Science.gov

Sample records for down-regulates nr2b expression

  1. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression.

    PubMed

    Jiang, Mingjin; Chen, Yifei; Li, Chan; Peng, Qiuxian; Fang, Miao; Liu, Wei; Kang, Qunzhao; Lin, Yingbo; Yung, Ken Kin Lam; Mo, Zhixian

    2016-07-01

    Others and we have reported that rhynchophylline reverses amphetamine-induced conditioned place preference (CPP) effect which may be partly mediated by amelioration of central neurotransmitters and N-methyl-d-aspartate receptor 2B (NR2B) levels in the rat brains. The current study investigated the inhibiting effects of rhynchophylline on methamphetamine-induced (METH-induced) CPP in adult zebrafish and METH-induced locomotor activity in tyrosine hydroxylase-green fluorescent protein (TH-GFP) transgenic zebrafish larvae and attempted to confirm the hypothesis that these effects were mediated via regulation of neurotransmitters and dopaminergic and glutamatergic systems. After baseline preference test (on days 1-3), zebrafish were injected intraperitoneally METH (on days 4, 6 and 8) or the same volume of fish physiological saline (on days 5 and 7) and were immediately conditioned. Rhynchophylline was administered at 12h after injection of METH. On day 9, zebrafish were tested for METH-induced CPP. Results revealed that rhynchophylline (100mg/kg) significantly inhibited the acquisition of METH-induced CPP, reduced the content of dopamine and glutamate and down-regulated the expression of TH and NR2B in the CPP zebrafish brains. Furthermore, the influence of rhynchophylline on METH-induced locomotor activity was also observed in TH-GFP transgenic zebrafish larvae. Results showed that rhynchophylline (50mg/L) treatment led to a significant reduction on the locomotor activity and TH expression in TH-GFP transgenic zebrafish larvae. Taken together, these data indicate that the inhibition of the formation of METH dependence by rhynchophylline in zebrafish is associated with amelioration of the neurotransmitters dopamine and glutamate content and down-regulation of TH and NR2B expression. PMID:27009763

  2. Cloning, expression, and purification of a recombinant Tat-HA-NR2B9c peptide.

    PubMed

    Zhou, Hai-Hui; Zhang, Ai-Xia; Zhang, Yu; Zhu, Dong-Ya

    2012-10-01

    To design a peptide disrupting the interaction between N-methyl-d-aspartate receptors-2B (NR2B) and postsynaptic density protein-95 (PSD-95), a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide contained a fragment of the cell membrane transduction domain of the human immunodeficiency virus type1 (HIV-1) Tat, a influenza virus hemagglutinin (HA) epitope-tag, and the C-terminal 9 amino acids of NR2B (NR2B9c). We named the chimeric peptide Tat-HA-NR2B9c. The expression plasmid contained a gene fragment encoding the Tat-HA-NR2B9c was ligated to the C-terminal fragment of l-asparaginase (AnsB-C) via a unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in inclusion body in Escherichia coli under isopropyl β-d-1-thiogalactopyranoside (IPTG) and purified by washing with 2M urea, solubilizing in 4M urea, and then ethanol precipitation. The target chimeric peptide Tat-HA-NR2B9c was released from the fusion partner following acid hydrolysis and purified by isoelectric point precipitation and ultrafiltration. SDS-PAGE analysis and MALDI-TOF-MS analysis showed that the purified Tat-HA-NR2B9c was highly homogeneous. Furthermore, we investigated the effects of Tat-HA-NR2B9c on ischemia-induced cerebral injury in the rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and found that the peptide reduced infarct size and improved neurological functions. PMID:22944204

  3. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  4. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B.

    PubMed

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A; Lin, Cong L; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-05-26

    Histone methyltransferases specific for the histone H3-lysine 9 residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair, and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to <1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30 kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wild-type mice, systemic treatment with the NR2B antagonist, Ro25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol], and hippocampal small interfering RNA-mediated NR2B/Grin2b knockdown resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  5. Effects of diazoxide on Aβ1-42-induced expression of the NR2B subunit in cultured cholinergic neurons.

    PubMed

    Zhu, Jin; Fu, Qingxi; Xia, Chunfeng; Ma, Guozhao

    2015-12-01

    The accumulation of amyloid-β protein (Aβ) is significant in the pathogenesis of Alzheimer's disease. Several previous studies indicate that the NR2B‑containing N‑methyl‑D‑aspartate receptors are critically involved in the Aβ mediated disruption of neuronal function. Diazoxide (DZ), a highly selective drug capable of opening mitochondrial ATP‑sensitive potassium channels, has neuroprotective effects against neuronal cell death. However, the mechanism by which DZ protects cholinergic neurons against Aβ‑induced cytotoxicity remains to be elucidated. The present study was designed to investigate the effects of DZ pretreatment against Aβ1‑42‑induced expression of NR2B in order to gain novel insights into the neuroprotective mechanisms. Following exposure to Aβ1‑42 for 24 h, the expression of the NR2B subunit remained unchanged compared with the control group. However, a significant increase in the expression of the NR2B subunit was observed following treatment with Aβ1‑42 for 72 h (P<0.05); and the upregulation of the expression of the NR2B subunit was reversed by pretreatment with DZ (P<0.05). These results suggested that DZ may counteract Aβ1‑42‑mediated cytotoxicity by alleviating the expression of NR2B. PMID:26496862

  6. Senegenin Attenuates Hepatic Ischemia-Reperfusion Induced Cognitive Dysfunction by Increasing Hippocampal NR2B Expression in Rats

    PubMed Central

    Gu, Xiaoping; Zheng, Yaguo; Sun, Yu-e; Liang, Ying; Bo, Jinhua; Ma, Zhengliang

    2012-01-01

    Background The root of Polygala tenuifolia, a traditional Chinese medicine, has been used to improve memory and intelligence, while the underlying mechanisms remain largely unknown. In this study, we investigated the protective effects of senegenin, an component of Polygala tenuifolia root extracts, on cognitive dysfunction induced by hepatic ischemia-reperfusion. Methodology/Principal Findings Initially, we constructed a rat model of hepatic ischemia-reperfusion (HIR) and found that the memory retention ability of rats in the step-down and Y maze test was impaired after HIR, paralleled by a decrease of N-methyl-D-aspartate (NMDA) receptor NR2B subunit mRNA and protein expressions in hippocampus. Furthermore, we found that administration of senegenin by gavage attenuated HIR-induced cognitive impairment in a dose and time dependent manner, and its mechanisms might partly due to the increasing expression of NR2B in rat hippocampus. Conclusions/Significance Cognitive dysfunction induced by HIR is associated with reduction of NR2B expression. Senegenin plays a neuroprotective role in HIR via increasing NR2B expression in rat hippocampus. These findings suggest that senegenin might be a potential agent for prevention and treatment of postoperative cognitive dysfunction (POCD) or other neurodegenerative diseases. PMID:23029109

  7. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-01

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning. PMID:18706452

  8. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene.

    PubMed

    Fujita, Yosuke; Morinobu, Shigeru; Takei, Shiro; Fuchikami, Manabu; Matsumoto, Tomoya; Yamamoto, Shigeto; Yamawaki, Shigeto

    2012-05-01

    Histone acetylation, which alters the compact chromatin structure and changes the accessibility of DNA to regulatory proteins, is emerging as a fundamental mechanism for regulating gene expression. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance fear extinction. In this study, we examined whether vorinostat, an HDAC inhibitor, facilitates fear extinction, using a contextual fear conditioning (FC) paradigm, in Sprague-Dawley rats. We found that vorinostat facilitated fear extinction. Next, the levels of global acetylated histone H3 and H4 were measured by Western blotting. We also assessed the effect of vorinostat on the hippocampal levels of NMDA receptor mRNA by real-time quantitative PCR (RT-PCR) and protein by Western blotting. 2 h after vorinostat administration, the levels acetylated histones and NR2B mRNA, but not NR1 or NR2A mRNA, were elevated in the hippocampus. The NR2B protein level was elevated 4 h after vorinostat administration. Last, we investigated the levels of acetylated histones and phospho-CREB (p-CREB) binding at the promoter of the NR2B gene using the chromatin immunoprecipitation (ChIP) assay followed by RT-PCR. The ChIP assay revealed increases in the levels of acetylated histones and they were accompanied by enhanced binding of p-CREB to its binding site at the promoter of the NR2B gene 2 h after vorinostat administration. These findings suggest that vorinostat increases the expression of NR2B in the hippocampus by enhancing histone acetylation, and this process may be implicated in fear extinction. PMID:22364833

  9. Effects of L-3-n-butylphthalide on cognitive dysfunction and NR2B expression in hippocampus of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Li, Jie; Zhang, Songyun; Zhang, Lihui; Wang, Ruiying; Wang, Mian

    2015-01-01

    Diabetes mellitus is associated with rapid cognitive decline. Currently, there is no effective treatment for cognitive dysfunction induced by diabetes. L-3-n-Butylphthalide (L-NBP) is a nerve protective drug extracted from seeds of celery, which has been proved to improve learning and memory in vascular dementia animal models by improving microcirculation, protecting mitochondria and increasing long-term potentiation (LTP). NR2B, one of the subunits of N-methyl-D-aspartate receptor, has been proved to be an important factor for the formation of LTP. The study aimed to investigate the role of NR2B in cognitive dysfunction in the rats with type 1 diabetes and define the protective effects of L-NBP on cognition. A rat model of type 1 diabetes was established by a single intraperitoneal injection of streptozotocin at 60 mg/kg. Animals were randomly allocated to four groups: normal control (NC); diabetic control (DC); diabetic + low L-NBP (DL, administered L-NBP 60 mg/kg per day for 12 weeks); and diabetic + high L-NBP (DH, administered L-NBP 120 mg/kg per day, for 12 weeks). After 12 weeks, cognitive and memory changes were investigated in the Morris water maze. The expression of NR2B was assessed by real-time polymerase chain reaction, Western blotting, and immunohistochemistry. Our results indicated that the escape latency was significantly increased and the number of crossing platform was significantly decreased in DC group compared to NC group. Also, the expression of NR2B was significantly declined in DC group. However, compared to DC group, the expression of NR2B of the L-NBP-treated groups was significantly increased and the escape latency was shortened with the DH group being the most obvious. Therefore, L-NBP can improve the cognitive function by up-regulating the expression of NR2B in STZ-diabetic rats, which may provide the direction for future diabetic encephalopathy therapy. PMID:25149651

  10. Mas-Related Gene (Mrg) C Activation Attenuates Bone Cancer Pain via Modulating Gi and NR2B

    PubMed Central

    Lu, Cui’e; Lei, Yishan; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objective This study is to investigate the role of Mas-related gene (Mrg) C in the pathogenesis and treatment of bone cancer pain (BCP). Methods BCP mouse model was established by osteosarcoma cell inoculation. Pain-related behaviors were assessed with the spontaneous lifting behavior test and mechanical allodynia test. Expression levels of MrgC, Gi, and NR2B in the spinal cord were detected with Western blot analysis and immunohistochemistry. Results Pain-related behavior tests showed significantly increased spontaneous flinches (NSF) and decreased paw withdrawal mechanical threshold (PWMT) in mouse models of BCP. Western blot analysis showed that, compared with the control group and before modeling, all the expression levels of MrgC, Gi, and NR2B in the spinal cord of BCP mice were dramatically elevated, which were especially increased at day 7 after operation and thereafter, in a time-dependent manner. Moreover, the treatment of MrgC agonist BAM8-22 significantly up-regulated Gi and down-regulated NR2B expression levels, in the spinal cord of BCP mice, in a time-dependent manner. On the other hand, anti-MrgC significantly down-regulated Gi expression, while dramatically up-regulated NR2B expression, in the BCP mice. Similar results were obtained from the immunohistochemical detection. Importantly, BAM8-22 significantly attenuated the nociceptive behaviors in the BCP mice. Conclusion Our results indicated the MrgC-mediated Gi and NR2B expression alterations in the BCP mice, which might contribute to the pain hypersensitivity. These findings may provide a novel strategy for the treatment of BCP in clinic. PMID:27152740

  11. Distinct roles of NR2A and NR2B cytoplasmic tails in long term potentiation

    PubMed Central

    Foster, Kelly A.; McLaughlin, Nathan; Edbauer, Dieter; Phillips, Marnie; Bolton, Andrew; Constantine-Paton, Martha; Sheng, Morgan

    2010-01-01

    NMDA receptors (NMDARs) are critical mediators of activity-dependent synaptic plasticity, but the differential roles of NR2A- versus NR2B-containing NMDARs have been controversial. Here, we investigate the roles of NR2A and NR2B in LTP in organotypic hippocampal slice cultures using RNAi and overexpression, to complement pharmacological approaches. In young slices, when NR2B is the predominant subunit expressed, LTP is blocked by the NR2B-selective antagonist Ro25-6981. As slices mature, and NR2A expression rises, activation of NR2B receptors became no longer necessary for LTP induction. LTP was blocked, however, by RNAi knockdown of NR2B, and this was rescued by coexpression of an RNAi-resistant NR2B (NR2B*) cDNA. Interestingly, a chimeric NR2B subunit in which the C-terminal cytoplasmic tail was replaced by that of NR2A failed to rescue LTP while the reverse chimera, NR2A channel with NR2B tail, was able to restore LTP. Thus expression of NR2B with its intact cytoplasmic tail is required for LTP induction, at an age when channel activity of NR2B-NMDARs is not required for LTP. Overexpression of wildtype NR2A failed to rescue LTP in neurons transfected with NR2B-RNAi construct, despite restoring NMDA-EPSC amplitude to a similar level as NR2B*. Surprisingly, an NR2A construct lacking its entire C-terminal cytoplasmic tail regained its ability to restore LTP. Together these data suggest that the NR2B subunit plays a critical role for LTP, presumably by recruiting relevant molecules important for LTP via its cytoplasmic tail. By contrast, NR2A is not essential for LTP and its cytoplasmic tail seems to carry inhibitory factors for LTP. PMID:20164351

  12. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  13. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology

    PubMed Central

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S.; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  14. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    PubMed

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  15. Improving solubility of NR2B amino-terminal domain of N-methyl-d-aspartate receptor expressed in Escherichia coli.

    PubMed

    Ng, Fui-Mee; Soh, Wanqin; Geballe, Matthew T; Low, Chian-Ming

    2007-10-12

    The amino-terminal domains (ATDs) of N-methyl-d-aspartate (NMDA) receptors contain binding sites for modulators and may serve as potential drug targets in neurological diseases. Here, three fusion tags (6xHis-, GST-, and MBP-) were fused to the ATD of NMDA receptor NR2B subunit (ATD2B) and expressed in Escherichia coli. Each tag's ability to confer enhanced solubility to ATD2B was assessed. Soluble ATD2B was successfully obtained as a MBP fusion protein. Dynamic light scattering revealed the protein (1mg/ml) exists as monodispersed species at 25 degrees C. Functional studies using circular dichroism showed that the soluble MBP-ATD2B bound ifenprodil in a dose-dependent manner. The dissociation constants obtained for ifenprodil were similar in the absence (64nM) and presence (116nM) of saturating concentration of maltose. Moreover, the yield of soluble MBP-ATD2B is 18 times higher than the refolded 6xHis-ATD2B. We have reported a systematic comparison of three different affinity tagging strategies and identified a rapid and efficient method to obtain large amount of ATD2B recombinant protein for biochemical and structural studies. PMID:17706601

  16. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    PubMed Central

    Liaw, Wen-Jinn; Zhu, Xu-Guang; Yaster, Myron; Johns, Roger A; Gauda, Estelle B; Tao, Yuan-Xiang

    2008-01-01

    Postsynaptic density (PSD)-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR) subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT) mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence. PMID:18851757

  17. Chronic Administration of Benzo(a)pyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation

    PubMed Central

    Zhang, Wenping; Tian, Fengjie; Zheng, Jinping; Li, Senlin; Qiang, Mei

    2016-01-01

    Background Recently, an increasing number of human and animal studies have reported that exposure to benzo(a)pyrene (BaP) induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance. Methods C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg) or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B) was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus. Results Compared to controls, mice that received BaP (2.5, 6.25 mg/kg) showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions. Conclusions Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain. PMID:26901155

  18. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory.

    PubMed

    Moraga-Amaro, Rodrigo; González, Hugo; Ugalde, Valentina; Donoso-Ramos, Juan Pablo; Quintana-Donoso, Daisy; Lara, Marcelo; Morales, Bernardo; Rojas, Patricio; Pacheco, Rodrigo; Stehberg, Jimmy

    2016-04-01

    Pharmacological evidence associates type I dopamine receptors, including subtypes D1 and D5, with learning and memory. Analyses using genetic approaches have determined the relative contribution of dopamine receptor D1 (D1R) in cognitive tasks. However, the lack of drugs that can discriminate between D1R and D5R has made the pharmacological distinction between the two receptors difficult. Here, we aimed to determine the role of D5R in learning and memory. In this study we tested D5R knockout mice and wild-type littermates in a battery of behavioral tests, including memory, attention, locomotion, anxiety and motivational evaluations. Our results show that genetic deficiency of D5R significantly impairs performance in the Morris water maze paradigm, object location and object recognition memory, indicating a relevant role for D5R in spatial memory and recognition memory. Moreover, the lack of D5R resulted in decreased exploration and locomotion. In contrast, D5R deficiency had no impact on working memory, anxiety and depressive-like behavior, measured using the spontaneous alternation, open-field, tail suspension test, and forced swimming test. Electrophysiological analyses performed on hippocampal slices showed impairment in long-term-potentiation in mice lacking D5R. Further analyses at the molecular level showed that genetic deficiency of D5R results in a strong and selective reduction in the expression of the NMDA receptor subunit NR2B in the hippocampus. These findings demonstrate the relevant contribution of D5R in memory and suggest a functional interaction of D5R with hippocampal glutamatergic pathways. PMID:26714288

  19. Postsynaptic density protein 95-regulated NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in levodopa-induced dyskinesia rat models

    PubMed Central

    Ba, Maowen; Kong, Min; Ma, Guozhao

    2015-01-01

    Context Abnormality in interactions between N-methyl-d-aspartate (NMDA) receptor and its signaling molecules occurs in the lesioned striatum in Parkinson’s disease (PD) and levodopa-induced dyskinesia (LID). It was reported that Fyn-mediated NR2B tyrosine phosphorylation, can enhance NMDA receptor function. Postsynaptic density protein 95 (PSD-95), one of the synapse-associated proteins, regulates interactions between receptor and downstream-signaling molecules. In light of the relationship between PSD-95, NR2B, and Fyn kinases, does PSD-95 contribute to the overactivity of NMDA receptor function induced by dopaminergic treatment? To further prove the possibility, the effects of regulating the PSD-95 expression on the augmented NR2B tyrosine phosphorylation and on the interactions of Fyn and NR2B in LID rat models were evaluated. Methods In the present study, parkinsonian rat models were established by injecting 6-hydroxydopamine. Subsequently, valid PD rats were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily) intraperitoneally for 22 days to create LID rat models. Then, the effect of pretreatment with an intrastriatal injection of the PSD-95mRNA antisense oligonucleotides (PSD-95 ASO) on the rotational response to levodopa challenge was assessed. The effects of pretreatment with an intrastriatal injection of PSD-95 ASO on the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in the LID rat models were detected by immunoblotting and immunoprecipitation. Results Levodopa administration twice daily for 22 days to parkinsonian rats shortened the rotational duration and increased the peak turning responses. The altered rotational responses were attenuated by PSD-95 ASO pretreatment. Meanwhile, PSD-95 ASO pretreatment decreased the level of PSD-95 protein expression and reduced both the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B triggered during the levodopa administration in the

  20. Instant and Lasting Down-Regulation of NR1 Expression in the Hippocampus is Associated Temporally with Antidepressant Activity After Acute Yueju.

    PubMed

    Xia, Baomei; Zhang, Hailou; Xue, Wenda; Tao, Weiwei; Chen, Chang; Wu, Ruyan; Ren, Li; Tang, Juanjuan; Wu, Haoxin; Cai, Baochang; Doronc, Ravid; Chen, Gang

    2016-10-01

    Accumulating evidence indicated that N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of depression and implicated in therapeutic targets. NMDA antagonists, such as ketamine, displayed fast-onset and long-lasting antidepressant activity in preclinical and clinical studies. Previous studies showed that Yueju pill exerts antidepressant effects similar to ketamine. Here, we focused on investigating the association of acute and lasting antidepressant responses of Yueju with time course changes of NMDA receptor subunits NR1, NR2A, and NR2B expressions in the hippocampus, a key region regulating depression response. As a result, Yueju reduced immobility time in the forced swimming test from 30 min to 5 days post a single administration. Yueju acutely decreased NR1 and NR2B protein expression in the hippocampus, with NR2A expression unaltered. NR1 expression remained down-regulated 5 days post Yueju administration, whereas NR2B returned to normal level in 24 h. Yueju and ketamine similarly ameliorated the depression-like symptoms at least for 72 h in learned helplessness test. They both reversed the up-regulated expression of NR1 in the learned helpless mice 1 or 3 days post administration. Different from ketamine, the antidepressant effects of Yueju were not influenced by blockade of amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor. These findings served as preclinical evidence that Yueju may confer acute and long-lasting antidepressant effects by favorably modulating NMDA function in the hippocampus. PMID:26825573

  1. Activation of spinal MrgC-Gi-NR2B-nNOS signaling pathway by Mas oncogene-related gene C receptor agonist bovine adrenal medulla 8-22 attenuates bone cancer pain in mice

    PubMed Central

    Sun, Yu’e; Zhang, Juan; Lei, Yishan; Lu, Cui’e; Hou, Bailing; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objectives: In the present study, we investigate the effects of Mas oncogene-related gene (Mrg) C receptors (MrgC) on the expression and activation of spinal Gi protein, N-methyl-D-aspartate receptor subunit 2B (NR2B), and neuronal nitric oxide synthase (nNOS) in mouse model of bone cancer pain. Methods: The number of spontaneous foot lift (NSF) and paw withdrawal mechanical threshold (PWMT) were measured after inoculation of tumor cells and intrathecal injection of MrgC agonist bovine adrenal medulla 8-22 (BAM8-22) or MrgC antagonist anti-MrgC for 14 days after operation. Expression of spinal MrgC, Gi protein, NR2B and nNOS and their phosphorylated forms after inoculation was examined by immunohistochemistry and Western blotting. Double labeling was used to identify the co-localization of NR2B or nNOS with MrgC in spinal cord dorsal horn (SCDH) neurons. The effects of intrathecal injection of BAM8-22 or anti-MrgC on nociceptive behaviors and the corresponding expression of spinal MrgC, Gi protein, NR2B and nNOS were also investigated. Results: The expression of spinal MrgC, Gi protein, NR2B, and nNOS was higher in tumor-bearing mice in comparison to sham mice or normal mice. Intrathecal injection of MrgC agonist BAM8-22 significantly alleviated bone cancer pain, up-regulated MrgC and Gi protein expression, and down-regulated the expression of spinal p-NR2B, t-nNOS and p-nNOS in SCDH on day 14 after operation, whereas administration of anti-MrgC produced the opposite effect. Meanwhile, MrgC-like immunoreactivity (IR) co-localizes with NR2B-IR or nNOS-IR in SCDH neurons. Conclusions: The present study demonstrates that MrgC-activated spinal Gi-NR2B-nNOS signaling pathway plays important roles in the development of bone cancer pain. These findings may provide a novel strategy for the treatment of bone cancer pain. PMID:27158400

  2. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex.

    PubMed

    Park, Hong Geun; Yu, Hyun Sook; Park, Soyoung; Ahn, Yong Min; Kim, Yong Sik; Kim, Se Hyun

    2014-09-01

    The enzymatic activity of histone deacetylases (HDACs) leads to a histone deacetylation-mediated condensed chromatic structure, resulting in transcriptional repression, which has been implicated in the modifications of neural circuits and behaviors. Repeated treatment with electroconvulsive seizure (ECS) induces changes in histone acetylation, expression of various genes, and intrabrain cellular changes, including neurogenesis. In this study, we examined the effects of repeated ECS on the expression of class I HDACs and related changes in histone modifications and gene expression in the rat frontal cortex. Ten days of repeated ECS treatments (E10X) up-regulated HDAC2 expression at the mRNA and protein levels in the rat frontal cortex compared with sham-treated controls; this was evident in the nuclei of neuronal cells in the prefrontal, cingulate, orbital, and insular cortices. Among the known HDAC2 target genes, mRNA expression of N-methyl-d-aspartate (NMDA) receptor signaling-related genes, including early growth response-1 (Egr1), c-Fos, glutamate receptor, ionotropic, N-methyl d-aspartate 2A (Nr2a), Nr2b, neuritin1 (Nrn1), and calcium/calmodulin-dependent protein kinase II alpha (Camk2α), were decreased, and the histone acetylation of H3 and/or H4 proteins was also reduced by E10X. Chromatin immunoprecipitation analysis revealed that HDAC2 occupancy in the promoters of down-regulated genes was increased significantly. Moreover, administration of sodium butyrate, a HDAC inhibitor, during the course of E10X ameliorated the ECS-induced down-regulation of genes in the rat frontal cortex. These findings suggest that induction of HDAC2 by repeated ECS treatment could play an important role in the down-regulation of NMDA receptor signaling-related genes in the rat frontal cortex through histone modification. PMID:24606669

  3. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    SciTech Connect

    Li, Mei; Zhang, Dong-Qing; Wang, Xiang-Zhen; Xu, Tie-Jun

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Ro 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.

  4. Novel approach to probe subunit-specific contributions to N-methyl-D-aspartate (NMDA) receptor trafficking reveals a dominant role for NR2B in receptor recycling.

    PubMed

    Tang, Tina Tze-Tsang; Badger, John D; Roche, Paul A; Roche, Katherine W

    2010-07-01

    N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A-D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the alpha- and beta-chains of the human major histocompatibility complex class II molecule. We created chimeras of alpha- and beta-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A(-/-) neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes. PMID:20427279

  5. Down-regulation of EZH2 expression in myelodysplastic syndromes.

    PubMed

    Cabrero, Monica; Wei, Yue; Yang, Hui; Ganan-Gomez, Irene; Bohannan, Zach; Colla, Simona; Marchesini, Matteo; Bravo, Guillermo Montalban; Takahashi, Koichi; Bueso-Ramos, Carlos; Garcia-Manero, Guillermo

    2016-05-01

    EZH2 genetic mutations are common in myelodysplastic syndrome (MDS), which implies that this gene has a pathophysiological role in the disease. To further characterize molecular alterations of EZH2, and their potential prognostic impact in MDS, we assessed EZH2 RNA expression in primary bone marrow CD34+ cells from 78 patients. We found that 47% of patients have reduced EZH2 expression compared to normal controls. Further analyses revealed that EZH2 is significantly underexpressed in patients bearing chromosome 7 or 7q deletions (7-alt) when compared to controls, diploid patients, and patients with other cytogenetic alterations (p<0.05). In survival analysis, we found a non-significant trend toward overall survival (OS) being better among patients with EZH2 underexpression (median OS 55 vs. 36 months; p=0.71). Importantly, this trend became significant when the analysis was restricted to the subset of cases without alterations in chromosome 7 (62 vs. 36 months; p=0.033). Furthermore, our previous work has identified a spectrum of innate immune genes in MDS CD34+ cells that are deregulated via abnormal promoter histone methylation. Because EZH2 is a key regulator of histone methylation, we assessed the relationship between deregulation of these genes and EZH2 underexpression. We observed that the mRNA levels of 11 immune genes were higher in the EZH2 underexpression group and that immune gene expression was significantly higher in patients with concomitant EZH2 underexpression and KDM6B (also known as JMJD3, an H3K27 demethylase) overexpression. Taken together, these data indicate that EZH2 underexpression may have unique impact on the molecular pathogenesis and prognosis in MDS and be an important marker for patients without chromosome 7 alteration. PMID:26970171

  6. CDK14 expression is down-regulated by cigarette smoke in vivo and in vitro

    PubMed Central

    Pollack, Daniel; Xiao, Yuxuan; Shrivasatava, Vibha; Levy, Avi; Andrusier, Miriam; D’Armiento, Jeanine; Holz, Marina K.; Vigodner, Margarita

    2016-01-01

    In this study, DNA arrays have been employed to monitor gene expression patterns in testis of mice exposed to tobacco smoke for 24 weeks and compared to control animals. The results of the analysis revealed significant changes in expression of several genes that may have a role in spermatogenesis. Cdk14 was chosen for further characterization because of a suggested role in the testis and in regulation of Wnt signaling. RT-PCR analysis confirmed down regulation of Cdk14 in mice exposed to cigarette smoke (CS). Cdk14 is expressed in all testicular cells; spermatogonia- and Sertoli-derived cell lines treated with cigarette smoke extract (CSE) in vitro showed down-regulation of CDK14 mRNA and protein levels as well as down-regulation of β-catenin levels. CS-induced down-regulation of CDK14 mRNA and protein levels was also observed in several lung epithelium-derived cell lines including primary normal human bronchial epithelial cells (NHBE), suggesting that the effect is not restricted to the testis. Similar to testicular cells, CS-induced down-regulation of CDK14 in lung cells correlated with decreased levels of β-catenin, a finding suggesting impaired Wnt signaling. In the lungs, CDK14 was localized to the alveolar and bronchial epithelium. PMID:25680692

  7. Protective immunity of rAd5/NR2B vaccine against concomitant aversiveness of spontaneous neuropathic pain following spinal nerve ligation injury

    PubMed Central

    Wang, Gong-Ming; Wang, Xiao-Yan; Liu, Guang-Jie; Cheng, Kun; Wang, Hua; Guo, Shou-Gang

    2015-01-01

    Objective: Peripheral nerve injury elicits an aversive state of spontaneous neuropathic pain, and up to now, the modulation of this concomitant aversive state remains a major therapeutic challenge. NMDA receptor subunits NR2B in the rACC are critically involved in the processing of this aversive state and then a strategy targeted at the NR2B subunit might be promising for modulation of the aversive state. Thus, in the present study, using negative reinforcement animal model to reveal spontaneous pain, we investigated the effect of oral immunization with recombinant adenovirus serotype 5-mediated NR2B gene transfer (rAd5/NR2B) on the modulation of the tonic pain. Material and methods: Following oral administration of the rAd5/NR2B vaccine, NR2B-specific antibodies were induced in serum. And the humoral response was involved in the decreased expression of NR2B protein in the rACC. Results: The present study demonstrated that CPP achieved by spinal administration of clonidine in spinal nerve ligation (SNL) rats revealed the presence of aversive state of spontaneous neuropathic pain. Notably, the humoral autoimmune response blocked the CPP by spinal clonidine, suggesting the relief of the concomitant aversive of spontaneous neuropathic pain in the SNL rats. Conclusion: These data proved the feasibility of oral immunization with rAd5/NR2B for modulation of concomitant aversive of spontaneous neuropathic pain due to peripheral nerve injury. PMID:26309509

  8. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction.

    PubMed

    Leaderbrand, Katherine; Corcoran, Kevin A; Radulovic, Jelena

    2014-09-01

    Unpredictable stress is known to profoundly enhance susceptibility to fear and anxiety while reducing the ability to extinguish fear when threat is no longer present. Accordingly, partial aversive reinforcement, via random exposure to footshocks, induces fear that is resistant to extinction. Here we sought to determine the hippocampal mechanisms underlying susceptibility versus resistance to context fear extinction as a result of continuous (CR) and partial (PR) reinforcement, respectively. We focused on N-methyl-D-aspartate receptor (NMDAR) subunits 2A and B (NR2A and NR2B) as well as their downstream signaling effector, extracellular signal-regulated kinase (ERK), based on their critical role in the acquisition and extinction of fear. Pharmacological inactivation of NR2A, but not NR2B, blocked extinction after CR, whereas inactivation of NR2A, NR2B, or both subunits facilitated extinction after PR. The latter finding suggests that co-activation of NR2A and NR2B contributes to persistent fear following PR. In contrast to CR, PR increased membrane levels of ERK and NR2 subunits after the conditioning and extinction sessions, respectively. In parallel, nuclear activation of ERK was significantly reduced after the extinction session. Thus, co-activation and increased surface expression of NR2A and NR2B, possibly mediated by ERK, may cause persistent fear. These findings suggest that patients with post-traumatic stress disorder (PTSD) may benefit from antagonism of specific NR2 subunits. PMID:24055686

  9. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  10. Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Werner, Ernst R; Bahrami, Soheyl; Heller, Regine; Werner-Felmayer, Gabriele

    2002-03-22

    GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine. PMID:11799107

  11. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

    PubMed Central

    Brunner, Patrick M.; Heier, Patricia C.; Mihaly-Bison, Judit; Priglinger, Ute; Binder, Bernd R.

    2011-01-01

    VEGF165, the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro. PMID:21304107

  12. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.

    PubMed

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H; Prorok, Mary; Castellino, Francis J

    2009-08-01

    The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole-cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E(657)-I(814)) were replaced by the corresponding S2 region of NR2B (E(658)-I(815)), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M(739) of NR2B for the equivalent K(738) of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K(755) of NR2B for Y(754) of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  13. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  14. Arctiin induces cell growth inhibition through the down-regulation of cyclin D1 expression.

    PubMed

    Matsuzaki, Youichirou; Koyama, Makoto; Hitomi, Toshiaki; Yokota, Tomoya; Kawanaka, Mayumi; Nishikawa, Akiyoshi; Germain, Doris; Sakai, Toshiyuki

    2008-03-01

    Arctiin is a major lignan constituent of Arctium lappa and has anti-cancer properties in animal models. It was recently reported that arctiin induces growth inhibition in human prostate cancer PC-3 cells. However, the growth inhibitory mechanism of arctiin remains unknown. Herein we report that arctiin induces growth inhibition and dephosphorylates the tumor-suppressor retinoblastoma protein in human immortalized keratinocyte HaCaT cells. We also show that the growth inhibition caused by arctiin is associated with the down-regulation of cyclin D1 protein expression. Furthermore, the arctiin-induced suppression of cyclin D1 protein expression occurs in various types of human tumor cells, including osteosarcoma, lung, colorectal, cervical and breast cancer, melanoma, transformed renal cells and prostate cancer. Depletion of the cyclin D1 protein using small interfering RNA-rendered human breast cancer MCF-7 cells insensitive to the growth inhibitory effects of arctiin, implicates cyclin D1 as an important target of arctiin. Taken together, these results suggest that arctiin down-regulates cyclin D1 protein expression and that this at least partially contributes to the anti-proliferative effect of arctiin. PMID:18288407

  15. Down-Regulation of Brush Border Efflux Transporter Expression in the Kidneys of Pregnant Mice

    PubMed Central

    Yacovino, Lindsay L.; Gibson, Christopher J.

    2013-01-01

    Pregnancy increases the urinary excretion of chemicals in women and rodents. It is unknown whether the enhanced clearance of drugs during pregnancy involves changes in the expression of transporters that mediate chemical secretion and reabsorption. The purpose of this study was to quantify the mRNA and protein expression of efflux transporters in kidneys from virgin and pregnant mice on gestational days 7, 11, 14, and 17 and postnatal days 1, 15, and 30 with use of quantitative polymerase chain reaction, Western blot, and immunofluorescence. Multidrug resistance protein (Mdr) 1b mRNA, multidrug resistance-associated protein (Mrp) 4 mRNA, and protein levels decreased significantly by 25–75% throughout pregnancy and lactation. Similarly, Mrp2 and multidrug and toxin extrusion transporter (Mate) 1 mRNA expression were down-regulated 20–40% during mid to late gestation but returned to control levels by postnatal day 15. In contrast, Mrp3 mRNA and protein increased 225% and 31%, respectively, at gestational day 14. Coordinated down-regulation of brush border transporters Mate1, Mrp2, and Mrp4 and up-regulation of the basolateral Mrp3 transporter would reduce chemical secretion into urine. PMID:22896729

  16. Down-Regulation of Nogo-B Expression as a Newly Identified Feature of Intrahepatic Cholangiocarcinoma.

    PubMed

    Nanashima, Atsushi; Hatachi, Go; Tominaga, Tetsurou; Murakami, Goushi; Takagi, Katsunori; Arai, Junichi; Wada, Hideo; Nagayasu, Takeshi; Sumida, Yorihisa

    2016-01-01

    Nogo-B, located in the endoplasmic reticulum, is an isoform belonging to the reticulon protein family, which is expressed specifically in cholangiocytes and non-parenchymal cells in the liver. Nogo-B expression is down-regulated with the progression of liver fibrosis, but its distinct function in liver malignancies has not been fully clarified. We have hypothesized that Nogo-B expression may be altered in intrahepatic cholangiocarcinoma (ICC), a relatively rare type of primary liver cancer with highly malignant behavior. The present study aimed to investigate the relationship between Nogo-B expression, assessed by immunohistochemical staining, and clinicopathological factors and prognosis in 34 ICC patients. Positive expression was observed in 19 (56%) of 34 ICC specimens: 6 patients (18%) with positivity levels of 1+ (positive cells in 10-50% of cancer cells) and 13 patients (38%) with 2+ (positive cells over 50%). Importantly, the remaining 15 patients (44%) were categorized as negative expression (Nogo-B-positive cells, less than 10%). Conversely, the mass-forming type of ICC tended to express Nogo-B with the degree of 2+ positivity, compared to the periductal infiltration type (p = 0.064), and the mass-forming type showed a better 5-year survival rate (66% vs. 5%) after hepatectomy (p < 0.05). However, the degree of positivity was not associated with tumor relapse rate, disease-free and overall survival, although each of the periductal infiltration type, intrahepatic metastasis, larger tumor size, and lower microvessel counts was associated with lower survival rates. We propose that Nogo-B expression is down-regulated in ICC, the implication of which, however, remains to be investigated. PMID:26656426

  17. Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines.

    PubMed

    Nakamura, Keiichiro; Yasunaga, Yutaka; Segawa, Takehiko; Ko, Daejin; Moul, Judd W; Srivastava, Shiv; Rhim, Johng S

    2002-10-01

    Curcumin, traditionally used as a seasoning spice in Indian cuisine, has been reported to decrease the proliferation potential of prostate cancer cells, by a mechanism that is not fully understood. In the current study, we have evaluated the effects of curcumin in cell growth, activation of signal transduction, and transforming activities of both androgen-dependent and independent cell lines. Prostate cancer cell lines, LNCaP and PC-3, were treated with curcumin and its effects were further analyzed on signal transduction and expression of androgen receptor (AR) and AR-related cofactors using transient transfection assay and Western blotting. Our results show that curcumin down-regulates transactivation and expression of AR, activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and CREB (cAMP response element-binding protein)-binding protein (CBP). Curcumin also inhibited the transforming activities of both cell lines as evidenced by the reduced colony forming ability in soft agar. The results obtained here demonstrate that curcumin has a potential therapeutic effect on prostate cancer cells through down-regulation of AR and AR-related cofactors (AP-1, NF-kappaB and CBP). PMID:12239622

  18. Down-Regulated CK8 Expression in Human Intervertebral Disc Degeneration

    PubMed Central

    Sun, Zhen; Wang, Hai-Qiang; Liu, Zhi-Heng; Chang, Le; Chen, Yu-Fei; Zhang, Yong-Zhao; Zhang, Wei-Lin; Gao, Yang; Wan, Zhong-Yuan; Che, Lu; Liu, Xu; Samartzis, Dino; Luo, Zhuo-Jing

    2013-01-01

    As an intermediate filament protein, cytokeratin 8 (CK8) exerts multiple cellular functions. Moreover, it has been identified as a marker of notochord cells, which play essential roles in human nucleus pulposus (NP). However, the distribution of CK8 positive cells in human NP and their relationship with intervertebral disc degeneration (IDD) have not been clarified until now. Here, we found the percentage of CK8 positive cells in IDD (25.7±4.14%) was significantly lower than that in normal and scoliosis NP (51.9±9.73% and 47.8±5.51%, respectively, p<0.05). Western blotting and qRT-PCR results confirmed the down-regulation of CK8 expression in IDD on both of protein and mRNA levels. Furthermore, approximately 37.4% of cell clusters were CK8 positive in IDD. Taken together, this is the first study to show a down-regulated CK8 expression and the percentage of CK8 positive cell clusters in IDD based upon multiple lines of evidence. Consequently, CK8 positive cells might be considered as a potential option in the development of cellular treatment strategies for NP repair. PMID:23801880

  19. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways.

    PubMed

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2014-07-01

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality are due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet uncharacterized nonestrogenic pathway. In our study, SPI-fed rat serum inhibited the osteoblastic cell senescence pathway. This effect was accompanied by stimulation of cell differentiation, proliferation, and significant restoration of replicative senescent bone marrow mesenchymal ST2 cells (passaged 30 times). These effects were reproduced in bone from 5-wk-old intact and 10-wk-old ovariectomized female rats fed SPI diets. Caveolin-1 and p53 expression was decreased in bone in SPI-fed, but not in 17β-estradiol (E2)-treated rats. In cell culture studies, membranous caveolin-1 and nuclear p53 expression was greater in replicative senescent ST2 cell cultures than in earlier passaged cells. SPI-fed rat serum significantly down-regulated both caveolin-1 and p53 in senescent and nonsenescent cells. Replicative senescent ST2 cells exhibited a strong association among caveolin-1, p53, and mouse double minute 2 homologue (mdm2), which was inhibited by SPI-fed rat serum. Overexpression of caveolin-1 in ST2 cells resulted in increased expression of p53 and p21, whereas, knockdown of caveolin-1 using shRNA led to increases in mdm2 and eliminated SPI-fed rat serum's effects on p53 and p21 expression. In contrast, manipulation of caveolin-1 expression did not affect the actions of E2 or isoflavones on p53 expression in either ST2 or OB6 cells. These results suggest that caveolin-1 is a mediator of nonestrogenic SPI effects on bone cells.-Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J. J., Chen, J.-R. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways. PMID:24719353

  20. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages.

    PubMed

    Sanada, Yohei; Kumoto, Takahiro; Suehiro, Haruna; Nishimura, Fusanori; Kato, Norihisa; Hata, Yutaka; Sorisky, Alexander; Yanaka, Noriyuki

    2013-01-01

    Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity. PMID:23626755

  1. Paeoniflorin ameliorates symptoms of experimental Sjogren's syndrome associated with down-regulating Cyr61 expression.

    PubMed

    Li, Huidan; Sun, Xiaoxuan; Zhang, Jie; Sun, Yue; Huo, Rongfen; Li, Haichuan; Zhai, Tianhang; Shen, Baihua; Zhang, Miaojia; Li, Ningli

    2016-01-01

    Paeoniflorin (PF), an active compound extracted from Paeony root, has been used in therapy of autoimmune diseases with effective clinical efficiency and higher safety. Sjogren's syndrome (SS) is a chronic, systemic, immune-mediated inflammatory disease. In this study, we demonstrated that novel pro-inflammatory factor Cyr61/CCN1 was up-regulated in epithelial cells of salivary glands of primary SS patients and submandibular gland autoantigen-induced experimental SS mice. Blocking Cyr61 expression with special monoclonal antibody improved saliva secretion by ameliorating inflammatory infiltration and cytokines production in vivo. Furthermore, we showed that PF could alleviate inflammation by down-regulating Cyr61 expression in experimental SS mice. In conclusion, our new findings revealed for the first time that Cyr61 involves the pathogenesis of primary SS and PF alleviates SS-like symptoms associated with inhibiting Cyr61 expression, providing new insights into the potential molecular mechanism of PF in primary SS treatment. PMID:26630293

  2. A Novel Protein Complex in Membrane Rafts Linking the NR2B Glutamate Receptor and Autophagy Is Disrupted following Traumatic Brain Injury

    PubMed Central

    Bigford, Gregory E.; Alonso, Ofelia F.; Dietrich, W. Dalton

    2009-01-01

    Abstract Hyperactivation of N-methyl-d-aspartate receptors (NRs) is associated with neuronal cell death induced by traumatic brain injury (TBI) and many neurodegenerative conditions. NR signaling efficiency is dependent on receptor localization in membrane raft microdomains. Recently, excitotoxicity has been linked to autophagy, but mechanisms governing signal transduction remain unclear. Here we have identified protein interactions between NR2B signaling intermediates and the autophagic protein Beclin-1 in membrane rafts of the normal rat cerebral cortex. Moderate TBI induced rapid recruitment and association of NR2B and pCaMKII to membrane rafts, and translocation of Beclin-1 out of membrane microdomains. Furthermore, TBI caused significant increases in expression of key autophagic proteins and morphological hallmarks of autophagy that were significantly attenuated by treatment with the NR2B antagonist Ro 25-6981. Thus, stimulation of autophagy by NR2B signaling may be regulated by redistribution of Beclin-1 in membrane rafts after TBI. PMID:19335206

  3. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    SciTech Connect

    Shi, Wen-Zhu; Miao, Yu-Liang; Guo, Wen-Zhi; Wu, Wei; Li, Bao-Wei; An, Li-Na; Fang, Wei-Wu; Mi, Wei-Dong

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  4. Hyperinsulinemia Down-Regulates TLR4 Expression in the Mammalian Heart

    PubMed Central

    de Laat, Melody A.; Gruntmeir, Kaylynn J.; Pollitt, Christopher C.; McGowan, Catherine M.; Sillence, Martin N.; Lacombe, Véronique A.

    2014-01-01

    Toll-like receptors (TLR) are key regulators of innate immune and inflammatory responses and their activation is linked to impaired glucose metabolism during metabolic disease. Determination of whether TLR4 signaling can be activated in the heart by insulin may shed light on the pathogenesis of diabetic cardiomyopathy, a process that is often complicated by obesity and insulin resistance. The aim of the current study was to determine if supraphysiological insulin concentrations alter the expression of TLR4, markers of TLR4 signaling and glucose transporters (GLUTs) in the heart. Firstly, the effect of insulin on TLR4 protein expression was investigated in vitro in isolated rat cardiac myocytes. Secondly, protein expression of TLR4, the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) suppressor of cytokine signaling 3 (SOCS3) and GLUTs (1, 4, 8, 12) were examined in the equine ventricular myocardium following a prolonged, euglycemic, hyperinsulinemic clamp. Down-regulation of TLR4 protein content in rat cardiac myocytes was observed after incubation with a supraphysiologic concentration of insulin as well as in the equine myocardium after prolonged insulin infusion. Further, cardiac TLR4 expression was negatively correlated with serum insulin concentration. Markers of cardiac TLR4 signaling and GLUT expression were not affected by hyperinsulinemia and concomitant TLR4 down-regulation. Since TLRs are major determinants of the inflammatory response, our findings suggest that insulin infusion exerts an anti-inflammatory effect in the hearts of non-obese individuals. Understanding the regulation of cardiac TLR4 signaling during metabolic dysfunction will facilitate improved management of cardiac sequela to metabolic syndrome and diabetes. PMID:25101057

  5. p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes.

    PubMed

    Yu, Xiaoling; Jin, Dan; Yu, An; Sun, Jun; Chen, Xiaodong; Yang, Zaiqing

    2016-09-01

    DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65. PMID:27179948

  6. Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma

    PubMed Central

    Kim, Hyun-Soo; Yoon, Gun; Do, Sung-Im; Kim, Sung-Joo; Kim, Youn-Wha

    2016-01-01

    A better understanding of tumor biology is important in the identification of molecules that are down-regulated in malignancy and in determining their role in tumor suppression. The aim of this study was to analyze osteoprotegerin (OPG) expression in colorectal carcinoma (CRC) and to investigate the underlying mechanism for changes in the expression of OPG. OPG expression was assessed in CRC tissue samples and cell lines. The methylation status of the OPG promoter region was determined, and the effects of demethylation on OPG expression were analyzed. The effects of recombinant OPG (rOPG) administration on cellular functions were also investigated. Clinical and prognostic implications of OPG protein expression in CRC patients were analyzed. The CRC tissues and cells showed significantly lower OPG expression. Pyrosequencing of OPG-silenced CRC cells revealed that the OPG gene promoter was highly methylated. Treatment with demethylating agent significantly elevated OPG mRNA and protein expression. rOPG significantly decreased cell viability and MMP-2 and VEGF-A production in CRC cells. Reduced OPG immunoreactivity was associated with aggressive oncogenic behavior in CRC. Also, OPG expression was found to be an independent predictor of recurrent hepatic metastasis and independent prognostic factor for worse survival rates. We demonstrated that OPG silencing in CRC occurs through epigenetic repression, and is involved in the development and progression of CRC. Our data suggest that OPG is a novel prognostic biomarker and a new therapeutic target for the treatment of patients with CRC. PMID:26942563

  7. Silkworm Hemolymph Down-Regulates the Expression of Endoplasmic Reticulum Chaperones under Radiation-Irradiation

    PubMed Central

    Lee, Kyeong Ryong; Kim, Seung-Whan; Kim, Young Kook; Kwon, Kisang; Choi, Jong-Soon; Yu, Kweon; Kwon, O-Yu

    2011-01-01

    We demonstrated that up-regulation of gene expression of endoplasmic reticulum (ER) chaperones (BiP, calnexin, calreticulin, ERp29) and ER membrane kinases (IRE1, PERK, ATF6) was induced by radiation in neuronal PC12 cells. However, addition of silkworm, Bombyx mori, hemolymph to irradiated cells resulted in an obvious decrease in expression of these genes, compared with a single radiation treatment. In contrast, one of the ER chaperones, “ischemia-responsive protein 94 kDa” (irp94), was up-regulated by radiation. However, addition of silkworm hemolymph resulted in no change in the expression of irp94, with an expression pattern that differed from that of ER chaperones. Based on these results, we propose that silkworm hemolymph contains factors that regulate a decrease in the expression of ER chaperones under radiation-irradiation conditions, with the exception of irp94, which is not down-regulated. We suggest that this difference in the molecular character of irp94 may provide a clue to the biological functions associated with ER stress pathways, particularly the effects of radiation. PMID:21845089

  8. Silkworm hemolymph down-regulates the expression of endoplasmic reticulum chaperones under radiation-irradiation.

    PubMed

    Lee, Kyeong Ryong; Kim, Seung-Whan; Kim, Young Kook; Kwon, Kisang; Choi, Jong-Soon; Yu, Kweon; Kwon, O-Yu

    2011-01-01

    We demonstrated that up-regulation of gene expression of endoplasmic reticulum (ER) chaperones (BiP, calnexin, calreticulin, ERp29) and ER membrane kinases (IRE1, PERK, ATF6) was induced by radiation in neuronal PC12 cells. However, addition of silkworm, Bombyx mori, hemolymph to irradiated cells resulted in an obvious decrease in expression of these genes, compared with a single radiation treatment. In contrast, one of the ER chaperones, "ischemia-responsive protein 94 kDa" (irp94), was up-regulated by radiation. However, addition of silkworm hemolymph resulted in no change in the expression of irp94, with an expression pattern that differed from that of ER chaperones. Based on these results, we propose that silkworm hemolymph contains factors that regulate a decrease in the expression of ER chaperones under radiation-irradiation conditions, with the exception of irp94, which is not down-regulated. We suggest that this difference in the molecular character of irp94 may provide a clue to the biological functions associated with ER stress pathways, particularly the effects of radiation. PMID:21845089

  9. Down-Regulation of CD9 Expression and its Correlation to Tumor Progression in B Lymphomas

    PubMed Central

    Yoon, Sun-Ok; Zhang, Xin; Freedman, Arnold S.; Zahrieh, David; Lossos, Izidore S.; Li, Li; Choi, Yong Sung

    2010-01-01

    Histological transformation, a pivotal event in the natural history of cancers including lymphomas, is typically associated with more aggressive clinical behavior. L3055, a B lymphoma cell line of germinal center (GC) origin, is dependent on follicular dendritic cells (FDCs) for survival and proliferation, similar to GC-B cells. However, L3055 cells become less FDC-dependent after prolonged culture, which is analogous to transformation in vivo. Comparison of two L3055 subclones (i.e., the FDC-dependent indolent clone 12 and the FDC-independent aggressive clone 33) by DNA microarray revealed that CD9 was the most differentially expressed gene (P = 0.05). L3055-12 expresses high levels of CD9 while L3055-33 does not. Reduced levels or loss of CD9 expression is also observed in other CD9-positive B lymphoma cell lines. The resultant CD9-negative cells grow faster than CD9-positive cells due to their greater resistance to apoptosis. Furthermore, CD9-negative cells are less dependent on FDCs for their survival and growth compared with CD9-positive cells. CD9 down-regulation in B lymphomas appears to be controlled epigenetically, mainly through histone modifications. These findings imply that CD9 is inversely correlated with B lymphoma progression, and CD9 inactivation may play an important role in B lymphoma transformation. PMID:20566742

  10. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    SciTech Connect

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann; Jim Xiao, Zhi-Xiong

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  11. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression.

    PubMed

    Shen, Zhe; Liu, Yan; Dewidar, Bedair; Hu, Junhao; Park, Ogyi; Feng, Teng; Xu, Chengfu; Yu, Chaohui; Li, Qi; Meyer, Christoph; Ilkavets, Iryna; Müller, Alexandra; Stump-Guthier, Carolin; Munker, Stefan; Liebe, Roman; Zimmer, Vincent; Lammert, Frank; Mertens, Peter R; Li, Hai; Ten Dijke, Peter; Augustin, Hellmut G; Li, Jun; Gao, Bin; Ebert, Matthias P; Dooley, Steven; Li, Youming; Weng, Hong-Lei

    2016-07-01

    Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure. PMID:27171900

  12. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma

    PubMed Central

    Shen, Fengmei; Mo, Meng-Hsuan; Chen, Liang; An, Shejuan; Tan, Xiaohui; Fu, Yebo; Rezaei, Katayoon; Wang, Zuoren; Zhang, Lin; Fu, Sidney W.

    2014-01-01

    Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. However, the mechanism of how miR-21 regulates PDCD4 is poorly understood in RB. We investigated the expression of miRNAs in RB cell lines and identified that miR-21 is one of the most deregulated miRNAs in RB. Using qRT-PCR, we verified the expression level of several miRNAs identified by independent microarray assays, and analyzed miRNA expression patterns in three RB cell lines, including Weri-Rb1, Y79 and RB355. We found that miR-19b, -21, -26a, -195 and -222 were highly expressed in all three cell lines, suggesting their potential role in RB tumorigenesis. Using the TargetScan program, we identified a list of potential target genes of these miRNAs, of which PDCD4 is one the targets of miR-21. In this study, we focused on the regulatory mechanism of miR-21 on PDCD4 in RB. We demonstrated an inverse correlation between miR-21 and PDCD4 expression in Weri-Rb1 and Y79 cells. These data suggest that miR-21 down-regulates Rb1 by targeting PDCD4 tumor suppressor. Therefore, miR-21 could serve as a therapeutic target for retinoblastoma. PMID:25520758

  13. Dissociable Roles for the Ventromedial Prefrontal Cortex and Amygdala in Fear Extinction: NR2B Contribution

    PubMed Central

    Diaz-Mataix, Llorenç; Bush, David E.A.; LeDoux, Joseph E.

    2009-01-01

    Fear extinction, which involves learning to suppress the expression of previously learned fear, requires N-methyl-D-aspartate receptors (NMDARs) and is mediated by the amygdala and ventromedial prefrontal cortex (vmPFC). Like other types of learning, extinction involves acquisition and consolidation phases. We recently demonstrated that NR2B-containing NMDARs (NR2Bs) in the lateral amygdala (LA) are required for extinction acquisition, but whether they are involved in consolidation is not known. Further, although it has been shown that NMDARs in the vmPFC are required for extinction consolidation, whether NR2Bs in vmPFC are involved in consolidation is not known. In this report, we investigated the possible role of LA and vmPFC NR2Bs in the consolidation of fear extinction using the NR2B-selective antagonist ifenprodil. We show that systemic treatment with ifenprodil immediately after extinction training disrupts extinction consolidation. Ifenprodil infusion into vmPFC, but not the LA, immediately after extinction training also disrupts extinction consolidation. In contrast, we also show pre-extinction training infusions into vmPFC has no effect. These results, together with our previous findings showing that LA NR2Bs are required during the acquisition phase in extinction, indicate a double dissociation for the phase-dependent role of NR2Bs in the LA (acquisition, not consolidation) and vmPFC (consolidation, not acquisition). PMID:18562331

  14. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  15. Galectin-3 down-regulates IL-5 gene expression on different cell types.

    PubMed

    Cortegano, I; del Pozo, V; Cárdaba, B; de Andrés, B; Gallardo, S; del Amo, A; Arrieta, I; Jurado, A; Palomino, P; Liu, F T; Lahoz, C

    1998-07-01

    Galectin-3 is an animal lectin, formerly named epsilon-binding protein or Mac-2, which has been described to play an important role in some inflammatory processes by the implication of different cells and the increase in cell adhesion functions through laminin binding activity. In this work we analyzed the role of galectin-3 in the modulation of Th2 cytokines that have an important role in the development of the inflammatory response. We have found that the addition of galectin-3 to human eosinophils, the eosinophilic cell line EoL-3, PBMC, and an Ag-specific T cell line (CD4+) produced a selective inhibition of IL-5 transcription. No inhibitory effect was found on the IL-4 mRNA transcription rate. The inhibitory effect on IL-5 transcription was reversed by incubation with lactose and using specific Ab against galectin-3. Galectin-3 is able to induce inhibition of the IL-5 released in the supernatants from PBMC stimulated with phorbol 12,13-dibutyrate and anti-CD3. Similar results were obtained when a T-specific cell line was stimulated with Ag. Also, EoL-3 stimulated with anti-CD32 produced IL-5 protein, the synthesis of which was partially inhibited by galectin-3. The present results demonstrate that galectin-3 induces a selective down-regulation of IL-5 expression in different cell types, opening important new possibilities in the regulation of the allergic reactions. PMID:9647247

  16. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  17. Age- and Hormone-Regulation of N-Methyl-d-Aspartate Receptor Subunit NR2b in the Anteroventral Periventricular Nucleus of the Female Rat

    PubMed Central

    Maffucci, J. A.; Noel, M. L.; Gillette, R.; Wu, D.; Gore, A. C.

    2009-01-01

    Glutamate, acting through its N-methyl-d-aspartate (NMDA) and non-NMDA receptors in the hypothalamus, regulates reproductive neuroendocrine functions via direct and indirect actions upon gonadotrophin-releasing hormone (GnRH) neurones. Previous studies indicate that the NMDA receptor subunit NR2b undergoes changes in protein and gene expression in the hypothalamus in general, and on GnRH neurones in particular, during reproductive ageing. In the present study, we examined whether the NR2b-expressing cell population, both alone and in association with the NR1 subunit (i.e. the latter subunit is necessary for a functional NMDA receptor), is altered as a function of age and/or steroid hormone treatment. Studies focused on the anteroventral periventricular (AVPV) nucleus of the hypothalamus, a region critically involved in the control of reproduction. Young (3-5 months), middle-aged (9-12 months), and aged (approximately 22 months) female rats were ovariectomised and, 1 month later, they were treated sequentially with oestradiol plus progesterone, oestradiol plus vehicle, or vehicle plus vehicle, then perfused. Quantitative stereologic analysis of NR2b-immunoreactive cell numbers in the AVPV showed an age-associated decrease in the density of NR2b-immunoreactive cells, but no effect of hormone treatment. In a second study, immunofluorescent double labelling of NR2b and NR1 was analysed by confocal microscopy of fraction volume, a semi-quantitative measure of fluorescence intensity. No effect of ageing was detected for immunofluorescent NR1 or NR2b alone, whereas the NR2b fraction volume increased in the oestradiol plus vehicle group. With ageing, the fraction volume of the NR2b/NR1-colocalised subunits increased. Together with the stereology results, this suggests that, although fewer cells express the NR2b subunit in the ageing AVPV, a greater percentage of these subunits are co-expressed with NR1. Our results suggest that the subunit composition of NMDA receptors in

  18. Prostaglandin E2 mediates growth arrest in NFS-60 cells by down-regulating interleukin-6 receptor expression.

    PubMed Central

    de Silva, Kumudika I; Daud, Asif N; Deng, JiangPing; Jones, Stephen B; Gamelli, Richard L; Shankar, Ravi

    2003-01-01

    Interleukin-6 (IL-6), a potent myeloid mitogen, and the immunosuppressive prostanoid prostaglandin E2 (PGE2) are elevated following thermal injury and sepsis. We have previously demonstrated that bone marrow myeloid commitment shifts toward monocytopoiesis and away from granulocytopoiesis during thermal injury and sepsis and that PGE2 plays a central role in this alteration. Here we investigated whether PGE2 can modulate IL-6-stimulated growth in the promyelocytic cell line, NFS-60, by down-regulating IL-6 receptor (IL-6r) expression. Exposure of NFS-60 cells to PGE2 suppressed IL-6-stimulated proliferation as well as IL-6r expression. Receptor down-regulation is functionally significant since IL-6-induced signal transduction through activators of transcription (STAT)-3 is also decreased. Down-regulation of IL-6r correlated with the ability of PGE2 to arrest cells in the G0/G1 phase of the cell cycle. PGE2 appears to signal through EP2 receptors. Butaprost (EP2 agonist) but not sulprostone (EP3 agonist) inhibited IL-6-stimulated proliferation. In addition, an EP2 antagonist (AH6809) alleviated the anti-proliferative effects of PGE2. NFS-60 cells express predominantly EP2 and EP4 receptors. While PGE2 down-regulated both the IL-6r protein and mRNA expression, it had no influence on EP2 or EP4 mRNA expression. The present study demonstrates that PGE2 is a potent down-regulator of IL-6r expression and thus may provide a mechanistic explanation for the granulocytopenia seen in thermal injury and sepsis. PMID:12429018

  19. FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis

    PubMed Central

    Li, Qing; Xie, Jing; He, Lin; Wang, Yuanli; Yang, Hongdan; Duan, Zelin; Wang, Qun

    2015-01-01

    Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis. PMID:26430246

  20. FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis.

    PubMed

    Li, Qing; Xie, Jing; He, Lin; Wang, Yuanli; Yang, Hongdan; Duan, Zelin; Wang, Qun

    2015-01-01

    Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis. PMID:26430246

  1. Phosphorylation of NR2B NMDA subunits by protein kinase C in arcuate nucleus contributes to inflammatory pain in rats

    PubMed Central

    Bu, Fan; Tian, Huiyu; Gong, Shan; Zhu, Qi; Xu, Guang-Yin; Tao, Jin; Jiang, Xinghong

    2015-01-01

    The arcuate nucleus (ARC) of the hypothalamus plays a key role in pain processing. Although it is well known that inhibition of NMDA receptor (NMDAR) in ARC attenuates hyperalgesia induced by peripheral inflammation, the underlying mechanism of NMDAR activation in ARC remains unclear. Protein kinase C (PKC) is involved in several signalling cascades activated in physiological and pathological conditions. Therefore, we hypothesised that upregulation of PKC activates NMDARs in the ARC, thus contributing to inflammatory hyperalgesia. Intra-ARC injection of chelerythrine (CC), a specific PKC inhibitor, attenuated complete Freund’s adjuvant (CFA) induced thermal and mechanical hyperalgesia in a dose-dependent manner. In vivo extracellular recordings showed that microelectrophoresis of CC or MK-801 (a NMDAR antagonist) significantly reduced the enhancement of spontaneous discharges and pain-evoked discharges of ARC neurons. In addition, CFA injection greatly enhanced the expression of total and phosphorylated PKCγ in the ARC. Interestingly, CFA injection also remarkably elevated the level of phosphorylated NR2B (Tyr1472) without affecting the expression of total NR2B. Importantly, intra-ARC injection of CC reversed the upregulation of phosphorylated NR2B subunits in the ARC. Taken together, peripheral inflammation leads to an activation of NMDARs mediated by PKC activation in the ARC, thus producing thermal and mechanical hyperalgesia. PMID:26515544

  2. Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice.

    PubMed

    Wang, Zhong-hua; Liang, Yan-bing; Tang, Hao; Chen, Zhi-bin; Li, Zhen-yu; Hu, Xu-chu; Ma, Zhong-fu

    2013-01-01

    To investigate the expression of microRNA-155 (miRNA-155) in the livers of mice with lipopolysaccharide (LPS)-induced sepsis and to determine the role of dexamethasone (DXM) in the regulation of miRNA-155 expression, we pretreated mice with or without DXM prior to LPS exposure. Our study demonstrated that the expression of miRNA-155 and inflammatory factors increased in the liver tissues of mice with LPS-induced sepsis and that DXM down-regulated their expression in a dose-dependent manner. Moreover, DXM alone inhibited the expression of miRNA-155 to below the baseline level, but did not impact the expression of inflammatory factors, suggesting that the down-regulation of miRNA-155 by DXM may partially, but not completely, depend on the suppression of pro-inflammatory cytokines by DXM. Our data indicate that the overexpression of miRNA-155 in the livers of mice with LPS-induced sepsis may play an important role in the pathological processes of sepsis and that the down-regulation of miRNA-155 by DXM may be a novel mechanism regulating inflammation and immunity. PMID:24244697

  3. Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells.

    PubMed

    Yokota, Tomoya; Matsuzaki, Youichirou; Koyama, Makoto; Hitomi, Toshiaki; Kawanaka, Mayumi; Enoki-Konishi, Masako; Okuyama, Yusuke; Takayasu, Junko; Nishino, Hoyoku; Nishikawa, Akiyoshi; Osawa, Toshihiko; Sakai, Toshiyuki

    2007-09-01

    Sesamin is a major lignan constituent of sesame and possesses multiple functions such as antihypertensive, cholesterol-lowering, lipid-lowering and anticancer activities. Several groups have previously reported that sesamin induces growth inhibition in human cancer cells. However, the nature of this growth inhibitory mechanism remains unknown. The authors here report that sesamin induces growth arrest at the G1 phase in cell cycle progression in the human breast cancer cell line MCF-7. Furthermore, sesamin dephosphorylates tumor-suppressor retinoblastoma protein (RB). It is also shown that inhibition of MCF-7 cell proliferation by sesamin is correlated with down-regulated cyclin D1 protein expression, a proto-oncogene that is overexpressed in many human cancer cells. It was found that sesamin-induced down-regulation of cyclin D1 was inhibited by proteasome inhibitors, suggesting that sesamin suppresses cyclin D1 protein expression by promoting proteasome degradation of cyclin D1 protein. Sesamin down-regulates cyclin D1 protein expression in various kinds of human tumor cells, including lung cancer, transformed renal cells, immortalized keratinocyte, melanoma and osteosarcoma. Furthermore, depletion of cyclin D1 protein using small interfering RNA rendered MCF-7 cells insensitive to the growth inhibitory effects of sesamin, implicating that cyclin D1 is at least partially related to the antiproliferative effects of sesamin. Taken together, these results suggest that the ability of sesamin to down-regulate cyclin D1 protein expression through the activation of proteasome degradation could be one of the mechanisms of the antiproliferative activity of this agent. PMID:17640297

  4. HMGA1 down-regulation is crucial for chromatin composition and a gene expression profile permitting myogenic differentiation

    PubMed Central

    2010-01-01

    Background High mobility group A (HMGA) proteins regulate gene transcription through architectural modulation of chromatin and the formation of multi-protein complexes on promoter/enhancer regions. Differential expression of HMGA variants has been found to be important for distinct differentiation processes and deregulated expression was linked to several disorders. Here we used mouse C2C12 myoblasts and C2C12 cells stably over-expressing HMGA1a-eGFP to study the impact of deregulated HMGA1 expression levels on cellular differentiation. Results We found that induction of the myogenic or osteogenic program of C2C12 cells caused an immediate down-regulation of HMGA1. In contrast to wild type C2C12 cells, an engineered cell line with stable over-expression of HMGA1a-eGFP failed to differentiate into myotubes. Immunolocalization studies demonstrated that sustained HMGA1a-eGFP expression prevented myotube formation and chromatin reorganization that normally accompanies differentiation. Western Blot analyses showed that elevated HMGA1a-eGFP levels affected chromatin composition through either down-regulation of histone H1 or premature expression of MeCP2. RT-PCR analyses further revealed that sustained HMGA1a expression also affected myogenic gene expression and caused either down-regulation of genes such as MyoD, myogenin, Igf1, Igf2, Igfbp1-3 or up-regulation of the transcriptional repressor Msx1. Interestingly, siRNA experiments demonstrated that knock-down of HMGA1a was required and sufficient to reactivate the myogenic program in induced HMGA1a over-expressing cells. Conclusions Our data demonstrate that HMGA1 down-regulation after induction is required to initiate the myogenic program in C2C12 cells. Sustained HMGA1a expression after induction prevents expression of key myogenic factors. This may be due to specific gene regulation and/or global effects on chromatin. Our data further corroborate that altered HMGA1 levels influence the expression of other chromatin

  5. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression

    PubMed Central

    ZHANG, YING; CABARCAS, STEPHANIE M.; ZHENG, JI; SUN, LEI; MATHEWS, LESLEY A.; ZHANG, XIAOHU; LIN, HONGSHENG; FARRAR, WILLIAM L.

    2016-01-01

    Recent evidence indicates that tumor-initiating cells (TICs), also called cancer stem cells (CSCs), are responsible for tumor initiation and progression, therefore representing an important cell population that may be used as a target for the development of future anticancer therapies. In the present study, Cryptotanshinone (CT), a traditional Chinese herbal medicine, was demonstrated to regulate the behaviors of LNCaP prostate cells and prostate LNCaP TICs. The results demonstrate that treatment with CT alters cellular proliferation, cell cycle status, migration, viability, colony formation and notably, sphere formation and down-regulation of stemness genes (Nanog, OCT4, SOX2, β-catenin, CXCR4) in TICs. The present study demonstrates that CT targets the LNCaP CD44+CD24- population that is representative of prostate TICs and also affects total LNCaP cells as well via down-regulation of stemness genes. The strong effect with which CT has on prostate TICs suggests that CT may potentially function as a novel natural anticancer agent that specifically targets TICs. PMID:27313698

  6. Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Galgóczy, Kornél; Gere, Anikó; Horváth, Csilla; Farkas, Sándor; Greiner, István; Domány, György

    2007-01-15

    A novel series of kynurenic acid amides, ring-enlarged derivatives of indole-2-carboxamides, was prepared and identified as in vivo active NR2B subtype selective NMDA receptor antagonists. The synthesis and SAR studies are discussed. PMID:17074483

  7. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  8. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene.

    PubMed Central

    Kiely, J; Hadcock, J R; Bahouth, S W; Malbon, C C

    1994-01-01

    The expression of beta 2-adrenergic receptors is up-regulated by glucocorticoids. In contrast, beta 1-adrenergic receptors display glucocorticoid-induced down-regulation. In rat C6 glioma cells, which express both of these subtypes of beta-adrenergic receptors, the synthetic glucocorticoid dexamethasone stimulates no change in the total beta-adrenergic receptor content, but rather shifts the beta 1:beta 2 ratio from 80:20 to 50:50. Radioligand binding and immunoblotting demonstrate a sharp decline in beta 1-adrenergic receptor expression. Metabolic labelling of cells with [35S]-methionine in tandem with immunoprecipitation by beta 1-adrenergic-receptor-specific antibodies reveals a sharp decline in the synthesis of the receptor within 48 h for cells challenged with glucocorticoid. Steady-state levels of beta 1-adrenergic-receptor mRNA declined from 0.47 to 0.26 amol/microgram of total cellular RNA within 2 h of dexamethasone challenge, as measured by DNA-excess solution hybridization. The stability of receptor mRNA was not influenced by glucocorticoid; the half-lives of the beta 1- and beta 2-subtype mRNAs were 1.7 and 1.5 h respectively. Nuclear run-on assays revealed the basis for the down-regulation of receptor expression, i.e. a sharp decline in the relative rate of transcription for the beta 1-adrenergic-receptor gene in nuclei from dexamethasone-treated as compared with vehicle-treated cells. These data demonstrate transcriptional suppression as a molecular explanation for glucocorticoid-induced down-regulation of beta 1-adrenergic receptors. Images Figure 1 Figure 2 Figure 6 PMID:8092990

  9. DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke

    PubMed Central

    Tu, Weihong; Xu, Xin; Peng, Lisheng; Zhong, Xiaofen; Zhang, Wenfeng; Soundarapandian, Mangala M.; Balel, Cherine; Wang, Manqi; Jia, Nali; Zhang, Wen; Lew, Frank; Chan, Sic Lung; Chen, Yanfang; Lu, Youming

    2010-01-01

    SUMMARY N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extra-synaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292–1304 (NR2BCT). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2BCT that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca2+ influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extra-synaptic sites and this interaction acts as a central mediator for stroke damage. PMID:20141836

  10. Endogenous ephrinB2 mediates colon-urethra cross-organ sensitization via Src kinase-dependent tyrosine phosphorylation of NR2B.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Hung; Tung, Kwong-Chung; Chang, Junn-Liang; Lin, Tzer-Bin

    2010-01-01

    Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in spinal pain-related neural plasticity has been identified. To test whether Src-family non-receptor tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor (NMDAR) NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate cross-organ sensitization between the colon and the urethra, external urethra sphincter electromyogram activity evoked by pelvic nerve stimulation and protein expression in the lumbosacral (L6-S2) dorsal horn were studied before and after intracolonic mustard oil (MO) instillation. We found MO instillation produced colon-urethra reflex sensitization along with an upregulation of endogenous ephrinB2 expression as well as phosphorylation of EphB 1/2, Src-family kinase, and NR2B tyrosine residues. Intrathecal immunoglobulin fusion protein of EphB1 and EphB2 as well as PP2 reversed the reflex sensitization and NR2B phosphorylation caused by MO. All these results suggest that EphBR-ephrinB interactions, which provoke Src-family kinase-dependent NMDAR NR2B phosphorylation at the lumbosacral spinal cord level, are involved in cross-organ sensitization, contributing to the development of viscero-visceral referred pain between the bowel and the urethra. PMID:19864302

  11. Acute hypoxia differentially affects the NMDA receptor NR1, NR2A and NR2B subunit mRNA levels in the developing chick optic tectum: stage-dependent plasticity in the 2B-2A ratio.

    PubMed

    Vacotto, Marina; Rapacioli, Melina; Flores, Vladimir; de Plazas, Sara Fiszer

    2010-10-01

    It is known that the NMDA-R NR1 subunit is needed for the receptor activity and that under hypoxia the evolution toward apoptosis or neuronal survival depends on the balance NR2A/NR2B subunits. This paper analyzes the effect of acute hypoxia on the above mentioned subunits mRNAs during development. The mean percentage of NR1+ neurons displayed the higher plasticity during development while the NR2A+ neurons the higher stability. Acute hypoxia increased the mean percentage of NR1+ and NR2B+ neurons at ED12 but only that of NR1+ neurons at ED18. Acute hypoxia increased the levels of expression of NR1 and NR2B mRNAs at ED12 without changes in the NR2A mRNA. During early stages there is a higher sensitivity to change the subunits mRNA levels under a hypoxic treatment. At ED12 acute hypoxia increased the probability of co-expression of the NR1-NR2A and NR1-NR2B subunits combinations, the level of NR1 and NR2B and the ratio NR2B/NR2A. These conditions facilitate the evolution towards apoptosis. PMID:20596770

  12. Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression

    PubMed Central

    Liu, Rong; Shi, Peiguo; Nie, Zhi; Liang, Huichun; Zhou, Zhongmei; Chen, Wenlin; Chen, Haijun; Dong, Chao; Yang, Runxiang; Liu, Suling; Chen, Ceshi

    2016-01-01

    Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancers without effective targeted therapies. Mifepristone (MIF), a drug regularly used for abortion, has been reported to have anti-tumor activity in multiple hormone-dependent cancers, including luminal type breast cancers. In this study, we showed that MIF suppressed tumor growth of the TNBC cell lines and patient-derived xenografts in NOD-SCID mice. Furthermore, MIF reduced the TNBC cancer stem cell (CSC) population through down-regulating KLF5 expression, a stem cell transcription factor over-expressed in basal type TNBC and promoting cell proliferation, survival and stemness. Interestingly, MIF suppresses the expression of KLF5 through inducing the expression of miR-153. Consistently, miR-153 decreases CSC and miR-153 inhibitor rescued MIF-induced down-regulation of the KLF5 protein level and CSC ratio. Taken together, our findings suggest that MIF inhibits basal TNBC via the miR-153/KLF5 axis and MIF may be used for the treatment of TNBC. PMID:26941846

  13. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  14. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    SciTech Connect

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  15. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  16. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis.

    PubMed

    Bai, Bo; Su, Ying Hua; Yuan, Jia; Zhang, Xian Sheng

    2013-07-01

    Somatic embryogenesis is an important experimental model for studying cellular and molecular mechanisms of early embryo development. Although it has long been known that removal of exogenous auxin from medium results in somatic embryogenesis, the mechanisms underlying the initiation of somatic embryos (SEs) are poorly understood. In this study, we showed that YUCCAs (YUCs) encoding key enzymes in auxin biosynthesis are required for SE induction in Arabidopsis. To identify other factors mediating SE initiation, we performed transcriptional profiling and gene expression analysis. The results showed that genes involved in ethylene biosynthesis and its responses were down-regulated during SE initiation. Ethylene level decreased progressively during SE initiation, whereas treatment with the metabolic precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), or mutation of ETHYLENE-OVERPRODUCTION1 (ETO1) disrupted SE induction, suggesting that ethylene plays a role in this process. Suppression of SE induction was also observed in the constitutive triple response 1 (ctr1) mutant, in which ethylene signaling was enhanced. These results indicate that down-regulation of not only ethylene biosynthesis, but also ethylene response is critical for SE induction. We further showed that ethylene disturbed SE initiation through inhibiting YUC expression that might be involved in local auxin biosynthesis and subsequent auxin distribution. Our results provide new information on the mechanisms of hormone-regulated SE initiation. PMID:23271028

  17. Expression of SPARC like protein 1 (SPARCL1), extracellular matrix-associated protein is down regulated in gastric adenocarcinoma

    PubMed Central

    Jakharia, Aniruddha; Borkakoty, Biswajyoti

    2016-01-01

    Background SPARC-like protein 1 (SPARCL1/Hevin), a member of the SPARC family is defined by the presence of a highly acidic domain-I, a follistatin-like domain, and an extracellular calcium (EC) binding domain. SPARCL1 has been shown to be down-regulated in many types of cancer and may serve as a negative regulator of cell growth and proliferation. Methods Both tumor and adjacent normal tissue were collected from patients with gastric adenocarcinoma. Monoclonal antibody developed against recombinant SPARCL1 was used to analyze the expression of SPARCL1 by immunohisto chemical and western blotting (WB) analysis. Results The expression of SPARCL1 was found to be significantly lower or negligible in gastric adenocarcinoma tissues in nearly all of the cases in comparison with adjacent normal tissue. This comparison was found to be independent of the patient’s age, sex, and stage of cancer. Conclusions We postulate that down regulation of SPARCL1 may be related to inactivation of its tumor suppressor functions and might play an important role in the development of gastric adenocarcinoma. PMID:27034797

  18. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression. PMID:27622181

  19. Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression.

    PubMed

    Huang, Weiwei; He, Tiantian; Chai, Chengsen; Yang, Yuan; Zheng, Yahong; Zhou, Pei; Qiao, Xiaoxia; Zhang, Bin; Liu, Zengzhen; Wang, Junru; Shi, Changhong; Lei, Liping; Gao, Kun; Li, Hewei; Zhong, Sue; Yao, Libo; Huang, Meng-Er; Lei, Ming

    2012-01-01

    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa. PMID:22666381

  20. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  1. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide

    PubMed Central

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-01-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-γ-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1–DNA and STAT–DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  2. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro

    SciTech Connect

    Sun, Yihua; Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031 ; Fang, Rong; Li, Chenguang; Li, Li; Li, Fei; Ye, Xiaolei; Chen, Haiquan

    2010-05-28

    Lung cancer is one of the most devastating diseases worldwide. RGS17 is previously shown to be over-expressed in human lung adenocarcinomas and plays an important role in lung tumor growth. Here we have identified a miRNA, has-mir-182, involved in the regulation of RGS17 expression through two conserved sites located in its 3' UTR region. Consistently, endogenous RGS17 expression level is regulated by hsa-mir-182 in human lung cancer cell lines. Similar to the knockdown of RGS17, ectopic expression of hsa-mir-182 significantly inhibits lung cancer cell proliferation and anchorage-independent cell growth, which can be rescued by re-expression of RGS17. Taken together, these data have provided the first evidence of miRNA regulation of RGS17 expression in lung cancer.

  3. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus

    PubMed Central

    Hussain, Suleman; Ringsevjen, Håvard; Egbenya, Daniel L.; Skjervold, Torstein L.; Davanger, Svend

    2016-01-01

    Syntaxins are a family of membrane-integrated proteins that are instrumental in exocytosis of vesicles. Syntaxin-1 is an essential component of the presynaptic exocytotic fusion machinery in the brain and interacts with several other proteins. Syntaxin-1 forms a four-helical bundle complex with proteins SNAP-25 and VAMP2 that drives fusion of vesicles with the plasma membrane in the active zone (AZ). Little is known, however, about the ultrastructural localization of syntaxin-1 at the synapse. We have analyzed the intrasynaptic expression of syntaxin-1 in glutamatergic hippocampal synapses in detail by using quantitative postembedding immunogold labeling. Syntaxin-1 was present in highest concentrations at the presynaptic AZ, supporting its role in transmitter release. Presynaptic plasma membrane lateral to the AZ, as well as presynaptic cytoplasmic (PreCy) vesicles were also labeled. However, syntaxin-1 was also significantly expressed in postsynaptic spines, where it was localized at the postsynaptic density (PSD), at postsynaptic lateral membranes and in postsynaptic cytoplasm. Postsynaptically, syntaxin-1 colocalized in the nanometer range with the N-methyl-D-aspartate (NMDA) receptor subunit NR2B, but only weakly with the AMPA receptor subunits GluA2/3. This observation points to the possibility that syntaxin-1 may be involved with NR2B vesicular trafficking from cytoplasmic stores to the postsynaptic plasma membrane, thus facilitating synaptic plasticity. Confocal immunofluorescence double labeling with PSD-95 and ultrastructural fractionation of synaptosomes also confirm localization of syntaxin-1 at the PSD. PMID:26903802

  4. Labisia pumila extract down-regulates hydroxysteroid (11-beta) dehydrogenase 1 expression and corticosterone levels in ovariectomized rats.

    PubMed

    Fazliana, Mansor; Gu, Harvest F; Östenson, Claes-Göran; Yusoff, Mashitah Mohd; Wan Nazaimoon, W M

    2012-04-01

    We evaluated the effects of a standardized Labisia pumila var. alata (LPva) extract on body weight change, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) expressions and corticosterone (CORT) level in ovariectomized (OVX) rats. The decoction of LPva has been used for generations among Malay women in Malaysia to maintain a healthy reproductive system.Thirty-six Sprague-Dawley OVX rats were treated orally with LPva extract (10, 20 or 50 mg/kg/day) or estrogen replacement (ERT) for 30 days. Sham operated rats were used as controls. Compared to untreated OVX rats, LPva-treated rats showed less weight gain and had significantly down-regulated HSD11B1 mRNA in liver tissues. HSD11B1 mRNA in adipose tissues increased by 55% (p < 0.05) in OVX rats but normalized in rats treated with LPva. Similarly, there was significant down-regulation (p < 0.05) of protein levels of HSD11B1 in both liver and adipose tissue of LPva and ERT groups, and CORT levels were significantly reduced in both groups of rats. This is the first study ever conducted to evaluate the beneficial effects of LPva in relation to weight gain caused by estrogen insufficiency. Results implied that the bioactive components in LPva extract affect not only HSD11B1 expressions in both adipose and liver tissues but also decrease circulating CORT. The extract should be explored for its potential use as a natural remedy for weight management. PMID:21833773

  5. Histone Deacetylase 1 (HDAC1) Participates in the Down-Regulation of Corticotropin Releasing Hormone Gene (crh) Expression

    PubMed Central

    Miller, Lydia; Foradori, Chad D.; Lalmansingh, Avin S.; Sharma, Dharmendra; Handa, Robert J.; Uht, Rosalie M.

    2011-01-01

    The paraventricular nucleus of the hypothalamus (PVH) plays a central role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Medial parvocellular neurons of the PVH (mpPVH) integrate sensory and humoral inputs to maintain homeostasis. Humeral inputs include glucocorticoids secreted by the adrenals, which down-regulate HPA activation. A primary glucocorticoid target is the population of mpPVH neurons that synthesize and secrete corticotropin-releasing factors, the most potent of which is corticotropin-releasing hormone (CRH). Although CRH gene (crh) expression is known to be down-regulated by glucocorticoids, the mechanisms by which this process occurs are still poorly understood. To begin this study we postulated that glucocorticoid repression of crh involves HDAC recruitment to the region of the crh proximal promoter. To evaluate this hypothesis, we treated hypothalamic cells that express CRH with the HDAC inhibitor trichostatin A (TSA). As predicted, treatment with TSA led to increased CRH mRNA levels and crh promoter activity. Although co-treatment with Dex (10−7 M) reduced the TSA effect on mRNA levels, it failed to reduce promoter activity; however co-transfection of HDAC1 but not 3 restored Dex inhibition. A distinction between HDAC1 and 3 was also apparent with respect to crh promoter occupancy. Dex led to increased HDAC1 but not HDAC3 occupancy. In vivo studies revealed that CRH-immunoreactive (-ir) neurons contained HDAC1- and HDAC3-ir. Collectively, these data point to a role for HDAC1 in the physiologic regulation of crh. PMID:21463644

  6. Histone deacetylase 1 (HDAC1) participates in the down-regulation of corticotropin releasing hormone gene (crh) expression.

    PubMed

    Miller, Lydia; Foradori, Chad D; Lalmansingh, Avin S; Sharma, Dharmendra; Handa, Robert J; Uht, Rosalie M

    2011-08-01

    The paraventricular nucleus of the hypothalamus (PVH) plays a central role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Medial parvocellular neurons of the PVH (mpPVH) integrate sensory and humoral inputs to maintain homeostasis. Humoral inputs include glucocorticoids secreted by the adrenals, which down-regulate HPA activation. A primary glucocorticoid target is the population of mpPVH neurons that synthesize and secrete corticotropin-releasing factors, the most potent of which is corticotropin-releasing hormone (CRH). Although CRH gene (crh) expression is known to be down-regulated by glucocorticoids, the mechanisms by which this process occurs are still poorly understood. To begin this study we postulated that glucocorticoid repression of crh involves HDAC recruitment to the region of the crh proximal promoter. To evaluate this hypothesis, we treated hypothalamic cells that express CRH with the HDAC inhibitor trichostatin A (TSA). As predicted, treatment with TSA led to increased CRH mRNA levels and crh promoter activity. Although co-treatment with Dex (10(-7)M) reduced the TSA effect on mRNA levels, it failed to reduce promoter activity; however co-transfection of HDAC1 but not 3 restored Dex inhibition. A distinction between HDAC1 and 3 was also apparent with respect to crh promoter occupancy. Dex led to increased HDAC1 but not HDAC3 occupancy. In vivo studies revealed that CRH-immunoreactive (-ir) neurons contained HDAC1- and HDAC3-ir. Collectively, these data point to a role for HDAC1 in the physiologic regulation of crh. PMID:21463644

  7. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  8. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells.

    PubMed

    Arikawa, Tomohiro; Liao, Shengjun; Shimada, Hiroki; Inoue, Tomoki; Sakata-Haga, Hiromi; Nakamura, Takanori; Hatta, Toshihisa; Shoji, Hiroki

    2016-01-01

    Placental development and trophoblast invasion of the maternal endometrium establish the maternal-fetal interface, which is critical for the developing embryo and fetus. Herein we show that overexpression of Galectin-4 (Gal-4) during trophoblast differentiation inhibited the enlargement of Rcho-1 cells (a model for rat trophoblast differentiation) and promoted cell-cell adhesion, whereas trophoblast specific markers and MMP-9 activity were not affected. In the rat placenta, microtubule associated protein 1 light chain 3 alpha (LC3) protein, an autophagy marker, is highly expressed on the maternal side of the decidua where Gal-4 expression is weak. In vitro assays showed that the expression of trophoblast-specific differentiation markers was reduced by 3-Methyladenine (3-MA) and Bafilomycin A1, known as autophagy inhibitors, compared to control cells. Furthermore, Gal-4 expression in Rcho-1 cells, which is normally down-regulated during differentiation, was not attenuated in the presence of autophagy inhibitors, suggesting that autophagy is upstream of Gal-4 expression. We herein describe a possible mechanism by which autophagy regulates trophoblast differentiation via regulation of Gal-4 expression in order to establish the maternal-fetal interface. PMID:27572741

  9. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells

    PubMed Central

    Arikawa, Tomohiro; Liao, Shengjun; Shimada, Hiroki; Inoue, Tomoki; Sakata-Haga, Hiromi; Nakamura, Takanori; Hatta, Toshihisa; Shoji, Hiroki

    2016-01-01

    Placental development and trophoblast invasion of the maternal endometrium establish the maternal-fetal interface, which is critical for the developing embryo and fetus. Herein we show that overexpression of Galectin-4 (Gal-4) during trophoblast differentiation inhibited the enlargement of Rcho-1 cells (a model for rat trophoblast differentiation) and promoted cell-cell adhesion, whereas trophoblast specific markers and MMP-9 activity were not affected. In the rat placenta, microtubule associated protein 1 light chain 3 alpha (LC3) protein, an autophagy marker, is highly expressed on the maternal side of the decidua where Gal-4 expression is weak. In vitro assays showed that the expression of trophoblast-specific differentiation markers was reduced by 3-Methyladenine (3-MA) and Bafilomycin A1, known as autophagy inhibitors, compared to control cells. Furthermore, Gal-4 expression in Rcho-1 cells, which is normally down-regulated during differentiation, was not attenuated in the presence of autophagy inhibitors, suggesting that autophagy is upstream of Gal-4 expression. We herein describe a possible mechanism by which autophagy regulates trophoblast differentiation via regulation of Gal-4 expression in order to establish the maternal-fetal interface. PMID:27572741

  10. [Ox-LDL down-regulates expression of pigment epithelium-derived factor in human umbilical vein endothelial cells].

    PubMed

    Liu, Jie; Yao, Shu-Tong; Zhai, Lei; Feng, Yue-Long; Song, Guo-Hua; Yu, Yang; Zhu, Ping; Qin, Shu-Cun

    2014-08-25

    Pigment epithelium-derived factor (PEDF) is a multifunctional protein with anti-inflammatory, antioxidant and antithrombotic properties and plays a protective role against atherosclerosis (AS). The purpose of the present study is to explore the effects of oxidized low density lipoprotein (ox-LDL) on the expression of PEDF in cultured human umbilical vein endothelial cells (HUVECs). HUVECs were cultured and incubated with ox-LDL at different concentrations (6.25, 12.5, 25, 50, 100 and 150 mg/L) for 24 h. Apoptosis of endothelial cells were assayed by morphological staining and flow cytometry. The intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Cell viability was assayed by MTT assay. PEDF protein and mRNA expressions in HUVECs were analyzed by Western blot and quantitative real-time PCR, respectively. The results showed that ox-LDL significantly induced apoptosis, reduced cell viability, increased intracellular ROS levels and decreased the PEDF expression in HUVECs in a concentration-dependent manner. Ox-LDL at 50 mg/L obviously decreased the PEDF protein expression compared with control group (P < 0.05), whereas 25 mg/L ox-LDL already markedly reduced the PEDF mRNA expression (P < 0.05). In conclusion, the results suggest that ox-LDL down-regulates the PEDF expression through an increased ox-LDL-induced intracellular production of ROS. PMID:25131792

  11. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    SciTech Connect

    Sharpe, Laura J.; Brown, Andrew J.

    2008-09-05

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2.

  12. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression

    NASA Astrophysics Data System (ADS)

    Song, Hongyuan; Wang, Wenbo; Zhao, Ping; Qi, Zhongtian; Zhao, Shihong

    2014-02-01

    Angiogenesis is a process that forms new blood capillaries from existing vessels, which is of great physiological and pathological significance. Although recent studies provide evidence that cuprous oxide nanoparticles (CO-NPs) may have biomedical potential, the mechanisms of CO-NPs in angiogenesis have not been investigated to date. We have studied the anti-angiogenic properties of CO-NPs on primary human umbilical vein endothelial cells (HUVECs). We found that CO-NPs were able to induce cell morphology changes and suppress cell proliferation, migration and tube formation in vitro and in vivo dose dependently. Furthermore, CO-NPs could induce cell apoptosis both at the early and late apoptotic stage and induce cell cycle arrest at S phase in a dose dependent manner. As signalling via the vascular endothelial growth factor receptor-2 (VEGFR2) is critical for angiogenic responses, we further explored the expression of VEGFR2 after the treatment of CO-NPs. They were found to inhibit VEGFR2 expression dose and time dependently both at the protein and mRNA level while had no effect on VEGF and VEGFR1 expression. Together, we report for the first time that CO-NPs can act as an anti-angiogenic agent by suppressing VEGFR2 expression, which may be a potential nanomedicine for angiogenesis therapy.Angiogenesis is a process that forms new blood capillaries from existing vessels, which is of great physiological and pathological significance. Although recent studies provide evidence that cuprous oxide nanoparticles (CO-NPs) may have biomedical potential, the mechanisms of CO-NPs in angiogenesis have not been investigated to date. We have studied the anti-angiogenic properties of CO-NPs on primary human umbilical vein endothelial cells (HUVECs). We found that CO-NPs were able to induce cell morphology changes and suppress cell proliferation, migration and tube formation in vitro and in vivo dose dependently. Furthermore, CO-NPs could induce cell apoptosis both at the early and

  13. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed Central

    Perlino, E.; Loverro, G.; Maiorano, E.; Giannini, T.; Cazzolla, A.; Napoli, A.; Fiore, M. G.; Ricco, R.; Marra, E.; Selvaggi, L.

    1998-01-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. Images Figure 1 Figure 5 Figure 6 Figure 8 PMID:9579831

  14. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed

    Perlino, E; Loverro, G; Maiorano, E; Giannini, T; Cazzolla, A; Napoli, A; Fiore, M G; Ricco, R; Marra, E; Selvaggi, L

    1998-04-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. PMID:9579831

  15. Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma.

    PubMed

    Golovine, Konstantin; Makhov, Peter; Naito, Sei; Raiyani, Henish; Tomaszewski, Jeffrey; Mehrazin, Reza; Tulin, Alexei; Kutikov, Alexander; Uzzo, Robert G; Kolenko, Vladimir M

    2015-01-01

    The c-Met protein, a transmembrane receptor tyrosine kinase, is the product of a proto-oncogene. Its only known ligand, hepatocyte growth factor (HGF), regulates cell growth, motility, migration, invasion, proliferation, and angiogenesis. The aberrant expression of c-Met is often associated with poor prognosis in multiple cancers, including renal cell carcinoma (RCC). Silencing or inactivation of c-Met leads to decreased viability of cancer cells, thereby making ablation of c-Met signaling an attractive concept for developing novel strategies for the treatment of renal tumors. Naturally-occurring products or substances are the most consistent source of drug development. As such, we investigated the functional impact of piperlongumine (PL), a naturally occurring alkaloid present in the Long pepper (Piper longum) on c-Met expression in RCC cells and demonstrated that PL and its analogs rapidly reduce c-Met protein and RNA levels in RCC cells via ROS-dependent mechanism. PL-mediated c-Met depletion coincided with the inhibition of downstream c-Met signaling; namely Erk/MAPK, STAT3, NF-κB and Akt/mTOR. As such, PL and PL analogs hold promise as potential therapeutic agents for the treatment of metastatic RCC and the prevention of postoperative RCC recurrence. PMID:25801713

  16. Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma

    PubMed Central

    Golovine, Konstantin; Makhov, Peter; Naito, Sei; Raiyani, Henish; Tomaszewski, Jeffrey; Mehrazin, Reza; Tulin, Alexei; Kutikov, Alexander; Uzzo, Robert G; Kolenko, Vladimir M

    2015-01-01

    The c-Met protein, a transmembrane receptor tyrosine kinase, is the product of a proto-oncogene. Its only known ligand, hepatocyte growth factor (HGF), regulates cell growth, motility, migration, invasion, proliferation, and angiogenesis. The aberrant expression of c-Met is often associated with poor prognosis in multiple cancers, including renal cell carcinoma (RCC). Silencing or inactivation of c-Met leads to decreased viability of cancer cells, thereby making ablation of c-Met signaling an attractive concept for developing novel strategies for the treatment of renal tumors. Naturally-occurring products or substances are the most consistent source of drug development. As such, we investigated the functional impact of piperlongumine (PL), a naturally occurring alkaloid present in the Long pepper (Piper longum) on c-Met expression in RCC cells and demonstrated that PL and its analogs rapidly reduce c-Met protein and RNA levels in RCC cells via ROS-dependent mechanism. PL-mediated c-Met depletion coincided with the inhibition of downstream c-Met signaling; namely Erk/MAPK, STAT3, NF-κB and Akt/mTOR. As such, PL and PL analogs hold promise as potential therapeutic agents for the treatment of metastatic RCC and the prevention of postoperative RCC recurrence. PMID:25801713

  17. A Molecular Toolbox for Rapid Generation of Viral Vectors to Up- or Down-Regulate Neuronal Gene Expression in vivo

    PubMed Central

    White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.

    2011-01-01

    We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812

  18. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors.

    PubMed Central

    Holtrich, U; Wolf, G; Bräuninger, A; Karn, T; Böhme, B; Rübsamen-Waigmann, H; Strebhardt, K

    1994-01-01

    We have identified the nucleotide sequence of the cDNA encoding the human counterpart of the mouse gene Plk (polo-like kinase). The sequence of the human gene, PLK, predicts a serine/threonine kinase of 603 aa. Expression of PLK mRNA appeared to be strongly correlated with the mitotic activity of cells. Resting peripheral lymphocytes did not express the gene at all. When primary T cells were activated by phytohemagglutinin, a high level of PLK transcripts resulted within 2-3 days. In some cases, addition of interleukin 2 to these cells increased the expression of PLK mRNA further. In contrast, primary cultures of human peripheral macrophages, which were not dividing under the culture conditions applied, showed very little or no PLK mRNA. Stimulation of these cells by bacterial lipopolysaccharide, an inducer of several cytokines in macrophages, totally abrogated the expression of PLK mRNA. In line with a function of PLK mRNA expression in mitotically active cells is our finding that six immortalized cell lines examined expressed the gene. In A-431 epidermoid carcinoma cells this expression was down-regulated by serum starvation and enhanced after serum was added again. Tumors of various origin (lung, colon, stomach, smooth muscle, and esophagus as well as non-Hodgkin lymphomas) expressed high levels of PLK transcripts in about 80% of the samples studied, whereas PLK mRNA was absent in surrounding tissue, except for colon. The only normal tissues where PLK mRNA expression was observed were colon and placenta, both known to be mitotically active. No PLK transcripts were found in normal adult lung, brain, heart, liver, kidney, skeletal muscle, and pancreas. In Northern blot experiments with RNA from lymphocytes which were treated with phytohemagglutinin and cycloheximide, PLK transcripts were not detectable, suggesting that PLK is not an early growth-response gene. Images PMID:8127874

  19. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes.

    PubMed

    Bourzac, Jean-François; L'Ériger, Karine; Larrivée, Jean-François; Arguin, Guillaume; Bilodeau, Maude S; Stankova, Jana; Gendron, Fernand-Pierre

    2013-01-01

    With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption. PMID:22566162

  20. New benzoyl urea derivatives as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, I; Greiner, I; Kolok, S; Galgóczy, K; Ignácz-Szendrei, Gy; Horváth, Cs; Farkas, S; Gáti, T; Háda, V; Domány, Gy

    2006-09-01

    A novel series of benzoyl urea derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of the substitution of the piperidine ring on the biological activity of the compounds was studied. Compound 9 was active in the formalin test in mice. PMID:17020160

  1. Down-regulation of CD53 expression in Epinephelus coioides under LPS, poly (I:C), and cytokine stimulation.

    PubMed

    Hou, Chia-Yi; Lin, John Han-You; Lin, Shih-Jie; Kuo, Wan-Ching; Lin, Han-Tso

    2016-04-01

    Tetraspanins are a group of cell surface molecules involved in cell adhesion, motility, metastasis, signal transduction, and immune cell activation. Members of the tetraspanin family include CD9, CD37, CD63, CD53, and others. However, few tetraspanins have been investigated in teleosts. In this study, we obtained the open reading frame of CD53 cDNA from orange spotted grouper (Epinephelus coioices), an economically important fish. The predicted amino acid structure contains four membrane-spanning domains and a conserved CCG motif. The amino acid identity between human and grouper CD53 was only 38%; however, both CD53 proteins share the same structure. Quantitative real-time PCR revealed that mRNA is abundant in immune organs, including the head and trunk kidneys, spleen, thymus, gill, and blood. Immunochemistry and immunofluorescence analyses further revealed that CD53 was majorly expressed in the leukocytes of various organs. Finally, mRNA and protein expression for CD53 was down-regulated in fish treated with immune stimulators, including LPS, Poly (I:C), Vibrio, recombinant grouper IL-6, and CCL4. Our results indicate that the expression of CD53 may play important roles in pathogen invasion and inflammation reaction. PMID:26631805

  2. Identification of a Novel Rat NR2B Subunit Gene Promoter Region Variant and Its Association with Microwave-Induced Neuron Impairment.

    PubMed

    Wang, Li-Feng; Tian, Da-Wei; Li, Hai-Juan; Gao, Ya-Bing; Wang, Chang-Zhen; Zhao, Li; Zuo, Hong-Yan; Dong, Ji; Qiao, Si-Mo; Zou, Yong; Xiong, Lu; Zhou, Hong-Mei; Yang, Yue-Feng; Peng, Rui-Yun; Hu, Xiang-Jun

    2016-05-01

    Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation. PMID:25917873

  3. Sinomenine down-regulates TLR4/TRAF6 expression and attenuates lipopolysaccharide-induced osteoclastogenesis and osteolysis.

    PubMed

    He, Longgang; Duan, Heng; Li, Xianglian; Wang, Song; Zhang, Yueyang; Lei, Linsheng; Xu, Jiake; Liu, Shuwen; Li, Xiaojuan

    2016-05-15

    Sinomenine (SIN) is an anti-inflammatory and anti-arthritic alkaloid derived from Sinomenioum acutum. Effects of SIN on lipopolysaccharide (LPS)-induced osteolysis have not been reported. Here, we found that SIN reduced LPS-induced erosion of skull bones in C57BL/6 mice significantly. LPS can induce bone-absorbing osteoclast formation independent of RANKL in pre-osteoclastic RAW264.7 cells in vitro. Here, SIN suppressed LPS-induced osteoclast formation and osteoclast survival in RAW264.7 cells. Expression of osteoclastic-specific marker genes was also inhibited by SIN during osteoclast differentiation and osteoclast survival stimulated with LPS. SIN showed much stronger inhibitory effects on expression of Fra-1 and MMP-9 mRNA in osteoclast differentiation rather than osteoclast survival. SIN dramatically inhibited LPS-induced TNF-α production in vitro and in vivo. Further signaling studies revealed that SIN suppressed the activation and relative gene expression of three notable nuclear factors (NF-κB, AP-1, NFAT), reduced intracellular levels of Ca(2+), and down-regulated phosphorylation of MAPK p38 (but not JNK) in LPS-induced osteoclastogenesis. Focusing on upstream signals after LPS stimulation, SIN decreased expression of TLR4 and TRAF6 during osteoclast differentiation, and reduced expression of TLR4 (but not TRAF6) in osteoclast survival. These data suggest that SIN might be a potential agent for the treatment of osteolysis caused by Gram-negative bacteria infection or inflammation due to its inhibition of osteoclastogenesis through reduction of TLR4/TRAF6 expression and downstream signal transduction. PMID:26965104

  4. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    SciTech Connect

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  5. Hepatitis C Virus Increases Free Fatty Acids Absorption and Promotes its Replication Via Down-Regulating GADD45α Expression

    PubMed Central

    Chen, Wei; Li, Xiao-ming; Li, An-ling; Yang, Gui; Hu, Han-ning

    2016-01-01

    Background Hepatitis C virus (HCV) infection, as a major cause of chronic hepatic diseases, is always accompanied with an abnormality of lipid metabolism. The aim of this study was to investigate the pathogenic role of free fatty acids (FFA) in human HCV infection. Material/Methods Peripheral blood lipid indexes among HCV patients with different viral loads (199 samples) and healthy donors (80 samples) were detected by clinical biochemistry tests. HCV replication and the expression of growth arrest and DNA-damage-inducible gene 45-α (GADD45α) in Huh7 cells and clinical samples were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Lipid accumulation in Huh7 cells was detected by immunofluorescence. Results In this study, we found that FFA showed a significant positive correlation with viral load in peripheral blood of HCV patients, but not total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), or low-density lipoprotein cholesterol (LDL-C). GADD45α expression in HCV patients dramatically decreased with the increase of viral load. In Huh7 cells, FFA treatment significantly enhanced HCV replication. HCV infection inhibited GADD45α expression, and this effect was further enhanced with the presence of FFA treatment. Ectopic expression of GADD45α in HCV-infected Huh7 cells markedly inhibited the absorption of FFA and HCV replication. However, FFA significantly elevated GADD45α expression without HCV infection. Conclusions These results demonstrated that HCV down-regulates GADD45α expression to enhance FFA absorption and thus facilitate its replication. GADD45α is an essential mediator for the pathogenesis of HCV infection. Thus, our study provides potential clues in the search for novel therapeutics and fatty lipid control options for HCV patients. PMID:27381636

  6. Resistin impairs glucose permeability in EA.hy926 cells by down-regulating GLUT1 expression.

    PubMed

    Li, Qiang; Cai, Yuxi; Huang, Jing; Yu, Xiaolan; Sun, Jun; Yang, Zaiqing; Zhou, Lei

    2016-10-15

    Type 2 diabetes mellitus (T2DM) is a chronic disease which is now affecting the health of more and more people in the world. Resistin, discovered in 2001, is considered to be closely related to metabolic dysfunction and obesity. Previous study showed that hyperglycemia is always accompanied by a high serum resistin concentration. We therefore investigated whether resistin can mediate glucose transfer across the blood-tissue barrier. Here, we employed a transwell system to analyze glucose permeability in EA.hy926 human endothelial cells treated without or with human resistin. In EA.hy926 cells treated with resistin, the permeability to glucose was heavily impaired. This was due to the down-regulation of GLUT1 expression as a result of the treatment, rather than regulation of tight junctions. In addition, overexpression of GLUT1 in EA.hy926 cells was able to recover the blocking effect of resistin on glucose permeability. We further found that resistin could inhibit the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and consequently impede the transcription of GLUT1. The results of the present study suggested that resistin could cause glucose retention in serum and thus result in hyperglycemia. This provides a novel explanation for hyperglycemia and a potential new way of treating type 2 diabetes mellitus. PMID:27353463

  7. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells.

    PubMed

    Kim, Bomi; Nam, Sorim; Lim, Ji Hyun; Lim, Jong-Seok

    2016-01-01

    Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression. PMID:26759696

  8. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells

    PubMed Central

    Kim, Bomi; Nam, Sorim; Lim, Ji Hyun; Lim, Jong-Seok

    2016-01-01

    Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression. PMID:26759696

  9. Down-Regulation of miR-146a Expression Induces Allergic Conjunctivitis in Mice by Increasing TSLP Level

    PubMed Central

    Sun, Wen; Sheng, Yan; Chen, Jie; Xu, Dong; Gu, Yangshun

    2015-01-01

    Background Pollen is the most common aeroallergen to cause conjunctivitis. In this study, we established a short ragweed (SRW)-induced mouse model of allergic conjunctivitis (AC) and aimed to explore the potential role of miR-146a and its downstream molecules in the development of ocular allergic inflammation. Material/Methods The mouse model of challenge pollen was used for in vivo study. The culture model of primary human limbal epithelium (HLE) exposed to lipopolysaccharide (LPS) was performed for in vitro research. The numbers of eosinophils and total inflammatory cells were examined using Giemsa staining. The expression of mRNA and miR-146a was determined by quantitative RT-PCR, and protein production was evaluated by Western blotting. Results In vivo of mice, pollen challenge induced conjunctiva inflammatory response indicated by increased number of eosinophils and total inflammatory cells. Interestingly, pollen significantly attenuated miR-146a expression while it enhanced expression of thymic stromal lymphopoietin (TSLP) and its downstream molecules, including TSLP receptor (TSLPR)/ OX40 ligand (OX40L)/CD11C. In vitro of HCE, downregulation effect of miR-146a expression induced by LPS was reversed by Bay treatment, an inhibitor for nuclear factor kappa B (NF-κB), and LPS-induced cell inflammation is mediated by miR-146a-TSLP/TSLPR/OX40L/CD11C signaling pathway. This was further demonstrated by overexpression of miR-146a in mouse abrogated pollen-triggered conjunctiva inflammatory reaction as well as pollen-induced activity of TSLP/TSLPR/OX40L/CD11C signaling. Conclusions Down-regulation of miR-146a expression induces allergic conjunctivitis in mice by increasing TSLP level. PMID:26166175

  10. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells.

    PubMed

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-10-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G0/G1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. PMID:26189965

  11. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression

    PubMed Central

    Feyissa, Anteneh M.; Zyga, Agata; Stockmeier, Craig A.; Karolewicz, Beata

    2009-01-01

    Recent neuroimaging and postmortem studies have demonstrated abnormalities in glutamatergic transmission in major depression. Glutamate NMDA (N-methyl-D-aspartate) receptors are one of the major mediators of excitatory neurotransmission in the central nervous system. At synaptic sites, NMDA receptors are linked with postsynaptic density protein-95 (PSD-95) that plays a key role in mediating trafficking, clustering, and downstream signaling events, following receptor activation. In this study, we examined the expression of NMDA receptor subunits NR1, NR2A, and NR2B as well as PSD-95 in the anterior prefrontal cortex (PFC) using Western blot method. Cortical samples were obtained from age, gender and postmortem interval matched depressed and psychiatrically healthy controls. The results revealed that there was a reduced expression of the NMDA receptor subunits NR2A (−54%) and NR2B (−48%), and PSD-95 protein level (−40%) in the PFC of depressed subjects relative to controls, with no change in the NR1 subunit. The alterations in NMDA receptor subunits, especially the NR2A and NR2B, as well as PSD-95 suggest an abnormality in the NMDA receptor signaling in the PFC in major depression. Our findings in conjunction with recent clinical, cellular, and neuroimaging studies further implicate the involvement of glutamate neurotransmission in the pathophysiology of depression. This study provides additional evidence that NMDA receptor complex is a target for discovery of novel antidepressants. PMID:18992785

  12. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells.

    PubMed

    Chao, Hui-Chia; Najjaa, Hanen; Villareal, Myra O; Ksouri, Riadh; Han, Junkyu; Neffati, Mohamed; Isoda, Hiroko

    2013-02-01

    Melanin performs a crucial role in protecting the skin against harmful ultraviolet light. However, hyperpigmentation may lead to aesthetic problems and disorders such as solar lentigines (SL), melasma, postinflammatory hyperpigmentation and even melanoma. Arthrophytum scoparium grows in the desert in the North African region, and given this type of environment, A. scoparium exhibits adaptations for storing water and produces useful bioactive factors. In this study, the effect of A. scoparium ethanol extract (ASEE) on melanogenesis regulation in B16 murine melanoma cells was investigated. Cells treated with 0.017% (w/v) ASEE showed a significant inhibition of melanin biosynthesis in a time-dependent manner without cytotoxicity. To clarify the mechanism behind the ASEE-treated melanogenesis regulation, the expressions of tyrosinase enzyme and melanogenesis-related genes were determined. Results showed that the expression of tyrosinase enzyme was significantly decreased and Tyr, Trp-1, Mitf and Mc1R mRNA expressions were significantly down-regulated. LC-ESI-TOF-MS analysis of the extract identified the presence of six phenolic compounds: coumaric acid, cinnamic acid, chrysoeriol, cyanidin, catechol and caffeoylquinic acid. The melanogenesis inhibitory effect of ASEE may therefore be attributed to its catechol and tetrahydroisoquinoline derivative content. We report here that ASEE can inhibit melanogenesis in a time-dependent manner by decreasing the tyrosinase protein and Tyr, Trp-1, Mitf and Mc1R mRNA expressions. This is the first report on the antimelanogenesis effect of A. scoparium and on its potential as a whitening agent. PMID:23362872

  13. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells.

    PubMed

    Iio, Akio; Takagi, Takeshi; Miki, Kohei; Naoe, Tomoki; Nakayama, Atsuo; Akao, Yukihiro

    2013-10-01

    In various human malignancies, widespread dysregulation of microRNA (miRNA) expression is reported to occur and affects various cell growth programs. Recent studies suggest that the expression levels of miRNAs that act as tumor suppressors are frequently reduced in cancers because of chromosome deletions, epigenetical changes, aberrant transcription, and disturbances in miRNA processing. MiR-143 and -145 are well-recognized miRNAs that are highly expressed in several tissues, but down-regulated in most types of cancers. However, the mechanism of this down-regulation has not been investigated in detail. Here, we show that DEAD-box RNA helicase 6, DDX6 (p54/RCK), post-transcriptionally down-regulated miR-143/145 expression by prompting the degradation of its host gene product, NCR143/145 RNA. In human gastric cancer cell line MKN45, DDX6 protein was abundantly expressed and accumulated in processing bodies (P-bodies). DDX6 preferentially increased the instability of non-coding RNA, NCR143/145, which encompasses the miR-143/145 cluster, and down-regulated the expression of mature miR-143/145. In human monocytic cell line THP-1, lipopolysaccharide treatment promoted the assembly of P-bodies and down-regulated the expression of NCR143/145 and its miR-143/145 rapidly. In these cells, cycloheximide treatment led to a loss of P-bodies and to an increase in NCR143/145 RNA stability, thus resulting in up-regulation of miR-143/145 expression. These data demonstrate that DDX6 contributed to the control of NCR143/145 RNA stability in P-bodies and post-transcriptionally regulated miR-143/145 expression in cancer cells. PMID:23932921

  14. Acacetin inhibits in vitro and in vivo angiogenesis and down-regulates Stat signaling and VEGF expression

    PubMed Central

    Bhat, Tariq A.; Nambiar, Dhanya; Tailor, Dhanir; Pal, Arttatrana; Agarwal, Rajesh; Singh, Rana P.

    2013-01-01

    Angiogenesis is an effective target in cancer control. The anti-angiogenic efficacy and associated mechanisms of acacetin, a plant flavone, is poorly known. In the present study, acacetin inhibited growth and survival (upto 92%, p<0.001), and capillary-like tube formation on matrigel (upto 98%, p<0.001) by human umbilical vein endothelial cells (HUVEC) in regular condition, as well as VEGF-induced and tumor cells conditioned medium-stimulated growth conditions. It caused retraction and disintegration of preformed capillary networks (upto 91%, p<0.001). HUVEC migration and invasion were suppressed by 68-100% (p<0.001). Acacetin inhibited Stat-1 (Tyr701) and Stat-3 (Tyr705) phosphorylation, and down-regulated pro-angiogenic factors including VEGF, eNOS, iNOS, MMP-2 and bFGF in HUVEC. It also suppressed nuclear localization of pStat-3 (Tyr705). Acacetin strongly inhibited capillary sprouting and networking from rat aortic rings and fertilized chicken egg chorioallantoic membrane (CAM) (~71%, p<0.001). Furthermore, it suppressed angiogenesis in matrigel plugs implanted in Swiss albino mice. Acacetin also inhibited tyrosine phosphorylation of Stat-1 and Stat-3, and expression of VEGF in cancer cells. Overall, acacetin inhibits Stat signaling and suppresses angiogenesis in vitro, ex vivo and in vivo, and therefore, it could be a potential agent to inhibit tumor angiogenesis and growth. PMID:23943785

  15. Pyrroloquinoline Quinone Induces Cancer Cell Apoptosis via Mitochondrial-Dependent Pathway and Down-Regulating Cellular Bcl-2 Protein Expression.

    PubMed

    Min, Zhihui; Wang, Lingyan; Jin, Jianjun; Wang, Xiangdong; Zhu, Bijun; Chen, Hao; Cheng, Yunfeng

    2014-01-01

    Pyrroloquinoline quinone (PQQ) has been reported as a promising agent that might contribute to tumor cell apoptosis and death, yet little is known on its mechanisms. In current study, the effect of PQQ on cell proliferation and mitochondrial-dependent apoptosis were examined in 3 solid tumor cell lines (A549, Neuro-2A and HCC-LM3). PQQ treatment at low to medium dosage exhibited potent anti-tumor activity on A549 and Neuro-2A cells, while had comparably minimal impact on the viabilities of 2 human normal cell lines (HRPTEpiC and HUVEC). The apoptosis of the 3 tumor cell lines induced by PQQ were increased in a concentration-dependent manner, which might be attributed to the accumulation of intracellular reactive oxygen species (ROS), decline in ATP levels and dissipation of mitochondrial membrane potential (MMP), in conjunction with down-regulation of Bcl-2 protein expression, up-regulation of activated caspase-3, and disturbed phosphorylated MAPK protein levels. PQQ induced tumor cells apoptosis was significantly alleviated by pan-caspase inhibitor Z-VAD-FMK. The present work highlights the potential capability of PQQ as an anti-tumor agent with low toxicity towards normal cells through activating mitochondrial-dependent apoptosis pathways, and warrants its development for cancer therapy. PMID:25161699

  16. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    SciTech Connect

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart . E-mail: Bart.Staels@pasteur-lille.fr; Lestavel, Sophie

    2006-02-24

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPAR{alpha}) and liver X receptors (LXR{alpha} and LXR{beta}) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPAR{alpha} and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPAR{alpha} ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis.

  17. Mxi1 inhibits the proliferation of U87 glioma cells through down-regulation of cyclin B1 gene expression

    PubMed Central

    Manni, I; Tunici, P; Cirenei, N; Albarosa, R; Colombo, B M; Roz, L; Sacchi, A; Piaggio, G; Finocchiaro, G

    2002-01-01

    Mxi1 is a Mad family member that plays a role in cell proliferation and differentiation. To test the role of Mxi1 on tumorigenesis of glioma cells we transfected a CMV-driven MXI1 cDNA in U87 human glioblastoma cells. Two clones were isolated expressing MXI1 levels 18- and 3.5-fold higher than wild-type U87 cells (clone U87.Mxi1.14 and U87.Mxi1.22, respectively). In vivo, U87.Mxi1.14 cells were not tumorigenic in nude mice and delayed development of tumours was observed with U87.Mxi1.22 cells. In vitro, the proliferation rate was partially and strongly inhibited in U87.Mxi1.22 and U87.Mxi1.14 cells respectively. The cell cycle analysis revealed a relevant accumulation of U87.Mxi1.14 cells in the G2/M phase. Interestingly, the expression of cyclin B1 was inhibited to about 60% in U87.Mxi1.14 cells. This inhibition occurs at the transcriptional level and depends, at least in part, on the E-box present on the cyclin B1 promoter. Consistent with this, the endogenous Mxi1 binds this E-box in vitro. Thus, our findings indicate that Mxi1 can act as a tumour suppressor in human glioblastomas through a molecular mechanism involving the transcriptional down-regulation of cyclin B1 gene expression. British Journal of Cancer (2002) 86, 477–484. DOI: 10.1038/sj/bjc/6600065 www.bjcancer.com © 2002 The Cancer Research Campaign PMID:11875718

  18. The non-structural protein Nsp2TF of porcine reproductive and respiratory syndrome virus down-regulates the expression of Swine Leukocyte Antigen class I.

    PubMed

    Cao, Qian M; Subramaniam, Sakthivel; Ni, Yan-Yan; Cao, Dianjun; Meng, Xiang-Jin

    2016-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is arguably the most economically-important global swine pathogen. Here we demonstrated that PRRSV down-regulates Swine Leukocyte Antigen class I (SLA-I) expression in porcine alveolar macrophages, PK15-CD163 cells and monocyte-derived dendritic cells. To identify the viral protein(s) involved in SLA-I down-regulation, we tested all 22 PRRSV structural and non-structural proteins and identified that Nsp1α and Nsp2TF, and GP3 significantly down-regulated SLA-I expression with Nsp2TF showing the greatest effect. We further generated a panel of mutant viruses in which the Nsp2TF protein synthesis was abolished, and found that the two mutants with disrupted -2 ribosomal frameshifting elements and additional stop codons in the TF domain were unable to down-regulate SLA-I expression. Additionally we demonstrated that the last 68 amino acids of TF domain in Nsp2TF are critical for this function. Collectively, the results indicate a novel function of Nsp2TF in negative modulation of SLA-I expression. PMID:26895249

  19. Estrogen down-regulates nicotine-induced adhesion molecule expression via nongenomic signal pathway in endothelial cells.

    PubMed

    Wang, Yajing; Wang, Zhaoxia; Wang, Lianyun; Zhou, Ying; Zhao, Yangxing; Liu, Liming; Yao, Chenjiang; Qiao, Zhongdong

    2006-06-01

    Although gonadal hormone mostly causes genotropic actions through the members of nuclear receptor family, it also can regulate these actions via membrane receptor. To explore the possibility of plasma membrane estrogen receptors (mER) mediating genotropic events, we have investigated estrogen's effect on nicotine-stimulated adhesion molecule expression and evaluated whether this effect depends on calcium, MAPK signal pathway. Fluorescence Spectroscopy analysis of Ca2+ from human umbilical vein endothelial cells (HUVECs) showed through mER, estrogen induced a rapid rise of intracellular free Ca2+ concentration and this rise could not be inhibited by tamoxifen (classic ER inhibitor). In the context of nicotine stimulating, however, estrogen attenuated phosphorylation of mitogen-activated protein kinase (MAPK) family members, extracellular signal regulated kinase 1/2 (ERK1/2), p38 but not c-Jun-N-terminal kinase (JNK) in HUVECs and this effect could not still be prevented by tamoxifen. In the meantime, estrogen also down-regulated surface/soluble vascular cell adhesion molecule (VCAM-1, sVCAM-1) and endothelial selectin (E-selectin, sE-selectin) levels, which was not abolished by tamoxifen either. Moreover, calcium chelator BAPTA, ERK1/2 inhibitor PD98059, p38 inhibitor SB203580 significantly reduced the production of nicotine-activated surface/soluble VCAM-1 and E-selectin and both of the remained levels were no longer regulated by estrogen. Our study here provides the information of decrease effect of mER-mediated estrogen through Ca2+ and ERK1/2, p38 MAPK signaling pathway on nicotine-stimulated expression of surface/soluble VCAM-1 and E-selectin in HUVECs. PMID:16644474

  20. Benzimidazole-2-carboxamides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Gere, Anikó; Nagy, József; Fodor, László; Galgóczy, Kornél; Fetter, József; Bertha, Ferenc; Agai, Béla; Horváth, Csilla; Farkas, Sándor; Domány, György

    2006-09-01

    A novel series of benzimidazole-2-carboxamide derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of some structural elements, like H-bond donor groups placed on the benzimidazole skeleton and the substitution pattern of the piperidine ring, on the biological activity was studied. Compound 6a showed excellent analgetic activity in the mouse formalin test following po administration. PMID:16782335

  1. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential.

    PubMed

    Mony, Laetitia; Kew, James N C; Gunthorpe, Martin J; Paoletti, Pierre

    2009-08-01

    N-methyl-D-aspartate receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the mammalian central nervous system (CNS). They are widespread in the CNS and are involved in numerous physiological and pathological processes including synaptic plasticity, chronic pain and psychosis. Aberrant NMDAR activity also plays an important role in the neuronal loss associated with ischaemic insults and major degenerative disorders including Parkinson's and Alzheimer's disease. Agents that target and alter NMDAR function may, thus, have therapeutic benefit. Interestingly, NMDARs are endowed with multiple extracellular regulatory sites that recognize ions or small molecule ligands, some of which are likely to regulate receptor function in vivo. These allosteric sites, which differ from agonist-binding and channel-permeation sites, provide means to modulate, either positively or negatively, NMDAR activity. The present review focuses on allosteric modulation of NMDARs containing the NR2B subunit. Indeed, the NR2B subunit confers a particularly rich pharmacology with distinct recognition sites for exogenous and endogenous allosteric ligands. Moreover, NR2B-containing receptors, compared with other NMDAR subtypes, appear to contribute preferentially to pathological processes linked to overexcitation of glutamatergic pathways. The actions of extracellular H+, Mg2+, Zn2+, of polyamines and neurosteroids, and of the synthetic compounds ifenprodil and derivatives ('prodils') are presented. Particular emphasis is put upon the structural determinants and molecular mechanisms that underlie the effects exerted by these agents. A better understanding of how NR2B-containing NMDARs (and NMDARs in general) operate and how they can be modulated should help define new strategies to counteract the deleterious effects of dysregulated NMDAR activity. PMID:19594762

  2. Down-regulation of cytochrome P450 2C family members and positive acute-phase response gene expression by peroxisome proliferator chemicals.

    PubMed

    Corton, J C; Fan, L Q; Brown, S; Anderson, S P; Bocos, C; Cattley, R C; Mode, A; Gustafsson, J A

    1998-09-01

    In this study, we show that peroxisome proliferator chemical (PPC) exposure leads to alterations in the expression of genes in rat liver regulated by the sex-specific growth hormone secretory pattern and induced during inflammation. Expression of the male-specific cytochrome P450 (P450) 2C11 and alpha2 urinary globulin (alpha2u) genes and the female-specific P450 2C12 gene was down-regulated by some PPC. Expression of P450 2C13, also under control by the sex-specific growth hormone secretory pattern, was not altered by PPC treatment, indicating that regulation of CYP2C family members does not involve perturbation of the growth hormone secretory pattern. In contrast to the increases in expression observed when inflammation was induced in male rats, two positive acute-phase response genes, alpha1-acid glycoprotein and beta-fibrinogen, were decreased by PPC exposure. The down-regulation of the P450 2C11 by WY-14,643 could be reproduced in cultured rat hepatocytes, indicating the down-regulation is a direct effect. Experiments in wild-type mice and mice that lacked a functional peroxisome proliferator-activated receptor-alpha gene showed that down-regulation by WY of alpha1-acid glycoprotein, beta-fibrinogen, and a mouse homologue of alpha2u was dependent on peroxisome proliferator-activated receptor-alpha expression. Our results demonstrate that PPC exposure leads to down-regulation of diverse liver-specific genes, including CYP2C family members important in hormonal homeostasis and acute-phase response genes important in inflammatory responses. PMID:9730905

  3. Exosomes Derived from Mesenchymal Stem Cells Suppress Angiogenesis by Down-Regulating VEGF Expression in Breast Cancer Cells

    PubMed Central

    Lee, Jong-Kuen; Park, Sae-Ra; Jung, Bong-Kwang; Jeon, Yoon-Kyung; Lee, Yeong-Shin; Kim, Min-Kyoung; Kim, Yong-Goo; Jang, Ji-Young; Kim, Chul-Woo

    2013-01-01

    Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules. PMID:24391924

  4. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    SciTech Connect

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew; Son, Young-Ok; Wang, Xin; Budhraja, Amit; Lee, Jeong-Chae; Pratheeshkumar, Poyil; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2013-10-01

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressed CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.

  5. Down Regulation of Gene Expression Between the Diapause Initiation and Maintenance Phases of the Colorado Potato Beetle, Leptinotarsa Decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause initiation and maintenance phases of the Colorado potato beetle, Leptinotarsa decemlineata were screened. Eight transcripts were found to be down regulated as the beetles enter the diapause maintenance phase of diapause development after day 15 postemergence. These transcripts were also...

  6. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    PubMed Central

    Gudjonsson, Thorarinn; Karason, Sigurbergur

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  7. Insulin down-regulates the expression of ubiquitin E3 ligases partially by inhibiting the activity and expression of AMP-activated protein kinase in L6 myotubes

    PubMed Central

    Deng, Hu-Ping; Chai, Jia-Ke; Shen, Chuan-An; Zhang, Xi-Bo; Ma, Li; Sun, Tian-Jun; Hu, Qing-Gang; Chi, Yun-Fei; Dong, Ning

    2015-01-01

    While insulin is an anabolic hormone, AMP-activated protein kinase (AMPK) is not only a key energy regulator, but it can also control substrate metabolism directly by inducing skeletal muscle protein degradation. The hypothesis of the present study was that insulin inhibits AMPK and thus down-regulates the expression of the ubiquitin E3 ligases, muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) in skeletal muscle cells. Differentiated L6 myotubes were treated with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) and/or compound C to stimulate and/or block AMPK respectively. These treatments were also conducted in the presence or absence of insulin and the cells were analysed by western blot and quantitative real-time PCR. In addition, nuleotide levels were determined using HPLC. The activation of AMPK with AICAR enhanced the mRNA levels of MAFbx and MuRF1. Insulin reduced the phosphorylation and activity AMPK, which was accompanied by reduced MAFbx and MuRF1 mRNA levels. Using a protein kinase B (PKB/Akt) inhibitor, we found that insulin regulates AMPK through the activation of Akt. Furthermore, insulin down-regulated AMPK α2 mRNA. We conclude that insulin inhibits AMPK through Akt phosphorylation in L6 myotubes, which may serve as a possible signalling pathway for the down-regulation of protein degradation. In addition, decreased expression of AMPK α2 may partially participate in inhibiting the activity of AMPK. PMID:26193886

  8. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies

    PubMed Central

    2013-01-01

    Introduction Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. Methods Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. Results Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice

  9. Down-regulated expression of monocyte/macrophage major histocompatibility complex receptors in human and mouse monocytes by expression of their ligands

    PubMed Central

    Yamana, H; Tashiro-Yamaji, J; Hayashi, M; Maeda, S; Shimizu, T; Tanigawa, N; Uchiyama, K; Kubota, T; Yoshida, R

    2014-01-01

    Mouse monocyte/macrophage major histocompatibility complex (MHC) receptor 1 (MMR1; or MMR2) specific for H-2Dd (or H-2Kd) molecules is expressed on monocytes from non-H-2Dd (or non-H-2Kd), but not those from H-2Dd (or H-2Kd), inbred mice. The MMR1 and/or MMR2 is essential for the rejection of H-2Dd- and/or H-2Kd-transgenic mouse skin onto C57BL/6 (H-2DbKb) mice. Recently, we found that human leucocyte antigen (HLA)-B44 was the sole ligand of human MMR1 using microbeads that had been conjugated with 80 types of HLA class I molecules covering 94·2% (or 99·4%) and 92·4% (or 96·2%) of HLA-A and B molecules of Native Americans (or Japanese), respectively. In the present study, we also explored the ligand specificity of human MMR2 using microbeads. Microbeads coated with HLA-A32, HLA-B13 or HLA-B62 antigens bound specifically to human embryonic kidney (HEK)293T or EL-4 cells expressing human MMR2 and to the solubilized MMR2-green fluorescent protein (GFP) fusion protein; and MMR2+ monocytes from a volunteer bound HLA-B62 molecules with a Kd of 8·7 × 10−9 M, implying a three times down-regulation of MMR2 expression by the ligand expression. H-2Kd (or H-2Dd) transgene into C57BL/6 mice down-regulated not only MMR2 (or MMR1) but also MMR1 (or MMR2) expression, leading to further down-regulation of MMR expression. In fact, monocytes from two (i.e. MMR1+/MMR2+ and MMR1–/MMR2–) volunteers bound seven to nine types of microbeads among 80, indicating ≤ 10 types of MMR expression on monocytes. The physiological role of constitutive MMRs on monocytes possibly towards allogeneic (e.g. fetal) cells in the blood appears to be distinct from that of inducible MMRs on macrophages toward allografts in tissue. PMID:24842626

  10. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  11. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  12. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    SciTech Connect

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-12-15

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.

  13. CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells

    PubMed Central

    Liu, Min; Li, Xin; Tang, Hua

    2015-01-01

    The altered expression of miRNAs in response to stresses contributes to cancer pathogenesis. However, little is known regarding the mechanism by which cellular stresses drive alterations in miRNA expression. Here, we found that serum starvation enhanced mitophagy by downregulating the mitophagy-associated protein voltage-dependent anion channel 1 (VDAC1) and by inducing the expression of miR-320a and the transcription factor cAMP responsive element binding protein 1(CREB1). Furthermore, we cloned the promoter of miR-320a and identified the core promoter of miR-320a in the upstream −16 to −130 region of pre-miR-320a. Moreover, CREB1 was found to bind to the promoter of miR-320a to activate its expression and to induce mitophagy during serum starvation. Collectively, our results reveal a new mechanism underlying serum starvation-induced mitophagy in which serum starvation induces CREB1 expression, in turn activating miR-320a expression, which then down-regulates VDAC1 expression to facilitate mitophagy. These findings may provide new insights into cancer cell survival in response to environmental stresses. PMID:26472185

  14. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Zhang, Wen-Guang; Li, Chuan-Fei; Liu, Min; Chen, Xiao-Feng; Shuai, Kai; Kong, Xin; Lv, Lin; Mei, Zhe-Chuan

    2016-08-10

    Aquaporin 9 (AQP9) is the main aquaglyceroporin in the liver. Few studies have been performed regarding the role of AQP9 in hepatocellular carcinoma (HCC). Here, we report the expression and function of AQP9 in HCC tissues and cell lines. We found that AQP9 mRNA and protein levels were down-regulated in HCC tissues and human hepatoma cell lines compared to the para-cancer normal liver tissues and normal hepatocyte line, respectively. In a human HCC SMMC-7721 cell line, over-expression of AQP9 suppressed cell invasion in vitro and xenograft tumor growth in vivo. AQP9 over-expression increased the expression of E-cadherin and decreased the expression of N-cadherin in SMMC-7721 cells and xenografted tumors, which was correlated with decreased levels of phosphoinositide 3-kinase (PI3K) and p-Akt. Conversely, using siRNA to knock down AQP9 over-expression could reverse the phenotype caused by AQP9 over-expression. Our findings suggest that AQP9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. PMID:27216981

  15. PI3K/Akt pathway restricts epithelial adhesion of Dr+ Escherichia coli by down-regulating the expression of Decay Accelerating Factor (DAF)

    PubMed Central

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Nowicki, Bogdan J.; Nowicki, Stella; Yallampalli, Chandra

    2014-01-01

    The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study we showed that the PI3K/Akt pathway negatively regulates the expression of DAF on the epithelial cell surface and thus inhibits the adhesion of Dr+ E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr+ E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY-294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF and decreased the adhesion of Dr+ E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner. PMID:24599886

  16. Cortical effect of oxaliplatin associated with sustained neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex.

    PubMed

    Thibault, Karine; Calvino, Bernard; Dubacq, Sophie; Roualle-de-Rouville, Marie; Sordoillet, Vallier; Rivals, Isabelle; Pezet, Sophie

    2012-08-01

    Oxaliplatin is a third-generation platinum-based chemotherapy drug that has gained importance in the treatment of advanced metastatic colorectal cancer. Its dose-limiting side effect is the production of chronic peripheral neuropathy. Using a modified model of oxaliplatin-induced sensory neuropathy, we investigated plastic changes at the cortical level as possible mechanisms underlying the chronicity of pain sensation in this model. Changes in gene expression were studied using DNA microarray which revealed that when oxaliplatin-treated animals displayed clinical neuropathic pain symptoms, including mechanical and thermal hypersensitivity, approximately 900 were down-regulated in the somatosensory cortex. Because of the known role of potassium channels in neuronal excitability, the study further focussed on the down-regulation of these channels as the possible molecular origin of cortical hyperexcitability. Quantification of the magnitude of neuronal extracellular signal-regulated kinase (ERK) phosphorylation in cortical neurons as a marker of neuronal activity revealed a 10-fold increase induced by oxaliplatin treatment, suggesting that neurons of cortical areas involved in transmission of painful stimuli undergo a chronic cortical excitability. We further demonstrated, using cortical injection of lentiviral vector shRNA against Kv2.2, that down-regulation of this potassium channel in naive animals induced a sustained thermal and mechanical hypersensitivity. In conclusion, although the detailed mechanisms leading to this cortical excitability are still unknown, our study demonstrated that a cortical down regulation of potassium channels could underlie pain chronicity in this model of chemotherapy-induced neuropathic pain. PMID:22652385

  17. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma

    PubMed Central

    Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D.; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-01-01

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma. PMID:26427514

  18. Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

    PubMed Central

    Xiao, Lanbo; Tang, Min; Liu, Liyu; Li, Zijian; Deng, Mengyao; Sun, Lunquan; Cao, Ya

    2011-01-01

    Background The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. Results In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. Conclusions Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs. PMID:22096476

  19. Glucocorticoid mediates water avoidance stress-sensitized colon-bladder cross-talk via RSK2/PSD-95/NR2B in rats.

    PubMed

    Peng, Hsien-Yu; Hsieh, Ming-Chun; Lai, Cheng-Yuan; Chen, Gin-Den; Huang, Yi-Ping; Lin, Tzer-Bin

    2012-11-01

    Unexpected environmental and social stimuli could trigger stress. Although coping with stress is essential for survival, long-term stress impacts visceral functions, and therefore, it plays a role in the development and exacerbation of symptoms of gastrointestinal/urogenital disorders. The aim of this study is to characterize the role of corticosterone in stress-sensitized colon-bladder cross-talk, a phenomenon presumed to underlie the comorbidity of functional bowel and bladder disorders. Cystometry and protein/mRNA expression in the lumbosacral dorsal horn (L6-S1) in response to intracolonic mustard oil (MO) instillation were analyzed in female Wistar-Kyoto rats subjected to water avoidance stress (WAS; 1 h/day for 10 days) or sham stress (WAsham). Whereas it had no effect on baseline-voiding function, chronic stress upregulated plasma corticosterone concentration and dorsal horn spinal p90 ribosomal S6 kinase 2 (RSK2) protein/mRNA levels, and RSK2 immunoreactivity colocalized with NeuN-positive neurons. Intracolonic MO dose-dependently decreased intrercontraction intervals and threshold pressure, provoked spinal RSK2 and NR2B phosphorylation, and enhanced PSD-95-RSK2 and PSD-95-NR2B coupling. Intrathecal kaempferol (a RSK2 activation antagonist; 30 min before MO instillation), bilateral adrenalectomy (7 days prior the stress paradigm), and subcutaneous RU-38486 (a glucocorticoid receptor antagonist; 30 min daily before stress sessions), but not RU-28318 (a mineralocorticoid receptor antagonist), attenuated MO-induced bladder hyperactivity, protein phosphorylation, and protein-protein interactions in the WAS group. Our results suggest that stress-associated glucocorticoid release mediates WAS-dependent sensitization of colon-bladder cross-talk via the spinal RSK2/PSD-95/NR2B cascade and offer a possibility for developing pharmacological strategies for the treatment of stress-related pelvic pain. PMID:23125098

  20. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  1. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    SciTech Connect

    Song Jin; Jie Chunfa; Polk, Paula; Shridhar, Ravi; Clair, Timothy; Zhang, Jun; Yin, Lijia; Keppler, Daniel . E-mail: dkeppl@lsuhsc.edu

    2006-02-03

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression.

  2. NR2B subunit in the prefrontal cortex: A double-edged sword for working memory function and psychiatric disorders.

    PubMed

    Monaco, Sarah A; Gulchina, Yelena; Gao, Wen-Jun

    2015-09-01

    The prefrontal cortex (PFC) is a brain region featured with working memory function. The exact mechanism of how working memory operates within the PFC circuitry is unknown, but persistent neuronal firing recorded from prefrontal neurons during a working memory task is proposed to be the neural correlate of this mnemonic encoding. The PFC appears to be specialized for sustaining persistent firing, with N-methyl-D-aspartate (NMDA) receptors, especially slow-decay NR2B subunits, playing an essential role in the maintenance of sustained activity and normal working memory function. However, the NR2B subunit serves as a double-edged sword for PFC function. Because of its slow kinetics, NR2B endows the PFC with not only "neural psychic" properties, but also susceptibilities for neuroexcitotoxicity and psychiatric disorders. This review aims to clarify the interplay among working memory, the PFC, and NMDA receptors; demonstrate the importance of NR2B in the maintenance of persistent activity; understand the risks and vulnerabilities of how NR2B is related to the development of neuropsychiatric disorders; identify gaps that currently exist in our understanding of these processes; and provide insights regarding future directions that may clarify these issues. We conclude that the PFC is a specialized brain region with distinct delayed maturation, unique neuronal circuitry, and characteristic NMDA receptor function. The unique properties and development of NMDA receptors, especially enrichment of NR2B subunits, endow the PFC with not only the capability to generate sustained activity for working memory, but also serves as a major vulnerability to environmental insults and risk factors for psychiatric disorders. PMID:26143512

  3. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato.

    PubMed

    Pieczynski, Marcin; Marczewski, Waldemar; Hennig, Jacek; Dolata, Jakub; Bielewicz, Dawid; Piontek, Paulina; Wyrzykowska, Anna; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Konopka-Postupolska, Dorota; Krzeslowska, Magdalena; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2013-05-01

    Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA-hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water-deficit tolerance of crop plants. PMID:23231480

  4. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    SciTech Connect

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  5. Hyperosmotic Stimulus Down-regulates 1α, 25-dihydroxyvitamin D3-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

    PubMed Central

    Tian, Yu Shun; Jeong, Hyun Joo; Lee, Sang-Do; Kong, Seok Heui; Ohk, Seung-Ho; Yoo, Yun-Jung; Seo, Jeong-Taeg; Shin, Dong Min; Sohn, Byung-Wha

    2010-01-01

    The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects 1α, 25-dihydroxyvitamin D3 (1α,25(OH)2D3)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on 1α,25(OH)2D3-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of 1α,25(OH)2D3-induced tartrate-resistant acid phosphatase-positive multinucleated cells and 1α,25(OH)2D3-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor κB ligand (RANKL) and Runx2 expressions were down-regulated in response to 1α,25(OH)2D3. Knockdown of Runx2 inhibited 1α,25(OH)2D3-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of 1α,25(OH)2D3-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells. PMID:20631890

  6. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    PubMed

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression. PMID:27008697

  7. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    SciTech Connect

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  8. Isolation of up- or down-regulated genes in PPARgamma-expressing NIH-3T3 cells during differentiation into adipocytes.

    PubMed

    Okuno, Masaaki; Arimoto, Emi; Nishizuka, Makoto; Nishihara, Tsutomu; Imagawa, Masayoshi

    2002-05-22

    Adipocyte differentiation is a complex process in which the expression of many transcription factors and adipocyte-specific genes is regulated under a strict program. The peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the steroid/thyroid nuclear hormone receptor superfamily of ligand-activated transcription factors, is an important regulator of adipocyte gene expression and differentiation. In this study, we tried to identify downstream target genes of PPARgamma, by using PPARgamma-expressing cells and a subtractive cloning strategy, and isolated cDNA clones which were up-regulated or down-regulated by PPARgamma. Northern blot analyses revealed that the expression levels of the aldehyde dehydrogenase-2-like, type VI collagen alpha 3 subunit, cellular retinoic acid binding protein 1 and thrombospondin 1 are changed during the differentiation of mouse 3T3-L1 preadipocyte cells, indicating that these genes might be downstream targets of PPARgamma in adipocyte differentiation. PMID:12023027

  9. The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity.

    PubMed

    Decker, Jochen Martin; Krüger, Lars; Sydow, Astrid; Dennissen, Frank Ja; Siskova, Zuzana; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2016-04-01

    We report on a novel transgenic mouse model expressing human full-length Tau with the Tau mutation A152T (hTau(AT)), a risk factor for FTD-spectrum disorders including PSP and CBD Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis-sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short- or long-term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage-gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTau(AT) causes excitotoxicity mediated by NR2B-containing NMDA receptors due to enhanced extracellular glutamate. PMID:26931569

  10. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory.

    PubMed

    Cui, Zhenzhong; Feng, Ruiben; Jacobs, Stephanie; Duan, Yanhong; Wang, Huimin; Cao, Xiaohua; Tsien, Joe Z

    2013-01-01

    The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3-5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory. PMID:23301157

  11. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    PubMed Central

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression.

  12. The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress

    PubMed Central

    Secchi, Francesca; Zwieniecki, Maciej A.

    2013-01-01

    In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress. PMID:24379822

  13. Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression.

    PubMed

    Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng

    2016-08-01

    Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. PMID:27223053

  14. Down-regulation of FoxO-dependent c-FLIP expression mediates TRAIL-induced apoptosis in activated hepatic stellate cells.

    PubMed

    Park, Soo-Jung; Sohn, Hee-Young; Yoon, Jeongsook; Park, Sang Ick

    2009-10-01

    Activated hepatic stellate cells which contribute to liver fibrosis have represented an important target for antifibrotic therapy. In this study, we found that TRAIL inhibited PI3K/Akt-dependent FoxO phosphorylation and relocated FoxO proteins into the nucleus from the cytosol in activated human hepatic stellate LX-2 cells. The accumulated FoxO proteins in the nucleus led to down-regulation of c-FLIP(L/S) expression, resulting in the activation of apoptosis-related signaling molecules including the activation of caspase-8, -3, and Bid, as well as mitochondrial cytochrome c release. These results were supported by showing that siRNA-mediated knockdown of FoxO led to restoration of c-FLIP(L/S) expression and resistance to TRAIL-induced apoptosis after treatment of LX-2 cells with TRAIL. Furthermore, c-FLIP(L/S)-transfected LX-2 cells showed the decreased sensitivity to TRAIL-induced apoptosis. Collectively, our data suggest that sequential activation of FoxO proteins under conditions of suppressed PI3K/Akt signaling by TRAIL can down-regulate c-FLIP(L/S), consequently promoting TRAIL-induced apoptosis in LX-2 cells. Therefore, the present study suggests TRAIL may be an effective strategy for antifibrotic therapy in liver fibrosis. PMID:19470406

  15. In vitro mechanism for down-regulation of ERalpha expression by epigallocatechin gallate in ER+/PR+ human breast cancer cells

    PubMed Central

    De Amicis, Francesca; Russo, Alessandra; Avena, Paola; Santoro, Marta; Vivacqua, Adele; Bonofiglio, Daniela; Mauro, Loredana; Aquila, Saveria; Tramontano, Donatella; Fuqua, Suzanne AW; Andò, Sebastiano

    2015-01-01

    Scope Exposure of the breast to estrogens and other sex hormones is an important cancer risk factor and estrogen receptor down-regulators are attracting significant clinical interest. Epigallocatechin gallate (EGCG), a polyphenolic compound found in green tea, has gained considerable attention for its antitumor properties. Here we aimed to investigate the molecular mechanisms through which EGCG regulates ERα expression in ER+ PR+ breast cancer cells. Material and Methods Western blotting analysis, real time PCR and transient transfections of deletion fragments of the ERα gene promoter show that EGCG down-regulates ERα protein, mRNA and gene promoter activity with a concomitant reduction of ERα genomic and non genomic signal. These events occur through p38MAPK/CK2 activation, causing the release from Hsp90 of PR-B and its consequent nuclear translocation as evidenced by immunofluorescence studies. EMSA and ChIP assay reveal that, upon EGCG treatment, PR-B is recruited at the half PRE site on ERα promoter. This is concomitant with the formation of a corepressor complex containing NCoR and HDAC1 while RNA polymerase II is displaced. The events are crucially mediated by PR-B isoform, since they are abrogated with PR-B siRNA. Conclusions Our data provide evidence for a mechanism by which EGCG down-regulates ERα and explain the inhibitory action of EGCG on the proliferation of ER+ PR+ cancer cells tested. We suggest that the EGCG/PR-B signaling should be further exploited for clinical approach. PMID:23322423

  16. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

    PubMed

    Chen, Wen-Ying; Huang, Yi-Chun; Yang, Ming-Ling; Lee, Chien-Ying; Chen, Chun-Jung; Yeh, Chung-Hsin; Pan, Pin-Ho; Horng, Chi-Ting; Kuo, Wu-Hsien; Kuan, Yu-Hsiang

    2014-10-01

    Lipopolysaccharide (LPS), also called endotoxin, is the important pathogen of acute lung injury (ALI), which is a clinical syndrome that still lacks effective therapeutic medicine. Rutin belongs to vitamin P and possesses various beneficial effects. In this study, we investigate the potential protective effects and the mechanisms of rutin on LPS-induced ALI. Pre-administration with rutin inhibited LPS-induced arterial blood gas exchange and neutrophils infiltration in the lungs. LPS-induced expression of macrophage inflammatory protein (MIP)-2 and activation of matrix metalloproteinase (MMP)-9 were suppressed by rutin. In addition, the inhibitory concentration of rutin on phosphorylation of Akt was similar as MIP-2 expression and MMP-9 activation. In conclusion, rutin is a potential protective agent for ALI via suppressing the blood gas exchange and neutrophil infiltration. The mechanism of rutin is down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation. PMID:25091621

  17. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes.

    PubMed

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-01-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms. PMID:27225532

  18. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    PubMed Central

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-01-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms. PMID:27225532

  19. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  20. Microarray Analysis of Gene Expression Reveals that Cyclo-oxygenase-2 Gene Therapy Up-regulates Hematopoiesis and Down-regulates Inflammation During Endochondral Bone Fracture Healing

    PubMed Central

    Lau, K.-H. William; Popa, Nicoleta L.

    2014-01-01

    Background Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. Methods To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. Results The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. Conclusions The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap. PMID:25247155

  1. Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region

    PubMed Central

    Ortmann, Christina A.; Burchert, Andreas; Hölzle, Katharina; Nitsche, Andreas; Wittig, Burghardt; Neubauer, Andreas; Schmidt, Manuel

    2005-01-01

    Although the bcr-abl translocation has been shown to be the causative genetic aberration in chronic myeloid leukemia (CML), there is mounting evidence that the deregulation of other genes, such as the transcription factor interferon regulatory factor 4 (IRF-4), is also implicated in the pathogenesis of CML. Promoter methylation of CpG target sites or direct deletions/insertions of genes are mechanisms of a reversible or permanent silencing of gene expression, respectively. Therefore, we investigated whether IRF-4 promoter methylation or mutation may be involved in the regulation of IRF-4 expression in leukemia cells. Whereas promoter mutations or structural rearrangements could be excluded as a cause of altered IRF-4 expression in hematopoietic cells, the IRF-4 promoter methylation status was found to significantly influence IRF-4 transcription. First, treatment of IRF-4-negative lymphoid, myeloid and monocytic cell lines with the methylation-inhibitor 5-aza-2-deoxycytidine resulted in a time- and concentration-dependent increase of IRF-4 mRNA and protein levels. Second, using a restriction-PCR-assay and bisulfite-sequencing we identified specifically methylated CpG sites in IRF-4-negative but not in IRF-4-positive cells. Third, we clearly determined promoter methylation as a mechanism for IRF-4 down-regulation via reporter gene assays, but did not detect an association of methylational status and mRNA expression of DNA methyltransferases or methyl-CpG-binding proteins. Together, these data suggest CpG site-specific IRF-4 promoter methylation as a putative mechanism of down-regulated IRF-4 expression in leukemia. PMID:16396836

  2. SIRT1 attenuates PAF-induced MMP-2 production via down-regulation of PAF receptor expression in vascular smooth muscle cells.

    PubMed

    Kim, Yun H; Bae, Jin U; Lee, Seung J; Park, So Y; Kim, Chi D

    2015-09-01

    Silent mating type information regulation 2 homolog 1 (SIRT1) is known as a key regulator in the protection of various vascular disorders, however, no direct evidences have been reported in the progression of atherosclerosis. Considering the pivotal role of matrix metalloproteinase-2 (MMP-2) in plaque destabilization, this study investigated the role of SIRT1 on MMP-2 production in vascular smooth muscle cells (VSMCs) induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). In VSMCs stimulated with resveratrol, SIRT1 activator, PAF receptor (PAFR) was internalized and then its protein levels were diminished. It was attenuated in cells pretreated with proteasome or lysosome inhibitor. Also, the degradation of PAFR in SIRT1-stimulated cells was significantly attenuated by β-arrestin2 depletion. In cells treated with nicotinamide, SIRT1 deacetylase inhibitor, PAFR internalization by resveratrol or reSIRT1 was inhibited, demonstrating that deacetylation of SIRT1 is an important step in SIRT1-induced PAFR down-regulation. Moreover, PAF-induced MMP-2 production in VSMCs and aorta was attenuated by resveratrol. In the aorta of SIRT1 transgenic mice, the PAF-induced MMP-2 expression was prominently attenuated compared to that in wild type mice. Taken together, it was suggested that SIRT1 down-regulated PAFR in VSMCs via β-arrestin2-mediated internalization and degradation, leading to an inhibition of PAF-induced MMP-2 production. PMID:25967595

  3. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    PubMed

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170

  4. A peptide fraction from germinated soybean protein down-regulates PTTG1 and TOP2A mRNA expression, inducing apoptosis in cervical cancer cells.

    PubMed

    Robles-Ramírez, María del Carmen; Ramón-Gallegos, Eva; Mora-Escobedo, Rosalva; Torres-Torres, Nimbe

    2012-01-01

    The aim of this study was to evaluate the effect of a peptide fraction, obtained from a germinated soybean protein hydrolysate, on the viability, apoptosis and cancer related gene expression in HeLa cells. Soybean was germinated for 0-6 days and proteins were isolated from the seeds. Protein isolates, without ethanol-soluble phytochemicals, were hydrolyzed with digestive enzymes and their effect on growth in HeLa cells was evaluated. The most active hydrolysate was separated by ultrafiltration into five peptide fractions. A >10 kDa fraction was the most active against cancer cells. This fraction down-regulated PTTG1 and TOP2A mRNA expression (two genes considered as therapeutic targets) and induced apoptosis in cancer cells activating the caspase cascade and causing DNA fragmentation. Germinated soy protein isolates could be a bioactive ingredient of functional food. PMID:22545419

  5. Shu-Gan-Liang-Xue Decoction Simultaneously Down-regulates Expressions of Aromatase and Steroid Sulfatase in Estrogen Receptor Positive Breast Cancer Cells

    PubMed Central

    Fu, Xue-song; Li, Ping-ping

    2011-01-01

    Objective Estradiol (E2) plays an important role in the development of breast cancer. In postmenopausal women, the estrogen can be synthesized via aromatase (CYP19) pathway and steroid-sulfatase (STS) pathway in peripheral tissues, when the production in ovary has ceased. The objective of our study was to explore the effects of Shu-Gan-Liang-Xue Decoction (SGLXD) on the expressions of CYP19 and STS in estrogen receptor positive breast cancer MCF-7 and T47D cells. Methods The effects of SGLXD on the cell viability of MCF-7 and T47D were analyzed by MTT assay. By quantitative real-time RT-PCR and Western blot, we evaluated the mRNA and protein expressions of CYP19 and STS in MCF-7 and T47D cells after SGLXD treatment. Results By MTT assay, the cell viability rates of MCF-7 and T47D were significantly inhibited by SGLXD in a dose-dependent manner, the IC50 values were 40.07 mg/ml for MCF-7 cells and 25.62 mg/ml for T47D cells, respectively. As evidenced by real-time PCR and Western blot, the high concentrations of SGLXD significantly down-regulated the expressions of CYP19 and STS both in the transcript level and the protein level. Conclusion The results suggest that SGLXD is a potential dual aromatase-sulfatase inhibitor by simultaneously down-regulating the expressions of CYP19 and STS in MCF-7 and T47D cells. PMID:23467843

  6. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    SciTech Connect

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  7. A Common Variant of PROK1 (V67I) Acts as a Genetic Modifier in Early Human Pregnancy through Down-Regulation of Gene Expression

    PubMed Central

    Su, Mei-Tsz; Huang, Jyun-Yuan; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2016-01-01

    PROK1-V67I has been shown to play a role as a modifier gene in the PROK1-PROKR system of human early pregnancy. To explore the related modifier mechanism of PROK1-V67I, we carried out a comparison study at the gene expression level and the cell function alternation of V67I, and its wild-type (WT), in transiently-transfected cells. We, respectively, performed quantitative RT-PCR and ELISA assays to evaluate the protein and/or transcript level of V67I and WT in HTR-8/SV neo, JAR, Ishikawa, and HEK293 cells. Transiently V67I- or WT-transfected HTR-8/SV neo and HEK293 cells were used to investigate cell function alternations. The transcript and protein expressions were down-regulated in all cell lines, ranging from 20% to 70%, compared with WT. There were no significant differences in the ligand activities of V67I and WT with regard to cell proliferation, cell invasion, calcium influx, and tubal formation. Both PROK1 alleles promoted cell invasion and intracellular calcium mobilization, whereas they had no significant effects on cell proliferation and tubal formation. In conclusion, the biological effects of PROK1-V67I on cell functions are similar to those of WT, and the common variant of V67I may act as a modifier in the PROK1-PROKR system through down-regulation of PROK1 expression. This study may provide a general mechanism that the common variant of V67I, modifying the disease severity of PROK1-related pathophysiologies. PMID:26828479

  8. Targeting HCCR expression resensitizes gastric cancer cells to chemotherapy via down-regulating the activation of STAT3

    PubMed Central

    Zhang, Jun-Ling; Liu, Xiang-Zheng; Wang, Peng-Yuan; Chen, Guo-Wei; Jiang, Yong; Qiao, Shu-Kai; Zhu, Jing; Wang, Xin; Pan, Yi-Sheng; Liu, Yu-Cun

    2016-01-01

    The human cervical cancer oncogene (HCCR) has been found to be overexpressed in a variety of human cancers. However, the level of expression of HCCR and its biological function in gastric cancer are largely unknown. In this study, we evaluated HCCR expression in several gastric cancer cell lines and in one normal gastric mucosal cell line. We established a 5-FU-resistant gastric cancer cell subline, and we evaluated its HCCR expression. HCCR expression levels were high in gastric cancer lines, and expression was significantly increased in the 5-FU-resistant cancer cell subline. HCCR expression affected cell growth by regulating apoptosis in the cancer cells, and it had a positive correlation with p-STAT3 expression. Western blot and luciferase reporter assays showed that the activation of STAT3 upregulated HCCR expression in a positive feedback loop model. In vivo and in vitro studies showed that HCCR plays an important role in the apoptosis induced by 5-FU. Our data demonstrate that HCCR is probably involved in apoptosis and cancer growth and that it functions as a p-STAT3 stimulator in a positive feedback loop model. In gastric cancer cells, HCCR confers a more aggressive phenotype and resistance to 5-FU-based chemotherapy. PMID:27052330

  9. The cervical malignant cells display a down regulation of ER-α but retain the ER-β expression

    PubMed Central

    López-Romero, Ricardo; Garrido-Guerrero, Efraín; Rangel-López, Angélica; Manuel-Apolinar, Leticia; Piña-Sánchez, Patricia; Lazos-Ochoa, Minerva; Mantilla-Morales, Alejandra; Bandala, Cindy; Salcedo, Mauricio

    2013-01-01

    The human cervix is a tissue target of sex steroid hormones as estradiol (E2) which exerts its action through of the estrogen receptors alpha and beta (ER-α and ER-β). In this study we investigated the expression of ER-α and ER-β in human invasive cervical carcinomas using immunohistochemistry and RT-PCR analyses and compared with that observed in the corresponding normal tissue. The results show nuclear expression of ER-α mainly in the first third of normal cervical epithelium, however, decreased or absent expression were present in invasive cervical carcinoma, indicating that expression of ER-α is lost in cervical cancer. Nevertheless, by RT-PCR we were able to demonstrate mRNA expression of ER-α in invasive cervical tissues. These results suggest that loss of ER-α could be due to a mechanism of post-transcriptional and/or post-translational regulation of its gene during the progression to invasive carcinoma. On the other hand, ER-β was expressed in normal cervix with an expression pattern similar to ER-α. In addition to its nuclear localization, cytoplasmic immunoreaction of ER-β was present in the epithelium of invasive cervical carcinomas, suggesting an association between cytoplasmic ER-β expression and invasive phenotype in the cervical tumors. In summary, the results show that the cervical malignant cells tend to loss the ER-α but maintain the ER-β actively expressed. Loss of expression of ER-α in neoplastic tissue suggests that the estrogenic effects could be conducted through the ER-β in human neoplastic cervical tissue. More detailed studies are needed to confirm this suggestion and to determine the role of ER-β in cervical cancer. PMID:23923078

  10. CB1 Blockade Potentiates Down-Regulation of Lipogenic Gene Expression in Perirenal Adipose Tissue in High Carbohydrate Diet-Induced Obesity

    PubMed Central

    Gavito, Ana Luisa; Suárez, Juan; Pavón, Francisco Javier; Arrabal, Sergio; Romero-Cuevas, Miguel; Bautista, Dolores; Martínez, Ana; de Fonseca, Fernando Rodríguez; Serrano, Antonia; Baixeras, Elena

    2014-01-01

    De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in

  11. Depletion of mitochondrial DNA by down-regulation of deoxyguanosine kinase expression in non-proliferating HeLa cells

    SciTech Connect

    Franco, Maribel; Johansson, Magnus . E-mail: magnus.johansson@ki.se; Karlsson, Anna

    2007-07-15

    Purine deoxyribonucleotides required for mitochondrial DNA replication are either imported from the cytosol or derived from phosphorylation of deoxyadenosine or deoxyguanosine catalyzed by mitochondrial deoxyguanosine kinase (DGUOK). DGUOK deficiency has been linked to mitochondrial DNA depletion syndromes suggesting an important role for this enzyme in dNTP supply. We have generated HeLa cell lines with 20-30% decreased levels of DGUOK mRNA by the expression of small interfering RNAs directed towards the DGUOK mRNA. The cells with decreased expression of the enzyme showed similar levels of mtDNA as control cells when grown exponentially in culture. However, mtDNA levels rapidly decreased in the cells when cell cycle arrest was induced by serum starvation. DNA incorporation of 9-{beta}-D-arabino-furanosylguanine (araG) was lower in the cells with decreased deoxyguanosine kinase expression, but the total rate of araG phosphorylation was increased in the cells. The increase in araG phosphorylation was shown to be due to increased expression of deoxycytidine kinase. In summary, our findings show that DGUOK is required for mitochondrial DNA replication in resting cells and that small changes in expression of this enzyme may cause mitochondrial DNA depletion. Our data also suggest that alterations in the expression level of DGUOK may induce compensatory changes in the expression of other nucleoside kinases.

  12. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss

    PubMed Central

    Choi, Yun-Jung; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1α and Foxo3a) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL. PMID:26319214

  13. Lentiviral vector platform for improved erythropoietin expression concomitant with shRNA mediated host cell elastase down regulation.

    PubMed

    Dhamne, Hemant; Chande, Ajit G; Mukhopadhyaya, Robin

    2014-01-01

    Lentiviral vector (LV) mediated gene transfer holds great promise to develop stable cell lines for sustained transgene expression providing a valuable alternative to the conventional plasmid transfection based recombinant protein production methods. We report here making a third generation HIV-2 derived LV containing erythropoietin (EPO) gene expression cassette to generate a stable HEK293 cell line secreting EPO constitutively. A high producer cell clone was obtained by limiting dilution and was adapted to serum free medium. The suspension adapted cell clone stably produced milligram per liter quantities of EPO. Subsequent host metabolic engineering using lentiviral RNAi targeted to block an endogenous candidate protease elastase, identified through an in silico approach, resulted in appreciable augmentation of EPO expression above the original level. This study of LV based improved glycoprotein expression with host cell metabolic engineering for stable production of protein therapeutics thus exemplifies the versatility of LV and is of significant future biopharmaceutical importance. PMID:24325878

  14. microRNA-106b-mediated down-regulation of C1orf24 expression induces apoptosis and suppresses invasion of thyroid cancer

    PubMed Central

    Cerutti, Janete Maria

    2015-01-01

    We previously showed that C1orf24 expression is increased in thyroid carcinomas. Nonetheless, the mechanism underlying C1orf24 deregulation is not fully understood. It has been widely demonstrated that microRNAs are involved in post-transcriptional gene regulation in several diseases, including cancer. Using in silico prediction approach, five microRNAs that bind to the 3′-untranslated region (3′-UTR) of C1orf24 were identified. The expression of two selected microRNAs (miR-17-5p, miR-106b) and the expression of C1orf24 were tested in 48 benign and malignant thyroid lesions and in five thyroid carcinoma cell lines. miR-106b was down-regulated in thyroid cancer specimens and thyroid carcinoma cell lines, while C1orf24 expression was markedly increased. To demonstrate that miR-106b reduces C1orf24 expression, follicular (WRO) and papillary (TPC1) thyroid carcinoma cell lines were transiently transfected with miR-106b mimic. Ectopic expression of the miR-106b mimic significantly inhibits C1orf24 mRNA and protein expression in both WRO and TPC1 cells. Dual-luciferase report assays demonstrated that miR-106b directly targets C1orf24 by binding its 3′- UTR. Moreover, miR-106b-mediated down-regulation of C1orf24 expression increased apoptosis and inhibited migration. We additionally demonstrated that siRNA against C1orf24 significantly decreased its expression, inhibited cell migration and cell cycle progression while induced apoptosis. In summary, our findings not only provide new insights into molecular mechanism associated with C1orf24 overexpression in thyroid carcinomas but also show that C1orf24 might increase proliferation and cell migration. Thus, decreasing C1orf24 levels, by restoring miR-106b function, may have therapeutic implications. PMID:26317551

  15. 6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum suppresses histamine release and calcium influx via down-regulation of FcεRI α chain expression.

    PubMed

    Shim, Sun-Yup; Park, Jeong-Ro; Byun, Dae-Seok

    2012-05-01

    Mast cells and basophils are important effector cells in immunoglobulin-E (IgE)-mediated allergic reactions. Using the human basophilic KU812F cells, we assessed the inhibitory effects of 6-methoxyluteolin, isolated from Chrysanthemum zawadskii, in the FcεRI-mediated allergic reaction. We determined that 6-methoxyluteolin inhibited anti-FcεRI α chain antibody (CRA-1)-induced histamine release, as well as elevation of intracellular calcium concentration [Ca2+]i in a dose-dependent manner. Moreover, the inhibitory effects of 6-methoxyluteolin on the cell surface expression and the mRNA level of the FcεRI α chain were determined by flow cytometric analysis and reverse transcription-polymerase chain reaction (RTPCR), respectively. Therefore, these results show that 6- methoxyluteolin is a potent inhibitor of histamine release and calcium influx via down-regulation of the FcεRI α chain. PMID:22561855

  16. Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells

    SciTech Connect

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan . E-mail: susan.bonner-weir@joslin.harvard.edu

    2005-04-15

    We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

  17. The Ayurvedic drug Ksheerabala (101) ameliorates alcohol-induced neurotoxicity by down-regulating the expression of transcription factor (NFkB) in rat brain

    PubMed Central

    Rejitha, S.; Prathibha, P.; Madambath, Indira

    2015-01-01

    Introduction: Most of the pharmaceutical effects of alcohol are due to its accumulation in the brain. Ksheerabala (101) an Ayurvedic formulation mainly used against central nervous system disorders. Aim: To determine the antioxidant and neuroprotective effect of Ksheerabala (101) on alcohol-induced oxidative stress in rats. Materials and Methods: Male Albino rats of Sprague-Dawley strain were grouped into four; control, alcohol (4 g/kg), Ksheerabala (15 μL/1 ml milk/100 g) and Ksheerabala (15 μL/1 ml milk/100 g) + alcohol (4 g/kg). After the experimental period (90 days), the animals were sacrificed and the effect of Ksheerabala (101) was studied on oxidative stress, inflammatory markers, and induction of transcription factor in brain. Results were statistically analyzed by one-way ANOVA. Results: The activities of antioxidant enzymes and reduced glutathione which were decreased in alcohol-treated rats, increased significantly in co-administered groups. The lipid peroxidation products and protein carbonyls which were increased significantly in alcohol-treated rats decreased significantly in co-administered groups. The expression of gamma-glutamyl cysteine synthase decreased significantly in alcohol-treated rats and increased significantly in co-administered groups. The transcription factor nuclear factor-κB (NFκB) which was up-regulated in alcohol-treated rats was down-regulated in co-administered rats. The histopathology reinforced these results. Conclusion: Ksheerabala (101) attenuates alcohol-induced oxidative stress and down-regulates the expression of NFκB in rat brain. PMID:27313421

  18. Expression of the Bacterial Type III Effector DspA/E in Saccharomyces cerevisiae Down-regulates the Sphingolipid Biosynthetic Pathway Leading to Growth Arrest*

    PubMed Central

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N.; Barny, Marie-Anne

    2014-01-01

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. PMID:24828506

  19. The Dietary Bioflavonoid, Quercetin, Selectively Induces Apoptosis of Prostate Cancer Cells by Down-Regulating the Expression of Heat Shock Protein 90

    PubMed Central

    Aalinkeel, Ravikumar; Bindukumar, B.; Reynolds, Jessica L.; Sykes, Donald E.; Mahajan, Supriya D.; Chadha, Kailash C.; Schwartz, Stanley A.

    2010-01-01

    BACKGROUND Human and animal studies have suggested that diet-derived flavonoids, in particular quercetin may play a beneficial role by preventing or inhibiting oncogenesis, but the underlying mechanism remains unclear. The aim of this study is to evaluate the effect(s) of quercetin on normal and malignant prostate cells and to identify the target(s) of quercetin’s action. METHODOLOGY We addressed this question using cells in culture and investigated whether quercetin affects key biological processes responsible for tumor cell properties such as cell proliferation and apoptosis and also studied the effect of quercetin on the proteome of prostate cancer cells using difference gel electrophoresis (DIGE) to assess changes in the expression of relevant proteins. RESULTS Our findings demonstrate that quercetin treatment of prostate cancer cells results in decreased cell proliferation and viability. Furthermore, we demonstrate that quercetin promotes cancer cell apoptosis by down-regulating the levels of heat shock protein (Hsp) 90. Depletion of Hsp90 by quercetin results in decreased cell viability, levels of surrogate markers of Hsp90 inhibition (intracellular and secreted), induced apoptosis and activation of caspases in cancer cells but not in normal prostate epithelial cells. Knockdown of Hsp90 by short interfering RNA also resulted in induction apoptosis similar to quercetin in cancer cells as indicated by annexin V staining. CONCLUSION Our results demonstrate that quercetin down-regulates the expression of Hsp90 which, in turn, induces inhibition of growth and cell death in prostate cancer cells while exerting no quantifiable effect on normal prostate epithelial cells. PMID:18726985

  20. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest.

    PubMed

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne

    2014-06-27

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. PMID:24828506

  1. Melittin Restores PTEN Expression by Down-Regulating HDAC2 in Human Hepatocelluar Carcinoma HepG2 Cells

    PubMed Central

    Huang, Cheng; Meng, Xiao-Ming; Bian, Er-Bao; Li, Jun

    2014-01-01

    Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2) expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways. PMID:24788349

  2. Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    PubMed Central

    2009-01-01

    Background The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods Prostate CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion CD90+ prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development. PMID:19737398

  3. Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells.

    PubMed

    Shuang, Ting; Wang, Min; Shi, Cong; Zhou, Yingying; Wang, Dandan

    2015-10-01

    MiR-134 has been reported to have a role in the development and progression of various cancers. In this study, we found that miR-134 expression was significantly decreased in chemo-resistant serous epithelial ovarian cancer (EOC) patients. Over-expression of miR-134 enhanced the sensitivity of SKOV3-TR30 cells to paclitaxel, and increased paclitaxel-induced apoptosis. Further, Pak2 was identified as a direct target of miR-134, and Pak2-specific siRNA increased cell inhibition rate and promoted paclitaxal-induced apoptosis. By regulating Pak2 expression, miR-134 could mediate Bad phosphorylation at Ser112 and Ser136, which affected cell survival and apoptosis. In conclusion, our findings indicate that repression of miR-134 and consequent up-regulation of Pak2 might contribute to paclitaxel resistance. PMID:26363097

  4. Down-regulation of miR-503 expression predicate advanced mythological features and poor prognosis in patients with NSCLC

    PubMed Central

    Liu, Lei; Qu, Weiqing; Zhong, Zhaokun

    2015-01-01

    Objective: We aimed to explore what impact miR-503 has on the prognosis of patients with non-small cell lung cancer (NSCLC). Methods: Cancer and matched non-malignant lung tissue specimens were collected from 109 patients who underwent surgery in Tanisha Hospital from Jun 2006 to July 2013. Overall survival (OS) curves were analyzed using the Lapland-Meier method, and the differences were examined using log-rank tests. Cox proportional- hazards regression analysis was applied in order to estimate univariate and multivariate hazard ratios for OS. Results: The relative expression of miR-503 in NSCLC tissues (0.366 ± 0.130) was significantly lower than that in matched noncancerous lung tissues (1.667 ± 1.047, P < 0.01). Statistically significant association was observed between miR-503 expression and lymphatic invasion (P = 0.005), distant metastasis (P = 0.002), TNM stage (P = 0.008), and tumor grade (P = 0.043). Lapland Meier analysis clearly illustrated that the patients with the lower expression of miR-503 had a worse outcome compared to patients with higher miR-503 expression (P = 0.004). Furthermore, multivariate analysis revealed that miR-503 expression level was an independent prognostic factor for overall survival (HR = 3.992, 95% CI: 2.276-9.872; P = 0.018) in NSCLC. Conclusion: In patients with NSCLC, low miR-503 expression is an independent prognostic factor. PMID:26191272

  5. Role of PPARα in down-regulating AGE-induced TGF-β and MMP-9 expressions in chondrocytes.

    PubMed

    Wang, J; Wang, G; Sun, G W

    2016-01-01

    Peroxisome proliferator-activated receptor is closely associated with the pathogenesis of osteoarthritis. The level of exogenous advanced glycation end-products (AGEs) in articular cartilage is highly associated with the severity of osteoarthritic lesions. However, their interactions and role in promoting osteoarthritisprogression remain unclear. Here, we investigated the effect of AGEs on transforming growth factor (TGF)-β and matrix metalloproteinase (MMP)-9 expression, and discussed the correlation between AGEs and osteoarthritis, possible signaling pathways and mechanism in rabbit chondrocytes. TGF-β and MMP-9 mRNA and protein expression, catalase (CAT) and superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and reactive oxygen species (ROS) levels were analyzed in chondrocytes treated with different concentrations of AGEs using RT-PCR and/or western blot; we detected NF-κB nuclear translocation by immunofluorescence. AGE treatment significantly increased TGF-β and MMP-9 mRNA and protein expression compared to controls (P < 0.01) in a dose-dependent manner (highest at 100 μg/mL). AGE-induced TGF-β and MMP-9 expressions in chondrocytes were significantly inhibited by anti-RAGE and PDTC (0.1 mM) treatment (P < 0.01). Furthermore, AGE-treatment significantly decreased CAT and SOD activity and increased MDA levels in a concentration-dependent manner compared to controls (P < 0.05), significantly promoting NF-κB nuclear translocation. AGE significantly inhibited the increased expression of TGF-β and MMP- 9, and induced chondrocyte damage. Its mechanism is associated with RAGE activation, increased ROS expression, and activation of the NF- κB signaling pathways. PMID:27173350

  6. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction

    PubMed Central

    Lee, Chiang-Wen; Lin, Zih-Chan; Hu, Stephen Chu-Sung; Chiang, Yao-Chang; Hsu, Lee-Fen; Lin, Yu-Ching; Lee, I-Ta; Tsai, Ming-Horng; Fang, Jia-You

    2016-01-01

    We explored the regulation of filaggrin, cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) expression induced by urban particulate matter (PM) in human keratinocytes. In addition, we investigated the signaling pathways involved in PM-induced effects on COX2/PGE2 and filaggrin. PMs induced increases in COX2 expression and PGE2 production, and decreased filaggrin expression. These effects were attenuated by pretreatment with COX2 inhibitor and PGE2 receptor antagonist, or after transfection with siRNAs of the aryl hydrocarbon receptor (AhR), gp91phox and p47phox. Furthermore, PM-induced generation of reactive oxygen species (ROS) and NADPH oxidase activity was attenuated by pretreatment with an AhR antagonist (AhRI) or antioxidants. Moreover, Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38, and JNK, which then activated the downstream molecules NF-κB and AP-1, respectively. In vivo studies in PMs-treated mice showed that AhRI and apocynin (a Nox2 inhibitor) had anti-inflammatory effects by decreasing COX2 and increasing filaggrin expression. Our results reveal for the first time that PMs-induced ROS generation is mediated through the AhR/p47 phox/NADPH oxidase pathway, which in turn activates ERK1/2, p38/NF-κB and JNK/AP-1, and which ultimately induces COX2 expression and filaggrin downregulation. Up-regulated expression of COX2 and production of PGE2 may lead to impairment of skin barrier function. PMID:27313009

  7. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction.

    PubMed

    Lee, Chiang-Wen; Lin, Zih-Chan; Hu, Stephen Chu-Sung; Chiang, Yao-Chang; Hsu, Lee-Fen; Lin, Yu-Ching; Lee, I-Ta; Tsai, Ming-Horng; Fang, Jia-You

    2016-01-01

    We explored the regulation of filaggrin, cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) expression induced by urban particulate matter (PM) in human keratinocytes. In addition, we investigated the signaling pathways involved in PM-induced effects on COX2/PGE2 and filaggrin. PMs induced increases in COX2 expression and PGE2 production, and decreased filaggrin expression. These effects were attenuated by pretreatment with COX2 inhibitor and PGE2 receptor antagonist, or after transfection with siRNAs of the aryl hydrocarbon receptor (AhR), gp91phox and p47phox. Furthermore, PM-induced generation of reactive oxygen species (ROS) and NADPH oxidase activity was attenuated by pretreatment with an AhR antagonist (AhRI) or antioxidants. Moreover, Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38, and JNK, which then activated the downstream molecules NF-κB and AP-1, respectively. In vivo studies in PMs-treated mice showed that AhRI and apocynin (a Nox2 inhibitor) had anti-inflammatory effects by decreasing COX2 and increasing filaggrin expression. Our results reveal for the first time that PMs-induced ROS generation is mediated through the AhR/p47 phox/NADPH oxidase pathway, which in turn activates ERK1/2, p38/NF-κB and JNK/AP-1, and which ultimately induces COX2 expression and filaggrin downregulation. Up-regulated expression of COX2 and production of PGE2 may lead to impairment of skin barrier function. PMID:27313009

  8. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  9. Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated PRDX6 expression

    PubMed Central

    Son, Dong Ju; Song, Ho Sub; Kim, Jung Hyun; Ko, Seong Cheol; Song, Min Jong; Lee, Won Hyoung; Yoon, Joo Hee; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    Snake venom toxin (SVT) from Vipera lebetina turanica contains a mixture of different enzymes and proteins. Peroxiredoxin 6 (PRDX6) is known to be a stimulator of lung cancer cell growth. PRDX6 is a member of peroxidases, and has calcium-independent phospholipase A2 (iPLA2) activities. PRDX6 has an AP-1 binding site in its promoter region of the gene. Since AP-1 is implicated in tumor growth and PRDX6 expression, in the present study, we investigated whether SVT inhibits PRDX6, thereby preventing human lung cancer cell growth (A549 and NCI-H460) through inactivation of AP-1. A docking model study and pull down assay showed that SVT completely fits on the basic leucine zipper (bZIP) region of c-Fos of AP-1. SVT (0–10 μg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decreased cIAP and Bcl2 expression via inactivation of AP-1. In an xenograft in vivo model, SVT (0.5 mg/kg and 1 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression, but increased expression of proapoptotic proteins. These data indicate that SVT inhibits tumor growth via inhibition of PRDX6 activity through interaction with its transcription factor AP-1. PMID:26061816

  10. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses.

    PubMed

    Odokonyero, Denis; Mendoza, Maria R; Alvarado, Veria Y; Zhang, Jiantao; Wang, Xiaofeng; Scholthof, Herman B

    2015-12-01

    The present study aimed to analyze the contribution of Nicotiana benthamiana ARGONAUTE2 (NbAGO2) to its antiviral response against different viruses. For this purpose, dsRNA hairpin technology was used to reduce NbAGO2 expression in transgenic plants as verified with RT-PCR. This reduction was specific because the expression of other NbAGOs was not affected, and did not cause obvious developmental defects under normal growth conditions. Inoculation of transgenic plants with an otherwise silencing-sensitive GFP-expressing Tomato bushy stunt virus (TBSV) variant resulted in high GFP accumulation because antiviral silencing was compromised. These transgenic plants also exhibited accelerated spread and/or enhanced susceptibility and symptoms for TBSV mutants defective for P19 or coat protein expression, other tombusviruses, Tobacco mosaic virus, and Potato virus X; but not noticeably for Foxtail mosaic virus. These findings support the notion that NbAGO2 in N. benthamiana can contribute to antiviral defense at different levels. PMID:26454664

  11. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits. PMID:23127499

  12. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    SciTech Connect

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  13. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line.

    PubMed

    Kulkarni, Nikhil Nitin; Gunnarsson, Hörður Ingi; Yi, Zhiqian; Gudmundsdottir, Steinunn; Sigurjonsson, Olafur E; Agerberth, Birgitta; Gudmundsson, Gudmundur H

    2016-02-01

    Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCi NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects. PMID:26358366

  14. Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging.

    PubMed Central

    Petropoulos, I; Mary, J; Perichon, M; Friguet, B

    2001-01-01

    Peptide methionine sulphoxide reductase (PMSR, EC 1.8.4.6), the msrA or pmsR gene product, is a ubiquitous enzyme catalysing the reduction of methionine sulphoxide to methionine in proteins. Decreased expression and/or activity of the PMSR with age could explain, at least in part, the accumulation of oxidized protein observed upon aging. To test this hypothesis, the rat pmsR cDNA was cloned and sequenced. The recombinant protein was expressed, its catalytic activity checked with a synthetic substrate and polyclonal antibodies were raised against recombinant PMSR. The expression of the pmsR gene and protein as well as its catalytic activity were then analysed as a function of age in the rat brain and in two organs that express the most PMSR, liver and kidney. It appears that pmsR gene expression decreases with age in liver and kidney as early as 18 months, whereas protein level and protein activity are reduced in the three organs at the very end of the life of the rat (26 months). These results suggest that the down-regulation of PMSR can contribute to the accumulation of oxidized protein that has been associated with the aging process. PMID:11311146

  15. Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis.

    PubMed

    Dimas, K; Demetzos, C; Vaos, V; Ioannidis, P; Trangas, T

    2001-06-01

    Sclareol (1) and ent-3beta-hydroxy-13-epi-manoyl oxide (2) belong to the labdane type diterpenes. They were isolated from the leaves and from the fruits of Cistus creticus subsp. creticus, and were found to be active against human leukemic cell lines. Compound 2 was converted to its thiomidazolide derivative (3). Compounds 1 and 3 were found to induce apoptotic cell death in human T-cell leukemia lines and to interfere with their cell cycle, arresting cells at G(0/1) phase. Apoptosis can involve the activation and/or suppression of critical genes such as c-myc whose reduction or its inappropriate expression can be associated with induction of cell death and bcl-2 whose activation prevents apoptosis in the latter case. In order to detect any concomitant effect (1 and 3) upon c-myc and bcl-2 oncogene expression, we performed Western blot analysis to determine the levels of expression of these two genes upon treatment with the above compounds. Western blot analysis showed that of c-myc proto-oncogene levels were markedly reduced before massive apoptosis ensued in H33AJ-JA1 and MOLT3 cells, while bcl-2 expression remained unaffected. Thus, induction of apoptosis due to compounds 1 and 3 in these T-cell leukemic cell lines is preceded by c-myc down regulation and furthermore sustained bcl-2 expression does not rescue cells from apoptosis under the conditions used. PMID:11337016

  16. Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: Involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway.

    PubMed

    Gao, Xin; Zhuang, Fu-Zhi; Qin, Shou-Jun; Zhou, Li; Wang, Yun; Shen, Qing-Feng; Li, Mei; Villarreal, Michelle; Benefield, Lauren; Gu, Shu-Ling; Ma, Teng-Fei

    2016-09-30

    Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments. To address this, we used chronic unpredictable mild stress (CUMS) to establish a model of depression for ECT treatment. Our Morris water maze and sucrose preference test results suggest that DEX alleviates ECT-induced learning and memory impairments without altering the antidepressant efficacy of ECT. To further investigate the underlying mechanisms of DEX, hippocampal expression of NR2B, p-ERK/ERK, p-CREB/CREB, and BDNF were quantified by western blotting. These results show that DEX suppresses over-activation of NR2B and enhances phosphorylation of ERK1/2 in the hippocampus of ECT-treated depressed rats. Furthermore, DEX had no significant effect on ECT-induced increases in p-CREB and BDNF. Overall, our findings suggest that DEX ameliorates ECT-induced learning and memory impairments in depressed rats via the NR2B-ERK signaling cascade. Moreover, CREB/BDNF seems not appear to participate in the cognitive protective mechanisms of DEX during ECT treatment. PMID:27455425

  17. Down-regulation of STAT3 expression using vector-based RNA interference promotes apoptosis in Hepatocarcinoma cells.

    PubMed

    Zhang, Junwei; Du, Jiajun; Liu, Qi; Zhang, Yi

    2016-08-01

    In this study, we followed a DNA vector-based RNAi approach to silence the signal transducer and activator of transcription 3 (STAT3) expression in Bel-7402 cells, to explore how the Janus kinase (JAK)/STAT3 signaling pathway influences the apoptosis of hepatocarcinoma cells. According to GenBank's STAT3 cDNA, the plasmid pGCsi.U6/neoRFP STAT3, which was designed for expression of STAT3 small interfering RNA (siRNA), was constructed and synthesized, and then transfected into Bel-7402 cells using Lipofectamine 2000. Cells with or without siRNA transfection were treated in wells. The apoptotic rate was detected by flow cytometry (FCM) and by staining with the Annexin V/propidium iodide (PI) apoptosis detection kit. Simultaneously, the mitochondrial membrane potential (ΔΨm) was visualized by JC-1 fluorescence staining and observed using the inverted fluorescence microscope. Furthermore, the expression of caspase-3 protein was analyzed by Western blotting. The results showed that treatment with STAT3 siRNA displayed effects in the Bel-7402 cells, causing a significantly increased apoptotic ratio (P < 0.05). The mitochondrial membrane potential of the STAT3 siRNA group, observed by the JC-1 fluorescence staining, decreased significantly. The protein expression of active caspase-3 increased with STAT3 siRNA treatment, and was significantly higher than that of the control group (P < 0.05). STAT3 gene-silencing significantly improves the apoptotic effect against Bel-7402 cells. PMID:26134753

  18. Glycyrrhizin down-regulates CCL2 and CXCL2 expression in cerulein-stimulated pancreatic acinar cells

    PubMed Central

    Panahi, Yaser; Fakhari, Shohreh; Mohammadi, Mehdi; Rahmani, Mohammad Reza; Hakhamaneshi, Mohammad Saeid; Jalili, Ali

    2015-01-01

    Many inflammatory chemokines release from leukocytes and pancreatic acinar cells which play important roles in pathophysiology of acute pancreatitis (AP). Of interests, CXCL2 and CCL2 have been shown elevated in the plasma of patients with AP. We have recently found that Glycyrrhizin (GZ) attenuates AP in mice model. In this study, we aimed to investigate the direct effect of GZ on expression levels of CCL2 and CXCl2 in isolated pancreatic acinar cells. Isolated acinar cells were isolated from the pancreas of healthy C57BL/6 mice, stimulated with cerulein (10-7 M) and then treated with either PBS or different doses of GZ. The levels of CCL2 and CXCL2 expression at mRNA were assessed by qRT-PCR. Conditioned media from supernatants of each cells culture condition were collected for detection of CCL2 and CXCL2 levels by ELISA. First, we observed that cerulein significantly upregulates both cytokines expression in acinar cells. Moreover, we treated the acinar cells with GZ and found that GZ significantly downregulates CCL2 and CXCL2 expression at mRNA levels in a dose-dependent manner. Consistently, the conditioned media of GZ-treated cells contained a significant lower levels of CCL2 and CXCL2 (p<0.05). In conclusion, our data demonstrate for the first time that GZ directly downregulates CCL2 and CXCL2 levels in cerulein-stimulated acinar cells which may explain the mechanism of therapeutic effects of GZ in cerulein-induced AP in mice. PMID:26155433

  19. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats

    PubMed Central

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F.; Díaz-Véliz, Gabriela F.; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  20. PPARgamma inhibits osteogenesis via the down-regulation of the expression of COX-2 and iNOS in rats.

    PubMed

    Lin, Tzu-Hung; Yang, Rong-Sen; Tang, Chih-Hsin; Lin, Chih-Peng; Fu, Wen-Mei

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor, is considered as an anti-osteoblastic factor associated with adiposity and the elderly osteoporosis due to a defect in osteoblastogenesis. We have found that oral administration of PPARgamma activator rosiglitazone decreased tibia BMD and serum ALP but left serum calcium and osteoclast marker C-terminal telopeptide unaffected. In addition, we examined the inhibitory mechanisms of PPARgamma on the bone formation by using PPARgamma activators ciglitazone and 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2). Our data indicated that PPARgamma ligands decreased both mineralized bone nodules and alkaline phosphatase (ALP) activities in cultured primary osteoblasts. Reverse transcription polymerase chain reaction (RT-PCR) showed that the expression of bone morphogenetic protein-2 (BMP-2) and osteocalcin (OCN) was inhibited by ciglitizone and 15d-PGJ2. Furthermore, PPARgamma ligands inhibited NF-kappaB associated downstream COX-2 and iNOS osteogenic signaling. The ultrasound (US)-induced elevation of COX-2 and iNOS expression and nitric oxide (NO) production were attenuated in the presence of PPARgamma ligands. Furthermore, local administration of PPARgamma ligands into the metaphysis of rat tibia decreased the bone volume in secondary spongiosa. These results suggest that the activation of PPARgamma inhibits osteoblastic differentiation and the expression of several anabolic mediators involved in bone formation. These data may reflect osteoporosis and less bone formation in the aging people and patients treated with thiazolidinediones. PMID:17669705

  1. High Glucose Induces Down-Regulated GRIM-19 Expression to Activate STAT3 Signaling and Promote Cell Proliferation in Cell Culture

    PubMed Central

    Li, Yong-Guang; Han, Bei-Bei; Li, Feng; Yu, Jian-Wu; Dong, Zhi-Feng; Niu, Geng-Ming; Qing, Yan-Wei; Li, Jing-Bo; Wei, Meng; Zhu, Wei

    2016-01-01

    Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the

  2. Down regulation by p60v-src of genes specifically expressed and developmentally regulated in postmitotic quail neuroretina cells.

    PubMed Central

    Guermah, M; Gillet, G; Michel, D; Laugier, D; Brun, G; Calothy, G

    1990-01-01

    The avian neuroretina (NR) is composed of photoreceptors and different neurons that are derived from proliferating precursor cells. Neuronal differentiation takes place after terminal mitosis. We have previously shown that differentiating NR cells can be induced to proliferate by infection with Rous sarcoma virus (RSV) and that cell multiplication requires expression of a functional v-src gene. We speculated that the quiescence of NR cells could be determined by specific genes. Cell proliferation could then result from the negative regulation of these genes by the v-src protein. By differential hybridization of a cDNA library, we isolated eight clones corresponding to genes expressed in postmitotic NR cells from 13-day-old quail embryos, transcriptional levels of which are significantly reduced in NR cells induced to proliferate by tsNY68, an RSV mutant with temperature-sensitive mitogenic activity. Partial sequencing analysis indicated that one RNA encoded the calmodulin gene, whereas the other seven showed no similarity to known sequences. By using v-src mutants that induce NR cell proliferation in the absence of transformation, we showed that transcription of six genes was negatively regulated by the v-src protein and that of four genes was correlated with NR cell quiescence. We also report that a subset of genes are specifically transcribed in neural cells and developmentally regulated in the NR. These results indicate that the v-src protein regulates expression of genes likely to play a role in the control of neural cell growth or differentiation. Images PMID:2162475

  3. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity

    PubMed Central

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. PMID:27432352

  4. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity.

    PubMed

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. PMID:27432352

  5. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference

    PubMed Central

    CAO, Huibi; WANG, Anan; MARTIN, Bernard; KOEHLER, David R.; ZEITLIN, Pamela L.; TANAWELL, A. Keith; HU, Jim

    2015-01-01

    Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation. Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr−/−; C38, Cftr-corrected) stimulated with TNF-α, IL-1β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of IκB or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases. PMID:15740640

  6. Reduction in bile acid pool causes delayed liver regeneration accompanied by down-regulated expression of FXR and c-Jun mRNA in rats.

    PubMed

    Dong, Xiushan; Zhao, Haoliang; Ma, Xiaoming; Wang, Shiming

    2010-02-01

    The present study attempted to examine the effects of bile acid pool size on liver regeneration after hepatectomy. The rats were fed on 0.2% cholic acid (CA) or 2% cholestyramine for 7 days to induce a change in the bile acid size, and then a partial hepatectomy (PH) was performed. Rats fed on the normal diet served as the controls. Measurements were made on the rate of liver regeneration, the labeling indices of PCNA, the plasma total bile acids (TBA), and the mRNA expression of cholesterol 7alpha-hydroxylase (CYP7A1), farnesoid X receptor (FXR), and transcription factor c-Jun or c-fos. As compared with the normal and CA groups, the rate of liver regeneration was decreased on the day 3, and 7 after PH; the peak of the labeling indices of PCNA was delayed and the labeling indices were significantly reduced on the day 1; the TBA were also decreased on the day 1; the expression of FXR decreased but that of CYP7A1 increased at any given time; at the 1st, and 3rd h, the expression of c-Jun was declined in the cholestyramine group. The reduction in the bile acid pool size was found to delay the liver regeneration, which may be caused by the down-regulation of FXR and c-Jun expression. PMID:20155456

  7. 1,25-hydroxyvitamin D relieves colitis in rats via down-regulation of toll-like receptor 9 expression

    PubMed Central

    Dai, Zhang-han; Tan, Bei; Yang, Hong; Wang, Ou; Qian, Jia-ming; Lv, Hong

    2015-01-01

    Aim To investigate the therapeutic and immunoregulatory effects of 1,25-dihydroxyvitamin D (1,25(OH)D3) on 2,4,6-trinitrobenzenesulfonic acid (TNBS) -induced colitis in rats. Methods Experimental colitis induced by enema administration of TNBS plus ethanol was treated with 5-aminosalicylic acid (5-ASA) and/or 1,25(OH)D3. Disease activity was measured using the disease activation index (DAI), colon macroscopic damage index (CMDI), histological colonic damage score, and myeloperoxidase (MPO) activity. The expression of toll-like receptor 9 (TLR9) in the colon was determined by reverse transcription-polymerase chain reaction and immunohistochemistry. Results Rats with TNBS-induced colitis had significantly elevated DAI, CMDI, histological colonic damage score, and MPO activity (all P < 0.001) compared to rats without colitis. Treatment with 5-ASA or 1,25(OH)D3 ameliorated colitis by lowering CMDI (P = 0.049, P = 0.040, respectively), histological colonic damage score (P = 0.010, P = 0.005, respectively), and MPO activity (P = 0.0003, P = 0.0013, respectively) compared with the TNBS group. Combined treatment with 5-ASA and 1,25(OH)D3 significantly decreased MPO activity (P = 0.003). 1,25(OH)D3 attenuated colitis without causing hypercalcemia or renal insufficiency. TNBS significantly increased the number of TLR9 positive cells compared to control (P < 0.010), while 5-ASA, 1,25(OH)D3, and combined treatment with 5-ASA and 1,25(OH)D3 significantly decreased it compared to TNBS group (all P < 0.010). In TNBS group a moderate correlation was observed between MPO activity and the number of TLR9-positive cells (r = 0.654, P < 0.001). Conclusion TLR9 expression correlates with the extent of inflammation in TNBS-induced colitis. 1,25(OH)D3 relieves this inflammation possibly by decreasing TLR9 expression. PMID:26718757

  8. Difluorinated-Curcumin (CDF) Restores PTEN Expression in Colon Cancer Cells by Down-Regulating miR-21

    PubMed Central

    Roy, Sanchita; Yu, Yingjie; Padhye, Subhash B.; Sarkar, Fazlul H.; Majumdar, Adhip P.N.

    2013-01-01

    Despite recent advancement in medicine, nearly 50% of patients with colorectal cancer show recurrence of the disease. Although the reasons for the high relapse are not fully understood, the presence of chemo- and radiotherapy-resistant cancer stem/stem-like cells, where many oncomirs like microRNA-21 (miR-21) are upregulated, could be one of the underlying causes. miR-21 regulates the processes of invasion and metastasis by downregulating multiple tumor/metastatic suppressor genes including PTEN (phosphatase and tensin homolog). Tumor suppressor protein PTEN controls self-renewal of stem cells. Indeed, our current data demonstrate a marked downregulation of PTEN in SCID mice xenografts of miR-21 over-expressing colon cancer HCT116 cells. Colonospheres that are highly enriched in cancer stem/stem like cells reveal increased miR-21 expression and decreased PTEN. Difluorinated curcumin (CDF), a novel analog of the dietary ingredient curcumin, which has been shown to inhibit the growth of 5-Flurouracil + Oxaliplatin resistant colon cancer cells, downregulated miR-21 in chemo-resistant colon cancer HCT116 and HT-29 cells and restored PTEN levels with subsequent reduction in Akt phosphorylation. Similar results were also observed in metastatic colon cancer SW620 cells. Since PTEN-Akt confers drug resistance to different malignancies including colorectal cancer, our observation of normalization of miR-21-PTEN-Akt pathway by CDF suggests that the compound could be a potential therapeutic agent for chemotherapy-resistant colorectal cancer. PMID:23894315

  9. NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation.

    PubMed

    Zhang, Zhihua; Wang, Yongfu; Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2015-10-01

    N-methyl d-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using an ex vivo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (non-Tg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices. Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both non-Tg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage. PMID:26232180

  10. Extreme value theory in analysis of differential expression in microarrays where either only up- or down-regulated genes are relevant or expected

    PubMed Central

    Ivanek, Renata; Gröhn, Yrjö T.; Wells, Martin T.; Raengpradub, Sarita; Kazmierczak, Mark J.; Wiedmann, Martin

    2013-01-01

    Summary We propose an empirical Bayes method based on the extreme value theory (EVT) (BE) for the analysis of data from spotted microarrays where the interest of the investigator (e.g. to identify up-regulated gene markers of a disease) or the design of the experiment (e.g. in certain ‘wild-type versus mutant’ experiments) limits identification of differentially expressed genes to those regulated in a single direction (either up or down). In such experiments, unlike in genome-wide microarrays, analysis is restricted to the tail of the distribution (extremes) of all the genes in the genome. The EVT provides a platform to account for this extreme behaviour, and is therefore a natural candidate for inference about differential expression. We compared the performance of the developed BE method with two other empirical Bayes methods on two real ‘wild-type versus mutant’ datasets where a single direction of regulation was expected due to experimental design, and in a simulation study. The BE method appears to have a better fit to the real data. In the analysis of simulated data, the BE method showed better accuracy and precision while being robust to different characteristics of microarray experiments. The BE method, therefore, seems promising and useful for inference about differential expression in microarrays where either only up- or down-regulated genes are relevant or expected. PMID:18840309

  11. Over-expression of microRNA-223 inhibited the proinflammatory responses in Helicobacter pylori-infection macrophages by down-regulating IRAK-1.

    PubMed

    Wang, Jianjun; Wu, Jianhong; Cheng, Yang; Jiang, Yibiao; Li, Guangxin

    2016-01-01

    MicroRNA-223 plays an important role in the inflammatory response of macrophages. Recent studies have identified that miR-223 was highly expressed in H. pylori infection macrophages, the significance of the elevation, however, has not yet been investigated. In this study, we analyzed the impact of elevated miR-233 to macrophage inflammatory response and possible mechanisms. We found that miR-223 not only could inhibit the expression of inflammatory cytokines including IL-6, IL-8, IL-12 and TNF-α, but also was able to decrease the expression of CD40, CD68, CD80, and CD163. Furthermore, proteins relating to inflammatory signal pathways, such as IRAK-1, NF-κB and MAPK, in H. pylori infected macrophages were down-regulated. Taken together, these results indicated that miR-223 may act as an inflammatory inhibitory factor in H. pylori infected macrophages by IRAK-1, NF-κB or MAPK signal pathways. These findings contribute to the understanding of miR-223 in macrophages inflammatory responses induced by H. pylori. PMID:27158353

  12. Hoxb-5 down regulation alters Tenascin-C, FGF10 and Hoxb gene expression patterns in pseudoglandular period fetal mouse lung.

    PubMed

    Volpe, MaryAnn V; Ramadurai, Sujatha M; Pham, Lucia D; Nielsen, Heber C

    2007-01-01

    Organ-specific patterning is partly determined by Hox gene regulatory interactions with the extracellular matrix (ECM), cell adhesion and fibroblast growth factor (FGFs) signaling pathways but coordination of these mechanisms in lung development is unknown. We have previously shown that Hoxb-5 affects airway patterning during lung morphogenesis. Hoxb-5 regulation in fetal lung affects ECM expression of tenascin-C and alters FGF10 spatial and cellular expression. To test this hypothesis, gestational day 13.5 (Gd13.5) fetal mouse lung fibroblasts and whole lungs were cultured with Hoxb-5-specific small interfering RNA (siRNA). Western blots showed that siRNA-down regulation of Hoxb-5 led to decreased tenascin-C and FGF10 and was associated with increased Hoxb-4 and decreased Hoxb-6 protein levels. Hoxa-5 protein levels were not affected. Hoxb-5 siRNA-treated whole lung cultures had a significant decrease in total lung and peripheral branching region surface area. Immunostaining showed negligible levels of Hoxb-5 protein and tenascin-C, and loss of FGF10 spatial restriction. We conclude that Hoxb-5 helps regulate lung airway development through modulation of ECM expression of tenascin-C. ECM changes induced by Hoxb-5 may affect mesenchymal-epithelial cell signaling to alter spatial and cellular restriction of FGF10. Hoxb-5 may also affect lung airway branching indirectly by cross regulation of other Hoxb genes. PMID:17127343

  13. Antisense Down-Regulation of 4CL Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar1[W][OA

    PubMed Central

    Voelker, Steven L.; Lachenbruch, Barbara; Meinzer, Frederick C.; Jourdes, Michael; Ki, Chanyoung; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.; Tuskan, Gerald A.; Gunter, Lee; Decker, Stephen R.; Selig, Michael J.; Sykes, Robert; Himmel, Michael E.; Kitin, Peter; Shevchenko, Olga; Strauss, Steven H.

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees. PMID:20729393

  14. All-trans-retinoic Acid Increases SLC26A3 DRA (Down-regulated in Adenoma) Expression in Intestinal Epithelial Cells via HNF-1β*

    PubMed Central

    Priyamvada, Shubha; Anbazhagan, Arivarasu N.; Gujral, Tarunmeet; Borthakur, Alip; Saksena, Seema; Gill, Ravinder K.; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2015-01-01

    All-trans-retinoic acid (ATRA) is an active vitamin A derivative known to modulate a number of physiological processes, including growth and development, differentiation, and gene transcription. The protective effect of ATRA in gut inflammation and diarrheal diseases has been documented. In this regard, down-regulated in adenoma (DRA, a key luminal membrane Cl− transporter involved in NaCl absorption) has been shown to be suppressed in intestinal inflammation. This suppression of DRA is associated with diarrheal phenotype. Therefore, current studies were undertaken to examine the effects of ATRA on DRA expression. DRA mRNA levels were significantly elevated (∼4-fold) in response to ATRA with induction starting as early as 8 h of incubation. Similarly, ATRA increased DRA protein expression by ∼50%. Furthermore, DRA promoter activity was significantly increased in response to ATRA indicating transcriptional activation. ATRA effects on DRA expression appeared to be mediated via the RAR-β receptor subtype, as ATRA remarkably induced RAR-β mRNA levels, whereas RAR-β knockdown substantially attenuated the ability of ATRA to increase DRA expression. Results obtained from agonist (CH-55) and antagonist (LE-135) studies further confirmed that ATRA exerts its effects through RAR-β. Furthermore, ATRA treatment resulted in a significant increase in HNF-1β mRNA levels. The ability of ATRA to induce DRA expression was inhibited in the presence of HNF-1β siRNA indicative of its involvement in ATRA-induced effects on DRA expression. In conclusion, ATRA may act as an antidiarrheal agent by increasing DRA expression via the RAR-β/HNF-1β-dependent pathway. PMID:25887398

  15. Effects of Hypoxia Exposure on Hepatic Cytochrome P450 1A (CYP1A) Expression in Atlantic Croaker: Molecular Mechanisms of CYP1A Down-Regulation

    PubMed Central

    Rahman, Md. Saydur; Thomas, Peter

    2012-01-01

    Hypoxia-inducible factor-α (HIF-α) and cytochrome P450 1A (CYP1A) are biomarkers of environmental exposure to hypoxia and organic xenobiotic chemicals that act through the aryl hydrocarbon receptor, respectively. Many aquatic environments heavily contaminated with organic chemicals, such as harbors, are also hypoxic. Recently, we and other scientists reported HIF-α genes are upregulated by hypoxia exposure in aquatic organisms, but the molecular mechanisms of hypoxia regulation of CYP1A expression have not been investigated in teleost fishes. As a first step in understanding the molecular mechanisms of hypoxia modulation of CYP1A expression in fish, we characterized CYP1A cDNA from croaker liver. Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 2 to 4 weeks) caused significant decreases in hepatic CYP1A mRNA and protein levels compared to CYP1A levels in fish held in normoxic conditions. In vivo studies showed that the nitric oxide (NO)-donor, S-nitroso-N-acetyl-DL-penicillamine, significantly decreased CYP1A expression in croaker livers, whereas the competitive inhibitor of NO synthase (NOS), Nω-nitro-L-arginine methyl ester, restored CYP1A mRNA and protein levels in hypoxia-exposed (1.7 mg DO/L for 4 weeks) fish. In vivo hypoxia exposure also markedly increased interleukin-1β (IL-1β, a cytokine), HIF-2α mRNA and endothelial NOS (eNOS) protein levels in croaker livers. Pharmacological treatment with vitamin E, an antioxidant, lowered the IL-1β, HIF-2α mRNA and eNOS protein levels in hypoxia-exposed fish and completely reversed the down-regulation of hepatic CYP1A mRNA and protein levels in response to hypoxia exposure. These results suggest that hypoxia-induced down-regulation of CYP1A is due to alterations of NO and oxidant status, and cellular IL-1β and HIF-α levels. Moreover, the present study provides the first evidence of a role for antioxidants in hepatic eNOS and IL-1β regulation in aquatic vertebrates during hypoxic stress. PMID:22815834

  16. Ectopic expression of Bcl-XL or Ku70 protects human colon cancer cells (SW480) against curcumin-induced apoptosis while their down-regulation potentiates it.

    PubMed

    Rashmi, Ramachandran; Kumar, Santhosh; Karunagaran, Devarajan

    2004-10-01

    Curcumin, the yellow pigment derived from Curcuma longa, is known to induce apoptosis of several cancer cells. However, many cancer cells protect themselves by over-expressing antiapoptotic proteins such as Bcl-XL or Ku70. To study their role in curcumin-induced apoptosis, human colon cancer cells (SW480) were made to over-express or under-express Bcl-XL (by stable transfection) and Ku70 (by transient transfection) using plasmid constructs that express their genes in sense or antisense orientation, respectively. Stable cells that express Bax [Bax-GFP (green fluorescent protein)], a proapoptotic member of the Bcl-2 family, were also established. Curcumin-induced cell death and nuclear condensation was more in AsBcl-XL and AsKu70 cells that under-express Bcl-XL and Ku70, respectively, compared with the vector-transfected cells. Bcl-XL and Ku70 protected the cells by inhibiting the release of cytochrome c, Smac (second mitochondria derived activator of caspase) and apoptosis inducing factor (AIF), and the activation of caspases 9, 8 and 3 triggered by curcumin. AsBcl-XL and AsKu70 cells were more sensitive to curcumin through enhanced activation of caspases 9 and 3 and release of cytochrome c, Smac and AIF. Curcumin-induced activation of caspase 8 was blocked by Ku70 but not by Bcl-XL. However, caspase 8 activation by curcumin was accelerated in both AsBcl-XL and AsKu70 cells suggesting a possible feedback activation of caspase 8 by caspase 3. Bax-GFP cells were highly sensitized when Ku70 was down-regulated supporting the reported role of Ku70 in the retention of Bax within the cytosol. The study reveals the potential of antisense inhibition of antiapoptotic proteins as an effective strategy to tackle chemoresistant cancers with curcumin. PMID:15205359

  17. bmo-miR-0001 and bmo-miR-0015 down-regulate expression of Bombyx mori fibroin light chain gene in vitro*

    PubMed Central

    Chen, Chen; Fan, Yang-yang; Wang, Xin; Song, Fei; Jiang, Tao; Qian, Ping; Tang, Shun-ming; Shen, Xing-jia

    2016-01-01

    Based on bioinformatic analysis, we selected two novel microRNAs (miRNAs), bmo-miR-0001 and bmo-miR-0015, from high-throughput sequencing of the Bombyx mori larval posterior silk gland (PSG). Firstly, we examined the expression of bmo-miR-0001 and bmo-miR-0015 in 12 different tissues of the 5th instar Day-3 larvae of the silkworm. The results showed that the expression levels of both bmo-miR-0001 and bmo-miR-0015 were obviously higher in the PSG than in other tissues, implying there is a spatio-temporal condition for bmo-miR-0001 and bmo-miR-0015 to regulate the expression of BmFib-L. To test this hypothesis, we constructed pri-bmo-miR-0001 expressing the plasmid pcDNA3.0 [ie1-egfp-pri-bmo-miR-0001-SV40] and pri-bmo-miR-0015 expressing the plasmid pcDNA3.0 [ie1-egfp-pri-bmo-miR-0015-SV40]. Finally, the BmN cells were harvested and luciferase activity was detected. The results showed that luciferase activity was reduced significantly (P<0.05) in BmN cells co-transfected by pcDNA3.0 [ie1-egfp-pri-bmo-miR-0001-SV40] or pcDNA3.0 [ie1-egfp-pri-bmo-miR-0015-SV40] with pGL3.0 [A3-luc-Fib-L-3'UTR-SV40], suggesting that both bmo-miR-0001 and bmo-miR-0015 can down-regulate the expression of BmFib-L in vitro. PMID:26834013

  18. bmo-miR-0001 and bmo-miR-0015 down-regulate expression of Bombyx mori fibroin light chain gene in vitro.

    PubMed

    Chen, Chen; Fan, Yang-yang; Wang, Xin; Song, Fei; Jiang, Tao; Qian, Ping; Tang, Shun-ming; Shen, Xing-jia

    2016-02-01

    Based on bioinformatic analysis, we selected two novel microRNAs (miRNAs), bmo-miR-0001 and bmo-miR-0015, from high-throughput sequencing of the Bombyx mori larval posterior silk gland (PSG). Firstly, we examined the expression of bmo-miR-0001 and bmo-miR 12 different tissues of the 5th instar Day-3 larvae of the silkworm. The results showed that the expression levels of both bmo-miR-0001 and bmo-miR-0015 were obviously higher in the PSG than in other tissues, implying there is a spatio-temporal condition for bmo-miR-0001 and bmo-miR-0015 to regulate the expression of BmFib-L. To test this hypothesis, we constructed pri-bmo-miR-0001 expressing the plasmid pcDNA3.0 and pri-bmo-miR-0015 expressing the plasmid pcDNA3.0 [ie1-egfp-pri-bmo-miR-0015-SV40]. Finally, the BmN cells were harvested and luciferase activity was detected. The results showed that luciferase activity was reduced significantly (P<0.05) in BmN cells co-transfected by pcDNA3.0 [ie1-egfp-pri-bmo-miR-0001-SV40] or pcDNA3.0 with pGL3.0 [A3-luc-Fib-L-3'UTR-SV40], suggesting that both bmo-miR-0001 and bmo-miR-0015 can down-regulate the expression of BmFib-L in vitro. PMID:26834013

  19. Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase.

    PubMed

    Sewalt, VJH.; Ni, W.; Blount, J. W.; Jung, H. G.; Masoud, S. A.; Howles, P. A.; Lamb, C.; Dixon, R. A.

    1997-09-01

    We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors. PMID:12223790

  20. Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase.

    PubMed Central

    Sewalt, VJH.; Ni, W.; Blount, J. W.; Jung, H. G.; Masoud, S. A.; Howles, P. A.; Lamb, C.; Dixon, R. A.

    1997-01-01

    We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors. PMID:12223790

  1. mRNA-Binding Protein TIA-1 Reduces Cytokine Expression in Human Endometrial Stromal Cells and Is Down-Regulated in Ectopic Endometrium

    PubMed Central

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Kristiansson, Helena; Duke, Cindy M. P.; Choe, Gina; Flannery, Clare; Kallen, Caleb B.

    2014-01-01

    Background: Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3′-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. Objective: The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Methods: Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. Results: We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in

  2. Nandrolone-pretreatment enhances cardiac beta(2)-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats.

    PubMed

    Penna, Claudia; Abbadessa, Giuliana; Mancardi, Daniele; Spaccamiglio, Angela; Racca, Silvia; Pagliaro, Pasquale

    2007-10-01

    To investigate whether nandrolone decanoate (ND)-pretreatment can modulate (1) beta-adrenoceptor expression and (2) myocardial contractility in response to beta-adrenoceptors stimulation with isoproterenol (ISO), in hearts of both normal and stressed rats. Rats were treated with 15 mg/(kgday) of Deca-Durabolin (ND, 1 ml i.m.) or with vehicle (oil) for 14 days. The day after the last injection, the dose-response to ISO (1 x 10(-8), 5 x 10(-8) and 10(-7)M), was studied in isolated rat hearts harvested from unstressed animals (unstressed+vehicle (control) or unstressed+ND) or from stressed animals (stressed+vehicle or stressed+ND): acute stress protocol consisted in restrain for 1h immediately before sacrifice. ND-pretreatment increased beta(2)-adrenoceptor expression. In baseline conditions all hearts had a similar left ventricular developed pressure (LVDP) and maximum rate of increase of LVDP (dP/dt(max)). In hearts of unstressed+vehicle or unstressed+ND, ISO caused a similar increase in LVDP (+90-100%) and dP/dt(max) (+120-150%). However, hearts of stressed+vehicle animals showed a marked depression of inotropic response to ISO (i.e. for ISO 1 x 10(-8),-55% in LVDP response versus unstressed). Yet, in hearts of stressed+ND-animals the effect of stress was reversed, showing the highest response to ISO (i.e. for ISO 1 x 10(-7), +30% LVDP response versus unstressed). The ND-induced beta(2)-adrenoceptor overexpression does not affect ISO-response in unstressed animals. However, acute stress induces a down-regulation of ISO-response, which is reversed by ND-pretreatment. Since the physiological post-stress down-regulation of adrenergic-response is absent after nandrolone treatment, the heart may be exposed to a sympathetic over-stimulation. This might represent a risk for cardiovascular incidents in anabolic steroid addicts under stressing conditions. PMID:17611100

  3. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells.

    PubMed

    Ohno, Yosuke; Kitamura, Hidemitsu; Takahashi, Norihiko; Ohtake, Junya; Kaneumi, Shun; Sumida, Kentaro; Homma, Shigenori; Kawamura, Hideki; Minagawa, Nozomi; Shibasaki, Susumu; Taketomi, Akinobu

    2016-02-01

    Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy. PMID:26759006

  4. Differential expression of gp200-MR6 molecule in benign hyperplasia and down-regulation in invasive carcinoma of the breast.

    PubMed Central

    al-Tubuly, A. A.; Luqmani, Y. A.; Shousha, S.; Melcher, D.; Ritter, M. A.

    1996-01-01

    In this study, we used immunohistochemical and biochemical analysis to show that gp200-MR6, a 200 kDa molecule that is functionally associated with the human interleukin 4 (IL-4) receptor complex, is expressed at high levels on normal breast epithelial tissues, at lower levels on in situ carcinomas, and that the expression is lost in the invasive carcinoma of the breast. Furthermore, a preliminary study showed that benign epithelial hyperplasia of the breast expresses the gp200-MR6 heterogeneously. Two populations of cells have been observed: MR6 positive and MR6 negative. Interestingly, MR6-positive cells were observed to have different morphology from those that were MR6 negative; the nuclei of the former were larger and rounded in shape, whereas the nuclei of the latter were relatively small and oval in shape. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, monoclonal antibody MR6 detects the same molecular weight molecule in both normal and transformed tissue, indicating that the molecule is not a product of a truncated gene. The intensity of the gp200-MR6 bands correlates with the immunohistochemical data, indicating that the molecule is expressed at high levels in normal tissue and at lower levels in malignant tissue. These results suggest that analysis of gp200-MR6 expression may be useful in tumour grading and prognostic evaluation in breast cancer. Moreover, the molecule may be involved early in the process of tumorigenesis of the breast, in which a loss or a down-regulation of gp200-MR6 could contribute towards tumour development and progression via an effect on cell growth and differentiation. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8855966

  5. Tetrandrine down-regulates expression of miRNA-155 to inhibit signal-induced NF-κB activation in a rat model of diabetes mellitus

    PubMed Central

    Song, Chunhui; Ji, Yunxi; Zou, Guohui; Wan, Chunxia

    2015-01-01

    Aims: This study is to investigate expression of miRNA-155 and the related signaling pathway in a rat model of diabetes mellitus (DM). Methods: Thirty-six SD rats were divided into control, DM, and tetrandrine groups. A rat model of DM was constructed by tail vein injection with alloxan. Levels of related cytokines in serum samples were detected. The mRNA levels of IκBα and TNF-α in pancreatic islet tissues were detected by real-time PCR. Protein expression of IκBα and TNF-α was detected by western blotting. Expression of miRNA-155 in pancreatic islet tissues and serum samples was detected by real-time PCR. Results: Compared with those in the control and the tetrandrine groups, activities of methane dicarboxylic aldehyde and reactive oxygen species in serum samples and pancreatic islet mitochondria tissues in the DM group were increased (P < 0.05), while activity of superoxide dismutase in the DM group was decreased (P < 0.05). Activities of haemoglobin A1c and glucose in serum samples in the DM group were increased, while insulin in the DM group was decreased (P < 0.05). The mRNA and protein levels of IκBα in pancreatic islet tissues in the DM group were decreased (P < 0.05), while the mRNA and protein levels of TNF-α in the DM group were increased (P < 0.05). Expression of miRNA-155 in pancreatic islet tissues and serum samples in the DM group was increased (P < 0.05). Conclusion: Tetrandrine prevented injury in rat pancreatic islet caused by alloxan, which was related with decreased oxidative stress, down-regulated miRNA-155 and decreased TNF-α in the NF-κB signaling pathway. These results indicate that tetrandrine plays an important role in DM by regulating expression of miRNA-155. PMID:26064305

  6. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells.

    PubMed

    Lee, Ju-Kyung; Kim, Keun-Cheol

    2013-09-01

    3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells. PMID:23933322

  7. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy

    PubMed Central

    Litviakov, Nikolai V.; Cherdyntseva, Nadezhda V.; Tsyganov, Matvey M.; Slonimskaya, Elena M.; Ibragimova, Marina K.; Kazantseva, Polina V.; Kzhyshkowska, Julia; Choinzonov, Eugeniy L.

    2016-01-01

    Neoadjuvant chemotherapy (NAC) is intensively used for the treatment of primary breast cancer. In our previous studies, we reported that clinical tumor response to NAC is associated with the change of multidrug resistance (MDR) gene expression in tumors after chemotherapy. In this study we performed a combined analysis of MDR gene locus deletions in tumor DNA, MDR gene expression and clinical response to NAC in 73 BC patients. Copy number variations (CNVs) in biopsy specimens were tested using high-density microarray platform CytoScanTM HD Array (Affymetrix, USA). 75%–100% persons having deletions of MDR gene loci demonstrated the down-regulation of MDR gene expression. Expression of MDR genes was 2–8 times lower in patients with deletion than in patients having no deletion only in post-NAC tumors samples but not in tumor tissue before chemotherapy. All patients with deletions of ABCB1 ABCB 3 ABCC5 gene loci – 7q21.1, 6p21.32, 3q27 correspondingly, and most patients having deletions in ABCC1 (16p13.1), ABCC2 (10q24), ABCG1 (21q22.3), ABCG2 (4q22.1), responded favorably to NAC. The analysis of all CNVs, including both amplification and deletion showed that the frequency of 13q14.2 deletion was 85% among patients bearing tumor with the deletion at least in one MDR gene locus versus 9% in patients with no deletions. Differences in the frequency of 13q14.2 deletions between the two groups were statistically significant (p = 2.03 ×10−11, Fisher test, Bonferroni-adjusted p = 1.73 × 10−8). In conclusion, our study for the first time demonstrates that deletion MDR gene loci can be used as predictive marker for tumor response to NAC. PMID:26799285

  8. Cytoplasmic localization of Lrh-1 down-regulates ovarian follicular cyp19a1a expression in a teleost, the orange-spotted grouper Epinephelus coioides.

    PubMed

    Lu, Huijie; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong; Zhang, Weimin

    2014-08-01

    Liver receptor homolog-1 (LRH-1) is a conserved member of the NR5A subfamily in vertebrates and a potential regulator of estrogen synthesis in the ovarian granulosa cells. An Lrh-1 homologue was obtained from the orange-spotted grouper Epinephelus coioides that contains the conserved structural features of NR5A and is phylogenetically closely related to NR5A2. The expression of the orange-spotted grouper Lrh-1 is tissue-specific with relatively higher levels in the liver and ovary. The immunoreactive signals for Lrh-1 and Cyp19a1a were present in the ovarian follicular cells and germ cells. In the ovarian follicular cells, Lrh-1 was present both in the nucleus and cytoplasm, and colocalized with Cyp19a1a. The expression levels of both increased during vitellogenesis whereas only Cyp19a1a dramatically decreased toward maturation when Lrh-1 was localized almost exclusively to the cytoplasm of the follicular cells. The orange-spotted grouper Lrh-1 could up-regulate cyp19a1a transcription in vitro via the two conserved Ftz-f1 sites in cyp19a1a promoter. Chromatin immunoprecipitation analysis showed that the orange-spotted grouper Lrh-1 could bind cyp19a1a promoter in vivo with a higher abundance in the vitellogenic ovary, whereas the binding was dramatically decreased in the mature ovary. Taken together, the results of present study demonstrate that Lrh-1 plays an important role in up-regulating cyp19a1a gene in the ovarian follicular cells during vitellogenesis, and the sequestration of Lrh-1 to the cytoplasm may down-regulate cyp19a1a expression in the mature ovary. This mechanism for modifying transcriptional roles of the orange-spotted grouper Lrh-1 may shed new light on the regulation of Cyp19a1 expression in other vertebrates as well. PMID:24943038

  9. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma

    SciTech Connect

    Chen, Hong; Hao, Yuqing; Wang, Lijing; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Sodium arsenite down-regulates the protein expression level of XIAP in HCC. Black-Right-Pointing-Pointer Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. Black-Right-Pointing-Pointer Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. Black-Right-Pointing-Pointer Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.

  10. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons.

    PubMed

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric; Mattson, Marc P

    2002-03-19

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-alpha, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-alpha diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  11. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    SciTech Connect

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  12. Down Regulation of ackA-pta Pathway in Escherichia coli BL21 (DE3): A Step Toward Optimized Recombinant Protein Expression System

    PubMed Central

    Bakhtiari, Nahid; Mirshahi, Manouchehr; Babaeipour, Valiollah; Maghsoudi, Nader; Tahzibi, Abbas

    2014-01-01

    Background: One of the most important problems in production of recombinant protein is to attain over-expression of the target gene and high cell density. In such conditions, the secondary metabolites of bacteria become toxic for the medium and cause cells to die. One of these aforementioned metabolites is acetate, which enormously accumulated in the medium, so that both cell and protein yields are affected. Objectives: To overcome this problem, several strategies applied. In this research we used antisense RNA strategy, where the transcription of phosphotransacetylase (PTA) and acetate kinase (ACK), two acetate pathway key enzymes, could be controlled, which led to reduced acetate production. Materials and Methods: In order to achieve this, recombinant plasmid harboring antisense sequences targeting both of pta and ackA was assembled, after transfecting to the cells, its effects on the cell growth and acetate accumulation in the minimal media was assessed and compared with the control, the plasmid without antisense cassette, in presence and absence of IPTG in Escherichia coli BL21 (DE3). Results: It was observed that the mentioned strategy partially affect the growth and amount of excreted acetate in comparison with the control. In addition it was found that high down-regulation of the acetate production pathway reduces the growth rate of E. coli BL21 (DE3). Conclusions: The study principally proved the importance of this strategy in acetate excretion control. PMID:25147677

  13. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma

    PubMed Central

    Kim, Sang Suk; Kim, Min-Jin; Choi, Young Hun; Kim, Byung Kok; Kim, Kwang Sik; Park, Kyung Jin; Park, Suk Man; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    Objective To investigate the suitability of citrus-press cakes, by-products of the juice industry as a source for the whitening agents for cosmetic industry. Methods Ethylacetate extracts of citrus-press cakes (CCE) were examined for their anti-melanogenic potentials in terms of the inhibition of melanin production and mechanisim of melanogenesis by using Western Blot analysis with tyrosinese, tyrosinase-related protein-1 (TRP-1), TRP2, and microphthalmia-associated transcription factor (MITF) proteins. To apply the topical agents, citrus-press cakes was investigated the safety in human skin cell line. Finally flavonoid analysis of CCE was also determined by HPLC analysis. Results Results indicated that CCE were shown to down-regulate melanin content in a dose-dependent pattern. The CCE inhibited tyrosinase, TRP-2, and MITF expressions in a dose-dependent manner. To test the applicability of CCE to human skin, we used MTT assay to assess the cytotoxic effects of CCE on human keratinocyte HaCaT cells. The CCE exhibited low cytotoxicity at 50 µg/mL. Characterization of the citrus-press cakes for flavonoid contents using HPLC showed varied quantity of rutin, narirutin, and hesperidin. Conclusions Considering the anti-melanogenic activity and human safety, CCE is considered as a potential anti-melanogenic agent and may be effective for topical application for treating hyperpigmentation disorders. PMID:23905018

  14. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression

    PubMed Central

    Yabumoto, Chizuru; Akazawa, Hiroshi; Yamamoto, Rie; Yano, Masamichi; Kudo-Sakamoto, Yoko; Sumida, Tomokazu; Kamo, Takehiro; Yagi, Hiroki; Shimizu, Yu; Saga-Kamo, Akiko; Naito, Atsuhiko T.; Oka, Toru; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Uejima, Etsuko; Komuro, Issei

    2015-01-01

    Disruption of angiotensin II type 1 (AT1) receptor prolonged life span in mice. Since aging-related decline in skeletal muscle function was retarded in Atgr1a−/− mice, we examined the role of AT1 receptor in muscle regeneration after injury. Administration of AT1 receptor blocker irbesartan increased the size of regenerating myofibers, decreased fibrosis, and enhanced functional muscle recovery after cryoinjury. We recently reported that complement C1q, secreted by macrophages, activated Wnt/β-catenin signaling and promoted aging-related decline in regenerative capacity of skeletal muscle. Notably, irbesartan induced M2 polarization of macrophages, but reduced C1q expression in cryoinjured muscles and in cultured macrophage cells. Irbesartan inhibited up-regulation of Axin2, a downstream gene of Wnt/β-catenin pathway, in cryoinjured muscles. In addition, topical administration of C1q reversed beneficial effects of irbesartan on skeletal muscle regeneration after injury. These results suggest that AT1 receptor blockade improves muscle repair and regeneration through down-regulation of the aging-promoting C1q-Wnt/β-catenin signaling pathway. PMID:26571361

  15. Down-regulation of MSH2 expression by an Hsp90 inhibitor enhances pemetrexed-induced cytotoxicity in human non-small-cell lung cancer cells.

    PubMed

    Tung, Chun-Liang; Chiu, Hsien-Chun; Jian, Yi-Jun; Jian, Yun-Ting; Chen, Chien-Yu; Syu, Jhan-Jhang; Wo, Ting-Yu; Huang, Yi-Jhen; Tseng, Sheng-Chieh; Lin, Yun-Wei

    2014-04-01

    Elevated heat shock protein 90 (Hsp90) expression has been linked to poor prognosis in patients with non-small cell lung cancer (NSCLC). The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against NSCLC. However, the efficacy of the combination of pemtrexed and Hsp90 inhibitor to prolong the survival of patients with NSCLC still remains unclear. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and defects or polymorphisms of MSH2 have been found in lung cancer. In this study, we evaluated the effects of pemetrexed on NSCLC cell lines (H520 and H1703) and found that treatment with this drug at 20-50 µM increased the MSH2 mRNA and protein levels in a MKK3/6-p38 MAPK signal activation-dependent manner. Furthermore, the knockdown of MSH2 expression by transfection with small interfering RNA of MSH2 or the blockage of p38 MAPK activation by SB202190 enhanced the cytotoxicity of pemetrexed. Combining the drug treatment with an Hsp90 inhibitor resulted in an enhanced pemetrexed-induced cytotoxic effect, accompanied with the reduction of MSH2 protein and mRNA levels. The expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored the MSH2 protein levels and cell survival in NSCLC cells co-treated with pemetrexed and Hsp90 inhibitor. In this study, we have demonstrated that down-regulation of the MKK3/6-p38 MAPK signal with the subsequent reduction of MSH2 enhanced the cytotoxic effect of pemetrexed in H520 and H1703 cells. The results suggest a potential future benefit of combining pemetrexed and the Hsp90 inhibitor to treat lung cancer. PMID:24530475

  16. The qEEG Signature of Selective NMDA NR2B Negative Allosteric Modulators; A Potential Translational Biomarker for Drug Development

    PubMed Central

    Keavy, Deborah; Bristow, Linda J.; Sivarao, Digavalli V.; Batchelder, Margaret; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E.; Weed, Michael R.

    2016-01-01

    The antidepressant activity of the N-methyl-D-aspartate (NMDA) receptor channel blocker, ketamine, has led to the investigation of negative allosteric modulators (NAMs) selective for the NR2B receptor subtype. The clinical development of NR2B NAMs would benefit from a translational pharmacodynamic biomarker that demonstrates brain penetration and functional inhibition of NR2B receptors in preclinical species and humans. Quantitative electroencephalography (qEEG) is a translational measure that can be used to demonstrate pharmacodynamic effects across species. NMDA receptor channel blockers, such as ketamine and phencyclidine, increase the EEG gamma power band, which has been used as a pharmacodynamic biomarker in the development of NMDA receptor antagonists. However, detailed qEEG studies with ketamine or NR2B NAMs are lacking in nonhuman primates. The aim of the present study was to determine the effects on the qEEG power spectra of the NR2B NAMs traxoprodil (CP-101,606) and BMT-108908 in nonhuman primates, and to compare them to the NMDA receptor channel blockers, ketamine and lanicemine. Cynomolgus monkeys were surgically implanted with EEG radio-telemetry transmitters, and qEEG was measured after vehicle or drug administration. The relative power for a number of frequency bands was determined. Ketamine and lanicemine increased relative gamma power, whereas the NR2B NAMs traxoprodil and BMT-108908 had no effect. Robust decreases in beta power were elicited by ketamine, traxoprodil and BMT-108908; and these agents also produced decreases in alpha power and increases in delta power at the doses tested. These results suggest that measurement of power spectra in the beta and delta bands may represent a translational pharmacodynamic biomarker to demonstrate functional effects of NR2B NAMs. The results of these studies may help guide the selection of qEEG measures that can be incorporated into early clinical evaluation of NR2B NAMs in healthy humans. PMID:27035340

  17. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression.

    PubMed

    Han, Min Ae; Woo, Seon Min; Min, Kyoung-jin; Kim, Shin; Park, Jong-Wook; Kim, Dong Eun; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2015-02-25

    6-Shogaol, a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been reported for anti-inflammatory and anti-cancer activity. In this study, we investigated the effect of 6-shogaol to enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. The combined treatment with 6-shogaol and TRAIL markedly induces apoptosis in various cancer cells (renal carcinoma Caki cells, breast carcinoma MDA-MB-231 cells and glioma U118MG cells), but not in normal mesangial cells and normal mouse kidney cells. 6-Shogaol reduced the mitochondrial membrane potential (MMP) and released cytochrome c from mitochondria to cytosol via Bax activation. Furthermore, we found that 6-shogaol induced down-regulation of c-FLIP(L) expression at the post-translational levels and the overexpression of c-FLIP(L) markedly inhibited 6-shogaol plus TRAIL-induced apoptosis. Moreover, 6-shogaol increased reactive oxygen species (ROS) production in Caki cells. Pretreatment with ROS scavengers attenuated 6-shogaol plus TRAIL-induced apoptosis through inhibition of MMP reduction and down-regulation of c-FLIP(L) expression. In addition, 6-gingerol, another phenolic alkanone isolated from ginger, did not enhance TRAIL-induced apoptosis and down-regulate c-FLIP(L) expression. Taken together, our results demonstrated that 6-shogaol enhances TRAIL-mediated apoptosis in renal carcinoma Caki cells via ROS-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. PMID:25619640

  18. Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis

    PubMed Central

    Farjam, Mojtaba; Beigi Zarandi, Faegheh Baha'addini; Farjadian, Shirin; Geramizadeh, Bita; Nikseresht, Ali Reza; Panjehshahin, Mohammad Reza

    2014-01-01

    Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal role in neurodegeneration, has not been tested in MS. In this study inhibition of NR2B-containing NMDAR was evaluated on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). EAE induction was done using MOG in C57BL/6 mice. Therapeutic administration of different doses of highly selective NR2B-containing NMDAR inhibitor (RO25-6981) was compared with memantine (non-selective NMDAR antagonist) and vehicle. Neurological deficits in EAE animals were more efficiently decreased by selective inhibition of NR2B-containing NMDARs. Histological studies of the spinal cords also showed decreased inflammation, myelin degradation and neuro-axonal degeneration when RO25-6981was administered with higher doses. The effects were dose dependent. Regarding the role of NR2B-containing NMDARs in excitotoxicity, selective inhibition of these receptor subtypes seems to modulate the neurological disabilities and pathological changes in EAE. Further elucidation of the exact mechanism of action as well as more experimental studies can suggest NR2B-containing NMDAR inhibition as a potentially effective treatment strategy for slowing down the clinical deterioration of disability in MS. PMID:25237366

  19. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats.

    PubMed

    Huang, Hui-Ling; Hong, Ya-Wen; Wong, You-Hong; Chen, Ying-Nien; Chyuan, Jong-Ho; Huang, Ching-Jang; Chao, Pei-Min

    2008-02-01

    Bitter melon (Momordica charantia; BM) has been shown to ameliorate diet-induced obesity and insulin resistance. To examine the effect of BM supplementation on cell size and lipid metabolism in adipose tissues, three groups of rats were respectively fed a high-fat diet supplemented without (HF group) or with 5 % lyophilised BM powder (HFB group), or with 0.01 % thiazolidinedione (TZD) (HFT group). A group of rats fed a low-fat diet was also included as a normal control. Hyperinsulinaemia and glucose intolerance were observed in the HF group but not in HFT and HFB groups. Although the number of large adipocytes (>180 microm) of both the HFB and HFT groups was significantly lower than that of the HF group, the adipose tissue mass, TAG content and glycerol-3-phosphate dehydrogenase activity of the HFB group were significantly lower than those of the HFT group, implying that BM might reduce lipogenesis in adipose tissue. Experiment 2 was then conducted to examine the expression of lipogenic genes in adipose tissues of rats fed low-fat, HF or HFB diets. The HFB group showed significantly lower mRNA levels of fatty acid synthase, acetyl-CoA carboxylase-1, lipoprotein lipase and adipocyte fatty acid-binding protein than the HF group (P < 0.05). These results indicate BM can reduce insulin resistance as effective as the anti-diabetic drug TZD. Furthermore, BM can suppress the visceral fat accumulation and inhibit adipocyte hypertrophy, which may be associated with markedly down regulated expressions of lipogenic genes in the adipose. PMID:17651527

  20. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma

    PubMed Central

    Akbari, Abolfazl; Farahnejad, Zohreh; Akhtari, Javad; Abastabar, Mahdi; Mobini, Gholam Reza; Mehbod, Amir Seied Ali

    2016-01-01

    Background It has been revealed that Staphylococcus aureus enterotoxin B (SEB) may feature anti-cancer and anti-metastatic advantages due to its ability to modify cell immunity processes and signaling pathways. Glioblastoma is one of the most aggressive human cancers; it has a high mortality nature, which makes it an attractive area for the development of novel therapies. Objectives We examined whether the SEB could exert its growth inhibitory effects on glioblastoma cells partially through the manipulation of a key tumor growth factor termed transforming growth factor-beta (TGF-β). Materials and Methods A human primary glioblastoma cell line, U87, was treated with different concentrations of SEB. The cell quantity was measured by the MTT assay at different exposure times. For molecular assessments, total ribonucleic acid (RNA) was extracted from either non-treated or SEB-treated cells. Subsequently, the gene expression of TGF-β transducers, smad2/3, at the messenger RNA (mRNA) level, was analyzed via a quantitative real-time polymerase chain reaction (qPCR) using the SYBR Green method. Significant differences between cell viability and gene expression levels were determined (Prism 5.0 software) using one-way analyses of variance (ANOVA) test. Results We reported that SEB could effectively down-regulate smad2/3 expression in glioblastoma cells at concentrations as quantity as 1 μg/mL and 2 μg/mL (P < 0.05 and P < 0.01, respectively). The SEB concentrations effective at regulating smad2/3 expression were correlated with those used to inhibit the proliferation of glioblastoma cells. Our results also showed that SEB was able to decrease smad2/3 expression at the mRNA level in a concentration- and time-dependent manner. Conclusions We suggested that SEB could represent an agent that can significantly decrease smad2/3 expression in glioblastoma cells, leading to moderate TGF-β growth signaling and the reduction of tumor cell proliferation. PMID:27540448

  1. Expression of Caveolin-1 reduces cellular responses to TGF-{beta}1 through down-regulating the expression of TGF-{beta} type II receptor gene in NIH3T3 fibroblast cells

    SciTech Connect

    Lee, Eun Kyung; Lee, Youn Sook; Han, In-Oc; Park, Seok Hee . E-mail: parks@skku.edu

    2007-07-27

    Transcriptional repression of Transforming Growth Factor-{beta} type II receptor (T{beta}RII) gene has been proposed to be one of the major mechanisms leading to TGF-{beta} resistance. In this study, we demonstrate that expression of Caveolin-1 (Cav-1) gene in NIH3T3 fibroblast cells down-regulates the expression of T{beta}RII gene in the transcriptional level, eventually resulting in the decreased responses to TGF-{beta}. The reduced expression of T{beta}RII gene by Cav-1 appeared to be due to the changes of the sequence-specific DNA binding proteins to either Positive Regulatory Element 1 (PRE1) or PRE2 of the T{beta}RII promoter. In addition, Cav-1 expression inhibited TGF-{beta}-mediated cellular proliferation and Plasminogen Activator Inhibitor (PAI)-1 gene expression as well as TGF-{beta}-induced luciferase activity. Furthermore, the inhibition of endogeneous Cav-1 by small interfering RNA increased the expression of T{beta}RII gene. These findings strongly suggest that expression of Cav-1 leads to the decreased cellular responsiveness to TGF-{beta} through down-regulating T{beta}RII gene expression.

  2. The Neuropeptide Y Y1 Receptor: A Diagnostic Marker? Expression in MCF-7 Breast Cancer Cells Is Down-Regulated by Antiestrogens In Vitro and in Xenografts

    PubMed Central

    Memminger, Martin; Keller, Max; Lopuch, Miroslaw; Pop, Nathalie; Bernhardt, Günther; von Angerer, Erwin; Buschauer, Armin

    2012-01-01

    The neuropeptide Y (NPY) Y1 receptor (Y1R) has been suggested as a tumor marker for in vivo imaging and as a therapeutic target. In view of the assumed link between estrogen receptor (ER) and Y1R in mammary carcinoma and with respect to the development of new diagnostic tools, we investigated the Y1R protein expression in human MCF-7 cell variants differing in ER content and sensitivity against antiestrogens. ER and Y1R expression were quantified by radioligand binding using [3H]-17β-estradiol and the Y1R selective antagonist [3H]-UR-MK114, respectively. The latter was used for cellular binding studies and for autoradiography of MCF-7 xenografts. The fluorescent ligands Cy5-pNPY (universal Y1R, Y2R and Y5R agonist) and UR-MK22 (selective Y1R antagonist), as well as the selective antagonists BIBP3226 (Y1R), BIIE0246 (Y2R) and CGP71683 (Y5R) were used to identify the NPY receptor subtype(s) by confocal microscopy. Y1R functionality was determined by mobilization of intracellular Ca2+. Sensitivity of MCF-7 cells against antiestrogen 4-hydroxytamoxifen correlated directly with the ER content. The exclusive expression of Y1Rs was confirmed by confocal microscopy. The Y1R protein was up-regulated (100%) by 17β-estradiol (EC50 20 pM) and the predominant role of ERα was demonstrated by using the ERα-selective agonist “propylpyrazole triol”. 17β-Estradiol-induced over-expression of functional Y1R protein was reverted by the antiestrogen fulvestrant (IC50 5 nM) in vitro. Furthermore, tamoxifen treatment of nude mice resulted in an almost total loss of Y1Rs in MCF-7 xenografts. In conclusion, the value of the Y1R as a target for therapy and imaging in breast cancer patients may be compromised due to Y1R down-regulation induced by hormonal (antiestrogen) treatment. PMID:23236424

  3. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor

    PubMed Central

    Han, Jichun; Zhou, Mingjie; Ren, Huanhuan; Pan, Qunwen; Zheng, Chunli; Zheng, Qiusheng

    2016-01-01

    Background and Purpose Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. Methods Adult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination. Results Scu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity. Conclusion Scu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and

  4. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    PubMed Central

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  5. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    NASA Astrophysics Data System (ADS)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  6. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    SciTech Connect

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  7. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology.

    PubMed

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; Goodman, Stephen Irwin; Woontner, Michael; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2015-12-15

    Glutaric aciduria type I (GA I) is biochemically characterized by accumulation of glutaric and 3-hydroxyglutaric acids in body fluids and tissues, particularly in the brain. Affected patients show progressive cortical leukoencephalopathy and chronic degeneration of the basal ganglia whose pathogenesis is still unclear. In the present work we investigated parameters of bioenergetics and redox homeostasis in various cerebral structures (cerebral cortex, striatum and hippocampus) and heart of adult wild type (Gcdh(+/+)) and glutaryl-CoA dehydrogenase deficient knockout (Gcdh(-/-)) mice fed a baseline chow. Oxidative stress parameters were also measured after acute lysine overload. Finally, mRNA expression of NMDA subunits and GLT1 transporter was determined in cerebral cortex and striatum of these animals fed a baseline or high lysine (4.7%) chow. No significant alterations of bioenergetics or redox status were observed in these mice. In contrast, mRNA expression of the NR2B glutamate receptor subunit and of the GLT1 glutamate transporter was higher in cerebral cortex of Gcdh(-/-) mice. Furthermore, NR2B expression was markedly elevated in striatum of Gcdh(-/-) animals receiving chronic Lys overload. These data indicate higher susceptibility of Gcdh(-/-) mice to excitotoxic damage, implying that this pathomechanism may contribute to the cortical and striatum alterations observed in GA I patients. PMID:26671102

  8. Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana

    PubMed Central

    Castillo-Fernández, Juan E.; Miranda-Ortíz, Haydee; Fernández-López, Juan C.; Becker, Ingeborg; Rangel-Escareño, Claudia

    2016-01-01

    An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis. PMID:27031998

  9. Fragile X Mental Retardation Protein Interactions with a G quadruplex structure in the 3′-Untranslated Region of NR2B mRNA

    PubMed Central

    Stefanovic, Snezana; DeMarco, Brett A.; Underwood, Ayana; Williams, Kathryn R.; Bassell, Gary J.; Mihailescu, Mihaela Rita

    2015-01-01

    Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5′-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the Post Synaptic Density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3′-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3′-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-D-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets. PMID:26412477

  10. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    SciTech Connect

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-free and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.