a need to provide corrections for transfer function phase with respect to frequency and AGC setting, phase variation across bursts of pulses. Furthermore, since some components of these radars are temperature sensitive one needs to be careful when the deciding how often calibrations are performed whilst not impacting mission performance. Several internal calibration ground processors have been developed to model imperfections within the CryoSat-2 radar altimeter (SIRAL-2) hardware and reduce their effect from the science data stream via the use of calibration correction auxiliary products within the ground segment. We present the methods and results used to model and remove imperfections and describe the baseline for usage of SIRAL-2 calibration modes during the commissioning phase and the operational exploitation phases of the mission. Additionally we present early results derived from external calibration of SIRAL via

  14. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. CryoSat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately and bias-free represent the spatio-temporal variations of water levels. A data assimilation framework has been developed and linked with the model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. The setup has been used to assimilate CryoSat-2 water level observations over the Assam valley for the years 2010-2015, using an Ensemble Transform Kalman Filter (ETKF). Performance improvement in terms of discharge forecasting skill was then evaluated. For experiments with synthetic CryoSat-2 data the continuous ranked probability score (CRPS) was improved by up to 32%, whilst for experiments assimilating real data it could be improved by up to 10%. The developed methods are expected to be transferable to other rivers and altimeter missions. The model setup and calibration is based almost entirely on globally available remote sensing data.

  15. Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    PubMed Central

    Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong

    2018-01-01

    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438

  16. New viable region of an inert Higgs doublet dark matter model with scotogenic extension

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Gupta, Aritra

    2017-12-01

    We explore the intermediate dark matter mass regime of the inert Higgs doublet model, approximately between 400 and 550 GeV, which is allowed by latest constraints from direct and indirect detection experiments, but the thermal relic abundance remains suppressed. We extend the model by three copies of right-handed neutrinos, odd under the built-in Z2 symmetry of the model. This discrete Z2 symmetry of the model allows these right-handed neutrinos to couple to the usual lepton doublets through the inert Higgs doublet allowing the possibility of radiative neutrino mass in the scotogenic fashion. Apart from generating nonzero neutrino mass, such an extension can also revive the intermediate dark matter mass regime. The late decay of the lightest right-handed neutrino to dark matter makes it possible for the usual thermally underabundant dark matter in this intermediate mass regime to satisfy the correct relic abundance limit. The revival of this wide intermediate mass range can have relevance not only for direct and indirect search experiments but also for neutrino experiments as the long lifetime of the lightest right-handed neutrino also results in almost vanishing lightest neutrino mass.

  17. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Does a 5/2 sup + -5/2 sup minus ground-state parity doublet exist in sup 229 Pa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grafen, V.; Ackermann, B.; Baltzer, H.

    1991-11-01

    The 1/2(530) decoupled band in {sup 229}Pa has been identified up to the 19/2{sup {minus}} level in ({ital p},{ital t}) and ({ital p},2{ital n}{gamma}) experiments. It is found that the 3/2{sup {minus}} band head has an excitation energy of 19(10) keV, and can thus not be identified with a 123 keV level observed in the {sup 229}U electron capture decay. This removes the evidence presented earlier for a spin-parity assignment of 5/2{sup +-}5/2{sup {minus}} to a proposed nearly degenerate ground-state doublet in {sup 229}Pa.

  19. The CryoSat Interferometer after 6 years in orbit: calibration and achievable performance

    NASA Astrophysics Data System (ADS)

    Scagliola, Michele; Fornari, Marco; De Bartolomei, Maurizio; Bouffard, Jerome; Parrinello, Tommaso

    2016-04-01

    The main payload of CryoSat is a Ku-band pulse width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. In fact, the across-track echo direction can be derived by exploiting the precise knowledge of the baseline vector (i.e. the vector between the two antennas centers of phase) and simple geometry. The end-to-end calibration strategy for the CryoSat interferometer consists on in-orbit calibration campaigns following the approach described in [1]. From the beginning of the CryoSat mission, about once a year the interferometer calibration campaigns have been periodically performed by rolling left and right the spacecraft of about ±0.4 deg. This abstract is aimed at presenting our analysis of the calibration parameters and of the achievable performance of the CryoSat interferometer over the 6 years of mission. Additionally, some further studies have been performed to assess the accuracy of the roll angle computed on ground as function of the aberration (the apparent displacement of a celestial object from its true position, caused by the relative motion of the observer and the object) correction applied to the attitude quaternions, provided by the Star Tracker mounted on-board. In fact, being the roll information crucial to obtain an accurate estimate of the angle of arrival, the data from interferometer calibration campaigns have been used to verify how the application of the aberration correction affects the roll information and, in turns, the measured angle of arrival. [1] Galin, N.; Wingham, D.J.; Cullen, R.; Fornari, M.; Smith, W.H.F.; Abdalla, S., "Calibration of the CryoSat-2 Interferometer and Measurement of Across

  20. Dynamics of neutrophil aggregation in couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime.

    PubMed Central

    Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I

    2001-01-01

    During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke

  1. Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures.

    PubMed

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Howes, Stuart; Northcote, Peter; Miller, John H; Díaz, J Fernando; Downing, Kenneth H; Nogales, Eva

    2017-03-10

    A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9-4.2Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the "seam" of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam) contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures

    DOE PAGES

    Kellogg, Elizabeth H.; Hejab, Nisreen M. A.; Howes, Stuart; ...

    2017-01-17

    A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9–4.2 Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the “seam” of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam)more » contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.« less

  3. X-ray and cryo-EM structures of inhibitor-bound cytochrome bc 1 complexes for structure-based drug discovery

    PubMed Central

    Amporndanai, Kangsa; O’Neill, Paul M.

    2018-01-01

    Cytochrome bc 1, a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome bc 1 from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome bc 1 that may be available from parasites, all efforts have been focused on homologous cytochrome bc 1 complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome bc 1 is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Å resolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes. PMID:29765610

  4. Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellogg, Elizabeth H.; Hejab, Nisreen M. A.; Howes, Stuart

    A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9–4.2 Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the “seam” of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam)more » contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.« less

  5. Structure of the full-length TRPV2 channel by cryo-EM

    NASA Astrophysics Data System (ADS)

    Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.

    2016-03-01

    Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a `minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ~5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.

  6. Structure of the full-length TRPV2 channel by cryo-EM.

    PubMed

    Huynh, Kevin W; Cohen, Matthew R; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T; Zhou, Z Hong; Moiseenkova-Bell, Vera Y

    2016-03-29

    Transient receptor potential (TRP) proteins form a superfamily Ca(2+)-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a 'minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.

  7. Cryo-Vacuum Testing of JWST's Integrated Telescope & Scientific Instrument Suite (OTIS)

    NASA Astrophysics Data System (ADS)

    Kimble, Randy; Apollo, Peter; Feinberg, Lee; Glazer, Stuart; Hanley, Jeffrey; Keski-Kuha, Ritva; Kirk, Jeffrey; Knight, J. Scott; Lambros, Scott; Lander, Juli; McGuffey, Douglas; Mehalick, Kimberly; Ohl, Raymond; Ousley, Wes; Reis, Carl; Reynolds, Paul; Begoña Vila, Maria; Waldman, Mark; Whitman, Tony

    2018-01-01

    A year ago we reported on the planning for a major test in the James Webb Space Telescope (JWST) program: cryo-vacuum testing of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The cryo-vacuum testing of that scientific heart of the JWST observatory, known as OTIS (= OTE + ISIM), has now been completed in historic chamber A at NASA’s Johnson Space Center. From July through October 2017, the flight payload was cooled to its operating temperatures, put through a comprehensive suite of optical, thermal, and operational tests, and then safely warmed back to room temperature. We report here on the execution and top-level results from this milestone event in the JWST program.

  8. A Novel Approach to Identifying Physical Markers of Cryo-Damage in Bull Spermatozoa

    PubMed Central

    Yoon, Sung-Jae; Kwon, Woo-Sung; Rahman, Md Saidur; Lee, June-Sub; Pang, Myung-Geol

    2015-01-01

    Cryopreservation is an efficient way to store spermatozoa and plays a critical role in the livestock industry as well as in clinical practice. During cryopreservation, cryo-stress causes substantial damage to spermatozoa. In present study, the effects of cryo-stress at various cryopreservation steps, such as dilution / cooling, adding cryoprtectant, and freezing were studied in spermatozoa collected from 9 individual bull testes. The motility (%), motion kinematics, capacitation status, mitochondrial activity, and viability of bovine spermatozoa at each step of the cryopreservation process were assessed using computer-assisted sperm analysis, Hoechst 33258/chlortetracycline fluorescence, rhodamine 123 staining, and hypo-osmotic swelling test, respectively. The results demonstrate that the cryopreservation steps reduced motility (%), rapid speed (%), and mitochondrial activity, whereas medium/slow speed (%), and the acrosome reaction were increased (P < 0.05). Differences (Δ) of the acrosome reaction were higher in dilution/cooling step (P < 0.05), whereas differences (Δ) of motility, rapid speed, and non-progressive motility were higher in cryoprotectant and freezing as compared to dilution/cooling (P < 0.05). On the other hand, differences (Δ) of mitochondrial activity, viability, and progressive motility were higher in freezing step (P < 0.05) while the difference (Δ) of the acrosome reaction was higher in dilution/cooling (P < 0.05). Based on these results, we propose that freezing / thawing steps are the most critical in cryopreservation and may provide a logical ground of understanding on the cryo-damage. Moreover, these sperm parameters might be used as physical markers of sperm cryo-damage. PMID:25938413

  9. Phase transition of AISI type 304L stainless steel induced by severe plastic deformation via cryo-rolling

    NASA Astrophysics Data System (ADS)

    Shit, Gopinath; Bhaskar, Pragna; Ningshen, S.; Dasgupta, A.; Mudali, U. Kamachi; Bhaduri, A. Kumar

    2017-05-01

    The phase transition induced by Severe Plastic Deformation (SPD) was confirmed in metastable AISI type 304L austenitic stainless steel (SS). SPD via cryo-rolling in liquid nitrogen (L-N2) temperature is the adopted route for correlating the phase transition and corrosion resistance. The thickness of the annealed AISI type 304L SS at 1050°C sheet was reduced step by step from 15% to 50% of its initial thickness. The phase changes and phase transformation are qualitatively analyzed by X-Ray Diffraction (XRD) method. During the process, the XRD of each Cryo-Rolled and annealed sample was analyzed and different phases and phase transitions are measured. The investigated AISI type 304L SS by SPD reveals a microstructure of γ-austenite; α'-marternsite and ɛ-martensite formation depending on the percentage of cryo-rolling. The Vickers hardness (HV) of the samples is also measured. The corrosion rate of the annealed sheet and cryo rolled sample was estimated in boiling nitric acid as per ASTM A-262 practice-C test.

  10. The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delruelle, N.; Leclercq, Y.; Pirotte, O.

    2014-01-29

    The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the completemore » superconducting linac.« less

  11. Vector boson fusion in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  12. Elve Doublets: The Ionospheric Fingerprints of Compact Intracloud Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Marshall, R. A.; Pasko, V. P.

    2015-12-01

    Compact intracloud discharges (CIDs) persist to date as one of the most mysterious lightning manifestations. CIDs are known to be the strongest natural sources of radio-frequency radiation on Earth. At VHF frequencies, approximately above 30 MHz, their emitted power is ten times stronger than that of other lightning processes. The well-known strength of CIDs in VHF contrasts with the lack of substantial optical measurements. CID's VLF/LF electric field change waveforms resemble one full cycle of a distorted sine function, with the first half-cycle being (a few times) larger-amplitude and shorter-duration than the second. For this reason CIDs have been dubbed narrow bipolar events (NBEs). NBE waveshapes are strikingly similar to the largest initial breakdown pulses (IBPs) that occur during the earlier stages of a conventional lightning flash, called classic IBPs. The similarity between classic IBP and NBE far-field waveforms, combined with the fact that positive-polarity NBEs frequently appear as the first event in an otherwise regular positive intracloud discharge, may be indicative that the source of these two E-field pulse types share the same physical mechanism inside thunderclouds [da Silva and Pasko, JGR, 120, 4989-5009, 2015]. In this presentation, we introduce a novel way to investigate CIDs. We show evidence that CIDs can produce an unique ionospheric signature, named "elve doublets". These signatures are characterized by a pair of elves separated in time by 80-160 microseconds. Our analysis combines fast photometric elve data, equivalent-transmission-line models to describe the dynamics of CID source currents, and FDTD modeling of electromagnetic wave propagation in the Earth-ionosphere waveguide accounting for its nonlinear interaction with the lower ionosphere [Marshall et al., GRL, 42, 2015, doi:10.1002/2015GL064862]. We show that typical (negative-polarity) CID altitudes, between 14-22 km, explain the time delay observed in elve doublets, where the

  13. Cryo-electron Microscopy Structures of Expanded Poliovirus with VHHs Sample the Conformational Repertoire of the Expanded State

    PubMed Central

    Strauss, Mike; Schotte, Lise; Karunatilaka, Krishanthi S.; Filman, David J.

    2016-01-01

    ABSTRACT By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. IMPORTANCE When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events. PMID:27852863

  14. Cryo-electron Microscopy Structures of Expanded Poliovirus with VHHs Sample the Conformational Repertoire of the Expanded State.

    PubMed

    Strauss, Mike; Schotte, Lise; Karunatilaka, Krishanthi S; Filman, David J; Hogle, James M

    2017-02-01

    By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events. Copyright © 2017 American Society for Microbiology.

  15. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments.

    PubMed

    Castaño-Díez, Daniel; Kudryashev, Mikhail; Arheit, Marcel; Stahlberg, Henning

    2012-05-01

    Dynamo is a new software package for subtomogram averaging of cryo Electron Tomography (cryo-ET) data with three main goals: first, Dynamo allows user-transparent adaptation to a variety of high-performance computing platforms such as GPUs or CPU clusters. Second, Dynamo implements user-friendliness through GUI interfaces and scripting resources. Third, Dynamo offers user-flexibility through a plugin API. Besides the alignment and averaging procedures, Dynamo includes native tools for visualization and analysis of results and data, as well as support for third party visualization software, such as Chimera UCSF or EMAN2. As a demonstration of these functionalities, we studied bacterial flagellar motors and showed automatically detected classes with absent and present C-rings. Subtomogram averaging is a common task in current cryo-ET pipelines, which requires extensive computational resources and follows a well-established workflow. However, due to the data diversity, many existing packages offer slight variations of the same algorithm to improve results. One of the main purposes behind Dynamo is to provide explicit tools to allow the user the insertion of custom designed procedures - or plugins - to replace or complement the native algorithms in the different steps of the processing pipeline for subtomogram averaging without the burden of handling parallelization. Custom scripts that implement new approaches devised by the user are integrated into the Dynamo data management system, so that they can be controlled by the GUI or the scripting capacities. Dynamo executables do not require licenses for third party commercial software. Sources, executables and documentation are freely distributed on http://www.dynamo-em.org. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. CryoSat SAR/SARin Level1b products: assessment of BaselineC and improvements towards BaselineD

    NASA Astrophysics Data System (ADS)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline C, was released in operation in April 2015 and the second CryoSat reprocessing campaign was jointly initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also of some specific configurations for the calibration corrections. In particular, the CryoSat Level1b BaselineC products generated in the framework of the second reprocessing campaign include refined information for what concerns the mispointing angles and the calibration corrections. This poster will thus detail thus the evolutions that are currently planned for the CryoSat BaselineD SAR/SARin Level1b products and the corresponding quality improvements that are expected.

  17. Bsrightarrowtau+tau- decay in the general two Higgs doublet

    NASA Astrophysics Data System (ADS)

    Iltan, Erhan Onur; Turan, Gursevil

    2002-11-01

    We study the exclusive decay Bsrightarrowtau+tau- in the general two Higgs doublet model. We analyse the dependencies of the branching ratio on the model parameters, including the leading order QCD corrections. We found that there is an enhancement in the branching ratio, especially for rtb = bar xiN,ttU/bar xiN,bbD > 1 case. Further, the neutral Higgs effects are detectable for large values of the parameter bar xiN,tautauD.

  18. Light charged Higgs boson scenario in 3-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Akeroyd, A. G.; Moretti, Stefano; Yagyu, Kei; Yildirim, Emine

    2017-08-01

    The constraints from the measurements of the B → Xsγ decay rate on the parameter space of 3-Higgs Doublet Models (3HDMs), where all the doublets have nonzero vacuum expectation values, are studied at the next-to-leading order in QCD. In order to naturally avoid the presence of flavour changing neutral currents at the tree level, we impose two softly-broken discrete Z2 symmetries. This gives rise to five independent types of 3HDMs that differ in their Yukawa couplings. We show that in all these 3HDMs (including the case of type-II-like Yukawa interactions) both masses of the two charged Higgs bosons mH1± and mH2± can be smaller than the top mass mt while complying with the constraints from B → Xsγ. As an interesting phenomenological consequence, the branching ratios of the charged Higgs bosons decay into the cb final states can be as large as 80% when their masses are taken to be below mt in two of the five 3HDMs (named as Type-Y and Type-Z). This light charged Higgs boson scenario provides a hallmark 3HDM signature that cannot be realised in Z2 symmetric 2-Higgs doublet models. We find that in the Type-Y and Type-Z 3HDMs the scenario with 90GeV < mH1±, mH2± < mt is ruled out by the direct searches at the LHC, but in the Type-Y 3HDM 80GeV < mH1± < 90GeV and 90GeV < mH2± < mt is allowed by B → Xsγ and direct searches at LEP2, Tevatron and LHC due to the reduced sensitivity of these searches to the degenerate case mH1±≈ mW±. The cases where only one or both charged Higgs bosons are above the top quark mass are also naturally allowed in the both Type-Y and Type-Z 3HDMs.

  19. Photonic generation of ultra-wide-band doublet pulse through monolithic integration of tapered directional coupler and quantum well waveguide.

    PubMed

    Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2012-10-22

    We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

  20. The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis

    NASA Astrophysics Data System (ADS)

    Eiteneuer, Benedikt; Goudelis, Andreas; Heisig, Jan

    2017-09-01

    We perform a global fit within the inert doublet model taking into account experimental observables from colliders, direct and indirect dark matter searches and theoretical constraints. In particular, we consider recent results from searches for dark matter annihilation-induced gamma-rays in dwarf spheroidal galaxies and relax the assumption that the inert doublet model should account for the entire dark matter in the Universe. We, moreover, study in how far the model is compatible with a possible dark matter explanation of the so-called Galactic center excess. We find two distinct parameter space regions that are consistent with existing constraints and can simultaneously explain the excess: One with dark matter masses near the Higgs resonance and one around 72 GeV where dark matter annihilates predominantly into pairs of virtual electroweak gauge bosons via the four-vertex arising from the inert doublet's kinetic term. We briefly discuss future prospects to probe these scenarios.

  1. Doublet-spacing enhancement caused by {Lambda}N-{Sigma}N coupling in {sub {Lambda}L}i hypernuclear isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeya, Atsushi; Harada, Toru; Research Center for Physics and Mathematics, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530

    2011-03-15

    We theoretically investigate energy spacings of doublets in {sub {Lambda}L}i hypernuclear isotopes with A=7-10 in shell-model calculations with a {Lambda}N-{Sigma}N coupling effect. The calculated results show that the energy shifts are {Delta}{epsilon}=0.09-0.28 MeV and the {Sigma}-mixing probabilities are P{sub {Sigma}}=0.10%-0.34% in {Lambda} ground states for the isotopes because of the {Lambda}N-{Sigma}N coupling in the first-order perturbation. It is found that the energy spacing of the doublet is enhanced as a neutron number N increases; the contribution of the {Lambda}N-{Sigma}N coupling interaction is comparable to that of the {Lambda}N interaction in the neutron-rich {Lambda} hypernuclei. The coherent mechanism of this doublet-spacingmore » enhancement is also discussed in terms of Fermi-type and Gamow-Teller-type {Lambda}N-{Sigma}N couplings.« less

  2. Ice elevation change from Swath Processing of CryoSat SARIn Mode Data

    NASA Astrophysics Data System (ADS)

    Foresta, Luca; Gourmelen, Noel; Shepherd, Andrew; Muir, Alan; Nienow, Pete

    2015-04-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice elevation, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level rise (e.g. McMillan et al., 2014). The Synthetic Interferometric Radar Altimeter (SIRAL) onboard the ESA radar altimetry CryoSat (CS) mission has collected ice elevation measurements since 2010. The corresponding SARIn mode of operation, activated over GISM areas, provides high spatial resolution in the along-track direction while resolving the angular origin of echoes (i.e. across-track). The current ESA SARIn processor calculates the elevation of the Point Of Closest Approach (POCA) within each waveform and maps of elevation change in Antarctica and Greenland have been produced using the regular CS height product (McMillan et al., 2014; Helm et al., 2014). Data from the CS-SARIn mode has also been used to produce measurements of ice elevation beyond the POCA, also known as swath elevation (Hawley et al. 2009; Gray et al., 2013; ESA-STSE CryoTop project). Here we use the swath processing approach to generate maps of ice elevation change from selected regions around the margins of the Greenland and Antarctic Ice Sheets. We discuss the impact of the swath processing on the spatial resolution and precision of the resulting ice elevation field and compare our results to current dh/dt estimates. References: ESA STSE CryoTop project - http://www.stse-cryotop.org/ Gray L., Burgess D., Copland L., Cullen R., Galin N., Hawley R. and Helm V. Interferometric swath processing of Cryosat data for glacial ice topography. The Cryosphere, 7(6):1857-1867, December 2013. Hawley R.L., Shepherd A., Cullen R., Helm V. and WIngham D.J. Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry. Geophysical Research Letters, 36(22):L22501, November 2009. Helm V., Humbert A. and Miller H. Elevation and elevation

  3. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae

    2014-05-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2

  4. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Stuart C.; Geyer, Elisabeth A.; LaFrance, Benjamin

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrationsmore » used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.« less

  5. Structure of the full-length TRPV2 channel by cryo-EM

    PubMed Central

    Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.

    2016-01-01

    Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a ‘minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2–6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels. PMID:27021073

  6. 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake.

    PubMed

    Jacob, Mathews; Blu, Thierry; Vaillant, Cedric; Maddocks, John H; Unser, Michael

    2006-01-01

    We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.

  7. CryoSat Processing Prototype, how to generate LRM like echoes with SAR data and a Comparison to DUACS SLA over high latitudes

    NASA Astrophysics Data System (ADS)

    Picot, N.; Boy, F.; Desjonqueres, J.

    2012-12-01

    Like CryoSat, Sentinel3 embarks a doppler altimeter. While there is a long experience of LRM processing, SAR nadir looking data are new and will need in depth validation. Thanks to CryoSat data, the processing of SAR data can be experienced in orbit. The continuity to current altimeter data set (based on LRM acquisitions) has also to be analysed with details. A Cryosat Processing Prototype (C2P) has been developed on CNES side to prepare the CNES SAR ocean retracking study. this prototype allows to process SAR data in order to generate LRM like echoes on ground. Those CryoSat ocean products are routinely processed on CNES side and ingested in the SALP/DUACS system. CryoSat data have proved to be very accurate and very valuable for the ocean user community in the past monthes. For example, it has allowed to largely reduce the impact of the lost of the ESA ENVISAT mission as well as the long non availability of Jason-1 data. This paper will describe the system set up in place early 2012 to feed CryoSat data in the SALP/DUACS products and will present the routine data analysis . C2P CryoSat products will be compared with DUACS SLA estimates and a specific focus will be given over high latitudes knowing that CryoSat is the oinly mission providing sea surface estimates over latitudes above 66 degrees since the lost of the ESA ENVISAT mission.

  8. Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms

    PubMed Central

    Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan

    2016-01-01

    Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046

  9. Cryo-scanning electron microscopy investigation of the Octopus Vulgaris arm structures for the design of an octopus-like arm artefact.

    PubMed

    Minnocci, Antonio; Cianchetti, Matteo; Mazzolai, Barbara; Sebastiani, Luca; Laschi, Cecilia

    2015-12-01

    Octopus vulgaris is a cephalopod of the Octopodidae family. It has four pairs of arms and two rows of suckers which perform many functions, including bending and elongation. For this reason the octopus was chosen as model to develop a new generation of soft-body robots. In order to explain some of the fine structures of the octopus arm in relation to its specific ability, we examined the external and internal structures of O. vulgaris arms in a frozen-hydrated state using cryo-scanning electron microscopy. The arms showed skin with a very complex design that is useful to elongation, and a pore pattern distribution on their surface which is functional to cutaneous oxygen uptake. The analysis of freeze-fractured frozen-hydrated arm samples allowed us to describe the developmental differences in the relative proportion of the areas of axial nerve cord, intrinsic and extrinsic musculature, in relation to the growth of the arms and of the increase in functional capability. In the suckers, we analyzed the shedding mechanisms in the outer part of the infundibulum and described the outer and inner characteristics of the denticles, showing in detail their pore system, which is fundamental for their ability to explore the environment. These results are discussed by considering their possible application in the design of new octopus-like artefacts, which will be able to take advantage of some of these ultrastructure characteristics and achieve advanced bioinspired functionalities. © 2015 Wiley Periodicals, Inc.

  10. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding.

    PubMed

    Gui, Miao; Song, Wenfei; Zhou, Haixia; Xu, Jingwei; Chen, Silian; Xiang, Ye; Wang, Xinquan

    2017-01-01

    The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 Å resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 Å resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.

  11. Photoacoustic measurement of differential broadening of the Lambda doublets in NO(X 2Pi 1/2,v = 2-0) by Ar

    NASA Technical Reports Server (NTRS)

    Pine, A. S.

    1989-01-01

    A differential broadening of the Lambda doublets in the v = 2-0 overtone band of the 2pi1/2 ground electronic state of NO in an Ar buffer gas has been observed by photoacoustic spectroscopy using a tunable color-center laser. The broadening coefficients for the f symmetry components are larger than for the e symmetry components by up to about 6 percent for J of about 16.5. This differential depends on J and vanishes at low J, implicating the anisotropy of the unpaired electron Pi orbital in the plane of rotation. The 2Pi3/2 transitions are slightly broader than the 2Pi1/2 as a result of spin-flipping collisional relaxation. The observed line shapes also exhibit collisional or Dicke narrowing due to velocity-changing collisions.

  12. Cryo-TEM of morphology and kinetics of self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Dong, Jingshan

    Cryogenic Transmission Electron Microscopy (Cryo-TEM) is applied to study various structures in solutions and suspensions from micron to nanometer scale. By vitrifying the liquid samples at different moments, sequential stages of a dynamic process can be frozen and the structures occurring from about 30 sec to over 10 min can be imaged. Therefore a picture of how the structures evolve with time in the liquid systems can be established. This method has been proven to be a powerful technique in studying the morphology and kinetics of self-assembled nanostructures. Such a pseudo-in-situ technique is used to "watch" the crystallization process of silver stearate (AgSt) from sodium stearate (NaSt) dispersions. AgSt crystal is produced from a reaction of NaSt and silver nitrate. The reaction, as a AgSt crystallization process, starts from AgSt micelles, which aggregate and grow into hexagonal shaped crystals of about 10 microns. If silver bromide (AgBr) grains are present, the micelles do not prefer to aggregate, but rather deposit on the surface of the AgBr crystalline grains. Variation of the carboxylate chain length does not affect the crystallization process very much, although the morphology of both the reactant and the product is changed. Nanostructure transition in sodium lauryl ether sulfate (SLES) solutions is investigated as well. A micellar network structure can form if equal molar calcium chloride is added to 3 wt% SLES solution. The network can be broken into wormlike micelle segments such as spheres and rods by sonication. After about 10 min, these broken pieces can reassemble and reform the network through wormlike micelle growth and connection. Also by using Cryo-TEM, 100-200 nm casein micelles are observed at 1 wt% casein solution, but aggregated submicelles cannot be distinguished. However, individual submicelles of about 30 nm are indeed captured in a 0.03 wt% solution. By adding acid or EDTA, the casein micelles can be disrupted into small particles

  13. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study

    PubMed Central

    Klementieva, Oxana; Werner, Stephan; Guttmann, Peter; Pratsch, Christoph; Cladera, Josep

    2017-01-01

    Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis. PMID:28376110

  14. Water activity and mobility in solutions of glycerol and small molecular weight sugars: Implication for cryo- and lyopreservation

    NASA Astrophysics Data System (ADS)

    He, Xiaoming; Fowler, Alex; Toner, Mehmet

    2006-10-01

    In this study, the free volume models, originally developed for large molecular weight polymer-solvent systems, were used to study the water activity and mobility in solutions of four small molecular weight cryo-/lyoprotectants, viz., glycerol, a monosaccharide (fructose), and two disaccharides (sucrose and trehalose). The free volume model parameters were determined by fitting the models to available experimental data using a nonlinear optimization procedure. It was found that free volume models could accurately predict the available experimental data, which suggests that the free volume models might be generally applicable to aqueous solutions of small molecular weight cryo-/lyoprotectants. Furthermore, several models for estimating the mutual diffusion coefficient were tested using available experimental data for aqueous solutions of glycerol and a better method to estimate the mutual diffusion coefficient was proposed. Free volume models were used to predict and analyze the water activity and mobility in solutions of four cryo-/lyoprotectants under conditions frequently encountered in cryo-/lyopreservation applications. It was found that the water mobility in the glassy state of the above four solutions is essentially negligible in the case of cryopreservation with storage temperature lower than -110°C. However, the water mobility in a glass at higher temperature (>-80°C) may be significant. As a result, a subcooling of up to 50°C may be necessary for the long-term cryo-/lyopreservation of biomaterials depending on the water content and the type of cryo-/lyoprotectants. It was further shown that trehalose might be the best of the four protectants studied for lyopreservation (water mass fraction ⩽0.1) when the storage temperature is above the room temperature. The results from this study might be useful for the development of more effective protocols for both cryopreservation and lyopreservation of living cells and other biomaterials.

  15. CryoSat: ready to launch (again)

    NASA Astrophysics Data System (ADS)

    Francis, R.; Wingham, D.; Cullen, R.

    2009-12-01

    Over the last ten years the relationship between climate change and the cryosphere has become increasingly important. Evidence of change in the polar regions is widespread, and the subject of public discussion. During this same ten years ESA has been preparing its CryoSat mission, specifically designed to provide measurements to determine the overall change in the mass balance of all of the ice caps and of change in the volume of sea-ice (rather than simply its extent). In fact the mission was ready for launch in October 2005, but a failure in the launch vehicle led to a loss of the satellite some 6 minutes after launch. The determination to rebuild the satellite and complete the mission was widespread in the relevant scientific, industrial and political entities, and the decision to redirect financial resources to the rebuild was sealed with a scientific report confirming that the mission was even more important in 2005 than at its original selection in 1999. The evolution of the cryosphere since then has emphasised that conclusion. In order to make a meaningful measurement of the secular change of the surface legation of ice caps and the thickness of sea-ice, the accuracy required has been specified as about half of the variation expected due to natural variability, over reasonable scales for the surfaces concerned. The selected technique is radar altimetry. Previous altimeter missions have pioneered the method: the CryoSat instrument has been modified to provide the enhanced capabilities needed to significantly extend the spatial coverage of these earlier missions. Thus the radar includes a synthetic aperture mode which enables the along-track resolution to be improved to about 250 m. This will will allow detection of leads in sea-ice which are narrower than those detected hitherto, so that operation deeper into pack-ice can be achieved with a consequent reduction in errors due to omission. Altimetry over the steep edges of ice caps is hampered by the irregular

  16. The Structure of Barmah Forest Virus as Revealed by Cryo-Electron Microscopy at a 6-Angstrom Resolution Has Detailed Transmembrane Protein Architecture and Interactions ▿ †

    PubMed Central

    Kostyuchenko, Victor A.; Jakana, Joanita; Liu, Xiangan; Haddow, Andrew D.; Aung, Myint; Weaver, Scott C.; Chiu, Wah; Lok, Shee-Mei

    2011-01-01

    Barmah Forest virus (BFV) is a mosquito-borne alphavirus that infects humans. A 6-Å-resolution cryo-electron microscopy three-dimensional structure of BFV exhibits a typical alphavirus organization, with RNA-containing nucleocapsid surrounded by a bilipid membrane anchored with the surface proteins E1 and E2. The map allows details of the transmembrane regions of E1 and E2 to be seen. The C-terminal end of the E2 transmembrane helix binds to the capsid protein. Following the E2 transmembrane helix, a short α-helical endodomain lies on the inner surface of the lipid envelope. The E2 endodomain interacts with E1 transmembrane helix from a neighboring E1-E2 trimeric spike, thereby acting as a spacer and a linker between spikes. In agreement with previous mutagenesis studies, the endodomain plays an important role in recruiting other E1-E2 spikes to the budding site during virus assembly. The E2 endodomain may thus serve as a target for antiviral drug design. PMID:21752915

  17. Ablation of atrial-ventricular junction tissues via the coronary sinus using cryo balloon technology.

    PubMed

    Avitall, Boaz; Lafontaine, Daniel; Rozmus, Grzegorz; Adoni, Naveed; Dehnee, Abed; Urbonas, Arvydas; Le, Khoi M; Aleksonis, Dinas

    2005-04-01

    The coronary sinus (CS) can provide access to targets across and within the atrioventricular (AV) junction. In 12 dogs (32 +/- 3 Kg), cryo balloons (10-19 mm) were applied to regions of the AV junction for 3 minutes at a temperature of -75.9( composite function) +/- 9(composite function)C (ranging -57 to -83). Electrical activity and pacing within the CS were assessed pre and post ablation and at least 3 months later in 9 dogs. In the 3 other dogs, hearts were examined immediately after cryo ablation. CS and circumflex angiography was performed pre and post ablation. The hearts, CS, and Cx were then examined for structural injury. The AV junction was sectioned and the hearts were immersed in Tetrazolium, and the lesions were inspected for transmurality across the AV groove. In 3/12 dogs the distal CS cryo lesions resulted in inferior ST segment depression that resolved within 5 minutes. There was no arrhythmia or hemodynamic changes. No CS electrical activity was noted post ablation. The pacing threshold increased from 2 +/- 2.3 mA to 7.4 +/- 3.6 mA (p < 0.001). Pathological examination of 3 acute hearts revealed hematomas. There was no pericardial effusion. No evidence of stenosis or thrombosis was seen within the CS and the circumflex artery. After 3 months of recovery, transmural lesions across the AV groove were present in all of the targeted AV regions. Intra-CS cryo balloon ablation is safe and can potentially replace endocardial RF ablation targeting the AV junction and the CS muscular sleeve.

  18. The splitting and oscillator strengths for the 2S/2/S-2p/2/P/0/ doublet in lithium-like sulfur. [during Skylab observed solar flares

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Forester, J. P.; Elston, S. B.; Griffin, P. M.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Sellin, I. A.; Groeneveld, K.-O.

    1977-01-01

    The beam-foil technique has been used to study the 2S(2)S-2p(2)P(0) doublet in S XIV. The results confirm the doublet splitting measured aboard Skylab during solar flare events. In addition, the oscillator strengths for the resonance transitions comprising this doublet have been measured and found to agree well with recent relativistic f-value calculations.

  19. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid.

    PubMed

    Gutsche, Irina; Desfosses, Ambroise; Effantin, Grégory; Ling, Wai Li; Haupt, Melina; Ruigrok, Rob W H; Sachse, Carsten; Schoehn, Guy

    2015-05-08

    Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design. Copyright © 2015, American Association for the Advancement of Science.

  20. Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand

    NASA Astrophysics Data System (ADS)

    Bippus, Gabriele; Nagler, Thomas

    2013-04-01

    The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these

  1. Cryo-EM structure of the lysosomal Ca2+-permeable channel TRPML3

    PubMed Central

    Hirschi, Marscha; Herzik, Mark A.; Wie, Jinhong; Suo, Yang; Borschel, William F.; Ren, Dejian; Lander, Gabriel C.; Lee, Seok-Yong

    2017-01-01

    Summary The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signaling. The mucolipin transient receptor potential (TRPML) channel family belongs to the TRP superfamily1,2 and is composed of three members, TRPML1-3. TRPMLs are the major Ca2+-permeable channels on late endosomes and lysosomes (LEL). They regulate organelle Ca2+ releases important for various physiological processes, including organelle trafficking and fusion3. Loss-of-function mutations in the TRPML1 gene cause the neurodegenerative lysosomal storage disorder mucolipidosis IV (ML-IV), and a gain-of-function mutation in TRPML3 (Ala419Pro) gives rise to the Varitint-Waddler (Va) mouse phenotype4–6. Notably, TRPMLs are activated by the low-abundance and LEL-enriched signaling lipid PI(3,5)P2, while other phosphoinositides such as PI(4,5)P2, enriched in plasma membranes, inhibit TRPMLs7,8. Conserved basic residues at the N-terminus of the channels are important for PI(3,5)P2 activation and PI(4,5)P2 inhibition8. However, due to a lack of structural information, the mechanism by which TRPML channels recognize PI(3,5)P2 and increase its Ca2+ conductance remains elusive. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3, at an average resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain we term the “mucolipin domain” (MLD). Combined with functional studies, we suggest that the MLD is responsible for PI(3,5)P2 binding and subsequent channel activation, and that it acts as a ‘gating pulley’ for lipid-dependent TRPML gating. PMID:29019979

  2. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

    PubMed Central

    Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.

    2010-01-01

    Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754

  3. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  4. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    PubMed

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  6. Characteristics of the new AtriCure cryoFORM® cryoablation probe for the surgical treatment of cardiac arrhythmias.

    PubMed

    Schroeter, Thomas; Misfeld, Martin

    2017-04-01

    Atrial fibrillation has a significant impact on patient mortality and morbidity. In particular, stroke is a frequent complication associated with atrial fibrillation. In recent years, various treatment options have been developed that are based on the elimination of atypical electrically active atrial areas. Areas covered: This manuscript presents a new cryoablation probe from AtriCure Inc. In addition to describing the characteristics of the probe, we also discuss atrial fibrillation and its surgical therapy options as well as the basics of cryosurgery. The cryoFORM® cryoablation probe is an ablation system developed for cardiothoracic surgeons that utilizes nitrous oxide (N 2 O) to create continuous transmural lesions that block propagation of atrial activation. The main features of the probe are an excellent working capacity due to the use of N 2 O, high flexibility, and, in combination with the cryoICE® Box V6, an active defrost mode for quick detachment. Expert commentary: The cryoFORM® ablation probe is a new device for the treatment of atrial fibrillation using N 2 O as an energy source. The probe is made from stainless steel and has a corrugated surface, a design that provides a higher flexibility than the cryoICE probe.

  7. Re-derived overclosure bound for the inert doublet model

    NASA Astrophysics Data System (ADS)

    Biondini, S.; Laine, M.

    2017-08-01

    We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ˜ M/20 . . . M/104 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1 . . . 18%, depending on quartic couplings and mass splittings.

  8. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  9. The Higgs vacuum uplifted: revisiting the electroweak phase transition with a second Higgs doublet

    NASA Astrophysics Data System (ADS)

    Dorsch, G. C.; Huber, S. J.; Mimasu, K.; No, J. M.

    2017-12-01

    The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doublet-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars H 0, A 0 and H ± that signal such a phase transition, showing that the decay A 0 → H 0 Z at the LHC and a sizable deviation in the Higgs self-coupling λ hhh from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.

  10. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM.

    PubMed

    Rochette, Christophe N; Crassous, Jérôme J; Drechsler, Markus; Gaboriaud, Fabien; Eloy, Marie; de Gaudemaris, Benoît; Duval, Jérôme F L

    2013-11-26

    The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.

  11. Partial purification and functional properties of an endoprotease from bovine neurosecretory granules cleaving proocytocin/neurophysin peptides at the basic amino acid doublet.

    PubMed

    Clamagirand, C; Creminon, C; Fahy, C; Boussetta, H; Cohen, P

    1987-09-22

    An enriched preparation of neurosecretory granules from bovine pituitary neural lobes was used as a source of processing enzymes possibly involved in the cleavage of the proocytocin/neurophysin precursor. A synthetic eicosapeptide reproducing the entire (1-20) sequence of the NH2-terminal domain of the bovine ocytocin/neurophysin precursor was used as a substrate to monitor an endoprotease activity cleaving at the Lys11-Arg12 doublet. The 58-kDa endoprotease detected in the lysate of neurohypophyseal granules produced a single cleavage, after the doublet, at the Arg12-Ala13 peptide bond. This endoprotease with pHi 6.9 and 7.2 exhibits maximal activity at pH around neutrality (7.0) and was strongly inhibited by divalent cation chelating agents [ethylenediaminetetraacetic acid and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',-N'-tetraacetic acid] and to some extent by p-(chloromercuri)benzoate and p-(chloromercuri)benzenesulfonic acid, while phenylmethanesulfonyl fluoride and pepstatin were not active. This endoprotease action was sensitive to any modification of the substrate at either basic amino acid of the doublet since replacement of either L-Lys11 or L-Arg12 by D-Lys or D-Arg and by L-Nle abolished the cleavage reaction. In contrast, reversal of the polarity of the doublet in [Arg11,Lys12]proocytocin/neurophysin(1-20) had no effect on the mode of endoproteolytic cleavage as well as modifications of Gly10 (replaced by Ala10). It is concluded that the selectivity of this endoprotease, which may be involved in the primary event occurring in proocytocin/neurophysin processing, is strictly dependent upon the integrity of the basic doublet but that other parameters determined by the amino acid sequence around this doublet may play an important role.

  12. Counter-regulation by insulin and isoprenaline of a prominent fat-associated phosphoprotein doublet in rat adipocytes.

    PubMed

    Mooney, R A; Bordwell, K L

    1991-03-01

    1. In the adipocyte, phosphorylation/dephosphorylation of regulatory proteins is a common mechanism of metabolic regulation. We have observed a very prominent phosphoprotein doublet of 61 kDa and 63 kDa in rat adipocytes that is markedly responsive to hormones. The 63 kDa band was the predominant phosphoprotein in the cell in response to 0.1 microM-isoprenaline, whereas the 61 kDa band was nearly absent. Insulin alone did not alter 32P incorporation into the doublet, but partially counteracted the effects of isoprenaline, decreasing label in the 63 kDa band by as much as 50% and resulting in the reappearance of the 61 kDa band. 2. Subcellular fractionation demonstrated that both phosphoprotein bands were fat-associated. Neither insulin nor isoprenaline altered this localization. Peptide maps (one-dimensional) of the 61/63 kDa bands demonstrated close sequence similarity. Amino acid analysis revealed the presence of phosphoserine and phosphothreonine. The latter was more prominent in the 61 kDa band. Isoprenaline caused an absolute increase in both phosphoamino acids. 3. Permeabilization of 32P-labelled isoprenaline-treated cells with digitonin initiated rapid dephosphorylation of the 63 kDa band, with reappearance of the 61 kDa band. Insulin increased the rate of dephosphorylation by 2-3-fold when present with isoprenaline before permeabilization. 4. In permeabilized adipocytes, cyclic AMP (1 microM-1 mM) increased phosphorylation of the 61/63 kDa doublet by 4-10-fold in the presence of [gamma-32P]ATP, but insulin had no effect. 5. We conclude that this prominent phosphoprotein, migrating as a 61/63 kDa doublet, is coupled to the cyclic AMP-dependent protein kinase and is associated with an insulin-stimulated phosphoprotein phosphatase activity. This fat-associated phosphoprotein, which is under counter-regulatory hormonal control, may play a role in hormone-dependent lipid metabolism.

  13. Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.

    2014-12-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  14. A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM.

    PubMed

    Feng, Xiangsong; Fu, Ziao; Kaledhonkar, Sandip; Jia, Yuan; Shah, Binita; Jin, Amy; Liu, Zheng; Sun, Ming; Chen, Bo; Grassucci, Robert A; Ren, Yukun; Jiang, Hongyuan; Frank, Joachim; Lin, Qiao

    2017-04-04

    We describe a spraying-plunging method for preparing cryoelectron microscopy (cryo-EM) grids with vitreous ice of controllable, highly consistent thickness using a microfluidic device. The new polydimethylsiloxane (PDMS)-based sprayer was tested with apoferritin. We demonstrate that the structure can be solved to high resolution with this method of sample preparation. Besides replacing the conventional pipetting-blotting-plunging method, one of many potential applications of the new sprayer is in time-resolved cryo-EM, as part of a PDMS-based microfluidic reaction channel to study short-lived intermediates on the timescale of 10-1,000 ms. Published by Elsevier Ltd.

  15. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  16. Arctic and Antarctic sea-ice thickness from CryoSat and Envisat radar altimetry

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Rinne, E. J.; Paul, S.; Ricker, R.; Skourup, H.; Kern, S.; Sandven, S.

    2017-12-01

    One objective of the ESA Climate Change Initiative (CCI) on Sea Ice is the generation of a climate data record of sea-ice thickness from satellite radar altimetry in both hemispheres. We report on the results of the second phase of the CCI project, which are based on the15-year (2002-2017) monthly data record from Envisat and CryoSat-2 radar altimeter data. The data records needs to maintain consistency in the freeboard retrieval, freeboard to thickness conversion and uncertainty estimation for the full observational period. The main challenge has been to maintain consistency in the sea-ice freeboard retrieval due to the different radar altimeter concepts and footprints between Envisat and CryoSat-2. We have developed a novel empirical algorithm for both missions to minimize inter-mission biases for surface type classification as well as freeboard retrieval based on CryoSat reference data for the overlap period from November 2010 to March 2012. The parametrization takes differences between sea-ice surface properties in both hemisphere and the seasonal cycle into account. We report on the changes of sea-ice thickness in the Arctic winter seasons since 2002 and the comparison to independent freeboard and thickness observations. Far less validation data exists for the southern hemisphere and we provide an overview of changes and the expected skill of Antarctic sea ice thickness of the full seasonal cycle.

  17. Second-line single-agent versus doublet chemotherapy as salvage therapy for metastatic urothelial cancer: a systematic review and meta-analysis.

    PubMed

    Raggi, D; Miceli, R; Sonpavde, G; Giannatempo, P; Mariani, L; Galsky, M D; Bellmunt, J; Necchi, A

    2016-01-01

    The efficacy and safety of a combination of chemotherapeutic agent compared with single-agent chemotherapy in the second-line setting of advanced urothelial carcinoma (UC) are unclear. We aimed to study the survival impact of single-agent compared with doublet chemotherapy as second-line chemotherapy of advanced UC. Literature was searched for studies including single-agent or doublet chemotherapy in the second-line setting after platinum-based chemotherapy. Random-effects models were used to pool trial-level data according to treatment arm, including median progression-free survival (PFS), overall survival (OS), objective response rate (ORR) probability, and grade 3-4 toxicity. Univariable and multivariable analyses, including sensitivity analyses, were carried out, adjusting for the percent of patients with ECOG performance status ≥1 and hepatic metastases. Forty-six arms of trials including 1910 patients were selected: 22 arms with single agent (n = 1202) and 24 arms with doublets (n = 708). The pooled ORR with single agents was 14.2% [95% confidence interval (CI) 11.1-17.9] versus 31.9% [95% CI 27.3-36.9] with doublet chemotherapy. Pooled median PFS was 2.69 and 4.05 months, respectively. The pooled median OS was 6.98 and 8.50 months, respectively. Multivariably, the odds ratio for ORR and the pooled median difference of PFS were statistically significant (P < 0.001 and P = 0.002) whereas the median difference in OS was not (P = 0.284). When including single-agent vinflunine or taxanes only, differences were significant only for ORR (P < 0.001) favoring doublet chemotherapy. No statistically significant differences in grade 3-4 toxicity were seen between the two groups. Despite significant improvements in ORR and PFS, doublet regimens did not extend OS compared with single agents for the second-line chemotherapy of UC. Prospective trials are necessary to elucidate the role of combination chemotherapy, with or without targeted agents, in the salvage setting

  18. CryoSat Plus for Oceans - analysis of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Naeije, Marc; Gommenginger, Christine; Moreau, Thomas; Cotton, David; Benveniste, Jerome; Dinardo Dinardo, Salvatore

    2013-04-01

    The CryoSat Plus for Oceans (CP4O) project is an ESA initiative carried out by a European wide consortium of altimetry experts. It aims to build a sound scientific basis for new scientific and operational applications of data coming from CryoSat-2 over the open ocean, polar ocean, coastal seas and for seafloor mapping. It also generates and evaluates new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and extend their application beyond the initial mission objectives. It therefore also acts as a preparation for the upcoming Sentinel and Jason SAR enabled altimetry missions. In this paper we address the review of the CryoSat state-of-the-art, relevant current initiatives, algorithms, models and Earth Observation based products and datasets that are relevant in the Cryosat+ ocean theme. Compared to conventional (pulse-limited) altimeter missions, Cryosat-2 is not a dedicated platform for ocean research: typically the microwave radiometer (MWR) for wet tropospheric corrections is lacking, as is the direct measurement of the first order ionospheric effect by means of a dual-frequency altimeter. Also the orbit of Cryosat-2 has a rather long repetition period, unsuited for collinear tracks analyses. These three particular features have been studied already in the HERACLES project on the eve of the first CryoSat launch. We revisit the outcome of this study, update to current understanding and perception, and ultimately develop what was, is and will be proposed in these problem areas. Clearly, we question the standard ionosphere corrections, the wet troposphere corrections and the accuracy of the mean sea surface (MSS) underlying the accuracy of derived sea level anomalies. In addition, Cryosat-2 provides the first innovative altimeter with SAR and SARIn modes. This raises the direct problem of "how to process these data", simply because this has not been done before. Compared to pulse-limited altimetry it

  19. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  20. Cryo-EM structure of the gasdermin A3 membrane pore.

    PubMed

    Ruan, Jianbin; Xia, Shiyu; Liu, Xing; Lieberman, Judy; Wu, Hao

    2018-05-01

    Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel β-barrel is formed by two β-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning β-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.

  1. Partially natural two Higgs doublet models

    DOE PAGES

    Draper, Patrick; Haber, Howard E.; Ruderman, Joshua T.

    2016-06-21

    It is possible that the electroweak scale is low due to the fine-tuning of microscopic parameters, which can result from selection effects. The experimental discovery of new light fundamental scalars other than the Standard Model Higgs boson would seem to disfavor this possibility, since generically such states imply parametrically worse fine-tuning with no compelling connection to selection effects. We discuss counterexamples where the Higgs boson is light because of fine-tuning, and a second scalar doublet is light because a discrete symmetry relates its mass to the mass of the Standard Model Higgs boson. Our examples require new vectorlike fermions atmore » the electroweak scale, and the models possess a rich electroweak vacuum structure. Furthermore, the mechanism that we discuss does not protect a small CP-odd Higgs mass in split or high-scale supersymmetry-breaking scenarios of the MSSM due to an incompatibility between the discrete symmetries and holomorphy.« less

  2. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps.

    PubMed

    Saha, Mitul; Morais, Marc C

    2012-12-15

    Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.

  3. Reopen parameter regions in two-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Staub, Florian

    2018-01-01

    The stability of the electroweak potential is a very important constraint for models of new physics. At the moment, it is standard for Two-Higgs doublet models (THDM), singlet or triplet extensions of the standard model to perform these checks at tree-level. However, these models are often studied in the presence of very large couplings. Therefore, it can be expected that radiative corrections to the potential are important. We study these effects at the example of the THDM type-II and find that loop corrections can revive more than 50% of the phenomenological viable points which are ruled out by the tree-level vacuum stability checks. Similar effects are expected for other extension of the standard model.

  4. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    PubMed

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  5. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.

    2014-12-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches

  6. A Toolkit For CryoSat Investigations By The ESRIN EOP-SER Altimetry Team

    NASA Astrophysics Data System (ADS)

    Dinardo, Salvatore; Bruno, Lucas; Benveniste, Jerome

    2013-12-01

    The scope of this work is to feature the new tool for the exploitation of the CryoSat data, designed and developed entirely by the Altimetry Team at ESRIN EOP-SER (Earth Observation - Exploitation, Research and Development). The tool framework is composed of two separate components: the first one handles the data collection and management, the second one is the processing toolkit. The CryoSat FBR (Full Bit Rate) data is downlinked uncompressed from the satellite, containing un-averaged individual echoes. This data is made available in the Kiruna CalVal server in a 10 day rolling archive. Daily at ESRIN all the CryoSat FBR data, in SAR and SARin Mode, are downloaded (around 30 Gigabytes) catalogued and archived in local ESRIN EOP-SER workstations. As of March 2013, the total amount of FBR data is over 9 Terabytes, with CryoSat acquisition dates spanning January 2011 to February 2013 (with some gaps). This archive was built by merging partial datasets available at ESTEC and NOAA, that have been kindly made available for EOP-SER team. The on-demand access to this low level data is restricted to expert users with validated ESA P.I. credentials. Currently the main users of the archiving functionality are the team members of the Project CP4O (STSE- CryoSat Plus for Ocean), CNES and NOAA. The second component of the service is the processing toolkit. On the EOP-SER workstations there is internally and independently developed software that is able to process the FBR data in SAR/SARin mode to generate multi-looked echoes (Level 1B) and subsequently able to re-track them in SAR and SARin mode (Level 2) over open ocean, exploiting the SAMOSA model and other internally developed models. The processing segment is used for research & development scopes, supporting the development contracts awarded confronting the deliverables to ESA, on site demonstrations/training to selected users, cross- comparison against third part products (CLS/CNES CPP Products for instance), preparation

  7. Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval

    NASA Astrophysics Data System (ADS)

    Guerreiro, Kevin; Fleury, Sara; Zakharova, Elena; Kouraev, Alexei; Rémy, Frédérique; Maisongrande, Philippe

    2017-09-01

    Over the past decade, sea-ice freeboard has been monitored with various satellite altimetric missions with the aim of producing long-term time series of ice thickness. While recent studies have demonstrated the capacity of the CryoSat-2 mission (2010-present) to provide accurate freeboard measurements, the current estimates obtained with the Envisat mission (2002-2012) still require some large improvements. In this study, we first estimate Envisat and CryoSat-2 radar freeboard by using the exact same processing algorithms. We then analyse the freeboard difference between the two estimates over the common winter periods (November 2010-April 2011 and November 2011-March 2012). The analysis of along-track data and gridded radar freeboard in conjunction with Envisat pulse-peakiness (PP) maps suggests that the discrepancy between the two sensors is related to the surface properties of sea-ice floes and to the use of a threshold retracker. Based on the relation between the Envisat pulse peakiness and the radar freeboard difference between Envisat and CryoSat-2, we produce a monthly CryoSat-2-like version of Envisat freeboard. The improved Envisat data set freeboard displays a similar spatial distribution to CryoSat-2 (RMSD = 1.5 cm) during the two ice growth seasons and for all months of the period of study. The comparison of the altimetric data sets with in situ ice draught measurements during the common flight period shows that the improved Envisat data set (RMSE = 12-28 cm) is as accurate as CryoSat-2 (RMSE = 15-21 cm) and much more accurate than the uncorrected Envisat data set (RMSE = 178-179 cm). The comparison of the improved Envisat radar freeboard data set is then extended to the rest of the Envisat mission to demonstrate the validity of PP correction from the calibration period. The good agreement between the improved Envisat data set and the in situ ice draught data set (RMSE = 13-32 cm) demonstrates the potential of the PP correction to produce accurate

  8. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  9. Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction.

    PubMed

    Bhella, David; Ralph, Adam; Yeo, Robert Paul

    2004-07-02

    Measles virus is a highly contagious virus that, despite the existence of an effective vaccine, is a major cause of illness and mortality worldwide. The virus has a negative-sense, single-stranded RNA genome that is encapsidated by the nucleocapsid protein (N) to form a helical ribonucleoprotein complex known as the nucleocapsid. This structure serves as the template for both transcription and replication. Paramyxovirus nucleocapsids are flexible structures, a trait that has hitherto hampered structural analysis even at low resolution. We have investigated the extent of this structural plasticity, using real-space methods to calculate three-dimensional reconstructions of recombinant nucleocapsids from cryo-negative stain transmission electron micrographs. Images of short sections of helix were sorted according to both pitch (the axial rise per turn) and twist (the number of subunits per turn). Our analysis indicates that there is extensive conformational flexibility within these structures, ranging in pitch from 50 Angstrom to 66 Angstrom, while twist varies from at least 13.04 to 13.44 with a greater number of helices comprising around 13.1 subunits per turn. We have also investigated the influence of the C terminus of N on helix conformation, analysing nucleocapsids after having removed this domain by trypsin digestion. We have found that this causes a marked change in both pitch and twist, such that the pitch becomes shorter, ranging from 46 Angstrom to 52 Angstrom, while more helices have a twist of approximately 13.3 subunits per turn. Our findings lead us to propose a mechanism whereby changes in conformation, influenced by interactions between viral or host proteins and the C terminus of N, might have a role in regulating the balance of transcription and replication during virus infection.

  10. CryoEM structure of the mature dengue virus at 3.5-Å resolution

    PubMed Central

    Zhang, Xiaokang; Ge, Peng; Yu, Xuekui; Brannan, Jennifer M.; Bi, Guoqiang; Zhang, Qinfen; Schein, Stan; Zhou, Z. Hong

    2012-01-01

    Regulated by pH, membrane-anchored proteins E and M play a series of roles during dengue virus maturation and membrane fusion. Our atomic model of the whole virion from cryo electron microscopy at 3.5Å resolution reveals that in the mature virus at neutral extracellular pH, the N-terminal 20-amino acid segment of M (involving three pH-sensing histidines) latches and thereby prevents spring-loaded E fusion protein from prematurely exposing its fusion peptide. This M latch was fastened at an earlier stage, during maturation at acid pH in the trans-Golgi network. At a later stage, to initiate infection in response to acid pH in the late endosome, M releases the latch and exposes the fusion peptide. Thus, M serves as a multistep chaperone of E to control the conformational changes accompanying maturation and infection. These pH-sensitive interactions could serve as targets for drug discovery. PMID:23241927

  11. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate

    NASA Astrophysics Data System (ADS)

    Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro

    2016-02-01

    The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.

  12. Spectral features of the tunneling-induced transparency and the Autler-Townes doublet and triplet in a triple quantum dot.

    PubMed

    Luo, Xiao-Qing; Li, Zeng-Zhao; Jing, Jun; Xiong, Wei; Li, Tie-Fu; Yu, Ting

    2018-02-15

    We theoretically investigate the spectral features of tunneling-induced transparency (TIT) and Autler-Townes (AT) doublet and triplet in a triple-quantum-dot system. By analyzing the eigenenergy spectrum of the system Hamiltonian, we can discriminate TIT and double TIT from AT doublet and triplet, respectively. For the resonant case, the presence of the TIT does not exhibit distinguishable anticrossing in the eigenenergy spectrum in the weak-tunneling regime, while the occurrence of double anticrossings in the strong-tunneling regime shows that the TIT evolves to the AT doublet. For the off-resonance case, the appearance of a new detuning-dependent dip in the absorption spectrum leads to double TIT behavior in the weak-tunneling regime due to no distinguished anticrossing occurring in the eigenenergy spectrum. However, in the strong-tunneling regime, a new detuning-dependent dip in the absorption spectrum results in AT triplet owing to the presence of triple anticrossings in the eigenenergy spectrum. Our results can be applied to quantum measurement and quantum-optics devices in solid systems.

  13. Using cryoEM Reconstruction and Phase Extension to Determine Crystal Structure of Bacteriophage $${\\Phi}$$6 Major Capsid Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, Daniel; Plevka, Pavel; Boura, Evzen

    2013-11-29

    Bacteriophagemore » $${\\Phi}$$6 is a double-stranded RNA virus that has been extensively studied as a model organism. In this paper we describe structure determination of $${\\Phi}$$6 major capsid protein P1. The protein crystallized in base centered orthorhombic space group C2221. Matthews’s coefficient indicated that the crystals contain from four to seven P1 subunits in the crystallographic asymmetric unit. The self-rotation function had shown presence of fivefold axes of non-crystallographic symmetry in the crystals. Thus, electron density map corresponding to a P1 pentamer was excised from a previously determined cryoEM reconstruction of the $${\\Phi}$$6 procapsid at 7 Å resolution and used as a model for molecular replacement. The phases for reflections at higher than 7 Å resolution were obtained by phase extension employing the fivefold non-crystallographic symmetry present in the crystal. Lastly, the averaged 3.6 Å-resolution electron density map was of sufficient quality to allow model building.« less

  14. Counter-regulation by insulin and isoprenaline of a prominent fat-associated phosphoprotein doublet in rat adipocytes.

    PubMed Central

    Mooney, R A; Bordwell, K L

    1991-01-01

    1. In the adipocyte, phosphorylation/dephosphorylation of regulatory proteins is a common mechanism of metabolic regulation. We have observed a very prominent phosphoprotein doublet of 61 kDa and 63 kDa in rat adipocytes that is markedly responsive to hormones. The 63 kDa band was the predominant phosphoprotein in the cell in response to 0.1 microM-isoprenaline, whereas the 61 kDa band was nearly absent. Insulin alone did not alter 32P incorporation into the doublet, but partially counteracted the effects of isoprenaline, decreasing label in the 63 kDa band by as much as 50% and resulting in the reappearance of the 61 kDa band. 2. Subcellular fractionation demonstrated that both phosphoprotein bands were fat-associated. Neither insulin nor isoprenaline altered this localization. Peptide maps (one-dimensional) of the 61/63 kDa bands demonstrated close sequence similarity. Amino acid analysis revealed the presence of phosphoserine and phosphothreonine. The latter was more prominent in the 61 kDa band. Isoprenaline caused an absolute increase in both phosphoamino acids. 3. Permeabilization of 32P-labelled isoprenaline-treated cells with digitonin initiated rapid dephosphorylation of the 63 kDa band, with reappearance of the 61 kDa band. Insulin increased the rate of dephosphorylation by 2-3-fold when present with isoprenaline before permeabilization. 4. In permeabilized adipocytes, cyclic AMP (1 microM-1 mM) increased phosphorylation of the 61/63 kDa doublet by 4-10-fold in the presence of [gamma-32P]ATP, but insulin had no effect. 5. We conclude that this prominent phosphoprotein, migrating as a 61/63 kDa doublet, is coupled to the cyclic AMP-dependent protein kinase and is associated with an insulin-stimulated phosphoprotein phosphatase activity. This fat-associated phosphoprotein, which is under counter-regulatory hormonal control, may play a role in hormone-dependent lipid metabolism. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID

  15. Unmanned Aircraft Systems For CryoSat-2 Validation

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian; Maslanik, James A.

    2011-02-01

    A suite of sensors has been assembled to map surface elevation with fine-resolution from small unmanned aircraft systems (UAS). The sensor package consists of a light detecting and ranging (LIDAR) instrument, an inertial measurement unit (IMU), a GPS module, and digital still and video cameras. It has been utilized to map ice sheet topography in Greenland and to measure sea ice freeboard and roughness in Fram Strait. Data collected during these campaigns illustrate its potential to compliment ongoing CryoSat-2 (CS-2) calibration and validation efforts.

  16. Cdc6-Induced Conformational Changes in ORC Bound to Origin DNA Revealed by Cryo-Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun J.; Li H.; Kawakami, H.

    2012-03-07

    The eukaryotic origin recognition complex (ORC) interacts with and remodels origins of DNA replication prior to initiation in S phase. Here, we report a single-particle cryo-EM-derived structure of the supramolecular assembly comprising Saccharomyces cerevisiae ORC, the replication initiation factor Cdc6, and double-stranded ARS1 origin DNA in the presence of ATP{gamma}S. The six subunits of ORC are arranged as Orc1:Orc4:Orc5:Orc2:Orc3, with Orc6 binding to Orc2. Cdc6 binding changes the conformation of ORC, in particular reorienting the Orc1 N-terminal BAH domain. Segmentation of the 3D map of ORC-Cdc6 on DNA and docking with the crystal structure of the homologous archaeal Orc1/Cdc6 proteinmore » suggest an origin DNA binding model in which the DNA tracks along the interior surface of the crescent-like ORC. Thus, ORC bends and wraps the DNA. This model is consistent with the observation that binding of a single Cdc6 extends the ORC footprint on origin DNA from both ends.« less

  17. Status of the charged Higgs boson in two Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Arbey, A.; Mahmoudi, F.; Stål, O.; Stefaniak, T.

    2018-03-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M_{H^± } ≳ 600 GeV - independent of tan β - which increases to M_{H^± } ≳ 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s).

  18. An atomic model of brome mosaic virus using direct electron detection and real-space optimization.

    PubMed

    Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah

    2014-09-04

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  19. Arctic and Antarctic Sea-Ice Freeboard and Thickness Retrievals from CryoSat-2 and EnviSat

    NASA Astrophysics Data System (ADS)

    Ricker, Robert; Hendricks, Stefan; Schwegmann, Sandra; Helm, Veit; Rinne, Eero

    2016-04-01

    The CryoSat-2 satellite is now in the 6th year of data acquisition. With its synthetic aperture radar altimeter, CryoSat-2 achieves great improvements in the along track resolution compared to previous radar altimeter missions like ERS or Envisat. The latitudinal coverage contains major parts of the Arctic marine ice fields where previous missions left a big data gap around the North Pole and especially over the multiyear ice zone north of Greenland. With this unique data set, changes in sea-ice thickness can be investigated in the context of the rapid reduction of the Arctic sea-ice cover which has been observed during the last decades. We present the current state of the CryoSat-2 Arctic sea-ice thickness retrieval that is processed at the Alfred Wegener Institute and available via seaiceportal.de (originally: meereisportal.de). Though biases in sea-ice thickness may occur due to the interpretation of waveforms, airborne and ground-based validation measurements give confidence that the retrieval algorithm enables us to capture the actual distributions of sea-ice regimes. Nevertheless, long time series of data retrievals are essential to estimate trends in sea-ice thickness and volume. Today, more than 20 years of radar altimeter data are potentially available and capable to derive sea ice thickness. However, data originate from satellites with different sensor characteristics. Therefore, it is crucial to study the consistency between single sensors to derive long and consistent time series. We present results from the tested consistency between Antarctic freeboard measurements of the radar altimeters on-board of Envisat and CryoSat-2 for their overlap period in 2011.

  20. A Review Of CryoSat-2/SIRAL Applications For The Monitoring Of River Water Levels

    NASA Astrophysics Data System (ADS)

    Bercher, Nicolas; Dinardo, Salvatore; Lucas, Bruno Manuel; Fleury, Sara; Calmant, Stephane; Femenias, Pierre; Boy, Francois; Picot, Nicolas; Benveniste, Jerome

    2013-12-01

    Regarding hydrology applications and particularly the monitoring of river water levels from space, the CryoSat- 2 ice mission has two main valuable characteristics: (1) its geodetic orbit and (2) the altimeter's SAR and SARin modes. The benefits of the geodetic orbit of the satellite have been illustrated in the frame of the ”20 years of progress in radar altimetry” symposium (Venice, 2012) [2]. It has been shown that, with such an orbit, the way river water level was monitored using conventional altimeters had to be revisited. In particular, using LRM mode only, CryoSat-2 allowed us to build spatio-temporal time series of the river water level, to map river's topography and eventually derive pseudo-time series and pseudo-profiles of the river. This paper focuses on the new ways to use altimetry for the monitoring of river water levels. SIRAL's (CryoSat-2 altimeter) SAR and SARin modes have the ability to deliver surface heights with an unprecedented along-track resolution of about 300 m. Moreover, using the SARin mode (involving the satellite's two antennas), the cross- track angle of the retracked echo is also available in routine. These two aspects of the SARin mode (high resolution and cross-track angle) make it a new tool to distinguish whether the retracked echo came from the sur- face of interest (e.g., a river) or any other reflective object nearby the surface of interest (e.g., another river section, lakes or temporary lake after flooding events or any other specular surfaces). We introduce the multiple benefits of using the intermediate multi-look matrix (also known as stack matrix), among them: (1) to refine and select among the multiple Doppler-beam waveforms before averaging and retracking them, and (2) to be able to study the surfaces response according to their view angle. Custom products processed at ESA (ESRIN) by Dinardo et al. [7], in the perspective of Sentinel-3, as well as official CryoSat-2 L1b and L2 products were used to illustrate

  1. Electromagnetic transitions in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Jia, Hui; Qi, Bin; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-12-01

    Multiple chiral doublet bands (MχD) in the 80, 130 and 190 mass regions are studied by the model of γ = 90° triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting a suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator Â, which is defined as rotation by 90° about the 3-axis with the exchange of valance proton and neutron. We found that both M1 and E2 transitions are allowed between levels with different values of A, while they are forbidden between levels with same values of A. Such a selection rule holds true for MχD in different mass regions. Supported by National Natural Science Foundation of China (11675094, 11622540, 11545011, 11405096, 11461141001, U1432119), Shandong Natural Science Foundation (ZR2014AQ012), and Young Scholars Program of Shandong University, Weihai (2015WHWLJH01)

  2. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law

    PubMed Central

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027

  3. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  5. Nitride Fuel Development Using Cryo-process Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brandi M; Windes, William E

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less

  6. Leptophobic Z' in models with multiple Higgs doublet fields

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei

    2015-05-01

    We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.

  7. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  8. Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit

    PubMed Central

    Liu, Ling; Sansing, Steven R.; Morse, Iva S.; Pritchett-Corning, Kathleen R.

    2011-01-01

    Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF. PMID:22214993

  9. Tools for model-building with cryo-EM maps

    DOE PAGES

    Terwilliger, Thomas Charles

    2018-01-01

    There are new tools available to you in Phenix for interpreting cryo-EM maps. You can automatically sharpen (or blur) a map with phenix.auto_sharpen and you can segment a map with phenix.segment_and_split_map. If you have overlapping partial models for a map, you can merge them with phenix.combine_models. If you have a protein-RNA complex and protein chains have been accidentally built in the RNA region, you can try to remove them with phenix.remove_poor_fragments. You can put these together and automatically sharpen, segment and build a map with phenix.map_to_model.

  10. Tools for model-building with cryo-EM maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas Charles

    There are new tools available to you in Phenix for interpreting cryo-EM maps. You can automatically sharpen (or blur) a map with phenix.auto_sharpen and you can segment a map with phenix.segment_and_split_map. If you have overlapping partial models for a map, you can merge them with phenix.combine_models. If you have a protein-RNA complex and protein chains have been accidentally built in the RNA region, you can try to remove them with phenix.remove_poor_fragments. You can put these together and automatically sharpen, segment and build a map with phenix.map_to_model.

  11. Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst.

    PubMed

    Sefid, Fatemeh; Ostadhosseini, S; Hosseini, S M; Ghazvini Zadegan, F; Pezhman, M; Nasr Esfahani, Mohammad Hossein

    2017-08-01

    Vitamin K2 (VK2), acts as an electron carrier in mitochondria and thereby effects reactive oxygen species (ROS) and ATP production. This study evaluates role of VK2 on in vitro developmental competency and cryo-survival of pre-implantation ovine embryos. Initially the optimal and beneficial concentration of VK2 on compaction and blastocyst formation rates was defined (0.1 μM). Subsequently, it was shown that 0.1 μM VK2, at blastocyst stage, reduces H2O2 production, increase the expression of mitochondrial related gene and improved embryos quality. We further assessed presence VK2 supplementation before and/or after vitrification of in vitro derived blastocysts. Our results reveal that presence of VK2 before and after vitrification improves rates of blastocysts re-expansion (88.19± 3.37% vs 73.68± 1.86%, P < 0.05) and hatching (49.55± 4.37% vs 32.7± 3.32%) compared to control group. These observation were consistent with reduction in H2O2 production and improved in expression of mitochondrial related genes. However, VK2 before or after vitrification, not only had no positive effect on these two parameters, but also significantly reduced these parameters. Therefore, in concordance with pervious report in bovine, we show that VK2 supplementation post genomic activation (Day 3-7) improved developmental competency of ovine in vitro derived embryos. We also showed that presence of VK2 after vitrification improves the cryo-survival of ovine embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM.

    PubMed

    Shaikh, Tanvir R; Yassin, Aymen S; Lu, Zonghuan; Barnard, David; Meng, Xing; Lu, Toh-Ming; Wagenknecht, Terence; Agrawal, Rajendra K

    2014-07-08

    Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.

  13. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF ENERGY Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Systems Integration group of...

  14. CryoSat Ice Processor: Known Processor Anomalies and Potential Future Product Evolutions

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Launched in 2010, CryoSat was designed to measure changes in polar sea ice thickness and ice sheet elevation. To reach this goal the CryoSat data products have to meet the highest performance standards and are subjected to a continual cycle of improvement achieved through upgrades to the Instrument Processing Facilities (IPFs). Following the switch to the Baseline-C Ice IPFs there are already planned evolutions for the next processing Baseline, based on recommendations from the Scientific Community, Expert Support Laboratory (ESL), Quality Control (QC) Centres and Validation campaigns. Some of the proposed evolutions, to be discussed with the scientific community, include the activation of freeboard computation in SARin mode, the potential operation of SARin mode over flat-to-slope transitory land ice areas, further tuning of the land ice retracker, the switch to NetCDF format and the resolution of anomalies arising in Baseline-C. This paper describes some of the anomalies known to affect Baseline-C in addition to potential evolutions that are planned and foreseen for Baseline-D.

  15. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  16. Tyloses and Phenolic Deposits in Xylem Vessels Impede Water Transport in Low-Lignin Transgenic Poplars: A Study by Cryo-Fluorescence Microscopy1[W][OA

    PubMed Central

    Kitin, Peter; Voelker, Steven L.; Meinzer, Frederick C.; Beeckman, Hans; Strauss, Steven H.; Lachenbruch, Barbara

    2010-01-01

    Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse. PMID:20639405

  17. Trends in the Electron Microscopy Data Bank (EMDB)

    PubMed Central

    Patwardhan, Ardan

    2017-01-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved. PMID:28580912

  18. Trends in the Electron Microscopy Data Bank (EMDB).

    PubMed

    Patwardhan, Ardan

    2017-06-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.

  19. CryoSat-2 SAR and SARin Inland Water Heights from the CRUCIAL project

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Restano, M.; Ambrózio, A.; Moore, P.; Birkinshaw, S.

    2017-12-01

    CRUCIAL was an ESA/STSE funded project investigating innovative land and inland water applications from CryoSat-2 with a forward-look component to the Sentinel-3 and Jason-CS/Sentinel-6 missions. The high along-track sampling of CryoSat-2 in its SAR and SARin modes offers the opportunity to recover high frequency signals over inland waters. A methodology was developed to process the FBR L1A Doppler beams to form a waveform product using ground cell gridding, beam steering and beam stacking. Inland water heights from CryoSat-2 are derived by using a set of empirical retrackers formulated for inland water applications. Results of the processing strategy include a comparison of waveforms and heights from the burst echoes (80 m along-track) and from multi-look waveforms (320 m along-track). SAR and SARin FBR data are available for the Amazon, Brahmaputra and Mekong for 2011-2015. FBR SAR results are compared against stage data from the nearest gauge. Heights from Tonlé Sap are also compared against Jason-2 data from the United States Department of Agriculture. A strategy to select the number of multi-looks over rivers was designed based on the rms of heights across Tonlé Sap. Comparisons include results from the empirical retrackers and from waveforms and heights obtained via ESA's Grid Processing on Demand (G-POD/SARvatore) using the SAMOSA2 retracker. Results of FBR SARin processing for the Amazon and Brahmaputra are presented including comparison of heights from the two antennae, extraction of slope of the ground surface and validation against ground data where appropriate.

  20. CryoSat Level1b SAR/SARin BaselineC: Product Format and Algorithm Improvements

    NASA Astrophysics Data System (ADS)

    Scagliola, Michele; Fornari, Marco; Di Giacinto, Andrea; Bouffard, Jerome; Féménias, Pierre; Parrinello, Tommaso

    2015-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline B, was released in operation in February 2012. A reprocessing campaign followed, in order to reprocess the data since July 2010. After more than 2 years of development, the release in operations of Baseline C is expected in the first half of 2015. BaselineC Level1b products will be distributed in an updated format, including for example the attitude information (roll, pitch and yaw) and, for SAR/SARIN, the waveform length doubled with respect to Baseline B. Moreveor, various algorithm improvements have been identified: • a datation bias of about -0.5195 ms will be corrected (SAR/SARIn) • a range bias of about 0.6730 m will be corrected (SAR/SARIn) • a roll bias of 0.1062 deg and a pitch bias of 0.0520 deg • Surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms With the operational release of BaselineC, the second CryoSat reprocessing campaign will be initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also at IPF2 level. The reprocessing campaign will cover the full Cryosat mission starting on 16th July 2010

  1. Neutrino-two-Higgs-doublet model with the inverse seesaw mechanisms

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhu, Shou-hua

    2017-09-01

    In this paper, we combine the ν -two-Higgs-doublet-model with the inverse seesaw mechanisms. In this model, the Yukawa couplings involving the sterile neutrinos and the exotic Higgs bosons can be of order 1 in the case of a large tan β . We calculated the corrections to the Z -resonance parameters Rli,Al i, and Nν, together with the l1→l2γ branching ratios and the muon anomalous g -2 . Compared with the current bounds and plans for the future colliders, we find that the corrections to the electroweak parameters can be constrained or discovered in much of the parameter space.

  2. eCryo SHIIVER Customer/Stakeholder Checkpoint Briefing

    NASA Technical Reports Server (NTRS)

    Zoeckler, Joseph G.; Guzik, Monica; Van Dresar, Neil

    2015-01-01

    Given the wide diversity of cryogenic fluid management technology that had been developed at the research level, there was a need for eCryo to prioritize and focus on a limited subset of the possibilities in order to set a practical scope. As part of the effort to determine that focus, a survey was conducted in May of 2014 to solicit opinions of members of the aerospace industry as to what they considered the most important and beneficial cryogenic technologies to be developed in the near term. The project was also directed to consider the SLS exploration upper stage (EUS) as a potential infusion target, and to focus on technology that would provide the most immediate benefit to a cryogenic system of that type.

  3. Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the W jj

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, P.; Omura, Yuji; Yu, Chaehyun

    2012-01-01

    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model (SM), which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the samemore » sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.« less

  4. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE PAGES

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...

    2016-07-11

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less

  5. An ab initio study of the low-lying doublet states of AgO and AgS

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.; Partridge, Harry; Langhoff, Stephen R.

    1990-11-01

    Spectroscopic constants ( Do, re, μ e, Te) are determined for the doublet states of AgO and AgS below ≈ 30000 cm -1. valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireferenceconfiguration interaction (MRCI) methods. The A 2Σ +-X 2Π band system is found to occur in the near infrared ( ≈ 9000 cm -1) and to be relatively weak with a radiative lifetime of 900 μs for A 2Σ + (ν = 0). The weakly bound C 2Π state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C 2Π state to the previously unobserved A 2Σ + state. Several additional transitions are identified that should be detectable experiment A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X 2Π and A 2Σ + states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated Do value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  6. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  7. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  8. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    PubMed

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  9. Modeling Cryotherapy Ice Ball Dimensions and Isotherms in a Novel Gel-based Model to Determine Optimal Cryo-needle Configurations and Settings for Potential Use in Clinical Practice

    PubMed Central

    Shah, Taimur T.; Arbel, Uri; Foss, Sonja; Zachman, Andrew; Rodney, Simon; Ahmed, Hashim U.; Arya, Manit

    2016-01-01

    Objective To gain a better understanding of ice ball dimensions and temperature isotherms relevant for cell kill when using combinations of cryo-needles we set out to answer 4 questions: (1) what type of cryo-needle? (2) how many needles? (3) best spatial configuration? and (4) correct duty cycle percentage? Methods We conducted laboratory experiments to monitor ice ball dimensions and create multi-needle planar isotherm maps for 17G and 10G cryo-needles using a novel multi-needle thermocouple fixture within gel at body temperature. We tested configurations of 1-4 cryo-needles at duty cycles of 20%-100% with 1-2.5 cm spacing. Results Analysis of various combinations shows that a central core of ≤−40°C develops at a distance of ~1 cm around the cryo-needles. Temperature increases linearly from this point to the ice ball leading edge (0°C), which is a further ≈1 cm away. Thus, the −40°C isotherm is approximately 1 cm inside the leading edge of the ice ball. The optimum distance between cryo-needles was 1.5-2 cm, at duty cycle settings of 70%-100%. At distances further apart or with lower duty cycle settings, ice balls either had a central core >−40°C or had an hourglass shape. Conclusion In answer to questions 1-3, tumor length, diameter, and shape will ultimately determine the number of needles and their configuration. However, we propose a conservative distance for cryo-needle placement between 1 and 1.5 cm should be adopted for clinical practice. In answer to question 4, using low duty cycle settings runs the risk of incomplete −40°C isotherm coverage of the tumor, and thus in routine practice we suggest that settings of 70%-100% are most appropriate. PMID:26902833

  10. Monitoring of Beachsaver Reef with Filter Blanket and Double-T Sill at Cape May Point, New Jersey, Section 227 Demonstration Site; First Year Monitoring - 2002-2003

    DTIC Science & Technology

    2005-07-01

    evaluate the functional, structural, and economic performance of the patented Beachsaver Reef prefabricated concrete submerged breakwater and the less...expensive prefabricated concrete structure called a Double-T sill. This demonstration project was developed through a cooperative effort of the U.S...patented Beachsaver Reef prefabricated concrete submerged breakwater and a less expensive, prefabricated concrete structure called a Double-T sill. Data

  11. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  12. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel

    PubMed Central

    James, Zachary M.; Borst, Andrew J.; Haitin, Yoni; Frenz, Brandon; DiMaio, Frank; Zagotta, William N.; Veesler, David

    2017-01-01

    Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies. PMID:28396445

  13. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CDmore » system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)« less

  15. Visualization of water transport into soybean nodules by Tof-SIMS cryo system.

    PubMed

    Iijima, Morio; Watanabe, Toshimasa; Yoshida, Tomoharu; Kawasaki, Michio; Kato, Toshiyuki; Yamane, Koji

    2015-04-15

    This paper examined the route of water supply into soybean nodules through the new visualization technique of time of flight secondary ion mass spectrometry (Tof-SIMS) cryo system, and obtained circumstantial evidence for the water inflow route. The maximum resolution of the Tof-SIMS imaging used by this study was 1.8 μm (defined as the three pixel step length), which allowed us to detect water movement at the cellular level. Deuterium-labeled water was supplied to soybean plants for 4h and the presence of deuterium in soybean nodules was analyzed by the Tof-SIMS cryo system. Deuterium ions were found only in the endodermis tissue surrounding the central cylinder in soybean nodules. Neither xylem vessels nor phloem complex itself did not indicate any deuterium accumulation. Deuterium-ion counts in the endodermis tissue were not changed by girdling treatment, which restricted water movement through the phloem complex. The results strongly indicated that nodule tissues did not receive water directly from the phloem complex, but received water through root cortex apoplastic pathway from the root axis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. A Protocol for the Preparation of Cryoprecipitate and Cryo-depleted Plasma for Proteomic Studies.

    PubMed

    Sparrow, Rosemary L; Simpson, Richard J; Greening, David W

    2017-01-01

    Cryoprecipitate is a concentrate of high-molecular-weight plasma proteins that precipitate when frozen plasma is slowly thawed at 1-6 °C. The concentrate contains factor VIII (antihemophilic factor), von Willebrand factor (vWF), fibrinogen, factor XIII, fibronectin, and small amounts of other plasma proteins. Clinical grade preparations of cryoprecipitate are mainly used to treat fibrinogen deficiency caused by acute bleeding or functional abnormalities of the fibrinogen protein. In the past, cryoprecipitate was used to treat von Willebrand disease and hemophilia A (factor VIII deficiency), but the availability of more highly purified coagulation factor concentrates or recombinant protein preparations has superseded the use of cryoprecipitate for these coagulopathies. Cryo-depleted plasma ("cryosupernatant") is the plasma supernatant remaining following removal of the cryoprecipitate from frozen-thawed plasma. It contains all the other plasma proteins and clotting factors present in plasma that remain soluble during cold-temperature thawing of the plasma. This protocol describes the clinical-scale preparation of cryoprecipitate and cryo-depleted plasma for proteomic studies.

  17. Precision orbit determination performance for CryoSat-2

    NASA Astrophysics Data System (ADS)

    Schrama, Ernst

    2018-01-01

    In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10 s averaged Doppler tracking pass residuals is approximately 0.39 mm/s; and the average of the laser tracking pass residuals becomes 1.42 cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25 cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of -0.15 to +0.15 mm/s.

  18. Launch and Early Orbit Operations for CryoSat-2

    NASA Astrophysics Data System (ADS)

    Mardel, Nic; Marchese, Franco

    2010-12-01

    CryoSat-2 was launched from Baikonur on 8th of April 2010 aboard a modified Dnepr ICBM, the so-called SS18 Satan. Following the ascent and separation from the launch vehicle the Flight Operations Segment (FOS) in ESOC, Darmstadt started the operations to configure the satellite into the correct mode to acquire science; switching on units, configuring software and ensuring that the satellite health and performance was as expected. This paper will describe the operations performed by the FOS during the first weeks in orbit, including the unexpected problems encountered, their implications and solutions.

  19. Electron beam analysis of particulate cometary material

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  20. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.

    PubMed

    Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang

    2018-03-22

    PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.